WO2015156278A1 - 位相差フィルムの製造方法および円偏光板の製造方法ならびにフィルム延伸装置 - Google Patents

位相差フィルムの製造方法および円偏光板の製造方法ならびにフィルム延伸装置 Download PDF

Info

Publication number
WO2015156278A1
WO2015156278A1 PCT/JP2015/060822 JP2015060822W WO2015156278A1 WO 2015156278 A1 WO2015156278 A1 WO 2015156278A1 JP 2015060822 W JP2015060822 W JP 2015060822W WO 2015156278 A1 WO2015156278 A1 WO 2015156278A1
Authority
WO
WIPO (PCT)
Prior art keywords
clip
film
pitch
oblique stretching
zone
Prior art date
Application number
PCT/JP2015/060822
Other languages
English (en)
French (fr)
Inventor
清水 享
誠 中市
隆一 吉良
平田 聡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020167010694A priority Critical patent/KR101867196B1/ko
Priority to US15/120,435 priority patent/US10086556B2/en
Priority to CN201580002109.1A priority patent/CN105593726B/zh
Priority to EP15776079.4A priority patent/EP3035090B1/en
Publication of WO2015156278A1 publication Critical patent/WO2015156278A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/023Half-products, e.g. films, plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/20Edge clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0066Optical filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers

Definitions

  • the present invention relates to a method for producing a retardation film, a method for producing a circularly polarizing plate, and a film stretching apparatus.
  • circularly polarizing plates are used for the purpose of improving display characteristics and preventing reflection.
  • a circularly polarizing plate typically, a polarizer and a retardation film (typically ⁇ / 4 plate) form an angle of 45 ° between an absorption axis of the polarizer and a slow axis of the retardation film. Thus, they are laminated.
  • a retardation film is typically produced by uniaxially or biaxially stretching in the machine direction and / or the transverse direction, so that the slow axis is often the transverse direction of the original film. Appears in the direction (width direction) or longitudinal direction (long direction).
  • the present invention has been made to solve the above-described conventional problems.
  • the method for producing a retardation film of the present invention includes: gripping left and right ends of a film with variable-pitch left and right clips whose longitudinal clip pitches change; preheating the film; and stretching the film diagonally And releasing the clip that grips the film.
  • the rate of change of the clip pitch in the moving direction of one clip is different from the rate of change of the clip pitch in the moving direction of the other clip, and / or Alternatively, the position where the clip pitch in the moving direction of one clip starts to change and the position where the clip pitch in the moving direction of the other clip starts changing are different positions.
  • the moving speed of the clip is braked immediately before the gripping process and / or between the gripping process and the oblique stretching process.
  • braking of the moving speed of the clip includes limiting the moving speed of the clip to a predetermined speed by applying a load to a link mechanism that changes the clip pitch.
  • the moving speed of the clip is braked by limiting the moving speed of the clip to a predetermined speed by a device that brakes the moving speed of the clip rotating continuously or intermittently at a constant speed. including.
  • braking of the moving speed of the clip is performed at least once from immediately before the gripping process to the oblique stretching process, and further from immediately after the oblique stretching process to the releasing process.
  • the oblique stretching step increases the clip pitch of one clip and decreases the clip pitch of the other clip while increasing the distance between the left and right clips, and the film. And the clip pitch of the one clip is maintained or reduced so that the clip pitches of the left and right clips become equal while increasing the distance between the left and right clips. And increasing the clip pitch of the other clip to obliquely stretch the film (second oblique stretching step).
  • the clip pitch of the other clip starts to decrease.
  • the oblique stretching ratio S obtained from the following formula (1) is 2.0 or more, and the first oblique stretching step
  • the rate of change of the clip pitch of the other clip is 0.5 or more and less than 1.
  • W 1 is the first oblique stretching before the film width (unit: m)
  • W 3 a second oblique stretching after the film width (unit: m)
  • v3 ' is a first diagonal Regarding the clip whose clip pitch is increased in the stretching process
  • t3 is The time (unit: sec) from the time when the clip whose clip pitch is reduced in the first diagonal stretching process enters the preheating zone to the end of the second diagonal stretching process
  • t3 ′ is the first diagonal stretching.
  • the film forming material includes a polycarbonate resin, a polyvinyl acetal resin, a cycloolefin resin, a cellulose resin, a cellulose ester resin, a polyester resin, or a polyester carbonate resin.
  • a retardation film is provided.
  • This retardation film is a retardation film obtained by the above production method, has a long shape, and has a slow axis in a direction that forms a predetermined angle with respect to the longitudinal direction.
  • the manufacturing method of a circularly-polarizing plate is provided. The manufacturing method of this circularly polarizing plate is to obtain a long retardation film by the above manufacturing method, and while transporting the obtained long retardation film and the long polarizing plate, It includes aligning the longitudinal direction and continuously bonding.
  • a film stretching apparatus is provided.
  • This film stretching apparatus is a variable pitch type in which the left and right ends of the film to be stretched are gripped and passed through the preheating zone and the oblique stretching zone in this order, and the clip pitch in the longitudinal direction changes with traveling movement, respectively.
  • This film stretching apparatus includes at least one means for braking the moving speed of the clip between the zone for gripping the film and the oblique stretching zone.
  • the stretching apparatus includes at least one means for braking the moving speed of the clip between the zone for gripping the film and the oblique stretching zone, and further, immediately after the oblique stretching zone. At least one means for braking the moving speed of the clip from the zone to the zone where the clip holding the film is released.
  • the slow axis is inclined in the oblique direction by braking the moving speed of the clip immediately before and / or between the gripping process and the oblique stretching process in the method for producing a retardation film including oblique stretching. It is possible to manufacture a long retardation film having a high-efficiency while precisely controlling the direction of the slow axis and variations in the direction. Furthermore, according to the present invention, a circularly polarizing plate excellent in optical properties can be obtained with high production efficiency by laminating the retardation film and the polarizing plate thus obtained by so-called roll-to-roll. .
  • the left and right ends of the film are each gripped by variable-pitch left and right clips that change the longitudinal clip pitch (gripping step); the film is preheated ( A preheating step); obliquely stretching the film (obliquely stretching step); and releasing a clip that holds the film (releasing step).
  • the oblique stretching step is to make the rate of change of the clip pitch in the moving direction of one clip different from the rate of change of the clip pitch in the moving direction of the other clip while increasing the distance between the left and right clips, and And / or making the position at which the clip pitch in the moving direction of one clip starts to change and the position at which the clip pitch in the moving direction of the other clip starts changing differ from each other.
  • the oblique stretching step increases the clip pitch of one clip and decreases the clip pitch of the other clip while increasing the distance between the left and right clips, and the film. And the clip pitch of the one clip is maintained or reduced so that the clip pitches of the left and right clips become equal while increasing the distance between the left and right clips. And increasing the clip pitch of the other clip to obliquely stretch the film (second oblique stretching step).
  • second oblique stretching step increases the clip pitch of one clip and decreases the clip pitch of the other clip while increasing the distance between the left and right clips, and the film.
  • the clip pitch of the one clip is maintained or reduced so that the clip pitches of the left and right clips become equal while increasing the distance between the left and right clips.
  • increasing the clip pitch of the other clip to obliquely stretch the film second oblique stretching step.
  • FIG. 1 is a schematic plan view illustrating the overall configuration of an example of a stretching apparatus that can be used in the production method of the present invention.
  • 2 and 3 are schematic plan views of main parts for explaining a link mechanism for changing the clip pitch in the stretching apparatus of FIG. 1, respectively, FIG. 2 shows a state in which the clip pitch is minimum, and FIG. Indicates the maximum clip pitch.
  • the stretching device 100 has an endless loop 10L and an endless loop 10R having a large number of clips 20 for gripping the film on both the left and right sides in a plan view.
  • the left endless loop as viewed from the film entrance side is referred to as the left endless loop 10L
  • the right endless loop is referred to as the right endless loop 10R.
  • the clips 20 of the left and right endless loops 10L and 10R are guided by the reference rail 70 and move in a loop.
  • the left endless loop 10L rotates in a counterclockwise direction
  • the right endless loop 10R rotates in a clockwise direction.
  • a gripping zone A, a preheating zone B, a first oblique stretching zone C, a second oblique stretching zone D, and a release zone E are provided in this order from the entrance side to the exit side of the sheet. .
  • Each of these zones means a zone where the film to be stretched is substantially gripped, preheated, first obliquely stretched, second obliquely stretched and released, and mechanically and structurally independent. It does not mean a parcel. It should also be noted that the ratio of the lengths of the respective zones in the stretching apparatus of FIG. 1 is different from the actual ratio of lengths.
  • the left and right endless loops 10R and 10L are configured to be substantially parallel to each other at a separation distance corresponding to the initial width of the film to be stretched.
  • the separation distance of the left and right endless loops 10R and 10L corresponds to the width after stretching of the film as it goes from the preheating zone B toward the release zone E. It is configured to gradually expand until.
  • the left and right endless loops 10R and 10L are configured to be substantially parallel to each other at a separation distance corresponding to the width of the film after stretching.
  • the clip of the left endless loop 10L (left clip) 20 and the clip of the right endless loop 10R (right clip) 20 can each move independently.
  • the driving sprockets 11 and 12 of the left endless loop 10L are rotationally driven counterclockwise by the electric motors 13 and 14, and the driving sprockets 11 and 12 of the right endless loop 10R are clocked by the electric motors 13 and 14. It is driven to rotate around.
  • traveling force is applied to the clip carrying member 30 of the drive roller (not shown) engaged with the drive sprockets 11 and 12.
  • the left endless loop 10L cyclically moves in the counterclockwise direction
  • the right endless loop 10R cyclically moves in the clockwise direction.
  • the left endless loop 10L clip (left clip) 20 and the right endless loop 10R clip (right clip) 20 are each of variable pitch type. That is, the left and right clips 20 and 20 can independently change the clip pitch (distance between clips) in the traveling direction (that is, the vertical direction: MD) with movement.
  • the variable pitch type can be realized by any appropriate configuration.
  • a link mechanism pin mechanism
  • an elongated rectangular clip carrying member 30 is provided in the lateral direction in plan view for carrying the clips 20 individually.
  • the clip carrying member 30 is formed into a solid frame structure with a closed cross section by an upper beam, a lower beam, a front wall (wall on the clip side), and a rear wall (wall on the side opposite to the clip).
  • the clip carrying member 30 is provided so as to roll on the traveling road surfaces 81 and 82 by the traveling wheels 38 at both ends thereof. 2 and 3, the traveling wheels on the front wall (the traveling wheels that roll on the traveling road surface 81) are not shown.
  • the traveling road surfaces 81 and 82 are parallel to the reference rail 70 over the entire area.
  • a long hole 31 is formed along the longitudinal direction of the clip carrying member on the rear side (the side opposite to the clip) of the upper and lower beams of the clip carrying member 30, and the slider 32 can slide in the longitudinal direction of the long hole 31. Is engaged.
  • a single first shaft member 33 is vertically provided so as to penetrate the upper beam and the lower beam.
  • a single second shaft member 34 is vertically provided through the slider 32 of the clip carrying member 30.
  • One end of a main link member 35 is pivotally connected to the first shaft member 33 of each clip carrying member 30.
  • the main link member 35 is pivotally connected to the second shaft member 34 of the adjacent clip carrier member 30 at the other end.
  • one end of the sub link member 36 is pivotally connected to the first shaft member 33 of each clip carrying member 30.
  • the sub link member 36 is pivotally connected at the other end to the intermediate portion of the main link member 35 by a pivot shaft 37.
  • the clip carrying members 30 are connected to each other.
  • the clip pitch increases.
  • Positioning of the slider 32 is performed by the pitch setting rail 90. As shown in FIGS. 2 and 3, the larger the clip pitch, the smaller the separation distance between the reference rail 70 and the pitch setting rail 90. Since the link mechanism is well known in the art, a more detailed description is omitted.
  • a retardation film having a slow axis in an oblique direction (for example, a direction of 45 ° with respect to the longitudinal direction) can be produced by obliquely stretching the film using the stretching apparatus as described above.
  • the gripping zone A the entrance of the film take-in of the stretching apparatus 100
  • the left and right endless loops 10R, 10L are gripped by the clips 20 of the film to be stretched at a constant clip pitch.
  • the film is sent to the preheating zone B by the movement of the endless loops 10 ⁇ / b> R and 10 ⁇ / b> L (substantially, the movement of each clip holding member 30 guided by the reference rail 70).
  • At least one means 50 for braking the moving speed of the clip between the gripping zone A and the oblique stretching zone (the first oblique stretching zone C or the second oblique stretching zone D).
  • a pair of braking means 50 are provided in the left and right endless loops.
  • the braking means 50 typically includes a high torque sprocket, a constant speed rotating sprocket, and the like.
  • the direction of the slow axis of the obtained retardation film shifts with time from the set value over a predetermined period from the initial stretching (typically, It is possible to prevent the value from becoming larger than the set value. More specifically, by providing such braking means, the timing at which the clip enters the preheating zone can be made constant. Therefore, it is possible to control so that the number of clips existing in the preheating zone B and the oblique stretching zone (the first oblique stretching zone C and the second oblique stretching zone D in the present embodiment) does not change.
  • a mode of applying a load to the link mechanism that changes the clip pitch will be described for the operation of braking the moving speed of the clip.
  • a case where a high torque sprocket is used will be described.
  • the clip that grips the film to be stretched in the gripping zone A moves in the gripping zone A at a predetermined moving speed in both the left and right directions.
  • the high torque sprocket 50 is engaged with a link mechanism (substantially the shaft member 34) that changes the clip pitch.
  • the engaged shaft member 34 is braked (ie, braked) under the resistance of the high torque sprocket 50, and as a result, the moving speed of the clip entering the preheating zone can be controlled to be constant both left and right.
  • the clips entering the preheating zone B are synchronized on the left and right sides, and the shift of the left and right clips from the set values of the moving speed and clip pitch over time is prevented. In the direction of the slow axis of the retardation film obtained in step 1 can be prevented.
  • a control means that rotates continuously or intermittently at a constant speed is used as a device for braking the moving speed of the clip.
  • a constant speed rotating sprocket a sprocket that is driven to rotate at a constant speed by an electric motor 51 as shown
  • the braking means 50 By rotating the sprocket 50 at a constant speed, it is possible not only to brake the clip entering the preheating zone but also to precisely control the speed of the clip.
  • the moving speed of the clip entering the preheating zone has a profile that decelerates intermittently.
  • the moving speed of the clip entering the preheating zone has a smooth profile from which such intermittently decreasing portions are removed.
  • the braking means 50 is provided immediately before the preheating zone as described above.
  • the braking means 50 is located at any appropriate position as long as it is between the gripping zone and the oblique stretching zone. Is provided.
  • the braking means 50 may be provided immediately before the gripping zone, may be provided at an arbitrary position of the gripping zone, may be provided at an arbitrary position of the preheating zone, or immediately before the oblique stretching zone. It may be provided or may be provided in the oblique stretching zone.
  • a plurality of braking means 50 may be provided between the gripping zone A and the release zone E (for example, between the gripping zone and the oblique stretching zone).
  • another braking means may be further provided in the oblique stretching zone (the first oblique stretching zone C and / or the second oblique stretching zone D).
  • Another braking means may be further provided in the heat setting zone (not shown) between the zones and / or another braking means may be further provided in the release zone E (another braking means). Is not shown).
  • the installation position, the number of installations, and the specific form of the braking means can be appropriately set according to the purpose, the size of the stretching device (typically, the length of each zone, the loop separation distance), and the like.
  • the braking means can typically be provided in the left and right endless loops in units of a pair.
  • the braking means is at least between the gripping zone A (for example, the position immediately before gripping the film in the gripping zone) and the oblique stretching zone (substantially the second oblique stretching zone D).
  • One (typically at least a pair) is provided, and at least one braking means is provided immediately after the oblique stretching zone (substantially the second oblique stretching zone D) to the release zone E ( Typically, at least a pair) is provided.
  • the left and right endless loops 10R and 10L are configured to be substantially parallel to each other at a separation distance corresponding to the initial width of the film to be stretched as described above. Basically, neither transverse stretching nor longitudinal stretching is performed, and the film is heated. However, the distance between the left and right clips (distance in the width direction) may be slightly increased in order to avoid problems such as film deflection due to preheating and contact with the nozzles in the oven.
  • the film is heated to a temperature T1 (° C.). It is preferable that temperature T1 is more than the glass transition temperature (Tg) of a film, More preferably, it is Tg + 2 degreeC or more, More preferably, it is Tg + 5 degreeC or more. On the other hand, the heating temperature T1 is preferably Tg + 40 ° C. or lower, more preferably Tg + 30 ° C. or lower. Depending on the film used, the temperature T1 is, for example, 70 ° C. to 190 ° C., preferably 80 ° C. to 180 ° C.
  • the temperature raising time to the temperature T1 and the holding time at the temperature T1 can be appropriately set according to the constituent material of the film and the manufacturing conditions (for example, the film conveyance speed). These temperature raising time and holding time can be controlled by adjusting the moving speed of the clip 20, the length of the preheating zone, the temperature of the preheating zone, and the like.
  • First oblique stretching step In the first oblique stretching zone (first oblique stretching step) C, the distance between the left and right clips (more specifically, the separation distance between the left and right endless loops 10R and 10L) is increased.
  • the film is stretched obliquely while increasing the clip pitch of one clip and decreasing the clip pitch of the other clip.
  • the left and right clips are moved at different speeds, thereby extending one side edge of the film in the longitudinal direction and contracting the other side edge in the longitudinal direction.
  • the oblique stretching can be performed.
  • a slow axis can be developed with high uniaxiality and in-plane orientation in a desired direction (for example, a direction of 45 ° with respect to the longitudinal direction).
  • the right and left clip pitch are both set to P 1.
  • P 1 is a clip pitch at the time of gripping the film.
  • the clip pitch of one (right side in the illustrated example) starts to increase, and the clip pitch of the other (left side in the illustrated example) Start decreasing.
  • the first oblique stretching zone C increases the clip pitch of the right clip to the P 2, to reduce the clip pitch of the left clip to the P 3.
  • the clip pitch ratio can generally correspond to the clip moving speed ratio. Therefore, the ratio of the clip pitch of the left and right clips can generally correspond to the ratio of the stretching ratio in the MD direction between the right side edge and the left side edge of the film.
  • both the position where the clip pitch of the right clip begins to increase and the position where the clip pitch of the left clip begins to decrease are both the start portion of the first diagonally extending zone C, but unlike the illustrated example,
  • the clip pitch of the left clip may begin to decrease after the clip pitch of the right clip begins to increase (eg, FIG. 6), or the clip pitch of the right clip begins to increase after the clip pitch of the left clip begins to decrease Good (not shown).
  • the clip pitch of the clip on one side begins to increase
  • the clip pitch of the clip on the other side begins to decrease. According to such an embodiment, since the film has already been stretched in the width direction to a certain extent (preferably about 1.2 to 2.0 times), the clip pitch on the other side can be greatly reduced. Less likely to wrinkle. Accordingly, a more acute oblique stretching is possible, and a retardation film having high uniaxiality and high in-plane orientation can be suitably obtained.
  • the clip pitch of the right clip continues to increase and the clip pitch of the left clip continues to the end of the first oblique stretching zone C (the start of the second oblique stretching zone D).
  • the increase or decrease of the clip pitch ends before the end of the first oblique stretching zone C and the clip is clipped to the end of the first oblique stretching zone C.
  • the pitch may be maintained as it is.
  • the increasing rate (P 2 / P 1 ) of the increasing clip pitch is preferably 1.25 to 1.75, more preferably 1.30 to 1.70, and still more preferably 1.35 to 1.65.
  • the decreasing rate (P 3 / P 1 ) of the clip pitch to be decreased is, for example, 0.50 or more and less than 1, preferably 0.50 to 0.95, more preferably 0.55 to 0.90, and still more preferably. 0.55 to 0.85. If the change rate of the clip pitch is within such a range, the slow axis can be expressed with high uniaxiality and in-plane orientation in a direction of approximately 45 degrees with respect to the longitudinal direction of the film.
  • the clip pitch can be adjusted by positioning the slider by adjusting the distance between the pitch setting rail of the stretching device and the reference rail as described above.
  • the draw ratio (W 2 / W 1 ) in the width direction of the film in the first oblique stretching step is preferably 1.1 to 3.0 times, more preferably 1.2 to 2.5 times, and even more preferably. Is 1.25 to 2.0 times. If the draw ratio is less than 1.1 times, tin-like wrinkles may occur at the side edge portion on the contracted side. Moreover, when the said draw ratio exceeds 3.0 times, the biaxiality of the obtained retardation film will become high, and when applied to a circularly-polarizing plate etc., a viewing angle characteristic may fall.
