WO2017095202A1 - 전기화학센서 및 그 제조방법 - Google Patents

전기화학센서 및 그 제조방법 Download PDF

Info

Publication number
WO2017095202A1
WO2017095202A1 PCT/KR2016/014145 KR2016014145W WO2017095202A1 WO 2017095202 A1 WO2017095202 A1 WO 2017095202A1 KR 2016014145 W KR2016014145 W KR 2016014145W WO 2017095202 A1 WO2017095202 A1 WO 2017095202A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemoglobin
working electrode
electrochemical sensor
electrode
reference electrode
Prior art date
Application number
PCT/KR2016/014145
Other languages
English (en)
French (fr)
Inventor
성기훈
정우성
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority claimed from KR1020160163683A external-priority patent/KR20170065015A/ko
Priority claimed from KR1020160163682A external-priority patent/KR101876528B1/ko
Publication of WO2017095202A1 publication Critical patent/WO2017095202A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present invention relates to an electrochemical sensor capable of measuring hemoglobin or glycated hemoglobin and a method of manufacturing the same.
  • Diabetes is caused by inadequate carbohydrate metabolism, which does not properly use glucose absorbed into the body, and is a disease that can cause various complications due to excessive blood sugar in the blood.
  • type 1 diabetes mellitus is insulin-dependent diabetes mellitus, a type that loses the function of synthesizing or secreting insulin by the autoimmune response of interest cells.
  • type 2 diabetes is insulin-independent diabetes, which is caused by body resistance to insulin or inappropriate insulin secretion. Other fetal diabetes may occur during pregnancy.
  • diabetes mellitus of type 1 and fetal diabetes is not common, and most of the diabetes is type 2 diabetes, which accounts for 90% to 95% of developed diabetes.
  • US 5,242,842 discloses a method in which boronic acid derivatives and glycated hemoglobin are combined and then precipitated or separated and measured using spectroscopic methods, but a process for washing boronic acid derivatives not bound to glycated hemoglobin is required.
  • the problem is that the measurement is difficult because the correct amount of sample can be accurately obtained.
  • US Pat. No. 6,162,645 and EP 0455225B1 and US Pat. No. 6,174,734 disclose methods for determining the relative amounts of glycated hemoglobin using a marker compound after separating proteins in a sample using a solid phase immobilized with an antibody.
  • Glycosylated hemoglobin determination method is to collect the glycated hemoglobin and glycated hemoglobin-markers competitively on the electrode surface, and then to determine the magnitude of the signal by injecting a substrate which causes an electrochemical reaction with the marker. There is a problem that it is difficult to secure reproducibility.
  • an glycosylated hemoglobin can be easily measured without a marker, and the situation requires an electrochemical sensor for measuring glycated hemoglobin that can secure reproducibility in repeated measurements.
  • electrochemical biosensors have been developed as an excellent analytical technology in the fields of diagnosis of disease, analysis of food, observation of environment and analysis because of their simplicity, sensitivity, selectivity and economy.
  • interest in biosensors using carbon nanotubes (CNT, Carbon nanotube) is increasing.
  • the electrochemical sensor using the carbon nanotube has been applied in various fields because it is possible to detect a higher sensitivity than the conventional FET-type sensor, but there is a problem that can not obtain a uniform result because the electrical properties are different for each device.
  • the present invention is to solve the above-described problems, to provide an electrochemical sensor capable of high-sensitivity detection can accurately measure the concentration of hemoglobin or glycated hemoglobin.
  • a reference electrode formed spaced apart from the working electrode on the substrate
  • an electrochemical sensor comprising a; measuring unit for measuring the potential difference between the working electrode and the reference electrode.
  • the concentration of hemoglobin or glycated hemoglobin can be easily measured using an electrochemical sensor according to an embodiment of the present invention.
  • the electrochemical sensor according to an embodiment of the present invention can quickly measure hemoglobin or glycated hemoglobin in a trace amount of sample by measuring the concentration of hemoglobin or glycated hemoglobin using a potential difference.
  • FIG. 1 is a block diagram showing an electrochemical sensor according to an embodiment of the present invention.
  • 2 (a) to 2 (f) is a view for explaining a method of manufacturing an electrochemical sensor for measuring hemoglobin according to an embodiment of the present invention.
  • FIG 3 is a view showing a surface diagram of the working electrode of the electrochemical sensor for measuring glycated hemoglobin according to an embodiment of the present invention.
  • 4 (a) and 4 (b) are a front view and a cross-sectional view showing an electrochemical sensor according to another embodiment of the present invention.
  • FIG. 5 is a graph showing a voltage curve with time for each concentration of hemoglobin using an open circuit potential as a sensor for measuring hemoglobin according to the embodiment shown in FIG. 1.
  • FIG. 6 is a calibration curve showing a correlation between hemoglobin concentration and voltage using the voltage values obtained in FIG. 5.
  • FIG. 7 is a graph showing a voltage curve when hemoglobin of the same concentration is measured twice using an open circuit potential technique with one working electrode and a reference electrode (SWCNT ⁇ Ag / AgCl).
  • FIG. 8 is a graph showing voltage curves with time for each concentration of hemoglobin using the potential of the open circuit as the sensor for measuring hemoglobin according to the embodiment shown in FIG. 1.
  • FIG. 9 is a calibration curve showing a correlation between hemoglobin concentration and voltage using the voltage values obtained in FIG. 8.
  • 10 and 11 are graphs showing voltage curves with time at each concentration using an open circuit potential using an electrochemical sensor including a working electrode and a reference electrode (carbon paste ⁇ Ag / AgCl) of the comparative example.
  • FIG. 12 is a graph showing voltage curves according to time for each concentration using an open circuit potential as a sensor for measuring glycated hemoglobin according to the embodiment shown in FIG. 1.
  • FIG. 13 is a calibration curve illustrating a correlation between the concentration of glycated hemoglobin and the voltage using the voltage value obtained in FIG. 12.
  • 14 and 15 are a sensor for measuring glycated hemoglobin according to the embodiment shown in FIG. 1, and an open circuit potential after loading a mixed solution of IFCC glycated hemoglobin sample and 10 mM solution of potassium ferricyanide (III) into the sensor. It is a graph showing the voltage curve with time for each concentration.
  • 16 and 17 are calibration curves showing the correlation between the concentration of glycated hemoglobin and the voltage using the voltage values obtained in FIGS. 14 and 15, respectively.
  • FIG. 18 is a graph showing voltage curves with time at each concentration using an open circuit potential with an electrochemical sensor including a working electrode and a reference electrode (carbon paste ⁇ Ag / AgCl) of the comparative example.
  • FIG. 19 is a graph illustrating voltage values for respective concentrations of 60 seconds in FIG. 18.
  • FIG. 19 is a graph illustrating voltage values for respective concentrations of 60 seconds in FIG. 18.
  • FIG. 20 is a mixed solution of IFCC glycated hemoglobin sample and 10 mM solution of potassium ferricyanide (III) using BSA and boronic acid without a modified working electrode (CNT paste) and reference electrode (Ag / AgCl). After loading the sensor into the sensor, the graph shows the voltage curve with time for each concentration using the open circuit potential.
  • the terms “comprises” or “having” are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
  • the present invention relates to an electrochemical sensor capable of quickly measuring hemoglobin and glycated hemoglobin in trace amounts of samples by measuring the concentration of hemoglobin and glycated hemoglobin using the potential difference between the working electrode and the reference electrode.
  • sample in the present invention means an analyte comprising hemoglobin and glycated hemoglobin, whole blood, blood cells, serum, plasma, bone marrow fluid, sweat, urine, tears, saliva, skin isolated from mammals, preferably humans It includes all biological samples, such as mucous membranes, hair, and may be, for example, blood.
  • the biosensor according to the present invention can be applied to blood glucose measurement by measuring glycated hemoglobin concentration using blood as a sample.
  • Single-Wall Carbon Nano-Tubes is a material having excellent electrical, chemical, thermal, and mechanical properties
  • the working electrode is made of a single-walled carbon nanotube layer.
  • the single-walled carbon nanotube layer of the working electrode has both an electronic structure that responds to bonding of hemoglobin or glycated hemoglobin in the sample, and a semiconductor having a change in Fermi level and a metallicity that transfers a potential value.
  • the single-walled carbon nanotube layer of the indicator electrode has a function of responding to hemoglobin or glycated hemoglobin of the sample and a function of transferring a potential value that varies according to the response by the combination of hemoglobin or glycated hemoglobin to the measurement unit.
  • the hemoglobin or glycated hemoglobin sensitive function and the potential value transfer function can be simultaneously performed by one single-walled carbon nanotube layer, thereby forming a separate member for transferring the potential value between the hemoglobin or glycated hemoglobin sensitive material and the measurement unit.
  • the step of eliminating the process may be omitted, thereby reducing the manufacturing process cost of the hemoglobin or glycated hemoglobin measuring sensor.
  • a reference electrode formed spaced apart from the working electrode on the substrate
  • an electrochemical sensor comprising a; measuring unit for measuring the potential difference between the working electrode and the reference electrode.
  • the electrochemical sensor according to an embodiment of the present invention can measure the concentration of hemoglobin contained in the sample by the potentiometric method of the oxidation-reduction reaction of hemoglobin contained in the sample without supplying voltage or current from the outside.
  • the reversible oxidation of the Fe 2 + and is described later in the redox reactants include groups hem (HEME) of hemoglobin, since the potential difference between the working electrode and the reference electrode caused by the reduction of the hemoglobin in the sample
  • the voltage may be measured, and the concentration of hemoglobin may be measured using the voltage value thereof, and the concentration of hemoglobin may be predicted according to the voltage.
  • the hemoglobin measuring electrochemical sensor according to an embodiment of the present invention, it can be used to measure the hemoglobin level, a basic test of blood, and also due to hemoglobin deficiency diseases, such as anemia It can be widely used to diagnose diseases.
  • the hemoglobin measuring electrochemical sensor can quickly measure hemoglobin in a trace amount of sample by measuring the concentration of hemoglobin using a potential difference.
  • FIG. 1 is a block diagram showing an electrochemical sensor for hemoglobin measurement according to an embodiment of the present invention.
  • the electrochemical sensor for measuring hemoglobin according to the present invention will be described in detail with reference to FIG. 1.
  • the hemoglobin measuring electrochemical sensor 100 includes a substrate 110, a working electrode 120, a reference electrode 130, a measuring unit 140, and a spacer 150. .
  • the substrate 110 may be a substrate such as PET, glass (glass).
  • the working electrode 120 is made of a carbon component, which may be patterned into a shape designed by a photolithography process and an oxygen plasma etching process using a photosensitive agent on a substrate on which the carbon component 121a is deposited in a thin film form. .
  • the reference electrode 130 may have a reference potential value which is not substantially changed by the hemoglobin concentration of the sample. More specifically, the reference electrode 130 may be formed of an electrode having a known potential, for example, an Ag / AgCl electrode or a carbon paste electrode, and at this time, a reference potential formed on the reference electrode 130. The value is transmitted to the measuring unit 140.
  • the working electrode 120 is a carbon nanotube paste (carbon nanotube paste), single-walled carbon nanotube (SWCNT, single-walled carbon nanotube), multi-walled carbon nanotube (MWCNT) and It may be made of one or more selected from the group consisting of pin (graphene).
  • the working electrode 120 of the hemoglobin measuring electrochemical sensor 100 may be formed of a single-walled carbon nanotube layer.
  • the working electrode 120 may include a single-walled carbon nanotube layer in which the potential value is varied according to the concentration of hemoglobin of the sample in response to the hemoglobin of the sample.
  • single-wall carbon nanotubes are materials having excellent electrical, chemical, thermal, and mechanical properties
  • the single-walled carbon nanotube layers of the working electrode 120 may be formed of a sample.
  • both the electronic structure and the Fermi level vary in semiconductivity and metallicity that delivers potential values.
  • the working electrode 120 may simultaneously have a function of sensing with hemoglobin of a sample and a function of transferring a potential value that varies according to the hemoglobin response to the measuring unit 140.
  • the working electrode 120 is made of a single-walled carbon nanotube layer, the hemoglobin sensitive function and the potential value transfer function can be simultaneously performed, and thus a separate value for transferring the potential value between the hemoglobin sensitive material and the measuring unit 140 is provided.
  • the process of forming the member may be omitted, and thus the manufacturing process cost of the hemoglobin measuring electrochemical sensor 100 may be reduced.
  • the carbon nanotube layer is less affected by the potential measurement caused by the interfering ions, it is possible to increase the measurement reliability of hemoglobin in the sample.
  • the electrochemical sensor 100 for hemoglobin measurement is the working electrode 120 formed by the reversible redox of Fe 2 + contained in the ham (HEME) group of hemoglobin (HEME) and can measure the hemoglobin concentration by a potential difference between the reference electrode 130, specifically, a Fe 2 + and reversible oxidation with the mixed Fe 3 + in the electron transfer mediator include groups ham (HEME) of hemoglobin, the reduction reaction The potential difference occurs between the two electrodes, so the hemoglobin concentration can be measured.
  • the oxidizing and reducing material may be used as long as it causes a redox reaction with hemoglobin as an electron transfer medium.
  • ferricyanic acid ferricyanic acid
  • ferrocene ferrocene
  • ferrocene derivatives quinones (quinones), quinone derivatives
  • organic conducting salt viologen
  • hexaamine ruthenium (III) Hexaammineruthenium (III) chloride dimethylferrocene (DMF)
  • ferricinium ferricinium
  • ferocene monocarboxylic acid FCOOH
  • the whole blood sample containing hemoglobin is dissolved and mixed in an electron transfer medium and a buffer solution, and the mixed solution is introduced into the hemoglobin measuring electrochemical sensor 100 according to an embodiment of the present invention.
  • the redox potential is generated even without supply of voltage or current.
  • the working electrode 120 and the reference electrode 130 are respectively connected to the measuring unit (voltmeter, 140) to measure the voltage generated between the electrodes. Therefore, the hemoglobin concentration in a sample can be calculated based on the voltage measured by the measuring part (voltmeter 140).
  • the buffer may be used without limitation as long as it does not react with the reaction vessel, the sample or the electrode while maintaining the pH 4 to pH 8 after the addition of the sample.
  • the working electrode 120 may be formed of a sensitive part 122 and a connection part 123. More specifically, the sensing unit 122 is formed to be in contact with the sample on the substrate 110, and the potential value may be varied according to the hemoglobin concentration of the sample by directly reacting with the hemoglobin of the sample.
  • connection part 123 is formed to be connected to the sensitive part 122 on the substrate 110, and can transmit a potential value variably formed in accordance with the hemoglobin concentration of the sample in the sensitive part 122 to the measurement part 140. have.
  • the measurement unit 140 may measure the voltage value of the sample according to the potential difference between the working electrode 120 and the reference electrode 130 by the direct potential difference method.
  • the measuring unit 140 may be fixed on the substrate 110, or may be provided outside the substrate 110 and connected to the working electrode 120 and the reference electrode 130 by wires, or the like.
  • the hemoglobin concentration of the sample may be calculated based on the potential difference between the reference electrode 130 and the reference electrode 130.
  • the spacer 150 is located above the working electrode 120 and the reference electrode 130, the opening 151 is formed on one side so that the sample is introduced, by the opening 151, the sample can stay Space can be formed.
  • the spacer 150 may have a shape of "c".
  • cover unit 160 may cover the space of the spacer 150, the hemoglobin measuring electrochemical sensor 100 may be in the form of a strip.
  • 2 (a) to 2 (h) is a view for explaining a method of manufacturing an electrochemical sensor for measuring hemoglobin according to an embodiment of the present invention.
  • a method of manufacturing an electrochemical sensor according to the present invention will be described in detail with reference to FIG. 2.
  • the working electrode 120 may be formed on the substrate 110 on which the carbon component layer 121a is formed.
  • the carbon component film 121a may be a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), or graphene, as described above. It may be made, as a specific embodiment may be made of a single-walled carbon nanotube layer.
  • the carbon component film 121a may be uniformly deposited in a thin film form on the substrate 110 using a vacuum filtration method, and the substrate 110 on which the carbon component film 121a is formed is illustrated in FIG. 2 (b) to 2 (g), the process electrode 120 may be patterned.
  • a photoresist polymer pattern PR is formed on the carbon component layer 121a as a photo-lithography method.
  • the photosensitive polymer pattern PR may be formed such that the working electrode 120 corresponds to the designed pattern of the working electrode 120.
  • the carbon component layer 121 on which the photosensitive polymer pattern PR is formed is subjected to a plasma-type oxygen plasma etching process, so that the carbon component layer patterned on the substrate 110 as shown in FIG. 121).
  • the photosensitive polymer pattern PR remaining on the patterned carbon component layer 121 is removed using a removal solution such as alcohol such as ethanol, as shown in FIG. 2 (d).
  • the working electrode 120 may be formed on the substrate 110.
  • the reference electrode 130 is formed on the substrate 110. More specifically, the reference electrode 130 may be formed at a position spaced apart from the working electrode 120 by a predetermined distance, the mold 133 having a reference electrode shape is formed on the substrate 110, and the Ag is formed in the mold 133. After the injection of the / AgCl paste or carbon paste, the mold 133 may be separated, and the reference electrode 130 may be formed on the substrate 110.
  • a tape 170 is attached on the substrate 110 to prevent damage of the working electrode 120 and the reference electrode 130, and the working electrode 120 is attached.
  • a spacer “150” is attached to form a space between the first electrode 130 and the sensitive portion 122 of the reference electrode 130.
  • cover unit 160 may be attached to the spacer 150.
  • the spacer 150 and the cover 160 may be formed of a mold made of PDMS (Poly (DiMethyl-Siloxane)).
  • a working electrode made of a carbon component on the substrate
  • a reference electrode formed spaced apart from the working electrode on the substrate
  • measuring unit for measuring the potential difference between the working electrode and the reference electrode
  • the working electrode provides an electrochemical sensor to which the compound to which the target material is bound is attached.
  • the electrochemical sensor for measuring glycated hemoglobin can measure the concentration of hemoglobin using a potential difference to quickly measure glycated hemoglobin in a trace amount of sample with high precision.
  • FIG 3 is a view showing a surface diagram of the working electrode of the electrochemical sensor for measuring glycated hemoglobin according to an embodiment of the present invention.
  • an electrochemical sensor is for measuring a voltage for a concentration of glycated hemoglobin in a sample without supplying voltage or current from the outside, and is capable of specific binding to glycated hemoglobin.
  • the redox reaction potential of the working electrode 120 is changed.
  • the electrochemical sensor by preparing the working electrode 120 and the reference electrode 130, the redox reaction potential is changed by the combination of glycated hemoglobin by measuring the voltage after the combination of glycated hemoglobin.
  • the voltage for the corresponding concentration of glycated hemoglobin in the sample can be measured, and the concentration of glycated hemoglobin at the corresponding voltage can be predicted.
  • an electrochemical sensor 100 for measuring glycated hemoglobin may include a substrate 110, a working electrode 120, a reference electrode 130, a measuring unit 140, and a spacer ( 150).
  • the substrate 110 may be a substrate such as PET, glass (glass).
  • the working electrode 120 is made of a carbon component, which may be patterned into a shape designed by a photolithography process and an oxygen plasma etching process using a photosensitive agent on a substrate on which the carbon component 121a is deposited in a thin film form. .
  • the reference electrode 130 may have a reference potential value which is not substantially changed by the hemoglobin concentration of the sample. More specifically, the reference electrode 130 may be formed of an electrode of known potential, for example, an Ag / AgCl electrode or a carbon paste electrode. For example, the reference electrode 130 may be formed of an Ag / AgCl electrode. In this case, the reference potential value formed on the reference electrode 130 is transferred to the measurement unit 140.
  • the working electrode 120 is a carbon nanotube paste (carbon nanotube paste), single-walled carbon nanotube (SWCNT, single-walled carbon nanotube), multi-walled carbon nanotube (MWCNT) and It may be made of one or more selected from the group consisting of pin (graphene).
  • the working electrode 120 of the glycosylated hemoglobin measuring electrochemical sensor 100 may be formed of a single-walled carbon nanotube layer.
  • the working electrode 120 may include a single-walled carbon nanotube layer in which the potential value is varied according to the concentration of hemoglobin of the sample in response to the hemoglobin of the sample.
  • single-wall carbon nanotubes are materials having excellent electrical, chemical, thermal, and mechanical properties
  • the single-walled carbon nanotube layers of the working electrode 120 may be formed of a sample.
  • both the electronic structure and the Fermi level vary in semiconductivity and metallicity that delivers potential values.
  • the working electrode 120 may simultaneously have a function of sensing with hemoglobin of a sample and a function of transferring a potential value that varies according to the hemoglobin response to the measuring unit 140.
  • the working electrode 120 is made of a single-walled carbon nanotube layer, the hemoglobin sensitive function and the potential value transfer function can be simultaneously performed, and thus a separate value for transferring the potential value between the hemoglobin sensitive material and the measuring unit 140 is provided.
  • the process of forming the member may be omitted, and thus the manufacturing process cost of the hemoglobin measuring electrochemical sensor 100 may be reduced.
  • the carbon nanotube layer is less affected by the potential measurement by the interfering ions, it is possible to increase the measurement reliability of glycated hemoglobin in the sample.
  • the working electrode 120 is characterized in that the compound to which the glycosylated hemoglobin is coupled to the target material is attached.
  • the compound combines glycosyl groups of glycated hemoglobin to generate a current, and may include boronic acid functional groups.
  • the boronic acid functional group is attached to the surface of the working electrode 120, the boronic acid functional group may be derived from all boronic acid derivative compounds, for example, may be 3-aminophenylboronic acid (3-Aminophenylboronic acid), but is not limited thereto. It doesn't work.
  • the boronic acid functional group is attached to the surface of the working electrode 120, the boronic acid functional group may be derived from all boronic acid derivative compounds, for example, may be 3-aminophenylboronic acid (3-Aminophenylboronic acid).
  • bovine serum albumin serves to prevent adsorption of other proteins except glycated hemoglobin to the electrode.
  • the amine group of the stabilizer C-terminal and boronic acid derivative compounds can form an amide bond through the reaction of EDC (N- (3-Dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride) with NHS (N-Hydroxysuccinimide).
  • the measurement unit 140 may measure the potential difference between the working electrode 120 and the reference electrode 130 formed by the reversible redox reaction of the boronic acid derivative compound specifically bound to glycated hemoglobin, wherein boron Reversible redox materials for acid derivative compounds include ferricyanic acid, ferrocene, ferrocene derivatives, quinones, quinone derivatives, organic conducting salts, viologens, Hexaamineruthenium (III) chloride, dimethylferrocene (DMF), ferricinium, ferocene monocarboxylic acid (FCOOH), 7,7,8, 8, -tetracyanoquinodimethane (7,7,8,8-tetracyanoquino-dimethane (TCNQ), tetrathiafulvalene (TTF), nickelocene (Nc), N-methylassidinium (N-methyl acidinium; NMA +), tetrathiatetracene (TTT), N-methylphenazinium
  • the whole blood sample including hemoglobin is dissolved and mixed in an electron transfer medium and a buffer solution, and the mixed solution is an electrochemical sensor for measuring glycated hemoglobin according to an embodiment of the present invention.
  • the redox potential is generated without supply of voltage or current.
  • the working electrode 120 and the reference electrode 130 are respectively connected to the measuring unit (voltmeter, 140) to measure the voltage generated between the electrodes. Therefore, the glycosylated hemoglobin concentration in a sample can be calculated based on the voltage measured by the measuring part (voltmeter 140).
  • the buffer may be used without limitation as long as it does not react with the reaction vessel, sample or electrode while maintaining the pH 4 to 8 after the addition of the sample.
  • the working electrode 120 may be formed of a sensitive part 122 and a connection part 123. More specifically, the sensitive unit 122 is formed to be in contact with the sample on the substrate 110, the potential value may vary according to the glycated hemoglobin concentration of the sample in direct response to the glycated hemoglobin of the sample.
  • the connecting part 123 is formed to be connected to the sensitive part 122 on the substrate 110, and transmits a potential value variably formed in accordance with the glycated hemoglobin concentration of the sample in the sensitive part 122 to the measuring part 140. Can be.
  • the measurement unit 140 may measure the voltage value of the sample according to the potential difference between the working electrode 120 and the reference electrode 130 by the direct potential difference method.
  • the measuring unit 140 may be fixed on the substrate 110, or may be provided outside the substrate 110 and connected to the working electrode 120 and the reference electrode 130 by wires, or the like.
  • the glycated hemoglobin concentration of the sample may be calculated based on the potential difference between the reference electrode 130 and the reference electrode 130.
  • the spacer 150 is located above the working electrode 120 and the reference electrode 130, the opening 151 is formed on one side so that the sample is introduced, by the opening 151, the sample can stay Space can be formed.
  • the spacer 150 may have a shape of "c".
  • cover unit 160 may further include a cover portion 160 covering the space of the spacer 150.
  • the glycosylated hemoglobin measuring electrochemical sensor 100 may have a strip shape.
  • 2 (a) to 2 (h) is a view for explaining a method of manufacturing an electrochemical sensor for measuring glycated hemoglobin according to an embodiment of the present invention.
  • a method of manufacturing a saccharification electrochemical sensor according to the present invention will be described in detail with reference to FIG. 2.
  • the working electrode 120 may be formed on the substrate 110 on which the carbon component layer 121a is formed.
  • the carbon component film 121a may be a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), or graphene, as described above. It may be made, as a specific embodiment may be made of a single-walled carbon nanotube layer.
  • the carbon component film 121a may be uniformly deposited in a thin film form on the substrate 110 using a vacuum filtration method, and the substrate 110 on which the carbon component film 121a is formed is illustrated in FIG. Through the process shown in 3 (a) to 3 (d) it can be patterned to the working electrode 120.
  • a substrate on which the carbon component layer 121a shown in FIG. 2 (a) is formed may be used.
  • the photosensitive layer is photosensitive on the carbon component layer 121a as a photo-lithography method.
  • a photoresist polymer pattern PR is formed.
  • the photosensitive polymer pattern PR may be formed such that the working electrode 120 corresponds to the designed pattern of the working electrode 120.
  • the carbon component layer 121 on which the photosensitive polymer pattern PR is formed is subjected to a plasma-type oxygen plasma etching process, so that the carbon component layer patterned on the substrate 110 as shown in FIG. 121).
  • the photosensitive polymer pattern PR remaining on the patterned carbon component layer 121 is removed using a removing solution such as alcohol such as ethanol, and the working electrode 120 is disposed on the substrate 110. ) Can be formed.
  • the step of attaching the compound to the patterned carbon component film is a step of applying a stabilizer to the patterned carbon component film and applying a buffer containing a compound containing a boronic acid derivative to the stabilizer applied to the carbon component film Steps.
  • the compound refers to a boronic acid derivative compound such as 3-aminophenylboronic acid.
  • the boronic acid derivative compound and the additive may be mixed with the buffer solution and applied to the working electrode to which the stabilizer is applied.
  • the additive may be NHS (N-Hydroxysuccinimide) and EDC (N- (3-Dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride), where NHS and EDC are cross-links between the stabilizer and the amine of the boronic acid derivative compound. Used as binder.
  • the reference electrode 130 is formed on the substrate. More specifically, the reference electrode 130 may be formed at a position spaced apart from the working electrode 120 by a predetermined distance, the mold 133 having a reference electrode shape is formed on the substrate 120, and the Ag is formed in the mold 133. After the injection of the / AgCl paste or carbon paste, the mold 133 may be separated, and the reference electrode 130 may be formed on the substrate 110.
  • a tape 170 is attached to the substrate 110 to prevent damage of the working electrode 120 and the reference electrode 130, and the working electrode 120 is attached.
  • a spacer “150” shaped to form a “c” shape is attached to the chamber so as to form a chamber between the electrode 122 and the sensitive portion 122 of the reference electrode 130.
  • cover unit 160 may be attached to the spacer 150.
  • the spacer 150 and the cover unit 160 may be formed of a mold 133 made of PDMS (Poly (DiMethyl-Siloxane)).
  • 4 (a) and 4 (b) are a front view and a cross-sectional view showing an electrochemical sensor according to another embodiment of the present invention.
  • FIG. 4 is related to an electrochemical sensor according to another embodiment of the present invention, a diagram showing an electrochemical sensor for measuring hemoglobin and an electrochemical sensor for measuring glycated hemoglobin on a single substrate.
  • a working electrode 110 and a reference electrode 120 for measuring hemoglobin may be installed on one substrate 110, and a working electrode 110 ′ for measuring glycated hemoglobin. And the reference electrode 120 'can be provided.
  • the potential difference with respect to the concentration of hemoglobin and glycated hemoglobin can be measured.
  • PET polyethylene terephtalate
  • SWCNTs single-wall carbon nano-tubes
  • the AZ P4620 porest and AZ 400K (1: 4) were purchased from Clarivant Corporation, and Ag / AgCl paste was purchased from Gwent group. Purchased.
  • the laminating film (100 ⁇ m) was purchased from HandsKorea and used.
  • Example 1-2 Manufacture of Electrochemical Sensor for Hemoglobin Measurement
  • a photoresist polymer pattern is formed on the single-walled carbon nanotube thin film layer by photo-lithography. Formed.
  • the substrate on which the single-walled carbon nanotubes were deposited was soft baked and then lithography was performed by irradiating UV (Osram) at 365 nm. And it was developed for 25 minutes using AZ 400K (Clarivant coporation) which is a photoresist developer.
  • the photosensitive polymer pattern PR was formed to correspond to the shape of the working electrode.
  • an oxygen plasma etching process using a capacitively-coupled plasma method (O 2 -plasma machine, 150 watts, 450 seconds, 120 mTorr) is performed on the single-walled carbon nanotube thin film layer on which the photosensitive polymer pattern PR is formed.
  • a patterned single-walled carbon nanotube layer was formed on the substrate.
  • the photosensitive polymer pattern (PR) remaining on the patterned single-walled carbon nanotube layer was removed using ethanol and washed with DI water.
  • a reference electrode was formed on the substrate. More specifically, after forming a mold using a tape so as to correspond to the shape of the reference electrode at a position spaced apart from the working electrode by a predetermined distance, Ag / AgCl paste (GWENT Group) is applied thereon and dried in an oven to remove the mold. A reference electrode was prepared.
  • Ag / AgCl paste GWENT Group
  • the working electrode and the reference electrode were connected to the measuring device, which was electrically connected by applying a silver paste on the substrate.
  • Hemoglobin measuring electrochemical sensor was prepared by adhering the size of the letter “c” laminating film (HandsKorea) and forming a cover with a PET film thereon to form a space between the electrode and the cover of the sample contacting part.
  • Example 1-3 Current measurement of hemoglobin using hemoglobin measurement electrochemical sensor
  • Example 1-3-1 Preparation of reaction reagents and measuring instruments (concentrations of 0.5 to 5.0 g / dL)
  • potassium ferricyanide (III) solution 100 mM potassium ferricyanide solution was added to 10 mM using 1 ⁇ PBS buffer. Diluted.
  • Hemoglobin was used as a lyophilized crystal form, and PBS 1X, which had been degassed for 1 hour, was used as a solvent. More specifically, the hemoglobin and PBS 1X was mixed so that the hemoglobin is 5g / dl and stirred for 1 hour at 65rpm.
  • 5 g / dL of hemoglobin prepared was 0.5 g / dL, 1.0 g / dL, 1.5 g / dL, 2.0 g / dL, 2.5 g / dL, 3.0 g / dL, 3.5 g / dL, 4.0 using PBS 1 ⁇ , respectively.
  • a potassium ferricyanide (III) solution diluted with 10 mM and a hemoglobin solution at each concentration were mixed just before the experiment, and 10 ⁇ l of the 10 mM potassium ferricyanide solution and a hemoglobin solution at a concentration to be tested were tested. 10 ⁇ l was pipetted mildly for 20 seconds to ensure uniform mixing.
  • the measuring device for measuring the concentration of hemoglobin was performed using a model of CHI (CH Instruments Inc., USA), which is an electrochemical analyzer, and was prepared in the Examples. Potassium Ferricyanide (III) solution Hemoglobin solution by concentration and was used by mixing just before the experiment.
  • CHI CH Instruments Inc., USA
  • Potassium Ferricyanide (III) solution Hemoglobin solution by concentration and was used by mixing just before the experiment.
  • the mixed solution was loaded by 10 ⁇ l per electrode per experiment, and the voltage was measured using an open circuit potential technique, which is potentiometry.
  • the experiment was carried out by reusing one electrode for each experiment.
  • FIG. 5 is a graph showing voltage curves with time for each concentration using an open circuit potential as a sensor for measuring hemoglobin according to the embodiment shown in FIG. 1.
  • a mixture of a 10 mM solution of potassium ferricyanide (III) and a hemoglobin solution of each concentration is loaded into a hemoglobin measuring sensor manufactured in an embodiment of the present invention, and then, between the working electrode and the reference electrode. It is a graph of the measured voltage value for each concentration by performing the open circuit potential.
  • FIG. 6 is a calibration curve showing a correlation between hemoglobin concentration and voltage using the voltage values obtained in FIG. 5.
  • the repeatability was tested to determine whether the hemoglobin measuring electrochemical sensor manufactured in the embodiment of the present invention functions normally.
  • FIG. 7 is a graph showing a voltage curve when hemoglobin of the same concentration is measured twice using an open circuit potential technique with one working electrode and a reference electrode (SWCNT ⁇ Ag / AgCl).
  • Table 1 shows the voltage obtained at 60 seconds when one working electrode and the reference electrode (SWCNT ⁇ Ag / AgCl) were repeatedly measured five times using the open circuit potential technique of the same concentration of hemoglobin.
  • Table shows the mean, standard deviation, and relative standard deviation (RSD) values for.
  • Table 1 shows the five voltage values obtained when five concentrations of 2.5 g / dL and 4.0 g / dL were measured with the same electrode using the open circuit potential technique.
  • the table shows the standard deviation and RSD values numerically.
  • the hemoglobin measuring electrochemical sensor according to an embodiment of the present invention has good repeatability.
  • Table 2 and Table 4 are 1.0 g / dL, 2.0 g / dL, for each electrode by using each electrode 1, 2, 3 including the working electrode and the reference electrode (SWCNT ⁇ Ag / AgCl), The table which shows the voltage value in 60 second by measuring the density
  • Table 5 is a table showing the average and standard deviation of the voltage values at 1.0 g / dL, 2.0 g / dL, 3.0 g / dL obtained from each of the electrodes 1, 2, 3 and RSD values.
  • V Average (V) Standard Deviation RSD (%) 1.0 g / dL 0.255933 0.002178 0.851 2.0 g / dL 0.244867 0.003754 1.533 3.0 g / dL 0.236833 0.004614 1.948
  • Table 5 shows a low standard deviation and a low RSD value, which can be seen that the hemoglobin measuring electrochemical sensor according to an embodiment of the present invention has good reproducibility.
  • Example 1-4-1 Preparation of reaction reagents and measuring instruments (concentrations of 10.0 to 20.0 g / dL)
  • Hemoglobin solution and potassium ferricyanide (III) solution were prepared in the same manner as in Example 1-1.
  • hemoglobin used a standard IFCC (International Federation of Clinical Chemistry) sample derived from humans.
  • IFCC sample hemoglobin at 20.0 g / dL was diluted to 10.0 g / dL, 12.0 g / dL, 14.0 g / dL, 16.0 g / dL, and 18.0 g / dL using PBS 1X, respectively, and the dilution was mild for 1 minute.
  • the pipette was mixed uniformly.
  • a potassium ferricyanide (III) solution diluted with 50 mM and a hemoglobin solution for each concentration were mixed just before the experiment, and 10 ⁇ l of the 50 mM potassium ferricyanide solution and a hemoglobin solution at a concentration to be tested were tested. 10 ⁇ l was pipetted mildly for 20 seconds to ensure uniform mixing.
  • FIG. 8 is a graph showing voltage curves with time for each concentration of hemoglobin using the potential of the open circuit as the sensor for measuring hemoglobin according to the embodiment shown in FIG. 1.
  • a mixture of a 50 mM solution of potassium ferricyanide (III) and a hemoglobin solution of each concentration is loaded into a hemoglobin measuring sensor manufactured in an embodiment of the present invention, and then, between the working electrode and the reference electrode. It is a graph of the measured voltage value for each concentration by performing the open circuit potential.
  • the hemoglobin sensor according to the embodiment can operate normally in artificial blood.
  • FIG. 9 is a calibration curve showing a correlation between hemoglobin concentration and voltage using the voltage values obtained in FIG. 8.
  • Carbon paste (carbon paste, WONIL coporation) was uniformly deposited on a 2 ⁇ 2 cm 2 sized substrate to prepare an electrochemical sensor including a working electrode and a reference electrode (carbon paste ⁇ Ag / AgCl).
  • the characteristics of the electrochemical sensor were evaluated using an electrochemical sensor including a working electrode and a reference electrode (carbon paste ⁇ Ag / AgCl).
  • 10 and 11 are graphs showing voltage curves with time at each concentration using an open circuit potential using an electrochemical sensor including a working electrode and a reference electrode (carbon paste ⁇ Ag / AgCl) of the comparative example.
  • the electrochemical sensor including (carbon paste ⁇ Ag / AgCl) did not have good repeatability.
  • Single-wall carbon nanotubes (SWCNTs) dispersions were purchased from TOP NANOSYS and carbon nanotube pastes were purchased from WONIL.
  • Potassium ferricyanide III (99%), bovine serum albumin (BSA), N-hydroxysuccinimide (NHS, N-Hydroxysuccinimide), N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride (EDC, N- (3-Dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride) and 3-aminophenylboronic acid monohydrate were purchased from Sigma-Aldrich. .
  • HbA1c glycated hemoglobin
  • Hb human hemoglobin
  • the AZ P4620 photoresist and AZ 400K (1: 4) were purchased from Clarivant Corporation, and the Ag / AgCl paste was purchased from the Gwent group. It was.
  • the laminating film (100 ⁇ m) was purchased and used in HandsKorea, all of the aqueous solution was prepared using DI water (deionized water).
  • a single-wall carbon nano-tubes (SWCNTs) thin film layer was formed on a 2 ⁇ 2 cm 2 PET (poly (Ethylene Terephtalate)) substrate. More specifically, the single-walled carbon nanotube thin film layer was uniformly deposited on the PET substrate by a vacuum filtration method.
  • a photoresist layer of about 12 m was formed by spin coating a photoresist (AZ P4620) on the single-walled carbon nanotube thin film layer, and exposing the photoresist layer to UV (about 365 nm) using a photomask. After developing for 25 minutes using a developer (AZ 400K), a photoresist pattern (PR) was formed.
  • a photoresist pattern PR
  • the photosensitive polymer pattern PR was formed to correspond to the designed pattern of the single-walled carbon nanotube layer of the working electrode.
  • an oxygen plasma etching process using a capacitively-coupled plasma method (O 2 -plasma machine, 150 watts, 450 seconds, 120 mTorr) is performed on the single-walled carbon nanotube thin film layer on which the photosensitive polymer pattern PR is formed.
  • a patterned single-walled carbon nanotube layer was formed on the substrate.
  • the photosensitive polymer pattern (PR) remaining on the patterned single-walled carbon nanotube layer was removed using ethanol and washed with DI water.
  • a reference electrode was formed on the substrate. More specifically, after forming a mold using a tape so as to correspond to the shape of the reference electrode at a position spaced apart from the working electrode by a predetermined distance, Ag / AgCl paste (GWENT Group) is applied thereon and dried in an oven to remove the mold. A reference electrode was prepared.
  • Ag / AgCl paste GWENT Group
  • the working electrode and the reference electrode were connected to the measuring device, which was electrically connected by applying a silver paste on the substrate.
  • the middle part of the prepared electrode was attached to the tape of 1cm ⁇ 0.27cm horizontally and vertically to prevent electrode damage by laminating.
  • BSA bovine serum albumin
  • NHS N-hydroxysuccinimide
  • EDC N- (3-Dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride
  • 3-aminophenylboronic acid monohydrate The PBS solution containing (3-Aminophenylboronic acid monohydrate) was treated for 4 hours, and then washed with DI water and dried to prepare a CNT working electrode modified with boronic acid.
  • the "c" shaped laminating film (HandsKorea) of each of the outer horizontal, vertical 1.5 cm x 1 cm, the inner horizontal and vertical length 1 cm x 0.8 cm is adhered to each other to form a space between the electrode and the cover where the sample touches. Formed.
  • silver paste was applied to the junction of the SWCNT electrode in contact with the electrochemical analyzer, and a cover was made of PET film on it to form a space between the electrode and the cover of the contact area of the sample to measure the glycated hemoglobin.
  • a chemical sensor was prepared.
  • potassium ferricyanide (III) solution 100 mM potassium ferricyanide solution was added to 10 mM using 1 ⁇ PBS buffer. Diluted.
  • a glycated hemoglobin (HbA1c (> 96%)) sample was mixed with 5 g / dL hemoglobin solution and 1 ⁇ PBS solution, total 1 g / dL and 0%, 2%, 4%, 6 Samples with glycated hemoglobin concentrations of 10% and 10% were made.
  • samples of glycated hemoglobin (HbA1c) solutions of IFCC standard samples were 4.96%, 7.15%, and 9.40%, respectively, and total Hb concentrations were 13.78 g / dL, 13.21 g / dL, and 14.47 g / dL.
  • a BSA solution was prepared by adding 3% to 1 ⁇ PBS solution.
  • EDC, NHS, boronic acid solution was prepared in PBS 10X solution at a concentration of 17mM, 15mM, 10mM, respectively.
  • the prepared potassium ferricyanide (III) solution and the glycated hemoglobin solution for each concentration were mixed immediately before the experiment, and 5 ⁇ l of the 10 mM potassium ferricyanide solution and 5 ⁇ l of the glycated hemoglobin solution to be tested for 20 seconds. Mild pipetting to ensure uniform mixing.
  • the measuring device for measuring the concentration of glycated hemoglobin was carried out using an electrochemical analyzer (CHI 600E (CH Instruments Inc., USA) model.
  • glycated hemoglobin (HbA1c) sample experiment was measured without potassium ferricyanide solution, and each concentration of glycated hemoglobin was loaded into the SWCNT glycated hemoglobin biosensor by 10 ⁇ l, and an open circuit potential (potentiometry) was used. The voltage was measured using a circuit potential technique. The experiment was carried out by reusing one electrode for each experiment.
  • IFCC glycated hemoglobin samples were measured with a 10 mM solution of potassium ferricyanide (III). Meanwhile, IFCC glycated hemoglobin samples and potassium ferricyanide solutions by concentration were mixed just before the experiment. More specifically, each solution was loaded with 5 ⁇ l of electrode per experiment, and the voltage was measured using an open circuit potential technique, which is potentiometry. In addition, the progress of the experiment was carried out using one CNT paste electrode for each measurement.
  • FIG. 12 is a graph showing voltage curves according to time for each concentration using an open circuit potential as a sensor for measuring glycated hemoglobin according to the embodiment shown in FIG. 1.
  • glycated hemoglobin (HbA1c, Leebio) sample test was performed on the SWCNT electrode. After dropping the glycated hemoglobin by concentration of 10 ⁇ l, the open circuit potential was performed for the voltage value flowing between the working electrode and the reference electrode. The results are shown in FIG. 3.
  • the measurement of this data was made by reusing one electrode.
  • FIG. 13 is a calibration curve illustrating a correlation between the concentration of glycated hemoglobin and the voltage using the voltage value obtained in FIG. 12.
  • FIG. 13 is a calibration curve showing the correlation with the concentration by sampling the voltage value at 60 seconds of FIG. 12.
  • the R 2 value of 0.9827 indicates that a linear relationship between the concentration of glycated hemoglobin and the voltage is apparent.
  • 14 and 15 are a sensor for measuring glycated hemoglobin according to the embodiment shown in FIG. 1, and an open circuit potential after loading a mixed solution of IFCC glycated hemoglobin sample and 10 mM solution of potassium ferricyanide (III) into the sensor. It is a graph showing the voltage curve with time for each concentration.
  • the progress of the IFCC glycated hemoglobin sample experiment was mixed by first loading 5 ⁇ l of glycated hemoglobin solution onto the electrode and then loading 5 ⁇ l of potassium ferricyanide solution. Thereafter, the electrode was connected to an electrochemical analyzer, and the voltage value of each concentration was measured using an open circuit potential.
  • 16 and 17 are calibration curves showing the correlation between the concentration of glycated hemoglobin and the voltage using the voltage values obtained in FIGS. 14 and 15, respectively.
  • the voltage value increases as the concentration increases.
  • FIGS. 16 and 17 are calibration curves showing the correlation with the concentration by sampling the voltage values at 60 seconds obtained in FIGS. 14 and 15, respectively.
  • the R 2 values were 0.980 and 0.999, respectively, indicating that the linear relationship between the glycated hemoglobin concentration and the voltage was apparent.
  • Table 6 is a voltage obtained by measuring the glycated hemoglobin concentration of 0.602g / dL, 0.929g / dL, 1.288g / dL, 1.713g / dL three times using an electrochemical sensor according to an embodiment of the present invention The mean, standard deviation and RSD are shown.
  • the electrochemical sensor of the present invention has high reproducibility as a glycated hemoglobin measuring sensor.
  • Carbon paste (carbon paste, WONIL coporation) was uniformly deposited on a 2 ⁇ 2 cm 2 sized substrate to prepare an electrochemical sensor including a working electrode and a reference electrode (carbon paste ⁇ Ag / AgCl).
  • the characteristics of the electrochemical sensor were evaluated using an electrochemical sensor including a working electrode and a reference electrode (carbon paste ⁇ Ag / AgCl).
  • FIG. 10 is a graph showing voltage curves with time for each glycated hemoglobin concentration using an open circuit potential using an electrochemical sensor including a working electrode and a reference electrode (carbon paste ⁇ Ag / AgCl) of the comparative example.
  • FIG. 11 is a graph illustrating voltage values for respective concentrations of 60 seconds in FIG. 10.
  • the graph 12 is a mixed solution of a IFCC glycated hemoglobin sample and a 10 mM solution of potassium ferricyanide (III) using a working electrode (CNT paste) and a reference electrode (Ag / AgCl) that do not modify BSA and boronic acid in a comparative example.
  • the graph shows the voltage curve with time for each concentration using the open circuit potential.
  • FIG. 12 is a graph showing a voltage curve when IFCC glycated hemoglobin was measured using an open circuit potential using a CNT paste working electrode and an Ag / AgCl electrode.
  • the CNT paste electrode which was not treated at all showed no tendency, but rather a decrease in voltage as the total Hb concentration was increased. there was.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Ecology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

본 발명은 헤모글로빈 또는 당화 헤모글로빈을 측정할 수 있는 전기화학센서 및 그 제조방법에 관한 것이다. 본 발명의 일 실시예에 따른 헤모글로빈 또는 당화 헤모글로빈을 측정할 수 있는 전기화학센서를 이용하여 헤모글로빈 또는 당화 헤모글로빈의 농도에 대한 전위차를 측정할 수 있다. 아울러, 전기화학센서의 전위차를 이용하여 헤모글로빈 또는 당화 헤모글로빈의 농도를 측정하여 미량의 시료 중의 헤모글로빈을 높은 정밀도로 신속하게 측정할 수 있다.

Description

전기화학센서 및 그 제조방법
본 발명은 헤모글로빈 또는 당화 헤모글로빈을 측정할 수 있는 전기화학센서 및 그 제조방법에 관한 것이다.
당뇨병은 체내에 흡수된 포도당을 제대로 사용하지 못하는 부적절한 탄수화물 대사로 인하여 발생하며, 혈액 내에 과다한 혈당을 가지게 되어 다양한 합병증을 유발할 수 있는 질환이다. 이는 크게 세가지로 분류되며, 제1형 당뇨병은 인슐린 의존성 당뇨병으로, 이자 세포의 자가면역반응에 의하여 인슐린을 합성하거나 분비하는 기능을 상실하는 타입이라 할 수 있다. 다음으로 제2형 당뇨병은 인슐린 비의존성 당뇨병으로, 인슐린에 대한 체내 저항성 또는 부적절한 인슐린 분비 등에 의해 발병한다. 그 외에 임신 중 발생할 수 있는 태아 당뇨병이 있다. 그러나, 제1형 당뇨병과 태아 당뇨 형태의 당뇨병은 흔하지 않으며, 당뇨병 중 대부분은 제2형 당뇨병으로서 선진국 당뇨질환 중 90 내지 95%를 차지하고 있는 것으로 알려져 있다.
일반적으로, 당뇨병을 진단하는 방법은 요당측정, 혈중 포도당 측정 등 여러 가지가 있지만, 요당 측정은 신뢰할 수 없으며, 혈중 포도당 측정은 식사, 운동 등 여러 요인의 영향을 받아 부정확하다. 따라서, 당뇨병을 관리하고 치료하기 위해서는, 2개월 간의 평균 혈당치가 중요시 되고 있으므로, 혈액 중 당화 헤모글로빈(HbA1c)을 측정하는 것이 효과적이다.
1986년 미국 당뇨 협회에서 모든 형태의 당뇨병을 관리하기 위해 연간 2회씩 당화 헤모글로빈 측정을 제안함으로써 비교적 안정한 지표인 당화 헤모글로빈의 양을 당뇨병 관리지표로 사용하기 시작하였고, 1993년 DCCT(Direct Control and Complication Trial, 당뇨조절과 합병증 연구)에서 당화 헤모글로빈의 농도와 당뇨합병증 관계를 보고하면서 본격적으로 사용하기 시작하였다.
이와 관련하여, 혈액 내의 당화 헤모글로빈을 측정하기 위한 다양한 측정법이 개발되어 왔다. 현재 상업적으로 응용되고 있는 방법으로는 이온교환 크로마토그래피법, 친화성 크로마토그래피법, 전기영동법, 복합착색법 등이 있다. 이러한 방법들은 사용법이 어렵고 복잡하여 숙련된 기술을 요구한다. 한편 일회성 임상 분석시스템의 기술개발 동향을 살펴보면, 원격, 재택 또는 현장검사를 위한 장비로 매우 유용하고 다양한 정량방법이 제시되고 있으며, 측정방법으로는 육안판독법, 광학판독법, 전기화학측정법 등이 알려져 있다.
구체적으로, 이러한 혈당측정방법으로서 당화 헤모글로빈에 특이적으로 반응하는 면역항체를 고정시킨 패드를 마련하고 시료가 상기 항체를 고정시킨 패드로 전개하도록 한 후 반사광의 강도로 산출하는 방법이 US 5,541,117에 개시되어 있으나, 비싼 항체를 사용해야 하고 다공성 패드의 불균일성에 의해 일정한 품질의 센서를 생산하는 것이 어렵다는 문제점이 있다.
또한, US 5,242,842에는 보론산 유도체와 당화 헤모글로빈을 결합시킨 후 함께 침전시키거나 분리한 후 분광학적 방법을 사용하여 측정하는 방법이 개시되어 있으나 당화 헤모글로빈과 결합하지 않은 보론산 유도체를 세척하는 과정이 필요하고 시료의 양을 정확하게 맞추어야 옳은 결과를 얻을 수 있어 측정이 까다롭다는 문제점이 있다.
아울러, US 6,162,645와 EP 0455225B1 및 US 6,174,734에는 면역항체를 고정한 고체상을 사용하여 시료 중의 단백질을 분리한 후 표식자 화합물을 사용하여 당화 헤모글로빈의 상대적 양을 결정하는 방법이 제시되어 있으나, 이러한 종래의 전기화학적 당화 헤모글로빈 결정방법들은 당화 헤모글로빈 및 당화 헤모글로빈-표식자들을 전극 표면에 경쟁적으로 모이게 한 후 표식자와 전기화학적반응을 일으키는 기질을 주입하여 신호의 크기를 결정하는 것으로 당화 헤모글로빈의 농도측정이 복잡하고 반복측정에서 재현성을 확보하기 어렵다는 문제점이 있다.
따라서, 표식자 없이 당화 헤모글로빈을 용이하게 측정할 수 있으며, 반복측정에서 재현성을 확보할 수 있는 당화 헤모글로빈 측정용 전기화학센서가 필요한 실정이다.
한편, 전기화학적 바이오센서는 그 간단성, 민감도, 선택도 및 경제성 때문에 질병의 진단, 음식의 분석, 환경의 관찰 및 분석의 분야에서 우수한 분석 기술로 발전되어 왔다. 또한, 다른 바이오센서에 비해서 그 성능의 전하 없이도 소형화를 할 수 있다는 장점이 있다. 새로운 바이오센서의 플랫폼과 전략을 이용하여 전기화학적 바이오센서의 민감도와 선택도 등을 더욱 향상시키기 위한 연구가 진행되고 있다. 그 중에서도 탄소나노튜브(CNT, Carbon nanotube)를 이용한 바이오센서에 대한 관심이 높아지고 있다.
그러나, 상기 탄소나노튜브를 이용한 전기화학적 센서는 종래의 FET형 센서에 비해 고감도의 감지가 가능하므로 다양한 분야에서 응용되고 있지만, 각 소자마다 전기적 성질이 달라 균일한 결과를 얻을 수 없는 문제가 있었다.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 고감도 감지가 가능하여 헤모글로빈 또는 당화 헤모글로빈의 농도를 정확하게 측정할 수 있는 전기화학센서를 제공하고자 한다.
상기 목적을 달성하기 위하여,
본 발명의 일 실시예에서,
기판;
기판상에 형성되며, 탄소성분으로 이루어진 작업전극;
기판상에 작업전극과 이격되어 형성되는 기준전극; 및
작업전극과 기준전극간의 전위차를 측정하는 측정부;를 포함하는 전기화학센서를 제공한다.
본 발명의 일 실시예에서,
기판상에 서로 이격되도록 작업전극 및 기준전극을 형성하는 단계;
작업전극 및 기준전극이 형성된 기판에 스페이서를 덮어 작업전극과 기준전극으로 시료가 유입되는 공간을 형성하는 단계; 및
작업전극 및 기준전극과 측정부를 연결하는 단계; 를 포함하는 전기화학센서 제조방법을 제공한다.
본 발명의 일 실시예에 따른 전기화학센서를 이용하여 헤모글로빈 또는 당화 헤모글로빈의 농도를 용이하게 측정할 수 있다.
아울러, 본 발명의 일 실시예에 따른 전기화학센서는 전위차를 이용하여 헤모글로빈 또는 당화 헤모글로빈의 농도를 측정하여 미량의 시료 중의 헤모글로빈 또는 당화 헤모글로빈을 높은 정밀도로 신속하게 측정할 수 있다.
도 1은 본 발명의 일 실시예에 따른 전기화학센서를 도시한 구성도이다.
도 2(a) 내지 도 2(f)는 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서의 제조방법을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서의 작업전극 표면 모식도를 나타낸 도면이다.
도 4(a) 및 도 4(b)는 본 발명의 다른 실시예에 따른 전기화학센서를 도시한 정면도 및 단면도이다.
도 5는 도 1에 도시된 실시예에 따른 헤모글로빈 측정용 센서로 열린회로전위를 이용하여 헤모글로빈의 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
도 6은 도 5에서 얻은 전압값을 이용하여 헤모글로빈의 농도와 전압의 상관관계를 나타낸 검량선(Calibration curve)이다.
도 7은 하나의 작업전극과 기준전극(SWCNT┃Ag/AgCl) 으로 동일한 농도의 헤모글로빈을 열린회로전위(open circuit potential technique)를 이용하여 두 번씩 측정하였을 때의 전압 곡선을 보여주는 그래프이다.
도 8은 도 1에 도시된 실시예에 따른 헤모글로빈 측정용 센서로 열린회로의 전위를 이용하여 헤모글로빈의 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
도 9는 도 8에서 얻은 전압값을 이용하여 헤모글로빈의 농도와 전압의 상관관계를 나타낸 검량선(Calibration curve)이다.
도 10과 도 11은 비교예의 작업전극과 기준전극(carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서로 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
도 12는 도 1에 도시된 실시예에 따른 당화혈색소 측정용 센서로 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
도 13은 도 12에서 얻은 전압값을 이용하여 당화혈색소의 농도와 전압의 상관관계를 나타낸 검량선(Calibration curve)이다.
도 14와 도 15는 도 1에 도시된 실시예에 따른 당화혈색소 측정용 센서로 IFCC 당화혈색소 샘플과 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 10mM 용액의 혼합액을 센서에 로딩한 후 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
도 16과 도 17은 각각 도 14와 도 15에서 얻은 전압값을 이용하여 당화혈색소의 농도와 전압의 상관관계를 나타낸 검량선(Calibration curve)이다.
도 18은 비교예의 작업전극과 기준전극(carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서로 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
도 19는 도 18에서 60초일 때의 전압 값을 농도 별로 나타낸 그래프이다.
도 20은 비교예에서 BSA와 보론산을 수식시키지 않은 작업전극(CNT paste)과 기준전극(Ag/AgCl)을 이용하여 IFCC 당화혈색소 샘플과 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 10mM 용액의 혼합액을 센서에 로딩한 후 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에서, “포함한다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 작업전극과 기준전극의 전위차를 이용하여 헤모글로빈과 당화 헤모글로빈의 농도를 측정하여 미량의 시료 중의 헤모글로빈과 당화 헤모글로빈을 높은 정밀도로 신속하게 측정할 수 있는 전기화학센서에 관한 것이다.
본 발명에서 "시료"란 헤모글로빈과 당화 헤모글로빈을 포함하고 있는 분석대상을 의미하고, 포유류, 바람직하게는 인간으로부터 분리된 전혈, 혈구, 혈청, 혈장, 골수액, 땀, 오줌, 눈물, 침, 피부, 점막, 모발 등의 모든 생체시료를 포함하며, 일 예로 혈액일 수 있다. 본 발명에 따른 바이오센서는 혈액을 시료로 하여 당화 헤모글로빈 농도를 측정함으로써, 혈당측정용도로 적용될 수 있다.
본 발명에서 "단일벽 탄소나노튜브(SWCNTs; Single-Wall Carbon Nano-Tubes)"는 뛰어난 전기적, 화학적, 열적, 기계적 성질을 갖는 물질로서, 작업전극이 단일벽 탄소나노튜브층으로 이루어지며, 상기 작업전극의 단일벽 탄소나노튜브층은 시료의 헤모글로빈 또는 당화 헤모글로빈과의 결합에 따라 감응하는 전자 구조와 페르미 레벨이 변화되는 반도체성과 전위 값을 전달하는 금속성을 동시에 갖는다. 지시 전극의 단일벽 탄소나노튜브층은 시료의 헤모글로빈 또는 당화 헤모글로빈과 감응하는 기능과 헤모글로빈 또는 당화 헤모글로빈의 결합에 의해서 감응에 따라 가변되는 전위 값을 측정부로 전달하는 기능을 동시에 갖는다.
따라서, 하나의 단일벽 탄소나노튜브층에 의하여 헤모글로빈 또는 당화 헤모글로빈 감응 기능과 전위 값 전달 기능을 동시에 수행할 수 있으므로, 헤모글로빈 또는 당화 헤모글로빈 감응 물질과 측정부 간의 전위 값을 전달하는 별도의 부재를 형성하는 공정이 생략되고, 그에 따라 헤모글로빈 또는 당화 헤모글로빈 측정 센서의 제조 공정 비용을 절감할 수 있다.
이하, 본 발명의 헤모글로빈을 측정하기 위한 전기화학센서를 상세히 설명한다.
본 발명은 일 실시예에서,
기판;
기판상에 형성되며, 탄소성분으로 이루어진 작업전극;
기판상에 작업전극과 이격되어 형성되는 기준전극; 및
작업전극과 기준전극간의 전위차를 측정하는 측정부;를 포함하는 전기화학센서를 제공한다.
특히, 본 발명의 일 실시예에 따른 전기화학센서는 외부에서의 전압 또는 전류의 공급없이 시료 내에 포함된 헤모글로빈의 산화-환원반응을 전위차법으로 시료 내에 포함된 헤모글로빈의 농도를 측정할 수 있다.
보다 구체적으로, 헤모글로빈의 헴(HEME) 기에 포함된 Fe2 + 와 후술하게되는 산화환원 반응 물질과의 가역적 산화, 환원 반응에 의해 작업전극과 기준전극 사이에 전위차가 발생하기 때문에 해당 시료의 헤모글로빈의 전압을 측정할 수 있으며, 이에 대한 전압값을 이용하여 헤모글로빈의 농도를 측정할 수 있으며, 해당 전압에 따른 헤모글로빈의 농도를 예측할 수 있다.
한편, 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서를 이용하여 헤모글로빈의 농도를 측정함으로써, 혈액의 기본검사인 헤모글로빈 수치 측정에 활용할 수 있으며, 또한 혈색소 결핍으로 인한 질병, 즉 빈혈과 같은 질병을 진단하는데 널리 이용할 수 있다.
아울러, 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서는 전위차를 이용하여 헤모글로빈의 농도를 측정하여 미량의 시료 중의 헤모글로빈을 높은 정밀도로 신속하게 측정할 수 있다.
도 1은 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서를 도시한 구성도이다. 이하, 본 발명에 따른 헤모글로빈 측정용 전기화학센서를 도 1을 참조하여 상세히 설명한다.
본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서(100)는 기판(110), 작업전극(120), 기준전극(130), 측정부(140) 및 스페이서(150)를 포함하여 구성된다.
일 실시예로, 기판(110)은 PET, 유리(glass) 등의 기판일 수 있다.
한편, 작업전극(120)은 탄소성분으로 이루어지며, 이는 탄소성분(121a)이 박막 형태로 증착된 기판상에 감광제를 이용하여 광식각 공정과 산소 플라즈마 에칭 처리에 의하여 설계된 형상으로 패터닝될 수 있다.
아울러, 기준전극(130)은 실질적으로 시료의 헤모글로빈농도에 의해 변동되지 않는 기준 전위 값을 가질 수 있다. 보다 구체적으로, 상기 기준전극(130)은 전위가 알려져있는 전극, 예를 들어 Ag/AgCl 전극 또는 카본 페이스트(carbon paste) 전극 등으로 이루어질 수 있으며, 이때, 기준전극(130)에 형성되는 기준 전위 값을 측정부(140)로 전달한다.
한편, 상기 작업전극(120)은 탄소나노튜브 페이스트(carbon nanotube paste), 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube) 및 그래핀(graphene)으로 이루어진 군으로부터 선택되는 1종 이상으로 이루어질 수 있다.
본 발명의 실시예에 따른 헤모글로빈 측정용 전기화학센서(100)의 작업전극(120)은 단일벽 탄소나노튜브층으로 이루어질 수 있다. 특히, 작업전극(120)으로 시료의 헤모글로빈과 감응하여 상기 시료의 헤모글로빈의 농도에 따라 전위 값이 가변되는 단일벽 탄소나노튜브층을 포함할 수 있다.
보다 구체적으로, 단일벽 탄소나노튜브층(SWCNT; Single-Wall Carbon Nano Tubes)은 뛰어난 전기적, 화학적, 열적, 기계적 성질을 갖는 물질로서, 작업전극(120)의 단일벽 탄소나노튜브층은 시료의 헤모글로빈과의 감응에 따라 전자 구조와 페르미 레벨이 변화되는 반도체성과 전위 값을 전달하는 금속성을 동시에 갖는다. 작업전극(120) 은 시료의 헤모글로빈과 감응하는 기능과 상기 헤모글로빈 감응에 따라 가변되는 전위 값을 측정부(140)로 전달하는 기능을 동시에 갖을 수 있다.
즉, 작업전극(120)을 단일벽 탄소나노튜브층으로 이루어짐으로써 상기 헤모글로빈 감응 기능과 전위 값 전달 기능을 동시에 수행할 수 있으므로, 헤모글로빈 감응물질과 측정부(140) 간에 전위 값을 전달하는 별도의 부재를 형성하는 공정이 생략되고 그에 따라 헤모글로빈 측정용 전기화학센서(100)의 제조 공정비용을 절감할 수 있다.
또한, 상기 탄소나노튜브층은 방해 이온에 의한 전위 측정 영향을 적게 받기 때문에, 시료의 헤모글로빈의 측정 신뢰도를 높일 수 있다.
아울러, 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서(100)는 헤모글로빈의 햄(HEME) 기에 포함된 Fe2 +의 가역적 산화환원반응(Reversible Redox)에 의해 형성된 상기 작업전극(120)과 기준전극(130) 사이의 전위차를 통해 헤모글로빈 농도를 측정할 수 있으며, 구체적으로, 헤모글로빈의 햄(HEME)기에 포함된 Fe2 +와 전자전달 매개체에 혼합된 Fe3 + 와의 가역적 산화, 환원 반응에 의해 두 전극 사이에 전위차가 발생하기 때문에 헤모글로빈 농도를 측정할 수 있다.
이때, 상기 산화, 환원 반응하는 물질은 전자전달 매개체로 헤모글로빈과 산화환원반응을 일으키는 것이라면 사용가능하다.
보다 구체적으로, 페리시안산(ferricyanic acid), 페로센(ferrocene), 페로센유도체, 퀴논(quinones), 퀴논유도체, 유기전도성염(organic conducting salt), 비오로겐(viologen), 헥사아민루세늄(III)클로라이드(hexaammineruthenium(III) chloride), 디메틸페로센(dimethylferrocene; DMF), 페리시니움(ferricinium), 페로센모노카르복실산(ferocene monocarboxylic acid; FCOOH), 7,7,8,8,-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquino-dimethane; TCNQ), 테트라티아풀발렌(tetrathiafulvalene; TTF), 니켈로센(nickelocene; Nc), N-메틸아시디니움(N-methyl acidinium; NMA+), 테트라티아테트라센(tetrathiatetracene; TTT), N-메틸페나지니움(N-methylphenazinium; NMP+), 히드로퀴논(hydroquinone), 3-디메틸아미노벤조산(3-dimethylaminobenzoic acid; MBTHDMAB), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinone hydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin; AAP), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methoxynaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3',5,5'-tetramethyl benzidine; TMB), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azino-di-[3-ethyl-benzthiazoline sulfonate]), o-디아니지딘(o-dianisidine), o-톨루이딘(otoluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나논(4-aminophenazone), 벤지딘(benzidine)으로 이루어진 군에서 선택되는 1종 이상의 전자전달 매개체일 수 있다.
특정 양태로서, 헤모글로빈을 측정하기 위하여, 전자전달 매개체와 완충액에 헤모글로빈이 포함되는 전혈시료를 용해하여 혼합하고, 상기 혼합액을 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서(100)에 도입하면 전압 또는 전류의 공급 없이도 산화환원전위가 발생한다. 이에 따라, 작업전극(120)과 기준전극(130)을 각각 측정부(전압계, 140)에 접속되어 상기 전극 사이에 발생하는 전압을 측정할 수 있다. 따라서, 측정부(전압계, 140)에서 계측한 전압을 바탕으로 시료 중의 헤모글로빈 농도를 산출할 수 있다.
한편, 완충액은 시료 첨가 후에 pH4 내지 pH8을 유지하면서 반응용기, 시료 또는 전극 등에 반응하지 않는 것이라면 제한없이 사용가능하다.
아울러, 작업전극(120)은 감응부(122)와 연결부(123)로 이루어질 수 있다. 보다 구체적으로, 감응부(122)는 기판(110)상에 시료와 접촉 가능하도록 형성되고, 시료의 헤모글로빈과 직접 감응하여 시료의 헤모글로빈농도에 따라 전위 값이 가변될 수 있다.
연결부(123)는 기판(110)상에 상기 감응부(122)와 연결되도록 형성되며, 상기 감응부(122)에서 시료의 헤모글로빈농도에 따라 가변적으로 형성된 전위 값을 측정부(140)측으로 전달할 수 있다.
측정부(140)는 직접 전위차법에 의하여, 작업전극(120)과 기준전극(130) 간의 전위차에 따라 시료의 전압값을 측정할 수 있다. 상기 측정부(140)는 기판(110)상에 고정될 수 있으며, 또는 기판(110) 외부에 구비되어 작업전극(120)과 기준전극(130)에 전선 등에 의하여 연결될 수 있으며, 상기 작업전극(120)과 기준전극(130) 간의 전위 차에 근거하여 시료의 헤모글로빈 농도를 산출할 수 있다.
한편, 스페이서(150)는 상기 작업전극(120)과 기준전극(130)의 상부에 위치하여 시료가 유입되도록 일측에 개구(151)가 형성되며, 상기 개구(151)에 의해서, 시료가 머물 수 있는 공간이 형성될 수 있다.
일 예로, 상기 스페이서(150)는 "ㄷ"자 형태일 수 있다.
아울러, 상기 스페이서(150)의 공간을 덮는 커버부(160)를 더 포함할 수 있으며, 이러한 헤모글로빈 측정용 전기화학센서(100)는 스트립형태일 수 있다.
본 발명은 일 실시예에서,
기판(110)상에 서로 이격되도록 작업전극(120) 및 기준전극(130)을 형성하는 단계;
작업전극(120) 및 기준전극(130)이 형성된 기판(110)에 스페이서(150)를 덮어 작업전극(120)과 기준전극(130)으로 시료가 유입되는 공간을 형성하는 단계; 및
작업전극(120) 및 기준전극(130)과 측정부(140)를 연결하는 단계; 를 포함하는 헤모글로빈 측정용 전기화학센서 제조방법을 제공한다.
도 2(a) 내지 도 2(h) 는 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서의 제조방법을 설명하기 위한 도면이다. 이하, 본 발명에 따른 전기화학센서의 제조방법을 도 2를 참조하여 상세히 설명한다.
먼저, 탄소성분막(121a)이 형성된 기판(110)상에 작업전극(120)을 형성할 수 있다.
이때, 상기 탄소성분막(121a)은 상술한 바와 같이, 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube) 또는 그래핀(graphene)으로 이루어질 수 있으며, 특정 양태로서 단일벽 탄소나노튜브층으로 이루어질 수 있다.
아울러, 상기 탄소성분막(121a)은 진공 여과법(vacuum filtration method) 을 이용하여 기판(110)위에 박막 형태로 균일하게 증착될 수 있으며, 상기 탄소성분막(121a)이 형성된 기판(110)은 도 2(b) 내지 도 2(g) 에 도시된 과정을 통해 작업전극(120)으로 패텅닝될 수 있다.
도 2(b)를 참조하면, 광식각(photo-lithography) 방식으로서, 상기 탄소성분막(121a) 위에 감광성 고분자(photoresist polymer) 패턴(PR) 이 형성된다. 감광성 고분자 패턴(PR)은 작업전극(120)은 작업전극(120)의 설계된 패턴과 대응하도록 형성될 수 있다.
이어서, 감광성 고분자 패턴(PR) 이 형성된 탄소성분층(121)은 플라즈마 방식의 산소 플라즈마 에칭 처리를 수행함으로써, 도 2(b)에 도시된 바와 같이 기판(110) 상에 패터닝된 탄소성분층(121)을 형성할 수 있다.
도 2(c)를 참조하면, 패터닝된 탄소성분층(121) 위에 남아있는 감광성 고분자 패턴(PR) 을 에탄올과 같은 알코올 등의 제거액을 이용하여 제거하여, 도 2(d)에 도시된 바와 같이 기판(110)상에 작업전극(120)을 형성할 수 있다.
도 2(e) 내지 2(g)를 참조하면, 기판(110)상에 기준전극(130)을 형성한다. 보다 구체적으로, 작업전극(120)과 소정간격 이격되는 위치에 기준전극(130)을 형성할 수 있으며, 기판(110)에 기준전극형상의 몰드(133)를 형성하고, 몰드(133) 내에 Ag/AgCl 페이스트(paste) 또는 카본 페이스트를 주입하여 소성한 후 몰드(133)를 분리하여 기판(110)상에 기준전극(130)을 형성할 수 있다.
다음으로, 도 2(h)를 참조하면, 상기 기판(110) 상에서 상기 작업전극(120)과 기준전극(130)의 손상을 방지하기 위하여 테이프(170)를 부착되고, 상기 작업전극(120)과 기준전극(130)의 감응부(122) 사이에 공간가 형성되도록 "ㄷ"자 형의 스페이서(150)가 부착된다.
그리고, 상기 스페이서(150) 상부에 커버부(160)를 부착할 수 있다.
특정 양태로서, 상기 스페이서(150) 및 커버부(160)는 PDMS(Poly(DiMethyl-Siloxane)) 재질의 몰드로 이루어질 수 있다.
이어서, 작업전극(120)과 기준전극(130) 간의 전위 차에 따라 헤모글로빈농도를 측정하도록 측정부(140)를 연결함으로써, 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서를 제조할 수 있다.
이하, 본 발명의 당화 헤모글로빈을 측정하기 위한 전기화학센서를 상세히 설명한다.
본 발명은 일 실시예에서,
기판;
기판상에 탄소성분으로 이루어진 작업전극;
기판상에 작업전극과 이격되어 형성되는 기준전극; 및
작업전극과 기준전극간의 전위차를 측정하는 측정부;를 포함하며,
상기 작업전극은 표적물질이 결합되는 화합물이 부착되어 있는 전기화학센서를 제공한다.
본 발명의 일 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서를 이용하여 당화 헤모글로빈의 농도를 측정함으로써, 당뇨병과 같은 질병을 진단하는데 널리 이용할 수 있다.
아울러, 본 발명의 일 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서는 전위차를 이용하여 헤모글로빈의 농도를 측정하여 미량의 시료 중의 당화 헤모글로빈을 높은 정밀도로 신속하게 측정할 수 있다.
도 3은 본 발명의 일 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서의 작업전극 표면 모식도를 나타낸 도면이다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 전기화학센서는 외부에서의 전압 또는 전류의 공급 없이 시료 내의 당화 헤모글로빈의 농도에 대한 전압을 측정하기 위한 것으로, 당화 헤모글로빈과 특이적 결합 가능한 화합물이 작업전극에 부착되어 당화 헤모글로빈과 결합 시, 작업전극(120)의 산화환원 반응전위가 바뀌게 된다.
이에 따라, 본 발명의 일 실시예에 따른 전기화학센서는 당화 헤모글로빈의 결합에 의해 산화환원 반응전위가 바뀌는 작업전극(120)과 기준전극(130)을 준비하여 당화 헤모글로빈의 결합 후의 전압을 측정함으로써, 시료 내 당화 헤모글로빈의 해당 농도에 대한 전압을 측정할 수 있으며, 해당 전압에 당화 헤모글로빈의 농도를 예측할 수 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서(100)는 기판(110), 작업전극(120), 기준전극(130), 측정부(140) 및 스페이서(150)를 포함하여 구성된다.
일 실시예로, 기판(110)은 PET, 유리(glass) 등의 기판일 수 있다.
한편, 작업전극(120)은 탄소성분으로 이루어지며, 이는 탄소성분(121a)이 박막 형태로 증착된 기판상에 감광제를 이용하여 광식각 공정과 산소 플라즈마 에칭 처리에 의하여 설계된 형상으로 패터닝될 수 있다.
아울러, 기준전극(130)은 실질적으로 시료의 헤모글로빈농도에 의해 변동되지 않는 기준 전위 값을 가질 수 있다. 보다 구체적으로, 상기 기준전극(130)은 전위가 알려져 있는 전극, 예를 들어 Ag/AgCl 전극 또는 카본 페이스트(carbon paste) 전극 등으로 이루어질 수 있다. 일 예로, 기준전극(130)은 Ag/AgCl 전극으로 이루어질 수 있으며, 이때, 기준전극(130)에 형성되는 기준 전위 값을 측정부(140)로 전달한다.
한편, 상기 작업전극(120)은 탄소나노튜브 페이스트(carbon nanotube paste), 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube) 및 그래핀(graphene)으로 이루어진 군으로부터 선택되는 1종 이상으로 이루어질 수 있다.
본 발명의 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서(100)의 작업전극(120)은 단일벽 탄소나노튜브층으로 이루어질 수 있다. 특히, 작업전극(120)으로 시료의 헤모글로빈과 감응하여 상기 시료의 헤모글로빈의 농도에 따라 전위 값이 가변되는 단일벽 탄소나노튜브층을 포함할 수 있다.
보다 구체적으로, 단일벽 탄소나노튜브층(SWCNT; Single-Wall Carbon Nano Tubes)은 뛰어난 전기적, 화학적, 열적, 기계적 성질을 갖는 물질로서, 작업전극(120)의 단일벽 탄소나노튜브층은 시료의 헤모글로빈과의 감응에 따라 전자 구조와 페르미 레벨이 변화되는 반도체성과 전위 값을 전달하는 금속성을 동시에 갖는다. 작업전극(120) 은 시료의 헤모글로빈과 감응하는 기능과 상기 헤모글로빈 감응에 따라 가변되는 전위 값을 측정부(140)로 전달하는 기능을 동시에 갖을 수 있다.
즉, 작업전극(120)을 단일벽 탄소나노튜브층으로 이루어짐으로써 상기 헤모글로빈 감응 기능과 전위 값 전달 기능을 동시에 수행할 수 있으므로, 헤모글로빈 감응물질과 측정부(140) 간에 전위 값을 전달하는 별도의 부재를 형성하는 공정이 생략되고 그에 따라 헤모글로빈 측정용 전기화학센서(100)의 제조 공정비용을 절감할 수 있다.
또한, 상기 탄소나노튜브층은 방해 이온에 의한 전위 측정 영향을 적게 받기 때문에, 시료의 당화 헤모글로빈의 측정 신뢰도를 높일 수 있다.
아울러, 작업전극(120)은 표적물질인 당화 헤모글로빈이 결합되는 화합물이 부착되는 것을 특징으로 한다.
보다 구체적으로, 상기 화합물은 당화 헤모글로빈의 글리코실기와 결합하여 전류를 발생시키는 것으로, 보론산 작용기를 포함할 수 있다.
보론산 작용기는 작업전극(120) 표면에 부착되며, 보론산 작용기는 모든 보론산 유도체 화합물로부터 유래하는 것일 수 있으며, 일 예로 3-아미노페닐보론산(3-Aminophenylboronic acid) 일 수 있으나, 이에 한정되지 않는다.
보론산 작용기는 작업전극(120) 표면에 부착되며, 보론산 작용기는 모든 보론산 유도체 화합물로부터 유래하는 것일 수 있으며, 일 예로 3-아미노페닐보론산(3-Aminophenylboronic acid)일 수 있다.
보다 구체적으로, 소혈청알부민은 당화혈색소를 제외한 다른 단백질들의 전극으로의 흡착을 방지하는 역할을 한다. 또한 안정제의 C-terminal과 보론산 유도체 화합물의 amine group이 EDC (N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride)와 NHS (N-Hydroxysuccinimide)와의 반응을 통해 아미드 결합을 형성할 수 있다.
한편, 측정부(140)는 당화 헤모글로빈과 특이적 결합되는 보론산 유도체 화합물의 가역적 산화환원반응에 의해서 형성된 작업전극(120)과 기준전극(130) 사이의 전위차를 측정할 수 있으며, 이때, 보론산 유도체 화합물의 가역적 산화환원반응 물질은 페리시안산(ferricyanic acid), 페로센(ferrocene), 페로센유도체, 퀴논(quinones), 퀴논유도체, 유기전도성염(organic conducting salt), 비오로겐(viologen), 헥사아민루세늄(III)클로라이드(hexaammineruthenium(III) chloride), 디메틸페로센(dimethylferrocene; DMF), 페리시니움(ferricinium), 페로센모노카르복실산(ferocene monocarboxylic acid; FCOOH), 7,7,8,8,-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquino-dimethane; TCNQ), 테트라티아풀발렌(tetrathiafulvalene; TTF), 니켈로센(nickelocene; Nc), N-메틸아시디니움(N-methyl acidinium; NMA+), 테트라티아테트라센(tetrathiatetracene; TTT), N-메틸페나지니움(N-methylphenazinium; NMP+), 히드로퀴논(hydroquinone), 3-디메틸아미노벤조산(3-dimethylaminobenzoic acid; MBTHDMAB), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinone hydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin; AAP), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methoxynaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3',5,5'-tetramethyl benzidine; TMB), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azino-di-[3-ethyl-benzthiazoline sulfonate]), o-디아니지딘(o-dianisidine), o-톨루이딘(otoluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나논(4-aminophenazone), 벤지딘(benzidine)으로 이루어진 군에서 선택되는 1종 이상의 전자전달 매개체일 수 있다.
특정 양태로서, 당화 헤모글로빈을 측정하기 위하여, 전자전달 매개체와 완충액에 헤모글로빈이 포함되는 전혈시료를 용해하여 혼합하고, 상기 혼합액을 본 발명의 일 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서(100)에 도입하면 전압 또는 전류의 공급 없이도 산화환원전위가 발생한다. 이에 따라, 작업전극(120)과 기준전극(130)을 각각 측정부(전압계, 140)에 접속되어 상기 전극 사이에 발생하는 전압을 측정할 수 있다. 따라서, 측정부(전압계, 140)에서 계측한 전압을 바탕으로 시료 중의 당화 헤모글로빈 농도를 산출할 수 있다.
한편, 완충액은 시료 첨가 후에 pH 4 내지 8을 유지하면서 반응용기, 시료 또는 전극 등에 반응하지 않는 것이라면 제한없이 사용가능하다.
아울러, 작업전극(120)은 감응부(122)와 연결부(123)로 이루어질 수 있다. 보다 구체적으로, 감응부(122)는 기판(110)상에 시료와 접촉 가능하도록 형성되고, 시료의 당화 헤모글로빈과 직접 감응하여 시료의 당화 헤모글로빈농도에 따라 전위 값이 가변될 수 있다.
연결부(123)는 기판(110)상에 상기 감응부(122)와 연결되도록 형성되며, 상기 감응부(122)에서 시료의 당화 헤모글로빈농도에 따라 가변적으로 형성된 전위 값을 측정부(140)측으로 전달할 수 있다.
측정부(140)는 직접 전위차법에 의하여, 작업전극(120)과 기준전극(130) 간의 전위 차에 따라 시료의 전압값을 측정할 수 있다. 상기 측정부(140)는 기판(110)상에 고정될 수 있으며, 또는 기판(110) 외부에 구비되어 작업전극(120)과 기준전극(130)에 전선 등에 의하여 연결될 수 있으며, 상기 작업전극(120)과 기준전극(130) 간의 전위 차에 근거하여 시료의 당화 헤모글로빈 농도를 산출할 수 있다.
한편, 스페이서(150)는 상기 작업전극(120)과 기준전극(130)의 상부에 위치하여 시료가 유입되도록 일측에 개구(151)가 형성되며, 상기 개구(151)에 의해서, 시료가 머물 수 있는 공간이 형성될 수 있다.
일 예로, 상기 스페이서(150)는 "ㄷ"자 형태일 수 있다.
아울러, 상기 스페이서(150)의 공간을 덮는 커버부(160)를 더 포함할 수 있으며, 이러한 당화 헤모글로빈 측정용 전기화학센서(100)는 스트립형태일 수 있다.
본 발명은 일 실시예에서,
기판(110)상에 서로 이격되도록 작업전극(120) 및 기준전극(130)을 형성하는 단계;
작업전극(120) 및 기준전극(130)이 형성된 기판에 스페이서(140)를 덮어 작업전극(120)과 기준전극(130)으로 시료가 유입되는 공간을 형성하는 단계; 및
작업전극(120) 및 기준전극(130)과 측정부(140)를 연결하는 단계; 를 포함하는 전기화학센서 제조방법을 제공한다.
도 2(a) 내지 도 2(h) 는 본 발명의 일 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서의 제조방법을 설명하기 위한 도면이다. 이하, 본 발명에 따른 당화 전기화학센서의 제조방법을 도 2를 참조하여 상세히 설명한다.
먼저, 탄소성분막(121a)이 형성된 기판(110)상에 작업전극(120)을 형성할 수 있다.
이때, 상기 탄소성분막(121a)은 상술한 바와 같이, 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube) 또는 그래핀(graphene)으로 이루어질 수 있으며, 특정 양태로서 단일벽 탄소나노튜브층으로 이루어질 수 있다.
아울러, 상기 탄소성분막(121a)은 진공 여과법(vacuum filtration method) 을 이용하여 기판(110)위에 박막 형태로 균일하게 증착될 수 있으며, 상기 탄소성분막(121a)이 형성된 기판(110)은 도 3(a) 내지 도 3(d) 에 도시된 과정을 통해 작업전극(120)으로 패텅닝될 수 있다.
도 2(a)에 도시된 탄소성분막(121a) 이 형성된 기판을 이용할 수 있으며, 도 2(b)를 참조하면, 광식각(photo-lithography) 방식으로서, 상기 탄소성분막(121a) 위에 감광성 고분자(photoresist polymer) 패턴(PR) 이 형성된다. 감광성 고분자 패턴(PR)은 작업전극(120)은 작업전극(120)의 설계된 패턴과 대응하도록 형성될 수 있다.
이어서, 감광성 고분자 패턴(PR) 이 형성된 탄소성분층(121)은 플라즈마 방식의 산소 플라즈마 에칭 처리를 수행함으로써, 도 2(c)에 도시된 바와 같이 기판(110) 상에 패터닝된 탄소성분층(121)을 형성할 수 있다.
도 2(d)를 참조하면, 패터닝된 탄소성분층(121) 위에 남아있는 감광성 고분자 패턴(PR) 을 에탄올과 같은 알코올 등의 제거액을 이용하여 제거하여, 기판(110)상에 작업전극(120)을 형성할 수 있다.
다음으로, 도 2(d)의 패터닝된 탄소성분층에 당화 헤모글로빈과 결합되는 화합물을 부착하는 단계를 포함한다.
보다 구체적으로, 패터닝된 탄소성분막에 화합물을 부착하는 단계는 패터닝된 탄소성분막에 안정제를 도포하는 단계 및 탄소성분막에 도포된 안정제에 보론산유도체를 포함하는 화합물을 포함하는 완충액을 도포하는 단계를 포함한다.
한편, 화합물은 3-아미노페닐보론산(3-Aminophenylboronic acid)과 같은 보론산 유도체 화합물을 의미한다.
이때, 완충용액에 보론산 유도체화합물과 첨가제를 혼합하여 안정제가 도포된 작업전극에 도포할 수 있다.
일 예로, 첨가제는 NHS (N-Hydroxysuccinimide)와 EDC (N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride)일 수 있으며, 여기서, NHS와 EDC는 안정제와 보론산 유도체 화합물의 아민을 연결하는 교차 결합제로써 사용되었다.
도 2(e)를 참조하면, 기판상에 기준전극(130)을 형성한다. 보다 구체적으로, 작업전극(120)과 소정간격 이격되는 위치에 기준전극(130)을 형성할 수 있으며, 기판(120)에 기준전극형상의 몰드(133)를 형성하고, 몰드(133) 내에 Ag/AgCl 페이스트(paste) 또는 카본 페이스트를 주입하여 소성한 후 몰드(133)를 분리하여 기판(110)상에 기준전극(130)을 형성할 수 있다.
다음으로, 도 2(f)를 참조하면, 상기 기판(110) 상에서 상기 작업전극(120)과 기준전극(130)의 손상을 방지하기 위하여 테이프(170)를 부착되고, 상기 작업전극(120)과 기준전극(130)의 감응부(122) 사이에 챔버가 형성되도록 "ㄷ"자 형의 스페이서(150)가 부착된다.
그리고, 상기 스페이서(150) 상부에 커버부(160)를 부착할 수 있다.
특정 양태로서, 상기 스페이서(150) 및 커버부(160)는 PDMS(Poly(DiMethyl-Siloxane)) 재질의 몰드(133)로 이루어질 수 있다.
이어서, 작업전극(120)과 기준전극(130) 간의 전위 차에 따라 당화 헤모글로빈농도를 측정하도록 측정부(140)를 연결함으로써, 본 발명의 일 실시예에 따른 당화 헤모글로빈 측정용 전기화학센서를 제조할 수 있다.
도 4(a) 및 도 4(b)는 본 발명의 다른 실시예에 따른 전기화학센서를 도시한 정면도 및 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 전기화학센서에 관한 것으로, 헤모글로빈 측정용 전기화학센서와 당화 헤모글로빈 측정용 전기화학센서를 하나의 기판상에 나타낸 도면이다.
보다 구체적으로, 도 4를 참조하면, 하나의 기판(110)에 헤모글로빈을 측정하기 위한 작업전극(110)과 기준전극(120)을 설치할 수 있으며, 당화 헤모글로빈을 측정하기 위한 작업전극(110')과 기준전극(120')을 설치할 수 있다.
이에 따라, 하나의 전기화학센서를 이용하여, 헤모글로빈과 당화 헤모글로빈의 농도에 대한 전위차를 측정할 수 있다.
이하, 본 발명을 실시예에 의해 보다 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
<실시예>
실시예 1. 헤모글로빈 측정용 전기화학센서의 준비 및 실험방법
실시예 1-1. 물질 및 시약
단일벽 탄소나노튜브 (SWCNTs; Single-Wall Carbon Nano-Tubes)가 도포되어 있는 PET(poly(Ethylene Terephtalate) 기판은 상보에서 구입하였으며, 페리시안화 칼륨(Potassium ferricyanide Ⅲ)과 헤모글로빈(human hemoglobin)은 Sigma-Aldrich에서 구입하였다.
그리고, 20× PBS 완충액(phosphate buffered saline) 바이오세상(biosesang)에서 구입하였으며, 포토레지스트 현상액인 AZ P4620 porest와 AZ 400K(1:4) 는 Clarivant Corporation에서 구입하였으며, Ag/AgCl 페이스트는 Gwent group에서 구입하였다.
또한, 라미네이팅 필름(100㎛)은 HandsKorea에서 구입하여 사용하였다.
한편, 수용액은 모두 DI water(deionized water)를 이용하여 준비하였다.
실시예 1-2. 헤모글로빈 측정용 전기화학센서의 제조
2×2cm2 크기의 단일벽 탄소나노튜브가 균일하게 증착된 기판(상보)을 준비한 후 광식각(photo-lithography)방식으로 상기 단일벽 탄소나노튜브 박막층 위에 감광성 고분자(photoresist polymer) 패턴(PR)을 형성하였다.
보다 구체적으로, 단일벽 탄소나노튜브가 증착된 기판을 소프트베이크(soft baking)한 후 365nm 로 UV(Osram)를 조사하여 리소그래피(lithography)하였다. 그리고 포토레지스트 현상액인 AZ 400K(Clarivant coporation)를 이용하여 25분동안 현상(develop)하였다.
이때, 감광성 고분자 패턴(PR)은 작업전극의 형상과 대응하도록 형성하였다.
이어서, 감광성 고분자 패턴(PR)이 형성된 단일벽 탄소나노튜브 박막층에 축전결합 플라즈마(capacitively-coupled plasma) 방식의 산소 플라즈마 에칭 처리(O2-plasma machine, 150 watt, 450초, 120mTorr)를 수행하여 기판상에 패터닝된 단일벽 탄소나노튜브층을 형성하였다.
그리고, 상기 패터닝된 단일벽 탄소나노튜브층 위에 남아있는 감광성 고분자 패턴(PR)을 에탄올로 이용하여 제거한 후 DI water로 세척하였다.
다음으로, 기판상에 기준전극을 형성하였다. 보다 구체적으로, 작업전극과 소정간격 이격되는 위치에 기준전극의 형상과 대응되도록 테이프를 이용하여 몰드를 만든 후 그 위에 Ag/AgCl 페이스트(GWENT Group)를 도포하고 오븐에 건조한 후 상기 몰드를 제거하여 기준전극을 제조하였다.
그리고, 작업전극과 기준전극은 측정기와 연결하였으며, 이는 기판상에 은 페이스트를 도포하여 전기적으로 연결하였다.
그리고 제조된 전극의 중간 부분은 가로, 세로 1cm×0.27cm의 테이프를 붙여 라미네이팅에 의한 전극 손상을 방지하였고 그 위에 바깥쪽 가로, 세로 지금 1.5cm×1cm, 안쪽 가로, 세로 세로 각각 1cm×0.8cm 크기의 "ㄷ"자 라미네이팅 필름(HandsKorea)을 접착시키고, 그 위에 PET 필름으로 덮개를 만들어 시료가 닿는 부분의 전극과 덮개 사이에 공간을 형성하여 헤모글로빈 측정용 전기화학센서를 제조하였다.
실시예 1-3. 헤모글로빈 측정용 전기화학센서를 이용한 헤모글로빈의 전류측정
실시예 1-3-1. 반응시약 및 측정기구 준비(0.5 내지 5.0g/dL의 농도)
먼저, 20× PBS 완충액(phosphate buffered saline)을 1× PBS 완충액으로 희석하였으며, 이를 탈기(degassing)하여 용매로 준비하였다.
그리고, 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 용액을 5분간 볼텍싱(voltexing)과정과 10분간의 소니케이션(sonication)을 거친후 100mM의 페리시안화 칼륨용액을 1× PBS 완충액을 이용하여 10mM 로 희석하였다.
그리고, 헤모글로빈은(Human hemoglobin)은 동결건조(lyophilization)되어 있는 결정형태를 사용하였으며, 그리고, 1시간동안 탈기(degassing)를 거친 PBS 1X 를 용매로 사용하였다. 보다 구체적으로, 상기 헤모글로빈이 5g/dl가 되도록 상기 헤모글로빈과 PBS 1X 를 혼합하고 65rpm 으로 1시간동안 교반(stirring) 하였다.
제조된 5g/dL의 헤모글로빈은 PBS 1X를 사용하여 각각 0.5g/dL, 1.0g/dL, 1.5g/dL, 2.0g/dL, 2.5g/dL, 3.0g/dL, 3.5g/dL, 4.0g/dL, 4.5g/dL로 희석하였으며, 희석액은 1분간 마일드(mild)하게 피펫팅(pipetting)하여 균일하게 섞일 수 있도록 하였다.
그리고, 10mM 로 희석된 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 용액과 각 농도별 헤모글로빈 용액을 실험 바로 전에 혼합(mixing)하였으며, 상기 10mM 의 페리시안화 칼륨 용액 10㎕와 테스트를 진행할 농도의 헤모글로빈용액 10㎕를 20초간 마일드하게 피펫팅(pipetting)하여 균일하게 섞일 수 있도록 하였다.
한편, 헤모글로빈의 농도 측정을 위한 측정기는 전기화학 분석기(electrochemical analyzer)인 CHI(CH Instruments Inc., USA)모델을 사용하여 진행하였고, 실시예에서 제조한 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ))용액과 농도별 헤모글로빈 용액은 실험 직전에 혼합하여 사용하였다.
특히, 상기 혼합액은 실험 한번당 전극에 10㎕씩 로딩(loading)하였으며, 전위차분석법(potentiometry)인 열린회로전위(open circuit potential) 기술을 이용하여 전압을 측정하였다. 그리고, 실험의 진행은 각 실험별로 하나의 전극을 재사용하여 실시하였다.
1-3-2. 전기화학센서 특성(Characteristics of Boisensor) 평가
도 5는 도 1에 도시된 실시예에 따른 헤모글로빈 측정용 센서로 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
보다 구체적으로, 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 10mM 용액과 각농도의 헤모글로빈 용액을 혼합한 혼합액을 본 발명의 실시예에서 제작한 헤모글로빈 측정용 센서에 로딩한 후 작업전극과 기준전극 사이에 흐르는 전압값을 열린회로 전위를 시행하여 각 농도별로 측정한 그래프이다.
도 5를 참조하면, 헤모글로빈의 농도에 따라 전압값이 변하는 것을 확인할 수 있었으며, 처음 로딩(loading) 후에는 불안정한 신호를 보이지만 40초부터는 안정적인 값을 나타내는 것을 볼 수 있었다.
한편, 농도가 증가함에 따라 전압 값이 떨어지는 경향을 볼 수 있었다.
도 6은 도 5에서 얻은 전압값을 이용하여 헤모글로빈의 농도와 전압의 상관관계를 나타낸 검량선(Calibration curve)이다.
보다 구체적으로, 도 5의 60초에서의 전압값을 샘플링(sampling)하여 농도와의 상관관계를 나타낸 검량선(Calibration curve)이다. R2 값이 0.9956으로 나타낸 것을 보아 이는 헤모글로빈의 농도와 전압 사이에 선형관계가 확실히 나타난다는 것을 알 수 있었다.
1-3-3. 전기화학센서의 반복성 측정
본 발명의 실시예에서 제작한 헤모글로빈 측정용 전기화학센서가 정상적인 기능을 하는지 확인하기 위하여 반복성을 테스트 하였다.
도 7은 하나의 작업전극과 기준전극(SWCNT┃Ag/AgCl) 으로 동일한 농도의 헤모글로빈을 열린회로전위(open circuit potential technique)를 이용하여 두 번씩 측정하였을 때의 전압 곡선을 보여주는 그래프이다.
도 7을 참조하면, 같은 농도의 곡선이 겹쳐서 나타나고 있는 것을 확인할 수 있었고, 이에 따라 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서가 반복성이 좋다는 것을 알 수 있었다.
아울러, 하기의 표 1은 하나의 작업전극과 기준전극(SWCNT┃Ag/AgCl) 으로 동일한 농도의 헤모글로빈을 열린회로전위(open circuit potential technique)를 이용하여 5번 반복측정 하였을 때 60초에서 얻어지는 전압의 평균값과 표준편차 그리고 RSD(relative standard deviation) 값을 나타낸 표이다.
평균(V) 표준편차 RSD(%)
2.5 g/dL 0.2373 0.001502 0.633
4.0 g/dL 0.23028 0.000907 0.394
보다 구체적으로, 표 1은 2.5 g/dL와 4.0 g/dL 두 농도를 같은 전극으로 열린회로전위(open circuit potential technique) 방법으로 다섯번 측정하였을 때의 얻을 수 있는 다섯 개의 전압값과 이에 대한 평균과 표준편차 그리고 RSD 값을 수치로 나타낸 표이다.
특히, 표준편차와 RSD 값이 낮은 수치를 보여주는데, 이는 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서가 반복성이 좋다는 것을 알 수 있다.
1-3-4. 전기화학센서의 재현성 측정
본 발명의 실시예에서 제작한 헤모글로빈 측정용 전기화학센서의 재현성(reproducibility)을 테스트 하였다.
보다 구체적으로, 기준전극(SWCNT┃Ag/AgCl) 을 포함하는 각각의 전극 1, 2, 3을 이용하여 헤모글로빈의 농도를 측정하였을 때의 정밀도를 확인하기 위하여 재현성 테스트를 실시하였다.
하기의 표 2, 표 3 및 표 4는 작업전극과 기준전극(SWCNT┃Ag/AgCl) 을 포함하는 각각의 전극 1, 2, 3을 이용하여 각 전극마다 1.0 g/dL, 2.0 g/dL, 3.0 g/dL의 농도를 측정하여 60초에서의 전압값을 나타내는 표이다.
농도(g/dL) 전압(Voltage, V)
1.0 0.2535
2.0 0.2428
3.0 0.2349
농도(g/dL) 전압(Voltage, V)
1.0 0.2577
2.0 0.2492
3.0 0.2421
농도(g/dL) 전압(Voltage, V)
1.0 0.2566
2.0 0.2426
3.0 0.2335
아울러, 표 5는 각각의 전극 1, 2, 3에서 얻은 1.0 g/dL, 2.0 g/dL, 3.0 g/dL 에서의 전압값의 평균과 표준편차 그리고 RSD 값을 나타내는 표이다.
평균 (V) 표준편차 RSD(%)
1.0 g/dL 0.255933 0.002178 0.851
2.0 g/dL 0.244867 0.003754 1.533
3.0 g/dL 0.236833 0.004614 1.948
표 2 내지 5를 참조하면, 전극 1, 2, 3으로 1.0 g/dL, 2.0 g/dL, 3.0 g/dL의 농도를 측정하였을 때의 전압값(표 2 내지 4)과 그에 대한 평균, 표준편차, RSD값(표 5)을 나타낸다.
특히, 표 5에서 표준편차와 RSD값이 낮은 수치를 보여주는데, 이는 본 발명의 일 실시예에 따른 헤모글로빈 측정용 전기화학센서가 재현성이 좋다는 것을 알 수 있다.
실시예 1-4. 헤모글로빈 측정용 전기화학센서를 이용한 헤모글로빈의 전류측정(2)
실시예 1-4-1. 반응시약 및 측정기구 준비(10.0 내지 20.0g/dL의 농도)
헤모글로빈 용액과 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 용액은 실시예 1-1과 동일하게 준비하였다.
다만, 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 용액을 5분간 볼텍싱(voltexing)과정과 10분간의 소니케이션(sonication)을 거친후 100mM의 페리시안화 칼륨용액을 1× PBS 완충액을 이용하여 50mM 로 희석하였다.
그리고, 헤모글로빈은 인간 유래의 표준 IFCC(International Federation of Clinical Chemistry) 샘플을 사용하였다.
20.0g/dL의 IFCC 샘플 헤모글로빈은 PBS 1X를 사용하여 각각 10.0g/dL, 12.0g/dL, 14.0g/dL, 16.0g/dL, 18.0g/dL 로 희석하였으며, 희석액은 1분간 마일드(mild)하게 피펫팅(pipetting)하여 균일하게 섞일 수 있도록 하였다.
그리고, 50mM 로 희석된 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 용액과 각 농도별 헤모글로빈 용액을 실험 바로 전에 혼합(mixing)하였으며, 상기 50mM 의 페리시안화 칼륨 용액 10㎕와 테스트를 진행할 농도의 헤모글로빈용액 10㎕를 20초간 마일드하게 피펫팅(pipetting)하여 균일하게 섞일 수 있도록 하였다.
1-4-2. 전기화학센서의 특성(Characteristics of Boisensor) 평가
도 8은 도 1에 도시된 실시예에 따른 헤모글로빈 측정용 센서로 열린회로의 전위를 이용하여 헤모글로빈의 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
보다 구체적으로, 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 50mM 용액과 각 농도의 헤모글로빈 용액을 혼합한 혼합액을 본 발명의 실시예에서 제작한 헤모글로빈 측정용 센서에 로딩한 후 작업전극과 기준전극 사이에 흐르는 전압값을 열린회로 전위를 시행하여 각 농도별로 측정한 그래프이다.
도 8을 참조하면, 헤모글로빈의 농도에 따라 전압값이 변하는 것을 확인할 수 있었으며, 처음 로딩(loading) 후에는 불안정한 신호를 보이지만 40초부터는 안정적인 값을 나타내는 것을 볼 수 있었다.
아울러, 표준 헤모글로빈 시약과 마찬가지로 농도가 증가함에 따라 전압 값이 떨어지는 경향을 볼 수 있었다. 이는 실시예에 따른 헤모글로빈 센서가 인공 혈액에서도 정상적으로 작동이 가능함을 보여준다.
도 9은 도 8에서 얻은 전압값을 이용하여 헤모글로빈의 농도와 전압의 상관관계를 나타낸 검량선(Calibration curve)이다.
보다 구체적으로, 도 9의 60초에서의 전압값을 샘플링(sampling)하여 농도와의 상관관계를 나타낸 검량선(Calibration curve)이다. R2 값이 0.9934로 나타낸 것을 보아 이는 헤모글로빈의 농도와 전압 사이에 선형관계가 확실히 나타난다는 것을 알 수 있었다.
비교예 1. 탄소 페이스트 전극을 이용한 헤모글로빈의 전류측정
2×2cm2 크기의 기판에 탄소 페이스트(carbon paste, WONIL coporation)가 균일하게 증착하여, 작업전극과 기준전극(carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서를 제조하였다.
구체적인 전기화학센서의 제조방법은 실시예 2와 동일하다.
그리고, 작업전극과 기준전극(carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서를 이용하여 전기화학센서의 특성을 평가하였다.
도 10과 도 11은 비교예의 작업전극과 기준전극(carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서로 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
도 10과 도 11은 동일한 조건에서 동일한 농도의 헤모글로빈의 전압을 측정하였으나, 서로 다른 값이 나온 것을 확인할 수 있었으며, 도 10과 도 11을 참조하면, 헤모글로빈의 농도에 대한 경향성을 찾아볼 수 없다는 것을 확인할 수 있었다.
즉, (carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서는 반복성이 좋지 않다는 것을 확인할 수 있었다.
실시예 2. 당화 헤모글로빈 측정용 전기화학센서의 준비 및 실험방법
실시예 2-1. 물질 및 시약
단일벽 탄소나노튜브(SWCNTs; Single-Wall Carbon Nano-Tubes) 분산액은 TOP NANOSYS에서 구입하였으며, 탄소나노튜브 페이스트(CNT paste) 는 WONIL에서 구입하였다.
그리고, 페리시안화 칼륨(Potassium ferricyanide Ⅲ) (99%), 소혈청알부민(BSA, bovine serum Albumin), N-하이드록시숙신이미드(NHS, N-Hydroxysuccinimide), N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로클로라이드(EDC, N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride), 3-아미노페닐보론산 모노하이드레이트(3-Aminophenylboronic acid monohydrate)는 Sigma-Aldrich에서 구입하였다.
또한, 당화혈색소(HbA1c)는 Lee biosolutoins, Inc에서 구입하여 IFCC 규정의 당화혈색소를 사용하였으며, 헤모글로빈(Hb, human hemoglobin)은 Sigma-Aldrich에서 구입하였다.
그리고, 20× PBS 완충액(phosphate buffered saline) 바이오세상(biosesang)에서 구입하였으며, 감광액인 AZ P4620 와 현상액인 AZ 400K(1:4) 는 Clarivant Corporation에서 구입하였으며, Ag/AgCl 페이스트는 Gwent group에서 구입하였다.
또한, 라미네이팅 필름(100㎛)은 HandsKorea에서 구입하여 사용하였으며, 수용액은 모두 DI water(deionized water)를 이용하여 준비하였다.
실시예 2-2. 당화혈색소 측정용 전기화학센서의 제조
본 실시예에서는 2×2cm2 크기의 PET (poly(Ethylene Terephtalate)) 기판에 단일벽 탄소나노튜브(SWCNTs; Single-Wall Carbon Nano-Tubes) 박막층을 형성하였다. 보다 구체적으로, 단일벽 탄소나노튜브 박막층은 진공 여과법(vacuum filtration method) 으로 상기 PET 기판 위에 균일하게 증착하였다.
다음으로, 상기 단일벽 탄소나노튜브 박막층 상에 포토레지스트(AZ P4620)를 스핀코팅하여 약 12νm의 포토레지스트층을 형성하였고, 상기 포토레지스트층을 포토마스크를 사용하여 UV(약 365nm)로 노광하고, 현상액(AZ 400K)을 사용하여 25분동안 현상하여 포토레지스트 패턴(PR)을 형성하였다.
이때, 감광성 고분자 패턴(PR)은 작업 전극의 단일벽 탄소나노튜브층의 설계된 패턴과 대응하도록 형성하였다.
이어서, 감광성 고분자 패턴(PR)이 형성된 단일벽 탄소나노튜브 박막층에 축전결합 플라즈마(capacitively-coupled plasma) 방식의 산소 플라즈마 에칭 처리(O2-plasma machine, 150 watt, 450초, 120mTorr)를 수행하여 기판상에 패터닝된 단일벽 탄소나노튜브층을 형성하였다.
그리고, 상기 패터닝된 단일벽 탄소나노튜브층 위에 남아있는 감광성 고분자 패턴(PR)을 에탄올로 이용하여 제거한 후 DI water로 세척하였다.
다음으로, 기판상에 기준전극을 형성하였다. 보다 구체적으로, 작업전극과 소정간격 이격되는 위치에 기준전극의 형상과 대응되도록 테이프를 이용하여 몰드를 만든 후 그 위에 Ag/AgCl 페이스트(GWENT Group)를 도포하고 오븐에 건조한 후 상기 몰드를 제거하여 기준전극을 제조하였다.
그리고, 작업전극과 기준전극은 측정기와 연결하였으며, 이는 기판상에 은 페이스트를 도포하여 전기적으로 연결하였다.
그리고 제조된 전극의 중간 부분은 가로, 세로 1cm×0.27cm의 테이프를 붙여 라미네이팅에 의한 전극 손상을 방지하였다.
그 후, 시료가 닿는 CNT 작업전극 상에 3%의 소혈청알부민(BSA, bovine serum Albumin) 3㎕ 를 드롭(drop)시킨 후 상온에서 30분 처리해주었으며, N-하이드록시숙신이미드(NHS, N-Hydroxysuccinimide), N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로클로라이드(EDC, N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride) 및 3-아미노페닐보론산 모노하이드레이트(3-Aminophenylboronic acid monohydrate)가 포함된 PBS 용액에서 4시간 처리를 해주었고, 그 후 DI water 로 워싱(washing) 후 건조하여, 보론산이 수식된 CNT 작업전극을 제조하였다.
그리고, 그 위에 바깥쪽 가로, 세로 1.5cm×1cm, 안쪽 가로, 세로 세로 각각 1cm×0.8cm 크기의 "ㄷ"자 라미네이팅 필름(HandsKorea)을 접착시켜 시료가 닿는 부분의 전극과 커버 사이에 공간을 형성하였다.
또한, 전기화학 분석기와 닿는 SWCNT 전극의 접합 부에는 실버페이스트(silver paste)를 칠하였으며, 그 위에 PET 필름으로 덮개를 만들어 시료가 닿는 부분의 전극과 덮개 사이에 공간을 형성하여 당화혈색소 측정용 전기화학센서를 제조하였다.
실시예 2-3. 전기화학센서를 이용한 당화 헤모글로빈의 전류측정
실험예 2-3-1. 반응시약 및 측정기구 준비(0.5 내지 5.0g/dL의 농도)
먼저, 20× PBS 완충액(phosphate buffered saline)을 1× PBS 완충액으로 희석하였으며, 이를 탈기(degassing)하여 용매로 준비하였다.
그리고, 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 용액을 5분간 볼텍싱(voltexing)과정과 10분간의 소니케이션(sonication)을 거친후 100mM의 페리시안화 칼륨용액을 1× PBS 완충액을 이용하여 10mM 로 희석하였다.
그리고, 표준 당화혈색소 샘플을 만들기 위하여 당화혈색소(HbA1c(>96%)) 샘플을 5g/dL의 헤모글로빈 용액과 1× PBS 용액과 혼합하여 total 1g/dL 그리고 0 %, 2 %, 4 %, 6 %, 10 %의 당화혈색소 농도를 갖는 샘플을 만들었다.
또한, IFCC 표준 샘플의 당화혈색소(HbA1c) 용액 농도는 각각 4.96%, 7.15%, 9.40%이고, total Hb 농도는 13.78g/dL, 13.21g/dL, 14.47g/dL 인 샘플을 준비하였다.
다음으로 BSA 용액은 1× PBS 용액에 3% 를 추가하여 제조하였다. 또한, EDC, NHS, 보론산 용액은 각각 17mM, 15mM, 10mM 농도로 PBS 10X 용액에 제조하였다.
제조된 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 용액과 각 농도별 당화혈색소 용액은 실험전에 바로 혼합하였으며, 상기 10mM 의 페리시안화 칼륨 용액 5㎕와 테스트를 진행할 농도의 당화혈색소 용액 5㎕를 20초간 마일드하게 피펫팅(pipetting)하여 균일하게 섞일 수 있도록 하였다.
한편, 당화혈색소의 농도 측정을 위한 측정기는 전기화학 분석기(electrochemical analyzer)인 CHI 600E (CH Instruments Inc., USA)모델을 사용하여 진행하였다.
그리고, 당화혈색소(HbA1c) 샘플실험은 페리시안화 칼륨용액 없이 측정하였으며, 각 농도별 당화혈색소를 SWCNT 당화혈색소 바이오센서에 10㎕씩 로딩(loading)하고, 전위차분석법(potentiometry)인 열린회로전위(open circuit potential) 기술을 이용하여 전압을 측정하였다. 그리고, 실험의 진행은 각 실험별로 하나의 전극을 재사용하여 실시하였다.
다음으로, IFCC 당화혈색소 샘플은 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 10mM 용액과 함께 측정하였다. 한편, 농도별 IFCC 당화혈색소 샘플과 페리시안화 칼륨 용액은 실험 직전에 혼합하였다. 보다 구체적으로, 각 용액은 실험 한번당 전극에 5㎕씩 로딩(loading) 하였고, 전위차분석법(potentiometry)인 열린회로전위(open circuit potential) 기술을 이용하여 전압을 측정하였다. 또한, 실험의 진행은 각 한번의 측정마다 하나의 CNT 페이스트 전극을 사용하여 실시되었다.
2-3-2. 전기화학센서 특성(Characteristics of Boisensor) 평가
도 12는 도 1에 도시된 실시예에 따른 당화혈색소 측정용 센서로 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
보다 구체적으로, 당화혈색소(HbA1c, Leebio) 샘플 테스트는 SWCNT 전극 위에서 이루어졌다. 농도별 당화혈색소를 10㎕씩 드롭(drop)한 후 작업전극과 기준전극 사이에 흐르는 전압값을 열린회로 전위를 시행하였으며, 그 결과를 도 3에 나타내었다.
도 12를 참조하면, 위쪽에서부터 차례대로 10%, 6%, 4%, 2%, 0% 순으로 농도가 감소하는 것을 확인할 수 있었다. 한편, 이 데이터의 측정은 하나의 전극을 재사용하여 이루어졌다.
도 13은 도 12에서 얻은 전압값을 이용하여 당화혈색소의 농도와 전압의 상관관계를 나타낸 검량선(Calibration curve)이다.
보다 구체적으로, 도 13은 도 12의 60초에서의 전압값을 샘플링(sampling)하여 농도와의 상관관계를 나타낸 검량선(Calibration curve)이다. R2 값이 0.9827로 나타낸 것을 보아 이는 당화혈색소의 농도와 전압 사이에 선형관계가 확실히 나타난다는 것을 알 수 있었다.
도 14와 도 15는 도 1에 도시된 실시예에 따른 당화혈색소 측정용 센서로 IFCC 당화혈색소 샘플과 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 10mM 용액의 혼합액을 센서에 로딩한 후 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
보다 구체적으로, IFCC 당화혈색소 샘플 실험의 진행은 당화혈색소 용액 5㎕를 전극 위에 먼저 로딩하였고 그 후에 페리시안화 칼륨 용액 5㎕를 로딩하여 혼합하였다. 그 후 상기 전극을 전기화학 분석기와 연결하고 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 값을 측정하였다.
도 14와 도 15를 참조하면, 위쪽에서부터 차례대로 9.40%, 7.15%, 4.96% 순으로 농도가 감소한 것을 확인할 수 있었다. 한편, 이 데이터의 측정은 하나의 전극을 재사용하여 이루어졌다.
도 16과 도 17은 각각 도 14와 도 15에서 얻은 전압값을 이용하여 당화혈색소의 농도와 전압의 상관관계를 나타낸 검량선(Calibration curve)이다.
도 14와 도 15를 참조하면, 농도가 증가할수록 전압 값이 증가하는 경향을 보여주고 있다.
보다 구체적으로, 도 16과 도 17은 각각 도 14와 도15에서 얻어진 60초에서의 전압 값을 샘플링(sampling) 하여 농도와의 상관관계를 나타낸 검량선이다. R2 값이 각각 0.980과 0.999로 나타낸 것을 보아 이는 당화혈색소의 농도와 전압 사이에 선형관계가 확실히 나타난다는 것을 알 수 있었다.
1-2. 전기화학센서의 재현성 측정
본 발명의 실시예에서 제작한 당화 헤모글로빈 측정용 전기화학센서의 재현성(reproduciblilty)을 테스트 하였다.
보다 구체적으로, 작업전극 기준전극(SWCNT┃Ag/AgCl) 을 포함하는 각각의 전극을 이용하여 농도가 다른 당화 헤모글로빈을 측정하였을 때의 정밀도를 확인하기 위하여 재현성 테스트를 실시하였다.
하기의 표 6은 본 발명의 일 실시예에 따른 전기화학센서를 이용하여 0.602g/dL, 0.929g/dL, 1.288g/dL, 1.713g/dL 농도의 당화헤모글로빈을 각각 3번씩 측정하여 얻은 전압의 평균값과 표준편차 그리고 RSD 값을 나타내었다.
RSD 값이 1 이하고 낮은값을 나타내는 것을 확인할 수 있었으며, 이는 본 발명의 전기화학센서가 당화 헤모글로빈 측정 센서로서 높은 재현성을 갖는다는 것을 보여준다.
농도(%) 농도(g/dL) 평균전압(V) 표준편차 RSD(%)
5.4 0.602 0.1181 1.15E-03 0.974
7.9 0.929 0.1238 5.51E-04 0.445
10.8 1.288 0.1274 1.26E-03 0.988
14.8 1.713 0.1348 9.54E-04 0.708
< 비교예 >
비교예 1. 탄소 페이스트 전극을 이용한 당화혈색소의 전류측정
2×2cm2 크기의 기판에 탄소 페이스트(carbon paste, WONIL coporation)가 균일하게 증착하여, 작업전극과 기준전극(carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서를 제조하였다.
구체적인 전기화학센서의 제조방법은 실시예 2와 동일하다.
그리고, 작업전극과 기준전극(carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서를 이용하여 전기화학센서의 특성을 평가하였다.
도 10은 비교예의 작업전극과 기준전극(carbon paste┃Ag/AgCl) 을 포함하는 전기화학센서로 열린회로전위를 이용하여 각 당화혈색소 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
도 11은 도 10에서 60초일 때의 전압 값을 농도 별로 나타낸 그래프이다.
도 10과 도 11을 참조하면, 작업전극과 기준전극(carbon paste┃Ag/AgCl)을 사용하여 당화혈색소(HbA1c)를 측정하였을 때, 모든 그래프에서 농도에 대한 경향성을 찾아 볼 수 없으며, 특히, 도 8 및 도 9와는 상반되는 결과를 보여주는 것을 확인할 수 있었다.
비교예 2. BSA와 보론산을 수식시키지 않은 작업전극을 포함하는 센서를 이용한 당화혈색소의 전류측정
도 12는 비교예에서 BSA와 보론산을 수식시키지 않은 작업전극(CNT paste)과 기준전극(Ag/AgCl)을 이용하여 IFCC 당화혈색소 샘플과 페리시안화 칼륨(Potassium Ferricyanide(Ⅲ)) 10mM 용액의 혼합액을 센서에 로딩한 후 열린회로전위를 이용하여 각 농도별 시간에 따른 전압 곡선을 보여주는 그래프이다.
보다 구체적으로, 도 12는 CNT paste 작업전극과 Ag/AgCl 전극을 이용하여 IFCC 당화혈색을 열린회로전위를 이용하여 전압을 측정하였을 때의 전압곡선을 나타낸 그래프이다.
도 6과 도 7을 비교하였을 때, BSA 와 보론산을 수식한 전극과 달리 아무런 처리하지 않은 CNT paste 전극에서는 경향성이 보이지 않고 오히려 total Hb 농도가 높아짐에 다라 전압이 감소하는 경향을 보이는 것을 확인할 수 있었다.

Claims (15)

  1. 기판;
    기판상에 형성되며, 탄소성분으로 이루어진 작업전극;
    기판상에 작업전극과 이격되어 형성되는 기준전극; 및
    작업전극과 기준전극간의 전위차를 측정하는 측정부;를 포함하는 전기화학센서.
  2. 제1항에 있어서,
    작업전극은
    탄소나노튜브 페이스트(carbon nanotube paste), 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube) 및 그래핀(graphene)으로 이루어진 군으로부터 선택되는 1종 이상으로 이루어진 것을 특징으로 하는 전기화학센서.
  3. 제1항에 있어서,
    기준전극은
    Ag/AgCl 전극 또는 카본 페이스트(carbon paste) 전극으로 이루어진 것을 특징으로 하는 전기화학센서.
  4. 제1항에 있어서,
    전기화학센서는 헤모글로빈을 측정하며,
    측정부는 헤모글로빈의 햄(HEME)기에 포함된 Fe2 +와 산화환원 반응 물질의 가역적 산화환원 반응에 의해 형성된 상기 작업전극과 기준전극 사이의 전위차를 측정하는 전기화학센서.
  5. 제4항에 있어서,
    Fe2 + 와 가역적 산화환원 반응을 수행하는 산화환원 반응 물질은 작업전극에 도포되며,
    산화환원 반응하는 물질은
    페리시안산(ferricyanic acid), 페로센(ferrocene), 페로센유도체, 퀴논(quinones), 퀴논유도체, 유기전도성염(organic conducting salt), 비오로겐(viologen), 헥사아민루세늄(III)클로라이드(hexaammineruthenium(III) chloride), 디메틸페로센(dimethylferrocene; DMF), 페리시니움(ferricinium), 페로센모노카르복실산(ferocene monocarboxylic acid; FCOOH), 7,7,8,8,-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquino-dimethane; TCNQ), 테트라티아풀발렌(tetrathiafulvalene; TTF), 니켈로센(nickelocene; Nc), N-메틸아시디니움(N-methyl acidinium; NMA+), 테트라티아테트라센(tetrathiatetracene; TTT), N-메틸페나지니움(N-methylphenazinium; NMP+), 히드로퀴논(hydroquinone), 3-디메틸아미노벤조산(3-dimethylaminobenzoic acid; MBTHDMAB), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinone hydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin; AAP), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methoxynaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3',5,5'-tetramethyl benzidine; TMB), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azino-di-[3-ethyl-benzthiazoline sulfonate]), o-디아니지딘(o-dianisidine), o-톨루이딘(otoluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나논(4-aminophenazone), 벤지딘(benzidine)으로 이루어진 군에서 선택되는 1종 이상의 전자전달 매개체인 전기화학센서.
  6. 제1항에 있어서,
    작업전극은 표적물질인 당화 헤모글로빈과 특이적 결합되는 3-아미노페닐보론산 수화물(3-aminophenylboronic acid monohydrate)의 보론산 유도체 화합물 이 수식되는 전기화학센서.
  7. 제6항에 있어서,
    측정부는
    당화 헤모글로빈이 특이적 결합되는 보론산 유도체 화합물과 산화환원 반응 물질의 가역적 산화환원반응에 의해서 형성된 상기 작업전극과 기준전극 사이의 전위차를 측정하며,
    산화환원 반응 물질은
    페리시안산(ferricyanic acid), 페로센(ferrocene), 페로센유도체, 퀴논(quinones), 퀴논유도체, 유기전도성염(organic conducting salt), 비오로겐(viologen), 헥사아민루세늄(III)클로라이드(hexaammineruthenium(III) chloride), 디메틸페로센(dimethylferrocene; DMF), 페리시니움(ferricinium), 페로센모노카르복실산(ferocene monocarboxylic acid; FCOOH), 7,7,8,8,-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquino-dimethane; TCNQ), 테트라티아풀발렌(tetrathiafulvalene; TTF), 니켈로센(nickelocene; Nc), N-메틸아시디니움(N-methyl acidinium; NMA+), 테트라티아테트라센(tetrathiatetracene; TTT), N-메틸페나지니움(N-methylphenazinium; NMP+), 히드로퀴논(hydroquinone), 3-디메틸아미노벤조산(3-dimethylaminobenzoic acid; MBTHDMAB), 3-메틸-2-벤조티오조리논히드라존(3-methyl-2-benzothiozolinone hydrazone), 2-메톡시-4-아릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin; AAP), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methoxynaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3',5,5'-tetramethyl benzidine; TMB), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azino-di-[3-ethyl-benzthiazoline sulfonate]), o-디아니지딘(o-dianisidine), o-톨루이딘(otoluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나논(4-aminophenazone), 벤지딘(benzidine)으로 이루어진 군에서 선택되는 1종 이상의 전자전달 매개체인 전기화학센서.
  8. 제1항에 있어서,
    작업전극 및 기준전극의 상부에 위치하며, 시료가 유입되도록 일측에 개구가 형성되는 스페이서; 및
    스페이서의 상부에서 개구를 덮는 커버부; 를 포함하는 전기화학센서.
  9. 제1항에 있어서,
    작업전극 및 기준전극은 측정부와 전도성 페이스트에 의해서 연결되는 전기화학센서.
  10. 기판상에 서로 이격되도록 작업전극 및 기준전극을 형성하는 단계;
    작업전극 및 기준전극이 형성된 기판에 스페이서를 덮어 작업전극과 기준전극으로 시료가 유입되는 공간을 형성하는 단계; 및
    작업전극 및 기준전극과 측정부를 연결하는 단계; 를 포함하는 전기화학센서 제조방법.
  11. 제10항에 있어서,
    작업전극을 형성하는 단계는
    광식각을 통하여 탄소성분막이 형성된 기판상에 감광성 고분자 패턴을 형성하는 단계;
    감광성 고분자 패턴이 형성된 상기 탄소성분막에 산소 플라즈마 에칭처리를 수행하는 단계; 및
    알코올을 이용하여 상기 감광성 고분자를 제거하여 패터닝된 탄소성분막의 패턴을 형성단계;를 포함하는 전기화학센서 제조방법.
  12. 제10항에 있어서,
    작업전극을 형성하는 단계는
    광식각을 통하여 탄소성분막이 형성된 기판상에 감광성 고분자 패턴을 형성하는 단계;
    감광성 고분자 패턴이 형성된 상기 탄소성분막에 산소 플라즈마 에칭처리를 수행하는 단계;
    알코올을 이용하여 상기 감광성 고분자를 제거하여 패터닝된 탄소성분막의 패턴을 형성단계; 및
    패터닝된 탄소성분막에 표적물질과 결합되는 화합물을 수식하는 단계; 를 포함하는 전기화학센서.
  13. 제10항에 있어서,
    패터닝된 탄소성분막에 표적물질과 특이적 결합되는 화합물을 수식하는 단계는
    패터닝된 탄소성분막에 안정제를 도포하는 단계; 및
    탄소성분막에 도포된 안정제에 화합물을 포함하는 완충액을 도포하는 단계; 를 포함하는 전기화학센서.
  14. 제10항에 있어서,
    기준전극을 형성하는 방법은
    기판에 기준전극형상의 몰드를 형성하는 단계;
    몰드 내에 Ag/AgCl 페이스트 또는 카본 페이스트(carbon paste)를 주입하여 소성하는 단계; 및
    몰드를 분리하는 단계; 를 포함하는 전기화학센서 제조방법.
  15. 제10항에 있어서,
    상기 스페이서의 상부에 커버부를 부착하는 단계를 더 포함하는 전기화학센서 제조방법.
PCT/KR2016/014145 2015-12-02 2016-12-02 전기화학센서 및 그 제조방법 WO2017095202A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150170772 2015-12-02
KR10-2015-0170772 2015-12-02
KR20160076746 2016-06-20
KR10-2016-0076746 2016-06-20
KR10-2016-0163682 2016-12-02
KR1020160163683A KR20170065015A (ko) 2015-12-02 2016-12-02 헤모글로빈 측정용 전기화학센서 및 그 제조방법
KR1020160163682A KR101876528B1 (ko) 2016-06-20 2016-12-02 당화 헤모글로빈 측정용 전기화학센서 및 그 제조방법
KR10-2016-0163683 2016-12-02

Publications (1)

Publication Number Publication Date
WO2017095202A1 true WO2017095202A1 (ko) 2017-06-08

Family

ID=58797358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014145 WO2017095202A1 (ko) 2015-12-02 2016-12-02 전기화학센서 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2017095202A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871922A (zh) * 2018-09-03 2018-11-23 大连技嘉科技有限公司 糖化血红蛋白分析仪用超声混匀清洗池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100008260A (ko) * 2008-07-15 2010-01-25 주식회사 아이센스 바이오센서를 이용한 단백질 측정 장치
KR101331021B1 (ko) * 2013-02-28 2013-11-19 주식회사 엔디디 바이오 센서
US20140065714A1 (en) * 2012-09-06 2014-03-06 Samsung Electronics Co., Ltd. Method of identifying glycated protein in sample and device for the glycated protein
KR20150021769A (ko) * 2013-08-21 2015-03-03 한양대학교 에리카산학협력단 수소이온농도 측정 센서 및 그 제조 방법
KR20150118894A (ko) * 2014-04-14 2015-10-23 부산대학교 산학협력단 전자전달 매개체의 산화환원 순환을 이용한 바이오센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100008260A (ko) * 2008-07-15 2010-01-25 주식회사 아이센스 바이오센서를 이용한 단백질 측정 장치
US20140065714A1 (en) * 2012-09-06 2014-03-06 Samsung Electronics Co., Ltd. Method of identifying glycated protein in sample and device for the glycated protein
KR101331021B1 (ko) * 2013-02-28 2013-11-19 주식회사 엔디디 바이오 센서
KR20150021769A (ko) * 2013-08-21 2015-03-03 한양대학교 에리카산학협력단 수소이온농도 측정 센서 및 그 제조 방법
KR20150118894A (ko) * 2014-04-14 2015-10-23 부산대학교 산학협력단 전자전달 매개체의 산화환원 순환을 이용한 바이오센서

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871922A (zh) * 2018-09-03 2018-11-23 大连技嘉科技有限公司 糖化血红蛋白分析仪用超声混匀清洗池

Similar Documents

Publication Publication Date Title
WO2013081363A1 (ko) 전위차분석법을 이용한 당화헤모글로빈 측정용 바이오센서
JP2708276B2 (ja) バイオセンサ電極用励起回路
WO2020032294A1 (ko) 자성 나노입자를 이용한 바이오센서, 이를 이용하는 검출 장치 및 검출 방법
WO2015160085A1 (ko) 전자전달 매개체의 산화환원 순환을 이용한 바이오센서
WO2017095202A1 (ko) 전기화학센서 및 그 제조방법
WO2023058885A1 (ko) 암 진단용 바이오마커 및 이의 용도
WO2016036145A1 (ko) 노로바이러스 검출 센서, 및 이를 이용하는 전기화학적 센싱방법
WO2018070652A1 (ko) 당화혈색소 정량분석용 키트
WO2018088859A1 (ko) 효소 필름 및 그를 포함하는 고감도 및 선택성을 갖는 바이오 센서
WO2022114920A9 (ko) 혈액 유래 엑소좀에서 발굴한 신규의 알츠하이머 진단용 바이오마커 및 이를 이용한 알츠하이머 진단방법
WO2019013530A9 (ko) 진단 키트, 진단 방법 및 진단 장치
WO2023177186A1 (ko) 클릭반응을 이용한 cnt 필름, 이를 이용한 cnt 기반 바이오 센서 및 이의 제조방법
WO2023204430A1 (ko) 바이오 센서 카트리지 및 그의 검사 장치
KR101876528B1 (ko) 당화 헤모글로빈 측정용 전기화학센서 및 그 제조방법
WO2019208901A1 (ko) 당뇨병 진단을 위한 전기화학 방식의 바이오-마커 검출 방법 및 장치
WO2009093840A2 (ko) 카이네틱 변화 정보를 이용한 측정목표물질의 특징값 추정방법 및 장치
WO2012099364A2 (en) Kit for amplifying detected signal in immunosensor and method for detecting target antigen using the same
WO2021251656A1 (ko) 엑소좀 유래 miRNA를 이용한 스트레스 진단기술
WO2022158877A1 (ko) 3차원 나노플라즈모닉 복합구조를 포함하는 기판, 이의 제조방법, 및 이를 이용한 신속 분석방법
WO2020080876A1 (ko) 생체 물질 검출 센서 및 그 제조방법
WO2017171194A1 (ko) 체크 카세트, 측정 장치, 측정 장치용 광원의 광량 보정 시스템, 측정 장치용 광원의 광량 보정 방법 및 기록매체
WO2017022923A1 (ko) 종이형 전립선암 진단센서, 이의 제조방법, 및 이를 이용한 전립선암 진단방법
WO2022119086A1 (ko) 패치형 바이오센서
WO2016043361A1 (ko) 생체시료 내 분석대상물질의 농도측정방법 및 측정장치
WO2020138979A1 (ko) 화합물, 그래핀 채널 부재 및 이를 포함하는 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871098

Country of ref document: EP

Kind code of ref document: A1