WO2016043361A1 - 생체시료 내 분석대상물질의 농도측정방법 및 측정장치 - Google Patents

생체시료 내 분석대상물질의 농도측정방법 및 측정장치 Download PDF

Info

Publication number
WO2016043361A1
WO2016043361A1 PCT/KR2014/008673 KR2014008673W WO2016043361A1 WO 2016043361 A1 WO2016043361 A1 WO 2016043361A1 KR 2014008673 W KR2014008673 W KR 2014008673W WO 2016043361 A1 WO2016043361 A1 WO 2016043361A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
analyte
concentration
biological sample
measuring
Prior art date
Application number
PCT/KR2014/008673
Other languages
English (en)
French (fr)
Inventor
차근식
남학현
이석원
최승혁
강영재
이명호
박호동
조성필
Original Assignee
주식회사 아이센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이센스 filed Critical 주식회사 아이센스
Priority to PCT/KR2014/008673 priority Critical patent/WO2016043361A1/ko
Publication of WO2016043361A1 publication Critical patent/WO2016043361A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a method for measuring the concentration of an analyte in a biological sample and a measuring device.
  • the measurement result is determined by various interfering substances of blood, in particular, red blood cell volume ratio. If the deviation is large, a stepped ladder-type perturbation voltage is further applied for a short time, and a function consisting of features obtained from the constant currents and the response currents in the region where the perturbation voltage is applied is obtained.
  • the present invention relates to a method for measuring the concentration of analyte in a biological sample and a measuring device for measuring the concentration of a blood sample which minimizes the variation due to the interference by optimizing the test by multivariable regression analysis.
  • Measuring the concentration of clinically important substances is an important task for diagnosis and health care. In particular, it measures the concentration of metabolites (analytes) such as glucose, ketones, creatine, lactate, triglycerides, paruvate, alcohols, bilirubin, NAD (P) H, uric acid, etc. from liquids in vivo such as blood. It is at the heart of disease diagnosis and disease management.
  • metabolites such as glucose, ketones, creatine, lactate, triglycerides, paruvate, alcohols, bilirubin, NAD (P) H, uric acid, etc.
  • Electrochemical biosensors have been widely used as a method to accurately, rapidly and economically measure the concentration of clinically meaningful substances from liquids in vivo.
  • Such an electrochemical biosensor (often referred to as a "strip”) includes a pair of electrodes (operating electrode and auxiliary electrode) coated with a reagent containing an enzyme, an electron transfer medium, and various stabilizers and dispersants in a capillary sample cell. It is arranged.
  • the present inventors have found that the cyclic voltammogram method having a periodicity can be effective in reducing the variation in the red blood cell volume ratio, and has applied it in combination with a large time current method (Korean Patent Publication No. 2013-0131117).
  • This method reduces the effects of unstable charging current due to rapid voltage changes compared to the method of mixing square wave of various voltages to correct red blood cell volume ratio, and it exists in the electric double layer at the electrode surface during voltage scan. Since the concentration of the redox materials is changed to an appropriate slope in response to the voltage change, the magnitude of the generated background current is controlled within a specific range, thereby increasing the effect of the overall correction.
  • the erythrocyte volume fraction is separately estimated using the currents obtained from cyclic voltammetry, and then the effect of erythrocyte volume fraction is corrected by applying the estimated erythrocyte volume fraction to the formula for calculating the concentration.
  • the effect of the overall correction is greatly influenced.
  • this method has a disadvantage in that a cyclic voltammetry method may require a complicated measurement circuit compared to the case of using a square wave constant voltage large time amperometric method to stably implement the cyclic voltammetry method. .
  • the red blood cell volume ratio is obtained by appropriately combining the response currents composed of the voltage functions obtained by applying the asymmetric cyclic voltammetry method, and the red blood cell volume ratio obtained by the separate calculation formula is applied to the equation for blood concentration. Disadvantageous effects must be eliminated and a separate circuit capable of responding to fast scans over a wide range of voltages is required.
  • the present invention has been made to solve these problems, and an object of the present invention is to simply reduce the measurement error according to the red blood cell volume ratio by simply upgrading the firmware of the measuring device while using strips and measuring device hardware provided in the existing market. It is to provide a method and apparatus for measuring the concentration of analyte in a biological sample.
  • an object of the present invention is to effectively and economically eliminate or minimize the interference caused by substances in the blood by using a stepped ladder waveform applied voltage as a perturbation voltage by applying a constant voltage as a main voltage and subsequently applying a constant voltage. It is to provide a method and measuring apparatus for measuring the concentration of analyte in a biological sample.
  • an object of the present invention is to follow the step-by-step step-by-step method applied to the ladder waveform applied voltage stepped for a short time while using the time-current method used in the electrochemical biosensor and measurement device supplied to the existing market Concentration measurement method and measuring device of analyte in biological sample that can greatly reduce the effect of red blood cell volume ratio while maintaining the calibration of the existing product by utilizing various information obtained by applying together To provide.
  • an enzyme and an electron transfer medium capable of catalyzing the redox reaction of the analyte are fixed, and a working electrode After injecting a liquid biological sample into a sample cell having an auxiliary electrode,
  • a microcontroller that controls the digital-analog converter circuit and obtains the concentration value of the analyte directly from the assay using the stepped ladder-shaped perturbation voltage in the ⁇ shape.
  • Concentration measurement method and measuring apparatus of the analyte in the biological sample is different from the applied voltage consisting of a constant voltage and stepped ladder pulse (or perturbation voltage) of the ⁇ (lambda) shape
  • the analysis effect is eliminated or minimized by the matrix effect of the biological materials.
  • the concentration of the substance can be measured.
  • a representative blood sample is a red blood cell volume, and an electrochemical biosensor, that is, a structure of a strip
  • an electrochemical biosensor that is, a structure of a strip
  • the method for measuring the concentration of the analyte in the biological sample and the measuring device according to an embodiment of the present invention does not change the time-to-current method commonly used in the existing market at all, and perturbation applied immediately thereafter.
  • the correction signal in the voltage domain it is possible to minimize the deviation of the red blood cell volume ratio while maintaining the existing measurement performance and characteristics.
  • the method and the measuring device for measuring the concentration of the analyte in the biological sample has a function consisting of features extracted from the response current to minimize the variation in blood cell volume ratio and the standard experimental results
  • An apparatus for measuring a concentration of an analyte in a biological sample according to an embodiment of the present invention may be upgraded by using a test formula determined according to a method for measuring a concentration of an analyte in a biological sample according to an embodiment of the present invention.
  • the concentration of analyte can be obtained by minimizing the effect of erythrocyte volume fraction.
  • the method for measuring the concentration of the analyte in the biological sample obtains the red blood cell volume ratio, and then the concentration of the analyte through a more economical and efficient process than substituting it separately into the assay. You can decide exactly.
  • 1 is a graph showing ⁇ -stepladder-type perturbation potential used in the method for measuring the concentration of analyte in a biological sample according to a preferred embodiment of the present invention.
  • FIG. 2 is a graph showing a response current obtained corresponding to the voltage applied in FIG. 1.
  • Figure 3 is a graph for explaining the structure of the ⁇ -stepped ladder-type perturbation voltage used in the method for measuring the concentration of the analyte in a biological sample according to a preferred embodiment of the present invention.
  • Figure 4 is a front and rear perspective view of the measuring device stored in the assay formula by the method for measuring the concentration of the analyte in the biological sample according to a preferred embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a circuit of an apparatus for measuring a concentration of an analyte in a biological sample of FIG. 4.
  • FIG. 6 is a graph showing a correlation between a blood glucose measurement value and a YSI measurement value of a measuring device according to a large current method in a method for measuring a concentration of an analyte in a biological sample according to a first preferred embodiment of the present invention.
  • FIG. 7 is a graph showing the effect of erythrocyte volume fraction on the mean value of blood glucose measurement values of the measuring device according to the large current method in the method for measuring the concentration of analyte in a biological sample according to a first preferred embodiment of the present invention ( Absolute concentration for concentrations less than 100 mg / dL and relative error (%) for concentrations above).
  • FIG. 8 is a graph illustrating a method for measuring a concentration of an analyte in a biological sample according to a second preferred embodiment of the present invention, between a blood glucose measurement value and a YSI measurement value obtained by using a time-current method and a stepped ladder type perturbation voltage. Graph showing the correlation of.
  • FIG. 9 is a red blood cell volume ratio with respect to an average value of blood glucose measured values using a large time current method and a stepped ladder perturbation voltage in a method for measuring the concentration of analyte in a biological sample according to a second preferred embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method for measuring the concentration of an analyte in a biological sample according to a preferred embodiment of the present invention.
  • 11 is a method for measuring the concentration of an analyte in a biological sample according to a third preferred embodiment of the present invention, obtained by using a time-current method, a stepped ladder type perturbation voltage, and a temperature value measured by a measuring device together
  • FIG. 12 is a method for measuring the concentration of analyte in a biological sample according to a third preferred embodiment of the present invention, obtained by using a combination of a large time current method, a stepped ladder perturbation voltage, and a temperature value measured by a measuring device
  • a graph showing the effect of temperature on the mean value of blood glucose readings including samples with red blood cell volume 10, 20, 42, 55, 70%, expressed as absolute error for concentrations less than 100 mg / dL, for concentrations above that Relative error (%)).
  • FIG. 13 is a graph showing a correlation between a ketone body measurement value and a reference device measurement value according to a large current method in the method for measuring the concentration of analyte in a biological sample according to a fourth preferred embodiment of the present invention
  • FIG. 14 is a graph showing the effect of erythrocyte volume fraction on the mean value of ketone body measurement values according to a large current method in a method for measuring the concentration of analyte in a biological sample according to a fourth preferred embodiment of the present invention (1.0 mmol / For concentrations less than L, the absolute error is multiplied by 100, and for concentrations above L, the relative error (%)).
  • 15 is a graph illustrating a method for measuring a concentration of an analyte in a biological sample according to a fifth preferred embodiment of the present invention, between a ketone body measurement value and a reference device measurement value obtained using a large time current method and a stepped ladder type perturbation voltage Graph showing the correlation of.
  • FIG. 16 is a red blood cell volume ratio with respect to an average value of ketone body measurements obtained using a large time current method and a stepped ladder perturbation voltage in a method for measuring a concentration of analyte in a biological sample according to a fifth preferred embodiment of the present invention
  • a graph showing the effect of (expressed as an absolute error multiplied by 100 for concentrations less than 1.0 mmol / L and relative error (%) for concentrations above).
  • the present invention can be used for the quantification of various biological metabolites by varying the type of enzyme included in the sample layer composition.
  • glucose oxidase GOx
  • glucose dehydrogenase GDH
  • glutamate oxidase glutamate dehydrogenase cholesterol oxidase, cholesterol esterase
  • Lactate oxidase ascorbic oxidase
  • alcohol oxidase alcohol dehydrogenase
  • bilirubin oxidase and the like can be used to quantify glucose, glutamate, cholesterol, lactate, ascorbic acid, alcohol, bilirubin and the like.
  • Electron transfer media that can be used with the enzymes are ferrocene, ruthenium hexamine (III) chloride, potassium ferricyanide, osmium complex having 1,10-phenanthroline-5,6-dione, bipyridine or phenanthroline as ligands, 2,6- dimethyl-1,4-benzoquinone, 2,5-dichloro-1,4-benzoquinone, 3,7-diamino-5-phenothiaziniumthionine, 1-methoxy-5-methylphenazinium methylsulfate, methylene blue, toluidine blue Not limited to these compounds, organic and inorganic electron transfer mediators capable of electron transfer together with enzymes catalyzing redox reactions of biometabolites.
  • a working electrode and an auxiliary electrode are provided to face each other on different planes, and the face-to-face electric coating is coated with a reagent composition including an enzyme and an electron transfer medium according to a material on the working electrode.
  • Chemical biosensors can be applied.
  • the portable measuring device according to an embodiment of the present invention, the working electrode and the auxiliary electrode is provided on one plane, the planar electrochemical coated with the reagent composition including the enzyme and the electron transfer medium according to the material on the working electrode Biosensors can be applied.
  • FIG. 1 and 2 are ⁇ -stepladder-type perturbation potential used in the method for measuring the concentration of analyte in a biological sample according to a preferred embodiment of the present invention and obtained correspondingly.
  • 3 is a graph illustrating a response current
  • FIG. 3 is a graph for explaining the structure of the ⁇ -terminated ladder-type perturbation voltage used in the method for measuring the concentration of analyte in a biological sample according to a preferred embodiment of the present invention.
  • 3 is a front and rear perspective view of a measuring device in which a calibration formula is stored according to a method for measuring a concentration of an analyte in a biological sample according to a preferred embodiment of the present invention
  • FIG. 5 is a circuit of the concentration measuring device of an analyte in FIG. 4. It is a block diagram showing.
  • the stepped ladder type perturbation voltage is sequentially applied after a constant voltage (V DC ) is applied. .
  • V DC constant voltage
  • the perturbation voltage used in the method for measuring the concentration of the analyte in the biological sample consists of a stepped ladder wave
  • the characteristic of the perturbation voltage is the height of each step (V step ), the applied time of each step (t step ), the difference between the intermediate voltage and the constant voltage (V center ) in the entire change range, the difference between the intermediate voltage and the peak voltage value (V peak ), the overall stepping It consists of the time difference (t cycle ) between the peak voltage of the ladder wave and the next stepped ladder wave, and has the range shown in Table 1 below.
  • the current values used to determine the concentration of the analyte are obtained from one step or a plurality of steps of the first or second response current. Here are some things you can do.
  • the apparatus 100 for measuring the concentration of an analyte in a biological sample includes a pair of working electrodes of a conventional electrochemical biosensor, that is, a strip 10.
  • a perturbation voltage that changes the potential while maintaining the structure of the electrode, an additional signal for correction can be obtained within a few seconds, preferably within 0.1 to 1 second.
  • the concentration measuring apparatus 100 for analyte in the biological sample may include the connector ( 110 is electrically connected to the current-voltage converter 120, the digital-analog provided in the concentration measuring apparatus 100 so that the microcontroller 150 (MCU) to apply a constant voltage according to the existing large-time current method
  • the converter circuit 130 is configured to apply the perturbation voltage to the working electrode of the strip 10 without a separate perturbation voltage circuit.
  • the firmware of the concentration-side measuring device 100 of the analyte in the biological sample first stores a constant capable of generating a predetermined perturbation voltage in the memory of the measuring device 100, and then the constant voltage.
  • a constant capable of generating a predetermined perturbation voltage
  • a predetermined constant is written to a register of the DAC 130, and when a perturbation voltage is applied, a constant value stored in the memory is incremented / decremented at a predetermined time period to be recorded in a register of the DAC 130.
  • the microcontroller 150 applies a corresponding voltage between two electrodes of the strip according to a constant value written in the DAC 130 register.
  • the first or second sensitive current measured through the strip 10 may be measured through an analog-to-digital converter circuit 120 (ADC) directly through the connector 110 and the current-voltage converter 120. have.
  • ADC analog-to-digital converter circuit 120
  • the perturbation voltage is composed of a staircase wave, in addition to an advantage of simplifying a circuit as compared to methods using alternating current or linear scanning.
  • the advantage is that it can be reduced.
  • the induction current is expressed as the first induction current or the second induction current in order to indicate that the characteristics of the induction current change due to rocking or perturbation.
  • ⁇ -stepladder perturbation potential In order to eliminate the effect of erythrocyte volume in the test after applying a constant voltage, the stepped ladder perturbation voltage application method having a periodicity to be applied for a short time is referred to as " ⁇ -stepladder perturbation potential. ) Or simply stepladder potential ".
  • the above-mentioned currents with different characteristics are currents that can be used as variables that can effectively separate or correct the effects of red blood cell volume ratio because of different methods depending on blood glucose and erythrocyte volume ratio (interference substance).
  • the current values of the first and second sensitive currents are determined according to blood glucose and red blood cell volume ratios. Therefore, it can be expressed as a function of blood sugar and red blood cell volume ratio (g 1 , g 2 ) as follows.
  • the response current that can be obtained by applying the stepped ladder perturbation voltage is due to the fact that the fluctuation of the sample in the vicinity of the electric double layer is continuously changed when each step is elevated or shorted.
  • the influence of the charging current is also changed, and its characteristics can be very different from the current obtained by the large time current method.
  • the characteristics of the first and second sensitive currents corresponding to the constant voltage and the perturbation voltage vary so much that the calibration equation used in the method for measuring the concentration of the analyte in the biological sample according to the embodiment of the present invention.