  • the first oblique stretching has a product of the rate of change of the clip pitch of one clip and the rate of change of the clip pitch of the other clip, preferably 0.7 to 1.5, more preferably The reaction is carried out to 0.8 to 1.45, more preferably 0.85 to 1.40.
  • the product of the change rate is within such a range, a retardation film having high uniaxiality and in-plane orientation can be obtained.
  • the first oblique stretching can be typically performed at a temperature T2.
  • the temperature T2 is preferably Tg ⁇ 20 ° C. to Tg + 30 ° C. with respect to the glass transition temperature (Tg) of the resin film, more preferably Tg ⁇ 10 ° C. to Tg + 20 ° C., and particularly preferably about Tg.
  • the temperature T2 is, for example, 70 ° C. to 180 ° C., preferably 80 ° C. to 170 ° C., depending on the resin film used.
  • the difference (T1 ⁇ T2) between the temperature T1 and the temperature T2 is preferably ⁇ 2 ° C. or more, and more preferably ⁇ 5 ° C. or more. In one embodiment, T1> T2, and thus the film heated to temperature T1 in the preheating step can be cooled to temperature T2.
  • Second oblique stretching step In the second oblique stretching zone (second oblique stretching step) D, the distance between the left and right clips (more specifically, the separation distance between the left and right endless loops 10R and 10L) is increased.
  • the film is stretched diagonally while maintaining or decreasing the clip pitch of the clip on one side and increasing the clip pitch of the clip on the other side so that the clip pitch of the left and right clips is equal. In this way, by stretching diagonally while reducing the difference between the left and right clip pitches, it is possible to sufficiently stretch in the diagonal direction while relaxing excess stress.
  • the film can be used in the release process with the left and right clips moving at the same speed, variations in the film transport speed and the like hardly occur when the left and right clips are released, and subsequent film winding is preferable. Can be done.
  • the clip pitch of the left clip starts to increase.
  • the clip pitch of the right clip is maintained at P 2 in the second oblique stretching zone D. Therefore, the end portion of the second oblique stretching zone D in (the beginning of the release zone E), left clip and right clips together, there is a moving clip pitch P 2.
  • the increasing rate (P 2 / P 3 ) of the clip pitch in the embodiment is not limited as long as the effect of the present invention is not impaired.
  • the rate of change (P 2 / P 3 ) is, for example, 1.3 to 4.0, preferably 1.5 to 3.0.
  • the clip pitch of the right clip starts to decrease and the clip pitch of the left clip starts to increase.
  • the second oblique stretching zone D to reduce the clip pitch of the right clip to P 4, increases the clip pitch of the left clip to P 4. Therefore, the end portion of the second oblique stretching zone D in (the beginning of the release zone E), left clip and right clips are decided to move together with the clip pitch P 4.
  • the clip pitch decrease start position of the right clip and the clip clip increase start position of the left clip are both set as the start portion of the second diagonally extending zone D, but these positions are different. It may be a position. Similarly, the clip end decrease position of the right clip may be different from the clip end increase position of the left clip.
  • the decreasing rate (P 4 / P 2 ) of the decreasing clip pitch and the increasing rate (P 4 / P 3 ) of the increasing clip pitch in the above embodiment are not limited as long as the effects of the present invention are not impaired.
  • the rate of change (P 4 / P 2 ) is, for example, 0.4 or more and less than 1.0, preferably 0.6 to 0.95.
  • the rate of change (P 4 / P 3 ) is, for example, more than 1.0 and 2.0 or less, preferably 1.2 to 1.8.
  • P 4 is P 1 or more. If P 4 ⁇ P 1 , problems such as wrinkles at the side edges and increased biaxiality may occur.
  • the draw ratio (W 3 / W 2 ) in the width direction of the film in the second oblique stretching step is preferably 1.1 times to 3.0 times, more preferably 1.2 times to 2.5 times, and even more preferably. Is 1.25 to 2.0 times. If the draw ratio is less than 1.1 times, tin-like wrinkles may occur at the side edge portion on the contracted side. Moreover, when the said draw ratio exceeds 3.0 times, the biaxiality of the obtained retardation film will become high, and when applied to a circularly-polarizing plate etc., a viewing angle characteristic may fall.
  • the draw ratio (W 3 / W 1 ) in the width direction in the first oblique stretching step and the second oblique stretching step is preferably 1.2 times to 4.0 times from the same viewpoint as described above. More preferably, it is 1.4 to 3.0 times.
  • the oblique stretching ratio obtained from the following formula (1) is preferably 2.0 or more, more preferably 2.0 to 4.0. More preferably, the reaction is carried out to 2.5 to 3.5. When the oblique stretching ratio is less than 2.0, biaxiality may be increased or in-plane orientation may be decreased.
  • v3 ′ is the clip moving speed when the clip pitch of the clip is changed to the predetermined clip pitch in the second oblique stretching step with respect to the clip whose clip pitch is increased in the first oblique stretching step
  • t3 is the time from when the clip whose clip pitch is reduced in the first oblique stretching process enters the preheating zone until the second oblique stretching process ends
  • t3 ′ represents the time from when the clip whose clip pitch is increased in the first oblique stretching process enters the preheating zone until the second oblique stretching process ends.
  • the predetermined clip pitch means the clip pitch after the clip pitch that has been increased in the first oblique stretching step is maintained or decreased in the second oblique stretching step, and the explanation of the above section C Corresponds to P 2 or P 4 in Further, with respect to the clip towards increasing the clip pitch in a first diagonal drawing step, the clip pitch of the clip first diagonal drawing step at a predetermined clip pitch (corresponding to P 2 in the description of the section C)
  • the above t3 is represented by the following formula (2)
  • the above t′3 is represented by the following formula (3).
  • the above t3 is represented by the following formula (4)
  • the above t′3 is represented by the following formula (5).
  • equations (2) to (4) will be described. 9 to 11 can be referred to in the description of each symbol in the formula.
  • the asterisk mark (*) in the equations (1) to (5) is a multiplication symbol.
  • the unit of film width is m
  • the unit of speed is m / sec
  • the unit of distance is m
  • the unit of time is sec.
  • v1 is the clip moving speed when the clip whose clip pitch is reduced in the first oblique stretching process passes through the preheating zone, v2 with respect clips towards reducing the clip pitch in a first diagonal drawing step, clip pitch of the clip (corresponding to P 3 in the description of the above section C) predetermined clip pitch in a first diagonal drawing step
  • Clip moving speed when reduced to v3 is a clip whose clip pitch is decreased in the first oblique stretching step
  • the clip pitch of the clip is set to a predetermined clip pitch (P 2 or P 4 in the description of the above C) in the second oblique stretching step.
  • the clip movement speed when increased to L1 is the distance from the preheating zone inlet to the clip that reduces the clip pitch in the first oblique stretching step (in one embodiment, from the preheating zone inlet to the preheating zone outlet).
  • distance L2 is the distance from the preheating zone inlet to the point where the clip whose clip pitch is reduced in the first oblique stretching step begins to increase the clip pitch (in one embodiment, from the preheating zone inlet to the first diagonal Distance to the stretching zone exit)
  • L3 is the distance from the preheating zone inlet to the point where the clip whose clip pitch is reduced in the first oblique stretching step finishes increasing the clip pitch (in one embodiment, from the preheating zone inlet to the second diagonal Distance to the exit of the drawing zone) It is. )
  • v1 ′ is the clip moving speed when the clip that increases the clip pitch in the first oblique stretching process passes through the preheating zone, v2 ', with respect to the clip towards increasing the clip pitch in a first diagonal drawing step, clip pitch of the clips corresponding to P 2 in the description given clip pitch (the C section in the first diagonal drawing step).
  • the clip moving speed v3 ′ when the clip increases in the first oblique stretching step is the clip moving speed when the clip passes through the second oblique stretching zone with respect to the clip whose clip pitch is increased in the first oblique stretching step.
  • L1 ′ is the distance from the preheating zone inlet to the clip that increases the clip pitch in the first oblique stretching step until the clip pitch begins to increase (in one embodiment, from the preheating zone inlet to the preheating zone outlet).
  • Distance) L2 ′ is the distance from the preheating zone inlet to the point where the clip that increases the clip pitch in the first oblique stretching step finishes increasing the clip pitch (in one embodiment, the first heating zone inlet (Distance to the diagonal stretching zone exit)
  • L3 ′ is the distance from the preheating zone entrance to the second oblique stretching zone exit.
  • v1 ′ is the clip moving speed when the clip that increases the clip pitch in the first oblique stretching process passes through the preheating zone, v2 ', with respect to the clip towards increasing the clip pitch in a first diagonal drawing step, clip pitch of the clips corresponding to P 2 in the description given clip pitch (the C section in the first diagonal drawing step).
  • the clip moving speed v3 ′ when the clip pitch of the clip is increased in the first oblique stretching step is set to a predetermined clip pitch (C above) in the second oblique stretching step.
  • L1 ′ is the distance from the preheat zone inlet to the point where the clip that increases the clip pitch in the first oblique stretching step begins to increase the clip pitch (in one embodiment, from the preheat zone inlet to the preheat zone outlet Distance)
  • L2 ′ is the distance from the preheating zone inlet to the point where the clip that increases the clip pitch in the first oblique stretching step finishes increasing the clip pitch (in one embodiment, the first heating zone inlet (Distance to the diagonal stretching zone exit) L3 'from the preheating zone inlet, corresponding to P 4 in the description of the first oblique clip towards increasing the clip pitch stretching step is a second diagonal drawing step at a clip pitches predetermined clip pitch (the C section (In one embodiment, the distance from the preheating zone inlet to the second oblique stretching zone outlet). )
  • the second oblique stretching can be typically performed at a temperature T3.
  • the temperature T3 may be equivalent to the temperature T2.
  • the heat treatment can typically be performed at a temperature T4.
  • the temperature T4 varies depending on the stretched film, and may be T3 ⁇ T4 or T3 ⁇ T4. In general, when the film is an amorphous material, T3 ⁇ T4, and when the film is a crystalline material, crystallization may be performed by setting T3 ⁇ T4.
  • T3 ⁇ T4 the difference between the temperatures T3 and T4 (T3 ⁇ T4) is preferably 0 ° C. to 50 ° C.
  • the heat treatment time is typically 10 seconds to 10 minutes.
  • the heat-fixed film is usually cooled to Tg or less, and after releasing the clip, the clip gripping portions at both ends of the film are cut and wound.
  • Films to be stretched and retardation films obtained by stretching Films suitably used in the production method of the present invention are used as retardation films. Any suitable film obtained may be mentioned.
  • the material constituting the film include polycarbonate resin, polyvinyl acetal resin, cycloolefin resin, acrylic resin, cellulose ester resin, cellulose resin, polyester resin, polyester carbonate resin, olefin resin, and polyurethane resin. Examples thereof include resins. Polycarbonate resins, polyvinyl acetal resins, cellulose ester resins, polyester resins, and polyester carbonate resins are preferable. This is because with these resins, a retardation film showing the wavelength dependence of reverse dispersion can be obtained. These resins may be used alone or in combination according to desired properties.
  • any appropriate polycarbonate resin is used as the polycarbonate resin.
  • a polycarbonate resin containing a structural unit derived from a dihydroxy compound is preferable.
  • the dihydroxy compound include 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3- Ethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-n-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-isopropylphenyl) fluorene, 9,9-bis (4-hydroxy) -3-n-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-sec-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-tert-butylphenyl) fluorene, 9, 9-bis (4-hydroxy-3-cyclohexylphenyl) fluorene, 9,9-bis (4-bis
  • the polycarbonate resin includes isosorbide, isomannide, isoidet, spiroglycol, dioxane glycol, diethylene glycol (DEG), triethylene glycol (TEG), polyethylene glycol (PEG), bisphenols, and the like.
  • a structural unit derived from a dihydroxy compound may be included.
  • the glass transition temperature of the polycarbonate resin is preferably 110 ° C. or higher and 250 ° C. or lower, more preferably 120 ° C. or higher and 230 ° C. or lower. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, and there is a possibility of causing a dimensional change after film formation. If the glass transition temperature is excessively high, the molding stability at the time of film molding may deteriorate, and the transparency of the film may be impaired.
  • the glass transition temperature is determined according to JIS K 7121 (1987).
  • any appropriate polyvinyl acetal resin can be used as the polyvinyl acetal resin.
  • the polyvinyl acetal resin can be obtained by a condensation reaction of at least two types of aldehyde compounds and / or ketone compounds and a polyvinyl alcohol resin.
  • Specific examples of the polyvinyl acetal resin and a detailed production method thereof are described in, for example, Japanese Patent Application Laid-Open No. 2007-161994. The description is incorporated herein by reference.
  • the retardation film obtained by stretching the film to be stretched preferably has a refractive index characteristic of nx> ny.
  • the retardation film preferably has high in-plane orientation.
  • the retardation film can preferably function as a ⁇ / 4 plate.
  • the in-plane retardation Re (550) of the retardation film is preferably 100 nm to 180 nm, more preferably 135 nm to 155 nm.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction), and ny is the direction orthogonal to the slow axis in the plane (that is, the fast phase). (Axial direction) and nz is the refractive index in the thickness direction.
  • Re ( ⁇ ) is an in-plane retardation of the film measured with light having a wavelength of ⁇ nm at 23 ° C. Therefore, Re (550) is the in-plane retardation of the film measured with light having a wavelength of 550 nm at 23 ° C.
  • the retardation film shows any appropriate refractive index ellipsoid as long as it has a relationship of nx> ny.
  • the refractive index ellipsoid of the retardation film exhibits a relationship of nx> ny ⁇ nz.
  • the Nz coefficient of the retardation film is preferably 1 to 1.3, more preferably 1 to 1.25, and still more preferably 1 to 1.2.
  • the retardation film preferably exhibits the so-called reverse dispersion wavelength dependency.
  • the in-plane retardation satisfies the relationship Re (450) ⁇ Re (550) ⁇ Re (650).
  • Re (450) / Re (550) is preferably 0.8 or more and less than 1.0, and more preferably 0.8 to 0.95.
  • Re (550) / Re (650) is preferably 0.8 or more and less than 1.0, and more preferably 0.8 to 0.97.
  • the retardation film has an absolute value of its photoelastic coefficient of preferably 2 ⁇ 10 ⁇ 12 (m 2 / N) to 100 ⁇ 10 ⁇ 12 (m 2 / N), more preferably 2 ⁇ 10 ⁇ 12. (M 2 / N) to 50 ⁇ 10 ⁇ 12 (m 2 / N).
  • FIG. 12 is a schematic cross-sectional view of an example of such a circularly polarizing plate.
  • the circularly polarizing plate 300 in the illustrated example includes a polarizer 310, a first protective film 320 disposed on one side of the polarizer 310, a second protective film 330 disposed on the other side of the polarizer 310, And a retardation film 340 disposed outside the two protective films 330.
  • the retardation film 340 is a retardation film obtained by the production method of the present invention.
  • the second protective film 330 may be omitted.
  • the retardation film 340 can function as a protective film for the polarizer.
  • the angle formed by the absorption axis of the polarizer 310 and the slow axis of the retardation film 340 is preferably 30 ° to 60 °, more preferably 38 ° to 52 °, still more preferably 43 ° to 47 °, particularly preferably. It is about 45 °.
  • a polarizer and a protective film is well-known in the industry, detailed description is abbreviate
  • omitted since the structure of a polarizer and a protective film is well-known in the industry, detailed description is abbreviate
  • the circularly polarizing plate may further include any appropriate optical member or optical function layer in any appropriate position depending on the purpose.
  • the outer surface of the first protective film 320 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, antisticking treatment, antiglare treatment, and light diffusion treatment.
  • another retardation film showing any appropriate refractive index ellipsoid may be arranged on at least one side of the retardation film 340 according to the purpose.
  • an optical member such as a front substrate (for example, a transparent protective substrate or a touch panel) may be disposed outside the first protective film 320.
  • the retardation film obtained by the production method of the present invention is very suitable for producing a circularly polarizing plate. Details are as follows.
  • This retardation film is long and has a slow axis in an oblique direction (as described above, for example, a direction of 45 ° with respect to the long direction).
  • a long polarizer has an absorption axis in the longitudinal direction or the width direction, so if the retardation film obtained by the production method of the present invention is used, a so-called roll-to-roll can be used.
  • a circularly polarizing plate can be produced with extremely excellent production efficiency.
  • the roll-to-roll refers to a method of continuously laminating long films while aligning their long directions while roll-feeding them.
  • reference numerals 811 and 812 are rolls for winding the polarizing plate and the retardation film, respectively, and reference numeral 822 is a transport roll.
  • a polarizing plate (first protective film 320 / polarizer 310 / second protective film 330) and a retardation film 340 are sent out in the direction of the arrows, and are bonded together with their respective longitudinal directions aligned. In that case, it bonds together so that the 2nd protective film 330 of a polarizing plate and the phase difference film 340 may adjoin.
  • a circularly polarizing plate 300 as shown in FIG.
  • polarizing plate first protective film 320 / polarizer 310
  • retardation film 340 are bonded so that the polarizer 310 and the retardation film 340 are adjacent to each other, and the retardation film 340 is formed.
  • a circularly polarizing plate that functions as a protective film can also be produced.
  • BHEPF 9,9- [4- (2-hydroxyethoxy) phenyl] fluorene
  • ISB isosorbide
  • DEG diethylene glycol
  • DPC diphenyl carbonate
  • magnesium acetate tetrahydrate in a molar ratio of BHEPF / IS
  • Nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, and then the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Subsequently, the temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240 ° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was obtained.
  • the obtained polycarbonate resin was vacuum-dried at 80 ° C. for 5 hours, and then a single-screw extruder (manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T-die (width 900 mm, set temperature: 220). ° C), a chill roll (set temperature: 120 to 130 ° C), and a film forming apparatus equipped with a winder, a 150 ⁇ m thick polycarbonate resin film was produced.
  • a single-screw extruder manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.
  • T-die width 900 mm, set temperature: 220.
  • a chill roll set temperature: 120 to 130 ° C
  • a film forming apparatus equipped with a winder a 150 ⁇ m thick polycarbonate resin film was produced.
  • the polycarbonate resin film obtained as described above is preheat-treated, first obliquely stretched, and secondly coated with a clip pitch profile as shown in FIG. 5 using an apparatus as shown in FIGS.
  • the film was subjected to an oblique stretching process to obtain a retardation film. Specifically: First, the moving speed of the left and right clips entering the preheating zone was braked by a high torque sprocket provided immediately before the preheating zone of the stretching apparatus. Specifically, the clip moving in the gripping zone A was braked by the sprocket and moved to the preheating zone B.
  • a polycarbonate resin film (thickness 150 [mu] m, the width (W 1) 765 mm) was preheated to 145 ° C. in the preheating zone of the stretching device.
  • the clip pitch (P 1 ) of the left and right clips was 125 mm.
  • the change rate (P 2 / P 1 ) of the clip pitch of the right clip at the end portion of the first oblique extension zone C is 1.42, and the change rate (P 3 / P 1 ) of the clip pitch of the left clip is 0. 72.
  • the first oblique stretching was performed at 138 ° C.
  • the film at the same time enters the second oblique stretching zone D, and starts to increase clip pitch of the left clip was increased from P 3 to P 2.
  • the change rate (P 2 / P 3 ) of the clip pitch of the left clip in the second oblique stretching zone D was 1.97.
  • the clip pitch of the right clip was maintained at P 2 in the second oblique stretching zone D.
  • the second oblique stretching was performed at 138 ° C.
  • the film width (W 3 ) after the second oblique stretching was 1419 mm. Moreover, the draw ratio (W 3 / W 1 ) in the width direction in the first oblique stretching step and the second oblique stretching step was 1.9 times.
  • Example 2 A retardation film was obtained in the same manner as in Example 1 except that a sprocket driven at a constant speed was provided in place of the high torque sprocket in the film stretching apparatus. The obtained retardation film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 3 In the film stretching apparatus, a high-torque sprocket is provided immediately before the preheating zone of the stretching apparatus, and a sprocket driven at a constant speed is further provided in the first oblique stretching zone of the stretching apparatus. Thus, a retardation film was obtained. The obtained retardation film was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • the clip is inserted between the gripping zone and the oblique stretching zone (for example, immediately before the preheating zone or immediately before the preheating zone and at a plurality of locations in the oblique stretching zone).
  • the orientation angle the direction of the slow axis
  • the orientation angle Variations can be suppressed.
  • the retardation film obtained by the production method of the present invention is suitably used for a circularly polarizing plate, and as a result, is suitably used for an image display device such as a liquid crystal display device (LCD) or an organic electroluminescence display device (OLED). .
  • LCD liquid crystal display device
  • OLED organic electroluminescence display device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)

