WO2009116803A2 - 극미량 시료 검출용 바이오센서 및 그 제조방법 - Google Patents

극미량 시료 검출용 바이오센서 및 그 제조방법 Download PDF

Info

Publication number
WO2009116803A2
WO2009116803A2 PCT/KR2009/001374 KR2009001374W WO2009116803A2 WO 2009116803 A2 WO2009116803 A2 WO 2009116803A2 KR 2009001374 W KR2009001374 W KR 2009001374W WO 2009116803 A2 WO2009116803 A2 WO 2009116803A2
Authority
WO
WIPO (PCT)
Prior art keywords
nano
electrode
enzyme
biosensor
target substance
Prior art date
Application number
PCT/KR2009/001374
Other languages
English (en)
French (fr)
Other versions
WO2009116803A3 (ko
Inventor
김민곤
신용범
정봉현
안준형
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to US12/933,114 priority Critical patent/US20110201027A1/en
Publication of WO2009116803A2 publication Critical patent/WO2009116803A2/ko
Publication of WO2009116803A3 publication Critical patent/WO2009116803A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/535Production of labelled immunochemicals with enzyme label or co-enzymes, co-factors, enzyme inhibitors or enzyme substrates

Definitions

  • the present invention relates to a biosensor capable of selectively measuring a trace amount of a sample and a method of manufacturing the same, and more particularly, after fixing a receptor molecule selectively binding to a target material on an electrically insulated nano-electrode chip.
  • the present invention relates to a biosensor prepared by depositing metal ions on a surface of a nano-electrode by binding an enzyme and treating metal ions with the bound enzyme.
  • an enzyme-linked immunosorbent assay (ELISA) method is mainly used, which first immobilizes an antibody on a matrix, and prepares a sample solution in which an antigenic protein is mixed on a surface on which the antibody is immobilized. After reacting for a certain time, a detection antibody that selectively binds to the antigenic protein on the surface to which the antigenic protein is bound is bound, and then a reaction substance capable of causing the enzyme to develop color or fluorescence by binding an enzyme to the detection antibody. It is a method of quantitating a small amount of antigenic protein by adding a color or fluorescence reaction to occur.
  • ELISA enzyme-linked immunosorbent assay
  • the ELISA method has been used as an effective method for measuring trace antigen proteins
  • the range of antigen protein analysis is about 10 pg / ml ⁇ 1ng / ml, and only one antigen protein can be analyzed at a time.
  • the disadvantage is that a large amount of sample is required to analyze the protein.
  • the present inventors have made diligent efforts to develop a biosensor capable of measuring a very small amount of sample.
  • the present inventors fabricated a biosensor connected between nano-electrodes through an enzyme-metal ion precipitation reaction, and measured a target substance using the same.
  • the trace amount of the target material can be easily measured by increasing the electrical conductivity between the nano-electrodes and the present invention was completed.
  • Another object of the present invention is to provide a method for detecting a target substance using the biosensor.
  • the present invention comprises the steps of (a) immobilizing a receptor molecule that selectively binds to the target material of analysis on the electrically insulated nano-electrode chip; (b) binding an enzyme to the immobilized receptor in proportion or inversely proportional to the concentration of the target substance; And (c) treating the bound enzyme with metal ions to deposit metal ions on the surface of the nano-electrode through an enzyme precipitation reaction, followed by washing and drying.
  • the present invention also provides a biosensor manufactured by the above method, wherein metal ions are deposited on the surface of the nano-electrode.
  • the present invention also comprises the steps of: (a) applying a sample containing a target substance to the biosensor; And (b) detecting a target substance specifically binding to the receptor on the biosensor by measuring electrical conductivity.
  • A shows a schematic diagram of a nano-electrode biosensor; 1: nano-scale spacing; 11: metal electrode; 21: insulator surface; B: schematic diagram showing a method for measuring a target material using a nano-electrode biosensor coupled by an enzyme-metal ion precipitation reaction; 31: enzyme; 41: precipitate by enzymatic reaction).
  • Figure 2 shows a photographic image of the substrate according to an embodiment of the present invention.
  • FIG 3 shows an atomic force microscope (AFM) image of a substrate according to one embodiment of the invention.
  • FIG. 5 shows a reaction of the enzyme-immobilized nano-electrode and the enzyme-immobilized nano-electrode with a substrate, followed by measurement of current after 10 minutes (A: red: for enzyme-immobilized nano-electrode; Blue: For the nano-electrode without enzyme fixation) and the change in the current flowing for 30 minutes under 1V voltage was measured over time (B).
  • FIG. 6 shows an atomic force microscope (AFM) image of a substrate according to an embodiment of the present invention.
  • FIG. 7 shows an SEM image of the nano-electrode fabricated by the FIB process.
  • FIG. 8 to 10 show the reaction between the enzyme-immobilized nano-electrode and the enzyme-immobilized nano-electrode with a substrate, and FIG. 8 shows the result of measuring the current after 30 minutes, and FIG. 9 shows 60 at 1V voltage.
  • the change in the current flowing for a minute is measured by time (B),
  • Figure 10 is a measurement of the current at 5 minutes the enzyme reaction for the nano-electrode with the concentration of the fixed enzyme.
  • the present invention provides a biosensor capable of detecting a trace amount of a sample and a method of manufacturing the same.
  • the biosensor according to the present invention can be prepared by the following method: (a) immobilizing a receptor molecule selectively binding to an object of interest on an electrically insulated nano-electrode chip; (b) binding an enzyme to the immobilized receptor in proportion or inversely proportional to the concentration of the target substance; And (c) treating the bound enzyme with metal ions to deposit metal ions on the surface of the nano-electrode through an enzyme precipitation reaction.
  • the nano-electrode chip may be produced by a process selected from the group consisting of photolithography, electron beam lithography, ion-focused lithography and nanoimprinting, the nano-electrode chip is insulating interval
  • the size may be 1 ⁇ m or less.
  • the target material may be selected from the group consisting of enzymes, proteins, DNA, RNA, microorganisms, animal and plant cells and organs and neurons
  • the receptor molecule is an antibody, DNA, pressure It may be characterized in that it is selected from the group consisting of a tammer, peptide nucleic acids (PNA) and ligands.
  • the enzyme may be characterized in that the peroxidase (peroxidase) or phosphatase (phosphatase), the metal ion may be characterized in that selected from the group consisting of gold, silver and copper.
  • the present invention relates to a method for detecting a target substance using the biosensor.
  • the present invention has the advantage that by using a nano-electrode, by combining the enzyme, one molecule of the enzyme can increase the current intensity by connecting the electrode during the precipitation reaction to increase the analysis sensitivity.
  • the surface of the glass substrate is modified with an amine group, and then the surface of the substrate modified with the amine group is modified with a biotin group.
  • streptavidin-alkaline phosphatase was immobilized on the surface of the biotin-modified substrate, phosphoryl phosphatase disodium salt and silver nitrate were treated to induce an enzyme precipitation reaction to produce a precipitate on the surface of the substrate.
  • the self-assembled monomolecular film was formed on the surface of the nano-electrode manufactured by the FIB process, followed by washing and drying.
  • the substrate surface modified with an amine group was modified with a biotin group.
  • streptavidin-alkaline phosphatase was immobilized on the surface of the nano-electrode modified with the biotin group
  • phosphoryl phosphatase disodium salt and silver nitrate were treated to induce an enzyme precipitation reaction to produce a precipitate on the nano-electrode surface.
  • the substrate was washed and then dried with nitrogen gas.
  • the current was measured by reacting the nano-electrode with the enzyme-immobilized nano-electrode and the prepared enzyme-immobilized nano-electrode with the substrate, and then measuring the current.
  • the conductivity increased compared to the non-nano-electrode.
  • the surface of the glass substrate was modified with an amine group, and then the surface of the substrate modified with the amine group was modified with a biotin group.
  • acetate was treated with glutathione, hydroquinone, and hydrogen peroxide to induce an enzyme precipitation reaction to produce a precipitate on the surface of the substrate.
  • the self-assembled monomolecular film was formed on the surface of the nano-electrode manufactured by the FIB process, followed by washing and drying.
  • the substrate surface modified with an amine group was modified with a biotin group.
  • streptavidin-peroxidase was immobilized on the surface of the biotin-modified nano-electrode
  • acetate was treated with glutathione, hydroquinone and hydrogen peroxide to induce an enzyme precipitation reaction to produce a precipitate on the surface of the nano-electrode.
  • the substrate was washed and then dried with nitrogen gas.
  • the current was measured by reacting the nano-electrode with no enzyme immobilized and the prepared nano-electrode with immobilized enzyme with the substrate, and then measuring the current.
  • the conductivity increased compared to the non-nano-electrode.
  • the concentration of the target substance to be analyzed can be measured.
  • a glass substrate (18 ⁇ 18 mm) was loaded on a solution of 95% sulfuric acid and 30% hydrogen peroxide solution at a volume ratio of 3: 1 at 60 to 65 ° C. for 20 minutes, and then washed with distilled water and ethanol.
  • the washed glass substrate was immersed in ethanol solution in which 1% 3-aminopropyltrimethoxysilane (3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA) was dissolved for 1 hour, washed with ethanol, and then washed at 100 ° C. After processing for 1 hour at, the substrate surface was modified with an amine group.
  • Figure 2 shows a photographic image of the glass substrate produced above.
  • concentration of streptavidin-alkaline phosphatase was 0.1 and 0.01 mg / mL, it was confirmed that the color appeared by the formation of silver nanoparticles.
  • FIG 3 shows an atomic force microscope (AFM) image of the substrate.
  • AFM atomic force microscope
  • Nano gold electrode was produced by the FIB process (Fig. 4). That is, after forming a thin film of Si 3 N 4 by chemical vapor deposition on a silicon wafer, the pattern is formed by photolithography to form a line having a 20 ⁇ m line width on the surface, chromium (Cr) 5nm / gold with a thermal evaporator (Au) 30 nm was deposited, and then an electrode was manufactured by a lift-off process. The electrode having the 20 ⁇ m metal wire was cut into a specific shape by using a Focus Ion Beam (FIB). Ion Beam Voltage is 30kV and Ion Beam Current is 50pA.
  • Figure 4 shows the SEM image of the nano-electrode produced by the above process, it was confirmed that the insulated nano-electrode was prepared at intervals of about 106nm.
  • the nano-electrode prepared above was immersed in a solution of 95% sulfuric acid and 30% hydrogen peroxide solution at a volume ratio of 3: 1 at 60 to 65 ° C. for 20 minutes, followed by washing with distilled water and ethanol.
  • the washed electrode was immersed in an ethanol solution of 20 mM HS- (PEG) 6-OH (Cosbiotech, Daejeon, Korea) and 20 mM 2-mercaptoethanol (Sigma, St. Louis, MO, USA) for 12 hours at room temperature. After the self-assembled monomolecular film was formed on the surface, the mixture was washed with ethanol, distilled water, and dried with nitrogen gas.
  • the dried nano-electrode was immersed in an ethanol solution in which 1% 3-aminopropyltrimethoxysilane (Aldrich, St. Louis, MO, USA) was dissolved for 1 hour, and then the electrode surface was washed with ethanol. And dried with nitrogen gas and treated at 100 ° C. for 1 hour to modify the silicon surface of the nano gold electrode with an amine group.
  • 1% 3-aminopropyltrimethoxysilane Aldrich, St. Louis, MO, USA
  • NHS-biotin (Sigma, St. Louis, MO, dissolved in 10 mg / ml in dimethyl sulfoxide (DMSO, SImga-Aldrich, St. Louis, MO, USA) USA) was treated with a solution adjusted to a concentration of 1 mg / ml with PBS buffer and reacted at room temperature for 1 hour to replace the amine group with a biotin group.
  • the biotin-modified surface was treated with a solution in which 0.01 mg / ml of streptavidin-alkaline phosphatase, Sigma, St. Louis, MO, USA was dissolved in 0.1 M PB buffer (pH 7.0). After reacting for 1 hour at room temperature, the enzyme was immobilized on the silicon surface between the gold electrodes.
  • the current After reacting the substrate with the enzyme-immobilized nano-electrode and the enzyme-immobilized nano-electrode prepared above, the current flowed, and after 10 minutes, the current was measured. In addition, the change of the current flowing for 30 minutes under the 1V voltage was measured over time.
  • a glass substrate (18 ⁇ 18 mm) was loaded on a solution of 95% sulfuric acid and 30% hydrogen peroxide solution at a volume ratio of 3: 1 at 60 to 65 ° C. for 20 minutes, and then washed with distilled water and ethanol.
  • the washed glass substrate was immersed in ethanol solution in which 1% 3-aminopropyltrimethoxysilane (3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA) was dissolved for 1 hour, washed with ethanol, and then washed at 100 ° C. After processing for 1 hour at, the substrate surface was modified with an amine group.
  • NHS-biotin (Sigma, St. Louis, MO) dissolved in dimethyl sulfoxide (DMSO, Simga-Aldrich, St. Louis, MO, USA) at a concentration of 10 mg / ml , USA) was treated with a solution adjusted to a concentration of 1 mg / ml with PBS buffer, and reacted at room temperature for 1 hour to substitute an amine group with a biotin group.
  • DMSO dimethyl sulfoxide
  • FIG. 6 shows an atomic force microscope (AFM) image of the fabricated glass substrate.
  • AFM atomic force microscope
  • Nano gold electrode was produced by the FIB process (Fig. 7).
  • a thin film was formed on the silicon wafer by chemical vapor deposition of Si 3 N 4 .
  • the surface was first patterned by photolithography to form a line having a 20 ⁇ m line width, and then deposited by Cr 5nm / Au 30nm with a thermal evaporator.
  • the electrode was made through a Lift-Off process.
  • the electrode having the 20 ⁇ m metal wire was scraped into a specific shape using a Focus Ion Beam (FIB).
  • Ion Beam Voltage is 30 kV and Ion Beam Current is about 50pA.
  • 7 shows an SEM image of the nano-electrode fabricated by the above process. It can be seen that an insulated nano-electrode was prepared at intervals of about 106 nm.
  • the nano-electrode prepared above was immersed in a solution of 95% sulfuric acid and 30% hydrogen peroxide solution at a volume ratio of 3: 1 at 60 to 65 ° C. for 20 minutes, followed by washing with distilled water and ethanol.
  • the washed electrode was immersed in an ethanol solution of 20 mM HS- (PEG) 6-OH (Cosbiotech, Daejeon, Korea) and 20 mM 2-mercaptoethanol (Sigma, St. Louis, MO, USA) for 12 hours at room temperature. After the self-assembled monomolecular film was formed on the surface, the mixture was washed with ethanol, distilled water, and dried with nitrogen gas.
  • the dried nano-electrode was immersed in an ethanol solution in which 1% 3-aminopropyltrimethoxysilane (Aldrich, St. Louis, MO, USA) was dissolved for 1 hour, and then the electrode surface was washed with ethanol. And dried with nitrogen gas and treated at 100 ° C. for 1 hour to modify the silicon surface of the nano gold electrode with an amine group.
  • 1% 3-aminopropyltrimethoxysilane Aldrich, St. Louis, MO, USA
  • NHS-biotin (Sigma, St. Louis, MO, dissolved in 10 mg / ml in dimethyl sulfoxide (DMSO, SImga-Aldrich, St. Louis, MO, USA) USA) was treated with a solution adjusted to a concentration of 1 mg / ml with PBS buffer and reacted at room temperature for 1 hour to replace the amine group with a biotin group.
  • DMSO dimethyl sulfoxide
  • the electrode-metal ion precipitation reaction can connect the nano-electrodes, but also the electrically insulated nano-
  • the electrical connection between the electrodes increases the electrical conductivity, resulting in high measurement sensitivity, quantitative analysis of very small amounts of sample, and very simple electrical measurement of selectively bound antigen-antibody binding.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

본 발명은 극미량의 시료를 선택적으로 측정할 수 있는 바이오센서 및 그 제조방법에 관한 것으로, 보다 구체적으로는, 전기적으로 절연된 나노-전극 칩에 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정시킨 후, 효소를 결합시키고, 상기 결합된 효소에 금속 이온을 처리하여 나노-전극 표면에 금속 이온을 침적시켜 제조된 바이오센서 및 그 제조방법에 관한 것이다. 본 발명에 따르면, 효소-금속 이온 간의 침전 반응을 통해 나노-전극 표면에 침전물을 생성시켜 나노-전극을 전기적으로 연결시켜 줌으로써 전도도를 증가시켜 미량 및/또는 다양한 농도의 목적 물질에 대한 정량적 분석에 유용하다.

Description

극미량 시료 검출용 바이오센서 및 그 제조방법
본 발명은 극미량의 시료를 선택적으로 측정할 수 있는 바이오센서 및 그 제조방법에 관한 것으로, 보다 구체적으로는, 전기적으로 절연된 나노-전극 칩에 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정시킨 후, 효소를 결합시키고, 상기 결합된 효소에 금속 이온을 처리하여 나노-전극 표면에 금속 이온을 침적시켜 제조된 바이오센서 및 그 제조방법에 관한 것이다.
극미량의 단백질, DNA 등 생체 분자를 정량 측정하는 기술은 임상적 진단, 프로테오믹스(proteomics) 연구 등에 중요한 기술이다.
단백질을 측정하기 위하여, 종래에는 주로 ELISA (enzyme-linked immunosorbent assay) 방법을 사용하는데, 이는 항체를 먼저 지지체(matrix)에 고정화시키고, 상기 항체가 고정화된 표면에 항원 단백질이 혼합되어 있는 시료 용액을 일정 시간 반응시킨 후, 상기 항원 단백질이 결합된 표면 위에 항원 단백질과 선택적으로 결합하는 감지용 항체를 결합시킨 다음, 상기 감지용 항체에 효소를 결합시켜 효소가 발색 또는 형광 특성을 일으킬 수 있는 반응 물질을 첨가하여 발색 또는 형광 반응이 일어나도록 함으로써 미량의 항원 단백질을 정량하는 방법이다. ELISA 방법이 현재까지 효과적으로 미량 항원 단백질을 측정하는 방법으로 사용되고 있기는 하나, 항원 단백질의 분석 범위가 10pg/㎖~1ng/㎖ 정도이며, 한 번에 하나의 항원 단백질만을 분석할 수 있기 때문에 다양한 항원 단백질을 분석하기 위해서는 많은 양의 시료를 요구한다는 단점이 있다.
최근 ELISA의 원리를 바이오센서 및 바이오칩에 적용하여 간편하게 항원의 농도를 측정하는 다양한 방법들이 개발되고 있다. ELISA 과정에 의해 항원 농도에 비례하여 표면에 부착된 효소가 침전 반응을 유도하여 효소 반응 생성물이 표면에 부착되도록 한 후, 표면 플라즈몬 공명(surface plasmon resonance, SPR), 미량 수정 저울(quartz crystal microbalance, QCM), 전기 화학 센서 등으로 측정하는 연구 결과들이 발표된 바 있다. 상기 방법은 극미량의 항원을 간편하게 측정할 수 있을 뿐만 아니라, 다양한 종류의 항원을 동시에 측정할 수 있다 (Kim et al., J. Immunol. Meth., 297:125, 2005; Abad et al., Anal. Chim. Acta, 368:183, 1998). 그러나, 상기 방법의 경우 기존의 ELISA와 비교하여 측정 민감도 면에서 크게 향상되지 않은 결과를 나타내고 있다.
이에, 본 발명자들은 극미량의 시료를 측정할 수 있는 바이오센서를 개발하고자 예의 노력한 결과, 효소-금속 이온 침전 반응을 통해 나노-전극 사이를 연결시킨 바이오센서를 제작하고, 이를 이용하여 목적 물질을 측정할 경우, 나노-전극 사이의 전기 전도도를 증가시켜 극미량의 목적 물질을 용이하게 측정할 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 주된 목적은 극미량의 시료를 검출할 수 있는 바이오센서 및 그 제조방법을 제공하는데 있다.
본 발명의 다른 목적은 상기 바이오센서를 이용한 목적 물질의 검출방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 전기적으로 절연된 나노-전극 칩에 분석 대상 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정화시키는 단계; (b) 상기 고정된 리셉터에 목적 물질의 농도에 비례 또는 반비례하게 효소를 결합시키는 단계; 및 (c) 상기 결합된 효소에 금속 이온을 처리하여 효소 침전 반응을 통해 금속 이온을 나노-전극 표면에 침적시킨 후, 세척하여 건조시키는 단계를 포함하는 바이오센서의 제조방법을 제공한다.
본 발명은 또한, 상기 방법으로 제조되고, 나노-전극 표면에 금속 이온이 침적되어 있는 것을 특징으로 하는 바이오센서를 제공한다.
본 발명은 또한, (a) 상기 바이오센서에 목적 물질을 함유하는 시료를 적용하는 단계; 및 (b) 전기 전도도를 측정하여 상기 바이오센서 상의 리셉터와 특이적으로 결합하는 목적 물질을 검출하는 단계를 포함하는 목적 물질의 검출방법을 제공한다.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 효소-금속 이온 침전 반응에 의해 결합된 나노-전극 바이오센서를 이용하여 미량의 목적 물질을 정량 분석하는 방법을 개략적으로 나타낸 모식도이다 (A: 나노-전극 바이오센서의 모식도를 나타낸 것임; 1: 나노 크기의 간격; 11: 금속 전극; 21: 절연체 표면; B: 효소-금속 이온 침전 반응에 의해 결합된 나노-전극 바이오센서를 이용한 목적 물질의 측정방법을 개략적으로 나타낸 모식도를 나타낸 것임; 31: 효소; 41: 효소 반응에 의한 침전물).
도 2는 본 발명의 일 실시예에 따른 기판의 사진 이미지를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 기판의 원자력간 현미경(AFM) 이미지를 나타낸 것이다.
도 4는 FIB 공정에 의해 제작된 나노-전극의 SEM 이미지를 나타낸 것이다.
도 5는 효소가 고정된 나노-전극과 효소가 고정되지 않은 나노-전극을 기질과 반응시킨 다음, 10분 경과 후 전류를 측정한 결과(A: 적색: 효소가 고정된 나노-전극의 경우; 청색: 효소가 고정되어 있지 않은 나노-전극의 경우) 및 1V 전압 하에서 30분 동안 흐른 전류의 변화 추이를 시간별로 측정(B)한 것이다.
도 6은 본 발명의 일 실시예에 따른 기판의 원자력간 현미경(AFM) 이미지를 나타낸 것이다.
도 7은 FIB 공정에 의해 제작된 나노-전극의 SEM 이미지를 나타낸 것이다.
도 8내지 도 10은 효소가 고정된 나노-전극과 효소가 고정되지 않은 나노-전극을 기질과 반응시킨 다음, 도 8은 30분 경과 후 전류를 측정한 결과이고, 도 9는 1V 전압 하에서 60분 동안 흐른 전류의 변화 추이를 시간별로 측정(B)한 결과이고, 도 10은 고정된 효소의 농도를 변화시킨 나노-전극에 대해 효소반응 5분에 전류를 측정한 것이다.
발명의 상세한 설명 및 구체적인 구현예
본 발명은 일 관점에서, 극미량의 시료를 검출할 수 있는 바이오센서 및 그 제조방법을 제공하는데 있다.
본 발명에 따른 바이오센서는 하기의 방법에 의해 제조될 수 있다: (a) 전기적으로 절연된 나노-전극 칩에 분석 대상 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정화시키는 단계; (b) 상기 고정된 리셉터에 목적 물질의 농도에 비례 또는 반비례하게 효소를 결합시키는 단계; 및 (c) 상기 결합된 효소에 금속 이온을 처리하여 효소 침전 반응을 통해 금속 이온을 나노-전극 표면에 침적시키는 단계.
본 발명에 있어서, 상기 나노-전극 칩은 포토리소그라피, 전자빔 리소그라피, 이온 집중 리소그라피 및 나노임프린팅으로 구성된 군에서 선택되는 공정에 의하여 제작된 것임을 특징으로 할 수 있고, 상기 나노-전극 칩은 절연 간격 크기가 1㎛ 이하인 것을 특징으로 할 수 있다. 1㎛ 이상의 마이크로 전극 상에서 효소침전 반응에 의해 전류량 증가를 측정할 경우, 많은 양의 효소가 결합되어야 하거나, 효소침전 반응 후 별도의 반응을 유도하여야 하지만, 1㎛ 이하의 나노-전극으로 구성할 경우 한 단계의 효소침전 반응으로 전기전도도 증가를 유도할 수 있다.
본 발명에 있어서, 상기 목적 물질은 효소, 단백질, DNA, RNA, 미생물, 동?식물 세포 및 기관 및 신경세포로 구성된 군에서 선택되는 것을 특징으로 할 수 있고, 상기 리셉터 분자는 항체, DNA, 압타머, PNA(peptide nucleic acids) 및 리간드로 구성되는 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 효소는 퍼옥시다아제(peroxidase) 또는 포스파타제(phosphatase)인 것을 특징으로 할 수 있고, 상기 금속 이온은 금, 은 및 구리로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명은 다른 관점에서, 상기 바이오센서를 이용한 목적 물질의 검출방법에 관한 것이다.
효소 반응에 의한 침전물 형성에 의해 마이크로 전극을 전기적으로 연결하는 방법에 대해서는 많은 연구가 진행 중에 있다 (Mo1ller et al., Nano Lett., 5:1475, 2005; WO 02/103037). 그러나, 상기 연구는 마이크로 전극을 이용하기 때문에 표면에 결합하는 효소의 양이 많아야 하거나, 효소 침전 반응 후 추가적인 침전 반응을 유도하여야 전극이 연결되어 전류가 흐르게 된다는 단점이 있었다. 이에 비하여, 본 발명은 나노-전극을 이용하여 한 번의 효소 침전 반응에 의해 나노-전극에 형성된 침전물이 절연된 나노-전극 간격을 전기적으로 연결시켜 주어, 일정한 전압을 가할 경우 전류를 흐르게 함으로써 목적 물질을 정량적으로 측정하는데 이용할 수 있다는 장점을 가지고 있다.
한편, 나노-전극에 금 나노 입자를 결합시키는 방법에 의해 목적 물질을 측정하는 방법이 보고되었는바(Malaquin et al., Microelectron. Eng., 73~74:887, 2004), 이는 금 나노 입자는 전극을 완전하게 연결시켜 주지 못하기 때문에 전류 증가가 크지 않다는 단점을 가지고 있었다. 따라서, 본 발명은 나노-전극을 이용하되, 효소를 결합시킴으로써, 효소 한 분자가 침전 반응시 전극을 연결하여 전류 세기를 크게 할 수 있어 분석 감도를 증가시킬 수 있다는 장점을 가진다.
본 발명의 일 실시예에서는 유리 기판 표면을 아민기로 개질한 후, 아민기로 개질된 기판 표면을 바이오틴기로 개질하였다. 상기 바이오틴기로 개질된 기판 표면에 스트렙타비딘-알카라인포스파타제를 고정화한 후, 인독실 포스파타제 디소듐염 및 질산은을 처리하여 효소 침전 반응을 유도하여 기판 표면에 침전물이 생성되도록 하였다. 상기 기판을 세척한 후, 질소 가스로 건조시켜 침전물이 형성된 것을 원자력간 현미경으로 관찰하였다.
본 발명의 다른 실시예에서는 FIB 공정에 의해 제작된 나노-전극 표면에 자기조립 단분자막을 형성시킨 후, 세척·건조하였다. 상기 건조된 나노-전극 표면을 아민기로 개질한 후, 아민기로 개질된 기판 표면을 바이오틴기로 개질하였다. 상기 바이오틴기로 개질된 나노-전극 표면에 스트렙타비딘-알카라인포스파타제를 고정화한 후, 인독실 포스파타제 디소듐염 및 질산은을 처리하여 효소 침전 반응을 유도하여 나노-전극 표면에 침전물이 생성되도록 하였다. 상기 기판을 세척한 후, 질소 가스로 건조시켰다.
효소가 고정되지 않은 나노-전극과 상기에서 제조된 효소가 고정된 나노-전극에 각각 기질과 반응시켜 전류가 흐르게 한 후, 전류를 측정한 결과, 이는 효소가 고정된 나노-전극이 효소가 고정되지 않은 나노-전극에 비하여 전도도가 증가하였다.
본 발명의 또 다른 실시예에서는 유리 기판 표면을 아민기로 개질한 후, 아민기로 개질된 기판 표면을 바이오틴기로 개질하였다. 상기 바이오틴기로 개질된 기판 표면에 스트렙타비딘-퍼옥시다아제를 고정화한 후, 아세테이트 은, 글루타치온, 하이드로퀴논 및 과산화수소를 처리하여 효소 침전 반응을 유도하여 기판 표면에 침전물이 생성되도록 하였다. 상기 기판을 세척한 후, 질소 가스로 건조시켜 침전물이 형성된 것을 AFM으로 관찰하였다.
본 발명의 다른 실시예에서는 FIB 공정에 의해 제작된 나노-전극 표면에 자기조립 단분자막을 형성시킨 후, 세척·건조하였다. 상기 건조된 나노-전극 표면을 아민기로 개질한 후, 아민기로 개질된 기판 표면을 바이오틴기로 개질하였다. 상기 바이오틴기로 개질된 나노-전극 표면에 스트렙타비딘-퍼옥시다아제를 고정화한 후, 아세테이트 은, 글루타치온, 하이드로퀴논 및 과산화수소를 처리하여 효소 침전 반응을 유도하여 나노-전극 표면에 침전물이 생성되도록 하였다. 상기 기판을 세척한 후, 질소 가스로 건조시켰다. 효소가 고정되지 않은 나노-전극과 상기에서 제조된 효소가 고정된 나노-전극에 각각 기질과 반응시켜 전류가 흐르게 한 후, 전류를 측정한 결과, 역시 효소가 고정된 나노-전극이 효소가 고정되지 않은 나노-전극에 비하여 전도도가 증가하였다.
따라서, 본 발명에서는 항원-항체, DNA-DNA, DNA-RNA, PNA-DNA 등 다양한 결합 반응에 비례 또는 반비례하여 효소를 결합시킨 후, 효소-금속 이온 침전 반응을 유도한 다음, 전류 또는 저항을 측정하는 방법에 의해 분석하고자 하는 목적 물질의 농도를 측정할 수 있다.
실시예
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 기판에 고정화된 알칼리 포스파타아제의 은 침전 반응
유리 기판(18×18mm)을 95% 황산과 30% 과산화수소수를 3:1의 부피비로 혼합한 용액에 60~65℃에서 20분 동안 담지한 다음, 증류수, 에탄올 순으로 세척하였다. 상기 세척한 유리 기판을 1% 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA)을 녹인 에탄올 용액에 1시간 동안 담지한 후, 에탄올로 세척하고, 100℃에서 1시간 동안 처리하여, 기판 표면을 아민기로 개질하였다.
상기 아민기로 개질된 표면을 바이오틴기로 개질하기 위하여, dimethyl sulfoxide(DMSO, Simga-Aldrich, St. Louis, MO, USA)에 10mg/ml 농도로 용해되어 있는 NHS-바이오틴(Sigma, St. Louis, MO, USA)을 PBS 완충용액으로 1mg/ml 농도로 맞춘 용액을 처리하여 1시간 동안 실온에서 반응시켜, 아민기를 바이오틴기로 치환하였다. 스트렙타비딘-알카라인포스파타제(streptavidin-alkalinephosphatase, STA-AP, Sigma, St. Louis, MO, USA) 0.1mg/ml를 0.1M PB 완충용액(pH 7.0)에 용해시킨 용액을 상기 바이오틴기로 개질된 기판 표면에 처리한 후, 상온에서 1시간 동안 반응시켜, 유리 기판 표면에 효소를 고정화하였다.
이후, 상기 효소가 고정된 표면에 1mM 인독실 포스파타제 디소듐염(indoxyl phosphate disodium salt, Sigma, St. Louis, MO, USA)과 1mM 질산은(silver nitrate, Sigma-Aldrich, St. Louis, MO, USA)을 0.1M tris 완충용액(pH 9.8)에 용해시킨 용액을 처리하여 1시간 동안 상온에서 반응시킴으로써 침전물이 생성되도록 하였다. 상기 기판을 증류수로 세척한 후, 질소 가스로 건조시켰다.
도 2는 상기에서 제작된 유리 기판의 사진 이미지를 나타낸 것이다. 스트렙타비딘-알카라인포스파타제의 농도가 0.1, 0.01mg/mL인 경우, 은 나노입자 형성에 의해 색깔이 나타나는 것을 확인할 수 있었다.
도 3은 상기 기판의 원자력간 현미경(atomic force microscope, AFM) 이미지를 나타낸 것이다. 스트렙타비딘-알카라인포스파타제의 농도가 높아짐에 따라 200nm 이상의 은 나노입자의 형성이 증가되는 것을 알 수 있었다.
실시예 2: 나노-전극에서 알칼리 포스파타아제의 침전 반응
FIB 공정에 의해 나노 금 전극을 제작하였다 (도 4). 즉, 실리콘 웨이퍼 상에서 Si3N4를 화학증착법으로 박막을 형성시킨 후, 상기 표면에서 20μm 선폭을 가진 선이 형성되도록 포토리소그래피(photolithography)로 패턴을 하고, thermal Evaporator로 크롬(Cr) 5nm/금(Au) 30nm를 증착한 다음, Lift-Off 공정을 통해 전극을 제조하였다. 상기 20μm 금속선을 가진 전극을 Focus Ion Beam(FIB)을 이용하여 특정한 형태로 깎아내었다. Ion Beam Voltage는 30kV, Ion Beam Current는 50pA를 사용하였다. 도 4는 상기 공정에 의해 제작된 나노-전극의 SEM 이미지를 나타낸 것으로, 약 106nm 간격으로 절연된 나노-전극이 제조되었음을 확인할 수 있었다.
상기에서 제작된 나노-전극을 95% 황산과 30% 과산화수소수를 3:1의 부피비로 혼합한 용액에 60~65℃에서 20분 동안 담지한 후, 증류수, 에탄올 순으로 세척하였다. 상기 세척한 전극을 20mM HS-(PEG)6-OH(Cosbiotech, Daejeon, Korea)와 20mM 2-머캅토에탄올(Sigma, St. Louis, MO, USA)을 녹인 에탄올 용액에 상온에서 12시간 정도 담지하여 표면에 자기조립 단분자막이 형성되도록 한 후, 에탄올, 증류수 순으로 세척하고, 질소 가스로 건조시켰다. 상기 건조된 나노-전극을 1% 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA)을 녹인 에탄올 용액에서 1시간 동안 담지한 후, 에탄올로 전극 표면을 세척하고, 질소 가스로 건조시킨 다음, 100℃에서 1시간 동안 처리하여 나노 금 전극의 실리콘 표면을 아민기로 개질하였다.
상기 아민기로 개질된 표면을 바이오틴기로 개질하기 위하여, dimethyl sulfoxide(DMSO, SImga-Aldrich, St. Louis, MO, USA)에 10mg/ml로 용해되어 있는 NHS-바이오틴(Sigma, St. Louis, MO, USA)을 PBS 완충용액으로 1mg/ml 농도로 맞춘 용액을 처리하여 1시간 동안 실온에서 반응시킴으로써 아민기를 바이오틴기로 치환하였다. 상기 바이오틴기로 개질된 표면에 스트렙타비딘-알카라인포스파타제(streptavidin-alkalinephosphatase, Sigma, St. Louis, MO, USA) 0.01mg/ml를 0.1M PB 완충용액(pH 7.0)에 용해시킨 용액을 처리한 후, 상온에서 1시간 동안 반응시켜, 금 전극 사이의 실리콘 표면에 효소를 고정화하였다.
이후, 상기 효소가 고정된 표면에 0.5mM 인독실 포스파타제 디소듐염(indoxyl phosphate disodium salt, Sigma, St. Louis, MO, USA)과 0.1mM 질산은(Sigma-Aldrich, St. Louis, MO, USA)을 0.1M tris-HNO3 완충용액(pH 9.8)에 용해시킨 용액을 처리하여 1시간 동안 상온에서 반응시킴으로써 효소가 고정된 표면에 침전물이 생성되도록 하였다. 상기 나노-전극을 증류수로 세척한 후, 질소 가스로 건조시켰다.
효소가 고정되지 않은 나노-전극과 상기에서 제조된 효소가 고정된 나노-전극에 각각 기질과 반응시켜 전류가 흐르게 한 후, 10분 경과한 다음, 전류를 측정하였다. 또한, 1V 전압 하에서 30분 동안 흐른 전류의 변화 추이를 시간별로 측정하였다.
그 결과, 효소가 고정되지 않은 나노-전극의 경우, 1V의 전압을 가했을 때 1μA 이하의 전류가 흐르는데 비하여, 효소가 고정된 나노-전극의 경우 2.5mA의 전류가 흐르는 것을 알 수 있었다 (도 5). 이는 효소가 고정된 나노-전극이 효소가 고정되지 않은 나노-전극에 비하여 전도도의 증가를 유도한다는 것을 의미한다.
실시예 3: 기판에 고정화된 퍼옥시다아제의 은 침전 반응
유리 기판(18×18mm)을 95% 황산과 30% 과산화수소수를 3:1의 부피비로 혼합한 용액에 60~65℃에서 20분 동안 담지한 다음, 증류수, 에탄올 순으로 세척하였다. 상기 세척한 유리 기판을 1% 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA)을 녹인 에탄올 용액에 1시간 동안 담지한 후, 에탄올로 세척하고, 100℃에서 1시간 동안 처리하여, 기판 표면을 아민기로 개질하였다.
상기 아민기로 개질된 표면을 바이오틴기로 개질하기 위하여, dimethyl sulfoxide(DMSO, Simga-Aldrich, St. Louis, MO, USA)에 10mg/ml 농도로 용해되어 있는 NHS-바이오틴(Sigma, St. Louis, MO, USA)을 PBS 완충용액으로 1mg/ml 농도로 맞춘 용액을 처리하여 1시간 동안 실온에서 반응시켜, 아민기를 바이오틴기로 치환하였다. 스트렙타비딘-퍼옥시다아제(streptavidin-horseradish peroxidase, STA-HRP, Calbiochem, USA) 0.1mg/ml를 0.1M PB 완충용액(pH 7.0)에 용해시킨 용액을 상기 바이오틴기로 개질된 기판 표면에 처리한 후, 상온에서 1시간 동안 반응시켜, 유리 기판 표면에 효소를 고정화하였다.
이후, 상기 효소가 고정된 표면에 1 mM 아세테이트 은(silver acetate, Sigma, St. Louis, MO, USA), 10 mM 하이드로퀴논(hydroquinone, Oriental Chemical Industries, Seoul, Korea), 1 mM 환원된 글루타치온(reduced glutathione, Duchefa Biochemie, Haarlem, Netherlands)과 1 mM 과산화수소수(hydrogen peroxide, Junsei, Tokyo, Japan)을 0.1M citrate 완충용액(pH 8.5)에 용해시킨 용액을 처리하여 1시간 동안 상온에서 반응시킴으로써 침전물이 생성되도록 하였다. 상기 기판을 증류수로 세척한 후, 질소 가스로 건조시켰다.
도 6은 상기 제작된 유리기판의 원자력간 현미경(atomic force microscope, AFM) 이미지를 나타낸 것이다. 스트렙타비딘-퍼옥시다아제의 반응시간이 늘어남에 따라 200nm 이상의 은 나노입자의 형성이 증가되는 것을 알 수 있었다.
실시예 4: 나노-전극에서 퍼옥시다아제의 침전 반응
FIB 공정에 의해 나노 금 전극을 제작하였다 (도 7). 실리콘 웨이퍼 상에서 Si3N4를 화학증착법으로 박막을 형성시켰다. 상기 표면에서 먼저 20μm 선폭을 가진 선이 만들어지도록 photolithography로 패턴을 하고, thermal Evaporator로 Cr 5nm / Au 30nm 증착하였다. Lift-Off 공정을 통해 전극을 만들었다. 상기 20μm 금속선을 가진 전극을 Focus Ion Beam (FIB)을 이용하여 특정한 형태로 깎아내었다. Ion Beam Voltage는 30 kV, Ion Beam Current는 50pA 정도를 사용하였다. 도 7은 상기 공정에 의해 제작된 나노-전극의 SEM 이미지를 보여주고 있다. 약 106nm 간격으로 절연된 나노-전극이 제조되었음을 확인할 수 있다.
상기에서 제작된 나노-전극을 95% 황산과 30% 과산화수소수를 3:1의 부피비로 혼합한 용액에 60~65℃에서 20분 동안 담지한 후, 증류수, 에탄올 순으로 세척하였다. 상기 세척한 전극을 20mM HS-(PEG)6-OH(Cosbiotech, Daejeon, Korea)와 20mM 2-머캅토에탄올(Sigma, St. Louis, MO, USA)을 녹인 에탄올 용액에 상온에서 12시간 정도 담지하여 표면에 자기조립 단분자막이 형성되도록 한 후, 에탄올, 증류수 순으로 세척하고, 질소 가스로 건조시켰다. 상기 건조된 나노-전극을 1% 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane, Aldrich, St. Louis, MO, USA)을 녹인 에탄올 용액에서 1시간 동안 담지한 후, 에탄올로 전극 표면을 세척하고, 질소 가스로 건조시킨 다음, 100℃에서 1시간 동안 처리하여 나노 금 전극의 실리콘 표면을 아민기로 개질하였다.
상기 아민기로 개질된 표면을 바이오틴기로 개질하기 위하여, dimethyl sulfoxide(DMSO, SImga-Aldrich, St. Louis, MO, USA)에 10mg/ml로 용해되어 있는 NHS-바이오틴(Sigma, St. Louis, MO, USA)을 PBS 완충용액으로 1mg/ml 농도로 맞춘 용액을 처리하여 1시간 동안 실온에서 반응시킴으로써 아민기를 바이오틴기로 치환하였다. 상기 바이오틴기로 개질된 표면에 스트렙타비딘-퍼옥시다아제(streptavidin-horseradish peroxidase, STA-HRP, Calbiochem, USA) 0.01mg/ml를 0.1M PB 완충용액(pH 7.0)에 용해시킨 용액을 처리한 후, 상온에서 1시간 동안 반응시켜, 금 전극 사이의 실리콘 표면에 효소를 고정화하였다.
이후, 상기 효소가 고정된 표면에 1 mM 아세테이트 은(silver acetate, Sigma, St. Louis, MO, USA), 10 mM 하이드로퀴논(hydroquinone, Oriental Chemical Industries, Seoul, Korea), 1 mM 환원된 글루타치온(reduced glutathione, Duchefa Biochemie, Haarlem, Netherlands)과 1 mM 과산화수소수(hydrogen peroxide, Junsei, Tokyo, Japan)를 0.1M citrate 완충용액(pH 8.5)에 용해시킨 용액을 처리하여 1시간 동안 상온에서 반응시킴으로써 효소가 고정된 표면에 침전물이 생성되도록 하였다. 상기 나노-전극을 증류수로 세척한 후, 질소 가스로 건조시켰다.
효소가 고정되지 않은 나노-전극과 상기에서 제조된 효소가 고정된 나노-전극에 각각 기질과 반응시켜 전류가 흐르게 한 후, 5분 경과한 다음, 전류를 측정하였다. 또한, 1V 전압 하에서 30분 동안 흐른 전류의 변화 추이를 시간별로 측정하였다.
그 결과, 효소가 고정되지 않은 나노-전극의 경우, 1V의 전압을 가했을 때 1μA 이하의 전류가 흐르는데 비하여, 효소가 고정된 나노-전극의 경우 2.5mA의 전류가 흐르는 것을 알 수 있었다 (도 8). 도 9는 효소반응 시간에 따른 1 V 전압에 대한 전류변화를 보여주고 있고, 도 10은 효소 농도에 따라 효소반응 5분에 측정한 결과를 보여준다. 효소 농도가 증가함에 따라 전류변화가 증가함을 보여준다. 이는 효소가 고정된 나노-전극이 효소가 고정되지 않은 나노-전극에 비하여 전도도의 증가를 유도한다는 것을 의미한다.
이상 상세히 설명한 바와 같이, 본 발명에 따른 바이오센서를 이용하여 분석 대상 목적 물질을 측정할 경우, 한 번의 효소-금속 이온 침전 반응으로 나노-전극 사이를 연결할 수 있을 뿐만 아니라, 전기적으로 절연된 나노-전극 사이를 전기적으로 연결시켜 전기 전도도를 증가시키므로, 측정 감도가 높고, 극미량의 시료를 정량적으로 분석할 수 있으며, 선택적으로 결합된 항원-항체 결합을 매우 간단하게 전기적인 방법으로 측정할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (10)

  1. 다음 단계를 포함하는 바이오센서의 제조방법:
    (a) 전기적으로 절연된 나노-전극 칩에 분석 대상 목적 물질에 선택적으로 결합하는 리셉터 분자를 고정화시키는 단계;
    (b) 상기 고정된 리셉터에 목적 물질의 농도에 비례 또는 반비례하게 효소를 결합시키는 단계; 및
    (c) 상기 결합된 효소에 금속 이온을 처리하여 효소 침전 반응을 통해 금속 이온을 나노-전극 표면에 침적시킨 후, 세척하여 건조시키는 단계.
  2. 제1항에 있어서, 상기 나노-전극 칩은 포토리소그라피, 전자빔 리소그라피, 이온 집중 리소그라피 및 나노임프린팅으로 구성된 군에서 선택되는 공정에 의하여 제작된 것임을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 나노-전극 칩은 크기가 1㎛ 이하인 것을 특징으로 하는 방법.
  4. 제1항에 있어서, 상기 목적 물질은 효소, 단백질, DNA, RNA, 미생물, 동·식물 세포 및 기관 및 신경세포로 구성된 군에서 선택되는 것을 특징으로 하는 방법.
  5. 제1항에 있어서, 상기 리셉터 분자는 항체, DNA, 압타머, PNA(peptide nucleic acids) 및 리간드로 구성되는 군에서 선택되는 것을 특징으로 하는 방법.
  6. 제1항에 있어서, 상기 효소는 퍼옥시다아제(peroxidase) 또는 포스파타제(phosphatase)인 것을 특징으로 하는 방법.
  7. 제1항에 있어서, 상기 금속 이온은 금, 은 및 구리로 구성된 군에서 선택되는 것을 특징으로 하는 방법.
  8. 제1항 내지 제7항 중 어느 한 항의 방법으로 제조되고, 나노-전극 표면에 금속 이온이 침적되어 있는 것을 특징으로 하는 바이오센서.
  9. 다음 단계를 포함하는 목적 물질의 검출방법:
    (a) 제8항의 바이오센서에 목적 물질을 함유하는 시료를 적용하는 단계; 및
    (b) 전기 전도도를 측정하여 상기 바이오센서 상의 리셉터와 특이적으로 결합하는 목적 물질을 검출하는 단계.
  10. 제9항에 있어서, 상기 목적 물질은 효소, 단백질, DNA, RNA, 미생물, 동·식물 세포 및 기관 및 신경세포로 구성된 군에서 선택되는 것을 특징으로 하는 방법.
PCT/KR2009/001374 2008-03-18 2009-03-18 극미량 시료 검출용 바이오센서 및 그 제조방법 WO2009116803A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/933,114 US20110201027A1 (en) 2008-03-18 2009-03-18 Biosensor for detecting a trace amount of sample and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080024796 2008-03-18
KR10-2008-0024796 2008-03-18

Publications (2)

Publication Number Publication Date
WO2009116803A2 true WO2009116803A2 (ko) 2009-09-24
WO2009116803A3 WO2009116803A3 (ko) 2009-12-23

Family

ID=41091398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001374 WO2009116803A2 (ko) 2008-03-18 2009-03-18 극미량 시료 검출용 바이오센서 및 그 제조방법

Country Status (3)

Country Link
US (1) US20110201027A1 (ko)
KR (1) KR101048478B1 (ko)
WO (1) WO2009116803A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218987B1 (ko) * 2010-05-18 2013-01-07 한양대학교 에리카산학협력단 바이오칩 및 그 제조 방법, 이를 이용한 분석 대상 물질 검출 방법
KR102634620B1 (ko) * 2022-01-07 2024-02-08 한국표준과학연구원 생체 분자 분석을 위한 효소 반응 생성물의 유효 공간 내 축적을 통한 국소 표면 플라즈몬공명 센서의 신호 증폭 방법
CN114505070B (zh) * 2022-04-02 2024-02-02 陕西师范大学 多孔纳米酶、多孔纳米酶晶体及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837454A (en) * 1988-11-14 1998-11-17 I-Stat Corporation Process for the manufacture of wholly microfabricated biosensors
US20010004526A1 (en) * 1998-12-11 2001-06-21 Everhart Dennis S. Patterned binding of functionalized microspheres for optical diffraction-based biosensors
WO2002103037A1 (en) * 2001-06-19 2002-12-27 Molecular Circuitry, Inc. Conductometric detection process
US20060003395A1 (en) * 2004-05-26 2006-01-05 Fuji Photo Film Co., Ltd. Measurement method using biosensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030096321A1 (en) * 1999-05-19 2003-05-22 Jose Remacle Method for the identification and/or the quantification of a target compound obtained from a biological sample upon chips
SG135191A1 (en) * 2003-10-29 2007-09-28 Agency Science Tech & Res Biosensor
US20090282902A1 (en) * 2006-08-17 2009-11-19 Peter Warthoe Bio surface acoustic wave (saw) resonator amplification for detection of a target analyte
WO2009032901A1 (en) * 2007-09-04 2009-03-12 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Biosensors and related methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837454A (en) * 1988-11-14 1998-11-17 I-Stat Corporation Process for the manufacture of wholly microfabricated biosensors
US20010004526A1 (en) * 1998-12-11 2001-06-21 Everhart Dennis S. Patterned binding of functionalized microspheres for optical diffraction-based biosensors
WO2002103037A1 (en) * 2001-06-19 2002-12-27 Molecular Circuitry, Inc. Conductometric detection process
US20060003395A1 (en) * 2004-05-26 2006-01-05 Fuji Photo Film Co., Ltd. Measurement method using biosensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DMITRI N. MURAVIEV ET AL.: 'Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition deviecs' SENSORS AND ACTUATORS B vol. 118, no. 1-2, 25 October 2006, pages 408 - 417 *
EUGENII KATZ ET AL.: 'Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanopaticles' ELECTROANALYSIS vol. 16, no. 1-2, January 2004, pages 19 - 44 *

Also Published As

Publication number Publication date
US20110201027A1 (en) 2011-08-18
WO2009116803A3 (ko) 2009-12-23
KR101048478B1 (ko) 2011-07-11
KR20090100290A (ko) 2009-09-23

Similar Documents

Publication Publication Date Title
Chen et al. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation
Patolsky et al. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species
US7645615B1 (en) Self-contained microelectrochemical bioassay platforms and methods
Zhang et al. Silicon nanowire biosensor and its applications in disease diagnostics: a review
Chen et al. Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification
Pänke et al. Impedance spectroscopy and biosensing
WO2009157739A2 (ko) 전도성 그라핀을 이용한 바이오센서 및 그 제조방법
JP2009530643A (ja) カーボン・ナノチューブ・トランジスタを用いる生物プローブ材料を有するセンサーを結合したマイクロアレイ用の装置
US20100216256A1 (en) Nanobelt-based sensors and detection methods
DE10221799A1 (de) Silicon-on-Insulator-Biosensor
WO2019203493A1 (ko) 멀티웰 전극 기반 바이오센서
KR20110104245A (ko) Fet 기반 바이오센서, 이의 제조방법, 및 이를 이용하는 표적 물질 검출방법
KR100991011B1 (ko) 금속 나노입자가 고정화된 탄소나노튜브를 포함하는 바이오센서 및 그 제조방법
Takeda et al. Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen–antibody interaction
WO2009116803A2 (ko) 극미량 시료 검출용 바이오센서 및 그 제조방법
Mahmoodi et al. Multiwell plate impedance analysis of a nanowell array sensor for label-free detection of cytokines in mouse serum
Wang et al. Molecular-electromechanical system for unamplified detection of trace analytes in biofluids
WO2009136742A1 (en) Olfactory receptor-functionalized transistors for highly selective bioelectronic nose and biosensor using the same
US20140124383A1 (en) Electrode chip for detecting biological molecule, and method for detecting biological molecule
WO2017200167A1 (ko) 알레르기 검출용 나노바이오센서, 이의 제조 방법과 이를 포함하는 알레르기 검출 시스템
WO2011149249A2 (ko) 극미량 시료 검출용 전기 바이오센서
JP2005077237A (ja) バイオセンサ
KR20120083987A (ko) 후각 수용체 단백질을 코딩하는 유전자로 형질 전환된 동물세포로부터 후각 수용체 단백질을 포함하는 나노 베지클을 제조하는 방법, 이에 의하여 제조된 후각 수용체 단백질을 포함하는 나노 베지클, 상기 나노 베지클이 표면에 고정화된 단일벽 탄소나노튜브 전계 효과 트랜지스터 및 이를 이용하는 생체전자코
WO2006132657A2 (en) Enzyme assay with nanowire sensor
KR100530085B1 (ko) 미소전극어레이형 디엔에이 칩 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722467

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12933114

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09722467

Country of ref document: EP

Kind code of ref document: A2