  • the parts that are useful for constructing the equation are called characteristic points, and the feature is defined as using the current values of the characteristic points as they are or transforming them into variables suitable for use in the test equation.
  • the time-sensitive response current can be approximated by the Cottrell equation when the biosensor reagent reaches a uniform liquid phase in a sample cell.
  • n is the number of electrons moving per molecule of the material oxidized / reduced at the electrode (e.g., electron transfer mediator)
  • F is a Faraday constant
  • A is the electrode area
  • D is the sample of the oxidized / reduced material.
  • the diffusion coefficient at, C is the concentration of the oxidized / reduced material.
  • the characteristic point in the large-time amperometric section is the current value of the point that is stably expressed by the Cottrell equation after the constant voltage is applied.
  • the time within a few seconds to several minutes after the constant voltage is applied, preferably For example, the time has passed within 1 to 10 seconds.
  • the second sensitive current obtained from the stepped ladder type perturbation voltage is significantly different from the first sensitive current obtained when a constant voltage is applied, and thus, the second sensitive current may be used as a variable having high orthogonality in the entire calibration equation. .
  • a method of finding a feature point in the second sensitive currents corresponding to the section to which the perturbation voltage is applied and a method of making a feature from the feature points are as follows.
  • the calibration equation applying the multivariate regression analysis by linearly combining features may vary greatly depending on the material of the electrode used in the electrochemical biosensor, the arrangement of the electrodes, the shape of the flow path, and the characteristics of the reagents used.
  • the assay used in the method for measuring the concentration of analyte in a biological sample is generally applicable to an electrochemical biosensor having a sample cell including a pair of working electrodes and an auxiliary electrode.
  • the substance to be measured is a glucose or ketone body in the blood or an electrochemically measurable biological metabolite, such as creatine, lactate, cholesterol, phenylketoneurea, glucose-6-phosphatedihydrogenase, etc. Useful for analysis.
  • test function should be developed by using multivariable regression analysis to minimize the variation of erythrocyte volume ratio by experimenting with the function function created using the samples.
  • This assay can then be implemented in the meter's firmware and used to analyze blood samples.
  • the sample cell of the electrochemical biosensor used in the method for measuring the concentration of analyte in a biological sample according to the first embodiment of the present invention is a disposable strip consisting of two screen-printed carbon electrodes, and the glucose dehydrogenation of the electrode. Enzyme and electron transfer media (thionine, ruthenium hexamine chloride) is applied.
  • the measuring device 100 used in the method for measuring the concentration of analyte in a biological sample according to the first embodiment of the present invention is CareSens N (trade name), which is commercially available as shown in FIG. 4.
  • the method for measuring the concentration of analyte in a biological sample operates using the firmware of the measuring device 100 as it is, through the digital-to-analog converter circuit 130 in the microcontroller 150.
  • the blood sugar value is calculated by applying a constant voltage to the electrode to obtain a first response current.
  • the experiment was carried out at a temperature of 23 ° C, and YSI equipment was used as a reference equipment.
  • Blood is separated from red blood cells and plasma by centrifugation, and red blood cells and plasma are mixed again at an appropriate ratio to have a desired red blood cell volume ratio of 10, 20, 30, 42, 50, 60, 70%.
  • Glucose concentration is prepared by adding a high concentration of glucose solution to each sample.
  • the blood samples prepared in this way are prepared to be close to the blood glucose values of 30, 80, 130, 200, 350, 450, and 600 mg / dL for each red blood cell volume value, and the actual blood glucose value of each sample is measured by reference equipment. Decide by
  • the measuring device 100 records the first sensitive current with respect to a constant voltage according to the existing large time current method.
  • the voltage applied is 0V between the two carbon electrodes for 3 seconds after the inflow of blood, and the voltage applied between the two carbon electrodes for 2 seconds is 200 mV. Therefore, after 5 seconds, the current value is recorded for each sample.
  • the blood glucose measurement formula is based on a sample of 42% red blood cell volume ratio.
  • the blood sugar measurement formula is as follows.
  • the slope and intercept of the experimental data are calculated by the least squares method to determine the blood glucose measurement assay.
  • FIG. 6 is a graph showing a correlation between a blood glucose measurement value and a YSI measurement value of a measuring device according to a large current method in a method for measuring a concentration of an analyte in a biological sample according to a first exemplary embodiment of the present invention.
  • 7 is a graph showing the effect of erythrocyte volume fraction on the mean value of blood glucose measurement values of a measuring device according to a large current method in a method for measuring the concentration of an analyte in a biological sample according to a first embodiment of the present invention; (Absolute error for concentrations less than 100 mg / dL and relative error (%) for concentrations above).
  • the average value of the blood glucose measurement value of the measuring device according to the large time current method is While maintaining linearity with respect to erythrocyte volume fraction, it can be seen that the slope decreases as the erythrocyte volume ratio increases.
  • an assay formula that minimizes the effect of erythrocyte volume fraction can be obtained.
  • the experimental environment and the sample used in the method for measuring the concentration of analyte in a biological sample according to the second preferred embodiment of the present invention are the same as the first preferred embodiment of the present invention.
  • Concentration measurement device 100 of the analyte in the biological sample according to the second preferred embodiment of the present invention is different from the blood glucose measurement device 100 according to the first embodiment in the voltage application.
  • Concentration measurement device 100 of the analyte in the biological sample according to the second embodiment of the present invention includes the firmware of the measurement device 100 so that the appropriate perturbation voltage can be applied immediately after the existing constant voltage Changed as well.
  • the firmware of the concentration-side measuring device 100 of the analyte in the biological sample first stores a constant capable of generating a predetermined perturbation voltage in the memory of the measuring device 100, When a constant voltage is applied, a predetermined constant is written to the DAC register, and when a perturbation voltage is applied, the constant value stored in the memory is increased or decremented in the DAC register at a predetermined time period.
  • the voltage is applied between the two electrodes of the strip according to the constant value written in the DAC register.
  • the prepared samples are measured.
  • the obtained response current is stored in the computer.
  • the glycemic expression formula analyzes the stored data to extract the optimal feature points into features, constructs a test formula consisting of these features, and then uses a multivariable regression analysis to determine each feature ( Determine the coefficients for the features to complete the test.
  • the test formula is as follows.
  • I is one or more current values obtained from the first and second sensitive currents, and the features used are as follows.
  • f 3 i at 5.4425 sec (response current at one point in the descending staircase of the fifth stepped ladder)
  • the standard erythrocyte was used as the measuring device used in the first embodiment.
  • the 42% volume ratio is weighted close to each other with concentrations obtained by the time-current method alone, and then the coefficients of each feature are optimized by multivariate regression.
  • the new calibration method thus obtained has the advantage of minimizing the interference effect while maintaining the calibration method according to the existing large time current method.
  • the calibration equation is stored in the measuring device with the firmware modified to apply the perturbation voltage after applying a constant voltage. Results according to the new assay are shown in FIGS. 8 and 9.
  • FIG. 8 is a graph illustrating a method for measuring a concentration of an analyte in a biological sample according to a second preferred embodiment of the present invention, between a blood glucose measurement value and a YSI measurement value obtained by using a time-current method and a stepped ladder type perturbation voltage.
  • 9 is a graph showing the correlation between the blood sugar obtained by using a large time current method and a stepped ladder perturbation voltage in the method for measuring the concentration of analyte in a biological sample according to a second preferred embodiment of the present invention.
  • a graph showing the effect of erythrocyte volume fraction on the mean value of the measurements (expressed as absolute error for concentrations less than 100 mg / dL and relative error (%) for concentrations above).
  • FIG. 10 is a flowchart illustrating a method for measuring the concentration of an analyte in a biological sample according to a preferred embodiment of the present invention.
  • the method for measuring the concentration of the analyte in the biological sample according to a preferred embodiment of the present invention As shown in Figure 10, the analyte in the biological sample according to a preferred embodiment of the present invention
  • ⁇ -shaped stepped ladder-type perturbation voltage is applied to obtain a second response current (S130), the first response current or at least two time points of the second response current Computing a predetermined feature from the mark (S140) and using the test formula consisting of at least one feature (miniature) function to minimize the influence of at least two or more interfering substances in the biological sample (S140) Computing the concentration of the substance (S150).
  • the stepped ladder-shaped perturbation voltage having a ⁇ shape is formed in a stepped wave shape using a conventional DAC circuit as described above.
  • Computing a predetermined feature from the first sensitive current or the second sensitive current may be performed by modifying a current value at a predetermined characteristic point of the first sensitive current or the second sensitive current as it is or by modifying it. Obtaining the feature.
  • Example 3 Example of a Test Formula for Calculating Accurate Blood Glucose Values at Different Temperatures Using Temperature as an Additional Feature
  • a test formula that minimizes the influence of temperature and red blood cell volume ratio can be obtained.
  • red blood cell volume ratios of 10, 20, 42, 55, 70% and blood glucose concentrations of 50, 130, 250, 400, 600 mg / dL were prepared, and the experiments were 5, 12, 18, It carried out at 23, 33, 43 degreeC.
  • the measuring device 100 used in the method for measuring the concentration of the analyte in the biological sample according to the third preferred embodiment of the present invention modified the voltage application portion in the blood glucose measurement device used as in the second embodiment.
  • the structure of the stepped ladder perturbation voltage used in the method for measuring the concentration of analyte in a biological sample according to a third preferred embodiment of the present invention is described in Table 3 below.
  • the prepared samples are measured at each temperature.
  • the obtained response current is stored in the computer.
  • the glycemic calculation formula analyzes the stored data, extracts the optimal feature points into features, constructs a test formula consisting of these features, and then uses multivariable regression analysis to determine each feature ( Determine the coefficients for the features to complete the test.
  • the test formula is as follows.
  • I is one or more current values obtained from the first and second sensitive currents
  • T is a temperature value measured independently
  • a model consisting of the features described above is set up, and as described in the second preferred embodiment of the present invention, the coefficients of the features are determined through multivariate regression based on the blood glucose values measured at the reference facility YSI. Optimize.
  • the calibration equation thus obtained is stored in the measuring device together with the firmware modified to apply the perturbation voltage after applying a constant voltage as in the second embodiment.
  • the results obtained according to the new assay are shown in FIGS. 11 and 12.
  • 11 is a method for measuring the concentration of an analyte in a biological sample according to a third preferred embodiment of the present invention, obtained by using a time-current method, a stepped ladder type perturbation voltage, and a temperature value measured by a measuring device together
  • FIG. 12 is a method for measuring the concentration of an analyte in a biological sample according to a third preferred embodiment of the present invention, obtained by using a combination of a large time current method, a stepped ladder type perturbation voltage, and a temperature value measured by a measuring device
  • a graph showing the effect of temperature on the mean value of blood glucose readings including samples with red blood cell volume 10, 20, 42, 55, 70%, expressed as absolute error for concentrations less than 100 mg / dL, for concentrations above that Relative error (%)).
  • the measurement of the blood glucose value uses blood flow, a constant voltage application step, a stepped ladder-type perturbation voltage application step, a feature calculation from the response currents, and a new calibration equation as shown in FIG. 10. It is configured to include the step of obtaining an accurate blood sugar value.
  • Example 4 Example of assay for measuring ketone bodies
  • the sample cell of the electrochemical biosensor 10 is a disposable strip composed of two carbon electrodes screen-printed,
  • ketone dehydrogenase and electron transfer medium (1-methoxy-5-methylphenazinium methyl sulfate, ruthenium hexamine chloride
  • Blood experiments for confirming the deviation by erythrocyte volume fraction are performed similarly to the first embodiment. Blood is prepared with a sample having 20, 30, 42, 50, 60, 70% red blood cell volume ratio.
  • erythrocyte volume fraction value For each erythrocyte volume fraction value, prepare a value close to the ketone body concentration value of 0.1, 0.5, 1, 2, 3, 4.2, and 5 mmol / L, and the actual blood glucose value of each sample was measured using reference equipment (RX Monaco, Randox). Determine by measuring.
  • the measuring device records the response current with respect to a constant voltage in the measuring device of the same structure as the blood glucose measuring device used in the previous embodiment.
  • the type of applied voltage is applied 200 mV between the two electrodes in the strip from the blood inlet to 4 seconds, 0 mV for the next 4 seconds, then 200 mV again for 2 seconds.
  • Ketone body measurement formula is based on a sample of 42% erythrocyte volume fraction.
  • Ketone body measurement formula is as follows.
  • the slope and intercept of the experimental data are calculated by the least-squares method to obtain the test equation.
  • FIG. 13 is a graph showing a correlation between a ketone body measurement value and a reference device measurement value according to a large current method in the method for measuring the concentration of analyte in a biological sample according to a fourth preferred embodiment of the present invention.
  • 14 is a graph showing the effect of erythrocyte volume fraction on the mean value of ketone body measured value according to the large current method in the method for measuring the concentration of analyte in a biological sample according to a fourth preferred embodiment of the present invention (1.0 mmol / L) For smaller concentrations it is expressed as an absolute error multiplied by 100 and for higher concentrations it is expressed as relative error (%).
  • Example 5 An example of a calibration equation for ketone body measurement using features extracted from feature points after applying constant voltage and perturbation voltage
  • Test equations for the measurements can be obtained.
  • the measuring device is different in voltage application from the measuring device used in the fourth embodiment. That is, the firmware of the meter was changed to apply the perturbation voltage described in the following table immediately after the existing constant voltage.
  • the type of voltage applied is a step which is described in Table 4 below immediately after the voltage used in the fourth embodiment. Applied ladder-type perturbation voltage.
  • the prepared samples were measured.
  • the obtained response current is stored in the computer.
  • the glycemic calculation formula analyzes the stored data, extracts the optimal feature points into features, constructs a test formula consisting of these features, and then uses multivariable regression analysis to determine each feature ( Determine the coefficients for the features to complete the test.
  • the calibration formula for ketone body measurements is as follows.
  • I is one or more current values obtained from the first and second sensitive currents, and the features used are as follows.
  • f 5 curvature (curvature of the response currents of the descending stairs of the fifth stepped ladder)
  • the standard erythrocyte volume ratio was set at 42%. After weighting so as to be close to each other with the concentration obtained by the time current method alone, the coefficients of the features are optimized by multivariate regression.
  • the calibration equation thus obtained is stored in the measuring device together with the firmware modified to apply the perturbation voltage after applying a constant voltage.
  • the results of using the assay in Figs. 15 and 16 are shown.
  • FIG 15 is a graph illustrating a method for measuring a concentration of an analyte in a biological sample according to a fifth preferred embodiment of the present invention, between a ketone body measurement value and a reference device measurement value obtained using a large time current method and a stepped ladder type perturbation voltage
  • Figure 16 is a graph showing the correlation between, Figure 16 is a ketone body obtained by using a large time current method and stepped ladder perturbation voltage in the method for measuring the concentration of the analyte in the biological sample according to a fifth embodiment of the present invention
  • a graph showing the effect of erythrocyte volume fraction on the mean value of the measured values (expressed as absolute error multiplied by 100 for concentrations less than 1.0 mmol / L and relative error (%) for concentrations above).
  • the conventional biosensor is used as it is, and a stepped ladder type perturbation voltage (Fig. 1) is added to the conventional voltage application method for only a short time, and thus the red blood cell volume ratio.
  • a stepped ladder type perturbation voltage Fig. 1
  • the calibration equation when the calibration equation is obtained by using the temperature value measured by the measuring device as an additional feature, the measurement result minimizes both the background effect and the temperature effect. You can get it by simple operation.
  • the perturbation voltage application method used in addition to the existing measurement method maintains the biosensor and measurement device, the current line used in the measurement device, and the calibration of the measurement method (amperometry). It is possible to effectively minimize the interference of the matrix material in the biological sample, especially the inaccuracy resulting from the change of the red blood cell volume ratio, thereby increasing the accuracy of the measurement, and simply measuring the measurement program of the measuring device supplied to the existing market. Upgrades can dramatically improve the accuracy of your measurements.

Abstract

본 발명의 일 실시예에 따른 전기화학적 바이오센서를 이용한 생체시료내 분석대상물질의 농도측정방법은, 상기 전기화학적 바이오센서에 전혈시료를 주입한 후, 일정 시간 직류전압을 인가하여 얻은 감응전류로부터 분석대상물질(analyte)의 농도를 구하는 대시간전류법에 대하여, 직류전압을 인가하여 얻게 되는 감응전류 값과 상기 일정시간 직류전압에 이어서 짧은 시간 동안 수 개의 계단화된 사다리형 섭동전압(step-ladder perturbation potential)을 더 인가하여 얻게 되는 전체 감응전류들에서 미리 정해진 피쳐(feature)들을 얻는 단계와, 상기 적어도 1 이상의 피쳐를 함수로 결합하여 검정식(calibration equation)을 만들고, 상기 생체시료의 다양한 조건들에 대하여 다변수회귀분석(multivariable analysis)으로 최적화함으로써 방해물질에 의한 측정의 오차를 최소화시키는 것을 특징으로 한다.

Description

생체시료 내 분석대상물질의 농도측정방법 및 측정장치
본 발명은 생체시료 내 분석대상물질의 농도측정방법 및 측정장치에 관한 것으로, 대시간전류법(chronoamperometry)으로 혈액시료 농도를 측정할 때, 혈액의 다양한 방해물질, 특히 적혈구용적률에 의해 측정결과에 편차가 클 경우, 짧은 시간 동안 계단화된 사다리형파 형태의 섭동전압을 더 인가하고, 일정전압 및 섭동전압이 인가된 영역의 감응전류들로부터 얻은 피쳐(feature)들로 이루어진 함수를 다양한 조건의 시료들에 대하여 다변수회귀분석(multivariable regression analysis)으로 검정식으로 최적화하여 방해물질에 의한 편차가 최소화된 혈액시료의 농도를 측정하는 생체시료 내 분석대상물질의 농도측정방법 및 측정장치에 관한 것이다.
임상학적으로 중요한 물질의 농도를 측정하는 것은 진단 및 건강 관리를 위해 중요한 일이다. 특히, 혈액과 같은 생체 내의 액체로부터 글루코오즈, 케톤, 크레아틴, 락테이트, 중성지방, 파루베이트, 알코올, 빌리루빈, NAD(P)H, 요산 등과 같은 대사물질(분석대상물질)의 농도를 측정하는 것은 병의 진단, 병증 관리에 있어서 핵심이 되고 있다.
생체 내의 액체로부터 임상학적으로 의미 있는 물질의 농도를 정확하고, 신속하고, 경제적으로 측정하기 위한 방법으로 전기화학적 바이오센서를 사용하는 방법이 널리 사용되고 있다.
이러한 전기화학적 바이오센서(종종 "스트립"으로 칭함)에는 모세관 구조의 시료셀에 효소와 전자전달매개체 및 각종 안정제와 분산제를 포함하는 시약이 코팅되어 있는 한 쌍의 전극(작동전극과 보조전극)이 배치되어 있다.
사용자의 혈액이 상기 전기화학적 바이오센서의 시료셀에 채워지고 휴대용 측정장치에 장착되면, 작동전극으로 일정전압이 인가되고 거기에서 얻어지는 전류가 측정되며, 프로그램된 알고리즘에 따라 계산된 분석대상물질의 농도 값이 수 초에서 수 분 사이에 상기 휴대용 측정장치의 화면에 나타난다.
이와 같은 전기화학적 바이오센서를 사용한 대사물질, 즉 분석대상물질의 측정 및 모니터링은 신속하고 편리하며, 비용도 저렴하기 때문에 전세계적으로 널리 사용되고 있다.
그러나 사용자 및 각 국가의 보건관리 기관들은 전기화학적 바이오센서들에 대하여 편리성 이상으로 정확도를 갖출 것을 요구하고 있고, 이러한 요구는 ISO 15197: 2013과 같은 국제적 기준으로 구체화 되고 있다.
혈액의 농도를 측정하는 전기화학적 바이오센서에 있어서 정확성을 저해하는 요인 중 중요한 방해요소로는 혈액 중의 적혈구용적률을 들 수 있다. 이는 산화/환원되는 물질의 이동 및 확산 속도가 전혈 시료에 포함된 적혈구용적률에 의존하여 측정 전류신호에 크게 영향을 주기 때문이다.
예를 들면, 동일한 혈당 농도의 혈액이라 하더라도 적혈구용적률이 큰 혈액에서는 산화/환원 물질의 이동에 저항이 생겨서 측정 전류신호가 감소한다. 반대로 적혈구용적률이 작은 혈액에서는 측정 전류신호가 증가한다.
이러한 전류신호의 증감은 측정 혈당 농도를 실제보다 낮거나 높게 계산되게 하여 측정을 부정확하게 만든다. 이러한 부정확성을 보정하기 위하여 전기화학적 반응시간을 길게 조절하거나, 측정 비용의 상승을 감수하더라도 바이오센서 내에 별도의 장치를 도입하여 정확성을 높일 수 있는 기술들이 제안되어 왔다.
적혈구용적률에 따른 편차를 최소화하기 위한 노력으로 필터를 사용하여 적혈구를 미리 제거하여 분석대상물질을 측정하는 방법이 제안된 바 있다(미국 특허 제5,708,247호, 제5,951,836호). 이러한 방법은 효과적일 수 있으나, 스트립에 필터를 추가하여 센서를 제작하여야 하기 때문에, 생산 공정이 복잡해 지고 제품의 비용이 증가될 수 있다.
적혈구가 혈액시료에서 물질의 확산과 이동을 방해하여 혈액의 저항을 변화시키므로 망구조를 사용하여 적혈구용적률에 따른 편차를 감소시키는 방법이 제안된 바 있다(미국 특허 제5,628,890호).
또한, 시약으로 적혈구를 용혈시켜 혈장으로 흘러나온 헤모글로빈이 용적률 변화에 따른 전류신호의 증감을 보조적으로 조절하는 역할을 하도록 하는 방법이 제안된 바도 있다(미국 특허 제7,641,785호). 그러나 이러한 방법들은 넓은 적혈구용적률 범위에서는 그 효과가 제한적이다.
최근 전기화학적인 방법으로 추가적인 신호를 얻어 적혈구용적률에 의한 편차를 보정하는 방법들이 제안되었다. 예를 들어, 교류전압을 인가하여 혈액 시료의 임피던스를 측정하여, 적혈구용적률을 측정한 후, 이 값을 이용하여, 분석물질의 측정값을 보정하는 방식이 있다(미국 특허 제7,390,667호, 미국 특허 공개 제 2004-0079652호, 제2005-0164328호, 제2011-0139634호, 제2012-0111739호).
그러나 이런 방법들은 임피던스 측정을 위하여 측정 측정장치에 단순한 직류전압 인가 및 전류측정 회로 외에 교류와 임피던스 측정을 위한 별도의 회로를 필요로 하며, 바이오센서에 별도의 전도도 또는 임피던스 측정 전극을 구비하기도 하기 때문에 전체적인 측정 시스템의 복잡성 및 비용을 증가시키는 문제가 있다(미국특허 제7,597,793호, 미국 특허 공개 제2011-0139634호).
한편, 교류전압을 사용하지 않고, 복수의 크기가 서로 다른 사각파 전압을 다양한 시간 간격으로 혼합하여 인가하면서 복수의 감응전류값을 얻은 후, 이를 기초로 적혈구용적률을 보상하는 방법들이 여러 특허에서 제안되었다(미국 특허 제 6,475,372호, 제 8,460,537호, 미국 특허 공개 제2009-0026094호, 유럽 특허 공개 제2,746,759호, WO2013/164632).
이 방법들은 기존의 바이오센서와 측정장치를 교체하지 않고도 적용이 가능한 장점이 있다. 그러나 이러한 방법들에서는 측정대상물질과 효소 및 전자전달매개체의 의도된 전기화학반응에 의한 전류만 발생하는 것이 아니라, 인가전압이 급격히 변화할 때 전극표면의 전기이중층에 남아 있는 산화/환원 반응물질들의 조절할 수 없는 전기화학반응에 의한 전류(바탕전류: background current)도 발생할 수 있다.
따라서, 대량생산하는 바이오센서에서는 전극의 표면상태나 시약의 용해성 및 반응의 균질성이 스트립 센서마다 정확히 일치하도록 생산하는 것은 상당히 어려우며, 따라서 인가전압이 급격히 변할 때 발생하는 바탕전류의 재현성 또한 통계적 오차범위 내에서 조절하기 어렵다. 또한 인가전압의 급격한 변화 시 발생하는 충전전류 또한 각 바이오센서 전극마다 같은 정도로 정밀하게 조절할 수 없기 때문에 보정의 재현성이 떨어지는 단점이 있다.
본 발명자들은 주기성을 갖는 순환전압전류방법이 적혈구용적률에 대한 편차를 줄이는데 효과적일 수 있음을 발견하여 이를 대시간전류법과 함께 사용하여 적용한 바 있다(한국 특허 공개 제2013-0131117호).
이 방법은 적혈구용적률을 보정하기 위하여 다양한 전압의 사각파를 혼합하여 사용하는 방법들에 비해 급격한 전압 변화에 따르는 불안정한 충전전류의 영향을 줄여주며, 전압이 스캔되는 동안 전극표면에서 전기이중층 내에 존재하는 산화환원 물질들의 농도가 전압변화에 대비하여 적정한 기울기로 변화하게 되므로 발생하는 바탕전류의 크기가 특정한 범위 내에서 조절되므로 전체 보정의 효과도 높일 수 있다는 장점이 있다.
다만, 이 방법에서는 순환전압전류법에서 얻은 전류들을 이용하여 적혈구용적률을 별도로 추정한 후, 추정된 적혈구용적률을 농도를 구하는 식에 적용하여 적혈구용적률의 영향을 보정하므로 추정한 적혈구용적률의 정확성에 따라 전체 보정의 효과가 크게 좌우되는 단점이 있다.
또한, 이 방법에서는 순환전압전류법을 안정적으로 구현하고 이에 대응하는 감응전류들을 측정하기 위해서 사각파형 일정전압의 대시간전류법만 사용하는 경우에 비해 복잡한 측정 회로를 필요로 할 수 있다는 단점이 있다.
전기화학적 바이오센서에서 비대칭순환전압전류법(acyclic voltammetry)을 사용하여 순방향주사와 역방향주사의 전압을 비대칭적으로 적용하여 적혈구용적률이 보정된 혈액의 농도를 구하는 방법이 제안된 바 있다(미국 특허 제8,287,717호).
이 방법에서는 마찬가지로 비대칭순환전압전류법을 적용하여 얻을 수 있는 전압의 함수들로 구성된 감응전류들을 적절히 조합하여 적혈구용적률을 구하고, 별도의 계산식에 의해 구해진 적혈구용적률을 혈액의 농도를 구하는 식에 적용하여 방해효과를 제거하여야 하며, 넓은 범위의 전압에서 빠른 스캔에 응답할 수 있는 별도의 회로가 필요하다는 단점이 있다.
위에서 언급한 방법들 이외에도 적혈구용적률의 영향을 최소화하거나 제거하려는 노력들을 많이 찾아 볼 수 있다. 그러나, 대부분의 이러한 방법들은 새로운 스트립 구조를 필요로 하거나 별도의 회로구조를 갖는 측정장치의 사용이 필요하거나 하거나 기존의 시장에 공급된 스트립 및 측정장치는 활용할 수 없는 것들이다.
본 발명은 이러한 문제점들을 해소하기 위하여 안출된 것으로 본 발명의 목적은 기존의 시장에 제공된 스트립과 측정장치 하드웨어를 그대로 사용하면서 단지 측정장치의 펌웨어만 간단히 업그레이드하여 적혈구용적률에 따른 측정오차를 감소시킬 수 있는 생체시료 내 분석대상물질의 농도측정방법 및 측정장치를 제공하는 것이다.
또한, 본 발명의 목적은, 일정전압을 주전압으로 인가하고 연이어 인가하는 계단화된 사다리형파형 인가전압을 섭동전압으로 사용함으로써 혈액 내 물질들에 의한 방해작용을 효과적이며 경제적으로 제거 또는 최소화하는 생체시료 내 분석대상물질의 농도측정방법 및 측정장치를 제공하는 것이다.
또한, 본 발명의 목적은, 기존 시장에 공급된 전기화학적 바이오센서와 측정장치에서 사용하였던 대시간전류법을 그대로 사용하면서, 짧은 시간 동안 계단화된 사다리형파형 인가전압을 대시간전류법에 연이어 적용하여 얻어지는 다양한 정보를 같이 활용함으로써 기존의 제품에서 사용하던 검정의 방법(calibration)을 거의 그대로 유지하면서도 적혈구용적률의 영향을 획기적으로 감소시킬 수 있는 생체시료 내 분석대상물질의 농도측정방법 및 측정장치를 제공하는 것이다.
본 발명의 일 실시예에 따른 전기화학적 바이오센서를 이용한 생체시료 내 분석대상물질의 농도측정방법은, 분석대상물질의 산화환원 반응을 촉매할 수 있는 효소와 전자전달매개체가 고정되어 있으며 작동전극과 보조전극을 구비한 시료 셀에 액상의 생체시료를 주입한 후,
상기 분석대상물질의 산화환원 반응을 개시하고 전자전달 반응을 진행시킬 수 있도록 상기 작동전극에 일정직류 전압을 인가하여 제 1 감응전류를 얻는 단계와,
상기 일정직류 전압을 인가 후 Λ 모양의 계단화된 사다리형 섭동전압을 인가하여 제 2 감응전류를 얻는 단계와,
상기 제 1 감응전류 또는 상기 제 2 감응전류로부터 2 시점 이상의 특징점으로 부터 미리 정해진 피쳐(feature)를 계산하는 단계와,
상기 생체물질 내의 방해물질들의 영향이 감소되는, 적어도 1 이상의 피쳐(feature)함수로 구성된 검정식을 사용하여 분석대상물질의 농도를 계산하는 단계를 포함한다.
본 발명의 일 실시예에 따른 전기화학적 바이오센서를 이용한 생체시료 내 분석대상물질의 농도측정장치는
상기 분석대상물질의 산화환원 반응을 촉매할 수 있는 산화환원 효소와 전자전달매개체가 고정되어 있으며 작동전극과 보조전극을 구비한 시료셀이 삽입되는 커넥터와,
상기 분석대상물질의 산화환원 반응을 개시하고 전자전달 반응을 진행시키기 위한 일정직류 전압과, 상기 일정직류 전압에 이어서 상기 시료셀의 전위를 요동시키기 위한 Λ 모양의 계단화된 사다리형 섭동전압를 인가하기 위한 디지털-아날로그컨버터 회로와,
상기 디지털-아날로그컨버터 회로를 제어하고, 상기 Λ 모양의 계단화된 사다리형 섭동전압을 이용하여 검정식으로부터 직접 상기 분석대상물질의 농도값을 구하는 마이크로콘트롤러를 포함한다.
본 발명의 일 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법 및 측정장치는 일정전압과 Λ(람다) 모양의 계단화된 사다리형 펄스(또는 섭동전압)으로 구성된 인가전압에 대한 서로 다른 특성의 제 1 또는 제 2 감응전류를 미리 설정된 피쳐(feature)로 변형하여 적절한 통계수학적 방법으로 검정식을 얻기 때문에 생체시료의 바탕물질들에 의한 방해효과(matrix effect)를 제거하거나 최소화하여 분석대상물질의 농도를 측정할 수 있다.
본 발명의 일 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법 및 측정장치에 의해서 효과적으로 줄일 수 있는 방해요소 중 혈액시료의 경우 대표적인 것이 적혈구용적률로서, 전기화학적 바이오센서, 즉 스트립의 구조나 시약의 개선을 필요로 하지 않으며, 측정장치의 구조 역시 일정전압을 인가하여 전류값을 측정하는 기존의 회로를 그대로 사용할 수 있다.
또한, 본 발명의 일 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법 및 측정장치는 이미 기존의 시장에서 보편적으로 사용하는 대시간전류법 구간을 전혀 변경하지 않고, 그 직후에 인가되는 섭동전압 영역에서 보정신호를 얻기 때문에 기존의 측정 성능 및 특성을 그대로 유지하면서, 적혈구용적률에 대한 편차를 최소화할 수 있다.
또한, 본 발명의 일 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법 및 측정장치는 혈구용적률에 대한 편차가 최소화되도록 감응전류로부터 추출한 피쳐(feature)들로 구성된 함수를 표준 실험결과들과 비교하여 다변수회귀분석(multivariable regression analysis)으로 얻어진 검정식을 이용하여 분석대상물질의 농도를 결정할 수 있어서 별도로 적혈구용적률을 구하는 과정이 필요치 않으며, 두 가지의 다른 측정값을 따로 얻는 과정에서 발생할 수 있는 재현성의 변이(fluctuation in precision) 문제를 최소화 할 수 있다.
본 발명의 일 실시예에 따른 생체시료 내 분석대상물질의 농도측정장치는 본 발명의 일 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 따라 결정된 검정식을 사용하여 작성된 프로그램을 업그레이드하여 입력함으로써 기존의 스트립과 하드웨어를 그대로 활용하여 적혈구용적률의 영향이 최소화된 분석대상물질의 농도를 얻을 수 있게 된다.
또한, 본 발명의 일 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법은 적혈구용적률을 구한 후, 이를 검정식에 별도로 대입하는 것보다 더 경제적이고 효율적인 과정을 통해 분석대상물질의 농도를 보다 정확히 결정할 수 있다.
도 1은 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용된 Λ-계단화된 사다리형 섭동전압 (Λ-stepladder-type perturbation potential)을 나타내는 그래프.
도 2는 도 1에서 인가한 전압에 대응하여 얻어지는 감응전류를 나타내는 그래프.
도 3는 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용된 Λ-계단화된 사다리형 섭동전압의 구조를 설명하기 위한 그래프.
도 4은 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 의한 검정식이 저장된 측정장치의 전후방 사시도.
도 5는 도 4의 생체시료 내 분석대상물질의 농도측정장치의 회로를 나타내는 블록도.
도 6는 본 발명의 바람직한 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 측정장치의 혈당 측정값과 YSI 측정값 사이의 상관관계를 나타내는 그래프.
도 7은 본 발명의 바람직한 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 측정장치의 혈당 측정값의 평균값에 대한 적혈구용적률의 영향을 나타내는 그래프(100 mg/dL보다 작은 농도에 대해서는 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함).
도 8은 본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압을 함께 이용하여 얻은 혈당 측정값과 YSI 측정값 사이의 상관관계를 나타내는 그래프.
도 9은 본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압을 이용하여 얻은 혈당 측정값의 평균값에 대한 적혈구용적률의 영향을 나타내는 그래프(100 mg/dL보다 작은 농도에 대해서는 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함).
도 10는 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법을 나타내는 순서도.
도 11은 본 발명의 바람직한 제 3 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압 및 측정장치에서 측정한 온도값을 함께 이용하여 얻은 혈당 측정값과 YSI 측정값 사이의 상관관계를 나타내는 그래프(적혈구용적률 10, 20, 42, 55, 70%인 시료 포함).
도 12은 본 발명의 바람직한 제 3 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압 및 측정장치에서 측정한 온도값을 함께 이용하여 얻은 혈당 측정값의 평균값에 대한 온도의 영향을 나타내는 그래프(적혈구용적률 10, 20, 42, 55, 70%인 시료 포함, 100 mg/dL보다 작은 농도에 대해서는 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함).
도 13는 본 발명의 바람직한 제 4 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 케톤체 측정값과 기준장비 측정값 사이의 상관관계를 나타내는 그래프,
도 14은 본 발명의 바람직한 제 4 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 케톤체 측정값의 평균값에 대한 적혈구용적률의 영향을 나타내는 그래프(1.0 mmol/L보다 작은 농도에 대해서는 100을 곱한 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함).
도 15는 본 발명의 바람직한 제 5 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압을 이용하여 얻은 케톤체 측정값과 기준장비 측정값 사이의 상관관계를 나타내는 그래프.
도 16는 본 발명의 바람직한 제 5 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압을 이용하여 얻은 케톤체 측정값의 평균값에 대한 적혈구용적률의 영향을 나타내는 그래프(1.0 mmol/L보다 작은 농도에 대해서는 100을 곱한 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함).
이하 본 발명의 바람직한 실시예에 따른 생체시료내 분석대상물질의 농도측정방법 및 측정장치에 대하여 첨부도면을 참조하여 상세히 설명한다.
본 명세서에 있어서, 혈당 측정 시의 헤마토크릿에 의하여 측정오차가 발생하는 것을 보정하는 것을 바람직한 실시예로 설명하지만, 글루코스 검사와 마찬가지로 특정효소를 도입함으로써 다양한 생체대사물질, 예를 들면 β-hydroxybutyric acid, cholesterol, triglyceride, lactate, pyruvate, alcohol, bilirubin, uric acid, phenylketouria, creatine, creatinine, glucose-6-phosphate dehydrogenase, NAD(P)H 와 같은 유기물 또는 무기물의 농도도 동일한 방법으로 측정값을 보정할 수 있다.
따라서 본 발명은 시료층 조성물에 포함되는 효소의 종류를 달리함으로써 다양한 생체대사물질의 정량에 이용될 수 있다.
예를 들면, 글루코오스산화효소(glucose oxidase, GOx), 글루코오스탈수소화효소(glucose dehydrogenase, GDH), 글루타메이트산화효소(glutamate oxidase) 글루타메이트탈수소화효소(glutamate dehydrogenase), 콜레스테롤산화효소, 콜레스테롤에스테르화효소, 락테이트산화효소, 아스코빅산산화효소, 알코올산화효소, 알코올탈수소화효소, 빌리루빈산화효소 등을 사용하여, 글루코오스, 글루타메이트, 콜레스테롤, 락테이트, 아스코빅산, 알코올 및 빌리루빈 등의 정량을 수행할 수 있다.
상기 효소들과 같이 사용할 수 있는 전자전달매개체는 ferrocene, ruthenium hexamine(III) chloride, potassium ferricyanide, 1,10-phenanthroline-5,6-dione, bipyridine 혹은 phenanthroline을 리간드로 갖는 osmium complex, 2,6-dimethyl-1,4-benzoquinone, 2,5-dichloro-1,4-benzoquinone, 3,7-diamino-5-phenothiaziniumthionine, 1-methoxy-5-methylphenazinium methylsulfate, methylene blue, toluidine blue중 하나일 수 있으나, 이 화합물들에 한정되지 않고 생체대사물질의 산화환원반응을 촉매하는 효소와 함께 전자전달이 가능한 유기 및 무기 전자전달매개체를 포함한다.
본 발명의 일 실시예에 따른 휴대용 측정장치는, 작동전극 및 보조전극이 서로 다른 평면상에서 대면하도록 구비되고, 상기 작동전극 위에 물질에 따른 효소 및 전자전달매체를 포함한 시약조성물이 코팅된 대면형 전기화학적 바이오센서가 적용될 수 있다.
또한, 본 발명의 일 실시예에 따른 휴대용 측정장치는, 작동전극 및 보조전극이 한 평면상에 구비되고, 상기 작동전극 위에 물질에 따른 효소 및 전자전달매체를 포함한 시약조성물이 코팅된 평면형 전기화학적 바이오센서가 적용될 수 있다.
이제 도 1 내지 도 5를 참조하여 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법 및 측정장치에 대하여 상세히 설명한다.
도 1과 도 2는 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용된 Λ-계단화된 사다리형 섭동전압 (Λ-stepladder-type perturbation potential)과 이에 대응하여 얻어지는 감응전류를 나타내는 그래프이고, 도 3은 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용된 Λ-계단화된 사다리형 섭동전압의 구조를 설명하기 위한 그래프이며, 도 3은 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 의한 검정식이 저장된 측정장치의 전후방 사시도이고, 도 5는 도 4의 생체시료 내 분석대상물질의 농도측정장치의 회로를 나타내는 블록도이다.
도 1에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 생체시료내 분석대상물질의 농도측정방법에 있어서, 계단화된 사다리형 섭동전압은 일정전압(VDC)이 인가된 후에 연이어 인가된다. 이에 따라 감응전류가 측정된다.
도 3에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 생체시료내 분석대상물질의 농도측정방법에 사용된 섭동전압은 계단화된 사다리형파로 구성되며, 섭동전압의 특징은 각 계단의 높이(Vstep), 각 계단의 인가시간(tstep), 전체 변화 범위에서의 중간전압과 일정전압과의 차이(Vcenter), 중간전압과 봉우리 전압 값과의 차이(Vpeak), 전체 계단화된 사다리형파의 봉우리 전압 값과 인접한 다음 계단화된 사다리형파의 봉우리 전압 값과의 시간차(tcycle)로 이루어져 있으며, 다음의 표 1에 나타낸 범위를 갖는다.
계단화된 사다리형파의 범위를 나타내는 [표 1]은 본 발명의 바람직한 일 실시예일 뿐이며, 응용에 따라 다양하게 변형할 수 있다.
표 1
최저값 적정값 최고값
Vstep 0.5 mV 1 ~ 10 mV 20 mV
tstep 0.001 sec 0.01 ~ 0.05 sec 0.1 sec
VDC 50 mV 150 ~ 300 mV 800 mV
Vcenter -150 mV -100 ~ 100 mV 150 mV
Vpeak 5 mV 12 ~ 60 mV 150 mV
tcycle 0.01 sec 0.05 ~ 0.2 sec 1 sec
본 발명의 바람직한 실시예에 따른 생체시료내 분석대상물질의 농도측정방법에 있어서, 상기 분석대상물질의 농도 결정을 위해 사용되는 전류값들은 제 1 또는 2 감응전류의 한 계단 또는 복수의 계단에서 얻을 수 있는 점들이다.
도 4에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 생체시료내 분석대상물질의 농도측정장치(100)는 기존의 전기화학적 바이오센서, 즉 스트립(10)의 한 쌍의 작동전극과 보조전극의 구조를 그대로 유지하면서, 전위를 변화시키는 섭동전압을 인가함으로써, 수초 이내, 바람직하게는 0.1 내지 1초 이내에 보정을 위한 추가 신호를 얻을 수 있다.
도 5에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 생체시료내 분석대상물질의 농도측정장치(100)는 상기 전기화학적 바이오센서(10)가 커넥터(110)에 장착되면, 상기 커넥터(110)는 전류-전압 변환기(120)에 전기적으로 접속되는데, 마이크로콘트롤러(150 ; MCU)가 기존의 대시간전류법에 따라 일정전압을 인가하도록 농도측정장치(100)에 구비되어 있던 디지털-아날로그컨버터 회로(130: DAC)를 통해서 별도의 섭동전압 회로 없이 섭동전압을 상기 스트립(10)의 작동전극에 인가할 수 있도록 구성된다.
이를 위해서. 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측측정장치(100)의 펌웨어는 먼저 미리 결정된 섭동전압을 발생시킬 수 있는 상수를 측정장치(100)의 메모리에 저장하고, 일정전압을 인가할 때는 정해진 상수를 DAC(130)의 레지스터에 기록하고, 섭동전압을 인가할 때는 정해진 시간을 주기로 상기 메모리에 저장된 상수값을 증/가감시켜 DAC(130)의 레지스터에 기록한다.
상기 마이크로콘트롤러(150)는 상기 DAC(130) 레지스터에 기록된 상수값에 따라 스트립의 두 전극 사이에 해당 전압을 인가시킨다.
상기 스트립(10)을 통해서 측정된 상기 제 1 또는 제 2 감응전류는 상기 커넥터(110) 및 상기 전류-전압 변환기(120)를 거쳐 직접 아날로그-디지털컨버터 회로(120: ADC)를 통해서 측정될 수 있다.
상기 섭동전압을 도 3에 도시된 바와 같이 계단파로 구성하는 것은, 교류나 선형주사법을 사용하는 방법들에 비해 회로가 간단해진다는 장점 외에도 다양한 전압의 펄스 사용시 분석에 방해가 되는 충전전류가 발생하는 것을 줄일 수 있다는 장점이 있다.
도 1에 도시된 바와 같이, 일정전압을 인가한 직후에 계단화된 사다리형파를 일정한 주기와 진폭을 가지고 인가하면, 전극 근처의 확산층에서 산화/환원하는 요소들의 농도 분포에 요동이 발생한다.
이러한 요동 혹은 섭동은 감응전류의 특성에 중요한 변화를 일으키는데, 이 변화는 계단화된 사다리형파를 구성하는 일 계단 또는 복수의 계단에서 얻은 전류값을 가지고 적혈구용적률의 영향을 제거 또는 최소화할 수 있는 중요한 수단이 될 수 있다.
여기서 감응전류를 제 1 감응전류 또는 제 2 감응전류로 표시한 것은 요동 혹은 섭동에 의해서 감응전류의 특성이 바뀌어 서로 다르다는 것을 나타내기 위해서이다.
일정전압 인가 후에 검정식에서 적혈구용적률의 영향을 제거할 목적으로 짧은 시간 동안에 추가적으로 인가하는 주기성을 갖는 계단화된 사다리형 섭동전압 인가방식을 "Λ-계단화된 사다리형 섭동전압(Λ-stepladder perturbation potential) 혹은 간단히 계단화된 사다리형 전압(stepladder potential)"으로 정의한다.
위에서 특성이 서로 다른 전류란 혈당과 적혈구용적률(방해물질)에 의존하는 방식이 서로 달라서 적혈구용적률의 영향을 효과적으로 분리해내거나 보정할 수 있는 변수로 사용할 수 있는 전류를 말한다.
예를 들어 둘 이상의 전압 펄스를 적당한 시간 간격으로 인가하고 각 펄스에서 제 1 및 제 2 감응전류를 측정할 경우, 상기 제 1 및 제 2 감응전류의 전류값은 혈당과 적혈구용적률에 따라 값이 결정되기 때문에 다음과 같이 혈당과 적혈구용적률의 함수(g1, g2)로 표현할 수 있다.
만일 위 두 전류를 나타내는 함수(g1, g2) 사이에 혈당과 적혈구용적률이 전류에 기여하는 방식이 같아서 i1 = ki2 형태의 상수의 선형식이 성립할 경우는 특성이 같은 전류로 분류하며, 그렇지 않은 경우를 특성이 다르다고 표현하기로 한다.
특성이 같은 전류끼리는 회귀분석 시 변수 간의 선형적 의존성 때문에 정확하게 적혈구용적률의 영향을 산출해 낼 수 없거나 보정하기 어렵다.
그러나, 계단화된 사다리형 섭동전압을 인가하고 얻을 수 있는 감응전류는 각각의 계단이 짧은 시간 동안 승단될 때 또는 하단될 때 전기이중층 근처에서 시료를 요동하는 정도가 지속적으로 변하기 때문에 전자전달 속도 및 충전전류의 영향도 따라서 변하여 대시간전류법에서 얻는 전류와는 그 특성이 많이 달라질 수 있다.
이와 같이, 일정전압 및 섭동전압에 대응하는 제 1 및 제 2 감응전류들에서 그 특성이 많이 달라서 본 발명의 일 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용되는 검정식(calibration equation)을 구성하는데 유용한 부분들을 특징점(characteristic point)이라 하고, 특징점들의 전류값들을 있는 그대로 사용하거나 또는 적절하게 변형하여 검정식에 사용하기에 적절한 변수로 만든 것을 피쳐(feature) 라 정의한다.
전기화학적 바이오센서에서 대시간전류법의 감응전류는 바이오센서의 시약이 샘플셀 내에서 시료와 섞여 균일한 액상에 도달했을 때 코트렐 방정식으로 근사할 수 있다.
Figure PCTKR2014008673-appb-I000001
여기서, n은 전극에서 산화/환원되는 물질(예를 들면, 전자전달매개체)의 한 분자당 이동하는 전자수이고, F는 페러데이 상수, A는 전극 면적, D는 산화/환원되는 물질의 시료 내에서의 확산계수, C는 산화/환원되는 물질의 농도이다.
대시간전류법 구간에서의 특징점은 일정전압이 인가된 후 안정적으로 코트렐 식으로 잘 표현되는 지점의 전류값으로, 현재의 전기화학적 바이오센서에서는 일정전압 인가된 후 수 초에서 수분 이내의 시간, 바람직하게는 1 ~10 초 이내의 시간이 지난 시점이다.
전술한 바와 같이, 계단화된 사다리형 섭동전압에서 얻은 제 2 감응전류는 일정전압을 인가할 때 얻어지는 제 1 감응전류와는 특성이 크게 달라 전체 검정식에서 직교성(orthogonality)이 높은 변수로 사용할 수 있다.
상기 섭동전압이 인가되는 구간에 대응하는 제 2 감응전류들에서 특징점을 찾는 방법 및 이 특징점들로 피쳐(feature)를 만드는 방법은 다음과 같다.
아래의 방법은 하나의 예이며 응용의 목적에 따라 다양하게 변형하여 적용할 수 있다.
1) 특정 계단화된 사다리형의 봉우리 및 골 전압 부근에서의 감응전류들
2) 계단화된 사다리형에서 각 계단의 감응전류들로 이루어진 곡선의 곡률
3) 계단화된 사다리형의 봉우리에서의 전류값과 골에서의 전류값의 차이
4) 오르막과 내리막 중간 계단화된 사다리형에서의 감응전류들
5) 각 계단화된 사다리형 사이클의 시작 및 끝 지점에서의 감응전류들
6) 계단화된 사다리형파에서 얻은 감응전류들의 평균값
7) 상기 1 내지 6의 피쳐에서 얻은 전류값들을 사칙연산, 지수, 로그, 삼각함수 등의 수학적 함수로 표현하여 얻을 수 있는 값
이와 같이 상기 섭동전압이 인가되는 구간에 대응하는 제 2 감응전류들에서 특징점을 찾거나 이 특징점들에서 얻은 전류값들을 피쳐(feature)로 만들고, 이를 선형으로 결합하여 다변수회귀분석(multivariable regression analysis)을 적용하면 적혈구용적률에 의한 영향을 최소화한 검정식을 얻을 수 있다.
적혈구용적률에 의한 영향을 최소화한 검정식을 만드는 구체적인 방법은 이후 설명하는 제 1 내지 제 5 실시예를 참조하여 자세히 설명한다.
다만, 피쳐(feature)를 선형 결합하여 다변수회귀분석을 적용한 검정식은 전기화학적 바이오센서에서 사용되는 전극의 재질, 전극의 배열 방식, 유로의 모양, 사용하는 시약의 특성 등에 따라 크게 달라질 수 있다.
본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용된 검정식은 한 쌍의 작동전극과 보조전극을 포함한 시료셀을 갖는 전기화학적 바이오센서에 보편적으로 적용이 가능하며, 특히, 측정하고자 하는 물질이 혈액 중의 글루코오즈 또는 케톤체이고 혹은 전기화학적으로 측정가능한 생체 대사물질인 경우, 예를 들어 크레아틴, 락테이트, 콜레스테롤, 페닐케톤유레아, 글루코스-6-포스페이트디하드로지네이즈 등의 분석에 유용하다.
본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법을 실시하기 위해서는 일정전압과 계단화된 사다리형 섭동전압에 대응하는 제 1 및 제 2 감응전류들에서 얻을 수 있는 피쳐(feature)들을 사용하여 만든 피쳐함수를 다양한 조건의 시료들로 실험을 통해 적혈구용적률의 편차가 최소화될 수 있게 다변수회귀분석(multivariable regression analysis)으로 최적화하여 검정식을 개발해야 한다.
그 다음, 이 검정식을 측정기의 펌웨어에 구현하여, 혈액 시료를 분석할 때 사용할 수 있다.
[제 1 실시예] 일정전압에 대한 감응전류를 이용한 혈당측정방법
본 발명의 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용된 전기화학적 바이오센서의 시료셀은 스크린인쇄된 2개의 탄소 전극으로 이루어져 있는 일회용 스트립이며, 상기 전극에 글루코오스 탈수소화 효소 및 전자전달매개체(thionine, ruthenium hexamine chloride)가 도포되어 있다.
본 발명의 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용된 측정장치(100)는 도 4에 도시된 시중에서 구입할 수 있는 CareSens N (상표명)이다.
본 발명의 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법은 이 측정장치(100)의 펌웨어를 그대로 사용하여, 마이크로콘트롤러(150)에서 디지털-아날로그 컨버터회로(130)를 통해 작동전극에 일정 전압 인가하여 이에 대한 제 1 감응전류를 얻어 혈당값을 계산한다.
온도 23℃에서 실험하였으며, 기준장비로는 YSI 장비를 사용한다.
적혈구용적률에 의한 편차를 확인하기 위해, 다음과 같은 혈액 실험을 실시할 수 있다.
혈액은 정맥혈에서 채혈한 혈액을 원심분리를 통해 적혈구와 혈장으로 분리하고, 원하는 값의 적혈구용적률을 갖도록 적혈구와 혈장을 적정비율로 다시 혼합하여 10, 20, 30, 42, 50, 60, 70% 적혈구용적률을 갖는 시료를 준비한다. 글루코오스 농도는 각 시료에 높은 농도의 글루코스 용액을 첨가하여 준비한다.
이렇게 해서 준비한 혈액 시료는 각 적혈구용적률 값에 대하여 30, 80, 130, 200, 350, 450, 600 mg/dL의 혈당값에 가까운 값이 되도록 준비하고, 실제 각 시료의 혈당값은 기준장비로 측정하여 결정한다.
한편, 측정장치(100)는 기존의 대시간전류법에 따라 일정전압에 대한 제 1 감응전류를 기록한다.
이 때 인가하는 전압의 형태는 혈액 유입 후, 3초간 두 탄소 전극 사이에 인가되는 전압은 0V이며, 이후 2초간 두 탄소 전극 사이에 인가되는 전압은 200 mV이되게 한다. 따라서, 5초 후 전류값을 각 시료에 대해 기록한다.
혈당 측정 계산식은 42% 적혈구용적률의 시료를 기준으로 작성한다. 혈당 측정 계산식은 다음과 같다.
Glucose = slope * it=5sec(5초에서의 전류값) + intercept
실험 데이터에 대해 slope과 intercept를 최소자승법으로 계산하여, 혈당 측정 검정식을 결정한다.
이렇게 구한 검정식을 사용하여 모든 적혈구용적률 시료에 대해 계산한 결과는 도 6 및 도 7에 나타내었다.
도 6는 본 발명의 바람직한 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 측정장치의 혈당 측정값과 YSI 측정값 사이의 상관관계를 나타내는 그래프이고, 도 7은 본 발명의 바람직한 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 측정장치의 혈당 측정값의 평균값에 대한 적혈구용적률의 영향을 나타내는 그래프(100 mg/dL보다 작은 농도에 대해서는 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함)이다.
도 6 및 도 7에 도시된 바와 같이, 본 발명의 바람직한 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 측정장치의 혈당 측정값의 평균값은 모든 적혈구용적률에 대해 선형성을 유지하고 있으나, 적혈구용적률이 증가할수록 기울기가 감소하는 것을 확인할 수 있다.
특히, 도 7에 도시된 바와 같이, 각 혈당 측정값의 적혈구용적률에 대한 경향성은 42%를 기준으로 양끝으로 갈수록 편차가 증가하는 것을 알 수 있다.
[제 2 실시예] 일정전압과 섭동전압을 인가한 후의 특징점들에서 추출한 피쳐(feature)들을 이용한 검정식의 예
본 발명의 바람직한 제 1 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용한 스트립(10)과 측정장치(100)를 사용하여, 적혈구용적률의 영향을 최소화한 검정식을 구할 수 있다.
본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용한 실험환경과 시료는 본 발명의 바람직한 제 1 실시예와 동일하다.
본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측측정장치(100)는 제 1 실시예에 따른 혈당측정장치(100)와 전압인가 부분에서 상이하다.
본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측측정장치(100)는 기존의 일정전압 인가 직후에 적절한 섭동전압을 인가할 수 있도록 측정장치(100)의 펌웨어를 다음과 같이 변경하였다.
본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측측정장치(100)의 펌웨어는 먼저 미리 결정된 섭동전압을 발생시킬 수 있는 상수를 측정장치(100)의 메모리에 저장하고, 일정전압을 인가할 때는 정해진 상수를 DAC 레지스터에 기록하고, 섭동전압을 인가할 때는 정해진 시간을 주기로 상기 메모리에 저장된 상수값을 증/가감시켜 DAC 레지스터에 기록한다.
상기 DAC 레지스터에 기록된 상수값에 따라 스트립의 두 전극 사이에 해당 전압이 인가된다.
이러한 방법으로 인가한 계단화된 사다리형형 섭동전압의 구조는 아래의 [표 2]에 기술되어 있다.
표 2
Vstep 2.0 mV
tstep 0.0025 sec
VDC 200 mV
Vcenter 200 mV
Vpeak 20 mV
tcycle 0.1 sec
이렇게 준비된 혈당값 측정장치(100)를 사용하여, 조제된 시료들을 측정한다. 이때, 얻은 감응전류를 컴퓨터에 저장한다.
혈당값 계산 식은 저장된 데이터를 분석하여 최적의 특징점들을 추출하여 피쳐(feature)로 만들고, 이 피쳐(feature)들로 이루어진 검정식을 구성한 다음, 다변수회귀분석(multivariable regression analysis)을 통해 각 피쳐(feature)들에 대한 계수를 결정하여 검정식을 완성한다. 검정식은 다음과 같다.
Figure PCTKR2014008673-appb-I000002
여기서 i는 제 1감응전류 및 제 2감응전류에서 얻을 수 있는 1 이상의 전류값이며, 사용된 피쳐(feature)는 다음과 같다.
f1 = i at 5 sec (일정전압에서의 감응전류)
f2 = i at 5.4925 sec(6번째 계단화된 사다리형의 올라가는 계단에서의 한 지점에서의 감응전류)
f3 = i at 5.4425 sec(5번째 계단화된 사다리형의 내려가는 계단에서의 한 지점에서의 감응전류)
f4 = curvature (5번째 계단화된 사다리형의 내려가는 계단들의 감응전류들로 이루어진 곡률)
f5 = f1 2
f6 = f2 2
f7 = f3 2
f8 = f4 2
f9 = 1/f1
f10 = 1/f2
f11 = 1/f3
f12 = 1/f4
위와 같은 피쳐(feature)로 이루어진 모델을 설정하고, 각 시료에 대해 계산된 혈당값을 다양한 적혈구용적률의 시료 조건에서 YSI에서 측정된 값에 일치시키기 위하여, 제 1 실시예에서 사용한 측정장치로 표준 적혈구용적률 42%에 대해 대시간전류법만으로 얻은 농도와 서로 가깝도록 가중치를 넣은 후, 각 피쳐(feature)들의 계수를 다변수회귀법으로 최적화한다. 이렇게 얻어진 새로운 검정식은 기존의 대시간전류법에 따른 검정 방식을 유지하면서도 방해물질 효과를 최소화할 수 있는 장점이 있다.
검정식은 일정전압 인가 후 섭동전압을 가하도록 변형된 펌웨어와 함께 측정장치에 저장된다. 새로운 검정식에 따른 결과는 도 8 및 도 9에 나타난다.
도 8은 본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압을 함께 이용하여 얻은 혈당 측정값과 YSI 측정값 사이의 상관관계를 나타내는 그래프이고, 도 9는 본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압을 이용하여 얻은 혈당 측정값의 평균값에 대한 적혈구용적률의 영향을 나타내는 그래프(100 mg/dL보다 작은 농도에 대해서는 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함)이다.
도 8을 통해서 알 수 있는 바와 같이, 대시간전류법과 계단화된 사다리형 섭동전압을 함께 이용하여 얻은 혈당 측정값과 YSI 측정값 사이의 상관관계가 매우 긴밀하게 나타남을 알 수 있으며, 도 9를 통해서 알 수 있는 바와 같이, 대시간전류법과 계단화된 사다리형 섭동전압을 이용하여 얻은 혈당 측정값의 평균값에 대한 적혈구용적률의 영향이 거희 ±5% 이내로 감소하였음을 알 수 있다.
본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 대해 도 10을 참조하여 설명한다.
도 10은 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법을 나타내는 순서도이다.
도 10에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법은, 도 10에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법은, 상기 분석대상물질의 산화환원 반응을 촉매할 수 있는 산화환원 효소와 전자전달매개체가 고정되어 있으며 작동전극과 보조전극을 구비한 시료 셀에 액상 생체시료를 주입하는 단계(S110)와, 상기 분석대상물질의 산화환원 반응을 개시하고 전자전달 반응을 진행시킬 수 있도록 상기 작동전극에 일정직류 전압을 인가하여 제 1 감응전류를 얻는 단계(S120)와, 상기 일정직류 전압을 인가 후 Λ 모양의 계단화된 사다리형 섭동전압를 인가하여 제 2 감응전류를 얻는 단계(S130)와, 상기 제 1 감응전류 또는 상기 제 2 감응전류의 2 시점 이상의 특징점으로부터 미리 정해진 피쳐(feature)를 계산하는 단계(S140)와, 상기 생체시료 내 적어도 2 이상의 방해물질의 영향이 최소가 되게 적어도 1 이상의 피쳐(feature)함수로 구성된 검정식을 사용하여 상기 분석대상물질의 농도를 계산하는 단계(S150)를 포함한다.
상기 일정직류 전압을 인가 후 Λ 모양의 계단화된 사다리형 섭동전압를 인가하는 것은 전술한 바와 같이 기존의 DAC 회로를 이용하여 계단파 형태로 이루어진다.
상기 제 1 감응전류 또는 상기 제 2 감응전류로부터 미리 정해진 피쳐(feature)를 계산하는 단계(S140)는 상기 제 1 감응전류 또는 상기 제 2 감응전류의 미리 정해진 특징점에서의 전류값을 그대로 또는 변형하여 피쳐를 구하는 것을 포함한다.
[제 3 실시예] 온도를 추가 피쳐(feature)로 사용하여, 여러 범위의 온도에서 정확한 혈당값을 계산하는 검정식의 예
본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용한 스트립과 측정장치를 사용하여, 온도 및 적혈구용적률의 영향을 최소화한 검정식을 구할 수 있다.
본 발명의 바람직한 제 2 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용한 실험환경과 시료와 유사한 실험환경과 시료를 사용한다.
즉, 시료 준비에 있어서, 적혈구용적률은 10, 20, 42, 55, 70%와 혈당 농도는 50, 130, 250, 400, 600 mg/dL의 시료를 준비하고, 실험은 5, 12, 18, 23, 33, 43℃에서 실시하였다.
본 발명의 바람직한 제 3 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용한 측정장치(100)는 제 2 실시예와 마찬가지로 사용한 혈당 측정장치에서 전압인가 부분을 수정하였다.
본 발명의 바람직한 제 3 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용한 계단화된 사다리형 섭동전압의 구조는 아래의 [표 3]에 기술되어 있다.
표 3
Vstep 2.0 mV
tstep 0.005 sec
VDC 200 mV
Vcenter 200 mV
Vpeak 20 mV
tcycle 0.2 sec
이와 같이 준비된 측정장치(100)를 사용하여, 조제된 시료들을 각 온도에서 측정한다. 이때, 얻은 감응전류를 컴퓨터에 저장한다.
혈당 계산 수식은 저장된 데이터를 분석하여 최적의 특징점들을 추출하여 피쳐(feature)로 만들고, 이 피쳐(feature)들로 이루어진 검정식을 구성한 다음, 다변수회귀분석(multivariable regression analysis)을 통해 각 피쳐(feature)들에 대한 계수를 결정하여 검정식을 완성한다. 검정식은 다음과 같다.
Figure PCTKR2014008673-appb-I000003
여기서 i는 제 1감응전류 및 제 2감응전류에서 얻을 수 있는 1 이상의 전류값이고, T는 독립적으로 측정한 온도값이며, 사용된 피쳐(feature)는 다음과 같다.
f1 = i at 5 sec (일정전압에서의 감응전류)
f2 = i at 5.2675 sec(2번째 계단화된 사다리형의 봉우리에서 내려가는 지점에 위치한 감응전류)
f3 = i at 5.3675 sec(3번째 계단화된 사다리형의 골에서 올라가는 지점에 위치한 감응전류)
f4 = curvature (2번째 계단화된 사다리형의 내려가는 계단들의 감응전류들로 이루어진 곡률)
f5 = Peak-to-Peak (2번째 계단화된 사다리형의 봉우리와 골 전압의 차이)
f6 = f1 2
f7 = f2 2
f8 = f3 2
f9 = f4 2
f10 = f5 2
f11 = 1/f1
f12 = 1/f4
f13 = T
f14 = T2
f15 = f1 * T
위와 같은 피쳐(feature)로 이루어진 모델을 설정하고, 본 발명의 바람직한 제 2 실시예에서 설명한 바와 같이, 기준 설비 YSI에서 측정된 혈당값을 기반으로 다변수회기법을 통해 피쳐(feature)들의 계수를 최적화한다.
이렇게 얻어진 검정식은 제 2 실시예에서와 동일하게, 일정전압 인가 후 섭동전압을 가하도록 변형된 펌웨어와 함께 측정장치에 저장된다. 새로운 검정식에 따라 얻어진 결과는 도 11 및 12에 나타낸다.
도 11은 본 발명의 바람직한 제 3 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압 및 측정장치에서 측정한 온도값을 함께 이용하여 얻은 혈당 측정값과 YSI 측정값 사이의 상관관계를 나타내는 그래프(적혈구용적률 10, 20, 42, 55, 70%인 시료 포함).
도 12는 본 발명의 바람직한 제 3 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압 및 측정장치에서 측정한 온도값을 함께 이용하여 얻은 혈당 측정값의 평균값에 대한 온도의 영향을 나타내는 그래프(적혈구용적률 10, 20, 42, 55, 70%인 시료 포함, 100 mg/dL보다 작은 농도에 대해서는 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함).
혈당값의 측정은 도 10에 도시된 바와 같이, 혈액의 유입, 일정 전압 인가 단계, 계단화된 사다리형 섭동전압 인가 단계, 감응전류들로부터 피쳐(feature)를 계산하는 단계, 새로운 검정식을 사용하여 정확한 혈당값을 얻는 단계를 포함하여 구성된다.
[제 4 실시예] 케톤체 측정을 위한 검정식의 예
본 발명의 바람직한 제 4 실시예에 따른 생체시료내 분석대상물질의 농도측정방법에 있어서, 전기화학적 바이오센서(10)의 시료셀은 스크린인쇄된 2개의 탄소 전극으로 이루어져 있는 일회용 스트립이며, 전극에 케톤체 탈수소화 효소 및 전자전달매개체 (1-methoxy-5-methylphenazinium methyl sulfate, ruthenium hexamine chloride)이 도포되어 있는 경우, 23℃에서 일정전압 인가하여 감응전류를 얻어 케톤체의 농도를 계산하는 경우이다.
적혈구용적률에 의한 편차를 확인하기 위한 혈액 실험은 제 1 실시예과 유사하게 실시한다. 혈액은 20, 30, 42, 50, 60, 70% 적혈구용적률을 갖는 시료를 준비한다.
각 적혈구용적률 값에 대하여 0.1, 0.5, 1, 2, 3, 4.2, 5 mmol/L의 케톤체 농도값에 가까운 값이 되도록 준비하고, 실제 각 시료의 혈당값은 기준장비(RX Monaco, Randox)로 측정하여 결정한다.
한편, 측정장치는 앞의 실시예에서 사용된 혈당 측정장치와 동일한 구조의 측정장치에서 일정전압에 대한 감응전류를 기록한다.
사용한 인가전압의 형태는 혈액유입부터 4초까지 200 mV를 스트립내의 두 전극 사이에 인가하고, 다음 4초 동안은 0 mV를 인가하며, 이후 2초 동안 다시 200 mV를 인가한다.
10초에서의 전류값을 각 시료에 대해 기록한다.
케톤체 측정 계산식은 42% 적혈구용적률의 시료를 기준으로 작성한다.
케톤체 측정 계산식은 다음과 같다.
Ketone Body = slope * it=10sec (10 초에서의 전류값) + intercept
실험 데이터에 대해 slope과 intercept를 최소자승법으로 계산하여, 검정식을 구한다.
이러한 케톤체 측정 검정식을 사용하여, 모든 적혈구용적률 시료에 대해 계산한 결과는 도 13 및 도 14에 나타낸다.
도 13은 본 발명의 바람직한 제 4 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 케톤체 측정값과 기준장비 측정값 사이의 상관관계를 나타내는 그래프이고, 도 14는 본 발명의 바람직한 제 4 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법에 따른 케톤체 측정값의 평균값에 대한 적혈구용적률의 영향을 나타내는 그래프(1.0 mmol/L보다 작은 농도에 대해서는 100을 곱한 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함)이다.
도 13 및 도 14에 도시된 바와 같이, 대시간전류법에 따른 케톤체 측정값의 평균값은 적혈구용적률이 증가할수록 기울기가 감소하는 것을 확인할 수 있다.
또한, 도 14에 도시된 바와 같이, 대시간전류법에 따른 케톤체 측정값의 적혈구용적률에 대한 경향성은 42%를 기준으로 양끝으로 갈수록 편차가 증가하는 것을 알 수 있다.
[제 5 실시예] 일정전압과 섭동전압을 인가한 후의 특징점들에서 추출한 피쳐(feature)들을 이용한 케톤체측정을 위한 검정식의 예
본 발명의 바람직한 제 4 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용한 스트립과 측정장치를 사용하여, 일정전압과 섭동전압을 인가한 후의 특징점들에서 추출한 피쳐(feature)들을 이용한 케톤체측정을 위한 검정식을 구할 수 있다.
본 발명의 바람직한 제 4 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 사용한 실험환경과 시료와 동일한 실험환경과 시료를 사용한다.
측정장치는 제 4 실시예에서 사용한 측정장치에서 전압인가 부분이 상이하다. 즉, 기존의 일정전압 인가 직후에 다음 표에서 기술되는 섭동전압을 인가할 수 있도록 측정기의 펌웨어를 변경하였다.
본 발명의 바람직한 제 5 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 인가한 전압의 형태는 제 4 실시예에서 사용한 전압 바로 뒤에 아래의 [표 4]에 기술되어 있는 계단화된 사다리형 섭동전압을 인가한다.
표 4
Vstep 1.5 mV
tstep 0.0025 sec
VDC 200 mV
Vcenter 250 mV
Vpeak 15 mV
tcycle 0.1 sec
이렇게 준비된 측정장치를 사용하여, 조제된 시료들을 측정한다. 이때, 얻은 감응전류를 컴퓨터에 저장한다.
혈당 계산 수식은 저장된 데이터를 분석하여 최적의 특징점들을 추출하여 피쳐(feature)로 만들고, 이 피쳐(feature)들로 이루어진 검정식을 구성한 다음, 다변수회귀분석(multivariable regression analysis)을 통해 각 피쳐(feature)들에 대한 계수를 결정하여 검정식을 완성한다.
케톤체측정을 위한 검정식은 다음과 같다.
Figure PCTKR2014008673-appb-I000004
여기서 i는 제 1감응전류 및 제 2감응전류에서 얻을 수 있는 1 이상의 전류값이며, 사용된 피쳐(feature)는 다음과 같다.
f1 = current at 10 sec (일정전압에서의 감응전류)
f2 = current at 8.12 sec(일정전압 초기의 감응전류)
f3 = current at 10.27 sec(3번째 계단화된 사다리형의 골 부근 전압에서의 감응전류)
f4 = current at 10.4925 sec(5번째 계단화된 사다리형의 골 부근 전압에서의 감응전류)
f5 = curvature (5번째 계단화된 사다리형의 내려가는 계단들의 감응전류들로 이루어진 곡률)
f6 = f1 2
f7 = f2 2
f8 = f3 2
f9 = f4 2
f10 = f5 2
f11 = 1/f1
f12 = 1/f5
위와 같은 피쳐(feature)로 이루어진 모델을 설정하고, 각 시료에 대해 계산된 혈당의 값이 다양한 적혈구용적률의 시료 조건에서 기준장비에서 측정된 값에 일치시키도록 하기 위해, 표준 적혈구용적률 42%에서 대시간전류법만으로 얻은 농도와 서로 가깝도록 가중치를 넣은 후, 각 피쳐(feature)들의 계수를 다변수회귀법으로 최적화한다.
이렇게 얻어진 검정식은 일정전압 인가 후 섭동전압을 가하도록 변형된 펌웨어와 함께 측정장치에 저장된다. 도 15 및 16에 검정식을 사용한 결과를 나타내었다.
도 15는 본 발명의 바람직한 제 5 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압을 이용하여 얻은 케톤체 측정값과 기준장비 측정값 사이의 상관관계를 나타내는 그래프이고, 도 16은 본 발명의 바람직한 제 5 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법에 있어서, 대시간전류법과 계단화된 사다리형 섭동전압을 이용하여 얻은 케톤체 측정값의 평균값에 대한 적혈구용적률의 영향을 나타내는 그래프(1.0 mmol/L보다 작은 농도에 대해서는 100을 곱한 절대오차로 표시하고, 그 이상의 농도에 대해서는 상대오차(%)로 표시함)이다.
본 발명의 바람직한 제 1 실시예와 제 2 실시예를 비교하고, 제 4 실시예와 제 4 실시예를 비교하면, 본 발명의 바람직한 실시예에 따른 생체시료 내 분석대상물질의 농도측정방법이 제공하는 효과를 분명히 알 수 있다.
즉, 일반적으로 사용되는 대시간전류법에 따른 측정장치에서 통상의 바이오센서를 그대로 사용하고, 통상의 전압인가방식에 계단화된 사다리형 섭동전압(도 1)을 짧은 시간 동안만 추가하여 적혈구용적률과 같은 방해인자의 바탕효과 (Matrix effect) 영향이 최소화된 결과값을 추가적인 보정식의 사용 없이 검정식으로부터 바로 얻을 수 있다.
또한, 본 발명의 바람직한 제 3 실시예에서 알 수 있는 바와 같이, 측정장치에서 측정한 온도값을 추가적인 피쳐(feature)로 사용하여 검정식을 얻어내면, 바탕효과와 온도효과 모두 최소화된 측정결과를 간단한 연산으로 얻을 수 있다.
이러한 구성에 의하면, 기존의 측정방식에 덧붙여 사용하는 섭동전압 인가방식은 이미 사용하던 바이오센서와 측정장치 및 그 측정장치에서 사용하던 전류선과, 측정방식(amperometry)의 검정선(calibration)을 그대로 유지할 수 있으며, 생체시료 내의 바탕물질의 방해효과(matrix interference effect), 특히 적혈구용적률 변화에서 오는 부정확성을 효과적으로 최소화하여 측정의 정확성을 높여줄 수 있으며,기존의 시장에 공급된 측정장치의 측정 프로그램만을 간단히 업그레이드하여 측정의 정확성을 획기적으로 개선할 수 있다.

Claims (16)

  1. 생체시료 내 분석대상물질의 농도측정방법에 있어서,
    상기 분석대상물질의 산화환원 반응을 촉매할 수 있는 산화환원 효소와 전자전달매개체가 고정되어 있으며 작동전극과 보조전극을 구비한 시료 셀에 액상 생체시료를 주입하는 단계와,
    상기 분석대상물질의 산화환원 반응을 개시하고 전자전달 반응을 진행시킬 수 있도록 상기 작동전극에 일정직류 전압을 인가하여 적어도 일 시점 이상의 특징점에서 제 1 감응전류를 얻는 단계와,
    상기 일정직류 전압을 인가 후 Λ 모양의 계단화된 사다리형 섭동전압을 인가하여 적어도 2 시점 이상에서 제 2 감응전류를 얻는 단계와,
    상기 제 1 감응전류 또는 상기 제 2 감응전류로부터 미리 정해진 피쳐(feature)를 계산하는 단계와,
    상기 생체시료 내 적어도 1 이상의 방해물질의 영향이 최소가 되게 적어도 1 이상의 피쳐(feature)함수로 구성된 검정식을 사용하여 상기 분석대상물질의 농도를 계산하는 단계를 포함하는 생체시료 내 분석대상물질의 농도측정방법.
  2. 제 1 항에 있어서,
    상기 Λ 모양의 계단화된 사다리형 섭동전압의 특징은 각 계단의 높이(Vstep), 각 계단의 인가시간(tstep), 전체 변화 범위에서의 중간전압과 일정전압과의 차이(Vcenter), 중간전압과 봉우리 전압 값과의 차이(Vpeak), 전체 계단화된 사다리형파의 봉우리 전압 값과 인접한 다음 계단화된 사다리형파의 봉우리 전압 값과의 시간차(tcycle)로 이루어지는 생체시료 내 분석대상물질의 농도측정방법.
  3. 제 1 항에 있어서,
    상기 제 2 감응전류는 제 1 감응전류를 얻은 후 0.1 내지 1 초이내에 얻어지는 생체시료 내 분석대상물질의 농도측정방법.
  4. 제 1 항에 있어서,
    상기 일정직류 전압과 상기 Λ 모양의 계단화된 사다리형 섭동전압은 마이크로컨트롤러에 연동하는 동일한 디지털-아날로그컨버터 회로를 통해서 상기 작동전극에 인가되도록 구성되는 생체시료 내 분석대상물질의 농도측정방법.
  5. 제 1 항에 있어서,
    상기 제 1 또는 제 2 감응전류에서 상기 분석대상물질과 방해물질에 대한 선형의존성이 다른 특징점을 선택하고, 상기의 특징점으로 피쳐를 구성하며, 상기의 피쳐로 구성한 검정식을 만들어 생체시료 내 분석대상물질의 농도를 측정하는 방법.
  6. 제 5 항에 있어서,
    상기 특징점으로 상기 피쳐를 만드는 방법은 특정 계단화된 사다리형의 봉우리 및 골 전압 부근의 제 2 감응전류, 상기 계단화된 사다리형 섭동전압에서 각 계단의 감응전류들로 이루어진 곡선의 곡률, 상기 계단화된 사다리형 섭동전압의 봉우리에서의 전류값과 골에서의 전류값의 차이, 오르막과 내리막 중간 계단화된 사다리형 섭동전압에서의 감응전류들, 각 계단화된 사다리형 섭동전압의 사이클의 시작 및 끝 지점에서의 감응전류들, 및 계단화된 사다리형 섭동전압에서 얻은 감응전류들의 평균값 중 하나를 사용하거나, 이로부터 얻은 전류값들을 사칙연산, 지수, 로그, 삼각함수 등의 수학적 함수로 표현하여 얻을 수 있는 값을 사용하는 생체시료 내 분석대상물질의 농도측정방법.
  7. 제 1 항에 있어서,
    상기 검정식은 상기 피쳐를 선형으로 결합한 상기 피쳐 함수에 대해 다변수회귀분석을 적용하여 얻어지며, 상기 검정식은 전극의 재질, 전극의 배열방식, 유로의 모양, 사용하는 시약의 특성에 따라 달라지는 생체시료 내 분석대상물질의 농도측정방법.
  8. 제 7 항에 있어서,
    상기 분석대상물질은 glucose, β-hydroxybutyric acid, cholesterol, triglyceride, lactate, pyruvate, alcohol, bilirubin, uric acid, phenylketouria, creatine, creatinine, glucose-6-phosphate dehydrogenase, NAD(P)H, 케톤체 중 하나인 생체시료 내 분석대상물질의 농도측정방법.
  9. 제 7 항에 있어서,
    상기 산화환원효소는 글루코오스산화효소(glucose oxidase, GOx), 글루코오스탈수소화효소(glucose dehydrogenase, GDH), 글루타메이트산화효소(glutamate oxidase) 글루타메이트탈수소화효소(glutamate dehydrogenase), 콜레스테롤산화효소, 콜레스테롤에스테르화효소, 락테이트산화효소, 아스코빅산산화효소, 알코올산화효소, 알코올탈수소화효소, 빌리루빈산화효소, 케톤체 탈수소화 효소 중 하나인 생체시료 내 분석대상물질의 농도측정방법.
  10. 제 1 항에 있어서,
    상기 전자전달매개체는 ferrocene, ruthenium hexamine(III) chloride, potassium ferricyanide, 1,10-phenanthroline-5,6-dione, bipyridine 혹은 phenanthroline을 리간드로 갖는 osmium complex, 2,6-dimethyl-1,4-benzoquinone, 2,5-dichloro-1,4-benzoquinone, 3,7-diamino-5-phenothiaziniumthionine, 1-methoxy-5-methylphenazinium methylsulfate, methylene blue, toluidine blue중 하나인 생체시료 내 분석대상물질의 농도측정방법.
  11. 제 1 항에 있어서,
    상기 일정직류 전압은 0 - 800 mV의 범위의 전압으로, 1초 이상 1분 이내의 시간 동안 지속적으로 또는 간헐적으로 인가되고, 상기 제 1 감응전류는 상기 일정직류 전압이 인가되는 동안 1회 또는 수회 측정하는 생체시료 내 분석대상물질의 농도측정방법.
  12. 제 2 항에 있어서,
    상기 계단화된 사다리형 전압은 하나의 계단의 높이(Vstep)가 0.5 내지 20 mV이고, 상기 하나의 계단의 지속시간(tstep)이 0.001 내지 0.1 초 이며, 상기 계단화된 사다리형 전압의 중심전압과 상기 일정직류 전압과의 차이 (Vcenter)가 -150 내지 150 mV 이며, 상기 계단화된 사다리형 전압의 중심전압과 봉우리 또는 골 전압과의 차이 (Vpeak) 가 5 내지 150 mV이며, 상기 계단화된 사다리형 전압의 주기 또는 하나의 봉우리와 인접한 다른 하나의 봉우리 사이의 시간 간격 (tcycle)이 0.01 내지 1 초 범위 내의 값인 생체시료 내 분석대상물질의 농도측정방법.
  13. 제 1 항에 있어서,
    상기 피쳐 함수는 상기 일정직류 전류에서 얻은 감응전류값을 사용하는 함수, 상기 계단화된 사다리형 전압에서 얻은 감응전류값을 사용하는 함수, 상기 피쳐 함수는 측정장치에서 측정한 온도값을 사용하는 함수, 측정된 감응전류값을 사칙연산, 지수, 로그, 삼각함수 등의 수학적 함수로 표현하여 얻을 수 있는 함수인 생체시료 내 분석대상물질의 농도측정방법.
  14. 제 1 항에 있어서,
    상기 검정식은,
    Figure PCTKR2014008673-appb-I000005
    ,
    Figure PCTKR2014008673-appb-I000006
    ,
    Figure PCTKR2014008673-appb-I000007
    중 하나이며,
    여기서 i는 제 1감응전류 및 제 2감응전류에서 얻을 수 있는 1 이상의 전류값이고, T는 독립적으로 측정한 온도값인 생체시료 내 분석대상물질의 농도측정방법.
  15. 생체시료 내 분석대상물질의 농도측정장치에 있어서,
    상기 분석대상물질의 산화환원 반응을 촉매할 수 있는 산화환원 효소와 전자전달매개체가 고정되어 있으며 작동전극과 보조전극을 구비한 시료셀이 삽입되는 커넥터와,
    상기 분석대상물질의 산화환원 반응을 개시하고 전자전달 반응을 진행시키기 위한 일정직류 전압과, 상기 일정직류 전압에 이어서 상기 시료셀의 전위를 요동시키기 위한 Λ 모양의 계단화된 사다리형 섭동전압를 인가하기 위한 디지털-아날로그컨버터 회로와,
    상기 디지털-아날로그컨버터 회로를 제어하고, 상기 Λ 모양의 계단화된 사다리형 섭동전압을 이용하여 검정식으로부터 직접 상기 분석대상물질의 농도값을 구하는 마이크로콘트롤러를 포함하는 생체시료 내 분석대상물질의 농도측정장치.
  16. 제 15 항에 있어서,
    상기 마이크로콘트롤러는 미리 결정된 상기 Λ 모양의 계단화된 사다리형 섭동전압을 발생시킬 수 있는 상수값를 저장하고, 일정전압을 인가할 때는 정해진 상수를 상기 디지털-아날로그컨버터의 레지스터에 기록하고, 상기 섭동전압을 인가할 때는 정해진 시간을 주기로 상기 상수값을 증/가감시켜 디지털-아날로그컨버터의 레지스터에 기록하여, 상기 디지털-아날로그컨버터가 상기 DAC 레지스터에 기록된 상수값에 따라 상기 두 전극 사이에 상기 일정전압 또는 섭동전압을 인가하도록 하는 생체시료 내 분석대상물질의 농도측정장치.
PCT/KR2014/008673 2014-09-17 2014-09-17 생체시료 내 분석대상물질의 농도측정방법 및 측정장치 WO2016043361A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/008673 WO2016043361A1 (ko) 2014-09-17 2014-09-17 생체시료 내 분석대상물질의 농도측정방법 및 측정장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/008673 WO2016043361A1 (ko) 2014-09-17 2014-09-17 생체시료 내 분석대상물질의 농도측정방법 및 측정장치

Publications (1)

Publication Number Publication Date
WO2016043361A1 true WO2016043361A1 (ko) 2016-03-24

Family

ID=55533393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008673 WO2016043361A1 (ko) 2014-09-17 2014-09-17 생체시료 내 분석대상물질의 농도측정방법 및 측정장치

Country Status (1)

Country Link
WO (1) WO2016043361A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333236A (zh) * 2017-01-20 2018-07-27 长青生医科技股份有限公司 生物参数测量方法及其装置
CN112105923A (zh) * 2018-07-11 2020-12-18 爱-森新株式会社 利用人工智能深度学习的生物测量对象浓度测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000056592A (ko) * 1999-02-24 2000-09-15 정명식 고속 전기화학 임피던스 측정장치 및 방법
US6151969A (en) * 1998-07-14 2000-11-28 Southwest Research Institute Electromechanical and electrochemical impedance spectroscopy for measuring and imaging fatigue damage
KR20040017605A (ko) * 2002-08-22 2004-02-27 김희찬 교류 임피던스법을 이용한 글루코스 농도 측정 방법
WO2010008137A2 (ko) * 2008-07-15 2010-01-21 주식회사 아이센스 바이오센서를 이용한 단백질 측정 장치
KR20130059304A (ko) * 2011-11-28 2013-06-05 에스디 바이오센서 주식회사 전위차분석법을 이용한 당화헤모글로빈 측정용 바이오센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151969A (en) * 1998-07-14 2000-11-28 Southwest Research Institute Electromechanical and electrochemical impedance spectroscopy for measuring and imaging fatigue damage
KR20000056592A (ko) * 1999-02-24 2000-09-15 정명식 고속 전기화학 임피던스 측정장치 및 방법
KR20040017605A (ko) * 2002-08-22 2004-02-27 김희찬 교류 임피던스법을 이용한 글루코스 농도 측정 방법
WO2010008137A2 (ko) * 2008-07-15 2010-01-21 주식회사 아이센스 바이오센서를 이용한 단백질 측정 장치
KR20130059304A (ko) * 2011-11-28 2013-06-05 에스디 바이오센서 주식회사 전위차분석법을 이용한 당화헤모글로빈 측정용 바이오센서

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333236A (zh) * 2017-01-20 2018-07-27 长青生医科技股份有限公司 生物参数测量方法及其装置
CN112105923A (zh) * 2018-07-11 2020-12-18 爱-森新株式会社 利用人工智能深度学习的生物测量对象浓度测量方法
CN112105923B (zh) * 2018-07-11 2024-01-09 爱-森新株式会社 利用人工智能深度学习的生物测量对象浓度测量方法

Similar Documents

Publication Publication Date Title
US11378540B2 (en) Apparatus and method for measuring concentration of an analyte in bio-samples
CA2521370C (en) Biosensor system
US10444178B2 (en) Method for measuring an analyte in a sample
US8877033B2 (en) Method and apparatus for assay of electrochemical properties
KR101466222B1 (ko) 정확도가 향상된 전기화학적 바이오센서
EP2222867B1 (en) Rapid-read gated amperometry
WO2019189977A1 (ko) 인공신경망 딥러닝 기법을 활용한 측정물 분석 방법, 장치, 학습 방법 및 시스템
US8840776B2 (en) Method and sensor strip for analysis of a sample
WO2016043361A1 (ko) 생체시료 내 분석대상물질의 농도측정방법 및 측정장치
Baronas et al. Modelling amperometric enzyme electrode with substrate cyclic conversion
WO2020013361A1 (ko) 인공지능 딥러닝 학습을 이용한 생체측정물 농도 측정방법
Blanco et al. Design of a low-cost portable potentiostat for amperometric biosensors
WO2009093840A2 (ko) 카이네틱 변화 정보를 이용한 측정목표물질의 특징값 추정방법 및 장치
KR102016393B1 (ko) 검체의 농도 측정 방법 및 장치
KR101860141B1 (ko) 혈당 측정 방법 및 장치
US11898191B2 (en) Enzymatic electrochemical method for the quantification of analytes in biological fluid samples
Thomas et al. A versatile amperometric integrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901930

Country of ref document: EP

Kind code of ref document: A1