Abstract

 斜め方向に遅相軸を有する長尺状の位相差フィルムを、遅相軸の方向および当該方向のばらつきを精密に制御し、かつ、高い製造効率で製造し得る方法が提供される。本発明の位相差フィルムの製造方法は、フィルムの左右端部を、それぞれ、縦方向のクリップピッチが変化する可変ピッチ型の左右のクリップによって把持すること、フィルムを予熱すること、フィルムを斜め延伸すること、および、フィルムを把持するクリップを解放することを含む。斜め延伸は、左右のクリップ間の距離を拡大させながら、一方のクリップの進行方向のクリップピッチの変化率と他方のクリップの進行方向のクリップピッチの変化率とを異なるものとすること、および/または、一方のクリップの進行方向のクリップピッチが変化し始める位置と他方のクリップの進行方向のクリップピッチが変化し始める位置とを異なる位置とすること、を含む。本発明においては、把持工程の直前および/または把持工程から斜め延伸工程までの間において、クリップの移動速度を制動する。

Description

位相差フィルムの製造方法および円偏光板の製造方法ならびにフィルム延伸装置
 本発明は、位相差フィルムの製造方法および円偏光板の製造方法ならびにフィルム延伸装置に関する。
 液晶表示装置(LCD)、有機エレクトロルミネッセンス表示装置(OLED)等の画像表示装置において、表示特性の向上や反射防止を目的として円偏光板が用いられている。円偏光板は、代表的には、偏光子と位相差フィルム(代表的にはλ/4板)とが、偏光子の吸収軸と位相差フィルムの遅相軸とが45°の角度をなすようにして積層されている。従来、位相差フィルムは、代表的には、縦方向および/または横方向に一軸延伸または二軸延伸することにより作製されているので、その遅相軸は、多くの場合、フィルム原反の横方向(幅方向)または縦方向(長尺方向)に発現する。結果として、円偏光板を作製するには、位相差フィルムを横方向または縦方向に対して45°の角度をなすように裁断し、1枚ずつ貼り合わせる必要があった。
 このような問題を解決するために、斜め方向に延伸することにより、位相差フィルムの遅相軸を斜め方向に発現させる技術が提案されている(例えば、特許文献1)。しかし、斜め方向の延伸においては、得られる位相差フィルムの遅相軸の方向が、延伸初期から所定の期間にわたって設定値から経時的にずれていく(代表的には、設定値よりも大きくなる);および、当該所定期間後に遅相軸の方向が一定となった場合であっても、位相差フィルムの長さ方向に沿って周期的にばらつきが出る;という問題がある。
特許第4845619号
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、斜め方向に遅相軸を有する長尺状の位相差フィルムを、遅相軸の方向および当該方向のばらつきを精密に制御し、かつ、高い製造効率で製造し得る方法を提供することにある。本発明の別の目的は、光学特性に優れた円偏光板を高い製造効率で製造し得る方法を提供することにある。本発明のさらに別の目的は、このような製造方法を実現し得るフィルム延伸装置を提供することにある。
 本発明の位相差フィルムの製造方法は、フィルムの左右端部を、それぞれ、縦方向のクリップピッチが変化する可変ピッチ型の左右のクリップによって把持すること、フィルムを予熱すること、フィルムを斜め延伸すること、および、フィルムを把持するクリップを解放することを含む。斜め延伸は、左右のクリップ間の距離を拡大させながら、一方のクリップの進行方向のクリップピッチの変化率と他方のクリップの進行方向のクリップピッチの変化率とを異なるものとすること、および/または、一方のクリップの進行方向のクリップピッチが変化し始める位置と他方のクリップの進行方向のクリップピッチが変化し始める位置とを異なる位置とすること、を含む。この製造方法においては、把持工程の直前および/または把持工程から斜め延伸工程までの間において、クリップの移動速度を制動する。
 1つの実施形態においては、上記クリップの移動速度の制動は、クリップピッチを変化させるリンク機構に負荷をかけることによりクリップ移動速度を所定の速度に制限することを含む。別の実施形態においては、上記クリップの移動速度の制動は、上記クリップの移動速度を制動する装置が連続的または断続的に定速回転することにより、クリップ移動速度を所定の速度に制限することを含む。
 1つの実施形態においては、上記クリップの移動速度の制動は、上記把持工程の直前から上記斜め延伸工程までの間において少なくとも1度行われ、さらに、該斜め延伸工程の直後から上記解放工程までの間において少なくとも1度行われる。
 1つの実施形態においては、上記斜め延伸工程は、上記左右のクリップ間の距離を拡大させながら、一方のクリップのクリップピッチを増大させ、かつ、他方のクリップのクリップピッチを減少させて、前記フィルムを斜め延伸すること(第1の斜め延伸工程);および、該左右のクリップ間の距離を拡大させながら、左右のクリップのクリップピッチが等しくなるように該一方のクリップのクリップピッチを維持または減少させ、かつ、該他方のクリップのクリップピッチを増大させて、該フィルムを斜め延伸すること(第2の斜め延伸工程);を含む。
 1つの実施形態においては、第1の斜め延伸工程において、上記一方のクリップのクリップピッチを増大させ始めた後に、上記他方のクリップのクリップピッチを減少させ始める。
 1つの実施形態においては、第1の斜め延伸工程および第2の斜め延伸工程において、下記式(1)から求められる斜め延伸倍率Sが2.0以上であり、かつ、第1の斜め延伸工程において、上記他方のクリップのクリップピッチの変化率が0.5以上1未満である。
Figure JPOXMLDOC01-appb-M000002
(式中、Wは、第1の斜め延伸前のフィルム幅(単位:m)、Wは、第2の斜め延伸後のフィルム幅(単位:m)、v3’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップに関して、該クリップのクリップピッチが第2の斜め延伸工程で所定のクリップピッチに変化した際のクリップ移動速度(単位:m/sec)、t3は、第1の斜め延伸工程でクリップピッチを減少させる方のクリップが、予熱ゾーンに入ってから、第2の斜め延伸工程が終了するまでの時間(単位:sec)、t3’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップが、予熱ゾーンに入ってから、第2の斜め延伸工程が終了するまでの時間(単位:sec)を表す。)
 1つの実施形態においては、第1の斜め延伸工程において、上記一方のクリップのクリップピッチの変化率と上記他方のクリップのクリップピッチの変化率との積が0.7~1.5である。
 1つの実施形態においては、上記フィルムの形成材料が、ポリカーボネート樹脂、ポリビニルアセタール樹脂、シクロオレフィン系樹脂、セルロース系樹脂、セルロースエステル系樹脂、ポリエステル系樹脂またはポリエステルカーボネート系樹脂を含む。
 本発明の別の局面によれば、位相差フィルムが提供される。この位相差フィルムは、上記製造方法により得られる位相差フィルムであって、長尺状であり、かつ、長尺方向に対して所定の角度をなす方向に遅相軸を有する。
 本発明のさらに別の局面によれば、円偏光板の製造方法が提供される。この円偏光板の製造方法は、上記の製造方法により長尺状の位相差フィルムを得ること、および、得られた長尺状の位相差フィルムと長尺状の偏光板とを搬送しながら、その長尺方向を揃えて連続的に貼り合わせることを含む。
 本発明のさらに別の局面によれば、フィルム延伸装置が提供される。このフィルム延伸装置は、延伸対象のフィルムの左右端部を把持して予熱ゾーンおよび斜め延伸ゾーンをこの順に通過するとともに、各々、走行移動に伴って縦方向のクリップピッチが変化する可変ピッチ型の左右のクリップを有し;該斜め延伸ゾーンにおいて、該左右のクリップ間の距離を拡大させながら、(i)一方のクリップの進行方向のクリップピッチの変化率と他方のクリップの進行方向のクリップピッチの変化率とを異なるものとすること、および/または、(ii)一方のクリップの進行方向のクリップピッチが変化し始める位置と他方のクリップの進行方向のクリップピッチが変化し始める位置とを異なる位置とすることにより、該フィルムを斜め延伸するよう構成されている。このフィルム延伸装置は、該フィルムを把持するゾーンから斜め延伸ゾーンまでの間において、クリップの移動速度を制動する手段を少なくとも1つ備える。
 1つの実施形態においては、上記延伸装置は、上記フィルムを把持するゾーンから上記斜め延伸ゾーンまでの間において、クリップの移動速度を制動する手段を少なくとも1つ備え、さらに、該斜め延伸ゾーンの直後から該フィルムを把持するクリップを解放するゾーンまでの間にクリップの移動速度を制動する手段を少なくとも1つ備える。
 本発明によれば、斜め延伸を含む位相差フィルムの製造方法における把持工程の直前および/または把持工程から斜め延伸工程までの間においてクリップの移動速度を制動することにより、斜め方向に遅相軸を有する長尺状の位相差フィルムを、遅相軸の方向および当該方向のばらつきを精密に制御し、かつ、高い製造効率で製造することができる。さらに、本発明によれば、このようにして得られた位相差フィルムと偏光板とをいわゆるロールトゥロールで積層することにより、光学特性に優れた円偏光板を高い製造効率で得ることができる。
本発明の製造方法に用いられ得る延伸装置の一例の全体構成を説明する概略平面図である。 図1の延伸装置においてクリップピッチを変化させるリンク機構を説明するための要部概略平面図であり、クリップピッチが最小の状態を示す。 図1の延伸装置においてクリップピッチを変化させるリンク機構を説明するための要部概略平面図であり、クリップピッチが最大の状態を示す。 本発明の製造方法における斜め延伸の1つの実施形態を説明する模式図である。 図4に示す斜め延伸の際の延伸装置の各ゾーンとクリップピッチとの関係を示すグラフである。 別の実施形態の斜め延伸の際の延伸装置の各ゾーンとクリップピッチとの関係を示すグラフである。 本発明の製造方法における斜め延伸の別の実施形態を説明する模式図である。 図7に示す斜め延伸の際の延伸装置の各ゾーンとクリップピッチとの関係を示すグラフである。 本発明の製造方法における斜め延伸と式(1)との関係を説明する概略図である。 本発明の製造方法における斜め延伸の1つの実施形態における左右それぞれのクリップ移動速度および式(1)を説明する概略図である。 本発明の製造方法における斜め延伸の別の実施形態における左右それぞれのクリップ移動速度および式(1)を説明する概略図である。 本発明の製造方法により得られる位相差フィルムを用いた円偏光板の概略断面図である。 本発明の1つの実施形態による円偏光板の製造方法を説明する概略図である。
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
 本発明の位相差フィルムの製造方法は、フィルムの左右端部を、それぞれ、縦方向のクリップピッチが変化する可変ピッチ型の左右のクリップによって把持すること(把持工程);フィルムを予熱すること(予熱工程);フィルムを斜め延伸すること(斜め延伸工程);および、フィルムを把持するクリップを解放すること(解放工程);を含む。斜め延伸工程は、左右のクリップ間の距離を拡大させながら、一方のクリップの進行方向のクリップピッチの変化率と他方のクリップの進行方向のクリップピッチの変化率とを異なるものとすること、および/または、一方のクリップの進行方向のクリップピッチが変化し始める位置と他方のクリップの進行方向のクリップピッチが変化し始める位置とを異なる位置とすること、を含む。1つの実施形態においては、上記斜め延伸工程は、上記左右のクリップ間の距離を拡大させながら、一方のクリップのクリップピッチを増大させ、かつ、他方のクリップのクリップピッチを減少させて、前記フィルムを斜め延伸すること(第1の斜め延伸工程);および、該左右のクリップ間の距離を拡大させながら、左右のクリップのクリップピッチが等しくなるように該一方のクリップのクリップピッチを維持または減少させ、かつ、該他方のクリップのクリップピッチを増大させて、該フィルムを斜め延伸すること(第2の斜め延伸工程);を含む。本明細書においては、上記のような第1の斜め延伸工程と第2の斜め延伸工程とを含む実施形態における各工程について詳細に説明するが、本発明が左右のクリップのクリップピッチを相対的に変化させてフィルムを斜め延伸するすべての方法に適用可能であることは当業者に明らかである。
A.把持工程
 最初に、図1~図3を参照して、本工程を含む本発明の製造方法に用いられ得る延伸装置について説明する。図1は、本発明の製造方法に用いられ得る延伸装置の一例の全体構成を説明する概略平面図である。図2および図3は、それぞれ、図1の延伸装置においてクリップピッチを変化させるリンク機構を説明するための要部概略平面図であり、図2はクリップピッチが最小の状態を示し、図3はクリップピッチが最大の状態を示す。延伸装置100は、平面視で、左右両側に、フィルム把持用の多数のクリップ20を有する無端ループ10Lと無端ループ10Rとを左右対称に有する。なお、本明細書においては、フィルムの入口側から見て左側の無端ループを左側の無端ループ10L、右側の無端ループを右側の無端ループ10Rと称する。左右の無端ループ10L、10Rのクリップ20は、それぞれ、基準レール70に案内されてループ状に巡回移動する。左側の無端ループ10Lは反時計廻り方向に巡回移動し、右側の無端ループ10Rは時計廻り方向に巡回移動する。延伸装置においては、シートの入口側から出口側へ向けて、把持ゾーンA、予熱ゾーンB、第1の斜め延伸ゾーンC、第2の斜め延伸ゾーンD、および解放ゾーンEが順に設けられている。なお、これらのそれぞれのゾーンは、延伸対象となるフィルムが実質的に把持、予熱、第1の斜め延伸、第2の斜め延伸および解放されるゾーンを意味し、機械的、構造的に独立した区画を意味するものではない。また、図1の延伸装置におけるそれぞれのゾーンの長さの比率は、実際の長さの比率と異なることに留意されたい。
 把持ゾーンAおよび予熱ゾーンBでは、左右の無端ループ10R、10Lは、延伸対象となるフィルムの初期幅に対応する離間距離で互いに略平行となるよう構成されている。第1の斜め延伸ゾーンCおよび第2の斜め延伸ゾーンDでは、予熱ゾーンBの側から解放ゾーンEに向かうに従って左右の無端ループ10R、10Lの離間距離が上記フィルムの延伸後の幅に対応するまで徐々に拡大する構成とされている。解放ゾーンEでは、左右の無端ループ10R、10Lは、上記フィルムの延伸後の幅に対応する離間距離で互いに略平行となるよう構成されている。
