WO2015160085A1 - 전자전달 매개체의 산화환원 순환을 이용한 바이오센서 - Google Patents

전자전달 매개체의 산화환원 순환을 이용한 바이오센서 Download PDF

Info

Publication number
WO2015160085A1
WO2015160085A1 PCT/KR2015/002196 KR2015002196W WO2015160085A1 WO 2015160085 A1 WO2015160085 A1 WO 2015160085A1 KR 2015002196 W KR2015002196 W KR 2015002196W WO 2015160085 A1 WO2015160085 A1 WO 2015160085A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
biosensor
probe
electron transfer
catalyst label
Prior art date
Application number
PCT/KR2015/002196
Other languages
English (en)
French (fr)
Inventor
양해식
박선화
두타고라찬드
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2015160085A1 publication Critical patent/WO2015160085A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Definitions

  • the present invention relates to a biosensor using a difference in the electron transfer rate of the electron transfer medium according to the distance between the electrode and the catalyst label.
  • biosensors have been developed to quickly and accurately measure the presence or concentration of analytes in sample solutions such as blood, urine, and saliva.
  • sample solutions such as blood, urine, and saliva.
  • immune sensors immunosensor
  • DNA sensor DNA sensor
  • biospecific binding have recently been developed.
  • a method using a catalyst label capable of producing many signal substances in a short time by a catalytic reaction, such as an enzyme is used to obtain a large signal
  • a catalytic reaction such as an enzyme
  • the substrate participating in the catalytic reaction should be supplied to the area where the measurement takes place at different time from the sample solution. Therefore, a method of supplying a solution containing a substrate in addition to the solution to a region where a measurement on a biosensor occurs is used (US Patent No. 7,300,802; US Patent No. 7,419,821; US Patent No.
  • the development of biosensors for measuring the concentration of the target material by measuring the electrical conductivity, current and the like has been made a lot.
  • an immunosensor or DNA sensor using a label requires more than one washing process. By removing unbound labels or removing obstructions in the sample solution through the washing process, a low background level can be obtained to obtain a low detection limit. In the case of side flow analysis using only the sample solution without the use of additional solution, the cleaning effect is obtained through the flow of the sample solution.
  • a cleaning process requires fluid control, and thus there is a limit to miniaturizing the biosensor. Therefore, in order to downsize the biosensor, it is necessary to develop a biosensor that does not require a washing process.
  • the inventors search for a biosensor for detecting a target substance, and use the difference in the electron transfer rate of the electron transfer medium due to the change of the distance between the electrode and the catalyst label, only one solution is used without washing the biosensor.
  • the target material can be detected with a low detection limit, the influence of the interfering material is minimized, and the two or more target materials can be detected simultaneously, thereby completing the present invention.
  • the present invention is to provide a biosensor using a difference in the electron transfer rate of the electron transfer medium and a method of manufacturing the same.
  • the present invention is a.
  • the biosensor is characterized in that it exhibits an increased electron transfer rate compared to the catalyst label not connected to the electrode. do.
  • Two or more electrodes patterned on the substrate Two or more capture first probes that specifically bind to any one or more of two or more target substances or two or more second probes and are respectively fixed to the electrodes; Two or more second probes each specifically binding to any one of the two or more target substances or the two or more first probes;
  • a catalyst label each bound to the at least two second probes;
  • an electron transfer medium for transferring electrons between the catalyst label and the electrode.
  • the biosensor is characterized in that it exhibits an increased electron transfer rate compared to the catalyst label not connected to the electrode. do.
  • the present invention comprises the steps of adding a sample to the biosensor; And measuring an electrochemical signal of an electrode of the biosensor.
  • the biosensor according to the present invention uses the difference in the electron transfer rate of the electron transfer medium due to the change of the distance between the electrode and the catalyst label, thereby detecting the target substance with a low detection limit even when only one solution is used without washing. It enables rapid measurement and spherical micro sensor, minimizes the influence of interfering substances, and shows excellent target substance detection effect that can simultaneously detect two or more target substances.
  • FIG. 1 is a conceptual diagram of a sandwich-type biosensor using a sample solution to obtain an oxidation current (or charge).
  • FIG. 2 is a conceptual diagram of a sandwich-type biosensor using a sample solution to obtain a reduction current (or charge).
  • FIG. 3 is a conceptual diagram of a sandwich-type biosensor using a sample solution and obtaining an oxidation current (or charge) using a catalytic reaction of a catalyst label.
  • FIG. 4 is a conceptual diagram of a sandwich-type biosensor using a sample solution containing a substrate to obtain a reduction current (or charge).
  • FIG. 5 is a conceptual diagram of a first competing biosensor using a sample solution and obtaining an oxidation current (or charge).
  • FIG. 6 is a conceptual diagram of a second competing biosensor using a sample solution and obtaining an oxidation current (or charge).
  • FIG. 7 is a conceptual diagram of a sandwich-type biosensor that obtains an oxidation current (or charge) by using a mixed solution containing necessary substances in a sample solution.
  • FIG. 8 is a conceptual diagram of a sandwich-type biosensor using an sample solution containing an interfering substance to obtain an oxidation current (or charge).
  • FIG. 9 is a conceptual diagram of a sandwich-type biosensor using a sample solution containing an interfering substance and a substrate to obtain a reduction current (or charge).
  • FIG. 10 is a conceptual diagram of a sandwich type biosensor using three patterned electrodes.
  • FIG. 11 is a conceptual diagram of a sandwich type biosensor using four patterned electrodes.
  • FIG. 12 is a conceptual diagram of a sandwich type biosensor using four electrodes patterned including a control electrode.
  • FIG. 13 is a conceptual diagram of a sandwich-type biosensor used after drying the reagent on the membrane.
  • FIG. 14 is a conceptual diagram of a sandwich-type electrochemical biosensor using an ITO electrode as a working electrode and detecting a prostate-specific antigen (PSA) as a target material.
  • PSA prostate-specific antigen
  • FIG. 15 is a diagram illustrating time versus charge diagram according to PSA concentration using the biosensor of FIG. 14.
  • FIG. 16 is a diagram showing charge according to PSA concentration at 100 seconds in the time versus charge diagram of FIG. 15.
  • FIG. 17 is a diagram comparing actual PSA concentrations of clinical samples with PSA concentration values measured by a biosensor using the calibration curve of FIG. 16.
  • FIG. 18 is a conceptual diagram of a sandwich type electrochemical biosensor using an ITO electrode as a working electrode and detecting troponin I as a target material.
  • FIG. 19 is a diagram illustrating a time versus charge diagram according to the concentration of troponin eye using the biosensor of FIG. 18.
  • FIG. 20 is a view showing the corrected charge according to the troponin eye concentration at 100 seconds in the time versus charge diagram of FIG.
  • FIG. 21 is a conceptual diagram of a sandwich-type electrochemical biosensor using a patterned ITO electrode including a control electrode and a membrane on which a reagent is dried, and detecting troponin eye as a target material.
  • FIG. 22 is a photograph of a patterned ITO electrode and membrane including a control electrode.
  • FIG. 23 is a differential pulse voltammogram obtained using a serum containing 1 ng / mL troponin eye and using the biosensor of FIG. 21.
  • FIG. 24 is a view showing the difference between the peak current of Figure 23 according to the concentration of troponin eye.
  • the present invention is a.
  • the biosensor is characterized in that it exhibits an increased electron transfer rate compared to the catalyst label not connected to the electrode. do.
  • the present invention is a substrate; Two or more electrodes patterned on the substrate; Two or more capture first probes that specifically bind to any one or more of two or more target substances or two or more second probes and are respectively fixed to the electrodes; Two or more second probes each specifically binding to any one of the two or more target substances or the two or more first probes; A catalyst label each bound to the at least two second probes; A substrate in which oxidation or reduction occurs only by the catalyst label; And an electron transfer medium for transferring electrons between the catalyst label and the electrode.
  • the biosensor is characterized in that it exhibits an increased electron transfer rate compared to the catalyst label not connected to the electrode. do.
  • the biosensor of the present invention is characterized in that it does not require cleaning of the catalyst label and the electron transfer blocking material not connected to the electrode.
  • oxidation or reduction of the electron transfer mediator may occur by catalytic reaction of a catalyst label in the presence of a substrate even before the electrochemical measurement is started.
  • the electrode may be a tin oxide (ITO) electrode, a graphene-coated tin oxide electrode, a carbon nanotube-coated tin oxide electrode, a carbon electrode, a gold electrode, a silver electrode, Ag / AgCl It is preferably any one selected from the group consisting of electrodes, platinum electrodes and combinations thereof.
  • ITO tin oxide
  • graphene-coated tin oxide electrode a carbon nanotube-coated tin oxide electrode
  • a carbon electrode a gold electrode
  • silver electrode Ag / AgCl It is preferably any one selected from the group consisting of electrodes, platinum electrodes and combinations thereof.
  • the electrode may include a working electrode, a reference electrode, and a counter electrode, and may further include a control electrode for comparing a difference of an electrochemical signal with the working electrode.
  • the target material is a material existing in vivo, and by biospecific binding with the first probe and the second probe, any material that connects the catalyst label to the electrode can be detected without limitation. That is, the target material refers to a chemical or biomaterial such as metal ions, DNA, RNA, ATP, and protein that are present in vivo.
  • the protein may include prostate specific antigen (PSA), troponin I, troponin T, troponin T, protease, thrombin, fibrinogen, immunoglobulin G, and immunoglobulin G.
  • IgG immunoglobulin M
  • IgA immunoglobulin A
  • IgD immunoglobulin D
  • hemoglobin myoglobin, albumin, casein, prolamin , Actin, myosin, collagen, keratin, and the like, but is not limited thereto.
  • the substrate refers to a substance that is oxidized or reduced by a catalyst label to transfer or receive electrons, but does not occur or slows down by an electrode.
  • the substrate may be glucose which transfers electrons to a glucose oxidase catalyst label and oxidizes to gluconic acid.
  • the first probe or the second probe may be a material that performs biospecific binding with a target material, and may be used without limitation as long as it is a material that connects the catalyst label bound to the second probe to the electrode through the biospecific binding.
  • the biospecific binding is for linking a catalyst label to an electrode, by binding one or more between the first and second probes, between the target and the second probes, or between the first and second probes.
  • the catalyst label bound to the probe can be connected to the electrode.
  • the catalyst label refers to a substance that causes redox between the substrate and the electron transfer medium.
  • the catalyst is glucose oxidase, glycerol-3-phosphate dehydrogenase, ascorbate oxidase, horseradish oxidase, soybean Oxybeans (lacoy), laccase, bilirubin oxidase, tyrosinase, gold nanoparticles, silver nanoparticles, platinum nanoparticles, iridium nanoparticles, palladium nanoparticles, It is preferably any one selected from the group consisting of Prussian blue nanoparticles and combinations thereof.
  • the electron transfer medium is a material that is oxidized or reduced by a catalyst label and is reduced or oxidized at an electrode, and means a material that transfers electrons between the catalyst label and the electrode.
  • the electron transport medium is Ru (NH 3 ) 6 3+ , Ru (NH 3 ) 6 2+ , Fe (CN) 6 3- , Fe (CN) 6 4- , Ru (NH 3 ) 5 (pyridine ) 3+ , Ru (NH 3 ) 5 (pyridine) 2+ , ferrocene, ferrocene methanol, ferrocene carboxylic acid, [Os (2,2'-bipyridine) 2 Cl 2 ] + , [Os (2,2'- Bipyridine) 2 Cl 2 ], [Os (2,2'-bipyridine) 2 (pyridine) Cl] 2+ , [Os (2,2'-bipyridine) 2 (pyridine) Cl] + and combinations thereof It is preferably any one selected from the group consisting of.
  • the electron transfer is to obtain a large signal-to-background ratio by amplifying an electrochemical signal, wherein (1) an electron transfer medium provided with an electron from the catalyst label provides electrons to the electrode, or (2) electrons from the electrode.
  • the provided electron transfer mediator is carried out by providing electrons to the catalyst label.
  • the electron transfer blocking material refers to a material present in the sample and easily oxidized or reduced electrochemically in the potential region where the electrochemical measurement takes place.
  • the interfering substance may be “ascorbic acid”, but is not limited thereto.
  • the biosensor may further include a control electrode on which the first probe is not fixed, and by simultaneously performing electrochemical measurements on the working electrode and the control electrode, the difference or ratio of the electrochemical measurement values obtained from the two electrodes ( ratio can be used to determine the concentration of the target material.
  • the biosensor may further include a membrane present on the electrode, and the second probe, the catalyst label, the substrate, and the electron transfer medium may be dried on the electrode or on the membrane.
  • the biosensor may include a dry state of an oxidizing agent or a reducing agent on the electrode or the membrane in order to remove the influence of the interfering substance that may be present in the sample.
  • the biosensor has a prostate specific antigen, wherein the electrode is indium tin oxide (ITO), the catalyst is glucose oxidase, and the transfer medium is ferrocene methanol.
  • ITO indium tin oxide
  • PSA detection may be a biosensor.
  • the electrode indium tin oxide
  • the catalyst is glycerol-3-phosphate dehydrogenase
  • the electrophoretic medium is Ru (NH 3 ) 6 3+ . It may be a biosensor for detecting troponin I.
  • the biosensor is an indium tin oxide in which the working electrode is patterned, the indium tin oxide in which the control electrode is patterned, the catalyst is glycerol-3-phosphate dehydrogenase,
  • the transfer medium may be a biosensor for detecting troponin I, which is [Os (2,2'-bipyridine) 2 Cl 2 ] + .
  • the present invention comprises the steps of adding a sample to the biosensor; And measuring an electrochemical signal of an electrode of the biosensor.
  • the sample may be blood, urine, sweat, etc. separated or discharged from the human body to check the presence or concentration of the target substance.
  • the electrochemical signal may be a current or a voltage.
  • the present invention also provides a prostate specific antigen (PSA) detection method using the biosensor.
  • PSA prostate specific antigen
  • the present invention comprises the steps of adding a sample to the biosensor; Measuring an electrochemical signal of an electrode of the biosensor; And comparing the electrochemical signal measurement result with an electrochemical signal value before applying a sample to the sensor.
  • the prostate-related disease is preferably any one selected from the group consisting of prostate cancer, prostate hyperplasia, prostatitis, prostate infarction, and a combination thereof.
  • FIG. 1 is a conceptual diagram of a sandwich-type biosensor using a sample solution 21 and obtaining an oxidation current (or charge).
  • the first probe 15 is fixed to the electrode 13, and the catalyst marker 11, the electron transfer medium 12 and the substrate 14 coupled to the second probe 17 are connected to the electrode. It is in a dried state on or near the electrode 13.
  • the sample solution 21 containing the target material 16 is applied on the electrode 13, the catalyst label 11, the electron transfer medium 12, and the substrate 14 bound to the second probe 17 are separated from the sample solution.
  • (21) Melts into it.
  • the target material 16 is biospecifically coupled to the first probe 15 and the second probe 17, so that the catalyst label 11 bound to the second probe 17 is attached to the electrode 13. Will be connected.
  • the catalyst label 11 bound to the second probe 17 that is not biospecifically coupled to the electrode 13 is present away from the electrode.
  • the electron transfer medium 12 When the electron transfer medium 12 is oxidized to transfer electrons 19 to the electrode 13, the electron transfer medium 12 changes to the oxidized form 18 of the electron transfer medium and the catalyst label (in the presence of the substrate 14). 11), the electron transfer medium 12 again.
  • the oxidized form 18 of the electron transport medium 12 and the electron transport medium amplifies the electrochemical signal while undergoing a redox cycle between the catalyst label 11 and the electrode 13.
  • the redox circulation rate varies according to the distance between the catalyst label 11 and the electrode 13, and the closer the catalyst label 11 is to the electrode 13, the greater the redox circulation rate.
  • the catalyst label 11 connected to the electrode 11 gives a large electrochemical oxidation current (or charge), while the catalyst label 11 that is not connected to the electrode 11 gives a small electrochemical oxidation current (or charge). give.
  • the concentration of the target material 16 increases, the number of the catalyst labels 11 connected to the electrode 11 increases, so that the electrochemical oxidation current (or charge) appears large.
  • the substrate 14 reacts fast only when the catalyst label 11 and the oxidized form 18 of the electron transport medium occur, and the electrochemical oxidation and reduction occurs slowly at the electrode 11. Electrochemical measurements can begin immediately after application of the sample solution to the electrode or after a period of time. The reaction of the electron transport medium 12 does not occur until the electrochemical measurement takes place.
  • FIG. 2 is a conceptual diagram of a sandwich type biosensor using the sample solution 21 and obtaining a reduction current (or charge) according to the present invention.
  • the reduction of the electron transport medium 12 occurs at the electrode 13, and the measurement of the reduction current (or charge) is different from that of FIG. 1.
  • Reduction of the electron transport medium 12 to deliver electrons 19 at the electrode 13 causes the electron transport medium 12 to change to the reduced form 18 of the electron transport medium and to label the catalyst in the presence of the substrate 14.
  • the electron transfer medium 12 is again obtained by (11).
  • FIG. 3 is a conceptual diagram of a sandwich type biosensor using a sample solution 21, using a catalytic reaction of a catalyst label 11, and obtaining an oxidation current (or charge).
