WO2015159366A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2015159366A1
WO2015159366A1 PCT/JP2014/060717 JP2014060717W WO2015159366A1 WO 2015159366 A1 WO2015159366 A1 WO 2015159366A1 JP 2014060717 W JP2014060717 W JP 2014060717W WO 2015159366 A1 WO2015159366 A1 WO 2015159366A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
air
main
sub
cooling
Prior art date
Application number
PCT/JP2014/060717
Other languages
English (en)
French (fr)
Inventor
孔明 仲島
雄亮 田代
中津 哲史
貴紀 谷川
浩 衛藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to SG11201608467VA priority Critical patent/SG11201608467VA/en
Priority to CN201480077906.1A priority patent/CN106164610B/zh
Priority to AU2014391330A priority patent/AU2014391330B2/en
Priority to PCT/JP2014/060717 priority patent/WO2015159366A1/ja
Priority to JP2015522812A priority patent/JP5832705B1/ja
Publication of WO2015159366A1 publication Critical patent/WO2015159366A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation

Definitions

  • the present invention relates to a refrigerator.
  • Patent Document 1 a first operation of driving the blower is performed with the freezer damper closed and the refrigeration chamber damper open when the compressor is stopped, and the freezer damper is closed and refrigerated after the first operation.
  • the refrigerator which performs the 2nd driving
  • each storage chamber is efficiently cooled by using one blower and a damper provided for each of the plurality of storage chambers.
  • Patent Document 2 discloses a refrigerator in which a cool air passage opening / closing means for opening and closing a cold air passage is provided and a blower is provided in the vicinity of the opening of the storage chamber side end of the cold air passage.
  • a blower is provided for each of the plurality of storage rooms.
  • the air volume of the cooling air blown into the refrigerator storage room is determined by the intersection of the resistance curve determined by the pressure loss due to the friction of the air path and the PQ characteristic curve indicating the fan performance.
  • the pressure loss due to friction is generally proportional to the square of the air volume. Therefore, if the pressure loss of the air path is ⁇ P [Pa], the air volume is Q [m 3 / s], and the air path resistance value is ⁇ [kg / m 7 ], the pressure loss ⁇ P, the air volume Q, and the air path
  • the relationship of the resistance value ⁇ is expressed in the form of equation (1).
  • the pressure loss ⁇ P increases as the air path resistance value ⁇ increases.
  • ⁇ P ⁇ Q 2 (1)
  • FIG. 9 is a diagram showing an example of a resistance curve and a PQ characteristic curve.
  • the solid curve represents the PQ characteristic curve of the blower
  • the broken line and the alternate long and short dash line represent the resistance curve of the air passage.
  • FIG. 10 is a block diagram showing a schematic configuration of the air path in the refrigerator of Patent Document 1.
  • the total air flow is calculated by combining the PQ characteristic curve of the blower and the resistance curve taking into consideration the airflow resistance value ⁇ all of the entire air passage. Determined by intersection. If the airflow resistance values of the return air passages connected from the storage chambers to the cooling chamber are respectively ⁇ 1, ⁇ 2,..., ⁇ n, these return air passages are connected in parallel.
  • the road resistance value ⁇ all is calculated as shown in Equation (2).
  • n represents the number of return air paths from each storage room.
  • the airway resistance value ⁇ all of the entire airway is smaller than each of the airway resistance values ⁇ 1, ⁇ 2,.
  • the freezer compartment must be kept cooler than the refrigerator compartment and therefore requires more cooling air. Therefore, the airflow resistance value of the return air passage of the freezer compartment is designed to be smaller than the airway resistance value of the return air passage of the refrigerator compartment.
  • the airway resistance value ⁇ 1 of the return air passage of the freezer compartment is 10 and the airway resistance value ⁇ 2 of the return airway of the refrigerator compartment is 1000, the airway resistance value ⁇ all of the whole air passage is 8.26. Become.
  • FIG. 11 is a diagram illustrating examples of a resistance curve, a PQ characteristic curve, and a blower efficiency curve.
  • ⁇ all 8.26
  • the blower can be operated at a point where the blower efficiency is high, a large amount of cooling air can be efficiently blown.
  • the amount of cooling air required in each storage room varies depending on the temperature difference between the outside air temperature and the storage room temperature. This is because the amount of heat transferred from the outside of the refrigerator into the storage chamber differs depending on the temperature difference between the outside air temperature and the storage chamber temperature.
  • the temperature of the refrigerator compartment is about 1 to 5 ° C, and the temperature of the freezer compartment is about -18 ° C. Therefore, it is necessary to adjust the air volume of the cooling air for each storage room.
  • the opening degree of a damper or the like installed in the middle of the air passage is controlled, the air passage resistance ratio of each air passage is adjusted, and the amount of cooling air sent to each storage room is adjusted. .
  • FIG. 12 is a block diagram showing a schematic configuration of the air path in the refrigerator of Patent Document 2.
  • the air volume ratio of each storage room can be adjusted by the rotation speed of each blower.
  • the air flow ratio can be adjusted without changing the air passage resistance value, as compared with the case where the air flow ratio is adjusted using the damper as described above. For this reason, a fan can be operated efficiently.
  • the air path resistance value of the return air path from the storage room to the cooling room differs for each storage room.
  • the air path resistance value of the return air path of the refrigerator compartment is 100 times or more the air path resistance value of the return air path of the freezer compartment.
  • the operating point of the refrigerator for the refrigerator compartment is a low air volume region compared to the operating point of the fan for the freezer compartment. Therefore, in particular, when a large amount of cooling air is blown to the refrigerator compartment having a large air passage resistance value, there is a problem that the operation becomes low in blower efficiency.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigerator capable of operating a blower efficiently and realizing energy saving.
  • the refrigerator according to the present invention includes a plurality of storage chambers, a cooling chamber that generates cooling air for cooling the plurality of storage chambers, a main air passage that communicates the cooling chamber and each of the plurality of storage chambers, A main blower that blows cooling air from the cooling chamber to each of the plurality of storage chambers via the main air passage, and a plurality of opening and closing devices that open and close between the main air passage and each of the plurality of storage chambers And a sub air passage that is provided separately from the main air passage and communicates the cooling chamber with a part of the plurality of storage chambers, and the cooling chamber to the part of the storage chambers.
  • a sub blower that blows cooling air through the sub air passage, and a control unit that controls operations of the main blower, the plurality of opening and closing devices, and the sub blower.
  • each fan can be driven at a high fan efficiency by switching between the operation using only the main fan and the operation using the main fan and the sub fan. Therefore, since the blower can be operated efficiently, energy saving of the refrigerator can be realized.
  • FIG. 1 It is a flowchart which shows an example of the stable operation control flow performed by the control part of the refrigerator which concerns on Embodiment 1 of this invention. It is a block diagram which shows schematic structure of the air path in the refrigerator which concerns on the modification of Embodiment 1 of this invention. It is a figure which shows the example of a resistance curve and a PQ characteristic curve. It is a block diagram which shows schematic structure of the air path in the refrigerator of patent document 1. FIG. It is a figure which shows the example of a resistance curve, a PQ characteristic curve, and an air blower efficiency curve. It is a block diagram which shows schematic structure of the air path in the refrigerator of patent document 2. FIG.
  • FIG. 1 is a block diagram showing a basic configuration of an air passage in the refrigerator according to the present embodiment.
  • the refrigerator according to the present embodiment generates a plurality of storage rooms (in this example, a refrigerating room 108 and a freezing room 109) and cooling air that cools the refrigerating room 108 and the freezing room 109.
  • the cooling chamber 107 communicates with each of the refrigerating chamber 108 and the freezing chamber 109 via a main air passage 130.
  • the main air passage 130 is provided with one main blower 105 a that blows cooling air from the cooling chamber 107 to each of the refrigerator compartment 108 and the freezing compartment 109 via the main air passage 130.
  • a plurality of dampers 106a and 106b (an example of an opening / closing device) for opening and closing between the main air passage 130 and the refrigerator compartment 108 and the freezer compartment 109 are provided on the downstream side of the main blower 105a in the main air passage 130. ing.
  • the main blower 105a and the dampers 106a and 106b are operated under the control of a control unit (not shown in FIG. 1).
  • the cooling chamber 107 and some of the plurality of storage chambers communicate with each other via a sub air passage 131 provided separately from the main air passage 130. is doing.
  • the sub air passage 131 is provided with a sub air blower 105 b that blows cooling air from the cooling chamber 107 to the refrigerator compartment 108 via the sub air passage 131.
  • a damper 106d that opens and closes between the sub air passage 131 and the refrigerator compartment 108 is provided in the sub air passage 131 (in this example, on the downstream side of the sub air blower 105b).
  • the sub blower 105b and the damper 106d are operated under the control of a control unit (not shown in FIG. 1).
  • the sub air passage 131 allows a flow of air from the cooling chamber 107 toward the refrigerating chamber 108 and prevents a flow of air from the refrigerating chamber 108 toward the cooling chamber 107 (for example, a check valve may be provided.
  • each of the refrigerator compartment 108 and the freezer compartment 109 and the cooling compartment 107 communicate with each other via return air passages 140a and 140b.
  • the cooling air sent to the refrigerator compartment 108 returns to the cooling chamber 107 through the return air passage 140a, and the cooling air sent to the freezer compartment 109 returns to the cooling chamber 107 through the return air passage 140b.
  • the control unit of the refrigerator can execute at least two operation modes.
  • the control unit opens the dampers 106a and 106b, closes the damper 106d, drives the main blower 105a, and stops the sub blower 105b. Thereby, cooling air is blown into the refrigerator compartment 108 and the freezer compartment 109 using the main blower 105a.
  • the control unit opens the dampers 106b and 106d, closes the damper 106a, and drives the main blower 105a and the sub blower 105b. Thereby, cooling air is blown into the freezer compartment 109 using the main blower 105a, and cooling air is blown into the refrigerator compartment 108 using the sub blower 105b.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the refrigerator according to the present embodiment.
  • a configuration in which a sub air passage is provided between the cooling chamber and the refrigerator compartment, and a sub blower for the refrigerator compartment is provided in the sub air passage is illustrated.
  • the dimensional relationship and shape of each component may be different from the actual ones.
  • the refrigerator includes a heat insulating box 101 having a front surface (front) opened and a storage space formed therein.
  • the heat insulating box 101 has a steel outer box, a resin inner box, and a heat insulating material filled in a space between the outer box and the inner box.
  • the storage space formed inside the heat insulating box 101 is partitioned into a plurality of storage chambers by one or a plurality of partition members formed using a heat insulating material.
  • the refrigerator of this example includes a refrigerating room 8 arranged in the upper stage, a freezing room 9 arranged in the middle stage, and a vegetable room 10 arranged in the lower stage as a plurality of storage rooms.
  • a rotary door 8 a is provided at the front opening of the refrigerator compartment 8.
  • drawer-type doors 9 a and 10 a are provided in front opening portions of the freezer compartment 9 and the vegetable compartment 10, respectively.
  • the refrigerator includes a cooling chamber 7 that generates cooling air for cooling each storage room, and a machine room 11 that is disposed outside each storage room and the cooling room 7.
  • a compressor 1, a condenser 2, a decompressor 3, and the like having a variable number of revolutions are arranged.
  • An evaporator 4 (cooler) and the like are disposed in the cooling chamber 7.
  • the compressor 1, the condenser 2, the decompressor 3, and the evaporator 4 are sequentially connected via a refrigerant pipe to constitute a refrigeration cycle.
  • cooling air is generated by heat exchange with the refrigerant in the evaporator 4.
  • the cooling chamber 7 and each storage chamber communicate with each other via an air passage described later.
  • FIG. 3 is a block diagram showing a schematic configuration of the air path in the refrigerator shown in FIG.
  • the cooling chamber 7 and each of the storage chambers communicate with each other via a main air passage 30 (main air blowing passage).
  • the main air passage 30 is provided with one main blower 5 a that blows cooling air from the cooling chamber 7 to the refrigerator compartment 8, the freezer compartment 9, and the vegetable compartment 10 via the main air passage 30.
  • a damper 6 a an example of an opening / closing device that opens and closes between the main air passage 30 and the refrigerator compartment 8, and between the main air passage 30 and the freezer compartment 9.
  • a damper 6b (an example of an opening / closing device) that opens and closes the main air passage 30 and the vegetable compartment 10 are provided.
  • Each of the dampers 6a, 6b, 6c is provided with a plate-like member capable of closing the air passage so as to be freely opened and closed.
  • the air path can be fully closed and fully opened.
  • the opening degree adjustment of an air path may be possible.
  • the main blower 5a and the dampers 6a, 6b, 6c operate under the control of the control unit 50 (see FIG. 4).
  • the cooling chamber 7 and the refrigerator compartment 8 communicate with each other via a sub air passage 31 (sub air blowing air passage) provided separately from the main air passage 30.
  • the sub air passage 31 is provided with a sub blower 5b (refrigeration chamber blower) that blows cooling air from the cooling chamber 7 to the refrigerating chamber 8 through the sub air passage 31.
  • the sub blower 5b is a smaller blower than the main blower 5a.
  • the blades of the sub blower 5b are smaller than the blades of the main blower 5a.
  • the sub blower 5b is provided in the sub air passage 31 at a position near the refrigerating chamber 8 away from the cooling chamber 7 (see FIG. 2).
  • the distance along the air path between the sub air blower 5b and the cooling chamber 7 is such that the cooling air flows from the sub air fan 5b to the refrigerating chamber 8 (for example, the sub air path 31 to the refrigerating chamber 8). It is longer than the distance along the air path between the outlet and the outlet. Further, the distance along the air path between the sub blower 5b and the cooling chamber 7 is longer than the distance along the air path between the main blower 5a and the cooling chamber 7. Thereby, the sub air blower 5b is arrange
  • the sub air passage 31 is provided with a damper 6d that opens and closes between the sub air passage 31 and the refrigerator compartment 8.
  • the damper 6d may be provided on the downstream side of the sub blower 5b as shown in FIG. 3, or may be provided on the upstream side of the sub blower 5b as shown in FIG.
  • the damper 6d is for preventing the flow of air from the refrigerator compartment 8 toward the sub air passage 31.
  • the sub blower 5b and the damper 6d are operated under the control of the control unit 50 (see FIG. 4).
  • the refrigerator compartment 8, the freezer compartment 9, the vegetable compartment 10 and the cooling compartment 7 communicate with each other via return air passages 40a, 40b, 40c.
  • the cooling air blown to the refrigerator compartment 8 returns to the cooling chamber 7 through the return air passage 40a
  • the cooling air blown to the freezer compartment 9 returns to the cooling chamber 7 through the return air passage 40b to the vegetable compartment.
  • the cooling air blown to 10 returns to the cooling chamber 7 through the return air passage 40c.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 circulates through a condenser 2 (air heat exchanger) or a copper pipe provided along the refrigerator outer wall surface.
  • the refrigerant in the condenser 2 or the copper pipe dissipates heat to the surrounding outside air and condenses.
  • the condensed high-pressure liquid refrigerant is decompressed by the decompressor 3 to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows into the evaporator 4 in the cooling chamber 7.
  • the refrigerant flowing into the evaporator 4 absorbs heat from the air in the cooling chamber 7 and becomes a low-pressure gas refrigerant.
  • the air in the cooling chamber 7 absorbed by the refrigerant is cooled to become cooling air.
  • the low-pressure gas refrigerant flowing out of the evaporator 4 is sucked into the compressor 1 and compressed again.
  • the cooling air cooled in the cooling chamber 7 is conveyed by a blower (the main blower 5a or the sub blower 5b), and blown out to each storage chamber through an air passage connected to each storage chamber.
  • a blower the main blower 5a or the sub blower 5b
  • Each storage chamber is cooled by the blown-out cooling air.
  • the air volume of the cooling air is adjusted by changing the rotational speed of the blower. Thereby, the temperature of each store room is adjusted.
  • the cooling air that has cooled each storage chamber returns to the cooling chamber 7 through the return air passage, and is cooled again in the cooling chamber 7.
  • a sensor for detecting temperature is installed in each storage chamber.
  • a temperature sensor 21 for detecting the indoor temperature of the refrigerator compartment 8 is installed, and in the freezer compartment 9, a temperature sensor 22 for detecting the indoor temperature of the refrigerator compartment 9 is installed,
  • a temperature sensor 23 for detecting the room temperature of the vegetable room 10 is installed in the vegetable room 10.
  • a temperature sensor 24 for detecting the refrigerant evaporation temperature is installed in the refrigerant outlet pipe of the evaporator 4.
  • a sensor 25 is installed. These temperature sensors 21 to 25 are configured to output detection signals to the control unit 50.
  • the positions of the temperature sensors 21, 22, 23 are not limited to the positions shown in FIG.
  • the temperature sensors 21, 22, and 23 may be installed at any position as long as they represent the temperature of each storage room. Further, the temperature sensor 24 may be installed at any position in the vicinity of the evaporator 4 as long as it represents the refrigerant evaporation temperature.
  • the installation of the temperature sensor 24 may be omitted, and the refrigerant saturation temperature obtained from the detected value of the pressure sensor installed near the evaporator 4 may be handled as the refrigerant evaporation temperature.
  • the temperature sensor 25 may be installed in any position as long as it is a point representing the temperature of the air between the cooling chamber 7 and the main blower 5a.
  • a door opening / closing sensor 26 for detecting opening / closing of the door 8a is installed at the open end of the refrigerator compartment 8.
  • a door opening / closing sensor 27 that detects opening / closing of the door 9a is installed at the open end of the freezer compartment 9.
  • a door opening / closing sensor 28 for detecting opening / closing of the door 10a is installed at the open end of the vegetable compartment 10.
  • FIG. 4 is a block diagram showing an example of the configuration of the control unit 50 in the present embodiment.
  • the control unit 50 includes, for example, a microcomputer including a CPU, a storage unit, an input / output unit, a timer, and the like. As shown in FIG. 4, the control unit 50 is connected to the temperature sensors 21 to 25, the door opening / closing sensors 26 to 28, the compressor 1, the main blower 5a, the sub blower 5b, and the dampers 6a, 6b, 6c, and 6d. .
  • the control unit 50 controls the rotation speeds of the main blower 5a and the sub blower 5b based on the detection signals of the temperature sensors 21 to 25.
  • control unit 50 determines the operation mode based on the detection signals of the temperature sensors 21 to 25 and the door opening / closing sensors 26 to 28, and controls the rotation speeds of the main blower 5a and the sub blower 5b based on the determination results. At the same time, the dampers 6a, 6b, 6c, 6d are controlled to be opened and closed.
  • the refrigerator in the present embodiment can execute at least two operation modes under the control of the control unit 50.
  • the first operation mode is a rapid cooling operation mode.
  • the rapid cooling operation mode is an operation mode that is executed, for example, immediately after the door of the refrigerator is opened or closed, or immediately after the refrigerator is turned on, and the cooling capacity is increased to lower the internal temperature.
  • the second operation mode is a stable operation mode.
  • the stable operation mode is an operation mode that is executed when a predetermined time elapses from the start of the rapid cooling operation mode and the temperature of each storage chamber becomes close to the set temperature. In the stable operation mode, the rotation speed of the compressor and the rotation speed of the blower are adjusted so that the temperature of each storage chamber is maintained at the set temperature.
  • FIG. 5 is a flowchart showing an example of a rapid cooling stability determination flow executed by the control unit 50.
  • the rapid cooling stability determination flow is repeatedly executed at predetermined time intervals immediately after the power is turned on.
  • step S101 of the rapid cooling stability determination flow it is determined whether or not it is immediately after the power is turned on (step S101). This determination is performed, for example, by determining whether or not the value of a timer that counts the elapsed time since power-on is less than or equal to a predetermined value.
  • the process proceeds to the rapid cooling operation control flow. In other cases, the process proceeds to step S102.
  • step S102 it is determined whether or not it is immediately after the door (for example, any one of the doors 8a, 9a, and 10a) is opened and closed. This determination is made as to whether or not the value of the timer that counts the elapsed time since any of the detection signals of the door opening / closing sensors 26, 27, and 28 changes from open to closed is equal to or less than a predetermined value. Is done by. If it is determined that the door has just been opened / closed, the process proceeds to step S103, and otherwise, the process proceeds to step S104.
  • step S103 it is determined whether or not the room temperature TR of each storage room is higher than the set temperature TR_set (TR> TR_set). For example, when it is determined that the room temperature TR of at least one storage room is higher than the set temperature TR_set, the process proceeds to the rapid cooling operation control flow, and otherwise, the process proceeds to step S104.
  • step S104 it is determined whether or not it is immediately after the end of the defrosting operation. This determination is performed, for example, by determining whether or not the value of the timer that counts the elapsed time since the defrosting operation is completed is equal to or less than a predetermined value. When it determines with it being immediately after defrost operation, it transfers to rapid cooling operation control flow. In other cases, it is determined that the room temperatures TR of all the storage rooms are in the vicinity of the respective set temperatures TR_set, and therefore the process proceeds to the stable operation control flow.
  • FIG. 6 is a flowchart showing an example of a rapid cooling operation control flow executed by the control unit 50.
  • the dampers 6a, 6b, 6c on the main blower 5a side are opened (step S201), and each storage room blower (in this example, the sub blower for the refrigerator compartment 8) is opened. 5d)
  • the damper 6d on the side is closed (step S202). By closing the damper 6d, the cooling air is prevented from flowing back from the refrigerator compartment 8 to the cooling compartment 7. Further, the main blower 5a is driven and the sub blower 5b is stopped.
  • the rotational speed of the main blower 5a is changed (step S203).
  • the rotational speed of the main blower 5a is set so that, for example, the difference between the suction temperature of the main blower 5a detected by the temperature sensor 25 and the refrigerant evaporation temperature detected by the temperature sensor 24 approaches a constant value (for example, 5K). Be controlled. By controlling in this way, since the evaporator 4 (cooler) can be used effectively, it becomes energy saving.
  • the rotational speed of the compressor 1 may be changed (step S204).
  • the rotational speed of the compressor 1 is, for example, a constant difference between the set temperature of the storage room (in this example, the freezing room 9) that is the lowest in the refrigerator and the refrigerant evaporation temperature detected by the temperature sensor 24. It is controlled to approach (for example, 5K). By controlling in this way, the compressor 1 can be operated at the minimum necessary number of revolutions, which saves energy.
  • the room temperature of the storage room (in this example, the refrigeration room 8 and the vegetable room 10) other than the storage room (in this example, the freezing room 9) having the lowest set temperature and requiring cooling air is operated as described above.
  • the dampers 6a and 6c on the main blower 5a side corresponding to the storage chamber are closed (Step S206).
  • the refrigerator compartment 8 can be closed to prevent the refrigerator compartment 8 from being excessively cooled.
  • step S207 The processing from step S203 to step S206 is repeated (step S207), and all the dampers 6a, 6c for the storage rooms other than the storage room (in this example, the freezing room 9) having the lowest set temperature and need cooling air are in the closed state.
  • the rapid cooling operation control flow is terminated, and the process proceeds to the rapid cooling stability determination flow.
  • the air passage resistance value of the return air passage 40b is set to be small. Therefore, one main blower 5a can be used in terms of high blower efficiency by blowing cooling air to the freezing compartment 9 and also blowing cooling air to the other storage compartments.
  • FIG. 7 is a flowchart illustrating an example of a stable operation control flow executed by the control unit 50.
  • the cooling air having the minimum necessary air volume is blown using a plurality of fans (the main fan 5a and the sub fan 5b), and the operation is efficiently performed.
  • the refrigerator compartment 8 is cooled using the sub air blower 5b for refrigerator compartments
  • the freezer compartment 9 is cooled using the main air blower 5a.
  • the damper 6b for the freezer compartment 9 on the main blower 5a side and the damper 6d on the side of each storage compartment blower (the sub blower 5b for the refrigerator compartment 8 in this example) are opened.
  • the damper 6a for the refrigerator compartment 8 on the main blower 5a side is closed (steps S301, S302, S303). Further, the main blower 5a and the sub blower 5b are driven.
  • the rotational speed of the main blower 5a is such that the difference between the suction temperature of the main blower 5a detected by the temperature sensor 25 and the refrigerant evaporation temperature detected by the temperature sensor 24 approaches a constant value (for example, 5K).
  • a constant value for example, 5K.
  • the rotation speed of the compressor 1 is, for example, the difference between the set temperature of the storage room (in this example, the freezing room 9) that is the lowest in the refrigerator and the refrigerant evaporation temperature detected by the temperature sensor 24. You may make it control so that a fixed value (for example, 5K) may be approached (step S305). By controlling in this way, the compressor 1 can be operated at the minimum necessary number of revolutions, which saves energy.
  • the rotation speed of the sub blower 5b is set such that the room temperature to be cooled (in this example, the room temperature of the refrigerating room 8 detected by the temperature sensor 21) is the set temperature to be cooled (in this example, the setting of the refrigerating room 8).
  • the temperature may be controlled to approach (temperature) (step S306).
  • the room temperature of the storage room (the vegetable room 10 in this example) other than the freezing room 9 and without the storage room blower (sub blower) is set to the damper 6c on the main blower 5a side so that the room temperature approaches the set temperature. It is adjusted by opening and closing. That is, when the room temperature is lower than the set temperature in the vegetable room 10 (Yes in step S307), the damper 6c on the main blower 5a side corresponding to the vegetable room 10 is closed (step S308). This prevents excessive cooling of the vegetable compartment 10. On the other hand, when the room temperature is higher than the set temperature in the vegetable room 10 (Yes in step S309), the damper 6c is opened (step S310). Thereby, cooling air is ventilated to the vegetable compartment 10 using the main air blower 5a.
  • the air path resistance value of the return air path 40b of the freezer compartment 9 is set to ⁇ 1
  • the air path resistance value of the return air path 40a of the refrigerator compartment 8 is set to ⁇ 2
  • the air path resistance value of the return air path 40c of the vegetable room 10 is set.
  • the airway resistance value ⁇ 3 is larger than the airway resistance values ⁇ 1 and ⁇ 2 ( ⁇ 3> ⁇ 2> ⁇ 1), and has little influence on the air volume of the freezer compartment 9 when the damper 6c of the vegetable compartment 10 is opened and closed. Because.
  • the room temperature of the vegetable room 10 is adjusted by opening and closing the damper 6c.
  • the present invention is not limited to this, and by installing a sub blower for the vegetable compartment 10 and controlling the number of rotations of the sub blower, the flow of the vegetable compartment 10 is the same as the adjustment of the indoor temperature of the refrigerator compartment 8.
  • the room temperature may be adjusted.
  • FIG. 8 is a block diagram showing a schematic configuration of the air path in the refrigerator of the modified example.
  • the cooling chamber 7 and the vegetable chamber 10 communicate with each other via a sub air passage 32 provided separately from the main air passage 30.
  • the sub air path 32 is provided with a sub blower 5c (vegetable room fan) that blows cooling air from the cooling chamber 7 to the vegetable room 10 via the sub air path 32.
  • the sub air passage 32 is provided with a damper 6e that opens and closes between the sub air passage 32 and the vegetable compartment 10. The damper 6e is for preventing the flow of air from the vegetable compartment 10 toward the sub air path 31.
  • the amount of cooling air required for each storage room can be individually adjusted by the rotation speed of the sub-blower for each storage room, so that the input of the blower can be minimized, and each storage room The temperature can be kept constant. Therefore, it is possible to realize a refrigerator that saves energy and has a high food quality maintenance effect.
  • the amount of cooling air required for the refrigerator compartment 8 is about 1/15 of the amount of cooling air required for the freezer compartment 9.
  • the sub blower 5b has a smaller blower having a smaller size than the main blower 5a (for example, a blower having a smaller blade size than the main blower 5a, and an output smaller than the main blower 5a).
  • a blower or the like is used. By adopting a small fan, the cost can be reduced.
  • the sub air blower 5b for the refrigerator compartment 8 is provided in the position away from the cooling chamber 7 (for example, the evaporator 4) rather than the main air blower 5a.
  • the sub air blower 5b can be driven in the environment where temperature is high compared with the main air blower 5a. Since the viscosity of the bearing of the sub blower 5b can be lowered by driving the sub blower 5b in a relatively high temperature environment, the shaft loss can be suppressed. Therefore, the sub air blower 5b can be driven more efficiently.
  • the refrigerator according to the present embodiment includes a plurality of storage rooms (for example, the refrigeration room 8, the freezing room 9, and the vegetable room 10) and a cooling room that generates cooling air for cooling the plurality of storage rooms. 7, a main air passage 30 that allows the cooling chamber 7 to communicate with each of the plurality of storage chambers, and a main blower 5 a that blows cooling air from the cooling chamber 7 to each of the plurality of storage chambers via the main air passage 30.
  • a plurality of opening / closing devices for example, dampers 6a, 6b, 6c) for opening and closing between the main air passage 30 and each of the plurality of storage chambers, and the main air passage 30 are provided separately from the cooling chamber 7 and the plurality of storage chambers.
  • a sub air passage 31 that communicates with some of the storage chambers (for example, the refrigerator compartment 8), and a sub air that blows cooling air from the cooling chamber 7 to some of the storage chambers via the sub air passage 31.
  • Blower 5b, main blower 5a, and a plurality of opening / closing devices A control unit 50 for controlling the operation of the fine sub-blower 5b, and has a.
  • the control unit 50 opens a plurality of opening and closing devices, drives the main blower 5a, stops the sub blower 5b, and uses the main blower 5a to store a plurality of storage rooms.
  • a first operation mode for blowing cooling air to each of these, and some opening / closing devices that open and close between the main air passage 30 and some storage chambers among the plurality of opening / closing devices (for example, The damper 6a) is closed, and the other opening / closing devices (for example, the damper 6b, etc.) that open and close between the main air passage 30 and other storage chambers (for example, the freezer compartment 9 and the vegetable compartment 10) among the plurality of opening / closing devices.
  • the air volume of the main blower 5a in the first operation mode is larger than the total air volume of the main blower 5a and the sub blower 5b in the second operation mode.
  • the control unit 50 controls the rotation speed of the sub blower 5b based on the temperature of a part of the storage rooms.
  • the refrigerator which concerns on this Embodiment controls the rotation speed of the main air blower 5a based on the temperature of the suction air of the main air blower 5a in the 2nd operation mode.
  • the control unit 50 controls the rotational speed of the main blower 5a based on the temperature of the intake air of the main blower 5a.
  • the refrigerator according to the present embodiment further includes a refrigeration cycle for generating cooling air in the cooling chamber 7, and the control unit 50 performs refrigeration so that the refrigerant evaporation temperature in the refrigeration cycle approaches the target evaporation temperature.
  • the number of rotations of the compressor 1 in the cycle is controlled.
  • the sub blower 5b is smaller in size than the main blower 5a.
  • the sub blower 5b is arranged in an environment where the temperature is higher than that of the main blower 5a.
  • the distance between the sub blower 5b and the cooling chamber 7 is the distance between the main blower 5a and the cooling chamber 7 (for example, Longer than the distance along the wind path).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 冷蔵庫は、複数の貯蔵室と、複数の貯蔵室を冷却する冷却空気を生成する冷却室と、冷却室と複数の貯蔵室のそれぞれとを連通させるメイン風路と、冷却室から複数の貯蔵室のそれぞれにメイン風路を介して冷却空気を送風するメイン送風機と、メイン風路と複数の貯蔵室のそれぞれとの間を開閉する複数の開閉装置と、メイン風路とは別に設けられ、冷却室と複数の貯蔵室のうちの一部の貯蔵室とを連通させるサブ風路と、冷却室から一部の貯蔵室にサブ風路を介して冷却空気を送風するサブ送風機と、メイン送風機、複数の開閉装置及びサブ送風機の動作を制御する制御部と、を有する。