 左側の無端ループ10Lのクリップ(左側のクリップ)20および右側の無端ループ10Rのクリップ(右側のクリップ)20は、それぞれ独立して巡回移動し得る。例えば、左側の無端ループ10Lの駆動用スプロケット11、12が電動モータ13、14によって反時計廻り方向に回転駆動され、右側の無端ループ10Rの駆動用スプロケット11、12が電動モータ13、14によって時計廻り方向に回転駆動される。その結果、これら駆動用スプロケット11、12に係合している駆動ローラ(図示せず)のクリップ担持部材30に走行力が与えられる。これにより、左側の無端ループ10Lは反時計廻り方向に巡回移動し、右側の無端ループ10Rは時計廻り方向に巡回移動する。左側の電動モータおよび右側の電動モータを、それぞれ独立して駆動させることにより、左側の無端ループ10Lおよび右側の無端ループ10Rをそれぞれ独立して巡回移動させることができる。
 さらに、左側の無端ループ10Lのクリップ(左側のクリップ)20および右側の無端ループ10Rのクリップ(右側のクリップ)20は、それぞれ可変ピッチ型である。すなわち、左右のクリップ20、20は、それぞれ独立して、移動に伴って進行方向(すなわち、縦方向:MD)のクリップピッチ(クリップ間距離)が変化し得る。可変ピッチ型は、任意の適切な構成により実現され得る。以下、一例として、リンク機構(パンタグラフ機構)について説明する。
 図2および図3に示すように、クリップ20を個々に担持する平面視横方向に細長矩形状のクリップ担持部材30が設けられている。図示しないが、クリップ担持部材30は、上梁、下梁、前壁(クリップ側の壁)、および後壁(クリップと反対側の壁)により閉じ断面の強固なフレーム構造に形成されている。クリップ担持部材30は、その両端の走行輪38により走行路面81、82上を転動するよう設けられている。なお、図2および図3では、前壁側の走行輪(走行路面81上を転動する走行輪)は図示されない。走行路面81、82は、全域に亘って基準レール70に並行している。クリップ担持部材30の上梁と下梁の後側(クリップと反対側)には、クリップ担持部材の長手方向に沿って長孔31が形成され、スライダ32が長孔31の長手方向にスライド可能に係合している。クリップ担持部材30のクリップ20側端部の近傍には、上梁および下梁を貫通して一本の第1の軸部材33が垂直に設けられている。一方、クリップ担持部材30のスライダ32には一本の第2の軸部材34が垂直に貫通して設けられている。各クリップ担持部材30の第1の軸部材33には主リンク部材35の一端が枢動連結されている。主リンク部材35は、他端を隣接するクリップ担持部材30の第2の軸部材34に枢動連結されている。各クリップ担持部材30の第1の軸部材33には、主リンク部材35に加えて、副リンク部材36の一端が枢動連結されている。副リンク部材36は、他端を主リンク部材35の中間部に枢軸37によって枢動連結されている。主リンク部材35、副リンク部材36によるリンク機構により、図2に示すように、スライダ32がクリップ担持部材30の後側(クリップ側の反対側)に移動しているほど、クリップ担持部材30同士の縦方向のピッチ(以下、単にクリップピッチと称する)が小さくなり、図3に示すように、スライダ32がクリップ担持部材30の前側(クリップ側)に移動しているほど、クリップピッチが大きくなる。スライダ32の位置決めは、ピッチ設定レール90により行われる。図2および図3に示すように、クリップピッチが大きいほど、基準レール70とピッチ設定レール90との離間距離が小さくなる。なお、リンク機構は当業界において周知であるので、より詳細な説明は省略する。
 上記のような延伸装置を用いてフィルムの斜め延伸を行うことにより、斜め方向(例えば、縦方向に対して45°の方向)に遅相軸を有する位相差フィルムが作製され得る。まず、把持ゾーンA(延伸装置100のフィルム取り込みの入り口)において、左右の無端ループ10R、10Lのクリップ20によって、延伸対象となるフィルムの両側縁が互いに等しい一定のクリップピッチで把持され、左右の無端ループ10R、10Lの移動(実質的には、基準レール70に案内された各クリップ担持部材30の移動)により、当該フィルムが予熱ゾーンBに送られる。
 本発明の実施形態においては、把持ゾーンAから斜め延伸ゾーン(第1の斜め延伸ゾーンCまたは第2の斜め延伸ゾーンD)までの間において、クリップの移動速度を制動する手段50が少なくとも1つ設けられている。図1に示す例では、予熱ゾーンBの直前に、左右の無端ループに一対の制動手段50が設けられている。当該制動手段50としては、代表的には、高トルクスプロケット、定速回転スプロケット等が挙げられる。このような制動手段を設けることにより、後述の斜め延伸において、得られる位相差フィルムの遅相軸の方向が延伸初期から所定の期間にわたって設定値から経時的にずれていく(代表的には、設定値よりも大きくなる)ことを防止することができる。より詳細には、このような制動手段を設けることにより、クリップが予熱ゾーンに入るタイミングを一定にすることができる。したがって、予熱ゾーンBならびに斜め延伸ゾーン(本実施形態では、第1の斜め延伸ゾーンCおよび第2の斜め延伸ゾーンD)に存在するクリップの数が変化しないように制御することができる。これは、このような制動手段を設けることにより、斜め延伸によってフィルムに生じる斜め方向の力ならびにクリップを支持するベアリングとレールとの間の遊びに起因するクリップの所望でない移動を防止することができることに起因する。結果として、上記のとおり、斜め延伸において得られる位相差フィルムの遅相軸の方向の経時的なずれを防止することができる。
 クリップの移動速度を制動する動作について、クリップピッチを変化させるリンク機構に負荷をかける態様について説明する。一例として、高トルクスプロケットを用いる場合について説明する。把持ゾーンAにおいて延伸対象のフィルムを把持したクリップは、左右ともに所定の移動速度で把持ゾーンAを移動する。予熱ゾーンBの直前において、クリップピッチを変化させるリンク機構(実質的には、軸部材34)に高トルクスプロケット50が係合する。係合した軸部材34は高トルクスプロケット50の抵抗を受けて制動され(すなわち、ブレーキがかけられ)、その結果、予熱ゾーンに入るクリップの移動速度は左右ともに一定になるように制御され得る。このように、高トルクスプロケットを設けることにより、予熱ゾーンBに入るクリップが左右で同期され、左右のクリップの移動速度およびクリップピッチの設定値からの経時的なずれが防止されるので、斜め延伸において得られる位相差フィルムの遅相軸の方向の経時的なずれを防止することができる。
 次に、クリップの移動速度を制動する装置として、連続的又は断続的に定速回転する制御手段を用いた場合について説明する。一例として、制動手段50として定速回転スプロケット(図示するように電動モータ51によって定速回転駆動されているスプロケット)を用いる場合について説明する。スプロケット50を定速回転させることにより、予熱ゾーンに入るクリップに単にブレーキをかけるだけでなく、クリップの速度を精密に制御することができる。より具体的には、高トルクの(回転駆動されていない)スプロケットで制動した場合には、上記のとおり斜め延伸において得られる位相差フィルムの遅相軸の方向の経時的なずれを防止することができるが、予熱ゾーンに入るクリップの移動速度は間欠的に減速するようなプロファイルとなる。一方、定速回転するスプロケットを用いると、予熱ゾーンに入るクリップの移動速度はそのような間欠的な減少部分が取り除かれた滑らかなプロファイルとなる。その結果、得られる位相差フィルムの遅相軸の方向のずれを防止する効果に加えて、位相差フィルムの遅相軸の方向の長さ方向に沿って周期的に生じるばらつきを顕著に抑制することができる。
 本明細書においては、上記のとおり制動手段50が予熱ゾーンの直前に設けられる実施形態について説明しているが、制動手段50は把持ゾーンから斜め延伸ゾーンまでの間であれば任意の適切な位置に設けられる。制動手段50を把持ゾーンから斜め延伸ゾーンまでの間に設ければ、その設置位置にかかわらず上記の効果が得られることは明らかである。例えば、制動手段50は、把持ゾーンの直前に設けられてもよく、把持ゾーンの任意の位置に設けられてもよく、予熱ゾーンの任意の位置に設けられてもよく、斜め延伸ゾーンの直前に設けられてもよく、斜め延伸ゾーンの中に設けられてもよい。例えば、制動手段50を斜め延伸ゾーンに設けると、延伸時の張力によって生じるクリップの移動速度のばらつきを抑制することができ、結果として、位相差フィルムの光学特性のばらつきを抑制することができる。さらに、制動手段50は、把持ゾーンAから解放ゾーンEまでの間(例えば、把持ゾーンから斜め延伸ゾーンまでの間)において複数設けられてもよい。例えば、図1に示す実施形態において、斜め延伸ゾーン(第1の斜め延伸ゾーンCおよび/または第2の斜め延伸ゾーンD)に別の制動手段がさらに設けられてもよく、斜め延伸ゾーンと解放ゾーンとの間の熱固定ゾーン(図示せず)に別の制動手段がさらに設けられてもよく、ならびに/あるいは、解放ゾーンEに別の制動手段がさらに設けられてもよい(別の制動手段は図示せず)。制動手段の設置位置、設置数および具体的な形態は、目的、延伸装置の大きさ(代表的には、各ゾーンの長さ、ループの離間距離)等に応じて適切に設定され得る。なお、制動手段は、代表的には、一対を単位として左右の無端ループに設けられ得る。1つの実施形態においては、把持ゾーンA(例えば、把持ゾーンにおいてフィルムを把持する直前の位置)から斜め延伸ゾーン(実質的には、第2の斜め延伸ゾーンD)までの間に制動手段が少なくとも1つ(代表的には、少なくとも一対)設けられ、さらに、斜め延伸ゾーン(実質的には、第2の斜め延伸ゾーンD)の直後から解放ゾーンEまでの間に制動手段が少なくとも1つ(代表的には、少なくとも一対)設けられる。
B.予熱工程
 予熱ゾーン(予熱工程)Bにおいては、左右の無端ループ10R、10Lは、上記のとおり延伸対象となるフィルムの初期幅に対応する離間距離で互いに略平行となるよう構成されているので、基本的には横延伸も縦延伸も行わず、フィルムが加熱される。ただし、予熱によりフィルムのたわみが起こり、オーブン内のノズルに接触するなどの不具合を回避するために、わずかに左右クリップ間の距離(幅方向の距離)を広げてもよい。
 予熱工程においては、フィルムを温度T1(℃)まで加熱する。温度T1は、フィルムのガラス転移温度(Tg)以上であることが好ましく、より好ましくはTg+2℃以上、さらに好ましくはTg+5℃以上である。一方、加熱温度T1は、好ましくはTg+40℃以下、より好ましくはTg+30℃以下である。用いるフィルムにより異なるが、温度T1は、例えば70℃~190℃であり、好ましくは80℃~180℃である。
 上記温度T1までの昇温時間および温度T1での保持時間は、フィルムの構成材料や製造条件(例えば、フィルムの搬送速度)に応じて適切に設定され得る。これらの昇温時間および保持時間は、クリップ20の移動速度、予熱ゾーンの長さ、予熱ゾーンの温度等を調整することにより制御され得る。
C.第1の斜め延伸工程
 第1の斜め延伸ゾーン(第1の斜め延伸工程)Cにおいては、左右のクリップ間の距離(より具体的には、左右の無端ループ10R、10Lの離間距離)を拡大させながら、一方のクリップのクリップピッチを増大させ、かつ、他方のクリップのクリップピッチを減少させて、フィルムを斜め延伸する。このようにクリップピッチを変化させることによって左右のクリップを異なる速度で移動させ、これにより、フィルムの一方の側縁部を長手方向に伸長させ、かつ、他方の側縁部を長手方向に収縮させながら斜め延伸を行うことができる。その結果、所望の方向(例えば、長手方向に対して45°の方向)に高い一軸性および面内配向性で遅相軸を発現させることができる。
 以下、第1の斜め延伸の1つの実施形態を、図4および図5を参照しながら具体的に説明する。まず、予熱ゾーンBにおいては、左右のクリップピッチはともにPとされている。Pは、フィルムを把持した際のクリップピッチである。次に、フィルムが第1の斜め延伸ゾーンCに入ると同時に、一方の(図示例では右側)クリップのクリップピッチの増大を開始し、かつ、他方の(図示例では左側)クリップのクリップピッチの減少を開始する。第1の斜め延伸ゾーンCにおいては、右側クリップのクリップピッチをPまで増大させ、左側クリップのクリップピッチをPまで減少させる。したがって、第1の斜め延伸ゾーンCの終端部(第2の斜め延伸ゾーンDの開始部)において、左側クリップはクリップピッチPで移動し、右側クリップはクリップピッチPで移動することとされている。なお、クリップピッチの比はクリップの移動速度の比に概ね対応し得る。よって、左右のクリップのクリップピッチの比は、フィルムの右側側縁部と左側側縁部のMD方向の延伸倍率の比に概ね対応し得る。
 図4および図5では、右側クリップのクリップピッチが増大し始める位置および左側クリップのクリップピッチが減少し始める位置をともに第1の斜め延伸ゾーンCの開始部としているが、図示例とは異なり、右側クリップのクリップピッチが増大し始めた後に左側クリップのクリップピッチが減少し始めてもよく(例えば、図6)、左側クリップのクリップピッチが減少し始めた後に右側クリップのクリップピッチが増大し始めてもよい(図示せず)。1つの好ましい実施形態においては、一方の側のクリップのクリップピッチが増大し始めた後に他方の側のクリップのクリップピッチが減少し始める。このような実施形態によれば、既にフィルムが幅方向に一定程度(好ましくは1.2倍~2.0倍程度)延伸されていることから該他方の側のクリップピッチを大きく減少させてもシワが発生しにくい。よって、より鋭角な斜め延伸が可能となり、一軸性および面内配向性の高い位相差フィルムが好適に得られ得る。
 同様に、図4および図5では、第1の斜め延伸ゾーンCの終端部(第2の斜め延伸ゾーンDの開始部)まで右側クリップのクリップピッチの増大および左側クリップのクリップピッチの減少が続いているが、図示例とは異なり、クリップピッチの増大または減少のいずれか一方が第1の斜め延伸ゾーンCの終端部よりも前に終了し、第1の斜め延伸ゾーンCの終端部までクリップピッチがそのまま維持されてもよい。
 上記増大するクリップピッチの変化率(P/P)は、好ましくは1.25~1.75、より好ましくは1.30~1.70、さらに好ましくは1.35~1.65である。また、減少するクリップピッチの変化率(P/P)は、例えば0.50以上1未満、好ましくは0.50~0.95、より好ましくは0.55~0.90、さらに好ましくは0.55~0.85である。クリップピッチの変化率がこのような範囲内であれば、フィルムの長手方向に対して概ね45度の方向に高い一軸性および面内配向性で遅相軸を発現させることができる。
 クリップピッチは、上記のとおり、延伸装置のピッチ設定レールと基準レールとの離間距離を調整してスライダを位置決めすることにより、調整され得る。
 第1の斜め延伸工程におけるフィルムの幅方向の延伸倍率(W/W)は、好ましくは1.1倍~3.0倍、より好ましくは1.2倍~2.5倍、さらに好ましくは1.25倍~2.0倍である。当該延伸倍率が1.1倍未満であると、収縮させた側の側縁部にトタン状のシワが生じる場合がある。また、当該延伸倍率が3.0倍を超えると、得られる位相差フィルムの二軸性が高くなってしまい、円偏光板等に適用した場合に視野角特性が低下する場合がある。
