WO2016036145A1 - 노로바이러스 검출 센서, 및 이를 이용하는 전기화학적 센싱방법 - Google Patents

노로바이러스 검출 센서, 및 이를 이용하는 전기화학적 센싱방법 Download PDF

Info

Publication number
WO2016036145A1
WO2016036145A1 PCT/KR2015/009260 KR2015009260W WO2016036145A1 WO 2016036145 A1 WO2016036145 A1 WO 2016036145A1 KR 2015009260 W KR2015009260 W KR 2015009260W WO 2016036145 A1 WO2016036145 A1 WO 2016036145A1
Authority
WO
WIPO (PCT)
Prior art keywords
norovirus
electrochemical
detection sensor
biological sample
detection
Prior art date
Application number
PCT/KR2015/009260
Other languages
English (en)
French (fr)
Inventor
양성
홍성아
김두운
권요셉
최종순
이희민
Original Assignee
광주과학기술원
한국기초과학지원연구원
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원, 한국기초과학지원연구원, 전남대학교산학협력단 filed Critical 광주과학기술원
Publication of WO2016036145A1 publication Critical patent/WO2016036145A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses

Definitions

  • the present invention relates to a biosensor, and more particularly, to a norovirus detection sensor and an electrochemical sensing method using the same.
  • the biosensor is a biological analysis device that senses the state and concentration of a target substance to be measured by using the characteristics of living organisms such as cells or tissues of plants and animals, enzymes and microorganisms.
  • the biosensor may include a receiving unit for detecting and receiving a target material and a signal measuring unit for converting the detected target material into a physically measurable signal.
  • Such biosensors have been widely used in the medical field for the analysis of biological samples such as blood and tissue cells, but in recent years, the use of the biosensors has been gradually expanded to include food analysis and the environment, with interests on health and well-being of consumers.
  • Norovirus is a food and water-borne pathogen, which is known as a type of enteric virus that causes infectious gastroenteritis in humans when ingested through food or water.
  • the norovirus is an RNA virus belonging to the family Caliciviridae, which is classified into five (GI-GV) genotypes.
  • GI-GV RNA virus belonging to the family Caliciviridae
  • human infection of the norovirus mainly consists of eight genotypes of the genogroup GI and 17 genotypes of GII. It is known to be due.
  • Norovirus can cause diarrhea, abdominal pain and vomiting in humans even when only 100 particles are ingested, and about 100 million norovirus particles are contained in the nausea or excretion discharged by the above symptoms, resulting in a strong infectivity and It has a fast infection rate. Therefore, there is a further need for a technique for detecting and preventing norovirus that may exist in food or water quality.
  • a real-time polymerase chain reaction sensor device using nucleic acid-based technology has been mainly used.
  • the real-time polymerase chain reaction is a method of selectively and specifically detecting norovirus by amplifying genetic information into a template using a polymerase.
  • An object of the present invention is to provide a sensor having a high sensitivity and a high selectivity detection characteristics while reducing the time required for detection and the cost of the sensor device, and a sensing method using the same.
  • the norovirus detection sensor comprising a biological sample receiving unit and a detection signal measuring unit, using a three-dimensional gold nano-surface electrode as a substrate, a sample trapping agent fixed to the substrate (
  • a norovirus detection sensor including a biological sample receiver using concanavalin A, which can bind to the norovirus, can be provided.
  • the 3D gold nanosurface electrode may be formed through an electrochemical deposition process.
  • the concanavalin A may be further added to mercaptohexanol on the substrate.
  • the detection signal measuring unit may detect an electrochemical signal generated by the biological sample receiving unit to calculate a qualitative quantitative measurement value of the biological sample.
  • Another aspect of the present invention is to use a norovirus detection sensor including a biological sample receiving unit and a detection signal measuring unit, which is a capture agent capable of binding to a norovirus immobilized on a three-dimensional gold nanosurface electrode of the biological sample receiving unit.
  • a norovirus detection sensor including a biological sample receiving unit and a detection signal measuring unit, which is a capture agent capable of binding to a norovirus immobilized on a three-dimensional gold nanosurface electrode of the biological sample receiving unit.
  • the labeling of the conjugate formed by the binding using the detection signal labeling antibody may be performed by sequentially using a primary antibody that selectively binds only the norovirus included in the conjugate and a secondary antibody to which an electrochemical enzyme is connected. It may be a label.
  • the electrochemical signal may be generated by an electrochemical enzyme connected to the secondary antibody labeled on the conjugate.
  • the electrochemical sensing method using the norovirus detection sensor may have a detection limit of 35 copies / mL to 60 copies / mL.
  • the electrochemical sensing method using the norovirus detection sensor may have a detection selectivity of 98% or more for the norovirus.
  • Another aspect of the present invention is to use a norovirus detection sensor including a biological sample receiving unit and a detection signal measuring unit, which captures capable of binding to the norovirus immobilized on the three-dimensional gold nanosurface electrode of the biological sample receiving unit.
  • a norovirus detection sensor including a biological sample receiving unit and a detection signal measuring unit, which captures capable of binding to the norovirus immobilized on the three-dimensional gold nanosurface electrode of the biological sample receiving unit.
  • the intensity of the signal generated by the redox reaction of the ferricyanation solution may be changed according to the concentration of the norovirus sample.
  • the present invention can improve the sensitivity of the sensor by applying a three-dimensional gold nano-surface electrode having a large surface area.
  • concanavalin A a non-antibody substance, which is inexpensive and easily available, the manufacturing cost can be reduced.
  • the selectivity of norovirus detection can be enhanced by concanavalin A used in the norovirus detection sensor.
  • an electrochemical sensing method using a ferricyanation solution can generate an electrochemical signal change according to the norovirus concentration without any labeling, thereby reducing the detection time, thereby simplifying point-of- Can be actively used as care-testing (POCT).
  • POCT care-testing
  • FIG. 1 is a schematic diagram showing a norovirus detection sensor according to an embodiment of the present invention.
  • 2a to 2c is a schematic diagram showing a biological sample receiving unit according to an embodiment of the present invention.
  • 3A to 3C are schematic diagrams showing the progress of an electrochemical sensing method using a norovirus detection sensor according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing an electrochemical sensing method using a norovirus detection sensor according to another embodiment of the present invention.
  • Figure 5 is an image showing the observation of the three-dimensional gold nano-surface electrode prepared in Example 1 of the present invention with a scanning electron microscope (SEM).
  • 6A to 6B are graphs showing a calibration curve using electrochemical signals at 0.1V redox potential and cyclic voltammetry measurements according to norovirus concentrations prepared in Example 2 of the present invention, respectively.
  • Figure 7 is a selectivity experiment results of the electrochemical sensing method using a norovirus detection sensor measured in Experimental Example 2 of the present invention.
  • FIG 9 is a graph showing a measurement result of the voltage current change according to the third embodiment of the present invention.
  • One aspect of the present invention can provide a norovirus detection sensor.
  • the norovirus detection sensor including a biological sample receiving unit and a detection signal measuring unit, using a three-dimensional gold nano-surface electrode as a substrate, and a sample capture agent (fixture agent) fixed to the substrate and the norovirus and It may be to include a biological sample receiving unit using the concanavalin A (concanavalin A) capable of binding.
  • the biological sample accommodating part included in the norovirus detection sensor may refer to a device capable of detecting, immobilizing, or capturing a biological sample that is a target object to be measured and detected.
  • the target biological sample may include a norovirus as a target detection target.
  • the biological sample receiver may use concanavalin A as a capture agent capable of binding to the norovirus to fix the norovirus to the three-dimensional gold nanosurface electrode used as a substrate.
  • the detection signal measuring unit included in the norovirus detection sensor may be to calculate a quantitative and quantitative measurement value of the biological sample by sensing the electrochemical signal generated by the biological sample receiving unit.
  • the detection signal measuring unit may be labeled or label-free using, for example, a specific antibody capable of generating an electrochemical signal when the biological sample is supplied to the biological sample receiver.
  • a specific antibody capable of generating an electrochemical signal when the biological sample is supplied to the biological sample receiver.
  • FIG. 1 is a schematic diagram showing a norovirus detection sensor according to an embodiment of the present invention.
  • the norovirus detection sensor is a biological sample, that is, a target to be measured and detected, in the biological sample container 100 on which a substrate on which a trapping agent is formed is formed. It may be configured in a form capable of contacting a sample containing a norovirus.
  • a detection that is electrochemically connected to the biological sample receiving unit 100 to detect and measure an electrochemical signal generated when the biological sample receiving unit 100 is in contact with the biochemical norovirus 200.
  • the signal measuring unit 300 may be provided.
  • FIGS. 2A to 2C The biological sample accommodating part of the present invention may be described in detail with reference to FIGS. 2A to 2C, but FIGS. 2A to 2C are not limited thereto.
  • 2a to 2c is a schematic diagram showing a biological sample receiving unit according to an embodiment of the present invention.
  • the substrate 110 may be a three-dimensional gold nanosurface electrode.
  • the three-dimensional gold nano-surface electrode may be formed through an electrochemical deposition process. More specifically, an Au thin film layer is formed on the substrate 110 to serve as a seed for forming a structure having a three-dimensional gold nanosurface, and is electrochemically formed on the Au thin film layer.
  • gold particles may be deposited on the gold (Au) thin film layer to form gold crystals.
  • the gold crystals grown by depositing gold particles on the gold (Au) thin film layer may be formed in a three-dimensional nanosurface structure as the gold particles are deposited and grown in an all-direction.
  • Such a three-dimensional nanosurface structure can be increased in surface area by its structural features. Accordingly, sensitivity and selectivity may be improved when the 3D gold nanosurface electrode is used as the substrate 110 of the sensor. That is, the norovirus detection sensor of the present invention to which the 3D gold nanosurface electrode is applied may have high sensitivity and high sensitivity.
  • the concanavalin A 120 which is a capture agent, may be immobilized on the three-dimensional gold nanosurface electrode used as the substrate 110.
  • the concanavalin A 120 is a non-antibody substance, and may selectively bind to a target norovirus.
  • the concanavalin A 120 is known as one of the crystalline proteins obtained from the seed of the pea (Canavalia ensiformis), has a high affinity, and has a biological property that binds to a specific sugar.
  • the present invention utilizes the sugar-specific binding properties of the concanavalin A (120). When the norovirus sample is brought into contact with the biological sample receiving unit, the concanavalin A (120) determines that the norovirus The binding may serve to capture the norovirus in the biological sample receiver.
  • a mercaptohexanol 130 may be further added on the substrate 110 on which the concanavalin A 120 is fixed. Specifically, after fixing the concanavalin A 120 on the substrate 110 which is the three-dimensional gold nano-surface electrode, concanavalin A 120 is formed on the substrate 110.
  • Mercaptohexanol (130) is additionally added to a portion of the three-dimensional gold nanosurface electrode that is not exposed, thereby filling the exposed region of the substrate 110 as shown in FIG. 2C. have.
  • the mercaptohexanol 130 is not formed by concanalvaline A 120 on the substrate 110, thereby artificially blocking a region where the substrate 130 is exposed. It is possible to prevent other materials from binding nonspecifically on the substrate 110.
  • milk protein, Bovine Serum Albumin (BSA), or the like may be used instead of the mercaptohexanol.
  • the norovirus detection sensor of the present invention can improve the sensitivity of the sensor by applying a three-dimensional gold nano-surface electrode having a large surface area as a substrate, it is possible to detect the high sensitivity.
  • a biological sample capture agent by using a low-cost and easily obtainable non-antibody substance concanavalin A can have an effect of reducing the sensor manufacturing cost.
  • an electrochemical sensing method using the norovirus detection sensor uses a norovirus detection sensor including a biological sample receiving unit and a detection signal measuring unit.
  • a norovirus detection sensor including a biological sample receiving unit and a detection signal measuring unit.
  • 1-1) 3D gold nano surface of the biological sample receiving unit Combining the norovirus sample with concanavalin A, a capture agent capable of binding to the norovirus immobilized on the electrode, 1-2) a conjugate formed by the binding using an antibody for labeling detection signals Labeling, 1-3) generating an electrochemical signal by the detection signal labeling antibody, and 1-4) measuring the electrochemical signal using the detection signal measuring unit.
  • Step 1-1) is a step of combining the norovirus sample with concanavalin A, a capture agent capable of binding to the norovirus immobilized on the three-dimensional gold nanosurface electrode of the biological sample receiver.
  • the biological sample accommodating part included in the norovirus detection sensor uses a three-dimensional gold nanosurface electrode as a substrate, as described above in one aspect of the present invention, and as a capture agent capable of capturing norovirus, Concanavalin A, which can bind to the virus, may be immobilized. Additionally, mercaptohexanol may be formed together with concanavalin A on the substrate.
  • the concanalvaline A When the norovirus sample is brought into contact with the biological sample receiver, the concanalvaline A, a capture agent fixed to the biological sample receiver, captures the norovirus, and the norovirus receives the biological sample. Can be fixed to the part. That is, a conjugate in which the concanavalin A and the norovirus are combined with a sample of the biological sample receiver may be generated.
  • Step 1-2) is a step of labeling the conjugate formed by the binding using an antibody for labeling the detection signal.
  • a detection signal labeling antibody capable of detecting the norovirus can be used.