  • an electron transport medium 12 in an oxidized form is present on or near the electrode 13 in a dried state.
  • Application of the sample solution 21 causes the electron transfer medium 12 to melt into the sample solution 21 and the electron transfer medium 12 is transferred to the electron transfer medium 12 by the catalyst label 11 in the presence of the reduced substrate 14.
  • To reduced form 18 of the delivery vehicle Before the electrochemical measurement starts, the reaction continues, and as the concentration of the target material 16 increases and the catalyst label 11 connected to the electrode 13 increases, the reaction of the electron transfer medium generated near the electrode 13 occurs.
  • the amount of reduced form 18 increases, so that the concentration of reduced form 18 of the electron transfer mediator near electrode 13 increases.
  • the initial oxidation current (or charge) is large when the concentration of the reduced form 18 of the electron transport medium is large. Accordingly, the change in oxidation current (or charge) depending on the concentration of the target material 16 is not only a difference in the redox circulation rate, but also a reduced form of electron transfer media produced by the catalytic reaction of the catalyst label 11 near the electrode. It is also caused by the difference in concentration in 18).
  • FIG. 4 is a conceptual diagram of a sandwich type biosensor using a sample solution 21 including a substrate 14 and obtaining a reduction current (or charge).
  • a reduction current or charge
  • oxygen, glucose, and the like dissolved in the sample solution may be used as the substrate 14.
  • the presence of the substrate in the sample solution eliminates the need for the substrate 14 to remain dry on or near the electrode 13.
  • 4 relates to a biosensor for measuring a reduction current (or charge), but a biosensor for measuring an oxidation current (or charge) is also possible.
  • FIG. 1 FIG. 2 and FIG. 3
  • FIG. 4 only the situation after the start of the electrochemical measurement is shown.
  • 5 and 6 are conceptual diagrams of a competitive biosensor using a competitive reaction.
  • 5 is a conceptual diagram of a first competing biosensor using sample solution 21 and obtaining an oxidation current (or charge).
  • the first probe 15 containing the target material is fixed to the electrode 13, and the catalyst label 11, the electron transfer medium 12 and the substrate (bonded to the second probe 17) 14 is present on the electrode 13 or in a dry state near the electrode 13.
  • the sample solution 21 containing the target material 16 is applied on the electrode 13, the catalyst label 11, the electron transfer medium 12, and the substrate 14 bound to the second probe 17 are separated from the sample solution. (21) Melts into it.
  • the second probe 17 competes biospecifically with the target material 16 and the first probe 15, so that the catalyst label 11 bound to the second probe 17 is the electrode 13. ).
  • the electron transport medium 12 changes to the oxidized form 18 of the electron transport medium and the catalyst label (in the presence of the substrate 14). 11) is changed back to the electron transfer medium (12).
  • the oxidized form 18 of the electron transport medium 12 and the electron transport medium undergoes a redox cycle between the catalyst label 11 and the electrode 13 so that the electrochemical signal is amplified.
  • the redox circulation rate varies according to the distance between the catalyst label 11 and the electrode 13, and the closer the catalyst label 11 is to the electrode 13, the greater the redox circulation rate.
  • the catalyst label 11 connected to the electrode 11 gives a large electrochemical oxidation current (or charge) and the catalyst label 11 that is not connected to the electrode 11 generates a small electrochemical oxidation current (or charge). give.
  • the concentration of the target material 16 is large, the number of catalyst markers 11 connected to the electrode 11 decreases. Therefore, the larger the concentration of the target material 16, the more the electrochemical oxidation current (or charge). Appears small.
  • FIG. 6 is a conceptual diagram of a second competing biosensor using a sample solution 21 and obtaining an oxidation current (or charge).
  • the first probe 15 is competitively biospecifically coupled with the target material 16 and the second probe 17.
  • the concentration of the target material 16 is large, the number of catalyst labels 11 connected to the electrode 11 is small, so that the higher the concentration of the target material 16, the smaller the electrochemical oxidation current (or charge) appears.
  • FIG. 7 is a conceptual diagram of a sandwich-type biosensor using a mixed solution 22 containing a necessary substance in a sample solution and obtaining an oxidation current (or charge).
  • the first probe 15 is fixed to the electrode 13, and the catalyst label 11, the electron transfer medium 12 and the substrate 14 coupled to the second probe 17 are connected to the electrode ( 13) or near electrode 13.
  • a mixed solution 22 of the catalyst label 11, the electron transfer medium 12, and the substrate 14 is prepared in a sample solution 21 containing the target material 16, and the mixed solution is prepared as an electrode 13 )).
  • the target material 16 is biospecifically coupled to the first probe 15 and the second probe 17, so that the catalyst label 11 bound to the second probe 17 is attached to the electrode 13. Will be combined.
  • FIG. 8 is a conceptual diagram of a sandwich-type biosensor using a sample solution 21 containing an interfering substance 23 and obtaining an oxidation current (or charge).
  • the sample solution 21 there is an interfering substance 23 that can be easily oxidized or reduced chemically.
  • the first probe 15 is fixed to the electrode 13, and in addition to the catalyst label 11, the electron transport medium 12, and the substrate 14 bound to the second probe 17, A substance 24 capable of oxidizing or reducing ions is present on the electrode 13 or in a dry state near the electrode 13.
  • Reference numeral 24 melts into the sample solution 21.
  • the interfering substance 23 is oxidized or reduced or oxidized or reduced before the electrochemical measurement starts, and then an additional reaction proceeds to cause electrochemical interference. Not all material 25 will be changed. Through the above process, the electrochemical measurement without the influence of the interfering substance 23 can be performed.
  • FIG. 9 is a conceptual diagram of a sandwich-type biosensor using a sample solution 21 comprising an interfering substance 23 and a substrate 14 and obtaining a reduction current (or charge).
  • the catalyst label 11 may act as a catalyst material capable of oxidizing or reducing the interference.
  • a catalyst label is used in the presence of the substrate 14 in the sample solution to convert the interference 22 into a non-interfering substance 25.
  • FIG. 10 is a conceptual diagram of a sandwich type biosensor using three patterned electrodes.
  • Three patterned electrodes are used as the working electrode 13, the reference electrode 31, and the auxiliary electrode 32.
  • the redox circulation of the electron transport medium 12 occurs at the working electrode 13, and different reactions may occur at the reference electrode 31 and the auxiliary electrode 32, and the resulting material may be electrochemically formed in the working electrode 13. It can affect the signal.
  • the measurement time and the electrode interval are adjusted to be shorter than the time for the material generated from the auxiliary electrode 32 or the reference electrode 31 to move to the working electrode 13 by diffusion.
  • FIG. 11 is a conceptual diagram of a sandwich type biosensor using four patterned electrodes.
  • Redox circulation occurs using the same electron transport medium 12, catalyst label 11 and substrate 14 at both working electrodes 13 and 41.
  • the redox circulation using the same electron transfer medium 12, catalyst label 11, and substrate 14 is used. Since the catalytic reaction and the redox reaction do not occur before the electrochemical measurement starts in FIGS. 1 and 2, the interference due to the difference in the surface concentration of the catalyst label 11 connected to the two electrodes is not a problem before the electrochemical measurement.
  • Initiating electrochemical measurements can control the measurement time and electrode spacing, which is shorter than the distance to travel between the two working electrodes by diffusion, since the material from one working electrode can migrate to the other working electrode and interfere with it. .
  • FIG. 12 is a conceptual diagram of a sandwich type biosensor using four electrodes patterned including a control electrode. Electrochemical measurements are made at the working electrode 13 and control electrode 45 simultaneously, and the difference or ratio of the electrochemical measurements obtained at the two electrodes is used to determine the concentration of the target material 16.
  • the first probe is fixed to the working electrode 13, but the first probe is not fixed to the control electrode 45. Rapid redox circulation occurs at the working electrode 13, but fast redox circulation does not occur at the control electrode 45. Therefore, when the target material 16 is fixed to the working electrode 13 by biospecific binding, the electrochemical signal of the working electrode 13 becomes larger than the electrochemical signal of the control electrode 45. The signal difference between the two electrodes becomes larger as the concentration of the target material 16 increases.
  • FIG. 13 is a conceptual diagram of a sandwich-type biosensor used after drying the reagent on the membrane.
  • the electron transport medium 12, the second probe 17 to which the catalyst label 11 is connected, the substrate 14, and the material 24 capable of oxidizing or reducing the interfering material are dried on the membrane 46.
  • the sample solution 21 is dropped while the membrane is placed on the working electrode 13 to which the first probe 15 is fixed, the sample solution 21 wets the surface of the membrane 46 and the working electrode 13. It becomes.
  • the target material 16 can be detected using the difference in the redox circulation rate at the electrode.
  • FIG. 14 is a conceptual diagram of a sandwich-type electrochemical biosensor using an ITO electrode as a working electrode and detecting prostate-specific antigen (PSA) as a target material.
  • PSA prostate-specific antigen
  • the concentrations of “glucose oxidase linked PSA antibody”, glucose, ferrocenemethanol, and ascorbate oxidase in the mixed solution are 2 ⁇ g / mL, 200 mM, 0.1 mM, and 5 U / mL, respectively.
  • the mixed solution was applied to an electrochemical cell using a "biotinylated PSA antibody” and an avidin-fixed ITO electrode as a working electrode, and an Ag / AgCl (3M NaCl) electrode as a reference electrode and a Pt wire as an auxiliary electrode. After holding at 25 ° C. for 10 minutes, a charge was measured by applying a potential of 0.13V. The size of the ITO electrode exposed to the solution was 0.28 cm 2 .
  • the concentration of glucose, the substrate, is increased so that the electrochemical signal is not significantly affected by the change in the concentration of glucose in the serum.
  • L-ascorbic acid the most problematic of the interfering substances, was oxidized by ascorbate oxidase for 10 minutes prior to electrochemical measurements, and PSA was linked to "glucose oxidase-linked PSA antibody” and "biotin-linked.” Biospecific binding occurs with the "PSA antibody” so that some of the "glucose oxidase-linked PSA antibodies" are linked to the ITO electrode.
  • ferrocenemethanol is converted to the oxidized form of ferrocenemethanol and back to ferrocenemethanol by glucose oxidase in the presence of glucose.
  • the electrochemical charge continues to increase with time due to the redox cycle as described above.
  • Glucose oxidase connected to the electrode allows for faster redox circulation of ferrocenemethanol compared to glucose oxidase not connected to the electrode, so that the higher the surface concentration of glucose oxidase connected to the electrode (i.e., PSA in serum) The greater the concentration), the faster the electrochemical charge increases over time.
  • FIG. 15 shows time versus charge plots according to PSA concentration using the biosensor of FIG. 14. As shown in FIG. 15, the higher the PSA concentration, the greater the charge value at the same time.
  • FIG. 16 is a graph showing charge according to PSA concentration at 100 seconds in the time versus charge diagram of FIG. 15. All concentration results were obtained through three replicate experiments. Here, the error bar represents the standard deviation. As shown in FIG. 16, the detection limit for PSA calculated from the graph was about 10 pg / mL. Very low detection limits in a short time by applying a mixed solution containing a catalyst label, a substrate, an electronic medium, and an enzyme that oxidizes the interfering substance to the biosensor without the use of additional solutions or cleaning procedures Indicates that can be obtained.
  • FIG. 17 is a graph comparing the actual PSA concentration of the clinical sample and the PSA concentration value measured by the biosensor using the calibration curve of FIG. 16.
  • the values measured using the Cobas e601 product and the values measured using the biosensor of the present invention were compared.
  • the two measured values were similar for all 10 samples, and after the application of the mixed solution without the washing process, it can be seen that even after 10 minutes, the measurement can be accurately measured to a low concentration.
  • FIG. 18 is a conceptual diagram of a sandwich type electrochemical biosensor using an ITO electrode as a working electrode and detecting troponin I as a target material.
  • the ITO electrode having a size of 1 cm ⁇ 2 cm is washed, and then 80 ⁇ L of a carbonate buffer (pH 9.6) solution containing 10 ⁇ g / mL of avidin is applied onto the ITO electrode, followed by washing at 20 ° C. for 2 hours.
  • 80 ⁇ L of a PBS solution containing 10 ⁇ g / mL of the “biotinylated anti-troponin-I IgG” was applied, and then at 4 ° C. Hold for 30 minutes and then wash.
  • the concentration of the "glycerol-3-phosphate dehydrogenase-linked troponin-eye antibody", glycerol-3-phosphate, Ru (NH 3 ) 6 3 + , and ascorbate oxidase in the mixed solution is 2 ⁇ g / mL, respectively, 5 mM, 0.1 mM, and 5 U / mL.
  • the mixed solution is applied to an electrochemical cell using a "biotinylated troponin-eye antibody" and an avidin-fixed ITO electrode as a working electrode, and an Ag / AgCl (3M NaCl) electrode as a reference electrode and a Pt wire as an auxiliary electrode.
  • the charge was measured by applying a potential of 0.05 V after maintaining at 25 ° C. for 10 minutes.
  • the size of the ITO electrode exposed to the solution was 0.28 cm 2 .
  • Ascorbic acid which is the most problematic among the interfering substances for 10 minutes before electrochemical measurements, is oxidized by ascorbate oxidase, and troponin-eye is a "troponin-eye antibody linked with glycerol-3-phosphate dehydrogenase" and " Biospecific binding with biotin-linked troponin-eye antibody "results in some of the" glycerol-3-phosphate dehydrogenase-linked troponin-eye antibodies "linked to the ITO electrode.
  • FIG. 19 is a diagram illustrating a time versus charge diagram according to the concentration of troponin eye using the biosensor of FIG. 18. As shown in FIG. 19, the higher the troponin eye concentration, the greater the charge value at the same time.
  • FIG. 20 is a view showing the corrected charge according to the troponin eye concentration at 100 seconds in the time versus charge diagram of FIG. All concentration results were obtained through three replicate experiments. Here, the error bars represent standard deviations. As shown in FIG. 20, the detection limit for troponin eye calculated from the graph was about 10 pg / mL. Very low detection limits in a short time by applying a mixed solution containing a catalyst label, a substrate, an electronic medium, and an enzyme that oxidizes the interfering substance to the biosensor without the use of additional solutions or cleaning procedures Indicates that can be obtained.
  • FIG. 21 is a conceptual diagram of a sandwich-type electrochemical biosensor using a patterned ITO electrode including a control electrode and a membrane on which a reagent is dried, and detecting troponin I as a target material.
  • a patterned ITO electrode of 1 cm ⁇ 2 cm size is prepared.
  • One of the four patterned ITO electrodes is coated with Ag paste to make an auxiliary electrode, and the other is coated with Ag / AgCl paste to make a reference electrode.
  • a carbonate buffer (pH 9.6) solution containing 10 ⁇ g / mL of avidin is applied only on and around the working electrode, then maintained at 20 ° C. for 2 hours and then washed.
  • PBS solution containing 10 ⁇ g / mL of “biotinylated troponin-eye antibody” was applied to fix the troponin-eye antibody to the working electrode by biotin-avidin binding, followed by washing at 4 ° C. for 30 minutes. do. Then apply a total solution of carbonate buffer (pH 9.6) containing 10 ⁇ g / mL of avidin, followed by washing at 20 ° C. for 2 hours.
  • troponin-eye is a "troponin-eye antibody linked with glycerol-3-phosphate dehydrogenase" and " Biospecific binding with biotin-linked troponin-eye antibody "occurs, and some of the" glycerol-3-phosphate dehydrogenase-linked troponin-eye antibody "are linked to the working electrode.
  • [Os (2,2'-bipyridine) 2 Cl 2 ] + is changed to [Os (2,2'-bipyridine) 2 Cl 2 ] by glycerol-3-phosphate dihydrogenase for 10 minutes, followed by electrolysis Redox cycles occur during chemical measurements.
  • Glycerol-3-phosphate dehydrogenase connected to the electrode is a redox of [Os (2,2'-bipyridine) 2 Cl 2 ] + which is faster than glycerol-3-phosphate dehydrogenase unconnected to the electrode.
  • FIG. 22 is a photograph of a patterned ITO electrode and membrane including a control electrode.
  • the membrane covers the part with the working electrode, the auxiliary electrode, the reference electrode and the control electrode, and the pad part is connected to the external wire.
  • FIG. 23 is a differential pulse voltammogram obtained using a serum containing 1 ng / mL troponin eye and using the biosensor of FIG. 21.
  • the peak current of the working electrode is greater than the peak current of the control electrode. This is because there is a catalyst label bound to the working electrode, resulting in a rapid acid reduction cycle.
  • the peak current of the control electrode is not affected by the concentration of troponin eye (ie the peak current of the working electrode). It can be seen that the control electrode is close to the working electrode but can be measured without interference between the electrodes. Therefore, simultaneous detection of two or more target substances can be measured without interference between two working electrodes.
  • FIG. 24 is a view showing the difference between the peak current of Figure 23 according to the concentration of troponin eye. All concentration results were obtained through three replicate experiments. Here, the error bars represent standard deviations. As shown in FIG. 24, the detection limit for troponin eye calculated from the graph was about 1 pg / mL. Without the use of additional solutions or cleaning procedures, the catalyst markers, substrates, electron-electron mediators, and enzymes that oxidize the interfering substances bound to the serum and the second probe are dried on the membrane, and then only the sample solution (serum) is dropped, for a very short time. Low detection limits can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 세척과정 없이 하나의 용액만을 사용하여 표적물질을 고감도로 탐지하는 바이오센서에 관한 것이다. 본 발명에 따른 바이오센서는 전자전달 매개체의 전자전달 속도의 차이를 이용함으로써 세척과정 없이 하나의 용액만을 사용하여도 표적물질을 낮은 검출한계로 탐지하고, 빠른 측정 및 초소형 바이오센서의 구형이 가능하고, 방해물질의 영향을 최소화하며, 두 개 이상의 표적물질을 동시에 검출할 수 있는 우수한 표적물질 검출 효과를 나타낸다.

Description

전자전달 매개체의 산화환원 순환을 이용한 바이오센서
본 발명은 전극과 촉매 표지 사이의 거리에 따른 전자전달 매개체의 전자전달 속도의 차이를 이용한 바이오센서에 관한 것이다.
피, 소변, 침 등의 시료 용액 속에 존재하는 분석물질의 존재나 농도를 현장에서 빠르고 정확하게 측정하기 위한 소형 바이오센서가 많이 개발되고 있다. 특히 생체특이적인 결합(biospecific binding)을 기반으로 하는 면역센서(immunosensor), DNA 센서 등이 최근에 많이 개발되고 있다.
전기화학 측정에서는 전극 표면에 결합하는 표지와 결합하지 않은 표지의 차이를 이용한 무세척 바이오센서의 개발이 이루어져 왔다. 그 예로, 전기적 또는 자기적으로 결합하지 않는 표지를 제거하는 방법(Ramon-Azcon, J.; Yasukawa, T.; Lee, H. J.; Matsue, T.; Sanchez-Baeza, F.; Marco, M-P.; Mizutani, F. Biosens. Bioelectron. 2010, 25, 1928-1933. Volpe, G,; Sozzo, U.; Piermarini, S.; Delibato, E.; Palleschi, G.; Moscone, D. Anal. Bioanal. Chem. 2013, 405, 655-663.) 등이 있다. 그러나, 이러한 방법들은 높은 검출한계, 좁은 측정 농도 영역, 전기화학 활성물질의 방해작용 등의 문제로 인해 실제 바이오센서에 응용되지 못하고 있는 실정이다.
측면흐름분석법(lateral flow assay)에서는 큰 신호를 얻기 위해서 효소 등과 같이 촉매 반응에 의해 짧은 시간에 많은 신호 물질을 만들어 낼 수 있는 촉매 표지(label)를 이용하는 방법이 이용되고 있다 (미국특허등록번호 7,300,802; 미국특허등록번호 7,419,821; 미국특허등록번호 7,723,099; 미국특허등록번호 8,017,382). 이 경우 촉매 반응에 참여하는 기질(substrate)이 시료 용액과는 시간 차이를 두고 측정이 일어나는 영역에 공급이 되어야 한다. 따라서 용액 외에 기질이 들어있는 용액을 바이오센서 상의 측정이 일어나는 영역에 공급하는 방법이 사용되고 있다 (미국특허등록번호 7,300,802; 미국특허등록번호 7,419,821; 미국특허등록번호 7,723,099; 미국특허등록번호 8,017,382; Liu, G.; Lin, Y.-Y.; Wang, J.; Wu, H.; Wai, C. M.; Lin, Y. Anal. Chem. 2007, 79, 7644-7653.). 이 경우 두 개의 용액을 사용하기 때문에 바이오센서 구조와 유체제어가 복잡하다는 단점이 있다.
전기화학 측정을 이용하는 경우, 장치의 소형화와 저가격화가 용이하기 때문에 바이오센서에 전기화학 측정을 접목하려는 시도가 많이 이루어져 왔다 (Zou, Z.-X.; Wang, J.; Wang, H.; Li, Y.-Q.; Lin, Y. Talanta 2012, 94, 58-64. Nian, H.; Wang, J.; Wu, H.; Lo, J.-G.; Chiu, K.-H.; Pounds, J. G.; Lin, Y. Anal. Chim. Acta 2010, 713, 50-55. Du, D.; Wang, J.; Wang, L.; Lu, D.; Lin, Y. Anal. Chem. 2012, 84, 1380-1385. Kiba, Y.; Otani, Y.; Yasukawa, T.; Mizutani, F. Electrochim. Acta 2012, 81, 14-19. Wang, L.; Lu, D.; Wang, J.; Du, D.; Zou, Z.; Wang, H.; Smith, J. N.; Timchalk C.; Liu, F.; Lin, Y. Biosens. Bioelctron. 2011, 26, 2835-2840. Lin, Y.-Y.; Wang, J.; Liu, G.; Wu, H.; Wai, C. M.; Lin, Y. Biosens. Bioelectron. 2008, 23, 1659-1665. Mao, X.; Baloda, M.; Gurung, A. S.; Lin, Y.; Liu, G. Electrochem. Commun. 2008, 10, 1636-1640. Liu, G.; Lin, Y.-Y.; Wang, J.; Wu, H.; Wai, C. M.; Lin, Y. Anal. Chem. 2007, 79, 7644-7653.). 특히, 전기전도도, 전류 등을 측정하여 표적물질의 농도를 측정하는 바이오센서의 개발이 많이 이루어져 왔다. 시료 용액 속에는 전기화학적으로 쉽게 산화 또는 환원이 될 수 있는 방해물질이 존재하기 때문에 시료 용액만으로 모든 측정이 이루어질 경우 방해물질의 전기화학 신호에 의해 정확한 농도 측정이 어렵다. 따라서, 이 방해물질의 영향을 최소화하는 것이 필요하다.
두 개 이상의 작업 전극(working electrode)을 이용하여 두 개 이상의 표적물질을 검출하는 전기화학 바이오센서에서는 하나의 전극에서 생성되는 물질이 이웃하는 전극으로 확산이 일어나 방해작용이 일어나는 문제점이 있다. 두 개 이상의 표적물질을 동시에 검출하기 위해서는 이러한 문제점을 해결할 필요가 있다.
따라서, 세척과정 없이 하나의 용액만을 사용하여 표적물질을 고감도로 탐지하고, 방해물질의 영향을 최소화하며, 두 개 이상의 표적물질을 동시에 검출할 수 있는 바이오센서에 대한 개발의 필요성이 절실히 요구되고 있다.
일반적으로 표지(label)를 이용하는 면역센서나 DNA 센서는 한 번 이상의 세척과정이 필요하다. 세척과정을 통해서 결합하지 않은 표지(label)를 제거하거나 시료 용액 속 방해물질을 제거함으로써, 낮은 배경 수준(background level)을 얻어 낮은 검출한계를 얻을 수 있다. 추가적인 용액의 사용 없이 시료 용액만을 이용하는 측면흐름분석법의 경우에도 시료 용액의 흐름을 통해 세척 효과를 얻게 된다. 그러나, 이러한 세척과정을 위해서는 유체 제어가 필요하고, 따라서 바이오센서를 소형화하는데 한계가 있다. 따라서, 바이오센서를 소형화하기 위해서는 세척과정이 필요 없는 바이오센서의 개발이 필요하다.
본 발명자들은 표적물질 검출용 바이오센서에 대해 탐색하던 중, 전극과 촉매 표지 사이의 거리 변화에 의한 전자전달 매개체의 전자전달 속도의 차이를 이용하는 경우, 바이오센서의 세척과정 없이 하나의 용액만을 사용하여도 표적물질을 낮은 검출한계로 탐지할 수 있고, 방해물질의 영향이 최소화되며, 두 개 이상의 표적물질을 동시에 검출할 수 있는 것을 확인하고, 본 발명을 완성하였다.
따라서, 본 발명은 전자전달 매개체의 전자전달 속도의 차이를 이용한 바이오센서 및 이의 제조방법을 제공하고자 한다.
상기와 같은 목적을 달성하기 위해서
본 발명은
전극; 표적물질 또는 제 2 탐침에 특이적으로 결합하고, 상기 전극에 고정된 포획용 제 1 탐침; 상기 표적물질 또는 상기 제 1 탐침에 특이적으로 결합하는 제 2 탐침; 상기 제 2 탐침에 결합된 촉매 표지; 상기 촉매 표지에 의해서만 산화 또는 환원이 일어나는 기질; 및 상기 촉매 표지와 상기 전극 사이에서 전자를 전달하는 전자전달 매개체;를 포함하고,
제 1 탐침, 제 2 탐침 및 표적물질의 생체특이적 결합에 의해 전극에 연결된 촉매 표지의 경우, 전극에 연결되지 않은 촉매 표지에 비해 증가된 전자전달 속도를 나타내는 것을 특징으로 하는, 바이오센서를 제공한다.
또한, 본 발명은
기판; 상기 기판에 패턴된 2 이상의 전극; 2종 이상의 표적물질 또는 2종 이상의 제 2 탐침 중 어느 하나에 특이적으로 결합하고, 상기 전극에 각각 고정되는 2종 이상의 포획용 제 1 탐침; 상기 2종 이상의 표적물질 또는 상기 2종 이상의 제 1 탐침 중 어느 하나에 각각 특이적으로 결합하는 2종 이상의 제 2 탐침; 상기 2종 이상의 제 2 탐침에 각각 결합된 촉매 표지; 상기 촉매 표지에 의해서만 산화 또는 환원이 일어나는 기질; 및 상기 촉매 표지와 상기 전극 사이에서 전자를 전달하는 전자전달 매개체;를 포함하고,
제 1 탐침, 제 2 탐침 및 표적물질의 생체특이적 결합에 의해 전극에 연결된 촉매 표지의 경우, 전극에 연결되지 않은 촉매 표지에 비해 증가된 전자전달 속도를 나타내는 것을 특징으로 하는, 바이오센서를 제공한다.
또한, 본 발명은 상기 바이오센서에 시료를 가하는 단계; 및 상기 바이오센서의 전극의 전기화학 신호를 측정하는 단계;를 포함하는 표적물질 검출 방법을 제공한다.
본 발명에 따른 바이오센서는 전극과 촉매 표지 사이의 거리 변화에 의한 전자전달 매개체의 전자전달 속도의 차이를 이용함으로써, 세척과정 없이 하나의 용액만을 사용하여도 표적물질을 낮은 검출한계로 탐지하고, 빠른 측정 및 초소형 바이오센서의 구형이 가능하고, 방해물질의 영향을 최소화하며, 두 개 이상의 표적물질을 동시에 검출할 수 있는 우수한 표적물질 검출 효과를 나타낸다.
도 1은 시료 용액을 이용하고, 산화 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다.
도 2는 시료 용액을 이용하고, 환원 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다.
도 3은 시료 용액을 이용하고, 촉매 표지의 촉매반응을 이용하여 산화 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다.
도 4는 기질을 포함하는 시료 용액을 이용하고, 환원 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다
도 5는 시료 용액을 이용하고, 산화 전류(또는 전하)를 얻는 첫 번째 경쟁 바이오센서의 개념도이다
도 6은 시료 용액을 이용하고, 산화 전류(또는 전하)를 얻는 두 번째 경쟁 바이오센서의 개념도이다.
도 7은 시료 용액에 필요 물질을 포함하는 혼합 용액을 이용하고, 산화 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다.
도 8은 방해물질을 포함하는 시료 용액을 이용하고, 산화 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다.
도 9는 방해물질 및 기질을 포함하는 시료 용액을 이용하고, 환원 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다.
도 10은 패턴된 3개 전극을 사용하는 샌드위치 형태 바이오센서의 개념도이다.
도 11은 패턴된 4개 전극을 사용하는 샌드위치 형태 바이오센서의 개념도이다.
도 12는 콘트롤 전극을 포함하여 패턴된 4개 전극을 사용하는 샌드위치 형태 바이오센서의 개념도이다.
도 13은 멤브레인에 시약을 건조시킨 후, 사용하는 샌드위치 형태 바이오센서의 개념도이다.
도 14는 ITO 전극을 작업전극으로 이용하고, 표적물질로 PSA(prostate-specific antigen)를 검출하는 샌드위치 형태의 전기화학 바이오센서의 개념도이다.
도 15는 도 14의 바이오센서를 이용한 PSA 농도에 따른 시간 대 전하도를 나타내는 도이다.
도 16은 도 15의 시간 대 전하도에서 100초일 때의 PSA 농도에 따른 전하를 나타낸 도이다.
도 17은 도 16의 보정 곡선을 이용하여 임상 시료의 실제 PSA 농도와 바이오센서에서 측정된 PSA 농도 값을 비교한 도이다.
도 18은 ITO 전극을 작업전극으로 이용하고, 표적물질로 트로포닌아이(troponin I)를 검출하는 샌드위치 형태의 전기화학 바이오센서의 개념도이다.
도 19는 도 18의 바이오센서를 이용한 트로포닌아이 농도에 따른 시간 대 전하도를 나타내는 도이다.
도 20은 도 19의 시간 대 전하도에서 100초일 때의 트로포닌아이 농도에 따른 보정된 전하를 나타낸 도이다.
도 21은 콘트롤 전극을 포함하는 패턴된 ITO 전극 및 시약이 건조된 멤브레인을 이용하고, 표적물질로 트로포닌아이를 검출하는 샌드위치 형태의 전기화학 바이오센서의 개념도이다.
도 22는 콘트롤 전극을 포함하는 패턴된 ITO전극 및 멤브레인의 사진이다.
도 23은 1 ng/mL 트로포닌아이가 들어 있는 혈청을 사용하고 도 21의 바이오센서를 이용하여 얻은 미분펄스 전압전류도(differential pulse voltammogram)이다.
도 24는 트로포닌아이 농도에 따른 도 23의 봉우리 전류 차이를 나타낸 도이다.
<도면의 주요 부분에 대한 부호의 설명>
11: 촉매 표지
12: 전자전달 매개체
13: 전극
14: 기질
15: 제 1 탐침
16: 표적물질
17: 제 2 탐침
18: 전자전달 매개체의 산화 또는 환원된 형태
19: 전자
20: 기질의 산화 또는 환원된 형태
21: 시료 용액
22: 시료 용액에 촉매 표지, 전자전달 매개체, 기질 중에 하나 이상을 녹인 혼합 용액
23: 방해물질
24: 방해물질을 산화 또는 환원시킬 수 있는 물질
25: 전기화학적으로 방해작용을 하지 않는 물질
31: 기준 전극
32: 보조 전극
41: 또 다른 작업 전극
42: 또 다른 제 1 탐침
43: 또 다른 표적물질
44: 또 다른 제 2 탐침
45: 콘트롤 전극
46: 멤브레인
이하 본 발명을 상세히 설명한다.
본 발명은
전극; 표적물질 또는 제 2 탐침에 특이적으로 결합하고, 상기 전극에 고정된 포획용 제 1 탐침; 상기 표적물질 또는 상기 제 1 탐침에 특이적으로 결합하는 제 2 탐침; 상기 제 2 탐침에 결합된 촉매 표지; 상기 촉매 표지에 의해서만 산화 또는 환원이 일어나는 기질; 및 상기 촉매 표지와 상기 전극 사이에서 전자를 전달하는 전자전달 매개체;를 포함하고,
제 1 탐침, 제 2 탐침 및 표적물질의 생체특이적 결합에 의해 전극에 연결된 촉매 표지의 경우, 전극에 연결되지 않은 촉매 표지에 비해 증가된 전자전달 속도를 나타내는 것을 특징으로 하는, 바이오센서를 제공한다.
또한, 본 발명은 기판; 상기 기판에 패턴된 2 이상의 전극; 2종 이상의 표적물질 또는 2종 이상의 제 2 탐침 중 어느 하나에 특이적으로 결합하고, 상기 전극에 각각 고정되는 2종 이상의 포획용 제 1 탐침; 상기 2종 이상의 표적물질 또는 상기 2종 이상의 제 1 탐침 중 어느 하나에 각각 특이적으로 결합하는 2종 이상의 제 2 탐침; 상기 2종 이상의 제 2 탐침에 각각 결합된 촉매 표지; 상기 촉매 표지에 의해서만 산화 또는 환원이 일어나는 기질; 및 상기 촉매 표지와 상기 전극 사이에서 전자를 전달하는 전자전달 매개체;를 포함하고,
제 1 탐침, 제 2 탐침 및 표적물질의 생체특이적 결합에 의해 전극에 연결된 촉매 표지의 경우, 전극에 연결되지 않은 촉매 표지에 비해 증가된 전자전달 속도를 나타내는 것을 특징으로 하는, 바이오센서를 제공한다.
또한, 본 발명의 바이오센서는 전극에 연결되지 않은 촉매 표지 및 전자전달 방해물질의 세척을 필요로 하지 않는 것을 특징으로 한다.
상기 바이오센서는, 전기화학적 측정을 시작하기 전에도 기질의 존재 하에 촉매 표지의 촉매반응에 의해 전자전달 매개체의 산화 혹은 환원이 일어날 수 있다.
상기 전극은 주석산화물(indium tin oxide, ITO) 전극, 그래핀(graphene)이 입혀진 주석산화물 전극, 탄소나노튜브(carbon nanotube)가 입혀진 주석산화물 전극, 카본 전극, 금 전극, 은 전극, Ag/AgCl 전극, 백금 전극 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나인 것이 바람직하다.
상기 전극은 작업 전극, 기준 전극 및 상대 전극을 포함할 수 있고, 작업 전극과의 전기화학 신호의 차이를 비교하기 위한 콘트롤(control) 전극을 더 포함할 수 있다.
상기 표적물질은 생체 내 존재하는 물질로, 제 1 탐침 및 제 2 탐침과 생체특이적 결합을 함으로써, 촉매 표지를 전극에 연결하는 물질이라면 제한 없이 검출될 수 있다. 즉 표적물질은 생체 내 존재하는 금속 이온, DNA, RNA, ATP 및 단백질 등과 같은 화학 또는 바이오 물질을 일컫는다. 상기 단백질로는 PSA(prostate specific antigen), 트로포닌아이(troponin I), 트로포닌티(troponin T), 단백질 분해효소(protease), 트롬빈(thrombin), 피브리노겐(fibrinogen), 면역글로불린 G(immunoglobulin G, IgG), 면역글로불린 M(IgM), 면역글로불린 A(IgA), 면역글로불린 D(IgD), 헤모글로빈(hemoglobin), 미오글로빈(myoglobin), 알부민(albumin), 카제인(casein), 프롤라민(prolamin), 액틴(actin), 미오신(myosin), 콜라겐(collagen), 및 케라틴(keratin) 등 일 수 있으나, 이에 한정되지 않는다.
상기 기질은 촉매 표지에 의해 산화 또는 환원되어 전자를 전달하거나 전달받으나, 전극에 의해서는 산화 또는 환원이 일어나지 않거나, 느리게 일어나는 물질을 의미한다. 일 예로, 상기 기질은 글루코우스 옥시데이즈(glucose oxidase) 촉매 표지에 전자를 전달하고 글루콘산(gluconic acid)으로 산화되는 포도당(glucose)일 수 있다.
상기 제 1 탐침 또는 제 2 탐침은 표적물질과 생체특이적 결합을 하는 물질로서, 상기 생체특이적 결합을 통해 제 2 탐침에 결합된 촉매 표지를 전극에 연결하는 물질이라면 제한 없이 이용할 수 있다.
상기 생체특이적 결합은, 촉매 표지를 전극에 연결하기 위한 것으로써, 제 1 탐침과 표적물질 사이, 표적물질과 제 2 탐침 사이, 또는 제 1 탐침과 제 2 탐침 사이의 하나 이상을 결합함으로써 제 2 탐침에 결합된 촉매 표지를 전극에 연결할 수 있다.
상기 촉매 표지는 기질 및 전자전달 매개체의 사이에서 산화환원을 일으키는 물질을 의미한다. 일 예로, 상기 촉매는 글루코우스 옥시데이즈, 글리세롤-3-포스페이트 디하이드로지네이즈(glycerol-3-phosphate dehydrogenase), 아스코베이트 옥시데이즈(ascorbate oxidase), 호스래디쉬 옥시데이즈(horseradish oxidase), 소이빈 옥시데이즈(soybean oxidase), 라케이즈(laccase), 빌리루빈 옥시데이즈(bilirubin oxidase), 타이로시네이즈(tyrosinase), 금 나노입자, 은 나노입자, 백금 나노입자, 이리듐 나노입자, 팔라듐 나노입자, 프러시안블루(Prussian blue) 나노입자 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나인 것이 바람직하다.
상기 전자전달 매개체는 촉매 표지에 의해 산화 또는 환원되고, 전극에서 환원 또는 산화되는 물질로서, 촉매 표지 및 전극 사이에서 전자를 전달하는 물질을 의미한다. 일 예로, 상기 전자전달 매개체는 Ru(NH3)6 3+, Ru(NH3)6 2+, Fe(CN)6 3-, Fe(CN)6 4-, Ru(NH3)5(피리딘)3+, Ru(NH3)5(피리딘)2+, 페로센, 페로센 메탄올, 페로센 카복시산, [Os(2,2'-바이피리딘)2Cl2]+, [Os(2,2'-바이피리딘)2Cl2], [Os(2,2'-바이피리딘)2(피리딘)Cl]2+, [Os(2,2'-바이피리딘)2(피리딘)Cl]+ 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나인 것이 바람직하다.
상기 전자전달은 전기화학적 신호를 증폭함으로써 큰 신호-대-배경 비를 얻기 위한 것으로, (1) 촉매 표지로부터 전자를 제공받은 전자전달 매개체가 전극에 전자를 제공하거나, (2) 전극으로부터 전자를 제공받은 전자전달 매개체가 촉매 표지에 전자를 제공함으로써 수행되는 것이 바람직하다.
상기 전자전달 방해물질은 시료 속에 존재하고, 전기화학 측정이 일어나는 전위(potential) 영역에서 전기화학적으로 쉽게 산화 또는 환원이 될 수 있는 물질을 의미한다. 방해물질이 존재할 경우, 방해작용에 의해 전기화학 신호에 의한 표적물질의 정확한 농도 측정이 어렵기 때문에 이 방해물질의 영향을 최소화하는 것이 필요하다. 일 예로 상기 방해물질은 “아스코빅 산(ascorbic acid)”일 수 있으나, 이에 한정되는 것은 아니다.
상기 바이오센서는 제 1 탐침이 고정되어 있지 않은 콘트롤 전극을 더 포함할 수 있고, 상기 작업 전극 및 상기 콘트롤 전극에서 전기화학 측정을 동시에 수행함으로써, 두 전극에서 얻은 전기화학 측정 값의 차이 또는 비(ratio)를 이용하여 표적물질의 농도를 결정할 수 있다.
상기 바이오센서는 전극 위에 존재하는 멤브레인을 더 포함할 수 있고, 상기 제 2 탐침, 상기 촉매 표지, 상기 기질 및 상기 전자전달 매개체가 상기 전극 위 또는 상기 멤브레인 위에 건조된 상태로 있을 수 있다.
상기 바이오센서는 시료에 존재할 수 있는 상기 방해물질의 영향을 제거하기 위하여 상기 전극 위 또는 상기 멤브레인 위에 산화제 또는 환원제를 건조된 상태로 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 바이오센서는 상기 전극이 인듐주석산화물(ITO)이고, 상기 촉매는 글루코우스 옥시데이즈이고, 상기 전기전달 매개체가 페로센메탄올인, 전립선 특이항원(prostate specific antigen, PSA) 검출용 바이오센서일 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 바이오센서는 상기 전극이 인듐주석산화물이고, 상기 촉매는 글리세롤-3-포스페이트 디하이드로지네이즈이고, 상기 전기전달 매개체가 Ru(NH3)6 3+인, 트로포닌아이(troponin I) 검출용 바이오센서일 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 바이오센서는 상기 작업 전극이 패턴된 인듐주석산화물이고, 상기 콘트롤 전극이 패턴된 인듐주석산화물이고, 상기 촉매는 글리세롤-3-포스페이트 디하이드로지네이즈이고, 상기 전기전달 매개체가 [Os(2,2'-바이피리딘)2Cl2]+인, 트로포닌아이(troponin I) 검출용 바이오센서일 수 있다.
또한, 본 발명은 상기 바이오센서에 시료를 가하는 단계; 및 상기 바이오센서의 전극의 전기화학 신호를 측정하는 단계;를 포함하는 표적물질 검출방법을 제공한다.
상기 시료는 표적물질의 유무 또는 농도를 확인하고자 하는 것으로 인체로부터 분리 또는 배출된 혈액, 소변, 땀 등 일 수 있다.
상기 전기화학 신호는 전류 또는 전압일 수 있다.
또한, 본 발명은 상기 상기 바이오센서를 이용한 전립선 특이항원(prostate specific antigen, PSA) 검출 방법을 제공한다.
또한, 본 발명은 상기 바이오센서에 시료를 가하는 단계; 상기 바이오센서의 전극의 전기화학 신호를 측정하는 단계; 및 상기 전기화학 신호 측정 결과를 센서에 시료를 가하기 전의 전기화학 신호 값과 비교하는 단계;를 포함하는 전립선 관련 질환의 진단 방법을 제공한다.
상기 전립선 관련 질환은 전립선암, 전립선 비대증, 전립선염, 전립선 경색 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것이 바람직하다.
이하, 첨부된 도면을 참조하여 본 발명을 구체적으로 설명한다.
도 1은 시료 용액(21)을 이용하고 산화 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서(sandwich-type biosensor)의 개념도이다. 먼저 측정이 이루어지기 전에 제 1 탐침(15)이 전극(13)에 고정되어 있고, 제 2 탐침(17)에 결합된 촉매 표지(11), 전자전달 매개체(12) 및 기질(14)은 전극(13) 위에 또는 전극(13) 근처에 건조된 상태로 존재한다. 표적물질(16)이 들어 있는 시료 용액(21)을 전극(13) 위에 도포하면 제 2 탐침(17)에 결합된 촉매 표지(11), 전자전달 매개체(12) 및 기질(14)은 시료 용액(21) 속으로 녹아 들어 간다. 표적물질(16)은 제 1 탐침(15) 및 제 2 탐침(17)과 생체특이적 결합을 하게 되고, 그 결과 제 2 탐침(17)에 결합된 촉매 표지(11)가 전극(13)에 연결되게 된다. 생체특이적 결합을 하지 못해서 전극(13)에 연결되지 못한 제 2 탐침(17)에 결합된 촉매 표지(11)는 전극으로부터 떨어져서 존재한다. 전자전달 매개체(12)를 산화시켜 전자(19)를 전극(13)으로 전달하면, 전자전달 매개체(12)는 전자전달 매개체의 산화된 형태(18)로 바뀌고 기질(14) 존재 하에서 촉매 표지(11)에 의해 다시 전자전달 매개체(12)로 된다. 상기와 같이 전자전달 매개체(12)와 전자전달 매개체의 산화된 형태(18)가 촉매 표지(11)와 전극(13) 사이에서 산화환원 순환을 하면서 전기화학 신호를 증폭시킨다. 촉매 표지(11)와 전극(13) 사이의 거리에 따라서 산화환원 순환 속도는 달라지고, 촉매 표지(11)가 전극(13)에 가까이 존재할수록 큰 산화환원 순환 속도를 얻게 된다. 따라서, 전극(11)에 연결된 촉매 표지(11)는 큰 전기화학 산화 전류(또는 전하)를 주나, 전극(11)에 연결되지 않는 촉매 표지(11)는 작은 전기화학 산화 전류(또는 전하)를 준다. 표적물질(16)의 농도가 클 수록 전극(11)에 연결된 촉매 표지(11)가 많아지므로 전기화학 산화 전류(또는 전하)는 크게 나타난다.
기질(14)은 촉매 표지(11)와 전자전달 매개체의 산화된 형태(18)가 있을 때만 반응이 빨리 일어나고, 전극(11)에서는 전기화학적 산화와 환원이 느리게 일어난다. 전기화학 측정은 시료 용액을 전극에 도포한 후 바로 시작할 수도 있고, 일정한 시간이 지난 후에 시작할 수가 있다. 전기화학 측정이 일어나기 전까지는 전자전달 매개체(12)의 반응은 일어나지 않는다.
여기서 시료 용액(21)을 도포한 후, 추가적인 용액을 사용하거나 시료 용액(21)의 흐름을 이용하는 세척 효과를 이용하지 않는다. 세척과정 없이 표적물질(16)의 존재 또는 농도의 측정이 이루어진다.
도 2는 본 발명에서 제시하는, 시료 용액(21)을 이용하고 환원 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다. 도 1과 거의 같은 형태를 나타내지만, 전극(13)에서 전자전달 매개체(12)의 환원이 일어나 환원 전류(또는 전하)를 측정하는 것이 도 1의 방법과는 상이하다. 전자전달 매개체(12)를 환원시켜 전자(19)를 전극(13)에서 전달하면, 전자전달 매개체(12)는 전자전달 매개체의 환원된 형태(18)로 바뀌고, 기질(14) 존재 하에 촉매 표지(11)에 의해 다시 전자전달 매개체(12)로 된다.
도 3은 시료 용액(21)을 이용하고 촉매 표지(11)의 촉매반응을 이용하며 산화 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다. 도 1과 달리 산화된 형태의 전자전달 매개체(12)가 전극(13) 위에 또는 전극(13) 근처에 건조된 상태로 존재한다. 시료 용액(21)을 도포하면 전자전달 매개체(12)가 시료 용액(21) 속으로 녹아 들어가고, 환원된 형태의 기질(14) 존재 하에서 촉매 표지(11)에 의해 전자전달 매개체(12)가 전자전달 매개체의 환원된 형태(18)로 변경된다. 전기화학 측정이 시작하기 전에 상기 반응은 계속해서 일어나고, 표적물질(16)의 농도가 증가하여 전극(13)에 연결된 촉매 표지(11)가 많아지면 전극(13) 근처에 생성되는 전자전달 매개체의 환원된 형태(18)의 양은 많아지고, 따라서 전극(13) 근처에서의 전자전달 매개체의 환원된 형태(18)의 농도는 증가한다. 상기 전자전달 매개체의 환원된 형태(18)를 전기화학적으로 산화시켜 산화환원 순환을 일으킬 때 초기 산화 전류(또는 전하)는 전자전달 매개체의 환원된 형태(18)의 농도가 클 때에 크게 나타난다. 따라서, 표적물질(16)의 농도에 따른 산화 전류(또는 전하)의 변화는 산화환원 순환 속도 차이뿐만 아니라 전극 근처에서 촉매 표지(11)의 촉매 반응에 의해 생성된 전자전달 매개체의 환원된 형태(18)의 농도 차이에 의해서도 발생한다.
도 4는 기질(14)을 포함하는 시료 용액(21)을 이용하고 환원 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다. 촉매 표지(11)의 촉매 반응에서는 시료 용액 속에 녹아 있는 산소, 포도당(glucose) 등을 기질(14)로 사용할 수 있다. 시료 용액 속에 기질이 존재하므로 기질(14)을 전극(13) 위에 또는 전극(13) 근처에 건조된 상태로 존재하게 할 필요가 없게 된다. 도 4는 환원 전류(또는 전하)를 측정하는 바이오센서에 관한 것이나, 산화 전류(또는 전하)를 측정하는 바이오센서도 가능하다. 도 1, 도 2 및 도 3에서 전기화학 측정을 시작하기 전 상황과 전기화학 측정을 시작하고 난 상황을 분리해서 나타내었으나, 도 4에서는 전기화학 측정을 시작하고 난 상황만을 나타내었다.
도 5 및 도 6은 경쟁반응을 이용한 경쟁 바이오센서(competitive biosensor)에 대한 개념도이다. 도 5는 시료 용액(21)을 이용하고 산화 전류(또는 전하)를 얻는 첫 번째 경쟁 바이오센서의 개념도이다. 측정이 이루어지기 전에 표적물질을 포함하는 제 1 탐침(15)이 전극(13)에 고정되어 있고, 제 2 탐침(17)에 결합된 촉매 표지(11), 전자전달 매개체(12) 및 기질(14)은 전극(13) 위에 또는 전극(13) 근처에 건조된 상태로 존재한다. 표적물질(16)이 들어 있는 시료 용액(21)을 전극(13) 위에 도포하면 제 2 탐침(17)에 결합된 촉매 표지(11), 전자전달 매개체(12) 및 기질(14)은 시료 용액(21) 속으로 녹아 들어 간다. 제 2 탐침(17)은 표적물질(16) 및 제 1 탐침(15)과 경쟁적으로 생체특이적 결합을 하게 되고, 그 결과 제 2 탐침(17)에 결합된 촉매 표지(11)가 전극(13)에 연결하게 된다. 전자전달 매개체(12)를 산화시켜 전자(19)를 전극(13)에 전달하면, 전자전달 매개체(12)는 전자전달 매개체의 산화된 형태(18)로 바뀌고 기질(14) 존재 하에 촉매 표지(11)에 의해 다시 전자전달 매개체(12)로 변경된다. 상기와 같이 전자전달 매개체(12)와 전자전달 매개체의 산화된 형태(18)가 촉매 표지(11)와 전극(13) 사이에서 산화환원 순환을 하면서 전기화학 신호가 증폭되게 된다. 촉매 표지(11)와 전극(13) 사이의 거리에 따라서 산화환원 순환 속도는 달라지고, 촉매 표지(11)가 전극(13)에 가까이 존재할수록 큰 산화환원 순환 속도를 얻게 된다. 따라서, 전극(11)에 연결된 촉매 표지(11)는 큰 전기화학 산화 전류(또는 전하)를 주고 전극(11)에 연결되어 있지 않는 촉매 표지(11)는 작은 전기화학 산화 전류(또는 전하)를 준다. 경쟁반응을 이용할 경우에는 표적물질(16)의 농도가 클 때 전극(11)에 연결되는 촉매 표지(11)의 수가 작아지므로, 표적물질(16)의 농도가 클수록 전기화학 산화 전류(또는 전하)는 작게 나타난다.
도 6은 시료 용액(21)을 이용하고 산화 전류(또는 전하)를 얻는 두 번째 경쟁 바이오센서의 개념도이다. 표적물질을 포함하는 물질을 제 2 탐침(17)으로 사용하여, 제 1 탐침(15)이 표적물질(16) 및 제 2 탐침(17)과 경쟁적으로 생체특이적 결합을 하게 된다. 표적물질(16)의 농도가 클 때 전극(11)에 연결된 촉매 표지(11)의 수가 작아지므로, 표적물질(16)의 농도가 클수록 전기화학 산화 전류(또는 전하)는 작게 나타난다.
도 7은 시료 용액에 필요 물질을 포함하는 혼합 용액(22)을 이용하고 산화 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다. 측정이 이루어지기 전에 제 1 탐침(15)이 전극(13)에 고정되어 있고, 제 2 탐침(17)에 결합된 촉매 표지(11), 전자전달 매개체(12) 및 기질(14)은 전극(13) 위에 또는 전극(13) 근처에 존재하지 않는다. 대신에 표적물질(16)이 들어 있는 시료 용액(21)에 촉매 표지(11), 전자전달 매개체(12) 및 기질(14)의 혼합 용액(22)을 제조하고, 상기 혼합 용액을 전극(13) 위에 도포하였다. 표적물질(16)은 제 1 탐침(15) 및 제 2 탐침(17)과 생체특이적 결합을 하게 되고, 그 결과 제 2 탐침(17)에 결합된 촉매 표지(11)가 전극(13)에 결합하게 된다.
도 8은 방해물질(23)을 포함하는 시료 용액(21)을 이용하고 산화 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다. 시료 용액(21) 속에는 전기화학적으로 쉽게 산화 또는 환원될 수 있는 방해물질(23)이 존재한다. 측정이 이루어지기 전에 제 1 탐침(15)이 전극(13)에 고정되어 있고, 제 2 탐침(17)에 결합된 촉매 표지(11), 전자전달 매개체(12) 및 기질(14) 외에 방해물질을 산화 또는 환원시킬 수 있는 물질(24)이 전극(13) 위에 또는 전극(13) 근처에 건조된 상태로 존재한다. 시료 용액(21)을 전극(13) 위에 도포하면 제 2 탐침(17)에 결합된 촉매 표지(11), 전자전달 매개체(12), 기질(14) 및 방해물질을 산화 또는 환원시킬 수 있는 물질(24)은 시료 용액(21) 속으로 녹아 들어 간다. 방해물질을 산화 또는 환원시킬 수 있는 물질(24)이 충분히 존재하면 전기화학 측정이 시작하기 전에 방해물질(23)은 산화 또는 환원되거나 산화 또는 환원된 후 추가적으로 반응이 진행되어 전기화학적으로 방해작용을 하지 않는 물질(25)로 모두 변하게 된다. 상기 과정을 통해 방해물질(23)의 영향이 없는 전기화학 측정을 할 수 있다.
도 9는 방해물질(23)과 기질(14)을 포함하는 시료 용액(21)을 이용하고 환원 전류(또는 전하)를 얻는 샌드위치 형태 바이오센서의 개념도이다. 촉매 표지(11)가 방해물질을 산화 또는 환원시킬 수 있는 촉매물질로 작용할 수 있다. 도 9에서는 시료 용액 속 기질(14)의 존재 하에 촉매 표지에 의해 방해물질(22)의 산화가 일어나 방해작용을 하지 않는 물질(25)로 변하는 것을 이용한다.
도 10은 패턴된 3개 전극을 사용하는 샌드위치 형태 바이오센서의 개념도이다. 3개의 패턴된 전극은 작업 전극(13), 기준 전극(31), 보조 전극(32)으로 이용된다. 전자전달 매개체(12)의 산화환원 순환은 작업 전극(13)에서 일어나고, 기준 전극(31) 및 보조 전극(32)에서는 다른 반응이 일어날 수 있고 이 때 생긴 물질이 작업 전극(13)의 전기화학 신호에 영향을 미칠 수 있다. 이를 방지하기 위해 확산에 의해 보조 전극(32)이나 기준 전극(31)에서 생긴 물질이 작업 전극(13)으로 이동하는 시간보다 짧고 거리보다는 길게 측정 시간 및 전극 간격을 조절한다.
도 11은 패턴된 4개 전극을 사용하는 샌드위치 형태 바이오센서의 개념도이다. 2개의 작업 전극(13, 41)을 사용하고 2개의 표적물질(16, 43)에 대응하는 2개의 제 1 탐침(15, 42)과 2개의 제 2 탐침(17, 44)를 사용함으로써 2개의 표적물질(16, 43)을 동시에 검출할 수 있다. 두 작업 전극(13, 41)에서 같은 전자전달 매개체(12), 촉매 표지(11) 및 기질(14)을 이용한 산화환원 순환이 일어난다. 3개 이상의 표적물질을 동시에 측정할 때도 같은 전자전달 매개체(12), 촉매 표지(11) 및 기질(14)을 이용한 산화환원 순환을 이용한다. 도 1 및 도 2에서 전기화학 측정이 시작하기 전에는 촉매 반응 및 산화환원 반응이 일어나지 않기 때문에 전기화학 측정 전에는 두 전극에 연결된 촉매 표지(11)의 표면 농도 차이에 의한 간섭이 문제가 되지 않는다. 전기화학 측정을 시작하면 한 작업 전극에서 생긴 물질이 다른 작업 전극으로 이동하여 간섭을 줄 수 있기 때문에, 확산에 의해 두 작업 전극 사이를 이동하는 시간보다 짧고 거리보다는 길게 측정 시간 및 전극 간격을 조절한다.
도 12는 콘트롤 전극을 포함하여 패턴된 4개 전극을 사용하는 샌드위치 형태 바이오센서의 개념도이다. 전기화학 측정이 작업 전극(13) 및 콘트롤 전극(45)에서 동시에 이루어지며, 두 전극에서 얻은 전기화학 측정 값의 차이 또는 비율(ratio)을 표적물질(16)의 농도를 결정하는 데 이용한다. 작업 전극(13)에는 제 1 탐침이 고정되어 있지만 콘트롤 전극(45)에는 제 1 탐침이 고정되어 있지 않다. 작업 전극(13)에서는 빠른 산화환원 순환이 일어나지만, 콘트롤 전극(45)에서는 빠른 산화환원 순환이 일어나지 않는다. 따라서, 표적물질(16)이 생체특이적 결합에 의해 작업 전극(13)에 고정되면 작업 전극(13)의 전기화학 신호가 콘트롤 전극(45)의 전기화학 신호보다 더 커지게 된다. 두 전극 사이의 신호 차이는 표적물질(16)의 농도가 커질수록 커지게 된다. 상기 방법을 이용할 경우 배경 신호의 변화에 의한 재현성 문제를 해결할 수 있다.
도 13은 멤브레인에 시약을 건조시킨 후, 사용하는 샌드위치 형태 바이오센서의 개념도이다. 멤브레인(46) 위에 전자전달 매개체(12), 촉매 표지(11)가 연결된 제 2 탐침(17), 기질(14), 방해물질을 산화 또는 환원시킬 수 있는 물질(24)을 건조시킨다. 이 멤브레인을 제 1 탐침(15)이 고정된 작업 전극(13)에 올려 놓은 상태에서 시료 용액(21)을 떨어뜨리면, 멤브레인(46)과 작업 전극(13) 표면을 시료 용액(21)이 적시게 된다. 멤브레인에 건조된 상기 시약들이 녹아져 나오면 전극에서의 산화환원 순환 속도 차이를 이용하여 표적 물질(16)을 검출할 수 있게 된다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1. 글루코우스 옥시데이즈와 페로센메탄올을 이용한 바이오센서 및 이의 특성 평가
도 14는 ITO 전극을 작업전극으로 이용하고 표적물질로 PSA(prostate-specific antigen)를 검출하는 샌드위치 형태의 전기화학 바이오센서의 개념도이다. 먼저 1cm×2cm 크기의 ITO 전극을 세척한 후, 10μg/mL의 아비딘이 들어 있는 카보네이트 버퍼(carbonate buffer)(pH 9.6) 용액 80μL를 ITO 전극 위에 도포한 후, 20℃에서 2시간 동안 유지한 후 세척한다. 바이오틴-아비딘 결합에 의해 PSA 항체를 고정하기 위해 10μg/mL의 "바이오틴이 연결된 PSA 항체(biotinylated anti-PSA IgG)" 가 들어 있는 PBS(phosphate-buffered saline) 용액 80μL를 도포한 후, 4℃에서 30분 동안 유지한 후 세척한다. 무세척 측정을 위해 "글루코우스 옥시데이즈가 연결된 PSA 항체" 20μg/mL 들어있는 PBS 용액 100mL, 1M 포도당이 들어 있는 PBS 용액 200μL, 1.0mM 페로센메탄올(ferrocene methanol)이 들어있는 PBS 용액 100μL, 50U/mL 아스코베이트 옥시데이즈(L-ascorbate oxidase)가 들어 있는 PBS 용액 100μL, 및 여성 혈청(pooled female serum, PSA 농도 5pg/mL)에 다른 농도의 PSA를 가하여 얻은 용액 500μL를 혼합하여 총 혼합 용액 부피가 1 mL가 되게 한다. 상기 혼합 용액에서 "글루코우스 옥시데이즈가 연결된 PSA 항체", 포도당, 페로센메탄올, 및 아스코베이트 옥시데이즈의 농도는 각각 2μg/mL, 200mM, 0.1mM, 및 5U/mL이다. 혼합 용액을 "바이오틴이 연결된 PSA 항체"와 아비딘이 고정된 ITO 전극을 작업 전극으로 사용하고 Ag/AgCl (3M NaCl) 전극을 기준 전극, Pt 와이어를 보조 전극으로 사용하는 전기화학 셀에 도포한 후, 25℃에서 10분 동안 유지한 후 0.13V의 전위를 걸어주어 전하를 측정하였다. 용액에 노출된 ITO 전극의 크기는 0.28cm2이었다. 상기 기질인 포도당의 농도를 크게 한 것은 혈청에 존재하는 포도당의 농도 변화에 전기화학 신호가 크게 영향을 받지 않게 하기 위해서이다. 전기화학 측정 전 10분 동안 방해물질 중에 가장 문제가 되는 아스코빅산(L-ascorbic acid)는 아스코베이트 옥시데이즈에 의해 산화가 되고, PSA는 "글루코우스 옥시데이즈가 연결된 PSA 항체" 및 "바이오틴이 연결된 PSA 항체"와 생체특이적 결합이 일어나 "글루코우스 옥시데이즈가 연결된 PSA 항체" 중 일부는 ITO 전극에 연결된다. 전기화학 측정을 위해 0.13V의 전위를 걸면 페로센메탄올이 페로센메탄올의 산화된 형태로 바뀌고, 포도당 존재 하에서 글루코우스 옥시데이즈에 의해 다시 페로센메탄올으로 변경된다. 상기와 같은 산화환원 순환에 의해 전기화학 전하는 시간에 따라 계속 증가한다. 전극에 연결된 글루코우스 옥시데이즈는 전극에 연결되지 않은 글루코우스 옥시데이즈에 비해 더 빠른 페로센메탄올의 산화환원 순환을 가능하게 하므로, 전극에 연결된 글루코우스 옥시데이즈의 표면 농도가 클수록(즉, 혈청 속의 PSA 농도가 클수록) 시간에 따른 전기화학 전하의 증가가 더 빨리 일어난다.
도 15는 도 14의 바이오센서를 이용한 PSA 농도에 따른 시간 대 전하도를 나타낸 것이다. 도 15에 나타난 바와 같이, PSA 농도가 클수록 동일한 시간에서 더 큰 전하 값을 나타낸다.
도 16은 도 15의 시간 대 전하도에서 100초일 때의 PSA 농도에 따른 전하를 나타낸 그래프이다. 모든 농도 결과는 3번의 반복 실험을 통하여 얻어졌다. 여기서, 에러 바(error bar)는 표준 편차를 나타낸다. 도 16에 나타난 바와 같이, 상기 그래프로부터 계산된 PSA에 대한 검출한계는 약 10pg/mL로 나타났다. 추가적인 용액이나 세척과정의 사용 없이 바이오센서에 혈청과 제 2 탐침에 결합된 촉매 표지, 기질, 전자전자 매개체, 및 방해물질을 산화시키는 효소가 들어 있는 혼합 용액을 도포하여 짧은 시간에 매우 낮은 검출한계를 얻을 수 있음을 나타낸다.
도 17은 도 16의 보정 곡선을 이용하여 임상 시료의 실제 PSA 농도와 바이오센서 측정된 PSA 농도 값을 비교한 그래프이다. 여기서는 Cobas e601 제품을 이용하여 측정한 값과 본 발명의 바이오센서를 이용하여 측정한 값을 비교하였다. 도 17에 나타난 바와 같이, 10개의 시료에 대해서 모두 두 측정 값이 비슷하게 나와서, 세척과정 없이 혼합 용액을 도포한 후, 10분 후에 측정하여도 정확하게 낮은 농도까지 측정할 수 있음을 알 수 있다.
실시예 2. 글리세롤-3-포스페이트 디하이드로지네이즈와 Ru(NH 3 ) 6 3+ 를 이용한 바이오센서 및 이의 특성 평가
도 18은 ITO 전극을 작업전극으로 이용하고 표적물질로 트로포닌아이(troponin I)를 검출하는 샌드위치 형태의 전기화학 바이오센서의 개념도이다. 먼저 1cm×2cm 크기의 ITO 전극을 세척한 후, 10μg/mL의 아비딘이 들어 있는 카보네이트 버퍼(pH 9.6) 용액 80μL를 ITO 전극 위에 도포한 후, 20℃에서 2시간 동안 유지한 후 세척한다. 바이오틴-아비딘 결합에 의해 트로포닌아이 항체를 고정하기 위해 10μg/mL의 "바이오틴이 연결된 트로포닌아이 항체(biotinylated anti-troponin-I IgG)"가 들어 있는 PBS 용액 80μL를 도포한 후, 4℃에서 30분 동안 유지한 후 세척한다. 무세척 측정을 위해 "글리세롤-3-포스페이트 디하이드로지네이즈가 연결된 트로포닌아이 항체"가 20μg/mL 들어있는 PBS 용액 100μL, 50mM 글리세롤-3-포스페이트가 들어 있는 PBS 용액 100μL, 1.0mM Ru(NH3)6 3+이 들어있는 PBS 용액 100μL, 50U/mL 아스코베이트 옥시데이즈(L-ascorbate oxidase)가 들어 있는 PBS 용액 100μL, PBS 용액 100μL 및 혈청에 다른 농도의 트로포닌아이를 가하여 얻은 용액 500μL를 혼합하여 총 혼합 용액 부피가 1 mL가 되게 한다. 상기 혼합 용액에서 "글리세롤-3-포스페이트 디하이드로지네이즈가 연결된 트로포닌아이 항체", 글리세롤-3-포스페이트, Ru(NH3)6 3+, 및 아스코베이트 옥시데이즈의 농도는 각각 2μg/mL, 5mM, 0.1mM, 및 5U/mL이다. 혼합 용액을 "바이오틴이 연결된 트로포닌아이 항체"와 아비딘이 고정된 ITO 전극을 작업 전극으로 사용하고 Ag/AgCl (3M NaCl) 전극을 기준 전극, Pt 와이어를 보조 전극으로 사용하는 전기화학 셀에 도포한 후, 25℃에서 10분 동안 유지한 후 0.05V의 전위를 걸어주어 전하를 측정하였다. 용액에 노출된 ITO 전극의 크기는 0.28cm2이었다. 전기화학 측정 전 10분 동안 방해물질 중에 가장 문제가 되는 아스코빅산는 아스코베이트 옥시데이즈에 의해 산화가 되고, 트로포닌아이는 "글리세롤-3-포스페이트 디하이드로지네이즈가 연결된 트로포닌아이 항체" 및 "바이오틴이 연결된 트로포닌아이 항체"와 생체특이적 결합이 일어나 "글리세롤-3-포스페이트 디하이드로지네이즈가 연결된 트로포닌아이 항체" 중 일부는 ITO 전극에 연결된다. 10분 동안 글리세롤-3-포스페이트 디하이드로지네이즈에 의해 Ru(NH3)6 3+가 Ru(NH3)6 2+로 변하고, 전기화학 측정을 위해 0.05V의 전위를 걸면 Ru(NH3)6 2+가 Ru(NH3)6 3+로 바뀌고 다시 Ru(NH3)6 2+로 바뀌는 산화환원 순환이 일어난다. 상기와 같은 산화환원 순환에 의해 전기화학 전하는 시간에 따라 계속 증가한다. 전극에 연결된 글리세롤-3-포스페이트 디하이드로지네이즈는 전극에 연결되지 않은 글리세롤-3-포스페이트 디하이드로지네이즈에 비해 더 빠른 Ru(NH3)6 3+의 산화환원 순환을 가능하게 하므로, 전극에 연결된 글리세롤-3-포스페이트 디하이드로지네이즈의 표면 농도가 클수록(즉, 혈청 속의 트로포닌아이 농도가 클수록) 시간에 따른 전기화학 전하의 증가가 더 빨리 일어난다.
도 19는 도 18의 바이오센서를 이용한 트로포닌아이 농도에 따른 시간 대 전하도를 나타내는 도이다. 도 19에 나타난 바와 같이, 트로포닌아이 농도가 클수록 동일한 시간에서 더 큰 전하 값을 나타낸다.
도 20은 도 19의 시간 대 전하도에서 100초일 때의 트로포닌아이 농도에 따른 보정된 전하를 나타낸 도이다. 모든 농도 결과는 3번의 반복 실험을 통하여 얻어졌다. 여기서, 에러 바는 표준 편차를 나타낸다. 도 20에 나타난 바와 같이, 상기 그래프로부터 계산된 트로포닌아이에 대한 검출한계는 약 10pg/mL로 나타났다. 추가적인 용액이나 세척과정의 사용 없이 바이오센서에 혈청과 제 2 탐침에 결합된 촉매 표지, 기질, 전자전자 매개체, 및 방해물질을 산화시키는 효소가 들어 있는 혼합 용액을 도포하여 짧은 시간에 매우 낮은 검출한계를 얻을 수 있음을 나타낸다.
실시예 3. 글리세롤-3-포스페이트 디하이드로지네이즈와 [Os(2,2'-바이피리딘) 2 Cl 2 ] + , 패턴된 ITO 전극을 이용하고 시료 용액만을 떨어 뜨려 측정하는 바이오센서 및 이의 특성 평가
도 21은 콘트롤 전극을 포함하는 패턴된 ITO 전극과 시약이 건조된 멤브레인을 이용하고, 표적물질로 트로포닌아이(troponin I)를 검출하는 샌드위치 형태의 전기화학 바이오센서의 개념도이다. 먼저 1cm×2cm 크기의 패턴된 ITO 전극을 준비한다. 4개의 패턴된 ITO 전극 중 하나는 Ag 페이스트로 도포하여 보조 전극을 만들고, 또 하나는 Ag/AgCl 페이스트로 도포하여 기준 전극을 만든다. 10μg/mL의 아비딘이 들어 있는 카보네이트 버퍼(pH 9.6) 용액을 작업 전극 위 및 그 주위에만 도포한 후, 20℃에서 2시간 동안 유지한 후 세척한다. 바이오틴-아비딘 결합에 의해 트로포닌아이 항체를 작업 전극에 고정하기 위해 10μg/mL의 "바이오틴이 연결된 트로포닌아이 항체"가 들어 있는 PBS 용액을 도포한 후, 4℃에서 30분 동안 유지한 후 세척한다. 그리고 나서 전체적으로 10μg/mL의 아비딘이 들어 있는 카보네이트 버퍼(pH 9.6) 용액을 도포한 후, 20℃에서 2시간 동안 유지한 후 세척한다. 무세척 측정을 위해 "글리세롤-3-포스페이트 디하이드로지네이즈가 연결된 트로포닌아이 항체", 글리세롤-3-포스페이트, [Os(2,2'-바이피리딘)2Cl2]+, 아스코베이트 옥시데이즈를 트레할로스(trehalose)와 함께 0.5cm×0.5cm 멤브레인 위에 동결 건조 시킨 후, 4개의 패턴된 전극 위에 올려서 사용하였다. 트로포닌아이가 들어 있는 혈청을 멤브레인 위에 떨어 뜨리고, 25℃에서 10분 동안 유지한 후 미분펄스 전압전류도(differential pulse voltammogram)를 측정하였다. 용액에 노출된 작업 전극의 크기는 0.75mm2이었다. 전기화학 측정 전 10분 동안 방해물질 중에 가장 문제가 되는 아스코빅산는 아스코베이트 옥시데이즈에 의해 산화가 되고, 트로포닌아이는 "글리세롤-3-포스페이트 디하이드로지네이즈가 연결된 트로포닌아이 항체" 및 "바이오틴이 연결된 트로포닌아이 항체"와 생체특이적 결합이 일어나게 되고, "글리세롤-3-포스페이트 디하이드로지네이즈가 연결된 트로포닌아이 항체" 중 일부가 작업 전극에 연결된다. 10분 동안 글리세롤-3-포스페이트 디하이드로지네이즈에 의해 [Os(2,2'-바이피리딘)2Cl2]+가 [Os(2,2'-바이피리딘)2Cl2]로 변하고, 전기화학 측정 중에 산화환원 순환이 일어난다. 전극에 연결된 글리세롤-3-포스페이트 디하이드로지네이즈는 전극에 연결되지 않은 글리세롤-3-포스페이트 디하이드로지네이즈에 비해 더 빠른 [Os(2,2'-바이피리딘)2Cl2]+의 산화환원 순환을 가능하게 하므로, 전극에 연결된 글리세롤-3-포스페이트 디하이드로지네이즈의 표면 농도가 클수록(즉, 혈청 속의 트로포닌아이 농도가 클수록) 더 큰 전류를 얻게 된다.
도 22는 콘트롤 전극을 포함하는 패턴된 ITO전극 및 멤브레인의 사진이다. 멤브레인은 작업 전극, 보조 전극, 기준 전극, 콘트롤 전극이 있는 부분을 덮게 되고, 패드 부분은 외부 전선과 연결된다.
도 23은 1 ng/mL 트로포닌아이가 들어 있는 혈청을 사용하고 도 21의 바이오센서를 이용하여 얻은 미분펄스 전압전류도(differential pulse voltammogram)이다. 작업 전극의 봉우리 전류(peak current)가 콘트롤 전극의 봉우리 전류보다 크게 나타난다. 이것은 작업 전극에는 결합한 촉매 표지가 존재하여 빠른 산환환원 순환이 일어나기 때문이다. 콘트롤 전극의 봉우리 전류는 트로포닌아이의 농도(즉, 작업 전극의 봉우리 전류)에 의해 영향을 받지 않는다. 콘트롤 전극이 작업 전극에 가까이 존재하지만 전극 사이의 간섭이 없이 측정할 수 있음을 알 수 있다. 따라서, 두 개 이상의 표적물질의 동시 검출에서도 두 작업 전극 사이의 간섭 없이 측정할 수 있다.
도 24는 트로포닌아이 농도에 따른 도 23의 봉우리 전류 차이를 나타낸 도이다. 모든 농도 결과는 3번의 반복 실험을 통하여 얻어졌다. 여기서, 에러 바는 표준 편차를 나타낸다. 도 24에 나타난 바와 같이, 상기 그래프로부터 계산된 트로포닌아이에 대한 검출한계는 약 1pg/mL로 나타났다. 추가적인 용액이나 세척과정의 사용 없이 혈청과 제 2 탐침에 결합된 촉매 표지, 기질, 전자전자 매개체, 및 방해물질을 산화시키는 효소를 멤브레인에 건조 시킨 후 시료 용액(혈청)만을 떨어 뜨려 짧은 시간에 매우 낮은 검출한계를 얻을 수 있음을 나타낸다.
이상에서 설명한 본 발명은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함으로 전술한 실시예 및 첨부된 도면에 한정되는 것이 아니다.

Claims (11)

  1. 전극; 표적물질 또는 제 2 탐침에 특이적으로 결합하고, 상기 전극에 고정된 포획용 제 1 탐침; 상기 표적물질 또는 상기 제 1 탐침에 특이적으로 결합하는 제 2 탐침; 상기 제 2 탐침에 결합된 촉매 표지; 상기 촉매 표지에 의해서만 산화 또는 환원이 일어나는 기질; 및 상기 촉매 표지와 상기 전극 사이에서 전자를 전달하는 전자전달 매개체;를 포함하고,
    제 1 탐침, 제 2 탐침 및 표적물질의 생체특이적 결합에 의해 전극에 연결된 촉매 표지의 경우, 전극에 연결되지 않은 촉매 표지에 비해 증가된 전자전달 속도를 나타내는 것을 특징으로 하는, 바이오센서.
  2. 기판; 상기 기판에 패턴된 2 이상의 전극; 2종 이상의 표적물질 또는 2종 이상의 제 2 탐침 중 어느 하나에 특이적으로 결합하고, 상기 전극에 각각 고정되는 2종 이상의 포획용 제 1 탐침; 상기 2종 이상의 표적물질 또는 상기 2종 이상의 제 1 탐침 중 어느 하나에 각각 특이적으로 결합하는 2종 이상의 제 2 탐침; 상기 2종 이상의 제 2 탐침에 각각 결합된 촉매 표지; 상기 촉매 표지에 의해서만 산화 또는 환원이 일어나는 기질; 및 상기 촉매 표지와 상기 전극 사이에서 전자를 전달하는 전자전달 매개체;를 포함하고,
    제 1 탐침, 제 2 탐침 및 표적물질의 생체특이적 결합에 의해 전극에 연결된 촉매 표지의 경우, 전극에 연결되지 않은 촉매 표지에 비해 증가된 전자전달 속도를 나타내는 것을 특징으로 하는, 바이오센서.
  3. 제 1항 또는 제 2항에 있어서,
    상기 바이오센서는 전극에 연결되지 않은 촉매 표지 및 전자전달 방해물질의 세척을 필요로 하지 않는 것을 특징으로 하는, 바이오센서.
  4. 제 1항 또는 제 2항에 있어서,
    상기 전극은 주석산화물 전극, 그래핀이 입혀진 주석산화물 전극, 탄소나노튜브가 입혀진 주석산화물 전극, 카본 전극, 금 전극, 은 전극, Ag/AgCl 전극, 백금 전극 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는, 바이오센서.
  5. 제 1항 또는 제 2항에 있어서,
    상기 표적물질은 금속 이온, DNA, RNA, ATP, PSA(prostate specific antigen), 트로포닌아이(troponin I), 트로포닌티(troponin T), 코티솔(cortisol), 단백질 분해효소(protease), 트롬빈(thrombin), 피브리노겐(fibrinogen), 면역글로불린 G(immunoglobulin G, IgG), 면역글로불린 M(IgM), 면역글로불린 A(IgA), 면역글로불린 D(IgD), 헤모글로빈(hemoglobin), 미오글로빈(myoglobin), 알부민(albumin), 카제인(casein), 프롤라민(prolamin), 액틴(actin), 미오신(myosin), 콜라겐(collagen), 케라틴(keratin) 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는, 바이오센서.
  6. 제 1항 또는 제 2항에 있어서,
    상기 촉매는 글루코우스 옥시데이즈, 글리세롤-3-포스페이트 디하이드로지네이즈, 아스코베이트 옥시데이즈, 호스래디쉬 옥시데이즈, 소이빈 옥시데이즈, 라케이즈, 빌리루빈 옥시데이즈, 타이로시네이즈, 금 나노입자, 은 나노입자, 백금 나노입자, 이리듐 나노입자, 팔라듐 나노입자, 프러시안블루 나노입자 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는, 바이오센서.
  7. 제 1항 또는 제 2항에 있어서,
    상기 전자전달 매개체는 Ru(NH3)6 3+, Ru(NH3)6 2+, Fe(CN)6 3-, Fe(CN)6 4-, Ru(NH3)5(피리딘)3+, Ru(NH3)5(피리딘)2+, 페로센, 페로센 메탄올, 페로센 카복시산, [Os(2,2'-바이피리딘)2Cl2]+, [Os(2,2'-바이피리딘)2Cl2], [Os(2,2'-바이피리딘)2(피리딘)Cl]2+, [Os(2,2'-바이피리딘)2(피리딘)Cl]+ 및 이들의 조합으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는, 바이오센서.
  8. 제 1항 또는 제 2항에 있어서.
    상기 바이오센서는 제 1 탐침이 고정되어 있지 않은 콘트롤(control) 전극을 더 포함하고,
    상기 제 1 탐침이 고정된 전극과 상기 제 1 탐침이 고정되어 있지 않은 콘트롤 전극사이의 전기화학 신호의 차이 또는 비율(ratio)을 이용하는 것을 특징으로 하는, 바이오센서.
  9. 제 1항 또는 제 2항에 있어서.
    상기 바이오센서는 상기 전극 위에 존재하는 멤브레인을 더 포함하고,
    상기 제 2 탐침, 상기 촉매 표지, 상기 기질 및 상기 전자전달 매개체가 상기 전극 위 또는 상기 멤브레인 위에 건조되어 있는 것을 특징으로 하는, 바이오센서.
  10. 제 1항 또는 제 2항에 있어서.
    상기 바이오센서는 산화제 또는 환원제를 더 포함하는 것을 특징으로 하는, 바이오센서.
  11. 제 1항 또는 제 2항에 따른 바이오센서에 시료를 가하는 단계; 및
    상기 바이오센서의 전극의 전기화학 신호를 측정하는 단계;를 포함하는, 표적물질 검출 방법.
PCT/KR2015/002196 2014-04-14 2015-03-06 전자전달 매개체의 산화환원 순환을 이용한 바이오센서 WO2015160085A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140044285 2014-04-14
KR10-2014-0044285 2014-04-14

Publications (1)

Publication Number Publication Date
WO2015160085A1 true WO2015160085A1 (ko) 2015-10-22

Family

ID=54324248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002196 WO2015160085A1 (ko) 2014-04-14 2015-03-06 전자전달 매개체의 산화환원 순환을 이용한 바이오센서

Country Status (2)

Country Link
KR (1) KR101698988B1 (ko)
WO (1) WO2015160085A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020645A (zh) * 2018-04-17 2020-12-01 韩国化学研究院 基于多孔电极的生物传感器
CN114533857A (zh) * 2022-02-22 2022-05-27 常州大学 抗菌自激活级联反应体系HMPBNPs@GOx及其制备和应用方法
WO2023177943A1 (en) * 2022-03-17 2023-09-21 The Penn State Research Foundation Rapid and sensitive detection of viral particles by coupling redox cycling and electrophoretic enrichment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017095202A1 (ko) * 2015-12-02 2017-06-08 한양대학교 에리카산학협력단 전기화학센서 및 그 제조방법
KR102062980B1 (ko) * 2018-04-11 2020-02-11 부산대학교 산학협력단 증폭된 이중 가닥 dna 검출방법 및 이를 이용한 장치
KR102094871B1 (ko) * 2018-04-18 2020-03-31 부산대학교 산학협력단 공액 고분자 전해질을 이용하는 바이오 센서 및 이를 이용한 분석물질 검출방법
BR112022018853A2 (pt) * 2020-03-20 2022-11-22 Mara Nanotech Korea Inc Kit de diagnóstico de nanopoços para diagnóstico de substâncias de doenças cardiovasculares no sangue
KR102497547B1 (ko) * 2020-08-31 2023-02-09 부산대학교 산학협력단 거리에 따른 빛의 세기 차이를 이용한 바이오 센서
KR102386652B1 (ko) * 2020-09-01 2022-04-14 부산대학교 산학협력단 가수분해 활성을 갖는 금속 나노자임을 이용한 바이오센서

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966620B1 (ko) * 2008-03-20 2010-06-29 광운대학교 산학협력단 무효소 바이오 센서 및 그 제조 방법
KR20120103911A (ko) * 2011-03-11 2012-09-20 부산대학교 산학협력단 일산화질소 검출용 바이오센서 및 이의 제조방법
KR20120125898A (ko) * 2011-05-09 2012-11-19 부산대학교 산학협력단 아스코르브산 포스페이트를 이용한 전기화학적 바이오센서
KR20130057721A (ko) * 2011-11-24 2013-06-03 한국전자통신연구원 바이오 센서, 이를 이용한 바이오 물질 검출 장치 및 검출 방법
KR20140015104A (ko) * 2012-07-24 2014-02-06 서울대학교산학협력단 결합촉진 장치와 이를 이용한 결합 촉진 방법 및 바이오 센서와 이를 이용한 센싱 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050046382A (ko) 2003-11-14 2005-05-18 설용배 멸치 자숙기
KR20070056416A (ko) 2005-11-29 2007-06-04 세메스 주식회사 기판 이송 장치 및 방법
KR100812573B1 (ko) * 2006-10-26 2008-03-13 부산대학교 산학협력단 피드백을 이용한 바이오센서
KR20140110795A (ko) * 2013-03-08 2014-09-17 부산대학교 산학협력단 산화환원 순환을 이용한 바이오센서 스트립

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966620B1 (ko) * 2008-03-20 2010-06-29 광운대학교 산학협력단 무효소 바이오 센서 및 그 제조 방법
KR20120103911A (ko) * 2011-03-11 2012-09-20 부산대학교 산학협력단 일산화질소 검출용 바이오센서 및 이의 제조방법
KR20120125898A (ko) * 2011-05-09 2012-11-19 부산대학교 산학협력단 아스코르브산 포스페이트를 이용한 전기화학적 바이오센서
KR20130057721A (ko) * 2011-11-24 2013-06-03 한국전자통신연구원 바이오 센서, 이를 이용한 바이오 물질 검출 장치 및 검출 방법
KR20140015104A (ko) * 2012-07-24 2014-02-06 서울대학교산학협력단 결합촉진 장치와 이를 이용한 결합 촉진 방법 및 바이오 센서와 이를 이용한 센싱 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020645A (zh) * 2018-04-17 2020-12-01 韩国化学研究院 基于多孔电极的生物传感器
CN114533857A (zh) * 2022-02-22 2022-05-27 常州大学 抗菌自激活级联反应体系HMPBNPs@GOx及其制备和应用方法
CN114533857B (zh) * 2022-02-22 2024-04-30 常州大学 抗菌自激活级联反应体系HMPBNPs@GOx及其制备和应用方法
WO2023177943A1 (en) * 2022-03-17 2023-09-21 The Penn State Research Foundation Rapid and sensitive detection of viral particles by coupling redox cycling and electrophoretic enrichment

Also Published As

Publication number Publication date
KR20150118894A (ko) 2015-10-23
KR101698988B1 (ko) 2017-01-24

Similar Documents

Publication Publication Date Title
WO2015160085A1 (ko) 전자전달 매개체의 산화환원 순환을 이용한 바이오센서
JP3061351B2 (ja) 特定化合物の定量法およびその装置
EP0255291B1 (en) Method and apparatus for electrochemical measurements
JP3267936B2 (ja) バイオセンサ
JP3621084B2 (ja) バイオセンサ
JP3971997B2 (ja) バイオセンサ
JP3102627B2 (ja) バイオセンサ、それを用いた定量法および定量装置
KR100241928B1 (ko) 다공성 박막 위에 전극이 일체로 형성된 정량장치 및 이를 이용한 정량방법
Viet et al. Gold-linked electrochemical immunoassay on single-walled carbon nanotube for highly sensitive detection of human chorionic gonadotropinhormone
Dutta et al. An ultrasensitive enzyme-free electrochemical immunosensor based on redox cycling amplification using methylene blue
JPH04340453A (ja) バイオセンサーおよびそれを用いた分離定量方法
JPH01156658A (ja) バイオセンサ
JP4721618B2 (ja) 酵素電極
JP2001330581A (ja) 基質濃度定量法
JPH05340915A (ja) バイオセンサおよびそれを用いた測定方法
US20090308741A1 (en) Sensor arrangement comprising an electrode for detecting diffused loaded particles
Zhang et al. Ultrasensitive electrochemical immunosensor employing glucose oxidase catalyzed deposition of gold nanoparticles for signal amplification
JPH11344462A (ja) 基質の定量法
JPH09274010A (ja) 基質の定量法
Huang et al. A sensitive method for protein assays using a peptide-based nano-label: human glypican-3 detection for hepatocellular carcinomas diagnosis
KR20140110795A (ko) 산화환원 순환을 이용한 바이오센서 스트립
JP2000180399A (ja) 基質の定量方法
Jiang et al. Performance of an amperometric biosensor for the determination of hemoglobin
JPH04279854A (ja) 白金被覆カーボンファイバー電極およびこれを用いた            酵素膜センサ
JPH04118554A (ja) 電気化学的酵素測定方法およびバイオセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779190

Country of ref document: EP

Kind code of ref document: A1