 1つの実施形態において、第1の斜め延伸は、一方のクリップのクリップピッチの変化率と他方のクリップのクリップピッチの変化率との積が、好ましくは0.7~1.5、より好ましくは0.8~1.45、さらに好ましくは0.85~1.40となるように行われる。変化率の積がこのような範囲内であれば、一軸性および面内配向性の高い位相差フィルムが得られ得る。
 第1の斜め延伸は、代表的には、温度T2で行われ得る。温度T2は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-20℃~Tg+30℃であることが好ましく、さらに好ましくはTg-10℃~Tg+20℃、特に好ましくはTg程度である。用いる樹脂フィルムにより異なるが、温度T2は、例えば70℃~180℃であり、好ましくは80℃~170℃である。上記温度T1と温度T2との差(T1-T2)は、好ましくは±2℃以上であり、より好ましくは±5℃以上である。1つの実施形態においては、T1>T2であり、したがって、予熱工程で温度T1まで加熱されたフィルムは温度T2まで冷却され得る。
D.第2の斜め延伸工程
 第2の斜め延伸ゾーン(第2の斜め延伸工程)Dにおいては、左右のクリップ間の距離(より具体的には、左右の無端ループ10R、10Lの離間距離)を拡大させながら、左右のクリップのクリップピッチが等しくなるように一方の側のクリップのクリップピッチを維持または減少させ、かつ、他方の側のクリップのクリップピッチを増大させて、フィルムを斜め延伸する。このように左右のクリップピッチの差を縮小しながら、斜め延伸することにより、余分な応力を緩和しつつ、斜め方向に十分に延伸することができる。また、左右のクリップの移動速度が等しくなった状態でフィルムを解放工程に供することができるので、左右のクリップの解放時にフィルムの搬送速度等のバラつきが生じ難く、その後のフィルムの巻き取りが好適に行われ得る。
 以下、第2の斜め延伸の1つの実施形態を、図4および図5を参照しながら具体的に説明する。まず、フィルムが第2の斜め延伸ゾーンDに入ると同時に、左側クリップのクリップピッチの増大を開始する。第2の斜め延伸ゾーンDにおいては、左側クリップのクリップピッチをPまで増大させる。一方、右側クリップのクリップピッチは、第2の斜め延伸ゾーンDにおいてPのまま維持される。したがって、第2の斜め延伸ゾーンDの終端部(解放ゾーンEの開始部)において、左側クリップおよび右側クリップはともに、クリップピッチPで移動することとされている。
 上記実施形態における増大するクリップピッチの変化率(P/P)は、本発明の効果を損なわない限りにおいて制限はない。該変化率(P/P)は、例えば1.3~4.0、好ましくは1.5~3.0である。
 次に、第2の斜め延伸の別の実施形態を、図7および図8を参照しながら具体的に説明する。まず、フィルムが第2の斜め延伸ゾーンDに入ると同時に、右側クリップのクリップピッチの減少を開始し、かつ、左側クリップのクリップピッチの増大を開始する。第2の斜め延伸ゾーンDにおいては、右側クリップのクリップピッチをPまで減少させ、左側クリップのクリップピッチをPまで増大させる。したがって、第2の斜め延伸ゾーンDの終端部(解放ゾーンEの開始部)において、左側クリップおよび右側クリップはともにクリップピッチPで移動することとされている。なお、図示例では、簡単のため、右側クリップのクリップピッチの減少開始位置および左側クリップのクリップピッチの増大開始位置をともに第2の斜め延伸ゾーンDの開始部としているが、これらの位置は異なる位置であってもよい。同様に、右側クリップのクリップピッチの減少終了位置と左側クリップのクリップピッチの増大終了位置とが異なる位置であってもよい。
 上記実施形態における減少するクリップピッチの変化率(P/P)および増大するクリップピッチの変化率(P/P)は、本発明の効果を損なわない限りにおいて制限はない。変化率(P/P)は、例えば0.4以上1.0未満、好ましくは0.6~0.95である。また、変化率(P/P)は、例えば1.0を超え2.0以下、好ましくは1.2~1.8である。好ましくは、PはP以上である。P<Pであると、側縁部にシワが生じる、二軸性が高くなる等の問題が生じる場合がある。
 第2の斜め延伸工程におけるフィルムの幅方向の延伸倍率(W/W)は、好ましくは1.1倍~3.0倍、より好ましくは1.2倍~2.5倍、さらに好ましくは1.25倍~2.0倍である。当該延伸倍率が1.1倍未満であると、収縮させた側の側縁部にトタン状のシワが生じる場合がある。また、当該延伸倍率が3.0倍を超えると、得られる位相差フィルムの二軸性が高くなってしまい、円偏光板等に適用した場合に視野角特性が低下する場合がある。また、第1の斜め延伸工程および第2の斜め延伸工程における幅方向の延伸倍率(W/W)は、上記と同様の観点から、好ましくは1.2倍~4.0倍であり、より好ましくは1.4倍~3.0倍である。
 1つの実施形態において、第1の斜め延伸および第2の斜め延伸は、以下の式(1)から求められる斜め延伸倍率が、好ましくは2.0以上、より好ましくは2.0~4.0、さらに好ましくは2.5~3.5となるように行われる。当該斜め延伸倍率が2.0未満であると、二軸性が高くなる場合や面内配向性が低くなる場合がある。
Figure JPOXMLDOC01-appb-M000003
(式中、
 Wは、第1の斜め延伸前のフィルム幅、
 Wは、第2の斜め延伸後のフィルム幅、
 v3’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップに関して、該クリップのクリップピッチが第2の斜め延伸工程で所定のクリップピッチに変化した際のクリップ移動速度、
 t3は、第1の斜め延伸工程でクリップピッチを減少させる方のクリップが、予熱ゾーンに入ってから、第2の斜め延伸工程が終了するまでの時間、
 t3’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップが、予熱ゾーンに入ってから、第2の斜め延伸工程が終了するまでの時間
を表す。)
 上記v3’に関して、所定のクリップピッチとは、第1の斜め延伸工程において増大が完了したクリップピッチが第2の斜め延伸工程で維持もしくは減少した後のクリップピッチを意味し、上記C項の説明におけるPまたはPに対応する。また、第1の斜め延伸工程でクリップピッチを増大させる方のクリップに関して、該クリップのクリップピッチが第1の斜め延伸工程で所定のクリップピッチ(上記C項の説明におけるPに対応する)に変化された際の該クリップの移動速度をv2’とすると、
v2’=v3’の場合は、上記t3は下記式(2)、上記t’3は下記式(3)で表され、
v2’>v3’の場合は、上記t3は下記式(4)、上記t’3は下記式(5)で表される。
 以下、式(2)~(4)について説明する。式中の各記号の説明おいては、図9~11を参考とすることができる。なお、式(1)~(5)中のアスタリスクマーク(*)は乗算記号である。また、フィルム幅の単位はm、速度の単位はm/sec、距離の単位はm、時間の単位はsecである。
Figure JPOXMLDOC01-appb-M000004
(式中、
 a1=(v2-v3)/(L2-L3)、
 b1=v3-a1*L3、
 a=(v1-v2)/(L1-L2)、
 b=v2-a*L2であり、
 v1は、第1の斜め延伸工程でクリップピッチを減少させる方のクリップが予熱ゾーンを通過する際のクリップ移動速度、
 v2は、第1の斜め延伸工程でクリップピッチを減少させる方のクリップに関して、該クリップのクリップピッチが第1の斜め延伸工程で所定のクリップピッチ(上記C項の説明におけるPに対応する)に減少した際のクリップ移動速度、
 v3は、第1の斜め延伸工程でクリップピッチを減少させる方のクリップに関して、該クリップのクリップピッチが第2の斜め延伸工程で所定のクリップピッチ(上記C項の説明におけるPまたはPに対応する)に増大した際のクリップ移動速度であり、
 L1は、予熱ゾーン入口から、第1の斜め延伸工程でクリップピッチを減少させる方のクリップがクリップピッチを減少し始めるまでの距離(1つの実施形態においては、予熱ゾーン入口から予熱ゾーン出口までの距離)、
 L2は、予熱ゾーン入口から、第1の斜め延伸工程でクリップピッチを減少させる方のクリップがクリップピッチを増大し始める箇所までの距離(1つの実施形態においては、予熱ゾーン入口から第1の斜め延伸ゾーン出口までの距離)、
 L3は、予熱ゾーン入口から、第1の斜め延伸工程でクリップピッチを減少させる方のクリップがクリップピッチを増大し終わる箇所までの距離(1つの実施形態においては、予熱ゾーン入口から第2の斜め延伸ゾーン出口までの距離)
である。)
Figure JPOXMLDOC01-appb-M000005
(式中、
 a’=(v1’-v2’)/(L1’-L2’)、
 b’=v3’-a’*L2’であり、
 v1’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップが予熱ゾーンを通過する際のクリップ移動速度、
 v2’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップに関して、該クリップのクリップピッチが第1の斜め延伸工程で所定のクリップピッチ(上記C項の説明におけるPに対応する)に増大した際のクリップ移動速度
 v3’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップに関して、該クリップが第2の斜め延伸ゾーンを通過する際のクリップ移動速度であり、
 L1’は、予熱ゾーン入口から、第1の斜め延伸工程でクリップピッチを増大させる方のクリップがクリップピッチを増大し始めるまでの距離(1つの実施形態においては、予熱ゾーン入口から予熱ゾーン出口までの距離)、
 L2’は、予熱ゾーン入口から、第1の斜め延伸工程でクリップピッチを増大させる方のクリップがクリップピッチを増大し終わる箇所までの距離(1つの実施形態においては、予熱ゾーン入口から第1の斜め延伸ゾーン出口までの距離)、
 L3’は、予熱ゾーン入口から、第2の斜め延伸ゾーン出口までの距離
である。)
Figure JPOXMLDOC01-appb-M000006
(式中、a1、b1、a、b、v1、v2、v3、L1、L2およびL3は、式(2)に関して定義したとおりである。)
Figure JPOXMLDOC01-appb-M000007
(式中、
 a’=(v1’-v2’)/(L1’-L2’)、
 b’=v2’-a’*L2’、
 a’’=(v2’-v3’)/(L2’-L3’)、
 b’’=v3’-a’’*L3’であり、
 v1’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップが予熱ゾーンを通過する際のクリップ移動速度、
 v2’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップに関して、該クリップのクリップピッチが第1の斜め延伸工程で所定のクリップピッチ(上記C項の説明におけるPに対応する)に増大した際のクリップ移動速度
 v3’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップに関して、該クリップのクリップピッチが第2の斜め延伸工程で所定のクリップピッチ(上記C項の説明におけるPに対応する)に減少した際のクリップ移動速度であり、
 L1’は、予熱ゾーン入口から、第1の斜め延伸工程でクリップピッチを増大させる方のクリップがクリップピッチを増大し始める箇所までの距離(1つの実施形態においては、予熱ゾーン入口から予熱ゾーン出口までの距離)、
 L2’は、予熱ゾーン入口から、第1の斜め延伸工程でクリップピッチを増大させる方のクリップがクリップピッチを増大し終わる箇所までの距離(1つの実施形態においては、予熱ゾーン入口から第1の斜め延伸ゾーン出口までの距離)、
 L3’は、予熱ゾーン入口から、第1の斜め延伸工程でクリップピッチを増大させる方のクリップが第2の斜め延伸工程でクリップピッチを所定のクリップピッチ(上記C項の説明におけるPに対応する)に減少し終わる箇所までの距離(1つの実施形態においては、予熱ゾーン入口から第2の斜め延伸ゾーン出口までの距離)である。)
 第2の斜め延伸は、代表的には、温度T3で行われ得る。温度T3は、温度T2と同等であり得る。
E.解放工程
 最後に、フィルムを把持するクリップを解放して、位相差フィルムが得られる。必要に応じて、フィルムを熱処理して延伸状態を固定し(熱固定工程)、冷却した後にクリップを解放する。
 熱処理は、代表的には、温度T4で行われ得る。温度T4は、延伸されるフィルムによって異なり、T3≧T4の場合も、T3<T4の場合もあり得る。一般的に、フィルムが非晶性材料である場合はT3≧T4であり、結晶性材料である場合はT3<T4にすることで結晶化処理を行う場合もある。T3≧T4の場合、温度T3とT4の差(T3-T4)は好ましくは0℃~50℃である。熱処理時間は、代表的には10秒~10分である。
 熱固定されたフィルムは、通常Tg以下まで冷却され、クリップを解放後、フィルム両端のクリップ把持部分をカットし巻き取られる。
F.延伸対象のフィルムおよび延伸により得られる位相差フィルム
 本発明の製造方法(実質的には、上記A項~E項に記載の延伸方法)に好適に用いられるフィルムとしては、位相差フィルムとして用いられ得る任意の適切なフィルムが挙げられる。フィルムを構成する材料としては、例えば、ポリカーボネート樹脂、ポリビニルアセタール樹脂、シクロオレフィン系樹脂、アクリル系樹脂、セルロースエステル系樹脂、セルロース系樹脂、ポリエステル系樹脂、ポリエステルカーボネート系樹脂、オレフィン系樹脂、ポリウレタン系樹脂等が挙げられる。好ましくは、ポリカーボネート樹脂、ポリビニルアセタール樹脂、セルロースエステル系樹脂、ポリエステル系樹脂、ポリエステルカーボネート系樹脂である。これらの樹脂であれば、いわゆる逆分散の波長依存性を示す位相差フィルムが得られ得るからである。これらの樹脂は、単独で用いてもよく、所望の特性に応じて組み合わせて用いてもよい。
 上記ポリカーボネート系樹脂としては、任意の適切なポリカーボネート系樹脂が用いられる。例えば、ジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂が好ましい。ジヒドロキシ化合物の具体例としては、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-n-プロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-n-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-sec-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル)フルオレン、9,9-ビス(4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル)フルオレン等が挙げられる。ポリカーボネート樹脂は、上記ジヒドロキシ化合物に由来する構造単位の他に、イソソルビド、イソマンニド、イソイデット、スピログリコール、ジオキサングリコール、ジエチレングリコール(DEG)、トリエチレングリコール(TEG)、ポリエチレングリコール(PEG)、ビスフェノール類などのジヒドロキシ化合物に由来する構造単位を含んでいてもよい。