  • the "detection” may be a quantitative measure indicating the concentration of norovirus contained in the norovirus sample, or according to an embodiment, specific for the norovirus from other viruses or other microorganisms other than the norovirus in the norovirus sample. This can mean qualitative measurements that can be identified separately.
  • the detection signal labeling antibody is an antibody that selectively binds to the norovirus, and known norovirus antibodies are not particularly limited. This may be because the antibodies of the norovirus may show different immunological resistance of the animal or the human body depending on the genotype of the norovirus, and the types thereof may be very diverse.
  • the detection signal labeling antibody may be divided into a primary antibody and a secondary antibody, and may be used sequentially.
  • the labeling of the conjugate formed by the reaction using the detection signal labeling antibody, the primary antibody and the electrochemical enzyme that selectively binds only the norovirus of the conjugate is connected Labeling may be performed using secondary antibodies sequentially.
  • the primary antibody is an antibody capable of selectively binding to the norovirus to generate an antigen-antibody bond with the norovirus.
  • the primary antibody contacts the conjugate the primary virus and the norovirus included in the conjugate Primary antibodies may form antigen-antibody binding.
  • a secondary antibody that recognizes the primary antibody as an antigen may be used to label the primary antibody bound to the norovirus.
  • the secondary antibody may be an electrochemical enzyme is linked.
  • the electrochemical enzyme linked to the secondary antibody may be linked to the secondary antibody for the electrochemical labeling of the conjugate and the binder without a redox function.
  • Step 1-3) is a step of generating an electrochemical signal by the antibody for labeling the detection signal.
  • an electrochemical measurement material capable of causing an electrochemical reaction may be injected by the electrochemical enzyme.
  • the electrochemical enzyme may generate electrons by oxidizing the electrochemical measurement material while being involved in the redox reaction of the electrochemical measurement material injected during the signal measurement using the detection signal measuring unit.
  • the detection signal measuring unit may measure the concentration of norovirus captured by the biological sample receiving unit by measuring the amount of electrons generated by the electrochemical enzyme.
  • the electrochemical enzyme may use horseradish peroxidase (HRP), alkaline phosphatase (ALP), or ⁇ -galactosidase, but is not limited thereto. Since the degree of activation may vary depending on the pH of the electrochemical enzyme, it is possible to improve the measurement efficiency by forming a pH that can be optimized for activation depending on the enzyme used.
  • HRP horseradish peroxidase
  • ALP alkaline phosphatase
  • ⁇ -galactosidase ⁇ -galactosidase
  • the redox reaction when using an aqueous solution containing 4-aminophenyl phosphate (APP) as the electrochemical measurement solution, as shown in Scheme 1, the redox reaction may be generated by the electrochemical enzyme.
  • APP 4-aminophenyl phosphate
  • an electrochemical measurement material including an APP is supplied.
  • the APP is oxidized by an electrochemical enzyme linked to the secondary antibody, it becomes 4-aminophenol (AP) as shown in Scheme 1, and is oxidized again under a voltage of 0.1 V to become 4-quinoneimine (QI).
  • QI 4-quinoneimine
  • electrons may be generated.
  • the electrochemical enzyme is oxidized by the electrochemical enzyme, electrons are generated and the amount of generated electrons is measured to measure the concentration of norovirus labeled with the secondary antibody to which the electrochemical enzyme is connected. Can be.
  • the electrochemical measurement solution may be used ascorbic acid 2-phosphate (AAP), 1-naphthyl phosphate (NPP), or 4-amino-1-naphthyl phosphate (ANP).
  • AAP ascorbic acid 2-phosphate
  • NPP 1-naphthyl phosphate
  • ABP 4-amino-1-naphthyl phosphate
  • Step 1-4) is a step of measuring the electrochemical signal using the detection signal measuring unit. Specifically, using the detection signal measuring unit, the electrochemical signal generated by the electrochemical enzyme connected to the detection signal labeling antibody, that is, the detection signal labeling antibody in step 1-3) is converted into a physical measurement value. It may be to calculate the measured value.
  • the electrochemical signal converter may use a known device, and is not particularly limited.
  • FIGS. 3A to 3C are embodiments of the present invention. It doesn't work.
  • 3A to 3C are schematic diagrams showing the progress of an electrochemical sensing method using a norovirus detection sensor according to an embodiment of the present invention.
  • the concanavalin A 121 may form a conjugate bound to the norovirus 201.
  • the conjugate may be labeled with the primary antibody 310 capable of selectively binding only the norovirus 201 captured by the concanavalin A 121.
  • the primary antibody 310 may selectively detect the norovirus 201 included in the conjugate to form an antigen-antibody bond with the norovirus 201.
  • the secondary antibody 320 which can recognize and bind the primary antibody 310 bound to the norovirus 201, may be labeled.
  • the secondary antibody 320 is connected to the electrochemical enzyme 325. Accordingly, the norovirus 201 may be finally labeled, and an electrochemical signal may be generated by the electrochemical enzyme, and the norovirus 201 may be sensed by measuring the norovirus 201.
  • the electrochemical sensing method using the norovirus detection sensor of the present invention by labeling the detection signal labeling antibody in which the electrochemical enzyme is connected to the norovirus captured with high sensitivity and high selectivity of the norovirus detection sensor, The detection time can be reduced.
  • the electrochemical sensing method using the norovirus detection sensor may have a detection limit of 35 copies / mL to 60 copies / mL, and may have a detection selectivity of 98% or more with respect to the norovirus. Specifically, this may be explained through the following embodiments and FIGS. 6 to 8.
  • Another aspect of the present invention may provide an electrochemical sensing method using a norovirus detection sensor.
  • the electrochemical sensing method using the norovirus detection sensor using a norovirus detection sensor including a biological sample receiving unit and a detection signal measuring unit, 2-1) a three-dimensional gold nano-surface electrode of the biological sample receiving unit Combining a norovirus sample comprising a concanavalin A, a capture agent capable of binding to a norovirus immobilized on a phase, and a ferricyanide solution, and 2-2) the detection signal measuring apparatus. It may include the step of measuring the electrochemical signal generated by the redox reaction of the ferricyanation solution using.
  • Step 2-1) is a noro including a concanavalin A and a ferricyanide solution, which is a capture agent capable of binding to a norovirus immobilized on a three-dimensional gold nanosurface electrode of the biological sample receiver. The virus sample is bound.
  • the biological sample accommodating part included in the norovirus detection sensor uses a three-dimensional gold nanosurface electrode as a substrate, as described above in one aspect of the present invention, and as a capture agent capable of capturing norovirus, Concanavalin A, which can bind to the virus, may be immobilized. Additionally, mercaptohexanol may be formed together with concanavalin A on the substrate.
  • the norovirus sample including the ferricyanation solution may be brought into contact with the biological sample receiver.
  • the ferricyanation solution is a self-oxidizing and reducing material, and when a voltage is applied to the 3D gold nanosurface electrode as the substrate, the ferricyanation solution may exchange electrons on the electrode surface.
  • a ferricyanation solution having this characteristic With a norovirus sample, the three-dimensional gold nanoparticles as the norovirus in the sample is trapped in concanavalin A fixed to the biological sample receiving portion of the norovirus detection sensor.
  • the area where the ferricyanide solution exchanges electrons with the electrode may be reduced.
  • the electrochemical signal of the ferricyanation solution supplied together may decrease.
  • the intensity of the electrochemical signal generated by the redox reaction of the ferricyanation solution may vary according to the concentration of the norovirus sample.
  • Step 2-2) is a step of measuring the electrochemical signal generated by the redox reaction of the ferricyanation solution using the detection signal measuring apparatus.
  • the electrochemical signal according to the redox reaction of the ferricyanation solution generated in step 2-1) is measured by using a detection signal measuring unit of the norovirus detection sensor, and the detection signal measuring unit detects the electrochemical signal It may be a signal conversion device that can be represented by physical measurements. Since the detection signal measuring unit can use a known electrochemical signal conversion device, it is not particularly limited.
  • the electrochemical sensing method using the ferricyanation solution of the present invention may be described in detail with reference to FIG. 4 to be described later, but FIG. 4 is not limited thereto.
  • Figure 4 is a schematic diagram showing an electrochemical sensing method using a norovirus detection sensor according to another embodiment of the present invention.
  • a biological sample accommodating a norovirus detection sensor immobilized on a substrate 112 composed of three-dimensional gold nanosurface electrodes, together with mercaptohexanol 122, a concanabalin A 122 biological sample capture agent
  • the norovirus sample was contacted with a ferricyanide solution to form a conjugate in which the concanavalin A 121 and the norovirus 202 were combined, and the substrate 112 was covered by the conjugate. Therefore, the redox reaction of the ferricyanation solution can be reduced. Through the generation of the redox reaction of the ferricyanation solution, the concentration of the norovirus 202 captured by the concanavalin A 122 of the biological sample receiver can be measured.
  • the electrochemical sensing method of the present invention in which the ferricyanation solution capable of generating an electrochemical signal through a redox reaction with the three-dimensional gold nanosurface electrode is contacted with a norovirus sample, separate labeling.
  • the presence and concentration of norovirus can be measured without labeling, and high sensitivity sensing can be performed by a highly sensitive three-dimensional gold nanosurface electrode.
  • a chromium (Cr) thin film layer having a thickness of about 30 nm and a gold (Au) thin film layer having a thickness of about 300 nm were sequentially formed on a glass substrate, and then a pattern was formed of photoresist (GXR-601). After performing a lithography process, a portion of the gold (Au) thin film and the chromium (Cr) thin film layer were removed from the glass substrate using an etchant (Sigma Aldrich). The substrate was immersed in about 3 mg / ml of gold (III) chloride hydrate dissolved in 0.5 M sulfuric acid.
  • Electrochemical deposition was performed by using silver / silver chloride as a reference electrode, platinum (Pt) as a counter electrode, and placing the substrate as a working electrode, and applying a voltage of -400 mV for about 400 seconds.
  • a voltage of -400 mV for about 400 seconds.
  • concanavalin A 100 ⁇ g / mL of concanavalin A (Con A) together with TBS, a buffer solution, was formed on the three-dimensional gold nanosurface electrode used as a substrate by using drop-casting at 4 ° C. for 1 hour. It was. 1.0 mM / ml mercaptohexanol was formed on the substrate to which the concanavalin A was fixed by drop-casting at 25 ° C. for 2 hours, and washed with distilled water. It was.
  • the three-dimensional gold nanosurface electrode fixed with the concanavalin A prepared in Example 1 was used at a temperature of 4 ° C. so that the concentration of norovirus ranged from 10 1 copies / mL to 10 6 copies / mL. Cultures were divided by concentration.
  • the electrode was immersed in 10 ⁇ l of milk containing about 10 ⁇ g / mL rabbit polyclonal anti-NoV antibody. Subsequently, the cells were immersed in an anti-rabbit IgG-ALP solution at about 1 ⁇ g / mL as an electrochemical enzyme-linked secondary antibody. The electrodes were then washed with wash buffer (1 ⁇ TBS and 0.05% Tween).
  • 6A to 6B are graphs showing a calibration curve using electrochemical signals at 0.1V redox potential and cyclic voltammetry measurements according to norovirus concentrations prepared in Example 2 of the present invention, respectively.
  • the increase in the current curve in the cyclic voltammetry means that the electrochemical enzyme (ALP) fixed to the norovirus is increased, which can be measured for the norovirus concentration have.
  • ALP electrochemical enzyme
  • the norovirus concentration increases from 10 2 copies / mL to 10 6 copies / mL
  • the change of the current measured at the redox potential 0.1V is linear.
  • the measured value representing the linear curve indicates that the detection limit of the norovirus detection sensor of the present invention has 35 copies / mL.
  • this detection limit may be calculated by Equation 1 as follows.
  • Equation 1 y is a detection limit, x is a standard deviation of a current value in a blank, and a is a slope value of the linear curve. It may mean the current value at.
  • the detection limit of the norovirus detection sensor of Experimental Example 1 by the formula 1 is 3 * (12.95 / 1.1), it can be derived to 35copies / mL.
  • hepatitis A virus HAV
  • HAV hepatitis E virus
  • Figure 7 is a selectivity experiment results of the electrochemical sensing method using a norovirus detection sensor measured in Experimental Example 2 of the present invention.
  • the norovirus detection sensor of the present invention detects the norovirus with a selectivity of 98% compared to other viruses.
  • the norovirus detection sensor of the present invention exhibits a high selectivity detection effect through a simplified sensor device by disposing concanavalin A on a three-dimensional gold nanosurface electrode having a large surface area.
  • the detection limit of the norovirus detection sensor of the present invention is 3 * (21.89 / 1.09), and can be derived at 60 copies / mL.
  • the three-dimensional gold nanosurface electrode fixed with the concanavalin A prepared in Example 1 was divided into a sample containing norovirus at 4 ° C., and a sample containing about 10 3 copies / mL of norovirus, Each was mixed and contacted with a ferricyanation solution and sensed.
  • FIG 9 is a graph showing a measurement result of the voltage current change according to the third embodiment of the present invention.
  • the measured value of voltage and current when there is no norovirus at 0.2 V and when norovirus is contained at about 10 3 copies / mL is significantly different. This indicates that the electrochemical signal of the ferricyanation solution decreases with or without the norovirus, and as the concentration of the norovirus increases, the capture of concanavalin A fixed to the three-dimensional gold nanosurface electrode used as the substrate is performed. As it is covered with the norovirus, it may mean that the redox reaction of the ferricyanation solution is reduced.
  • the electrochemical sensing method using the ferricyanation solution can generate an electrochemical signal according to the norovirus concentration without any labeling, thereby reducing the detection time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Inorganic Chemistry (AREA)

Abstract

노로바이러스 검출 센서 및 이를 이용한 전기화학적 센싱방법이 제공된다. 상세하게는, 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서에 있어서, 3차원 골드 나노표면 전극을 기판으로 하고, 상기 기판에 고정된 시료 포획제(capture agent)로서 상기 노로바이러스와 결합할 수 있는 콘카나발린 A(concanavalin A)를 이용하는 생물학적 시료 수용부를 포함하는 것일 수 있다. 이에, 본 발명은 표면적이 넓은 3차원 골드 나노표면 전극을 적용하여 센서의 민감도를 향상시킬 수 있다. 또한, 값이 저렴하고 용이하게 구할 수 있는 비항체물질인 콘카나발린 A를 사용함으로써 센서 제조비용을 절감시키는 효과를 가질 수 있다.

Description

노로바이러스 검출 센서, 및 이를 이용하는 전기화학적 센싱방법
본 발명은 바이오 센서에 관한 것으로, 보다 상세하게는 노로바이러스 검출 센서 및 이를 이용하는 전기화학적 센싱방법에 관한 것이다.
바이오 센서는 동식물의 세포 또는 조직, 효소, 미생물 등 생물의 특성을 이용하여 측정을 원하는 타겟 물질의 상태 및 농도를 센싱(sensing)하는 생물학적 분석장치이다. 일반적으로, 바이오 센서는 타겟 물질을 감지하고 수용하는 수용부와 감지된 타겟 물질을 물리적으로 측정 가능한 신호로 변환하여 나타내는 신호 측정부로 구성될 수 있다. 이러한 바이오 센서는 의약 분야에서 혈액, 조직세포 등의 생체시료 분석을 위해 많이 사용되었으나, 최근에는 소비자들의 건강과 웰빙에 대한 관심과 함께 식품분석 및 환경 등으로 사용범위가 점차 확대되고 있다.
한편, 노로바이러스(Norovirus)는 식품 및 수질 매개 병원체로, 음식물이나 물 등을 통해 섭취하게 되는 경우, 사람에게 감염성 위장염을 일으키는 장관계 바이러스(Enteric virus)의 한 종류로 알려져 있다. 구체적으로, 노로바이러스는 Caliciviridae과에 속하는 RNA virus로, 다섯가지(GI-GV) 유전자군으로 분류되며, 이들 중 노로바이러스의 인체감염은 주로 유전자군 GI의 8개 유전자형, GII의 17개 유전자형에 의한 것으로 알려져있다. 노로바이러스는 입자 100개 정도만 섭취해도 사람에게 설사, 복통, 구토 등의 증상을 유발할 수 있고, 상기 증상들에 의해 배출되는 구토물이나 배설물 등에 약 1억 개의 노로바이러스 입자가 함유되어 있어, 강력한 감염력 및 빠른 전염속도를 가지고 있다. 이에, 식품이나 수질에 존재할 수 있는 노로바이러스의 검출 및 예방에 대한 기술이 더욱 요구되고 있다. 이러한 노로바이러스 검출을 위하여, 종래에는 핵산기반기술을 이용한 실시간 중합효소 연쇄반응(real-time polymerase chain reaction) 센서장치가 주로 사용되었다. 상기 실시간 중합효소 연쇄반응은 중합효소를 사용하여 노로바이러스 RNA를 주형(template)으로 유전정보를 증폭시켜, 이를 이용하여 선택적이고 특이적으로 노로바이러스를 검출하는 방법이다.
하지만, 이러한 종래의 핵산을 이용하는 기술은 다양하고 복잡한 시료전처리기술이 요구되어, 검출까지 많은 시간과 비용이 소요되는 문제점이 있고, 고가의 특수장비 사용으로 센서 장치를 소형화하기 어렵다. 또한, 식품 내에 오염된 노로바이러스 검출시, 낮은 농도로 존재하는 노로바이러스를 검출하는 데에 한계가 있다.
본 발명이 해결하고자 하는 과제는, 검출 소요시간 및 센서 장치 비용을 감소시키면서도, 고감도 및 고선택성의 검출 특성을 가질 수 있는 센서 및 이를 이용하는 센싱방법을 제공하는 데에 있다.
상기 과제를 이루기 위하여 본 발명의 일 측면은, 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서에 있어서, 3차원 골드 나노표면 전극을 기판으로 하고, 상기 기판에 고정된 시료 포획제(capture agent)로서 상기 노로바이러스와 결합할 수 있는 콘카나발린 A(concanavalin A)를 이용하는 생물학적 시료 수용부를 포함하는 노로바이러스 검출 센서를 제공할 수 있다.
상기 3차원 골드 나노표면 전극은 전기화학 증착공정을 통해 형성된 것일 수 있다.
상기 콘카나발린 A(concanavalin A)가 고정된 기판 상에 메르캅토헥산올(mercaptohexanol)을 추가로 첨가하는 것일 수 있다.
상기 검출신호 측정부는, 상기 생물학적 시료 수용부에서 생성되는 전기화학적 신호를 감지하여 생물학적 시료의 정성적정량적 측정값을 산출하는 것일 수 있다.
본 발명의 다른 측면은, 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서를 이용하는 것으로, 상기 생물학적 시료 수용부의 3차원 골드 나노표면 전극 상에 고정된 노로바이러스와 결합할 수 있는 포획제인 콘카나발린 A(concanavalin A)와 노로바이러스 시료를 결합시키는 단계, 검출신호 표지용 항체를 이용하여 상기 결합으로 조성된 결합체를 표지하는 단계, 상기 검출신호 표지용 항체에 의해 전기화학적 신호가 생성되는 단계, 및 상기 검출신호 측정부를 이용하여 상기 전기화학적 신호를 측정하는 단계를 포함하는 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 제공할 수 있다.
상기 검출신호 표지용 항체를 이용하여 상기 결합으로 조성된 결합체를 표지하는 단계는, 상기 결합체에 포함된 노로바이러스만을 선택적으로 결합하는 1차 항체 및 전기화학 효소가 연결된 2차 항체를 순차적으로 사용하여 표지하는 것일 수 있다.
상기 결합체에 표지시킨 상기 2차 항체와 연결된 전기화학 효소에 의해 전기화학적 신호가 생성되는 것일 수 있다.
상기 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 통해, 35 copies/mL 내지 60 copies/mL의 검출한계를 갖는 것일 수 있다.
상기 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 통해, 노로바이러스에 대하여 98% 이상의 검출 선택성을 갖는 것일 수 있다.
본 발명의 또 다른 측면은, 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서를 이용하는 것으로, 상기 생물학적 시료 수용부의 3차원 골드 나노표면 전극 상에 고정된 노로바이러스와 결합할 수 있는 포획제인 콘카나발린 A(concanavalin A)와 페리시안화 (ferricyanide)용액을 포함하는 노로바이러스 시료를 결합시키는 단계, 및 상기 검출신호 측정부를 이용하여 상기 페리시안화 용액의 산화환원반응으로 생성되는 전기화학적 신호를 측정하는 단계를 포함하는 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 제공할 수 있다.
상기 노로바이러스 시료의 농도에 따라 상기 페리시안화 용액의 산화환원반응로 생성되는 신호의 세기가 변화되는 것일 수 있다.
본 발명은 표면적이 넓은 3차원 골드 나노표면 전극을 적용하여 센서의 민감도를 향상시킬 수 있다.
또한, 값이 저렴하고 용이하게 구할 수 있는 비항체물질인 콘카나발린 A를 사용함으로써, 제조비용을 절감시키는 효과를 가질 수 있다.
아울러, 상기 노로바이러스 검출 센서에 사용하는 콘카나발린 A에 의해 노로바이러스 검출의 선택성(selectivity)을 높일 수 있다.
또한, 페리시안화 용액을 사용하는 전기화학적 센싱방법은, 별다른 라벨링(labeling) 없이도 노로바이러스 농도에 따라 전기화학적 신호 변화를 생성할 수 있어, 검출 소요시간을 감소시킬 수 있고, 이에 간편한 Point-of-care-testing(POCT)으로 적극 활용될 수 있다.
다만, 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들을 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 노로바이러스 검출 센서를 나타낸 모식도이다.
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 생물학적 시료 수용부를 나타낸 모식도이다.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 진행과정을 나타낸 모식도이다.
도 4는 본 발명의 다른 실시예에 따른 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 나타낸 모식도이다.
도 5는 본 발명의 실시예1에서 제조된 3차원 골드 나노표면 전극을 주사전자현미경(SEM)으로 관찰하여 나타낸 이미지이다.
도 6a 내지 도 6b는 각각 본 발명의 실시예2에서 제조된 노로바이러스 농도별 순환전압전류법 측정결과 및 산화환원전위 0.1V에서의 전기화학신호를 이용한 검정곡선을 나타낸 그래프이다.
도 7은 본 발명의 실험예2에서 측정한 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법의 선택성 실험 결과이다.
도 8은 본 발명의 실험예3에 따른 노로바이러스 농도별 산화환원전위 0.1V에서의 전기화학신호를 이용한 검정곡선을 나타낸 그래프이다
도 9는 본 발명의 실시예3에 따른 전압전류변화의 측정결과를 나타낸 그래프이다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장 또는 축소된 것일 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 발명의 일 측면은, 노로바이러스 검출 센서를 제공할 수 있다. 구체적으로 이는, 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서에 있어서, 3차원 골드 나노표면 전극을 기판으로 하고, 상기 기판에 고정된 시료 포획제(capture agent)로서 상기 노로바이러스와 결합할 수 있는 콘카나발린 A(concanavalin A)을 이용하는 생물학적 시료 수용부를 포함하는 것일 수 있다.
구체적으로, 상기 노로바이러스 검출 센서에 포함되는 상기 생물학적 시료 수용부는, 측정 및 검출을 원하는 타겟 대상인 생물학적 시료를, 감지하거나, 고정화, 또는 포획할 수 있는 장치를 의미하는 것일 수 있다. 본 발명에서 상기 타겟 대상인 생물학적 시료는, 타겟 검출 대상으로 노로바이러스(norovirus)를 포함하는 것일 수 있다. 상기 생물학적 시료 수용부는 기판으로 사용하는 3차원 골드 나노표면 전극에 상기 노로바이러스를 고정시키기 위하여, 상기 노로바이러스와 결합할 수 있는 포획제로서, 콘카나발린 A(concanavalin)를 사용하는 것일 수 있다.
구체적으로, 상기 노로바이러스 검출 센서에 포함되는 검출신호 측정부는, 상기 생물학적 시료 수용부에서 생성되는 전기화학적 신호를 감지하여 생물학적 시료의 정성적정량적 측정값을 산출하는 것일 수 있다. 상기 검출신호 측정부는, 예를 들어, 상기 생물학적 시료 수용부에 타겟대상인 생물학적 시료 공급시 전기화학적 신호를 생성할 수 있는 특이적인 항체를 이용하여 라벨링(labeling) 하거나, 또는 라벨 없이(label-free) 전기화학적 신호를 생성할 수 있는 물질을 추가로 접촉시키는 방법 등을 통해 생성되는 전기화학적 신호를 감지하여, 생물학적 시료의 성분, 존재 여부, 또는 함유 농도 등의 정성적 정량적 측정값을 나타내는 것일 수 있다.
도 1은 본 발명의 일 실시예에 따른 노로바이러스 검출 센서를 나타낸 모식도이다.
도 1을 참조하면, 상기 노로바이러스 검출 센서는, 생물학적 시료를 포획할 수 있는 포획제가 형성된 기판이 배치된 생물학적 시료 수용부(100)에, 측정 및 검출을 원하는 타겟 대상인 생물학적 시료, 즉 본 발명에서는 노로바이러스를 포함한 시료를 접촉시킬 수 있는 형태로 구성될 수 있다. 또한, 상기 생물학적 시료 수용부(100)와 전기화학적으로 연결되어 상기 생물학적 시료 수용부(100)가 상기 생화학 노로바이러스(200)가 접촉됨에 따라 생성되는 전기화학적 신호를 감지하고, 측정할 수 있는 검출신호 측정부(300)가 구비되는 것일 수 있다.
본 발명의 생물학적 시료 수용부에 대해서는, 도 2a 내지 도 2c를 참조하여 구체적으로 설명될 수 있으나, 도 2a 내지 도 2c는 본 발명의 일 실시예이므로 이에 한정되지는 않는다.
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 생물학적 시료 수용부를 나타낸 모식도이다.
도 2a를 참조하면, 상기 기판(110)은 3차원 골드 나노표면 전극일 수 있다. 구체적으로, 상기 3차원 골드 나노표면 전극은 전기화학 증착공정을 통해 형성된 것일 수 있다. 더 상세하게는, 상기 기판(110) 상에 3차원 골드 나노표면을 가진 구조체 형성을 위한 씨드(seed) 역할을 수행하는 금(Au) 박막층이 형성되어 있고, 상기 금(Au)박막층에 전기화학 증착공정이 수행됨에 따라, 상기 금(Au) 박막층에 금 입자가 증착되면서 금 결정체를 형성할 수 있다. 이 때, 상기 금(Au) 박막층에 금 입자가 증착되어 성장된 금 결정체는, 금 입자가 전방향(all-direction)으로 증착성장됨에 따라, 3차원 나노표면 구조로 형성되는 것일 수 있다. 이러한 3차원 나노표면 구조는, 그 구조적 특징에 의해 표면적이 증가될 수 있다. 이에, 상기 3차원 골드 나노표면 전극을 센서의 기판(110)으로 사용시 민감도 및 선택성이 개선될 수 있다. 즉, 상기 3차원 골드 나노표면 전극을 적용한 본 발명의 노로바이러스 검출 센서는 고 민감도(high sensitivity), 및 고 선택성(high sensitivity)의 특성을 가질 수 있다.
도 2b와 같이, 상기 기판(110)으로 사용되는 3차원 골드 나노표면 전극 상에 포획제인 콘카나발린 A(120)를 고정화시킬 수 있다. 상기 콘카나발린 A(120)는 비항체 물질로서, 타겟 대상인 노로바이러스와 선택적으로 결합할 수 있다. 상기 콘카나발린 A(120)는 완두(Canavalia ensiformis)의 종자로부터 얻어진 결정성 단백질의 하나로 알려져 있으며, 높은 친화도를 가지고 있어, 특정당류와 결합하는 생물학적 특성을 가지고 있다. 본 발명은, 이러한 상기 콘카나발린 A(120)의 당 특이적 결합성을 이용하는 것으로, 상기 생물학적 시료 수용부에 노로바이러스 시료를 접촉시키게 되면, 상기 콘카나발린 A(120)가 상기 노로바이러스가 결합하게 되면서 상기 노로바이러스를 상기 생물학적 시료 수용부에 잡아두는(capturing) 역할을 수행할 수 있다.
상기 콘카나발린 A(120)가 고정된 상기 기판(110) 상에 메르캅토헥산올(mercaptohexanol)(130)을 추가로 첨가할 수 있다. 구체적으로 이는, 상기 3차원 골드 나노표면 전극인 상기 기판(110) 상에 상기 콘카나발린 A(120)를 고정시킨 이후에, 상기 기판(110) 상에 콘카나발린 A(120)가 형성되어 있지 않아 노출된 상기 3차원 골드 나노표면 전극의 일부영역에 메르캅토헥산올(mercaptohexanol)(130)을 추가로 첨가하여, 도 2c와 같이, 상기 기판(110)의 노출된 영역을 충진하는 것일 수 있다. 상기와 같이, 상기 메르캅토헥산올(130)은 상기 기판(110) 상에 콘카나발린 A(120)가 형성되지 않아 상기 기판(130)이 노출된 영역을 인위적으로 막아줌으로써(blocking) 이 후 상기 기판(110) 상에 다른 물질이 비특이적으로 결합하지 않도록 할 수 있다. 실시예에 따라, 상기 메르캅토헥산올 대신에 milk protein, 또는 Bovine Serum Albumin(BSA) 등을 사용할 수도 있다.
상기와 같이, 본 발명의 노로바이러스 검출 센서는, 기판으로 표면적이 넓은 3차원 골드 나노표면 전극을 적용하여 센서의 민감도를 개선할 수 있어, 고감도의 검출이 가능할 수 있다. 또한, 생물학적 시료 포획제로, 값이 저렴하고 용이하게 구할 수 있는 비항체물질인 콘카나발린 A를 사용함으로써 센서 제조비용을 절감시키는 효과를 가질 수 있다.
본 발명의 다른 측면은, 상기 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 제공할 수 있다. 상세하게는, 상기 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법은, 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서를 이용하는 것으로, 1-1) 상기 생물학적 시료 수용부의 3차원 골드 나노표면 전극 상에 고정된 노로바이러스와 결합할 수 있는 포획제인 콘카나발린 A(concanavalin A)와 노로바이러스 시료를 결합시키는 단계, 1-2) 검출신호 표지용 항체를 이용하여 상기 결합으로 조성된 결합체를 표지하는 단계, 1-3) 상기 검출신호 표지용 항체에 의해 전기화학적 신호가 생성되는 단계, 및 1-4) 상기 검출신호 측정부를 이용하여 상기 전기화학적 신호를 측정하는 단계를 포함할 수 있다.
상기 단계 1-1)은 상기 생물학적 시료 수용부의 3차원 골드 나노표면 전극 상에 고정된 노로바이러스와 결합할 수 있는 포획제인 콘카나발린 A(concanavalin A)와 노로바이러스 시료를 결합시키는 단계이다.
상기 노로바이러스 검출센서에 포함된 상기 생물학적 시료 수용부는, 앞서 본 발명의 일 측면에서 설명한 바와 같이, 기판으로 3차원 골드 나노표면 전극을 사용하고, 여기에 노로바이러스를 포획할 수 있는 포획제로, 노로바이러스와 결합할 수 있는 콘카나발린 A가 고정된 것일 수 있다. 추가적으로, 상기 기판 상에는 콘카나발린 A와 함께 메르캅토헥산올이 형성되어 있을 수 있다.
상기 생물학적 시료 수용부에 노로바이러스 시료를 접촉시키면, 상기 생물학적 시료 수용부에 고정된 포획제인 상기 콘카나발린 A가 상기 노로바이러스를 포획(capture)하게 되고, 이에, 상기 노로바이러스는 상기 생물학적 시료 수용부에 고정될 수 있다. 즉, 상기 생물학적 시료 수용부의 상기 콘카나발린 A와 상기 노로바이러스가 시료가 결합된 결합체가 생성될 수 있다.
상기 단계 1-2)는 검출신호 표지용 항체를 이용하여 상기 결합으로 조성된 결합체를 표지하는 단계이다.
상기 콘카나발린 A에 의해 상기 생물학적 시료 수용부에 포획된 노로바이러스를 검출하기 위하여, 상기 노로바이러스를 검출할 수 있는 검출신호 표지용 항체를 이용할 수 있다. 여기서 "검출" 이란, 상기 노로바이러스 시료에 담긴 노로바이러스의 농도를 나타내는 정량적 측정일 수 있으며, 또는 실시예에 따라, 상기 노로바이러스 시료에서 노로바이러스 이외에 다른 바이러스, 또는 다른 미생물로부터 노로바이러스를 특이적으로 분리하여 식별할 수 있는 정성적 측정을 의미할 수 있다.
상기 검출신호 표지용 항체(Detection Anti-body)는 상기 노로바이러스와 선택적으로 결합하게 되는 항체로, 공지된 노로바이러스 항체를 사용할 수 있어 특별히 한정하지는 않는다. 이는, 노로바이러스의 항체가 노로바이러스의 유전자형 종류에 따라 동물, 또는 인체의 면역학적 저항성이 다르게 나타날 수 있어, 그 종류가 매우 다양하기 때문일 수 있다.
실시예에 따라, 상기 검출신호 표지용 항체는 1차 항체, 및 2차 항체로 구분하여, 이를 순차적으로 사용하는 것일 수 있다. 구체적으로, 본 발명의 일 실시예에서, 상기 검출신호 표지용 항체를 이용하여 상기 반응으로 형성된 결합체를 표지하는 단계는, 상기 결합체의 노로바이러스만을 선택적으로 결합하는 1차 항체 및 전기화학효소가 연결된 2차 항체를 순차적으로 사용하여 표지하는 것일 수 있다.
상기 1차 항체는 상기 노로바이러스와 선택적으로 결합하여 상기 노로바이러스와 항원-항체 결합을 생성할 수 있는 항체로, 상기 1차 항체가 상기 결합체에 접촉되면, 상기 결합체에 포함된 상기 노로바이러스와 상기 1차 항체가 항원-항체 결합을 형성할 수 있다. 그런 다음, 상기 1차 항체를 항원으로 인식하는 2차 항체를 사용하여, 상기 노로바이러스와 결합한 상기 1차 항체를 표지할 수 있다. 이 때, 상기 2차 항체는 전기화학 효소가 연결된 것일 수 있다.
상기 2차 항체에 연결된 상기 전기화학 효소는, 산화환원 기능이 없는 상기 결합체 및 결합체의 전기화학적 표지를 위해, 상기 2차 항체에 연결된 것일 수 있다.
상기 단계 1-3)은 상기 검출신호 표지용 항체에 의해 전기화학적 신호가 생성되는 단계이다.
구체적으로 이는, 기질에 대한 특이성이 높은 상기 전기화학 효소를 상기 2차 항체에 연결하여 최종적으로 결합체에 포함된 노로바이러스를 표지시켜, 전기화학적 촉매 작용을 할 수 있는 상기 전기화학 효소에 의해 전기화학적 신호가 생성되는 정도를 측정하여 노로바이러스를 정성적정량적 검출 및 측정을 할 수 있게 된다. 상세하게는, 상기 전기화학 효소에 의해 전기화학 반응을 일으킬 수 있는 전기화학 측정용 물질을 주입할 수 있다. 이에, 상기 전기화학 효소는 상기 검출신호 측정부를 이용한 신호 측정시 주입되는 상기 전기화학 측정용 물질의 산화환원반응에 관여하면서, 상기 전기화학 측정용 물질을 산화시켜 전자를 발생시킬 수 있다. 이에, 상기 검출신호 측정부는, 상기 전기화학 효소에 의해 발생되는 전자의 생성량을 측정함으로써, 상기 생물학적 시료 수용부에 포획된 노로바이러스의 농도를 측정할 수 있다.
상기 전기화학 효소는, HRP(horseradish peroxidase), ALP(alkaline phosphatase), 또는 β-galactosidase를 사용할 수 있으나, 이에 한정되지는 않는다. 상기 전기화학 효소는 pH에 따라 활성화 정도가 달라질 수 있으므로, 사용되는 효소에 따라 활성화가 최적화될 수 있는 pH를 조성하여 측정효율을 향상시킬 수 있다.
본 발명의 일 실시예에서, 상기 전기화학 측정용액으로 4-aminophenyl phosphate(APP)를 포함한 수용액을 사용할 경우, 하기 반응식 1과 같이, 상기 전기화학 효소에 의해 산화환원반응이 생성될 수 있다.
[반응식 1]
Figure PCTKR2015009260-appb-I000001
상세하게는, 상기 1차 항체 및 상기 전기화학 효소가 연결된 상기 2차 항체를 표지시킨 상기 생물학적 시료 수용부에 포획되어 있는 노로바이러스의 농도를 측정하기 위하여, APP를 포함한 전기화학 측정용 물질이 공급되면, 상기 2차 항체에 연결된 전기화학 효소에 의해 상기 APP가 산화되어, 상기 반응식 1과 같이, 4-aminophenol(AP)가 되고, 0.1V의 전압하에서 다시 산화되어 4-quinoneimine(QI)가 되며, 이 때 전자가 생성될 수 있다. 이와 같이, 상기 전기화학 효소에 의해 상기 전기화학 측정용 물질이 산화되면서 전자가 발생되고, 발생되는 전자의 생성량을 측정하여 상기 전기화학 효소가 연결된 2차 항체로 표지된 노로바이러스의 농도를 측정할 수 있다.
실시예에 따라, 상기 전기화학용 측정용액은 Ascorbic acid 2-phosphate (AAP), 1-naphthyl phosphate (NPP), 또는 4-amino-1-naphthyl phosphate (ANP) 등을 사용할 수도 있다.
상기 단계 1-4)는 상기 검출신호 측정부를 이용하여 상기 전기화학적 신호를 측정하는 단계이다. 구체적으로, 상기 검출신호 측정부를 이용하여, 상기 단계 1-3)에서 상기 검출신호 표지용 항체, 즉 상기 검출신호 표지용 항체와 연결된 전기화학 효소에 의해 생성되는 전기화학적 신호를 물리적 측정값으로 변환하여 측정값을 산출해내는 것일 수 있다. 상기 전기화학적 신호변환기는 공지된 장치를 사용할 수 있으므로, 특별히 한정하지는 않는다.
상기 본 발명의 검출신호 표지용 항체를 이용한 전기화학적 센싱방법은, 후술하는 도 3a 내지 도 3c를 참조하여 구체적으로 설명될 수 있으나, 도 3a 내지 도 3c는 본 발명의 일 실시예로, 이에 한정되지는 않는다.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법의 진행과정을 나타낸 모식도이다.
도 3a를 참조하면, 3차원 골드 나노표면 전극으로 이루어진 기판(111) 상에 메르캅토헥산올(121)과 함께 생물학적 시료 포획제인 콘카나발린 A(121)이 고정된 노로바이러스 검출 센서의 생물학적 시료 수용부에, 노로바이러스 시료를 접촉시켜, 상기 콘카나발린 A(121)가 상기 노로바이러스(201)와 결합된 결합체를 형성시킬 수 있다.
이 후, 도 3b와 같이, 상기 콘카나발린 A(121)에 의해 포획된 노로바이러스(201)만을 선택적으로 결합할 수 있는 1차 항체(310)를 상기 결합체에 표지시킬 수 있다. 상기 1차 항체(310)는 상기 결합체에 포함된 노로바이러스(201)를 선택적으로 감지하여 상기 노로바이러스(201)와 항원-항체 결합을 형성할 수 있다.
그런 다음, 도 3c와 같이, 상기 노로바이러스(201)와 결합된 상기 1차 항체(310)을 항원으로 인식하여 결합할 수 있는, 2차 항체(320)를 표지시킬 수 있다. 상기 2차 항체(320)는 전기화학 효소(325)가 연결되어 있다. 이에, 상기 노로바이러스(201)는 최종적으로 표지될 수 있고, 상기 전기화학 효소에 의해 전기화학적 신호가 생성되고, 이를 측정함으로써 노로바이러스(201)를 센싱(sensing)할 수 있다.
상기와 같이, 본 발명의 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법은, 상기 노로바이러스 검출 센서의 고 민감도 및 고 선택성으로 포획된 노로바이러스에 전기화학적 효소가 연결된 검출신호 표지용 항체를 표지시킴으로써, 검출 소요시간을 감소시킬 수 있다.
또한, 상기 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 통해, 35 copies/mL 내지 60 copies/mL의 검출한계를 가질 수 있으며, 노로바이러스에 대하여 98% 이상의 검출 선택성을 가질 수 있다. 구체적으로 이는, 후술하는 실시예 및 도 6 내지 도 8을 통해 설명될 수 있다.
본 발명의 또 다른 측면은, 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 제공할 수 있다. 구체적으로, 상기 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법은, 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서를 이용하는 것으로, 2-1) 상기 생물학적 시료 수용부의 3차원 골드 나노표면 전극 상에 고정된 노로바이러스와 결합할 수 있는 포획제인 콘카나발린 A(concanavalin A)와 페리시안화 (ferricyanide)용액을 포함하는 노로바이러스 시료를 결합시키는 단계, 및 2-2) 상기 검출신호 측정장치를 이용하여 상기 페리시안화 용액의 산화환원반응으로 생성되는 전기화학적 신호를 측정하는 단계를 포함할 수 있다.
상기 단계 2-1)은 상기 생물학적 시료 수용부의 3차원 골드 나노표면 전극 상에 고정된 노로바이러스와 결합할 수 있는 포획제인 콘카나발린 A(concanavalin A)와 페리시안화 (ferricyanide)용액을 포함하는 노로바이러스 시료를 결합시키는 단계이다.
상기 노로바이러스 검출센서에 포함된 상기 생물학적 시료 수용부는, 앞서 본 발명의 일 측면에서 설명한 바와 같이, 기판으로 3차원 골드 나노표면 전극을 사용하고, 여기에 노로바이러스를 포획할 수 있는 포획제로, 노로바이러스와 결합할 수 있는 콘카나발린 A가 고정된 것일 수 있다. 추가적으로, 상기 기판 상에는 콘카나발린 A와 함께 메르캅토헥산올이 형성되어 있을 수 있다.
상기 생물학적 시료 수용부에 상기 페리시안화 용액을 포함하는 노로바이러스 시료를 접촉시켜 반응시킬 수 있다. 상기 페리시안화 용액은 자가산화환원물질로, 상기 기판인 3차원 골드 나노표면 전극에 전압이 가해지면, 상기 페리시안화 용액은 상기 전극 표면에서 전자를 주고 받을 수 있다. 이러한 특징을 가진 페리시안화 용액을 노로바이러스 시료와 함께 접촉시킴으로써, 상기 시료 내 노로바이러스가 상기 노로바이러스 검출 센서의 상기 생물학적 시료 수용부에 고정된 콘카나발린 A에 포획됨에 따라, 상기 3차원 골드 나노표면 전극의 표면이 덮이게 되면서 상기 페리시안화 용액이 상기 전극과 전자를 주고 받는 면적이 감소될 수 있다. 즉, 상기 생물학적 시료 수용부에 접촉되어 상기 콘카나발린 A와 반응하는 노로바이러스의 농도가 높아질수록, 함께 공급되는 페리시안화 용액의 전기화학적 신호가 감소할 수 있다. 이에, 상기 노로바이러스 시료의 농도에 따라 상기 상기 페리시안화 용액의 산화환원반응로 생성되는 전기화학적 신호의 세기가 변화될 수 있다.
상기 단계 2-2)는 상기 검출신호 측정장치를 이용하여 상기 페리시안화 용액의 산화환원반응으로 생성되는 전기화학적 신호를 측정하는 단계이다.
상기 단계 2-1)에서 발생되는 페리시안화 용액의 산화환원반응에 따른 전기화학적 신호를 상기 노로바이러스 검출 센서의 검출신호 측정부를 이용하여 측정하는 것으로, 상기 검출신호 측정부는 상기 전기화학적 신호를 감지하여 물리적 측정값으로 나타낼 수 있는 신호변환 장치일 수 있다. 상기 검출신호 측정부는, 공지된 전기화학 신호변환 장치를 사용할 수 있으므로, 특별히 한정하지는 않는다.
상기 본 발명의 페리시안화 용액을 이용한 전기화학적 센싱방법은, 후술하는 도 4를 참조하여 구체적으로 설명될 수 있으나, 도 4는 본 발명의 일 실시예로, 이에 한정되지는 않는다.
도 4는 본 발명의 다른 실시예에 따른 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 나타낸 모식도이다.
도 4를 참조하면, 3차원 골드 나노표면 전극으로 이루어진 기판(112) 상에 메르캅토헥산올(122)과 함께 생물학적 시료 포획제인 콘카나발린 A(122) 고정된 노로바이러스 검출 센서의 생물학적 시료 수용부에 페리시안화 용액과 함께 노로바이러스 시료를 접촉시켜, 상기 콘카나발린 A(121)과 상기 노로바이러스(202)가 결합된 결합체가 형성되고, 상기 결합체에 의해 상기 기판(112)이 덮여짐에 따라 상기 페리시안화 용액의 산화환원 반응이 감소될 수 있다. 이러한 페리시안화 용액의 산화환원 반응 생성정도를 통해 상기 생물학적 시료 수용부의 콘카나발린 A(122)에 의해 포획된 상기 노로바이러스(202)의 농도를 측정할 수 있다.
상기와 같이, 상기 3차원 골드 나노표면 전극과의 산화환원반응을 통해 전기화학적 신호를 생성할 수 있는 페리시안화 용액을 노로바이러스 시료와 함께 접촉시키는, 본 발명의 전기화학적 센싱방법은, 별도의 라벨링(labeling) 없이도 노로바이러스의 존재 여부 및 농도를 측정할 수 있고, 고 민감도를 가진 3차원 골드 나노표면 전극에 의해 고감도 센싱이 가능할 수 있다.
[실시예]
<실시예1: 노로바이러스 검출 센서의 제조>
유리 기판 상에 약 30nm 두께의 크롬(Cr)박막층, 및 약 300nm 두께의 금(Au) 박막층을 순차적으로 형성한 뒤, 포토레지스트(GXR-601)로 패턴을 형성하였다. 리소그래피 공정을 수행한 뒤, 식각액(Sigma Aldrich 사)을 이용하여 상기 유리 기판에 금(Au) 박막층 및 크롬(Cr)박막층의 일부를 제거하였다. 0.5M의 황산에 용해된 3mg/ml 정도의 금(III) 클로라이드 수화물에 상기 기판을 침지시켰다. 은/염화은을 기준 전극으로 하며, 백금(Pt)을 상대전극으로 하고, 상기 기판을 작업전극으로 배치하여, -400mV의 전압을 약 400초의 시간 동안 인가하여 전기화학 증착을 수행하였다. 이에, 도 5와 같이, 3차원 나노 표면 구조를 가진 골드 전극을 형성하였다.
기판으로 사용하는 상기 3차원 골드 나노표면 전극에 완충용액인 TBS와 함께 콘카나발린 A(Con A) 100㎍/mL을 4℃ 온도에서 1시간 동안 드롭캐스팅법(drop-casting)을 이용하여 형성하였다. 상기 콘카나발린 A가 고정된 기판에 1.0 mM/ml 메캅토헥산올(mercaptohexanol)을 25℃ 온도에서 2시간 동안 드롭캐스팅법(drop-casting)을 이용하여 형성하고, 증류수(DI water)로 세척하였다.
<실시예2: 검출표지용 항체를 이용한 전기화학적 센싱방법>
상기 실시예1에서 제조된 콘카나발린 A가 고정된 3차원 골드 나노표면 전극을 4℃ 온도에서, 노로바이러스의 농도가 101 copies/mL 내지 106 copies/mL의 범위를 가지도록, 여섯 개의 농도로 나누어 배양하였다. 1차 항체를 표지하기 위해 상기 전극을 10㎍/mL 정도의 rabbit polyclonal anti-NoV 항체가 담긴 10㎕의 우유(milk)에 침지시켰다. 이 후, 전기화학 효소가 연결된 2차 항체로 1㎍/mL 정도의 anti-rabbit IgG-ALP 용액에 담가 배양하였다. 이 후, 상기 전극을 세척 완충액(1x TBS 및 0.05% Tween)으로 세정하였다.
<실험예1: 검출표지용 항체를 사용한 전기화학적 센싱방법(1)>
노로바이러스 검출을 위하여 20mM의 APP가 포함된 10mM의 MgCl2를 공급하고, 적정 pH9.6을 조성하기 위하여, 50mM Tris-HCl의 전기화학 측정용액을 함께 공급하면서 -0.2V 내지 +0.3V의 전압을 인가하였다.
도 6a 내지 도 6b는 각각 본 발명의 실시예2에서 제조된 노로바이러스 농도별 순환전압전류법 측정결과 및 산화환원전위 0.1V에서의 전기화학신호를 이용한 검정곡선을 나타낸 그래프이다.
도 6a를 참조하면, 상기 순환전압전류법의 측정결과에서 전류의 증가곡선은, 노로바이러스에 고정되는 전기화학 효소(ALP)가 증가하는 것을 의미하는 것으로, 이를 통해 노로바이러스 농도에 대하여 측정할 수 있다. 구체적으로, 노로바이러스의 농도가 102 copies/mL 에서 106 copies/mL로 증가할수록 전류가 전압전류곡선이 뚜렷한 곡선을 나타내며 전류강도가 증가하는 것을 확인할 수 있다.
도 6b를 참조하면, 노로바이러스 농도가 102 copies/mL 내지 106 copies/mL 증가함에 따라, 산화환원전위 0.1V에서 측정한 전류의 변화가 선형(linear)으로 나타나는 것을 확인할 수 있다. 또한, 상기 선형 곡선을 나타내는 측정값을 통해 본 발명의 노로바이러스 검출 센서의 검출한계가 35 copies/mL을 갖는 것을 알 수 있다. 구체적으로 이는, 상기 검출 한계는 하기와 같은 식 1에 의해서 계산될 수 있다.
Figure PCTKR2015009260-appb-I000002
(식 1)
상기 식 1에서, y는 검출한계이며, x 는 blank에서의 전류값에 대한 표준편차(standard deviation)이며, a는 상기 선형 곡선의 기울기값으로, blank에서의 전류값과 blank와 차이가 나는 농도에서의 전류값을 의미하는 것일 수 있다.
이에, 상기 식 1에 의해 상기 실험예1의 노로바이러스 검출 센서의 검출한계는 3*(12.95/1.1)가 되어, 35copies/mL로 도출될 수 있다.
<실험예2: 검출표지용 항체를 사용한 전기화학적 센싱방법(2)>
노로바이러스 선택적 검출 측정능력을 평가하기 위하여, 103 copies/mL 농도의 노로바이러스와 함께 A형 간염 바이러스(HAV) 및 E형 간염 바이러스(HEV)를 각각 103 copies/mL의 농도로 혼합한 뒤, 센싱하였다.
도 7은 본 발명의 실험예2에서 측정한 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법의 선택성 실험 결과이다.
도 7을 참조하면, 본 발명의 노로바이러스 검출 센서가 다른 바이러스에 비해, 노로바이러스를 98%의 선택성으로 검출하는 것을 확인할 수 있다. 이와 같이, 본 발명의 노로바이러스 검출 센서는 표면적이 넓은 3차원 골드 나노표면 전극 상에 콘카나발린 A의 배치함으로써, 간소화된 센서장치를 통해 고 선택성의 검출효과를 나타내는 것을 알 수 있다.
<실험예3: 검출표지용 항체를 사용한 전기화학적 센싱방법(3)>
10g의 상추를 상온에서 stomacher(LB-400, Sibata 사)를 이용하여 50mL의 Tris elution buffer에서 15분 정도 균질화시켰다. 이 후, 원심 분리하여 상등액을 수거하였다. 노로바이러스는 농도별로 미포함, 101 copies/mL, 102 copies/mL, 103 copies/mL, 104 copies/mL, 105 copies/mL, 및 106 copies/mL, 및 노로바이러스가 미포함된 시료로 나누어 제조하였다. 이 후, 상기 노로바이러스와 상기 상추 추출물을 혼합하여 센싱하였다.
도 8은 본 발명의 실험예3에 따른 노로바이러스 농도별 산화환원전위 0.1V에서의 전기화학적 신호를 이용한 검정곡선을 나타낸 그래프이다.
도 8을 참조하면, 노로바이러스 농도가 102 copies/mL 내지 106 copies/mL 증가함에 따라 산화환원전위 0.1V에서 측정한 전류의 변화가 선형(linear)으로 나타나는 것을 확인할 수 있다. 또한, 상기 선형 곡선을 나타내는 측정값을 상기 식 1을 통해 계산해 보면, 본 발명의 노로바이러스 검출 센서의 검출한계는 3*(21.89/1.09)가 되어, 60 copies/mL로 도출될 수 있다.
이는, 다른 이물질이 없는 순수한(pure)한 시료에서보다 다소 높은 값이지만, 노로바이러스 감염 여부를 판단하는 102 copies/mL 보다 적은 값으로, 본 발명의 노로바이러스 검출 센서 및 이를 이용한 전기화학적 센싱방법이 실제 음식물 추출용액에서도 노로바이러스를 용이하게 검출하는 것을 확인할 수 있다.
<실시예3: 페리시안화 용액을 이용한 전기화학적 센싱방법>
상기 실시예1에서 제조된 콘카나발린 A가 고정된 3차원 골드 나노표면 전극을 4℃ 온도에서, 노로바이러스가 없는 시료, 및 노로바이러스의 농도가 103 copies/mL 정도 포함된 시료로 나누어, 각각 페리시안화 용액과 함께 혼합하여 접촉시킨 뒤, 센싱하였다.
도 9는 본 발명의 실시예3에 따른 전압전류변화의 측정결과를 나타낸 그래프이다.
도 9를 참조하면, 0.2V에서의 노로바이러스가 없을 때와 103 copies/mL 정도 의 노로바이러스가 포함되어 있을 때의 전압전류의 측정값이 크게 차이나는 것을 알 수 있다. 이는, 노로바이러스의 유무에 따라 페리시안화 용액의 전기화학적 신호가 감소함을 나타내는 것으로, 노로바이러스의 농도가 커질수록 기판으로 사용되는 3차원 골드 나노표면 전극에 고정된 콘카나발린 A의 포획으로 전극이 노로바이러스로 덮여짐에 따라, 페리시안화 용액의 산화환원반응이 감소한 것을 의미할 수 있다.
이와 같이, 페리시안화 용액을 사용하는 전기화학적 센싱방법을 별다른 라벨링(labeling) 없이도 노로바이러스 농도에 따른 전기화학적 신호를 생성할 수 있어, 검출 소요시간 감소 효과를 가질 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
[부호의 설명]
100: 생물학적 시료 수용부 110, 111, 112: 기판
120, 121, 122: 콘카나발린 A 130, 131, 132: 메르캅토헥산올
200, 201, 202: 노로바이러스 300: 검출신호 측정부
310: 1차 항체 320: 2차 항체
325: 전기화학 효소

Claims (11)

  1. 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서에 있어서,
    3차원 골드 나노표면 전극을 기판으로 하고,
    상기 기판에 고정된 시료 포획제(capture agent)로서 상기 노로바이러스와 결합할 수 있는 콘카나발린 A(concanavalin A)를 이용하는 생물학적 시료 수용부를 포함하는 것을 특징으로 하는, 노로바이러스 검출 센서.
  2. 제1항에 있어서,
    상기 3차원 골드 나노표면 전극은 전기화학 증착공정을 통해 형성된 것을 특징으로 하는, 노로바이러스 검출 센서.
  3. 제1항에 있어서,
    상기 콘카나발린 A(concanavalin A)가 고정된 기판 상에 메르캅토헥산올(mercaptohexanol)을 추가로 첨가하는 것을 특징으로 하는, 노로바이러스 검출 센서.
  4. 제1항에 있어서,
    상기 검출신호 측정부는, 상기 생물학적 시료 수용부에서 생성되는 전기화학적 신호를 감지하여 생물학적 시료의 정성적정량적 측정값을 산출하는 것을 특징으로 하는, 노로바이러스 검출 센서.
  5. 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서를 이용하는 것으로,
    상기 생물학적 시료 수용부의 3차원 골드 나노표면 전극 상에 고정된 노로바이러스와 결합할 수 있는 포획제인 콘카나발린 A(concanavalin A)와 노로바이러스 시료를 결합시키는 단계;
    검출신호 표지용 항체를 이용하여 상기 결합으로 조성된 결합체를 표지하는 단계;
    상기 검출신호 표지용 항체에 의해 전기화학적 신호가 생성되는 단계; 및
    상기 검출신호 측정부를 이용하여 상기 전기화학적 신호를 측정하는 단계를 포함하는 것을 특징으로 하는, 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법.
  6. 제5항에 있어서,
    상기 검출신호 표지용 항체를 이용하여 상기 결합으로 조성된 결합체를 표지하는 단계는, 상기 결합체에 포함된 노로바이러스만을 선택적으로 결합하는 1차 항체 및 전기화학 효소가 연결된 2차 항체를 순차적으로 사용하여 표지하는 것을 특징으로 하는, 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법.
  7. 제6항에 있어서,
    상기 결합체에 표지시킨 상기 2차 항체와 연결된 전기화학 효소에 의해 전기화학적 신호가 생성되는 것을 특징으로 하는, 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법.
  8. 제5항에 있어서,
    상기 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 통해 35 copies/mL 내지 60 copies/mL의 검출한계를 갖는 것을 특징으로 하는, 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법.
  9. 제5항에 있어서,
    상기 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법을 통해 노로바이러스에 대하여 98% 이상의 검출 선택성을 갖는 것을 특징으로 하는, 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법.
  10. 생물학적 시료 수용부 및 검출신호 측정부를 포함하는 노로바이러스 검출 센서를 이용하는 것으로,
    상기 생물학적 시료 수용부의 3차원 골드 나노표면 전극 상에 고정된 노로바이러스와 결합할 수 있는 포획제인 콘카나발린 A(concanavalin A)와 페리시안화 (ferricyanide)용액을 포함하는 노로바이러스 시료를 결합시키는 단계; 및
    상기 검출신호 측정부를 이용하여 상기 페리시안화 용액의 산화환원반응으로 생성되는 전기화학적 신호를 측정하는 단계를 포함하는 것을 특징으로 하는, 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법.
  11. 제10항에 있어서,
    상기 노로바이러스 시료의 농도에 따라 상기 페리시안화 용액의 산화환원반응로 생성되는 신호의 세기가 변화되는 것을 특징으로 하는, 노로바이러스 검출 센서를 이용한 전기화학적 센싱방법.
PCT/KR2015/009260 2014-09-02 2015-09-02 노로바이러스 검출 센서, 및 이를 이용하는 전기화학적 센싱방법 WO2016036145A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0116199 2014-09-02
KR1020140116199A KR102216258B1 (ko) 2014-09-02 2014-09-02 노로바이러스 검출 센서, 및 이를 이용하는 전기화학적 센싱방법

Publications (1)

Publication Number Publication Date
WO2016036145A1 true WO2016036145A1 (ko) 2016-03-10

Family

ID=55402184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009260 WO2016036145A1 (ko) 2014-09-02 2015-09-02 노로바이러스 검출 센서, 및 이를 이용하는 전기화학적 센싱방법

Country Status (3)

Country Link
US (1) US10094831B2 (ko)
KR (1) KR102216258B1 (ko)
WO (1) WO2016036145A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063593A (ko) * 2016-12-02 2018-06-12 (주)플렉센스 표면적이 향상된 검지 구조체를 이용한 면역분석방법
CZ307792B6 (cs) * 2017-08-23 2019-05-09 Masarykova Univerzita Způsob stanovení přítomnosti analytu v kapalném vzorku a jeho použití
US20220003735A1 (en) * 2018-10-01 2022-01-06 Ohio University Electrochemical microbial sensor
CN110487868B (zh) * 2019-08-02 2021-08-24 常州大学 一种基于光电化学传感器检测毒死蜱的方法
KR102236900B1 (ko) * 2019-11-25 2021-04-06 (주)라디안큐바이오 드롭 모드의 무전해 도금 방식을 이용한 금 나노구조체 제조 방법
WO2021214537A1 (en) * 2020-04-21 2021-10-28 Abdolahad Mohammad An electrochemical approach for covid-19 detection
US11060995B1 (en) * 2020-07-20 2021-07-13 Texas Tech University System Rapid viral diagnostic sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165591A (ja) * 2000-09-25 2002-06-11 Jsr Corp 磁性粒子およびその使用方法
JP2002228661A (ja) * 2001-01-31 2002-08-14 Japan Science & Technology Corp 表面プラズモン共鳴バイオセンサー用測定チップ及びその製造方法
JP2007020565A (ja) * 2005-06-13 2007-02-01 Kansai Bunri Sogo Gakuen 試料中のウイルスを検出する方法およびシステム
JP2013152211A (ja) * 2011-12-28 2013-08-08 Waseda Univ 糖化合物固定化半導体センシングデバイス及び生物学的物質の検出方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020179439A1 (en) * 2001-05-31 2002-12-05 Tsu-Tseng Weng Microelectronic system and method of use and fabrication
GB0223481D0 (en) * 2002-10-09 2002-11-13 Univ Cambridge Tech A data storage medium
EP1728069A4 (en) * 2004-03-17 2009-08-19 Ca Nat Research Council METHOD AND DEVICE FOR DETECTING MICROORGANISMS
US8614056B2 (en) * 2010-03-24 2013-12-24 The Board Of Trustees Of The Leland Stanford Junior University Microfluidic method for measurement or detection involving cells or biomolecules
WO2012109157A2 (en) * 2011-02-07 2012-08-16 The Governing Council Of The University Of Toronto Bioprobes and methods of use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165591A (ja) * 2000-09-25 2002-06-11 Jsr Corp 磁性粒子およびその使用方法
JP2002228661A (ja) * 2001-01-31 2002-08-14 Japan Science & Technology Corp 表面プラズモン共鳴バイオセンサー用測定チップ及びその製造方法
JP2007020565A (ja) * 2005-06-13 2007-02-01 Kansai Bunri Sogo Gakuen 試料中のウイルスを検出する方法およびシステム
JP2013152211A (ja) * 2011-12-28 2013-08-08 Waseda Univ 糖化合物固定化半導体センシングデバイス及び生物学的物質の検出方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONG, SUNG A ET AL.: "A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus", BIOSENSORS AND BIOELECTRONICS, vol. 64, 15 February 2015 (2015-02-15), pages 338 - 344 *
HONG, SUNG A ET AL.: "Selective, sensitive and electrochmical detection of norovirus using alternative protein", ISMM 2014, INTER-NATIONAL SYMPOSIUM ON MICROCHEMISTRY AND MICROSYSTEMS, 1 August 2014 (2014-08-01), pages 23 - 24 *
TUNG, YEN-TING ET AL.: "Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the CLECSA receptor", NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE, vol. 10, no. 6, August 2014 (2014-08-01), pages 1335 - 1341 *

Also Published As

Publication number Publication date
KR20160028038A (ko) 2016-03-11
US10094831B2 (en) 2018-10-09
KR102216258B1 (ko) 2021-02-18
US20160061834A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
WO2016036145A1 (ko) 노로바이러스 검출 센서, 및 이를 이용하는 전기화학적 센싱방법
Zhang et al. Electrical probing of COVID-19 spike protein receptor binding domain via a graphene field-effect transistor
Juang et al. Proton-ELISA: Electrochemical immunoassay on a dual-gated ISFET array
WO2019203493A1 (ko) 멀티웰 전극 기반 바이오센서
US20050208592A1 (en) Method and apparatus for the detection of microorganisms
KR20160087709A (ko) 이중 게이트 이온 감지 전계 효과 트랜지스터 바이오센서의 다중 감지 시스템
KR102496064B1 (ko) 전계효과 트랜지스터 센서의 게이트 전극 기능화 방법
WO2015160085A1 (ko) 전자전달 매개체의 산화환원 순환을 이용한 바이오센서
Dutta et al. Polyaniline based electrochemical sensor for the detection of dengue virus infection
WO2009119972A2 (ko) 고감도 바이오 센서 및 이를 포함하는 바이오 칩 그리고 이를 제조하는 방법
Arya et al. Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum
WO2009136742A1 (en) Olfactory receptor-functionalized transistors for highly selective bioelectronic nose and biosensor using the same
JP4956715B2 (ja) 目的物質の測定方法
Malbec et al. Agrodiag PorCoV: A multiplex immunoassay for the differential diagnosis of porcine enteric coronaviruses
Han et al. The design of anti-fouling and anti-hydrolysis cyclic peptides for accurate electrochemical antigen testing in human blood
CN116242999A (zh) 用于covid-19抗体数字化检测的fet生物传感器
WO2020027617A1 (ko) 쯔쯔가무시균 유래 외막 소포체를 이용한 쯔쯔가무시병의 진단방법
WO2011145908A9 (ko) 효소가 집적된 미세튜브를 이용한 정량분석법
Gupta et al. Amperometric immunosensor of Brucella abortus CE-protein antigen shows post-zone phenomena
KR102142701B1 (ko) 중성 제제로 표면 개질된 바이오센서 및 이를 이용한 검출방법
WO2009116803A2 (ko) 극미량 시료 검출용 바이오센서 및 그 제조방법
JPH09210955A (ja) タンパク質センサ
CN111307912A (zh) 一种场效应管生物传感器及其制备方法
US20230266267A1 (en) SARS-CoV-2 BIOSENSOR UTILIZING A PHOSPHATASE REPORTER
US20190107508A1 (en) Sensor, method of forming a sensor and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, FORM 1205A DATED 12.06.2017

122 Ep: pct application non-entry in european phase

Ref document number: 15837893

Country of ref document: EP

Kind code of ref document: A1