Description

冷蔵庫
 本発明は、冷蔵庫に関するものである。
 特許文献1には、圧縮機の停止時に冷凍室ダンパーを閉及び冷蔵室ダンパーを開とした状態で送風機を駆動する第1の運転を行い、第1の運転の後に冷凍室ダンパーを閉及び冷蔵室ダンパーを開とした状態で圧縮機を駆動して送風機を駆動する第2の運転を行う冷蔵庫が開示されている。特許文献1の冷蔵庫では、1つの送風機と、複数の貯蔵室毎に設けられたダンパーと、を用いることにより、各貯蔵室内を効率的に冷却するようになっている。
 特許文献2には、冷風通路を開閉する冷風通路開閉手段を設けるとともに、冷風通路の収納室側端部の開口近傍に送風機を設けた冷蔵庫が開示されている。特許文献2の冷蔵庫では、複数の収納室毎に送風機が設けられている。
特開2011-038716号公報 特開2006-300346号公報
 冷蔵庫の貯蔵室に送風される冷却空気の風量は、風路の摩擦による圧力損失で決まる抵抗曲線と、送風機性能を示すP-Q特性曲線との交点で決まる。摩擦による圧力損失は、一般的に風量の二乗に比例する。このため、風路の圧力損失をΔP[Pa]とし、風量をQ[m/s]とし、風路抵抗値をζ[kg/m]とすると、圧力損失ΔP、風量Q及び風路抵抗値ζの関係は式(1)の形で表される。圧力損失ΔPは、風路抵抗値ζが大きいほど大きくなる。
 ΔP=ζQ  ・・・(1)
 図9は、抵抗曲線及びP-Q特性曲線の例を示す図である。図9において、実線の曲線は送風機のP-Q特性曲線を表しており、破線及び一点鎖線の曲線は風路の抵抗曲線を表している。図9に示すように、風路抵抗値ζが増加すると、圧力損失ΔPが増加することにより、抵抗曲線の傾きが増加する。これにより、抵抗曲線とP-Q特性曲線との交点が低風量側に移動し、結果として風量が減少する。
 図10は、特許文献1の冷蔵庫における風路の概略構成を示すブロック図である。図10に示すように1つの送風機で複数の貯蔵室を冷却する場合、その全風量は、当該送風機のP-Q特性曲線と、風路全体の風路抵抗値ζallを考慮した抵抗曲線との交点で決まる。各貯蔵室から冷却室へと繋がる戻り風路の風路抵抗値をそれぞれζ1、ζ2、・・・、ζnとすると、これらの戻り風路はそれぞれ並列に繋がっているため、風路全体の風路抵抗値ζallは、式(2)のように算出される。ここで、nは各貯蔵室からの戻り風路の数を表す。式(2)に示すように、風路全体の風路抵抗値ζallは、各戻り風路の風路抵抗値ζ1、ζ2、・・・、ζnのそれぞれよりも小さくなる。
Figure JPOXMLDOC01-appb-I000001
 例として、2つの貯蔵室(冷凍室及び冷蔵室)がある場合を考える。一般的に、冷凍室は冷蔵室よりも低温に保たなければならないため、より多くの冷却空気を必要とする。そのため、冷凍室の戻り風路の風路抵抗値は、冷蔵室の戻り風路の風路抵抗値よりも小さく設計されている。ここで、冷凍室の戻り風路の風路抵抗値ζ1を10とし、冷蔵室の戻り風路の風路抵抗値ζ2を1000とすると、風路全体の風路抵抗値ζallは8.26となる。
 図11は、抵抗曲線、P-Q特性曲線及び送風機効率曲線の例を示す図である。図11に示すように、上記の場合(ζall=8.26)、送風機効率の高い点で送風機を動作させることができるため、多くの冷却空気を効率的に送風することができる。1つの送風機で効率的に送風される冷却空気の全風量は、戻り風路の抵抗比に応じて各貯蔵室に分配される。例えば、冷凍室(ζ1=10)に送風される冷却空気の風量は、全風量の0.91(=(8.26/10)0.5)倍となる。
 しかしながら、各貯蔵室で必要とされる冷却空気の風量は、外気温度と貯蔵室温度との温度差によって異なる。これは、外気温度と貯蔵室温度との温度差により、冷蔵庫外から貯蔵室内に入る伝熱量が異なるためである。冷蔵室の温度は1~5℃程度であり、冷凍室の温度は-18℃程度である。そのため、冷却空気の風量は、貯蔵室毎に調整する必要がある。送風機の数が1つである場合、風路途中に設置されたダンパー等の開度を制御し、各風路の風路抵抗比を調節して、各貯蔵室に送風する冷却風量を調節する。ところが、ダンパーによって風量を調節すると、風路抵抗が大きくなるため全風量が減少してしまう。したがって、全風量を維持するためには送風機の回転数を増加させる必要がある。その結果、送風機の入力が増加してしまうという問題点があった。
 図12は、特許文献2の冷蔵庫における風路の概略構成を示すブロック図である。図12に示すように、貯蔵室毎に送風機が設けられている場合、各貯蔵室の風量比は、各送風機の回転数で調節することができる。この場合、上述のようにダンパーを用いて風量比を調節する場合に比べ、風路抵抗値を変化させることなく風量比を調節することができる。このため、効率良く送風機を運転することができる。一方、貯蔵室から冷却室への戻り風路の風路抵抗値は、貯蔵室毎に異なる。例えば、上述の例のように、冷蔵室の戻り風路の風路抵抗値は、冷凍室の戻り風路の風路抵抗値の100倍以上となっている。このため、図12に示す構成において、冷蔵室用の送風機の動作点は、冷凍室用の送風機の動作点と比較して低風量域となる。したがって、特に、風路抵抗値の大きい冷蔵室へ多くの冷却空気を送風する場合、送風機効率の低い運転となってしまうという問題点があった。
 本発明は、上述のような問題点を解決するためになされたものであり、送風機を効率的に運転でき、省エネルギー化を実現できる冷蔵庫を提供することを目的とする。
 本発明に係る冷蔵庫は、複数の貯蔵室と、前記複数の貯蔵室を冷却する冷却空気を生成する冷却室と、前記冷却室と前記複数の貯蔵室のそれぞれとを連通させるメイン風路と、前記冷却室から前記複数の貯蔵室のそれぞれに前記メイン風路を介して冷却空気を送風するメイン送風機と、前記メイン風路と前記複数の貯蔵室のそれぞれとの間を開閉する複数の開閉装置と、前記メイン風路とは別に設けられ、前記冷却室と前記複数の貯蔵室のうちの一部の貯蔵室とを連通させるサブ風路と、前記冷却室から前記一部の貯蔵室に前記サブ風路を介して冷却空気を送風するサブ送風機と、前記メイン送風機、前記複数の開閉装置及び前記サブ送風機の動作を制御する制御部と、を有するものである。
 本発明によれば、メイン送風機のみを用いた運転と、メイン送風機及びサブ送風機とを用いた運転とを切り換えることにより、各送風機を送風機効率の高い点で駆動させることができる。したがって、送風機を効率的に運転できるため、冷蔵庫の省エネルギー化を実現できる。
本発明の実施の形態1に係る冷蔵庫における風路の基本構成を示すブロック図である。 本発明の実施の形態1に係る冷蔵庫の概略構成を示す断面図である。 図2に示す冷蔵庫における風路の概略構成を示すブロック図である。 本発明の実施の形態1に係る冷蔵庫の制御部の構成の一例を示すブロック図である。 本発明の実施の形態1に係る冷蔵庫の制御部で実行される急冷安定判別フローの一例を示すフローチャートである。 本発明の実施の形態1に係る冷蔵庫の制御部で実行される急冷運転制御フローの一例を示すフローチャートである。 本発明の実施の形態1に係る冷蔵庫の制御部で実行される安定運転制御フローの一例を示すフローチャートである。 本発明の実施の形態1の変形例に係る冷蔵庫における風路の概略構成を示すブロック図である。 抵抗曲線及びP-Q特性曲線の例を示す図である。 特許文献1の冷蔵庫における風路の概略構成を示すブロック図である。 抵抗曲線、P-Q特性曲線及び送風機効率曲線の例を示す図である。 特許文献2の冷蔵庫における風路の概略構成を示すブロック図である。
実施の形態1.
 本発明の実施の形態1に係る冷蔵庫について説明する。まず、本実施の形態の基本構成について説明する。図1は、本実施の形態に係る冷蔵庫における風路の基本構成を示すブロック図である。図1に示すように、本実施の形態に係る冷蔵庫は、複数の貯蔵室(本例では、冷蔵室108及び冷凍室109)と、冷蔵室108及び冷凍室109を冷却する冷却空気を生成する冷却室107と、を有している。冷却室107と冷蔵室108及び冷凍室109のそれぞれとの間は、メイン風路130を介して連通している。メイン風路130には、冷却室107から冷蔵室108及び冷凍室109のそれぞれにメイン風路130を介して冷却空気を送風する1つのメイン送風機105aが設けられている。メイン風路130のうちメイン送風機105aの下流側には、メイン風路130と冷蔵室108及び冷凍室109のそれぞれとの間を開閉する複数のダンパー106a、106b(開閉装置の一例)が設けられている。メイン送風機105a及びダンパー106a、106bは、制御部(図1では図示せず)の制御によって動作するようになっている。
 また、冷却室107と複数の貯蔵室のうちの一部の貯蔵室(本例では、冷蔵室108)との間は、メイン風路130とは別に設けられたサブ風路131を介して連通している。サブ風路131には、冷却室107から冷蔵室108にサブ風路131を介して冷却空気を送風するサブ送風機105bが設けられている。また、サブ風路131(本例では、サブ送風機105bの下流側)には、サブ風路131と冷蔵室108との間を開閉するダンパー106dが設けられている。サブ送風機105b及びダンパー106dは、制御部(図1では図示せず)の制御によって動作するようになっている。なお、サブ風路131には、ダンパー106dに代えて、冷却室107から冷蔵室108に向かう空気の流れを許容し、冷蔵室108から冷却室107に向かう空気の流れを阻止する逆流防止機構(例えば、逆止弁)が設けられていてもよい。
 また、冷蔵室108及び冷凍室109のそれぞれと冷却室107との間は、戻り風路140a、140bを介して連通している。冷蔵室108に送風された冷却空気は、戻り風路140aを通って冷却室107に戻り、冷凍室109に送風された冷却空気は、戻り風路140bを通って冷却室107に戻る。
 後述するように、本実施の形態に係る冷蔵庫の制御部は、少なくとも2つの運転モードを実行可能である。第1の運転モードでは、制御部は、ダンパー106a、106bを開状態とし、ダンパー106dを閉状態とし、メイン送風機105aを駆動させ、サブ送風機105bを停止させる。これにより、冷蔵室108及び冷凍室109には、メイン送風機105aを用いて冷却空気が送風される。一方、第2の運転モードでは、制御部は、ダンパー106b、106dを開状態とし、ダンパー106aを閉状態とし、メイン送風機105a及びサブ送風機105bを駆動させる。これにより、冷凍室109には、メイン送風機105aを用いて冷却空気が送風され、冷蔵室108には、サブ送風機105bを用いて冷却空気が送風される。
 次に、本実施の形態に係る冷蔵庫について具体的に説明する。図2は、本実施の形態に係る冷蔵庫の概略構成を示す断面図である。本実施の形態では、冷却室と冷蔵室との間にサブ風路が設けられ、当該サブ風路に冷蔵室用のサブ送風機が設けられた構成を例示している。なお、図2を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
 図2に示すように、冷蔵庫は、前面(正面)が開口されて内部に貯蔵空間が形成された断熱箱体101を有している。断熱箱体101は、鋼鉄製の外箱と、樹脂製の内箱と、外箱と内箱との間の空間に充填された断熱材と、を有している。断熱箱体101の内部に形成された貯蔵空間は、断熱材を用いて形成された1つ又は複数の仕切り部材により、複数の貯蔵室に区画されている。本例の冷蔵庫は、複数の貯蔵室として、上段に配置された冷蔵室8と、中段に配置された冷凍室9と、下段に配置された野菜室10と、を備えている。冷蔵室8の前面開口部には、例えば回転式の扉8aが設けられている。冷凍室9及び野菜室10の前面開口部には、例えば引出し式の扉9a、10aがそれぞれ設けられている。
 また、冷蔵庫は、各貯蔵室を冷却するための冷却空気を生成する冷却室7と、各貯蔵室及び冷却室7の外部に配置された機械室11と、を備えている。
 機械室11には、回転数可変の圧縮機1、凝縮器2及び減圧器3等が配置されている。冷却室7には、蒸発器4(冷却器)等が配置されている。圧縮機1、凝縮器2、減圧器3及び蒸発器4は、冷媒配管を介して順次接続されることにより、冷凍サイクルを構成している。冷却室7では、蒸発器4での冷媒との熱交換により冷却空気が生成される。冷却室7と各貯蔵室との間は、後述する風路を介して連通している。
 図3は、図2に示す冷蔵庫における風路の概略構成を示すブロック図である。図3に示すように、冷却室7と各貯蔵室(冷蔵室8、冷凍室9、野菜室10)のそれぞれとの間は、メイン風路30(メイン送風風路)を介して連通している。メイン風路30には、冷却室7から冷蔵室8、冷凍室9及び野菜室10のそれぞれにメイン風路30を介して冷却空気を送風する1つのメイン送風機5aが設けられている。メイン風路30のうちメイン送風機5aの下流側には、メイン風路30と冷蔵室8との間を開閉するダンパー6a(開閉装置の一例)と、メイン風路30と冷凍室9との間を開閉するダンパー6b(開閉装置の一例)と、メイン風路30と野菜室10との間を開閉するダンパー6c(開閉装置の一例)と、が設けられている。ダンパー6a、6b、6cのそれぞれは、風路を閉塞可能な板状部材を開閉自在に備えている。各ダンパー6a、6b、6cでは、風路の全閉及び全開が可能となっている。また、各ダンパー6a、6b、6cでは、風路の開度調節が可能となっていてもよい。メイン送風機5a及びダンパー6a、6b、6cは、制御部50(図4参照)の制御によって動作するようになっている。
 また、冷却室7と冷蔵室8との間は、メイン風路30とは別に設けられたサブ風路31(サブ送風風路)を介して連通している。サブ風路31には、冷却室7から冷蔵室8にサブ風路31を介して冷却空気を送風するサブ送風機5b(冷蔵室用送風機)が設けられている。サブ送風機5bは、メイン送風機5aよりも小型の送風機である。例えば、サブ送風機5bの羽根は、メイン送風機5aの羽根よりも小さくなっている。サブ送風機5bは、サブ風路31のうち、冷却室7から離れた冷蔵室8寄りの位置に設けられている(図2参照)。例えば、サブ送風機5bと冷却室7(例えば、蒸発器4)との間における風路に沿った距離は、サブ送風機5bと冷蔵室8(例えば、サブ風路31から冷蔵室8に冷却空気が吹き出される吹出口)との間における風路に沿った距離よりも長くなっている。また、サブ送風機5bと冷却室7との間における風路に沿った距離は、メイン送風機5aと冷却室7との間における風路に沿った距離よりも長くなっている。これにより、サブ送風機5bは、メイン送風機5aと比べて温度の高い環境下に配置される。
 また、サブ風路31には、サブ風路31と冷蔵室8との間を開閉するダンパー6dが設けられている。ダンパー6dは、図3に示すようにサブ送風機5bの下流側に設けられていてもよいし、図2に示すようにサブ送風機5bの上流側に設けられていてもよい。ダンパー6dは、冷蔵室8からサブ風路31に向かう空気の流れを阻止するためのものである。サブ送風機5b及びダンパー6dは、制御部50(図4参照)の制御によって動作するようになっている。
 また、冷蔵室8、冷凍室9及び野菜室10のそれぞれと冷却室7との間は、戻り風路40a、40b、40cを介して連通している。冷蔵室8に送風された冷却空気は、戻り風路40aを通って冷却室7に戻り、冷凍室9に送風された冷却空気は、戻り風路40bを通って冷却室7に戻り、野菜室10に送風された冷却空気は、戻り風路40cを通って冷却室7に戻る。
 次に、図2を参照して、本実施の形態における冷凍サイクルの冷媒の流れを説明する。圧縮機1から吐出された高温高圧のガス冷媒は、凝縮器2(空気熱交換器)、又は冷蔵庫外壁面に沿って設けられた銅管を流通する。凝縮器2又は銅管内の冷媒は、周囲の外気に放熱して凝縮する。凝縮した高圧の液冷媒は、減圧器3で減圧されて低圧の二相冷媒となる。低圧の二相冷媒は、冷却室7内の蒸発器4に流入する。蒸発器4に流入した冷媒は、冷却室7内の空気から吸熱して低圧のガス冷媒となる。冷媒に吸熱された冷却室7内の空気は、冷却されて冷却空気となる。蒸発器4から流出した低圧のガス冷媒は、圧縮機1に吸入されて再度圧縮される。
 次に、図2及び図3を参照して、本実施の形態における冷却空気の大まかな流れを説明する。冷却室7内で冷却された冷却空気は、送風機(メイン送風機5a又はサブ送風機5b)によって搬送され、各貯蔵室に繋がっている風路を通り、各貯蔵室に吹き出される。各貯蔵室内は、吹き出された冷却空気によって冷却される。冷却空気の風量は、送風機の回転数等を変化させることによって調節される。これにより、各貯蔵室の温度が調節される。各貯蔵室を冷却した冷却空気は、それぞれ戻り風路を通って冷却室7に戻り、冷却室7で再度冷却される。
 次に、図2を参照して、本実施の形態におけるセンサ類について説明する。各貯蔵室内には、温度を検知するセンサが設置されている。冷蔵室8内には、冷蔵室8の室内温度を検知する温度センサ21が設置されており、冷凍室9内には、冷凍室9の室内温度を検知する温度センサ22が設置されており、野菜室10内には、野菜室10の室内温度を検知する温度センサ23が設置されている。また、蒸発器4の冷媒出口配管には、冷媒蒸発温度を検知する温度センサ24が設置されている。冷却室7とメイン送風機5aとの間(空気の流れにおいて蒸発器4の下流側でメイン送風機5aの上流側)には、メイン送風機5aの吸込空気(1次側空気)の温度を検知する温度センサ25が設置されている。これらの温度センサ21~25は、検知信号を制御部50に出力するようになっている。なお、温度センサ21、22、23の位置は、図2に示した位置に限られるものではない。温度センサ21、22、23は、各貯蔵室の温度を代表する点であれば、どの位置に設置されていてもよい。また、温度センサ24は、冷媒蒸発温度を代表する点であれば、蒸発器4付近のどの位置に設置されていてもよい。また、温度センサ24の設置を省略し、蒸発器4付近に設置された圧力センサの検出値から求められる冷媒飽和温度を冷媒蒸発温度として扱ってもよい。また、温度センサ25は、冷却室7とメイン送風機5aとの間の空気の温度を代表する点であれば、どの位置に設置されていてもよい。
 また、冷蔵室8の開口端には、扉8aの開閉を検知する扉開閉センサ26が設置されている。冷凍室9の開口端には、扉9aの開閉を検知する扉開閉センサ27が設置されている。野菜室10の開口端には、扉10aの開閉を検知する扉開閉センサ28が設置されている。これらの扉開閉センサ26、27、28は、検知信号を制御部50に出力するようになっている。
 図4は、本実施の形態おける制御部50の構成の一例を示すブロック図である。制御部50は、例えば、CPU、記憶部、入出力部、タイマ等を備えたマイコンを有している。図4に示すように、制御部50は、温度センサ21~25、扉開閉センサ26~28、圧縮機1、メイン送風機5a、サブ送風機5b及びダンパー6a、6b、6c、6dと接続されている。制御部50は、温度センサ21~25の検知信号に基づいてメイン送風機5a及びサブ送風機5bの回転数を制御する。また、制御部50は、温度センサ21~25及び扉開閉センサ26~28の検知信号に基づいて運転モードを判定し、判定結果に基づいて、メイン送風機5a及びサブ送風機5bの回転数を制御するとともにダンパー6a、6b、6c、6dの開閉を制御する。
 本実施の形態における冷蔵庫は、制御部50の制御により、少なくとも2つの運転モードを実行可能である。第1の運転モードは、急冷運転モードである。急冷運転モードは、例えば、冷蔵庫の扉が開閉された直後、又は冷蔵庫に電源が投入された直後に実行され、冷却能力を上げて庫内温度を下げる運転モードである。第2の運転モードは、安定運転モードである。安定運転モードは、急冷運転モードの開始から所定時間が経過し、各貯蔵室の温度が設定温度付近となった場合に実行される運転モードである。安定運転モードでは、各貯蔵室の温度が設定温度に維持されるように、圧縮機の回転数と送風機の回転数とが調節される。
 まず、急冷運転モード又は安定運転モードのいずれを実行するかを判別する急冷安定判別フローについて説明する。図5は、制御部50で実行される急冷安定判別フローの一例を示すフローチャートである。急冷安定判別フローは、電源が投入された直後から所定の時間間隔で繰り返して実行される。
 図5に示すように、急冷安定判別フローのステップS101では、電源が投入された直後であるか否かを判定する(ステップS101)。この判定は、例えば、電源投入時からの経過時間をカウントするタイマの値が所定の値以下であるか否かを判定することによって行われる。電源が投入された直後であると判定した場合には、急冷運転制御フローに移行する。それ以外の場合には、ステップS102の処理に移行する。
 ステップS102では、扉(例えば、扉8a、9a、10aのいずれか)が開閉された直後であるか否かを判定する。この判定は、扉開閉センサ26、27、28の検知信号のいずれかが開から閉に変化してからの経過時間をカウントするタイマの値が、所定の値以下であるか否かを判定することによって行われる。扉が開閉された直後であると判定した場合にはステップS103の処理に移行し、それ以外の場合にはステップS104の処理に移行する。
 ステップS103では、各貯蔵室の室内温度TRが設定温度TR_setよりも高い(TR>TR_set)か否かを判定する。例えば少なくとも1つの貯蔵室の室内温度TRが設定温度TR_setよりも高いと判定した場合には急冷運転制御フローに移行し、それ以外の場合にはステップS104の処理に移行する。
 ステップS104では、除霜運転終了直後であるか否かを判定する。この判定は、例えば、除霜運転が終了してからの経過時間をカウントするタイマの値が所定の値以下であるか否かを判定することによって行われる。除霜運転直後であると判定した場合には、急冷運転制御フローに移行する。それ以外の場合には、全ての貯蔵室の室内温度TRがそれぞれの設定温度TR_set付近であると判断されるため、安定運転制御フローに移行する。
 次に、急冷運転制御フローについて説明する。急冷運転制御フローでは、1つの送風機(メイン送風機5a)を用いて全ての貯蔵室を冷却することで、送風機効率の高い点で送風機を動作させる。図6は、制御部50で実行される急冷運転制御フローの一例を示すフローチャートである。図6に示すように、急冷運転制御フローでは、メイン送風機5a側のダンパー6a、6b、6cを開状態とし(ステップS201)、各貯蔵室用送風機(本例では、冷蔵室8用のサブ送風機5b)側のダンパー6dを閉状態とする(ステップS202)。ダンパー6dを閉状態とすることにより、冷蔵室8から冷却室7に冷却空気が逆流してしまうことを防ぐ。また、メイン送風機5aを駆動させ、サブ送風機5bを停止させる。
 次に、メイン送風機5aの回転数を変更する(ステップS203)。メイン送風機5aの回転数は、例えば、温度センサ25で検知されるメイン送風機5aの吸込温度と、温度センサ24で検知される冷媒蒸発温度との差が一定値(例えば、5K)に近づくように制御される。このように制御することで、蒸発器4(冷却器)を有効に使うことができるため、省エネルギーとなる。
 また、圧縮機1の回転数を変更してもよい(ステップS204)。圧縮機1の回転数は、例えば、冷蔵庫の中で最も低温となる貯蔵室(本例では、冷凍室9)の設定温度と、温度センサ24で検知される冷媒蒸発温度との差が一定値(例えば、5K)に近づくように制御される。このように制御することで、圧縮機1を必要最低限の回転数で運転することができるため、省エネルギーとなる。
 上記のような運転を行い、最も設定温度が低く冷却空気が必要な貯蔵室(本例では、冷凍室9)以外の貯蔵室(本例では、冷蔵室8及び野菜室10)の室内温度が設定温度未満となった場合(ステップS205のYes)には、その貯蔵室に対応するメイン送風機5a側のダンパー6a、6cを閉状態にする(ステップS206)。例えば、冷蔵室8の室内温度が設定温度未満となった場合、ダンパー6aを閉状態にすることにより、冷蔵室8を過剰に冷却してしまうことを防止できる。
 ステップS203~ステップS206の処理を繰り返し(ステップS207)、最も設定温度が低く冷却空気が必要な貯蔵室(本例では、冷凍室9)以外の貯蔵室用のダンパー6a、6cが全て閉状態となった場合には(ステップS207のYes)、急冷運転制御フローを終了し、急冷安定判別フローに移行する。
 最も設定温度が低い冷凍室9は、多くの冷却空気を必要とするため、戻り風路40bの風路抵抗値が小さく設定されている。そのため、冷凍室9に冷却空気を送風しつつ、他の貯蔵室にも冷却空気を送風することによって、1つのメイン送風機5aを送風機効率の高い点で用いることができる。
 次に、安定運転制御フローについて説明する。図7は、制御部50で実行される安定運転制御フローの一例を示すフローチャートである。安定運転制御フローでは、複数の送風機(メイン送風機5a及びサブ送風機5b)を用いて必要最低限の風量の冷却空気を送風し、効率良く運転する。本例では、冷蔵室用のサブ送風機5bを用いて冷蔵室8を冷却し、メイン送風機5aを用いて冷凍室9を冷却する。このため、図7に示すように、メイン送風機5a側の冷凍室9用のダンパー6bと各貯蔵室用送風機(本例では、冷蔵室8用のサブ送風機5b)側のダンパー6dとを開状態とし、メイン送風機5a側の冷蔵室8用のダンパー6aを閉状態とする(ステップS301、S302、S303)。また、メイン送風機5a及びサブ送風機5bを駆動させる。
 この際、メイン送風機5aの回転数は、温度センサ25で検知されるメイン送風機5aの吸込温度と、温度センサ24で検知される冷媒蒸発温度との差が一定値(例えば、5K)に近づくように制御されるようにしてもよい(ステップS304)。このように制御することで、蒸発器4(冷却器)を有効に使うことができるため、省エネルギーとなる。
 また、圧縮機1の回転数は、例えば、冷蔵庫の中で最も低温となる貯蔵室(本例では、冷凍室9)の設定温度と、温度センサ24で検知される冷媒蒸発温度との差が一定値(例えば、5K)に近づくように制御されるようにしてもよい(ステップS305)。このように制御することで、圧縮機1を必要最低限の回転数で運転することができるため、省エネルギーとなる。
 また、サブ送風機5bの回転数は、冷却対象の室内温度(本例では、温度センサ21で検知される冷蔵室8の室内温度)が冷却対象の設定温度(本例では、冷蔵室8の設定温度)に近づくように制御されるようにしてもよい(ステップS306)。このように制御することで、蒸発器4(冷却器)を有効に使うことができるため、省エネルギーとなる。
 また、冷凍室9以外で貯蔵室用送風機(サブ送風機)のない貯蔵室(本例では、野菜室10)の室内温度は、室内温度が設定温度に近づくようにメイン送風機5a側のダンパー6cを開閉することにより調整されている。すなわち、野菜室10において室内温度が設定温度よりも低い場合(ステップS307のYes)には、野菜室10に対応したメイン送風機5a側のダンパー6cを閉状態にする(ステップS308)。これにより、野菜室10を過剰に冷却することを防ぐ。一方、野菜室10において室内温度が設定温度よりも高い場合(ステップS309のYes)には、ダンパー6cを開状態にする(ステップS310)。これにより、メイン送風機5aを用いて野菜室10に冷却空気を送風する。
 これらの処理が終了したら、安定運転制御フローを終了し、急冷安定判別フローに移行する。
 以上のように、必要とする冷却空気の風量が多いときに実行される急冷運転制御フローでは、1つの送風機(メイン送風機5a)のみを駆動させる。一方、必要とする冷却空気の風量が相対的に少ないときに実行される安定運転制御フローでは、複数の送風機(メイン送風機5a及びサブ送風機5b)を駆動させる。したがって、本実施の形態では、複数の送風機(メイン送風機5a及びサブ送風機5b)を駆動させるときの総風量に比べて、複数の送風機のうちの1つの送風機(メイン送風機5a)のみを駆動させるときの総風量の方が多くなっている。
 ここで、本実施の形態では、野菜室10用の個別のサブ送風機が設定されていない構成を例示した。これは、冷凍室9の戻り風路40bの風路抵抗値をζ1とし、冷蔵室8の戻り風路40aの風路抵抗値をζ2とし、野菜室10の戻り風路40cの風路抵抗値をζ3とすると、風路抵抗値ζ3は風路抵抗値ζ1、ζ2よりも大きく(ζ3>ζ2>ζ1)、野菜室10のダンパー6cを開閉した際に冷凍室9の風量に与える影響が少ないためである。よって、上記の安定運転制御フローでは、野菜室10の室内温度をダンパー6cの開閉で調整している。しかしながら、本発明はその限りではなく、野菜室10用のサブ送風機を設置し、そのサブ送風機の回転数を制御することにより、冷蔵室8の室内温度の調整と同様の流れで野菜室10の室内温度を調整してもよい。
 図8は、上記変形例の冷蔵庫における風路の概略構成を示すブロック図である。図3と比較すると、本変形例では、冷却室7と野菜室10との間は、メイン風路30とは別に設けられたサブ風路32を介して連通している。サブ風路32には、冷却室7から野菜室10にサブ風路32を介して冷却空気を送風するサブ送風機5c(野菜室用送風機)が設けられている。また、サブ風路32には、サブ風路32と野菜室10との間を開閉するダンパー6eが設けられている。ダンパー6eは、野菜室10からサブ風路31に向かう空気の流れを阻止するためのものである。
 以上のように、本実施の形態では、急冷時のように全貯蔵室に多くの風量が必要な場合に、1つのメイン送風機5aを用いて送風する。これにより、送風機効率の高い点で送風機を駆動させることができるため、送風機の入力を抑えつつ各貯蔵室を効率的に冷却することができる。したがって、省エネルギーでかつ食品の品質維持効果の高い冷蔵庫を実現することができる。
 また、安定時には、各貯蔵室に必要とされる冷却風量を、各貯蔵室用のサブ送風機の回転数により個別に調節できるため、送風機の入力を最低限にすることができ、かつ各貯蔵室の温度を一定に維持することができる。したがって、省エネルギーでかつ食品の品質維持効果の高い冷蔵庫を実現することができる。
 また、冷蔵室8に必要とされる冷却風量は、冷凍室9に必要とされる冷却風量の1/15程度である。このため、本実施の形態では、サブ送風機5bにはメイン送風機5aよりも大きさが小さい小型の送風機(例えば、メイン送風機5aよりも羽根の大きさが小さい送風機、メイン送風機5aよりも出力が小さい送風機など)が用いられている。小型の送風機を採用することで、コストを抑えることができる。
 また、本実施の形態では、冷蔵室8用のサブ送風機5bはメイン送風機5aよりも、冷却室7(例えば、蒸発器4)から離れた位置に設けられている。これにより、サブ送風機5bは、メイン送風機5aと比べて温度の高い環境下で駆動させることができる。サブ送風機5bを相対的に温度の高い環境下で駆動させることで、サブ送風機5bの軸受の粘性を低下させることができるため、軸損失を抑えることができる。したがって、サブ送風機5bをより効率良く駆動させることができる。
 以上説明したように、本実施の形態に係る冷蔵庫は、複数の貯蔵室(例えば、冷蔵室8、冷凍室9、野菜室10)と、複数の貯蔵室を冷却する冷却空気を生成する冷却室7と、冷却室7と複数の貯蔵室のそれぞれとを連通させるメイン風路30と、冷却室7から複数の貯蔵室のそれぞれにメイン風路30を介して冷却空気を送風するメイン送風機5aと、メイン風路30と複数の貯蔵室のそれぞれとの間を開閉する複数の開閉装置(例えば、ダンパー6a、6b、6c)と、メイン風路30とは別に設けられ、冷却室7と複数の貯蔵室のうちの一部の貯蔵室(例えば、冷蔵室8)とを連通させるサブ風路31と、冷却室7から一部の貯蔵室にサブ風路31を介して冷却空気を送風するサブ送風機5bと、メイン送風機5a、複数の開閉装置及びサブ送風機5bの動作を制御する制御部50と、を有するものである。
 また、本実施の形態に係る冷蔵庫は、制御部50は、複数の開閉装置を開状態とし、メイン送風機5aを駆動させ、サブ送風機5bを停止させて、メイン送風機5aを用いて複数の貯蔵室のそれぞれに冷却空気を送風する第1の運転モード(急冷運転モード)と、複数の開閉装置のうちメイン風路30と一部の貯蔵室との間を開閉する一部の開閉装置(例えば、ダンパー6a)を閉状態とし、複数の開閉装置のうちメイン風路30と他の貯蔵室(例えば、冷凍室9、野菜室10)との間を開閉する他の開閉装置(例えば、ダンパー6b、6c)を開状態とし、メイン送風機5a及びサブ送風機5bを駆動させて、メイン送風機5aを用いて他の貯蔵室に冷却空気を送風するとともに、サブ送風機5bを用いて一部の貯蔵室に冷却空気を送風する第2の運転モード(安定運転モード)と、を実行可能であるものである。
 また、本実施の形態に係る冷蔵庫は、第1の運転モードにおけるメイン送風機5aの風量は、第2の運転モードにおけるメイン送風機5a及びサブ送風機5bの総風量よりも大きいものである。
 また、本実施の形態に係る冷蔵庫は、第2の運転モードにおいて、制御部50は、一部の貯蔵室の温度に基づいてサブ送風機5bの回転数を制御するものである。
 また、本実施の形態に係る冷蔵庫は、第2の運転モードにおいて、制御部50は、メイン送風機5aの吸込空気の温度に基づいてメイン送風機5aの回転数を制御するものである。
 また、本実施の形態に係る冷蔵庫は、第1の運転モードにおいて、制御部50は、メイン送風機5aの吸込空気の温度に基づいてメイン送風機5aの回転数を制御するものである。
 また、本実施の形態に係る冷蔵庫は、冷却室7で冷却空気を生成するための冷凍サイクルをさらに有し、制御部50は、冷凍サイクルでの冷媒蒸発温度が目標蒸発温度に近づくように冷凍サイクルの圧縮機1の回転数を制御するものである。
 また、本実施の形態に係る冷蔵庫は、サブ送風機5bは、メイン送風機5aよりも大きさが小さいものである。
 また、本実施の形態に係る冷蔵庫は、サブ送風機5bは、メイン送風機5aよりも温度の高い環境下に配置されているものである。
 また、本実施の形態に係る冷蔵庫は、サブ送風機5bと冷却室7との間の距離(例えば、風路に沿った距離)は、メイン送風機5aと冷却室7との間の距離(例えば、風路に沿った距離)よりも長いものである。
 上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
 1 圧縮機、2 凝縮器、3 減圧器、4 蒸発器、5a、105a メイン送風機、5b、5c、105b サブ送風機、6a、6b、6c、6d、6e、106a、106b、106d ダンパー、7、107 冷却室、8、108 冷蔵室、8a、9a、10a 扉、9、109 冷凍室、10 野菜室、11 機械室、21、22、23、24、25 温度センサ、26、27、28 扉開閉センサ、30、130 メイン風路、31、32、131 サブ風路、40a、40b、40c、140a、140b 戻り風路、50 制御部、101 断熱箱体。

Claims (10)

  1.  複数の貯蔵室と、
     前記複数の貯蔵室を冷却する冷却空気を生成する冷却室と、
     前記冷却室と前記複数の貯蔵室のそれぞれとを連通させるメイン風路と、
     前記冷却室から前記複数の貯蔵室のそれぞれに前記メイン風路を介して冷却空気を送風するメイン送風機と、
     前記メイン風路と前記複数の貯蔵室のそれぞれとの間を開閉する複数の開閉装置と、
     前記メイン風路とは別に設けられ、前記冷却室と前記複数の貯蔵室のうちの一部の貯蔵室とを連通させるサブ風路と、
     前記冷却室から前記一部の貯蔵室に前記サブ風路を介して冷却空気を送風するサブ送風機と、
     前記メイン送風機、前記複数の開閉装置及び前記サブ送風機の動作を制御する制御部と、
     を有する冷蔵庫。
  2.  前記制御部は、
     前記複数の開閉装置を開状態とし、前記メイン送風機を駆動させ、前記サブ送風機を停止させて、前記メイン送風機を用いて前記複数の貯蔵室のそれぞれに冷却空気を送風する第1の運転モードと、
     前記複数の開閉装置のうち前記メイン風路と前記一部の貯蔵室との間を開閉する一部の開閉装置を閉状態とし、前記複数の開閉装置のうち前記メイン風路と他の貯蔵室との間を開閉する他の開閉装置を開状態とし、前記メイン送風機及び前記サブ送風機を駆動させて、前記メイン送風機を用いて前記他の貯蔵室に冷却空気を送風するとともに、前記サブ送風機を用いて前記一部の貯蔵室に冷却空気を送風する第2の運転モードと、を実行可能である請求項1に記載の冷蔵庫。
  3.  前記第1の運転モードにおける前記メイン送風機の風量は、前記第2の運転モードにおける前記メイン送風機及び前記サブ送風機の総風量よりも大きい請求項2に記載の冷蔵庫。
  4.  前記第2の運転モードにおいて、前記制御部は、前記一部の貯蔵室の温度に基づいて前記サブ送風機の回転数を制御する請求項2又は請求項3に記載の冷蔵庫。
  5.  前記第2の運転モードにおいて、前記制御部は、前記メイン送風機の吸込空気の温度に基づいて前記メイン送風機の回転数を制御する請求項2~請求項4のいずれか一項に記載の冷蔵庫。
  6.  前記第1の運転モードにおいて、前記制御部は、前記メイン送風機の吸込空気の温度に基づいて前記メイン送風機の回転数を制御する請求項2~請求項5のいずれか一項に記載の冷蔵庫。
  7.  前記冷却室で冷却空気を生成するための冷凍サイクルをさらに有し、
     前記制御部は、前記冷凍サイクルでの冷媒蒸発温度が目標蒸発温度に近づくように前記冷凍サイクルの圧縮機の回転数を制御する請求項1~請求項6のいずれか一項に記載の冷蔵庫。
  8.  前記サブ送風機は、前記メイン送風機よりも大きさが小さい請求項1~請求項7のいずれか一項に記載の冷蔵庫。
  9.  前記サブ送風機は、前記メイン送風機よりも温度の高い環境下に配置されている請求項1~請求項8のいずれか一項に記載の冷蔵庫。
  10.  前記サブ送風機と前記冷却室との間の距離は、前記メイン送風機と前記冷却室との間の距離よりも長い請求項9に記載の冷蔵庫。
PCT/JP2014/060717 2014-04-15 2014-04-15 冷蔵庫 WO2015159366A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201608467VA SG11201608467VA (en) 2014-04-15 2014-04-15 Refrigerator
CN201480077906.1A CN106164610B (zh) 2014-04-15 2014-04-15 冰箱
AU2014391330A AU2014391330B2 (en) 2014-04-15 2014-04-15 Refrigerator
PCT/JP2014/060717 WO2015159366A1 (ja) 2014-04-15 2014-04-15 冷蔵庫
JP2015522812A JP5832705B1 (ja) 2014-04-15 2014-04-15 冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060717 WO2015159366A1 (ja) 2014-04-15 2014-04-15 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2015159366A1 true WO2015159366A1 (ja) 2015-10-22

Family

ID=54323613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060717 WO2015159366A1 (ja) 2014-04-15 2014-04-15 冷蔵庫

Country Status (5)

Country Link
JP (1) JP5832705B1 (ja)
CN (1) CN106164610B (ja)
AU (1) AU2014391330B2 (ja)
SG (1) SG11201608467VA (ja)
WO (1) WO2015159366A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101300A (ja) * 2018-12-20 2020-07-02 日立グローバルライフソリューションズ株式会社 冷蔵庫
WO2023176005A1 (ja) * 2022-03-15 2023-09-21 日立グローバルライフソリューションズ株式会社 冷蔵庫

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560279B (zh) * 2017-09-06 2020-10-09 合肥美的电冰箱有限公司 多温区的制冷结构、及其控制方法
CN107477951A (zh) * 2017-09-06 2017-12-15 合肥美的电冰箱有限公司 带风门的多温区制冷结构、及其控制方法
JP2020008189A (ja) * 2018-07-04 2020-01-16 東芝ライフスタイル株式会社 冷蔵庫
CN110398110A (zh) * 2019-08-08 2019-11-01 珠海格力电器股份有限公司 热交换设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106958A (ja) * 1991-10-14 1993-04-27 Matsushita Refrig Co Ltd 冷蔵庫
JPH11304336A (ja) * 1998-04-17 1999-11-05 Hitachi Ltd 冷蔵庫
JP2003130522A (ja) * 2001-10-18 2003-05-08 Sanden Corp インバータ冷凍機の運転システム
KR20030042735A (ko) * 2001-11-23 2003-06-02 주식회사 엘지이아이 냉장고
JP2004278878A (ja) * 2003-03-14 2004-10-07 Fujitsu General Ltd 冷蔵庫
JP2005030679A (ja) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP2014044035A (ja) * 2012-08-29 2014-03-13 Hitachi Appliances Inc 冷蔵庫

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077844A (ko) * 2004-01-28 2005-08-04 엘지전자 주식회사 사이드 바이 사이드 타입 냉장고
JP4982537B2 (ja) * 2009-08-12 2012-07-25 日立アプライアンス株式会社 冷蔵庫

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106958A (ja) * 1991-10-14 1993-04-27 Matsushita Refrig Co Ltd 冷蔵庫
JPH11304336A (ja) * 1998-04-17 1999-11-05 Hitachi Ltd 冷蔵庫
JP2003130522A (ja) * 2001-10-18 2003-05-08 Sanden Corp インバータ冷凍機の運転システム
KR20030042735A (ko) * 2001-11-23 2003-06-02 주식회사 엘지이아이 냉장고
JP2004278878A (ja) * 2003-03-14 2004-10-07 Fujitsu General Ltd 冷蔵庫
JP2005030679A (ja) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp 冷凍空調装置及び冷凍空調装置の制御方法
JP2014044035A (ja) * 2012-08-29 2014-03-13 Hitachi Appliances Inc 冷蔵庫

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101300A (ja) * 2018-12-20 2020-07-02 日立グローバルライフソリューションズ株式会社 冷蔵庫
JP7369520B2 (ja) 2018-12-20 2023-10-26 日立グローバルライフソリューションズ株式会社 冷蔵庫
WO2023176005A1 (ja) * 2022-03-15 2023-09-21 日立グローバルライフソリューションズ株式会社 冷蔵庫

Also Published As

Publication number Publication date
CN106164610A (zh) 2016-11-23
AU2014391330A1 (en) 2016-11-03
AU2014391330B2 (en) 2017-10-12
JP5832705B1 (ja) 2015-12-16
SG11201608467VA (en) 2016-11-29
JPWO2015159366A1 (ja) 2017-04-13
CN106164610B (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
JP5832705B1 (ja) 冷蔵庫
JP5912746B2 (ja) 冷蔵庫
EP1426711A2 (en) Cooling apparatus and method for controlling the same
WO2015133173A1 (ja) 冷蔵庫
JP5110192B1 (ja) 冷凍装置
JP6355325B2 (ja) 冷蔵庫、及び、冷蔵庫の制御方法
JP2012017920A (ja) 冷蔵庫
JP2007078205A (ja) 冷蔵庫
JP4303062B2 (ja) 冷蔵庫
JP6803217B2 (ja) 冷蔵庫
KR102177946B1 (ko) 냉장고 및 그의 제어방법
KR102010382B1 (ko) 냉장고 및 그 운전 방법
JP5897215B1 (ja) 冷蔵庫
JP2013068388A (ja) 冷蔵庫
KR102151817B1 (ko) 냉장고 및 그의 제어방법
JP5931329B2 (ja) 冷蔵庫
JP6956900B2 (ja) 冷蔵庫
JP5579290B1 (ja) 冷蔵庫
JP2012082985A (ja) 冷蔵庫
JP2013053801A (ja) 冷蔵庫
KR102011828B1 (ko) 냉장고 및 그 운전 방법
JP5783790B2 (ja) 冷凍装置
KR100606754B1 (ko) 냉장고의 운전 제어 방법
JP2017040398A (ja) 冷蔵庫
KR100678676B1 (ko) 냉장고의 온도제어장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015522812

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014391330

Country of ref document: AU

Date of ref document: 20140415

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14889452

Country of ref document: EP

Kind code of ref document: A1