 上記のようなポリカーボネート樹脂の詳細は、例えば特開2012-67300号公報および特許第3325560号に記載されている。当該特許文献の記載は、本明細書に参考として援用される。
 ポリカーボネート樹脂のガラス転移温度は、110℃以上250℃以下であることが好ましく、より好ましくは120℃以上230℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、また、フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。
 上記ポリビニルアセタール樹脂としては、任意の適切なポリビニルアセタール樹脂を用いることができる。代表的には、ポリビニルアセタール樹脂は、少なくとも2種類のアルデヒド化合物及び/又はケトン化合物と、ポリビニルアルコール系樹脂とを縮合反応させて得ることができる。ポリビニルアセタール樹脂の具体例および詳細な製造方法は、例えば、特開2007-161994号公報に記載されている。当該記載は、本明細書に参考として援用される。
 上記延伸対象のフィルムを延伸して得られる位相差フィルムは、好ましくは、屈折率特性がnx>nyの関係を示す。また、位相差フィルムは面内配向性が高いことが好ましく、例えばその波長550nmで測定した場合の複屈折率Δn(Δn=nx-ny)は、好ましくは0.002~0.005、より好ましくは0.0025~0.004である。さらに、位相差フィルムは、好ましくはλ/4板として機能し得る。位相差フィルムの面内位相差Re(550)は、好ましくは100nm~180nm、より好ましくは135nm~155nmである。なお、本明細書において、nxは面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、nyは面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、nzは厚み方向の屈折率である。また、Re(λ)は、23℃における波長λnmの光で測定したフィルムの面内位相差である。したがって、Re(550)は、23℃における波長550nmの光で測定したフィルムの面内位相差である。Re(λ)は、フィルムの厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
 位相差フィルムは、nx>nyの関係を有する限り、任意の適切な屈折率楕円体を示す。好ましくは、位相差フィルムの屈折率楕円体は、nx>ny≧nzの関係を示す。位相差フィルムのNz係数は、好ましくは1~1.3であり、より好ましくは1~1.25であり、さらに好ましくは1~1.2である。Nz係数は、Nz=Rth(λ)/Re(λ)によって求められる。ここで、Rth(λ)は、23℃における波長λnmの光で測定したフィルムの厚み方向の位相差であり、式:Rth(λ)=(nx-nz)×dによって求められる。
 位相差フィルムは、好ましくは、いわゆる逆分散の波長依存性を示す。具体的には、その面内位相差は、Re(450)<Re(550)<Re(650)の関係を満たす。Re(450)/Re(550)は、好ましくは0.8以上1.0未満であり、より好ましくは0.8~0.95である。Re(550)/Re(650)は、好ましくは0.8以上1.0未満であり、より好ましくは0.8~0.97である。
 位相差フィルムは、その光弾性係数の絶対値が、好ましくは2×10-12(m/N)~100×10-12(m/N)であり、より好ましくは2×10-12(m/N)~50×10-12(m/N)である。
G.円偏光板および円偏光板の製造方法
 上記の本発明の製造方法により得られた位相差フィルムは、代表的には円偏光板に好適に用いられ得る。図12は、そのような円偏光板の一例の概略断面図である。図示例の円偏光板300は、偏光子310と、偏光子310の片側に配置された第1の保護フィルム320と、偏光子310のもう片側に配置された第2の保護フィルム330と、第2の保護フィルム330の外側に配置された位相差フィルム340と、を有する。位相差フィルム340は、上記の本発明の製造方法により得られた位相差フィルムである。第2の保護フィルム330は省略されてもよい。その場合、位相差フィルム340が偏光子の保護フィルムとして機能し得る。偏光子310の吸収軸と位相差フィルム340の遅相軸とのなす角度は、好ましくは30°~60°、より好ましくは38°~52°、さらに好ましくは43°~47°、特に好ましくは45°程度である。なお、偏光子および保護フィルムの構成は業界で周知であるので、詳細な説明は省略する。
 円偏光板は、目的に応じて任意の適切な光学部材や光学機能層を任意の適切な位置にさらに含んでいてもよい。例えば、第1の保護フィルム320の外側表面に、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理、光拡散処理等の表面処理が施されていてもよい。また、位相差フィルム340の少なくとも一方の側に、目的に応じて任意の適切な屈折率楕円体を示す別の位相差フィルムが配置されてもよい。さらに、第1の保護フィルム320の外側には、フロント基板(例えば、透明保護基板、タッチパネル)等の光学部材が配置されてもよい。
 上記の本発明の製造方法により得られた位相差フィルムは、円偏光板の製造にきわめて好適である。詳細は以下のとおりである。この位相差フィルムは、長尺状であり、かつ、斜め方向(上記のとおり、長尺方向に対して例えば45°の方向)に遅相軸を有する。多くの場合、長尺状の偏光子は長尺方向または幅方向に吸収軸を有するので、本発明の製造方法により得られた位相差フィルムを用いれば、いわゆるロールトゥロールを利用することができ、きわめて優れた製造効率で円偏光板を作製することができる。しかも、上記の本発明の製造方法により得られた位相差フィルムは、一軸性および面内配向性が高いので、非常に優れた光学特性を有する円偏光板を得ることができる。なお、ロールトゥロールとは、長尺のフィルム同士をロール搬送しながら、その長尺方向を揃えて連続的に貼り合わせる方法をいう。
 図13を参照して、本発明の1つの実施形態による円偏光板の製造方法を簡単に説明する。図13において、符号811および812は、それぞれ、偏光板および位相差フィルムを巻回するロールであり、符号822は搬送ロールである。図示例では、偏光板(第1の保護フィルム320/偏光子310/第2の保護フィルム330)と、位相差フィルム340とを矢印方向に送り出し、それぞれの長手方向を揃えた状態で貼り合わせる。その際、偏光板の第2の保護フィルム330と位相差フィルム340とが隣接するように貼り合わせる。このようにして、図12に示すような円偏光板300が得られ得る。図示しないが、例えば、偏光板(第1の保護フィルム320/偏光子310)と位相差フィルム340とを、偏光子310と位相差フィルム340とが隣接するように貼り合わせ、位相差フィルム340が保護フィルムとして機能する円偏光板を作製することもできる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、実施例における測定および評価方法は下記のとおりである。
(1)配向角(遅相軸の発現方向)
 実施例および比較例で得られた位相差フィルムの中央部を、一辺が当該フィルムの幅方向と平行となるようにして幅50mm、長さ50mmの正方形状に切り出して試料を作成した。この試料を、オンライン位相差計(王子計測機器株式会社製 製品名「KOBRA-WI」)を用いて測定し、波長590nmにおける配向角θを測定した。配向角θは、延伸開始直後に得られた位相差フィルムおよび延伸開始から1時間にわたって得られた位相差フィルムの両方について測定した。なお、配向角θは測定台に試料を平行に置いた状態で測定した。
(2)配向角のばらつき
 実施例および比較例で得られた位相差フィルムの幅方向中央部における配向角を、延伸開始から1時間~1時間10分の間に測定し、配向角のばらつきを測定した。
(3)厚み
 マイクロゲージ式厚み計(ミツトヨ社製)を用いて測定した。
<実施例1>
(ポリカーボネート樹脂フィルムの作製)
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。9,9-[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BHEPF)、イソソルビド(ISB)、ジエチレングリコール(DEG)、ジフェニルカーボネート(DPC)、および酢酸マグネシウム4水和物を、モル比率でBHEPF/ISB/DEG/DPC/酢酸マグネシウム=0.348/0.490/0.162/1.005/1.00×10-5になるように仕込んだ。反応器内を十分に窒素置換した後(酸素濃度0.0005~0.001vol%)、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。
 第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、反応液をストランドの形態で抜出し、回転式カッターでペレット化を行い、BHEPF/ISB/DEG=34.8/49.0/16.2[mol%]の共重合組成のポリカーボネート樹脂Aを得た。このポリカーボネート樹脂の還元粘度は0.430dL/g、ガラス転移温度は128℃であった。
 得られたポリカーボネート樹脂を80℃で5時間真空乾燥をした後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅900mm、設定温度:220℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み150μmのポリカーボネート樹脂フィルムを作製した。
(予熱ならびに第1および第2の斜め延伸工程)
 上記のようにして得られたポリカーボネート樹脂フィルムを、図1~図3に示すような装置を用い、図5に示すようなクリップピッチのプロファイルで、予熱処理、第1の斜め延伸および第2の斜め延伸処理に供し、位相差フィルムを得た。具体的には、以下のとおりである:まず、延伸装置の予熱ゾーンの直前に設けられた高トルクのスプロケットにより、予熱ゾーンに入る左右のクリップの移動速度を制動した。具体的には、把持ゾーンAを移動するクリップを上記スプロケットにより制動し、予熱ゾーンBへと移動させた。次いで、ポリカーボネート樹脂フィルム(厚み150μm、幅(W)765mm)を延伸装置の予熱ゾーンで145℃に予熱した。予熱ゾーンにおいては、左右のクリップのクリップピッチ(P)は125mmであった。次に、フィルムが第1の斜め延伸ゾーンCに入ると同時に、右側クリップのクリップピッチの増大および左側クリップのクリップピッチの減少を開始した。第1の斜め延伸ゾーンCの終端部における右側クリップのクリップピッチの変化率(P/P)は1.42であり、左側クリップのクリップピッチの変化率(P/P)は0.72であった。なお、第1の斜め延伸は138℃で行った。第1の斜め延伸後のフィルム幅(W)は1092mmであった(TD延伸倍率(W/W)=1.45倍)。次に、フィルムが第2の斜め延伸ゾーンDに入ると同時に、左側クリップのクリップピッチの増大を開始し、PからPまで増大させた。第2の斜め延伸ゾーンDにおける左側クリップのクリップピッチの変化率(P2/P3)は1.97であった。一方、右側クリップのクリップピッチは、第2の斜め延伸ゾーンDにおいてP2のまま維持した。なお、第2の斜め延伸は138℃で行った。第2の斜め延伸後のフィルム幅(W)は1419mmであった。また、上記第1の斜め延伸工程および第2の斜め延伸工程における幅方向への延伸倍率(W/W)は、1.9倍であった。
(解放工程)
 次いで、解放ゾーンにおいて、125℃で60秒間フィルムを保持して熱固定を行った。熱固定されたフィルムを、100℃まで冷却後、左右のクリップを解放した。
 以上のようにして、位相差フィルム(厚み55μm、幅1419mm)を得た。得られた位相差フィルムを上記(1)および(2)の評価に供した。結果を表1に示す。
<実施例2>
 フィルム延伸装置において高トルクのスプロケットの代わりに定速回転駆動されたスプロケットを設けたこと以外は実施例1と同様にして位相差フィルムを得た。得られた位相差フィルムを実施例1と同様の評価に供した。結果を表1に示す。
<実施例3>
 フィルム延伸装置において高トルクのスプロケットを延伸装置の予熱ゾーンの直前に設け、さらに、定速回転駆動されたスプロケットを延伸装置の第1の斜め延伸ゾーンに設けたこと以外は実施例1と同様にして位相差フィルムを得た。得られた位相差フィルムを実施例1と同様の評価に供した。結果を表1に示す。
<比較例1>
 延伸装置の予熱ゾーン直前に高トルクのスプロケットも定速回転スプロケットも設けなかったこと(すなわち、予熱ゾーンに入る左右のクリップの移動速度を制動しなかったこと)以外は実施例1と同様にして位相差フィルムを得た。得られた位相差フィルムを実施例1と同様の評価に供した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
<評価>
 表1に示されるとおり、本発明の製造方法によれば、把持ゾーンから斜め延伸ゾーンまでの間(例えば、予熱ゾーンの直前、または、予熱ゾーンの直前および斜め延伸ゾーンの複数箇所)にクリップの移動速度を制動する手段を設けることにより、配向角(遅相軸の方向)が延伸初期から所定の期間にわたって設定値から経時的にずれていくのを防止することができる。さらに、当該制動手段として定速回転されるスプロケットを用いることにより(すなわち、予熱ゾーンに入るクリップに単にブレーキをかけるだけでなく速度を制御することにより)、上記の効果に加えて、配向角のばらつきを抑制することができる。
 本発明の製造方法により得られる位相差フィルムは、円偏光板に好適に用いられ、結果として、液晶表示装置(LCD)、有機エレクトロルミネッセンス表示装置(OLED)等の画像表示装置に好適に用いられる。
 10L  無端ループ
 10R  無端ループ
 20   クリップ
 30   クリップ担持部材
 50   クリップ移動速度の制動手段
 70   基準レール
 90   ピッチ設定レール
100   延伸装置
300   円偏光板
310   偏光子
320   第1の保護フィルム
330   第2の保護フィルム
340   位相差フィルム

Claims (13)

  1.  フィルムの左右端部を、それぞれ、縦方向のクリップピッチが変化する可変ピッチ型の左右のクリップによって把持すること(把持工程)、
     該フィルムを予熱すること(予熱工程)、
     該左右のクリップ間の距離を拡大させながら、
     (i)一方のクリップの進行方向のクリップピッチの変化率と他方のクリップの進行方向のクリップピッチの変化率とを異なるものとすること、および
     (ii)一方のクリップの進行方向のクリップピッチが変化し始める位置と他方のクリップの進行方向のクリップピッチが変化し始める位置とを異なる位置とすること
    から選択される少なくとも1つにより、該フィルムを斜め延伸すること(斜め延伸工程)、および
     該フィルムを把持するクリップを解放すること(解放工程)
     を含み、
     該把持工程の直前および/または該把持工程から該斜め延伸工程までの間において、クリップの移動速度を制動する、
     位相差フィルムの製造方法。
  2.  前記クリップの移動速度の制動が、前記クリップピッチを変化させるリンク機構に負荷をかけることによりクリップ移動速度を所定の速度に制限することを含む、請求項1に記載の位相差フィルムの製造方法。
  3.  前記クリップの移動速度の制動が、前記クリップの移動速度を制動する装置が連続的または断続的に定速回転することにより、クリップ移動速度を所定の速度に制限することを含む、請求項1に記載の位相差フィルムの製造方法。
  4.  前記クリップの移動速度の制動が、前記把持工程の直前から前記斜め延伸工程までの間において少なくとも1度行われ、さらに、該斜め延伸工程の直後から前記解放工程までの間において少なくとも1度行われる、請求項1から3のいずれかに記載の位相差フィルムの製造方法。
  5.  前記斜め延伸工程が、
     前記左右のクリップ間の距離を拡大させながら、一方のクリップのクリップピッチを増大させ、かつ、他方のクリップのクリップピッチを減少させて、前記フィルムを斜め延伸すること(第1の斜め延伸工程)、および
     該左右のクリップ間の距離を拡大させながら、左右のクリップのクリップピッチが等しくなるように該一方のクリップのクリップピッチを維持または減少させ、かつ、該他方のクリップのクリップピッチを増大させて、該フィルムを斜め延伸すること(第2の斜め延伸工程)
    を含む、請求項1から4のいずれかに記載の位相差フィルムの製造方法。
  6.  第1の斜め延伸工程において、前記一方のクリップのクリップピッチを増大させ始めた後に、前記他方のクリップのクリップピッチを減少させ始める、請求項5に記載の位相差フィルムの製造方法。
  7.  第1の斜め延伸工程および第2の斜め延伸工程において、下記式(1)から求められる斜め延伸倍率が2.0以上であり、かつ、第1の斜め延伸工程において、前記他方のクリップのクリップピッチの変化率が0.5以上1未満である、請求項5または6に記載の位相差フィルムの製造方法。
    Figure JPOXMLDOC01-appb-M000001
    (式中、
     Wは、第1の斜め延伸前のフィルム幅(単位:m)、
     Wは、第2の斜め延伸後のフィルム幅(単位:m)、
     v3’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップに関して、該クリップのクリップピッチが第2の斜め延伸工程で所定のクリップピッチに変化した際のクリップ移動速度(単位:m/sec)、
     t3は、第1の斜め延伸工程でクリップピッチを減少させる方のクリップが、予熱ゾーンに入ってから第2の斜め延伸工程が終了するまでの時間(単位:sec)、
     t3’は、第1の斜め延伸工程でクリップピッチを増大させる方のクリップが、予熱ゾーンに入ってから第2の斜め延伸工程が終了するまでの時間(単位:sec)
    を表す。)
  8.  第1の斜め延伸工程において、前記一方のクリップのクリップピッチの変化率と前記他方のクリップのクリップピッチの変化率との積が0.7~1.5である、請求項5から7のいずれかに記載の位相差フィルムの製造方法。
  9.  前記フィルムの形成材料が、ポリカーボネート樹脂、ポリビニルアセタール樹脂、シクロオレフィン系樹脂、セルロース系樹脂、セルロースエステル系樹脂、ポリエステル系樹脂またはポリエステルカーボネート系樹脂を含む、請求項1から8のいずれかに記載の位相差フィルムの製造方法。
  10.  請求項1から9のいずれかに記載の製造方法により得られる位相差フィルムであって、長尺状であり、かつ、長尺方向に対して所定の角度をなす方向に遅相軸を有する、位相差フィルム。
  11.  請求項1から9のいずれかに記載の製造方法により長尺状の位相差フィルムを得ること、および
     得られた長尺状の位相差フィルムと長尺状の偏光板とを搬送しながら、その長尺方向を揃えて連続的に貼り合わせることを含む、円偏光板の製造方法。
  12.  延伸対象のフィルムの左右端部を把持して予熱ゾーンおよび斜め延伸ゾーンをこの順に通過するとともに、各々、走行移動に伴って縦方向のクリップピッチが変化する可変ピッチ型の左右のクリップを有し、
     該斜め延伸ゾーンにおいて、該左右のクリップ間の距離を拡大させながら、
     (i)一方のクリップの進行方向のクリップピッチの変化率と他方のクリップの進行方向のクリップピッチの変化率とを異なるものとすること、および
     (ii)一方のクリップの進行方向のクリップピッチが変化し始める位置と他方のクリップの進行方向のクリップピッチが変化し始める位置とを異なる位置とすること
    から選択される少なくとも1つにより、該フィルムを斜め延伸するよう構成されており、
     該フィルムを把持するゾーンから該斜め延伸ゾーンまでの間において、クリップの移動速度を制動する手段を少なくとも1つ備える、
     フィルム延伸装置。
  13.  前記フィルムを把持するゾーンから前記斜め延伸ゾーンまでの間において、クリップの移動速度を制動する手段を少なくとも1つ備え、さらに、該斜め延伸ゾーンの直後から該フィルムを把持するクリップを解放するゾーンまでの間にクリップの移動速度を制動する手段を少なくとも1つ備える、請求項12に記載のフィルム延伸装置。
PCT/JP2015/060822 2014-04-09 2015-04-07 位相差フィルムの製造方法および円偏光板の製造方法ならびにフィルム延伸装置 WO2015156278A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167010694A KR101867196B1 (ko) 2014-04-09 2015-04-07 위상차 필름의 제조 방법 및 원 편광판의 제조 방법 그리고 필름 연신 장치
US15/120,435 US10086556B2 (en) 2014-04-09 2015-04-07 Method of producing retardation film, method of producing circularly polarizing plate, and film-stretching apparatus, involving braking the moving speeds of film-holding clips
CN201580002109.1A CN105593726B (zh) 2014-04-09 2015-04-07 相位差膜的制造方法及圆偏光板的制造方法与膜拉伸装置
EP15776079.4A EP3035090B1 (en) 2014-04-09 2015-04-07 Phase difference film manufacturing method, circular polarizing plate manufacturing method, and film elongation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-080450 2014-04-09
JP2014080450 2014-04-09
JP2015-064563 2015-03-26
JP2015064563A JP6009024B2 (ja) 2014-04-09 2015-03-26 位相差フィルムの製造方法および円偏光板の製造方法ならびにフィルム延伸装置

Publications (1)

Publication Number Publication Date
WO2015156278A1 true WO2015156278A1 (ja) 2015-10-15

Family

ID=54287854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060822 WO2015156278A1 (ja) 2014-04-09 2015-04-07 位相差フィルムの製造方法および円偏光板の製造方法ならびにフィルム延伸装置

Country Status (7)

Country Link
US (1) US10086556B2 (ja)
EP (1) EP3035090B1 (ja)
JP (1) JP6009024B2 (ja)
KR (1) KR101867196B1 (ja)
CN (1) CN105593726B (ja)
TW (1) TWI714526B (ja)
WO (1) WO2015156278A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079364B1 (ja) * 2021-09-24 2022-06-01 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法
JP7079885B1 (ja) 2021-09-27 2022-06-02 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029943B2 (ja) * 2017-11-29 2022-03-04 日東電工株式会社 光学フィルムの製造方法
JP7020942B2 (ja) * 2018-02-01 2022-02-16 日東電工株式会社 フィルム延伸装置および位相差フィルムの製造方法
JP7016269B2 (ja) * 2018-02-02 2022-02-04 日東電工株式会社 延伸フィルムの製造方法
JP7037950B2 (ja) * 2018-02-07 2022-03-17 日東電工株式会社 フィルム延伸装置および位相差フィルムの製造方法
JP2019174636A (ja) * 2018-03-28 2019-10-10 コニカミノルタ株式会社 斜め延伸フィルム、偏光板、異形表示装置および斜め延伸フィルムの製造方法
JP7179670B2 (ja) * 2019-04-18 2022-11-29 株式会社日本製鋼所 延伸装置および延伸装置の部品交換方法
JP7012179B1 (ja) * 2021-03-24 2022-02-15 日東電工株式会社 延伸フィルムの製造方法
JP7059429B1 (ja) * 2021-09-10 2022-04-25 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法
JP7079365B1 (ja) 2021-09-28 2022-06-01 日東電工株式会社 延伸フィルムの製造方法、光学積層体の製造方法およびフィルム延伸装置
CN114434767B (zh) * 2021-12-29 2023-09-12 西南科技大学 Oled柔性显示用偏光片补偿膜的制备方法
CN114311622B (zh) * 2021-12-29 2023-09-12 西南科技大学 Oled柔性显示用偏光片补偿膜的同步光学斜向拉伸方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023775A (ja) * 2006-07-19 2008-02-07 Toshiba Mach Co Ltd シート・フィルムの斜め延伸方法およびクリップ式シート・フィルム延伸装置
JP2014044394A (ja) * 2012-03-30 2014-03-13 Nitto Denko Corp 長尺位相差フィルム、円偏光板及び有機elパネル

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845619A (ja) 1971-10-15 1973-06-29
JP4899450B2 (ja) * 2004-12-01 2012-03-21 コニカミノルタオプト株式会社 光学フィルムの製造方法
US7749411B2 (en) 2004-12-01 2010-07-06 Konica Minolta Opto, Inc. Optical film and production method of the same
JP2008302581A (ja) * 2007-06-07 2008-12-18 Nippon Zeon Co Ltd 延伸光学フィルムの製造方法
JP2011025598A (ja) * 2009-07-28 2011-02-10 Japan Steel Works Ltd:The 樹脂フィルム用延伸装置
CN103052489B (zh) * 2010-08-02 2015-03-11 株式会社日本触媒 相位差膜的制造方法和相位差膜辊
JP5028548B2 (ja) * 2010-11-26 2012-09-19 株式会社カネカ 延伸フィルムの製造方法
JP5088718B1 (ja) * 2012-03-30 2012-12-05 コニカミノルタアドバンストレイヤー株式会社 延伸フィルムの製造方法、延伸フィルムの製造装置および延伸フィルムの製造システム
KR101723318B1 (ko) 2012-10-25 2017-04-04 코니카 미놀타 가부시키가이샤 긴 연신 필름의 제조 방법, 긴 연신 필름, 상기 긴 연신 필름을 사용한 원편광판 및 유기 el 디스플레이

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023775A (ja) * 2006-07-19 2008-02-07 Toshiba Mach Co Ltd シート・フィルムの斜め延伸方法およびクリップ式シート・フィルム延伸装置
JP2014044394A (ja) * 2012-03-30 2014-03-13 Nitto Denko Corp 長尺位相差フィルム、円偏光板及び有機elパネル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079364B1 (ja) * 2021-09-24 2022-06-01 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法
JP7079885B1 (ja) 2021-09-27 2022-06-02 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法
JP2023047791A (ja) * 2021-09-27 2023-04-06 日東電工株式会社 延伸フィルムの製造方法および光学積層体の製造方法

Also Published As

Publication number Publication date
EP3035090A1 (en) 2016-06-22
US20170066175A1 (en) 2017-03-09
CN105593726B (zh) 2018-11-06
JP6009024B2 (ja) 2016-10-19
US10086556B2 (en) 2018-10-02
TWI714526B (zh) 2021-01-01
EP3035090A4 (en) 2017-09-20
TW201545853A (zh) 2015-12-16
CN105593726A (zh) 2016-05-18
KR101867196B1 (ko) 2018-06-12
JP2015206994A (ja) 2015-11-19
EP3035090B1 (en) 2021-06-16
KR20160061385A (ko) 2016-05-31

Similar Documents

Publication Publication Date Title
JP6009024B2 (ja) 位相差フィルムの製造方法および円偏光板の製造方法ならびにフィルム延伸装置
JP5755675B2 (ja) 位相差フィルムの製造方法および円偏光板の製造方法
JP7253413B2 (ja) 延伸フィルムの製造方法
JP5755674B2 (ja) 位相差フィルムの製造方法および円偏光板の製造方法
JP5755684B2 (ja) 位相差フィルムの製造方法および円偏光板の製造方法
JP6553873B2 (ja) 位相差フィルムの製造方法
WO2019150897A1 (ja) 延伸フィルムの製造方法
WO2014156623A1 (ja) 位相差フィルムの製造方法および円偏光板の製造方法
JP6482257B2 (ja) 位相差フィルムおよびその製造方法
JP2015127830A (ja) 位相差フィルム
JP6576637B2 (ja) 位相差フィルムの製造方法および円偏光板の製造方法
JP2022148512A (ja) 延伸フィルムの製造方法
JP6497916B2 (ja) 位相差フィルムの製造方法
JP6239919B2 (ja) 位相差フィルムの製造方法および円偏光板の製造方法
JP2015129970A (ja) 位相差フィルム
JP2023040753A (ja) 延伸フィルムの製造方法および光学積層体の製造方法
JP2015111311A (ja) 位相差フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015776079

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167010694

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15120435

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE