WO2015156126A1 - イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法 - Google Patents

イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法 Download PDF

Info

Publication number
WO2015156126A1
WO2015156126A1 PCT/JP2015/059057 JP2015059057W WO2015156126A1 WO 2015156126 A1 WO2015156126 A1 WO 2015156126A1 JP 2015059057 W JP2015059057 W JP 2015059057W WO 2015156126 A1 WO2015156126 A1 WO 2015156126A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudo spin
pseudo
spin
pulse
pulses
Prior art date
Application number
PCT/JP2015/059057
Other languages
English (en)
French (fr)
Inventor
聖子 宇都宮
喜久 山本
武居 弘樹
Original Assignee
大学共同利用機関法人情報・システム研究機構
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人情報・システム研究機構, 日本電信電話株式会社 filed Critical 大学共同利用機関法人情報・システム研究機構
Priority to JP2016512655A priority Critical patent/JP6255087B2/ja
Priority to US15/302,951 priority patent/US10140580B2/en
Publication of WO2015156126A1 publication Critical patent/WO2015156126A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1284Spin resolved measurements; Influencing spins during measurements, e.g. in spintronics devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
    • G06E3/001Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements
    • G06E3/005Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements using electro-optical or opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation

Definitions

  • the present invention provides a quantum computing device that can easily solve an NP complete problem or the like mapped to an Ising model by easily solving the Ising model.
  • the Ising model was originally studied as a model for magnetic materials, but has recently attracted attention as a model that is mapped from the NP complete problem. However, it is very difficult to solve the Ising model when the number of sites is large. Therefore, quantum annealing machines and quantum adiabatic machines that implement the Ising model have been proposed.
  • Quantum annealing machine solves the Ising model by physically implementing the Ising interaction and Zeeman energy, then sufficiently cooling the system to realize the ground state and observing the ground state.
  • the number of sites is large, the system is trapped in a metastable state in the course of cooling, and the number of metastable states increases exponentially with the number of sites, so the system goes from the metastable state to the ground state. There was a problem that it was difficult to alleviate.
  • the transverse magnetic field Zeeman energy is physically mounted, and then the system is sufficiently cooled to realize a ground state of only the transverse magnetic field Zeeman energy. Then, gradually reduce the transverse magnetic field Zeeman energy and gradually implement the Ising interaction physically, realize the ground state of the system including the Ising interaction and the longitudinal magnetic field Zeeman energy, and observe the ground state By doing so, the Ising model is solved.
  • the transverse magnetic field Zeeman energy must be gradually decreased and the speed at which the Ising interaction is gradually physically implemented must be exponentially slowed with respect to the number of sites. It was.
  • mapping an NP complete problem etc. to an Ising model and implementing the Ising model with a physical spin system the Ising interaction between physically close sites is large, and between physically distant sites
  • the natural law that the Ising interaction is small is a problem.
  • the Ising interaction between physically close sites may be small, and the Ising interaction between physically remote sites may be large. Because.
  • the difficulty of mapping to this natural spin system also makes it difficult to easily solve the NP complete problem and the like.
  • Patent Document 1 A first prior art (see Patent Document 1) and a second prior art for solving the above problem will be described.
  • the NP complete problem can be replaced with a magnetic Ising model, and the magnetic Ising model can be replaced with a network of lasers.
  • the spin direction is reversed (in the case of antiferromagnetic interaction) or in the same direction (strong) so that the energy of the spin arrangement is minimized in the interacting atom pair. Try to point in the case of magnetic interaction).
  • oscillation polarization in the case of the first prior art or phase (in the case of the second prior art) so that the threshold gain of the oscillation mode is minimized in the interacting laser pair.
  • the polarization or phase of oscillation can be optimized so that the threshold gain of the oscillation mode is minimized.
  • the polarization or phase of oscillation can be optimized so that the threshold gain of the oscillation mode is minimized.
  • the polarization or phase of oscillation in one “laser” pair you cannot optimize the polarization or phase of oscillation in “other” laser pairs.
  • the “total” of the network will be searched for a “compromise point” of polarization or phase of oscillation.
  • each oscillation mode is launched so that one oscillation mode is launched across the entire network of lasers. It is necessary to synchronize between the lasers.
  • the pumping current is gradually increased and controlled by each laser, and one oscillation mode in which the threshold gain is the lowest in the entire laser network is started.
  • the polarization or phase is measured, and the spin direction of each atom is measured. Therefore, the problem of trapping in the metastable state in the quantum annealing machine and the mounting speed problem of the Ising interaction in the quantum adiabatic machine can be solved.
  • FIG. 1 An outline of the Ising model quantum computing device of the second prior art is shown in FIG.
  • the Ising interaction mounting unit I12 controls the amplitude and phase of light exchanged between the two surface emitting lasers V1 and V2, thereby simulating the pseudo Ising interaction between the two surface emitting lasers V1 and V2. implementing the magnitude and sign of J 12.
  • the Ising interaction mounting unit I13 controls the amplitude and phase of light exchanged between the two surface emitting lasers V1 and V3, thereby simulating the pseudo Ising interaction between the two surface emitting lasers V1 and V3. implementing the magnitude and sign of J 13.
  • the Ising interaction mounting unit I14 controls the amplitude and phase of light exchanged between the two surface emitting lasers V1 and V4 to thereby simulate the pseudo Ising interaction between the two surface emitting lasers V1 and V4. implementing the magnitude and sign of J 14.
  • the Ising interaction mounting unit I23 controls the amplitude and phase of light exchanged between the two surface emitting lasers V2 and V3, thereby simulating the pseudo Ising interaction between the two surface emitting lasers V2 and V3. implementing the magnitude and sign of J 23.
  • the Ising interaction mounting unit I24 controls the amplitude and phase of light exchanged between the two surface emitting lasers V2 and V4, thereby simulating the pseudo Ising interaction between the two surface emitting lasers V2 and V4. implementing the magnitude and sign of J 24.
  • the Ising interaction mounting unit I34 controls the amplitude and phase of light exchanged between the two surface emitting lasers V3 and V4, thereby simulating the pseudo Ising interaction between the two surface emitting lasers V3 and V4. implementing the magnitude and sign of J 34.
  • the master laser M performs injection locking with respect to the surface emitting lasers V1 to V4, and aligns the oscillation frequencies of the surface emitting lasers V1 to V4 to the same frequency.
  • the Ising spin measurement unit (not shown) rotates counterclockwise the circularly polarized light of the surface emitting lasers V1 to V4 after the surface emitting lasers V1 to V4 reach a steady state in the process of exchanging light. / Measure the upward / downward pseudo Ising spins ⁇ 1 to ⁇ 4 of the surface emitting lasers V1 to V4 by measuring clockwise.
  • the surface emitting laser V since the surface emitting laser V has in-plane anisotropy, it is difficult to oscillate at the same frequency and the same threshold gain for both the left-handed / right-handed circularly polarized light. Therefore, a certain surface emitting laser V oscillates light having a counterclockwise (or clockwise) circularly polarized light as a single laser rather than oscillating light having a clockwise (or counterclockwise) circularly polarized light. It can be easy. Then, the surface emitting laser V oscillates light having clockwise (or counterclockwise) circularly polarized light as a whole for the entire laser network, but the counterclockwise (or clockwise) circularly polarized light is obtained. It may cause a wrong answer to oscillate the light it has.
  • the Ising spin measuring unit (not shown) reaches the steady state in the process of exchanging light of the surface emitting lasers V1 to V4, and then the phase of the linearly polarized light of the surface emitting lasers V1 to V4 is oscillated.
  • the advance / delay By measuring the advance / delay, the upward / downward direction of the pseudo Ising spins ⁇ 1 to ⁇ 4 of the surface emitting lasers V1 to V4 is measured.
  • the counterclockwise / clockwise circularly polarized light is obtained by superposing horizontally polarized light and vertically polarized light with a phase difference of ⁇ ⁇ / 2 with the same weight.
  • the upward / downward information of the Ising spin can be obtained by measuring the phase advance / lag of the vertical polarization without measuring the left / right rotation of the circular polarization and without measuring the horizontal polarization. You can get it. Therefore, the problem of in-plane anisotropy of the surface emitting laser V in the first prior art can be solved.
  • the principle of the second conventional Ising model quantum computing device is shown in FIG.
  • the oscillation phase 0 of the linearly polarized light of the master laser M does not change from the initial state to the steady state.
  • the oscillation phase ⁇ (t) of the linearly polarized light of each surface emitting laser V is ideally 0 in the initial state, which is the same as the oscillation phase 0 of the linearly polarized light of the master laser M, and in the steady state, the master It is ⁇ ⁇ / 2 which is shifted from the oscillation phase 0 of the linearly polarized light of the laser M.
  • each Ising interaction mounting unit makes it easy to start an oscillation mode in which the oscillation phases ⁇ (stationary) of the two surface emitting lasers V have different signs and the deviation is ⁇ .
  • each Ising interaction mounting unit makes it easy to start an oscillation mode in which the oscillation phases ⁇ (stationary) of the two surface emitting lasers V have the same sign and the deviation is zero.
  • one oscillation mode is started up as a whole, and in each pair of surface-emitting lasers V, the above-described oscillation mode may actually start up, but it does not necessarily start up. Sometimes not.
  • the oscillation phase ⁇ (t) of the linearly polarized light of each surface emitting laser V is ideally the same 0 as the oscillation phase 0 of the linearly polarized light of the master laser M in the initial state. There is a slight deviation from the oscillation phase 0 of the linearly polarized light of the master laser M.
  • a certain surface-emitting laser V as a single laser oscillates light having an oscillation phase delayed (or advanced) from the oscillation phase 0 of the linear polarization of the master laser M rather than the linear polarization of the master laser M. It may be easy to oscillate light having an oscillation phase that is advanced (or delayed) from the oscillation phase 0.
  • the surface emitting laser V as the whole laser network, oscillates light having an oscillation phase delayed (or advanced) from the oscillation phase 0 of the linearly polarized light of the master laser M.
  • An erroneous answer may be generated that oscillates light having an oscillation phase that is advanced (or delayed) from the oscillation phase 0 of the linearly polarized light of the laser M.
  • an object of the present invention is to prevent a read error and simplify a circuit configuration in an Ising model quantum computing device.
  • a plurality of pseudo spin pulses having the same oscillation frequency are oscillated using parametric oscillation, and the provisional measurement results of the oscillation phases of the plurality of pseudo spin pulses are used to Measure the pseudo spin of multiple pseudo spin pulses based on the final measurement result of the oscillation phase of multiple pseudo spin pulses by implementing feedback of magnitude and sign of interaction involving pseudo spin pulses It was decided to.
  • the present invention provides a parametric oscillator that parametrically oscillates a plurality of pseudo spin pulses that correspond to a plurality of spins of the Ising model and have the same oscillation frequency, and circulates the plurality of pseudo spin pulses.
  • a plurality of pseudo spin pulses by tentatively measuring the phase of the plurality of pseudo spin pulses each time the plurality of pseudo spin pulses propagate around the ring resonator;
  • a provisional spin measurement unit that provisionally measures pseudo spin of a pulse, a coupling coefficient of the Ising model related to a certain pseudo spin pulse, and other pseudo spins provisionally measured by the provisional spin measurement unit Interaction calculation that tentatively calculates the interaction involving the pseudo spin pulse based on the pseudo spin of the pulse And by controlling the amplitude and phase of light injected with respect to the certain pseudo spin pulse, the magnitude of the interaction involving the certain pseudo spin pulse tentatively calculated by the interaction calculation unit and A plurality of pseudo spin pulses in a process in which a feedback loop configured by an interaction implementation unit that provisionally implements a code, the provisional spin measurement unit, the interaction calculation unit, and the interaction implementation unit is repeated.
  • a pseudo spin measurement unit that measures the pseudo spins of the plurality of pseudo spin pulses by measuring the phases of the plurality of pseudo spin pulses
  • the oscillation phase in the initial state of each pseudo spin pulse has two types of oscillation phases of the steady state of each pseudo spin pulse. Of these, it is never close to one phase and far from the other. Therefore, a read error can be prevented in the Ising model quantum computing device.
  • the first and second conventional techniques require M surface emitting lasers, whereas in the present invention, it is sufficient to prepare only one parametric oscillator.
  • the first and second prior arts require M (M-1) / 2 as many Ising interaction mounting units, whereas the present invention provides feedback. It is sufficient to prepare only one loop. Therefore, the circuit configuration can be simplified in the Ising model quantum computing device.
  • the interaction calculation unit includes the coupling coefficient of three or more bodies of the Ising model related to the certain pseudo spin pulse and the other pseudo spins tentatively measured by the provisional spin measurement unit. Based on the pseudo spin of the pulse, three or more interactions involving the pseudo spin pulse are tentatively calculated, and the interaction implementation unit is injected into the pseudo spin pulse. By controlling the amplitude and phase of light, the magnitude and sign of three or more interactions involving the pseudo spin pulse tentatively calculated by the interaction calculator are provisionally implemented. Ising model quantum computing device.
  • three or more interactions of the Ising model can be implemented within the range of linear superposition of each pseudo spin pulse and each injection light pulse.
  • the parametric oscillator parametrically oscillates a plurality of local oscillation pulses that have the same oscillation frequency as the plurality of pseudo spin pulses and form a one-to-one pair.
  • the provisional spin measurement unit uses a part of the plurality of local oscillation pulses forming a one-to-one pair with respect to a part of the plurality of pseudo spin pulses.
  • the interaction implementation unit injects a local oscillation pulse in which a one-to-one pair is formed and a part of the amplitude and phase thereof are controlled with respect to the pseudo spin pulse, and the pseudo scan pulse is injected.
  • An Ising model is characterized in that a homodyne detection is performed using a part of the plurality of local oscillation pulses forming a one-to-one pair with respect to a part of the plurality of pseudo spin pulses. It is a quantum computing device.
  • a specific configuration is used for feedback implementation of the magnitude and sign of the interaction involving each pseudo spin pulse using the provisional measurement results of the oscillation phases of a plurality of pseudo spin pulses. Can be done. According to this configuration, since the pseudo spin pulse and the local oscillation pulse are propagated around the ring resonator as a pair as compared with the following configuration, the fluctuation of the optical path length from the pulse generator to the spin measurement unit is caused. Can eliminate the problem. Therefore, a read error can be prevented in the Ising model quantum computing device.
  • the present invention also provides a pulse generator that generates a local oscillation pulse having an angular frequency ⁇ , and a second harmonic generator that generates a pulse having an angular frequency 2 ⁇ using the local oscillation pulse having the angular frequency ⁇ .
  • the parametric oscillator causes the plurality of pseudo spin pulses to parametrically oscillate using a pulse having the angular frequency 2 ⁇
  • the provisional spin measurement unit includes the plurality of pseudo spin pulses.
  • homodyne detection is performed using a local oscillation pulse having the angular frequency ⁇
  • the interaction implementation unit is configured to control the amplitude and phase of the angular frequency with respect to the certain pseudo spin pulse.
  • a local oscillation pulse having ⁇ is injected, and the pseudo spin measurement unit has the angular frequency ⁇ with respect to a part of the plurality of pseudo spin pulses. That is Ising model quantum computation device which is characterized in that the homodyne detection using a local oscillator pulse.
  • a specific configuration is used for feedback implementation of the magnitude and sign of the interaction involving each pseudo spin pulse using the provisional measurement results of the oscillation phases of a plurality of pseudo spin pulses. Can be done.
  • the pseudo spin pulse and the local oscillation pulse are paired and do not circulate around the ring resonator, so that crosstalk between the pseudo spin pulse and the local oscillation pulse is reduced. It is possible to eliminate the pulse in-phase unit for in-phase all the local oscillation pulses. Therefore, a read error can be prevented in the Ising model quantum computing device.
  • the interaction implementation unit controls the amplitude of light injected with respect to the certain pseudo spin pulse so as to be larger in the initial stage of the calculation process and smaller in the final stage of the calculation process.
  • the reading result of each pseudo spin pulse can be made as correct as possible in the initial stage of the calculation process. Even if the reading result of one pseudo spin pulse is not the correct answer at the initial stage of the calculation process, if the correct answer about the other pseudo spin pulse is fed back, all the pseudo spin pulses will be output at the final stage of the calculation process. You can get the right answer about the pulse. Therefore, a read error can be prevented in the Ising model quantum computing device.
  • the present invention further comprises a provisional amplitude measurement unit that provisionally measures the amplitude of the plurality of pseudo spin pulses each time the plurality of pseudo spin pulses propagate around the ring resonator,
  • the parametric oscillator has an amplitude of a pump pulse used for parametric oscillation so that the amplitudes of the plurality of pseudo spin pulses are equal based on the amplitudes of the plurality of pseudo spin pulses measured by the provisional amplitude measurement unit.
  • a pseudo spin pulse of the nth group which corresponds to a spin of the nth group (n is an integer of 1 or more) among the plurality of spins of the Ising model, propagates around the ring resonator.
  • the n-th Ising model quantum computation device according to claim 1 is provided in parallel, and the n-th Ising model quantum computation device includes the provisional spin measurement unit provisionally.
  • a provisional spin sharing unit that shares information about pseudo spins of the pseudo spin pulses of the nth group measured in an artificial manner among Ising model quantum computing devices provided in parallel. Ising model quantum parallel computing device.
  • the present invention also provides a parametric oscillation step for parametrically oscillating a plurality of pseudo spin pulses corresponding to a plurality of spins of the Ising model and having the same oscillation frequency, and the plurality of pseudo spin pulses are a ring resonator.
  • the present invention also provides a parametric oscillation step for parametrically oscillating a plurality of pseudo spin pulses corresponding to a plurality of spins of the Ising model and having the same oscillation frequency, and the plurality of pseudo spin pulses are a ring resonator.
  • the plurality of pseudo spin pulses reach a steady state.
  • the present invention can prevent a read error and simplify a circuit configuration in an Ising model quantum computing device.
  • the configuration of the Ising model quantum computation device Q of the present invention is shown in FIG.
  • the Ising Hamiltonian is expressed by Equation 3 assuming that one to three interactions are included.
  • the parametric oscillator 1 parametrically oscillates a plurality of pseudo spin pulses SP1 to SP4 corresponding to a plurality of spins ⁇ 1 to ⁇ 4 of the Ising model and having the same oscillation frequency.
  • the ring resonator 2 propagates a plurality of pseudo spin pulses SP1 to SP4 in a circular manner.
  • the plurality of pseudo spin pulses SP1 to SP4 enter a feedback loop described later in the order of SP1, SP2, SP3, SP4, SP1, SP2, SP3, SP4,.
  • the provisional spin measurement unit 3 tentatively measures the phases of the plurality of pseudo spin pulses SP1 to SP4 each time the plurality of pseudo spin pulses SP1 to SP4 propagate around the ring resonator 2, thereby The pseudo spins ⁇ 1 to ⁇ 4 of the pseudo spin pulses SP1 to SP4 are temporarily measured. Specifically, the provisional spin measurement unit 3 performs homodyne detection using a local oscillation pulse LO described later with reference to FIGS. 6 and 7.
  • the interaction calculation unit 4 includes Ising model coupling coefficients ⁇ i , J ij , K ijk related to a pseudo spin pulse SPi and other pseudo spin pulses SPj, SPk tentatively measured by the provisional spin measurement unit 3. Based on the pseudo spins ⁇ j and ⁇ k , the interaction involving a pseudo spin pulse SPi (proportional coefficient ⁇ i + ⁇ J ij ⁇ j + ⁇ K ijk ⁇ j ⁇ k ) with respect to ⁇ i is tentatively calculated.
  • the interaction calculation unit 4 inputs the coupling coefficients ⁇ i , J ij , and K ijk of the Ising model.
  • the interaction implementation unit 5 controls the amplitude and phase of light injected with respect to a certain pseudo spin pulse SPi, thereby allowing mutual interaction involving a pseudo spin pulse SPi temporarily calculated by the interaction calculation unit 4.
  • the magnitude and sign of the action (proportional coefficient ⁇ i + ⁇ J ij ⁇ j + ⁇ K ijk ⁇ j ⁇ k ) with respect to ⁇ i are provisionally implemented.
  • the interaction mounting unit 5 generates an injection light pulse by using a local oscillation pulse LO, which will be described later with reference to FIGS.
  • the pseudo spin measurement unit 6 is configured such that a plurality of pseudo spin pulses SP1 to SP4 are in a steady state in a process in which a feedback loop composed of the provisional spin measurement unit 3, the interaction calculation unit 4, and the interaction implementation unit 5 is repeated. After reaching, the pseudo spins ⁇ 1 to ⁇ 4 of the plurality of pseudo spin pulses SP1 to SP4 are measured by measuring the phases of the plurality of pseudo spin pulses SP1 to SP4. Specifically, the pseudo spin measurement unit 6 performs homodyne detection using a local oscillation pulse LO described later with reference to FIGS. 6 and 7.
  • the pseudo spin measurement unit 6 outputs the spins ⁇ 1 to ⁇ 4 of the Ising model
  • the Ising model is demapped to an NP complete problem or the like.
  • the pumping current is gradually increased and controlled by the parametric oscillator 1, and one oscillation mode in which the threshold gain is the lowest in the entire network of the plurality of pseudo spin pulses SP1 to SP4 is started up.
  • the oscillation phase of SP4 is measured, and the spin direction of each atom corresponding to the plurality of pseudo spin pulses SP1 to SP4 is measured.
  • FIG. 5 shows the principle of the Ising model quantum computing device Q of the present invention.
  • the oscillation phase 0 of the local oscillation pulse LO does not change from the initial state to the steady state.
  • the oscillation phase ⁇ (t) of each pseudo spin pulse SP is 0 or ⁇ ⁇ in the initial state (each pseudo spin pulse SP is parametrically oscillated by the parametric oscillator 1 and is in a squeezed state.
  • the oscillation phase is 0 in the initial state or ⁇ ⁇ / 2 shifted from ⁇ ⁇ .
  • the interaction mounting unit 5 makes it easy for the oscillation mode to rise such that the oscillation phase ⁇ (steady state) of the pseudo spin pulse SP is ⁇ / 2.
  • the interaction mounting unit 5 makes it easy to start an oscillation mode in which the oscillation phase ⁇ (steady state) of the pseudo spin pulse SP is + ⁇ / 2.
  • the interaction mounting unit 5 makes it easy to start an oscillation mode in which the oscillation phases ⁇ (stationary) of the two pseudo spin pulses SP have different signs.
  • the interaction mounting unit 5 makes it easy to start an oscillation mode in which the oscillation phases ⁇ (stationary) of the two pseudo spin pulses SP have the same sign.
  • the interaction mounting unit 5 (1) the oscillation phase ⁇ (stationary) of the three pseudo spin pulses SP is ⁇ / 2, or (2) the oscillation of the two pseudo spin pulses SP.
  • the oscillation mode is made to rise easily such that the phase ⁇ (stationary) is + ⁇ / 2 and the oscillation phase ⁇ (stationary) of one pseudo spin pulse SP is ⁇ / 2.
  • the interaction mounting unit 5 (1) the oscillation phase ⁇ (stationary) of the three pseudo spin pulses SP is + ⁇ / 2, or (2) the oscillation phase of the two pseudo spin pulses SP.
  • the oscillation mode is set so that the oscillation mode ⁇ (steady) is ⁇ / 2 and the oscillation phase ⁇ (stationary) of one pseudo spin pulse SP is + ⁇ / 2.
  • one oscillation mode is caused to rise as a whole, and in each pseudo spin pulse SP, the above-described oscillation mode may actually rise, or may not necessarily rise. Sometimes not.
  • is the oscillation frequency.
  • Q is the resonator Q value of each pseudo spin pulse SP.
  • P is the number of electrons injected per second for each pseudo spin pulse SP to realize an inversion distribution, that is, a pumping rate.
  • -(1/2) ( ⁇ / Q) A i (t) in Expression 4 indicates a rate at which the oscillation intensity A i (t) decreases with time due to the resonator loss.
  • ⁇ sp is the electron lifetime due to spontaneous emission to other oscillation modes other than the laser oscillation mode.
  • is a coupling constant to the laser oscillation mode in the total spontaneous emission light.
  • E Ci (t) A i (t) in Equation 4 indicates a rate at which the oscillation intensity A i (t) increases with time due to stimulated emission.
  • E Ci (t) in Expression 4 indicates a rate at which the oscillation intensity A i (t) increases with time due to spontaneous emission.
  • Equations 4 and 5 are terms related to one-body interaction.
  • Interaction mounting portion 5 with respect to pseudo spin pulse SPi, a method of generating a pump light pulse for implementing (proportionality factor lambda i for sigma i) interaction of a body will be described.
  • Interaction calculation unit 4 calculates (proportionality factor lambda i for sigma i) interaction of one body.
  • ⁇ i is positive
  • the interaction mounting unit 5 performs phase modulation to delay the oscillation phase by ⁇ / 2 with respect to the local oscillation pulse LO (oscillation phase 0), and an amplitude proportional to
  • Modulation is performed to generate an injection light pulse.
  • ⁇ i is negative, the interaction mounting unit 5 performs phase modulation for increasing the oscillation phase by ⁇ / 2 with respect to the local oscillation pulse LO (oscillation phase 0), and an amplitude proportional to
  • Modulation is performed to generate an injection light pulse.
  • Equation 4 is an injection for implementing one-body interaction (proportional coefficient ⁇ i with respect to ⁇ i ) for the pseudo spin pulse SPi.
  • A is a proportionality constant.
  • Equation 5 (1 / A i (t)) ( ⁇ / Q)
  • a ⁇ i cos ⁇ i (t) ⁇ in Equation 5 is an interaction of one body (proportional coefficient for ⁇ i with respect to the pseudo spin pulse SPi. It shows the rate at which the oscillation phase ⁇ i (t) at the i-th site changes over time when an injection light pulse for implementing ⁇ i ) is generated.
  • A is a proportionality constant.
  • Equations 4 and 5 are terms related to the interaction between the two bodies.
  • a method in which the interaction mounting unit 5 generates an injection light pulse for mounting two interactions (proportional coefficient ⁇ J ij ⁇ j with respect to ⁇ i ) with respect to the pseudo spin pulse SPi will be described.
  • the provisional spin measurement unit 3 measures the oscillation phase ⁇ j (t) and the pseudo spin ⁇ j of the pseudo spin pulse SPj before this round.
  • the interaction calculation unit 4 calculates an interaction between two bodies (proportional coefficient ⁇ J ij ⁇ j with respect to ⁇ i ).
  • the interaction mounting unit 5 further shifts the oscillation phase to ⁇ j (t) with respect to the local oscillation pulse LO (oscillation phase 0).
  • Phase modulation is performed for dephasing , amplitude modulation proportional to
  • the interaction mounting unit 5 shifts the oscillation phase to ⁇ j (t) with respect to the local oscillation pulse LO (oscillation phase 0). Phase modulation without dephasing is performed, amplitude modulation proportional to
  • the interaction mounting unit 5 generates the injection light pulse as described above for all combinations between the i and jth sites.
  • Equation 4 is an interaction between two bodies (with respect to ⁇ i) with respect to the pseudo spin pulse SPi.
  • the injection light pulse for implementing the proportionality coefficient ⁇ J ij ⁇ j ) is generated, the rate at which the oscillation intensity A i (t) at the i-th site changes over time is shown.
  • ⁇ (j ⁇ i) in Expression 4 indicates contributions from all sites (jth) other than the ith site in the ith site.
  • Equation 5 ⁇ (1 / A i (t)) ( ⁇ / Q) (1/2) J ij Asin ⁇ j (t) ⁇ i (t) ⁇ in Equation 5 is given by the pseudo spin pulse SPi.
  • the rate at which the oscillation phase ⁇ i (t) at the i-th site changes over time when an injection light pulse is generated to implement the two-body interaction (proportional coefficient ⁇ J ij ⁇ j with respect to ⁇ i ) Indicates.
  • ⁇ (j ⁇ i) in Expression 5 represents contributions from all sites (jth) other than the ith site in the ith site.
  • Interaction mounting portion 5 with respect to pseudo spin pulse SPi, illustrating a method of generating a pump light pulse for implementing the (proportional coefficient ⁇ K ijk ⁇ j ⁇ k for sigma i) interaction of three bodies.
  • the provisional spin measurement unit 3 measures the oscillation phases ⁇ j (t) and ⁇ k (t) of the pseudo spin pulses SPj and SPk and the pseudo spins ⁇ j and ⁇ k before this round. .
  • the interaction calculation unit 4 calculates the interaction of three bodies (proportional coefficient ⁇ K ijk ⁇ j ⁇ k with respect to ⁇ i ). When K ijk is positive between the i, j, and k th sites, the interaction mounting unit 5 moves the oscillation phase to ⁇ jk (t) with respect to the local oscillation pulse LO (oscillation phase 0). Further, phase modulation is performed to reverse the phase, and amplitude modulation proportional to
  • the interaction implementation unit 5 shifts the oscillation phase to ⁇ jk (t) with respect to the local oscillation pulse LO (oscillation phase 0). Phase modulation without further dephasing is performed, amplitude modulation proportional to
  • the interaction mounting unit 5 generates the injection light pulse as described above for all combinations between the i, j, and kth sites. Note that ⁇ jk (t) will be described later using Expression 12.
  • Equation 5 K ijk Asin ⁇ jk (t) ⁇ i (t) ⁇ in Equation 5 is expressed as follows for the pseudo spin pulse SPi:
  • the oscillation phase ⁇ i (t) at the i-th site changes with time. Indicates the rate to perform.
  • ⁇ (j, k ⁇ i) in Expression 5 represents contributions from all sites (j, kth) other than the i-th site in the i-th site.
  • F A , F ⁇ , and F N indicate noise with respect to the oscillation intensity A i (t), the oscillation phase ⁇ i (t), and the carrier inversion distribution number difference N Ci (t) at the i-th site, respectively.
  • Equation 4 becomes Equation 8. If Formula 8 is transformed ignoring F A , Formula 9 is obtained.
  • pseudo spin pulse SPi to implement the interaction of two bodies (proportional coefficient .SIGMA.j ij sigma j for sigma i) is sufficient pseudo spin pulse SPi, a SPj only superimposed linearly .
  • pseudo spin pulse SPi to implement the (proportional coefficient ⁇ K ijk ⁇ j ⁇ k for sigma i) interaction of three bodies are superimposed pseudo spin pulse SPi, SPj, the SPk linear It is not enough.
  • Equation 14 is obtained, which is expressed as the overall threshold gain ⁇ E Ci of the laser system.
  • Expression 15 is established.
  • Expressions 16 and 17 are established.
  • Expression 14 becomes Expression 18.
  • the oscillation phase state ⁇ i ⁇ that realizes the minimum threshold gain ⁇ E Ci is selected as the entire laser system. That is, one specific oscillation mode is selected for the entire laser system. Then, due to the competition between the oscillation modes, one specific oscillation mode suppresses the other oscillation modes. That is, as a whole laser system, ⁇ E Ci of Expression 18 is minimized.
  • ( ⁇ / Q) M in Expression 18 is constant for the entire laser system. Therefore, in the entire laser system, ⁇ i ⁇ i + ⁇ J ij ⁇ i j + ⁇ K ijk ⁇ i ⁇ j ⁇ k is minimized. That is, the ground state that minimizes the Ising Hamiltonian of Equation 3 is realized.
  • the difference between the minimum threshold gain and the next smallest threshold gain is set to the saturation gain E C and photon determined by the spontaneous emission rate. It is necessary to make it sufficiently larger than ⁇ ( ⁇ / Q) (1 / R), which is the difference in the attenuation rate ⁇ / Q.
  • R I / I th ⁇ 1 is a normalized pump rate, and I and I th are an injection current and a laser oscillation threshold value, respectively. Therefore, calculation accuracy can be improved by reducing ⁇ and increasing R.
  • the first and second conventional technologies require M surface emitting lasers V, whereas in the present invention, only one parametric oscillator 1 is prepared. It's enough.
  • the first and second prior arts require M (M-1) / 2 as many Ising interaction mounting units, whereas the present invention provides feedback. It is sufficient to prepare only one loop. Therefore, the circuit configuration of the Ising model quantum computing device Q can be simplified.
  • three or more interactions of the Ising model can be implemented within the range of linear superposition of each pseudo spin pulse SPi and each injection light pulse.
  • ⁇ j ⁇ k sin ⁇ jk (t) as shown in Equation 12.
  • ⁇ j ⁇ k sin ⁇ jk (t) as shown in Equation 12.
  • ⁇ j ⁇ k sin ⁇ jk (t) as shown in Equation 12.
  • ⁇ j ⁇ k sin ⁇ jk (t)
  • is ( N-1) product of ⁇
  • the parametric oscillator 1 parametrically oscillates a plurality of local oscillation pulses LO1 to LO (N) having the same oscillation frequency as the plurality of pseudo spin pulses SP1 to SP (N) and forming a one-to-one pair.
  • the ring resonator 2 propagates a plurality of local oscillation pulses LO1 to LO (N) in a circular manner.
  • the plurality of pseudo spin pulses SP1 to SP (N) and the plurality of local oscillation pulses LO1 to LO (N) are LO1, SP1,..., LO (N), SP (N), LO1, SP1,. Enter the feedback loop in the order of LO (N), SP (N),.
  • the plurality of pseudo spin pulses SP1 to SP (N) are parametrically oscillated using pump pulses in the vicinity of the oscillation threshold.
  • the plurality of local oscillation pulses LO1 to LO (N) are parametrically oscillated using a pump pulse sufficiently above the oscillation threshold.
  • the pulse in-phase unit 7 makes the phases of the plurality of local oscillation pulses LO1 to LO (N) in phase from a state including both the positive phase and the negative phase to a state including one of the positive phase and the negative phase. . Therefore, the pulse in-phase unit 7 can set the phase of the plurality of local oscillation pulses LO1 to LO (N) to 0 as shown in FIG.
  • the pulse in-phase unit 7 includes a delay line and a phase modulator for two pulses (adjacent local oscillation pulses LO sandwich one pseudo spin pulse SP).
  • the pulse in-phase unit 7 should phase-modulate only the plurality of local oscillation pulses LO1 to LO (N), and not to phase-modulate the plurality of pseudo spin pulses SP1 to SP (N). Switch the instrument on / off.
  • the provisional spin measurement unit 3 uses a part of the plurality of local oscillation pulses LO1 to LO (N) forming a one-to-one pair with respect to a part of the plurality of pseudo spin pulses SP1 to SP (N). To perform homodyne detection.
  • the provisional spin measurement unit 3 measures the cos component and the sin component, and the measurement unit for each component has one pulse (a pseudo spin pulse SP and a local oscillation pulse LO that form a one-to-one pair are included). , Adjacent delay lines).
  • the interaction calculation unit 4 is, for example, an FPGA (Field Programmable Gate Array), and inputs coupling coefficients ⁇ i , J ij , and K ijk of the Ising model.
  • the interaction implementation unit 5 injects a local oscillation pulse LOi whose amplitude and phase are controlled by forming a one-to-one pair for a pseudo spin pulse SPi.
  • the interaction mounting unit 5 is placed on a delay line for one pulse (the pseudo spin pulse SP and the local oscillation pulse LO forming a one-to-one pair are adjacent to each other).
  • the pseudo spin measurement unit 6 is shared with the provisional spin measurement unit 3, and a plurality of local oscillation pulses forming a one-to-one pair with a part of the plurality of pseudo spin pulses SP1 to SP (N). Homodyne detection is performed using a part of LO1 to LO (N) and the spin ⁇ of the Ising model is output.
  • the feedback implementation can be performed using a specific configuration.
  • the pseudo spin pulse SPi and the local oscillation pulse LOi are paired and propagate around the ring resonator 2.
  • the problem of fluctuation of the optical path length to the spin measuring units 3 and 6 can be eliminated. Therefore, a read error can be prevented in the Ising model quantum computing device Q.
  • FIG. 7 shows the configuration of an Ising model quantum computation device Q according to the second embodiment.
  • the pulse generator 8 generates a local oscillation pulse LO having an angular frequency ⁇ .
  • the second harmonic generator 9 generates a pulse having an angular frequency 2 ⁇ using a local oscillation pulse LO having an angular frequency ⁇ .
  • the parametric oscillator 1 causes a plurality of pseudo spin pulses SP1 to SP (N) to parametrically oscillate using a pulse having an angular frequency of 2 ⁇ .
  • the plurality of pseudo spin pulses SP1 to SP (N) enter the feedback loop in the order of SP1,..., SP (N), SP1,.
  • the plurality of pseudo spin pulses SP1 to SP (N) are parametrically oscillated using pump pulses in the vicinity of the oscillation threshold.
  • the pulse generator 8 includes a mode-locked laser, for example. Therefore, the pulse generator 8 can set the phase of the local oscillation pulse LO having the angular frequency ⁇ to 0 as shown in FIG.
  • the provisional spin measurement unit 3 performs homodyne detection on a part of the plurality of pseudo spin pulses SP1 to SP (N) using a local oscillation pulse LO having an angular frequency ⁇ .
  • the provisional spin measurement unit 3 measures the cos component and the sin component.
  • the interaction calculation unit 4 is, for example, an FPGA (Field Programmable Gate Array), and inputs coupling coefficients ⁇ i , J ij , and K ijk of the Ising model.
  • the interaction mounting unit 5 injects a local oscillation pulse LO having an angular frequency ⁇ whose amplitude and phase are controlled with respect to a certain pseudo spin pulse SPi.
  • the pseudo spin measurement unit 6 is shared with the provisional spin measurement unit 3 and uses a local oscillation pulse LO having an angular frequency ⁇ for a part of the plurality of pseudo spin pulses SP1 to SP (N). Perform homodyne detection and output Ising model spin ⁇ .
  • the feedback implementation can be performed using a specific configuration.
  • the pseudo spin pulse SPi and the local oscillation pulse LO are paired and do not propagate around the ring resonator 2, so that the pseudo spin pulse SPi
  • the crosstalk between the local oscillation pulses LOi can be eliminated, and the pulse in-phase unit 7 for in-phase all the local oscillation pulses LOi can be eliminated. Therefore, a read error can be prevented in the Ising model quantum computing device Q.
  • FIG. 8 and FIG. 9 show the calculation results and time development of the Ising model quantum calculation device Q including the interaction of two bodies as simulation results of the rate equation of Equation 4-7.
  • the Hamiltonian of the Ising model is shown in the upper part of FIG.
  • the time required from the initial state to the steady state was ⁇ 40 ⁇ 100 ⁇ s.
  • the time on the horizontal axis in FIG. 9 is a time normalized by the optical lifetime of the resonator (100 ⁇ s in the case of the ring resonator 2 constituted by a 2 km optical fiber).
  • FIG. 10 and FIG. 11 show the calculation results and time evolution of the Ising model quantum calculation device Q including the interaction of the four bodies as the simulation results of the rate equation of Equation 4-7.
  • the Hamiltonian of the Ising model is shown in the upper part of FIG.
  • the time required from the initial state to the steady state was ⁇ 80 ⁇ 100 ⁇ s.
  • the time on the horizontal axis in FIG. 11 is a time normalized by the optical lifetime of the resonator (100 ⁇ s in the case of the ring resonator 2 constituted by a 2 km optical fiber).
  • the readout result of each pseudo spin pulse SP is not necessarily a correct answer.
  • the initial stage of the calculation process if an incorrect answer is fed back, The question arises that the correct answer cannot be obtained.
  • the interaction mounting unit 5 controls the amplitude of light injected with respect to a certain pseudo spin pulse SP so as to be larger in the initial stage of the calculation process and smaller in the final stage of the calculation process. That is, the interaction mounting unit 5 controls the proportionality constant A in Equations 4 and 5 so as to increase as the initial stage of the calculation process decreases, and decreases as the final stage of the calculation process.
  • the reading result of each pseudo spin pulse SP can be made as correct as possible. Even if the readout result of one pseudo spin pulse SP is not the correct answer in the initial stage of the calculation process, if the correct answer for the other pseudo spin pulse SP is fed back, all pseudo The correct answer for the typical spin pulse SP can be obtained. That is, in the Ising model quantum computation device Q, it is possible to prevent a read error.
  • Fig. 12 shows the time evolution when the light injection intensity is constant at all stages of the calculation process. In the case of FIG. 12, an unstable oscillation state occurs in the steady state.
  • Fig. 13 shows the time evolution when the light injection intensity is increased in the initial stage of the calculation process.
  • the unstable oscillation state disappears in the steady state by attenuating the light injection intensity immediately before the oscillation threshold. Then, by increasing the light injection intensity in the initial stage, even if an incorrect answer is obtained in the initial stage for a certain pseudo-spin pulse SP, a correct answer can be obtained in the final stage.
  • the spin measuring units 3 and 6 tentatively measure the amplitudes of the plurality of pseudo spin pulses SP each time the plurality of pseudo spin pulses SP propagate around the ring resonator 2. Then, the parametric oscillator 1 uses the pump pulses used for parametric oscillation so that the amplitudes of the plurality of pseudo spin pulses SP are equal based on the amplitudes of the plurality of pseudo spin pulses SP measured by the spin measuring units 3 and 6. The amplitude of the feedback is controlled.
  • FIG. 14 shows the time evolution when the intensities of a plurality of pseudo spin pulses are not uniform.
  • the intensity of the pump pulse is controlled to be the same for each pseudo spin pulse SP regardless of the intensity of each pseudo spin pulse SP. Therefore, the intensity of each pseudo spin pulse SP is not always uniform.
  • FIG. 15 shows the calculation accuracy when the intensities of a plurality of pseudo spin pulses are not uniform.
  • the existence probability (indicated by a histogram) in a state where the Ising energy (indicated by a line graph) is low should be high originally, but is low in the case of FIG.
  • FIG. 16 shows the time evolution when the intensities of a plurality of pseudo spin pulses are made uniform.
  • the intensity of the pump pulse is controlled (similar or different) for each pseudo spin pulse SP according to the intensity of each pseudo spin pulse SP. Therefore, the intensities of the pseudo spin pulses SP can be reliably aligned.
  • FIG. 17 shows the calculation accuracy when the intensities of a plurality of pseudo spin pulses are aligned.
  • the existence probability (indicated by a histogram) in a state where the Ising energy (indicated by a line graph) is low should be high originally, but is high in the case of FIG.
  • the spin measurement unit 6), the parametric oscillator 1 and the interaction mounting unit 5 are arranged in this order in the circumferential propagation direction of the pseudo spin pulse SP in the ring resonator 2.
  • Parametric oscillator 1 oscillates a plurality of pseudo spin pulses SP (step S1).
  • the provisional spin measurement unit 3 provisionally measures the pseudo spin ⁇ (step S2).
  • the interaction calculation unit 4 tentatively calculates the Ising interaction (step S3).
  • the parametric oscillator 1 parametrically amplifies the plurality of pseudo spin pulses SP (step S4).
  • the interaction implementation unit 5 provisionally implements the Ising interaction (step S5). Steps S3 and S4 may be switched in order.
  • step S6 If the plurality of pseudo spin pulses SP do not reach the steady state (NO in step S6), the loop procedure of steps S2 to S6 is repeated. If the plurality of pseudo spin pulses SP have reached a steady state (YES in step S6), pseudo spin measurement unit 6 finally measures pseudo spin ⁇ (step S7).
  • the parametric amplification step S4 is inserted between the provisional spin measurement step S2 and the interaction implementation step S5, and although there is a time lag to some extent, an interaction without delay between the Ising model sites is implemented. can do.
  • the parametric oscillator 1 and the provisional spin measurement unit 3 are arranged in this order in the circumferential propagation direction of the pseudo spin pulse SP in the ring resonator 2.
  • the parametric oscillator 1 causes a plurality of pseudo spin pulses SP to oscillate parametrically (step S11).
  • the provisional spin measurement unit 3 provisionally measures the pseudo spin ⁇ (step S12).
  • the interaction calculator 4 provisionally calculates the Ising interaction (step S13).
  • the interaction implementation unit 5 provisionally implements the Ising interaction (step S14).
  • the parametric oscillator 1 parametrically amplifies the plurality of pseudo spin pulses SP (step S15). Steps S13 and S15 are not switched in order.
  • step S16 If the plurality of pseudo spin pulses SP do not reach the steady state (NO in step S16), the loop procedure of steps S12 to S16 is repeated. If the plurality of pseudo spin pulses SP have reached a steady state (YES in step S16), pseudo spin measurement unit 6 finally measures pseudo spin ⁇ (step S17).
  • the Ising model quantum parallel computing device P includes first, second,..., Nth Ising model quantum computing devices Q1, Q2,.
  • the first, second,..., Nth Ising model quantum computing devices Q1, Q2,..., Qn are the Ising model quantum computing devices Q shown in FIGS.
  • the Ising model quantum calculation method shown in FIGS. 18 and 19 can be applied.
  • the first, second,..., Nth Ising model quantum computing devices Q1, Q2,..., Qn the first group and the second group among the plurality of spins ⁇ of the Ising model.
  • the n-th group which correspond to the spin ⁇ of the n-th group, propagate around the ring resonators 2. .
  • the provisional spin sharing unit 10 includes provisional spin measurement units 3 included in the first, second,..., Nth Ising model quantum computing devices Q1, Q2,. Information of the pseudo spins ⁇ of the first group, the second group,..., The nth group of pseudo spin pulses SP measured in parallel, and Ising model quantum computing devices Q1, Q2,. .. Sharing between Qn.
  • the Ising model quantum parallel computing device P shown in FIG. 20 will be described.
  • Information on the pseudo spin ⁇ of the pseudo spin pulse SP of the n-th group is output to the provisional spin sharing unit 10 and each interaction calculation unit 4.
  • the provisional spin sharing unit 10 performs the quantum calculation of the first Ising model using information on the pseudo spin ⁇ of the pseudo spin pulse SP of the other group (second group, n group, etc.) than the first group. The result is output to the interaction calculation unit 4 of the device Q1.
  • the provisional spin sharing unit 10 performs the quantum calculation of the second Ising model using information on the pseudo spin ⁇ of the pseudo spin pulse SP of the other group (the first group, the nth group, etc.) than the second group. It outputs to the interaction calculation part 4 of the apparatus Q2. ...
  • the provisional spin sharing unit 10 obtains information on the pseudo spin ⁇ of the pseudo spin pulse SP of the other group (the first group, the second group, etc.) than the nth group, and the nth Ising model. To the interaction calculation unit 4 of the quantum calculation device Qn.
  • the interaction calculation unit 4 of the first Ising model quantum computation device Q1 holds the coupling coefficient of the Ising model related to the first group of pseudo spin pulses SP, and the first group of pseudo spin pulses SP. Tentatively calculate the interaction involving.
  • the interaction calculation unit 4 of the second Ising model quantum computation device Q2 holds the coupling coefficient of the Ising model related to the second group of pseudo spin pulses SP, and the second group of pseudo spin pulses SP.
  • the interaction calculation unit 4 of the nth Ising model quantum computation device Qn holds the coupling coefficient of the Ising model related to the nth group pseudo spin pulse SP, and The interaction involving the spin pulse SP is tentatively calculated.
  • the provisional spin sharing unit 10 includes a plurality of Ising model quantum computing devices Q1, Q2,.
  • Information on the pseudo spin ⁇ of the spin pulse SP is output. Therefore, the interaction calculation unit 4 of the quantum computing devices Q1, Q2,..., Qn of a plurality of Ising models cannot reduce the processing load of the interaction between the pseudo spin pulses SP.
  • each Ising model quantum computing device Q1, Q2,..., Qn shown in FIG. It is reduced.
  • the Ising model quantum parallel computing device P shown in FIG. 21 will be described.
  • Information on the pseudo spin ⁇ of the pseudo spin pulse SP of the n-th group is output to the provisional spin sharing unit 10 and each interaction calculation unit 4.
  • the provisional spin sharing unit 10 holds Ising model coupling coefficients related to the pseudo spin pulses SP of the first group and other groups (second group, n-th group, etc.). Information on the interaction between the pseudo spin pulses SP of the group is output to the interaction calculation unit 4 of the quantum computing device Q1 of the first Ising model.
  • the provisional spin sharing unit 10 holds the coupling coefficient of the Ising model related to the pseudo spin pulse SP of the second group and other groups (first group, n-th group, etc.). Information on the interaction between the pseudo spin pulses SP of the group is output to the interaction calculation unit 4 of the quantum computing device Q2 of the second Ising model. ...
  • the provisional spin sharing unit 10 holds Ising model coupling coefficients related to the pseudo spin pulses SP of the n-th group and other groups (first group, second group, etc.), and the n-th group And information on the interaction between the pseudo spin pulses SP of the other groups are output to the interaction calculation unit 4 of the quantum computing device Qn of the nth Ising model.
  • the interaction calculation unit 4 of the first Ising model quantum computation device Q1 holds Ising model coupling coefficients related to a plurality of pseudo spin pulses SP belonging to the first group, and includes a plurality of belonging to the first group. The interaction between the pseudo spin pulses SP is tentatively calculated.
  • the interaction calculation unit 4 of the second Ising model quantum computation device Q2 holds Ising model coupling coefficients related to a plurality of pseudo spin pulses SP belonging to the second group, and a plurality of belonging to the second group. The interaction between the pseudo spin pulses SP is tentatively calculated. ...
  • the interaction calculation unit 4 of the n-th Ising model quantum computation device Qn holds Ising model coupling coefficients related to a plurality of pseudo spin pulses SP belonging to the n-th group, and the n-th group The interaction between the plurality of pseudo spin pulses SP belonging to the above is tentatively calculated.
  • the provisional spin sharing unit 10 includes a plurality of Ising model quantum computing devices Q1, Q2,. Information on the interaction between the spin pulses SP is output. Therefore, the interaction calculation unit 4 of the plurality of Ising model quantum calculation devices Q1, Q2,..., Qn can reduce the processing load of the interaction between the pseudo spin pulses SP. That is, compared to the Ising model quantum computing devices Q1, Q2,..., Qn shown in FIG. 20, the Ising model quantum computing devices Q1, Q2,. Reduces the computational burden.
  • the Ising model quantum computing device, Ising model quantum parallel computing device, and Ising model quantum computing method of the present invention are suitable for quickly and easily solving an NP complete problem mapped to the Ising model.
  • V, V1, V2, V3, V4 Surface emitting laser M: Master laser I12, I13, I14, I23, I24, I34: Ising interaction mounting unit Q, Q1, Q2, Qn: Ising model quantum computation device SP, SP1, SP2, SP3, SP4, SP (N): pseudo spin pulses LO, LO1 to LON: local oscillation pulses
  • P Ising model quantum parallel computing device 1: parametric oscillator 2: ring resonator 3: provisional spin measurement Unit 4: Interaction calculation unit 5: Interaction implementation unit 6: Pseudo spin measurement unit 7: Pulse in-phase unit 8: Pulse generator 9: Second harmonic generator 10: Provisional spin sharing unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 本発明では、パラメトリック発振器1が、パラメトリック発振を用いて、同一の発振周波数を有する複数の擬似的スピンパルスSPiを発振し、相互作用実装部5が、複数の擬似的スピンパルスSPiの発振位相φ(暫定)の暫定的な測定結果を用いて、各擬似的スピンパルスSPiが関わる相互作用(σに対する比例係数λ+ΣJijσ+ΣKijkσσ)の大きさ及び符号をフィードバック実装し、擬似的スピン測定部6が、複数の擬似的スピンパルスSPiの発振位相φ(定常)の最終的な測定結果に基づいて、複数の擬似的スピンパルスSPiの擬似的なスピンσを測定する。

Description

イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法
 本発明は、イジングモデルを容易に解くことにより、イジングモデルにマッピングされるNP完全問題などを容易に解くことができる量子計算装置を提供する。
 イジングモデルは、元来は磁性材料のモデルとして研究されてきたが、最近はNP完全問題などからマッピングされるモデルとして注目されている。しかし、イジングモデルは、サイト数が大きいときには、解くことが非常に困難になる。そこで、イジングモデルを実装する量子アニールマシンや量子断熱マシンが提案されている。
 量子アニールマシンでは、イジング相互作用及びゼーマンエネルギーを物理的に実装してから、系を十分に冷却して基底状態を実現して、基底状態を観測することにより、イジングモデルを解いている。しかし、サイト数が大きいときには、系が冷却の過程で準安定状態にトラップされ、また準安定状態の数はサイト数に対して指数関数的に増大するため、系が準安定状態から基底状態になかなか緩和されないという問題があった。
 量子断熱マシンでは、横磁場ゼーマンエネルギーを物理的に実装してから、系を十分に冷却して横磁場ゼーマンエネルギーのみの基底状態を実現する。そして、横磁場ゼーマンエネルギーを徐々に下げ、またイジング相互作用を徐々に物理的に実装していき、イジング相互作用及び縦磁場ゼーマンエネルギーを含む系の基底状態を実現して、その基底状態を観測することにより、イジングモデルを解いている。しかし、サイトの数が大きいときには、横磁場ゼーマンエネルギーを徐々に下げ、またイジング相互作用を徐々に物理的に実装する速度はサイト数に対して指数関数的に遅くする必要があるという問題があった。
 NP完全問題などをイジングモデルにマッピングし、そのイジングモデルを物理的なスピン系で実装するときには、物理的に近くに位置するサイト間のイジング相互作用は大きく、物理的に遠くに位置するサイト間のイジング相互作用は小さいという自然法則が問題となる。NP完全問題をマッピングした人工的なイジングモデルでは、物理的に近くに位置するサイト間のイジング相互作用が小さいことがあり、物理的に遠くに位置するサイト間のイジング相互作用が大きいことがありえるからである。この自然なスピン系へのマッピングの難しさも、NP完全問題などを容易に解くことを困難にしていた。
特許第5354233号公報
 上記の問題を解決するための第1の従来技術(特許文献1を参照)及び第2の従来技術について説明する。NP完全問題は、磁性体のイジングモデルに置き換え可能であり、磁性体のイジングモデルは、レーザーのネットワークに置き換え可能である。
 ここで、磁性体のイジングモデルでは、相互作用する原子ペアにおいて、スピン配列のエネルギーが最低となるように、スピンの方向は、逆方向(反強磁性の相互作用の場合)又は同方向(強磁性の相互作用の場合)を指向しようとする。
 一方で、レーザーのネットワークでは、相互作用するレーザーペアにおいて、発振モードの閥値利得が最低となるように、発振の偏光(第1の従来技術の場合)若しくは位相(第2の従来技術の場合)は、逆回転若しくは逆位相(反強磁性の相互作用の場合)又は同回転若しくは同位相(強磁性の相互作用の場合)を指向しようとする。
 つまり、1つのレーザーペアからなるシステムでは、発振モードの閥値利得が最低となるように、発振の偏光又は位相を最適化することができる。そして、多くのレーザーペアからなるシステムでは、「ある」レーザーペアで発振の偏光又は位相を最適化しようとすれば、「他の」レーザーペアで発振の偏光又は位相を最適化できないところ、レーザーのネットワークの「全体」として発振の偏光又は位相の「妥協点」を探索することになる。
 ただし、レーザーのネットワーク全体で発振の偏光又は位相を最適化するときには、各々のレーザーペアで別個の発振モードを立ち上げるのではなく、レーザーのネットワーク全体で1つの発振モードを立ち上げるように、各レーザー間で同期を図る必要がある。
 このように、第1の従来技術及び第2の従来技術では、各レーザーでポンピング電流を漸増制御し、レーザーのネットワーク全体で閾値利得が最低となる1つの発振モードを立ち上げ、各レーザーの発振の偏光又は位相を測定し、各原子のスピンの方向を測定する。よって、量子アニールマシンにおける準安定状態へのトラップの問題及び量子断熱マシンにおけるイジング相互作用の実装速度の問題を解決することができる。
 そして、第1の従来技術及び第2の従来技術では、図1及び図2を用いてそれぞれ後述するように、物理的に近くに位置するサイト間のイジング相互作用の大きさのみならず、物理的に遠くに位置するサイト間のイジング相互作用の大きさも自由に制御することができる。よって、サイト間の物理的距離とは無関係に、NP完全問題などからマッピングされた人工的なイジングモデルを解くことができる。
 第1の従来技術のイジングモデルの量子計算装置の概要を図1に示す。第2の従来技術のイジングモデルの量子計算装置の概要を図2に示す。
 イジングハミルトニアンを数式1のようにする。
Figure JPOXMLDOC01-appb-M000001
 イジング相互作用実装部I12は、2つの面発光レーザーV1、V2の間で交換される光の振幅及び位相を制御することにより、2つの面発光レーザーV1、V2の間の擬似的なイジング相互作用J12の大きさ及び符号を実装する。
 イジング相互作用実装部I13は、2つの面発光レーザーV1、V3の間で交換される光の振幅及び位相を制御することにより、2つの面発光レーザーV1、V3の間の擬似的なイジング相互作用J13の大きさ及び符号を実装する。
 イジング相互作用実装部I14は、2つの面発光レーザーV1、V4の間で交換される光の振幅及び位相を制御することにより、2つの面発光レーザーV1、V4の間の擬似的なイジング相互作用J14の大きさ及び符号を実装する。
 イジング相互作用実装部I23は、2つの面発光レーザーV2、V3の間で交換される光の振幅及び位相を制御することにより、2つの面発光レーザーV2、V3の間の擬似的なイジング相互作用J23の大きさ及び符号を実装する。
 イジング相互作用実装部I24は、2つの面発光レーザーV2、V4の間で交換される光の振幅及び位相を制御することにより、2つの面発光レーザーV2、V4の間の擬似的なイジング相互作用J24の大きさ及び符号を実装する。
 イジング相互作用実装部I34は、2つの面発光レーザーV3、V4の間で交換される光の振幅及び位相を制御することにより、2つの面発光レーザーV3、V4の間の擬似的なイジング相互作用J34の大きさ及び符号を実装する。
 マスターレーザーMは、面発光レーザーV1~V4に対して注入同期を行ない、面発光レーザーV1~V4の発振周波数を同一周波数に揃える。面発光レーザーV1~V4の間で同期を図ることにより、面発光レーザーV1~V4のネットワーク全体で発振の偏光又は位相を最適化するにあたり、面発光レーザーV1~V4のネットワーク全体で1つの発振モードを立ち上げることができる。
 第1の従来技術では、不図示のイジングスピン測定部は、面発光レーザーV1~V4が光を交換する過程で定常状態に到達した後に、面発光レーザーV1~V4の発振の円偏光の左回り/右回りを測定することにより、面発光レーザーV1~V4の擬似的なイジングスピンσ~σの上向き/下向きを測定する。
 しかし、面発光レーザーVは、面内異方性を有するため、左回り/右回りの円偏光のいずれについても、同一周波数及び同一閾値利得で発振することは困難である。よって、ある面発光レーザーVが、単体のレーザーとしては、右回り(又は左回り)の円偏光を有する光を発振するよりも、左回り(又は右回り)の円偏光を有する光を発振しやすいことがあり得る。そして、その面発光レーザーVは、レーザーのネットワーク全体としては、右回り(又は左回り)の円偏光を有する光を発振することが正答であるところ、左回り(又は右回り)の円偏光を有する光を発振してしまう誤答を生じさせ得る。
 第2の従来技術では、不図示のイジングスピン測定部は、面発光レーザーV1~V4が光を交換する過程で定常状態に到達した後に、面発光レーザーV1~V4の発振の直線偏光の位相の進み/遅れを測定することにより、面発光レーザーV1~V4の擬似的なイジングスピンσ~σの上向き/下向きを測定する。
 ここで、左回り/右回りの円偏光は、水平偏光及び垂直偏光を位相差±π/2で同一の重みで重ね合わせたものである。つまり、イジングスピンの上向き/下向きの情報は、円偏光の左回り/右回りを測定するまでもなく、水平偏光を測定するまでもなく、垂直偏光の位相の進み/遅れを測定することにより、得ることができるのである。よって、第1の従来技術における面発光レーザーVの面内異方性の問題を解決することができる。
 第2の従来技術のイジングモデルの量子計算装置の原理を図3に示す。マスターレーザーMの直線偏光の発振位相0は、初期状態から定常状態まで変化しない。各面発光レーザーVの直線偏光の発振位相φ(t)は、初期状態においては、マスターレーザーMの直線偏光の発振位相0と同一の0であることが理想であり、定常状態においては、マスターレーザーMの直線偏光の発振位相0からずれた±π/2である。定常状態におけるφ(定常)=±π/2は、σ=±1に対応する(複号同順)。
 面発光レーザーVの各ペアについて、イジング相互作用Jijが正であるときには、2つの面発光レーザーVの擬似的なスピンσが異符号であることが、エネルギー的に有利である。よって、各イジング相互作用実装部は、2つの面発光レーザーVの発振位相φ(定常)が異符号でありずれをπとするような、発振モードが立ち上がりやすいようにする。
 面発光レーザーVの各ペアについて、イジング相互作用Jijが負であるときには、2つの面発光レーザーVの擬似的なスピンσが同符号であることが、エネルギー的に有利である。よって、各イジング相互作用実装部は、2つの面発光レーザーVの発振位相φ(定常)が同符号でありずれを0とするような、発振モードが立ち上がりやすいようにする。
 もっとも、イジングモデルの量子計算装置の全体において、一体として1つの発振モードが立ち上がるようにするのであり、面発光レーザーVの各ペアにおいて、上述の発振モードが実際に立ち上がることもあれば、必ずしも立ち上がらないこともある。
 ところで、各面発光レーザーVの直線偏光の発振位相φ(t)は、初期状態においては、理想ではマスターレーザーMの直線偏光の発振位相0と同一の0であることが望ましいが、実際にはマスターレーザーMの直線偏光の発振位相0から若干ずれてしまう。
 各面発光レーザーVの直線偏光の初期状態の発振位相φ(t=0)は、各面発光レーザーVの自走周波数ω、マスターレーザーMの発振周波数ω及び注入同期幅Δω(ωがωにどの程度近ければ注入同期を図れるか)を用いて、数式2のように表わされる。
Figure JPOXMLDOC01-appb-M000002
 つまり、各面発光レーザーVの自走周波数ωを、マスターレーザーMの発振周波数ωに揃えることができるならば、各面発光レーザーVの直線偏光の初期状態の発振位相φ(t=0)は、マスターレーザーMの直線偏光の発振位相0と同一の0となる。しかし、各面発光レーザーVの自走周波数ωを、マスターレーザーMの発振周波数ωに揃えることが困難であるため、各面発光レーザーVの直線偏光の初期状態の発振位相φ(t=0)は、マスターレーザーMの直線偏光の発振位相0から若干ずれてしまう。
 よって、ある面発光レーザーVが、単体のレーザーとしては、マスターレーザーMの直線偏光の発振位相0より遅れた(又は進んだ)発振位相を有する光を発振するよりも、マスターレーザーMの直線偏光の発振位相0より進んだ(又は遅れた)発振位相を有する光を発振しやすいことがあり得る。そして、その面発光レーザーVは、レーザーのネットワーク全体としては、マスターレーザーMの直線偏光の発振位相0より遅れた(又は進んだ)発振位相を有する光を発振することが正答であるところ、マスターレーザーMの直線偏光の発振位相0より進んだ(又は遅れた)発振位相を有する光を発振してしまう誤答を生じさせ得る。
 また、図2において、イジングサイトがM個であるとき、面発光レーザーVはM個必要であり、イジング相互作用実装部はM(M-1)/2個必要である。そして、イジングサイトが多数になると、イジングモデルの量子計算装置が大規模かつ複雑になる。
 そこで、前記課題を解決するために、本発明は、イジングモデルの量子計算装置において、読み出しエラーを防止するとともに、回路構成を簡易にすることを目的とする。
 上記目的を達成するために、パラメトリック発振を用いて、同一の発振周波数を有する複数の擬似的スピンパルスを発振し、複数の擬似的スピンパルスの発振位相の暫定的な測定結果を用いて、各擬似的スピンパルスが関わる相互作用の大きさ及び符号をフィードバック実装し、複数の擬似的スピンパルスの発振位相の最終的な測定結果に基づいて、複数の擬似的スピンパルスの擬似的なスピンを測定することとした。
 具体的には、本発明は、イジングモデルの複数のスピンに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスをパラメトリック発振させるパラメトリック発振器と、前記複数の擬似的スピンパルスを周回伝搬させるリング共振器と、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの位相を暫定的に測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを暫定的に測定する暫定的スピン測定部と、ある擬似的スピンパルスが関わる前記イジングモデルの結合係数及び前記暫定的スピン測定部が暫定的に測定した他の擬似的スピンパルスの擬似的なスピンに基づいて、前記ある擬似的スピンパルスが関わる相互作用を暫定的に計算する相互作用計算部と、前記ある擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算部が暫定的に計算した前記ある擬似的スピンパルスが関わる相互作用の大きさ及び符号を暫定的に実装する相互作用実装部と、前記暫定的スピン測定部、前記相互作用計算部及び前記相互作用実装部により構成されるフィードバックループが繰り返される過程で、前記複数の擬似的スピンパルスが定常状態に到達した後に、前記複数の擬似的スピンパルスの位相を測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを測定する擬似的スピン測定部と、を備えることを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、複数の擬似的スピンパルスは、同一の発振周波数を有するため、各擬似的スピンパルスの初期状態の発振位相が、各擬似的スピンパルスの定常状態の2種類の発振位相のうち、一方の位相へは近く他方の位相へは遠い、ということがない。よって、イジングモデルの量子計算装置において、読み出しエラーを防止することができる。
 そして、イジングサイトがM個であるとき、第1及び第2の従来技術では、面発光レーザーをM台も必要とするのに対して、本発明では、パラメトリック発振器を1台のみ準備すれば足りる。さらに、イジングサイトがM個であるとき、第1及び第2の従来技術では、イジング相互作用実装部をM(M-1)/2個も必要とするのに対して、本発明では、フィードバックループを1系統のみ準備すれば足りる。よって、イジングモデルの量子計算装置において、回路構成を簡易にすることができる。
 また、本発明は、前記相互作用計算部は、前記ある擬似的スピンパルスが関わる前記イジングモデルの3体以上の結合係数及び前記暫定的スピン測定部が暫定的に測定した前記他の擬似的スピンパルスの擬似的なスピンに基づいて、前記ある擬似的スピンパルスが関わる3体以上の相互作用を暫定的に計算し、前記相互作用実装部は、前記ある擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算部が暫定的に計算した前記ある擬似的スピンパルスが関わる3体以上の相互作用の大きさ及び符号を暫定的に実装することを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、各擬似的スピンパルス及び各注入光パルスの線形の重ね合わせの範囲内で、イジングモデルの3体以上の相互作用を実装することができる。
 また、本発明は、前記パラメトリック発振器は、前記複数の擬似的スピンパルスと同一の発振周波数を有し1対1のペアを組む複数の局部発振パルスをパラメトリック発振させ、前記リング共振器は、前記複数の局部発振パルスを周回伝搬させ、前記複数の局部発振パルスの位相について、正相及び逆相の両方を含む状態から、正相及び逆相の一方を含む状態へと、同相化させるパルス同相化部、をさらに備え、前記暫定的スピン測定部は、前記複数の擬似的スピンパルスの一部に対して、1対1のペアを組む前記複数の局部発振パルスの一部を用いてホモダイン検波を行い、前記相互作用実装部は、前記ある擬似的スピンパルスに対して、1対1のペアを組みその一部の振幅及び位相を制御された局部発振パルスを注入し、前記擬似的スピン測定部は、前記複数の擬似的スピンパルスの一部に対して、1対1のペアを組む前記複数の局部発振パルスの一部を用いてホモダイン検波を行うことを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、複数の擬似的スピンパルスの発振位相の暫定的な測定結果を用いた、各擬似的スピンパルスが関わる相互作用の大きさ及び符号のフィードバック実装を、具体的な構成を用いて行うことができる。そして、この構成によれば、次の構成と比べて、擬似的スピンパルス及び局部発振パルスがペアとなってリング共振器を周回伝搬するため、パルス発生器からスピン測定部への光路長の揺らぎの問題をなくすことができる。よって、イジングモデルの量子計算装置において、読み出しエラーを防止することができる。
 また、本発明は、角周波数ωを有する局部発振パルスを発生させるパルス発生器と、前記角周波数ωを有する局部発振パルスを用いて、角周波数2ωを有するパルスを発生させる第二高調波発生器と、をさらに備え、前記パラメトリック発振器は、前記角周波数2ωを有するパルスを用いて、前記複数の擬似的スピンパルスをパラメトリック発振させ、前記暫定的スピン測定部は、前記複数の擬似的スピンパルスの一部に対して、前記角周波数ωを有する局部発振パルスを用いてホモダイン検波を行い、前記相互作用実装部は、前記ある擬似的スピンパルスに対して、振幅及び位相を制御された前記角周波数ωを有する局部発振パルスを注入し、前記擬似的スピン測定部は、前記複数の擬似的スピンパルスの一部に対して、前記角周波数ωを有する局部発振パルスを用いてホモダイン検波を行うことを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、複数の擬似的スピンパルスの発振位相の暫定的な測定結果を用いた、各擬似的スピンパルスが関わる相互作用の大きさ及び符号のフィードバック実装を、具体的な構成を用いて行うことができる。そして、この構成によれば、先の構成と比べて、擬似的スピンパルス及び局部発振パルスがペアとなってリング共振器を周回伝搬しないため、擬似的スピンパルス及び局部発振パルス間のクロストークをなくすことができ、全局部発振パルスを同相化させるパルス同相化部をなくすことができる。よって、イジングモデルの量子計算装置において、読み出しエラーを防止することができる。
 また、本発明は、前記相互作用実装部は、前記ある擬似的スピンパルスに対して注入される光の振幅を、計算処理の初期段階ほど大きく制御し、計算処理の終期段階ほど小さく制御することを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、計算処理の初期段階において、各擬似的スピンパルスの読出結果をできるだけ正しい答えにすることができる。たとえ、計算処理の初期段階において、ある擬似的スピンパルスの読出結果が正しい答えでないとしても、他の擬似的スピンパルスについての正しい答えをフィードバックすれば、計算処理の終期段階において、全擬似的スピンパルスについての正しい答えを得ることができる。よって、イジングモデルの量子計算装置において、読み出しエラーを防止することができる。
 また、本発明は、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの振幅を暫定的に測定する暫定的振幅測定部、をさらに備え、前記パラメトリック発振器は、前記暫定的振幅測定部が測定した前記複数の擬似的スピンパルスの振幅に基づいて、前記複数の擬似的スピンパルスの振幅が等しくなるように、パラメトリック発振に用いるポンプパルスの振幅をフィードバック制御することを特徴とするイジングモデルの量子計算装置である。
 この構成によれば、各擬似的スピンパルスの振幅の不均衡による、イジングモデルの結合係数の実質的な書き換えの問題をなくすことができる。よって、イジングモデルの量子計算装置において、読み出しエラーを防止することができる。
 また、本発明は、前記イジングモデルの複数のスピンのうち第n群(nは1以上の整数)のスピンに擬似的に対応する第n群の擬似的スピンパルスが前記リング共振器を周回伝搬する、請求項1から6のいずれかに記載の第n番のイジングモデルの量子計算装置、を並列に備え、前記第n番のイジングモデルの量子計算装置が備える前記暫定的スピン測定部が暫定的に測定した前記第n群の擬似的スピンパルスの擬似的なスピンの情報を、並列に備わるイジングモデルの量子計算装置の間で共有させる暫定的スピン共有部、をさらに備えることを特徴とするイジングモデルの量子並列計算装置である。
 この構成によれば、イジングモデルのサイト数が多いときでも、複数のイジングモデルの量子計算装置が並列分散処理を実行することにより、各々のイジングモデルの量子計算装置は計算処理負担を軽減することができる。
 また、本発明は、イジングモデルの複数のスピンに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスをパラメトリック発振させるパラメトリック発振ステップと、前記複数の擬似的スピンパルスがリング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの位相を暫定的に測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを暫定的に測定する暫定的スピン測定ステップと、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、ある擬似的スピンパルスが関わる前記イジングモデルの結合係数及び前記暫定的スピン測定ステップが暫定的に測定した他の擬似的スピンパルスの擬似的なスピンに基づいて、前記ある擬似的スピンパルスが関わる相互作用を暫定的に計算する相互作用計算ステップと、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記ある擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算ステップが暫定的に計算した前記ある擬似的スピンパルスが関わる相互作用の大きさ及び符号を暫定的に実装する相互作用実装ステップと、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスをパラメトリック増幅させるパラメトリック増幅ステップと、前記暫定的スピン測定ステップ、前記相互作用実装ステップ及び前記パラメトリック増幅ステップをこの順序で備えるフィードバックループが繰り返される過程で、前記複数の擬似的スピンパルスが定常状態に到達した後に、前記複数の擬似的スピンパルスの位相を測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを測定する擬似的スピン測定ステップと、を備えることを特徴とするイジングモデルの量子計算方法である。
 この構成によれば、暫定的スピン測定ステップと相互作用実装ステップの間に、パラメトリック増幅ステップが入らず、タイムラグがほとんど生じないため、イジングモデルのサイト間のほとんど遅延のない相互作用を実装することができる。
 また、本発明は、イジングモデルの複数のスピンに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスをパラメトリック発振させるパラメトリック発振ステップと、前記複数の擬似的スピンパルスがリング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの位相を暫定的に測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを暫定的に測定する暫定的スピン測定ステップと、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、ある擬似的スピンパルスが関わる前記イジングモデルの結合係数及び前記暫定的スピン測定ステップが暫定的に測定した他の擬似的スピンパルスの擬似的なスピンに基づいて、前記ある擬似的スピンパルスが関わる相互作用を暫定的に計算する相互作用計算ステップと、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスをパラメトリック増幅させるパラメトリック増幅ステップと、前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記ある擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算ステップが暫定的に計算した前記ある擬似的スピンパルスが関わる相互作用の大きさ及び符号を暫定的に実装する相互作用実装ステップと、前記暫定的スピン測定ステップ、前記パラメトリック増幅ステップ及び前記相互作用実装ステップをこの順序で備えるフィードバックループが繰り返される過程で、前記複数の擬似的スピンパルスが定常状態に到達した後に、前記複数の擬似的スピンパルスの位相を測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを測定する擬似的スピン測定ステップと、を備えることを特徴とするイジングモデルの量子計算方法である。
 この構成によれば、暫定的スピン測定ステップと相互作用実装ステップの間に、パラメトリック増幅ステップが入って、タイムラグがある程度生じるものの、イジングモデルのサイト間の実質には遅延のない相互作用を実装することができる。
 本発明は、イジングモデルの量子計算装置において、読み出しエラーを防止するとともに、回路構成を簡易にすることができる。
第1の従来技術のイジングモデルの量子計算装置の概要を示す図である。 第2の従来技術のイジングモデルの量子計算装置の概要を示す図である。 第2の従来技術のイジングモデルの量子計算装置の原理を示す図である。 本発明のイジングモデルの量子計算装置の構成を示す図である。 本発明のイジングモデルの量子計算装置の原理を示す図である。 第1の実施形態のイジングモデルの量子計算装置の構成を示す図である。 第2の実施形態のイジングモデルの量子計算装置の構成を示す図である。 本発明のイジングモデルの量子計算装置の計算結果を示す図である。 本発明のイジングモデルの量子計算装置の時間発展を示す図である。 本発明のイジングモデルの量子計算装置の計算結果を示す図である。 本発明のイジングモデルの量子計算装置の時間発展を示す図である。 計算処理の全段階で光注入強度を一定にした場合の時間発展を示す図である。 計算処理の初期段階に光注入強度を高くした場合の時間発展を示す図である。 複数の擬似的スピンパルスの強度を揃えない場合の時間発展を示す図である。 複数の擬似的スピンパルスの強度を揃えない場合の計算精度を示す図である。 複数の擬似的スピンパルスの強度を揃えた場合の時間発展を示す図である。 複数の擬似的スピンパルスの強度を揃えた場合の計算精度を示す図である。 本発明のイジングモデルの量子計算方法のループ手順を示す図である。 本発明のイジングモデルの量子計算方法のループ手順を示す図である。 本発明のイジングモデルの量子並列計算装置の構成を示す図である。 本発明のイジングモデルの量子並列計算装置の構成を示す図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(本発明のイジングモデルの量子計算装置の構成及び原理)
 本発明のイジングモデルの量子計算装置Qの構成を図4に示す。本発明では、イジングハミルトニアンを、1体~3体の相互作用を含むとして、数式3のようにする。
Figure JPOXMLDOC01-appb-M000003
 パラメトリック発振器1は、イジングモデルの複数のスピンσ~σに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスSP1~SP4をパラメトリック発振させる。リング共振器2は、複数の擬似的スピンパルスSP1~SP4を周回伝搬させる。複数の擬似的スピンパルスSP1~SP4は、SP1、SP2、SP3、SP4、SP1、SP2、SP3、SP4、・・・の順序で、後述のフィードバックループに入る。
 暫定的スピン測定部3は、複数の擬似的スピンパルスSP1~SP4がリング共振器2を周回伝搬するたびに、複数の擬似的スピンパルスSP1~SP4の位相を暫定的に測定することにより、複数の擬似的スピンパルスSP1~SP4の擬似的なスピンσ~σを暫定的に測定する。具体的には、暫定的スピン測定部3は、図6及び図7を用いて後述する局部発振パルスLOを用いて、ホモダイン検波を行う。
 相互作用計算部4は、ある擬似的スピンパルスSPiが関わるイジングモデルの結合係数λ、Jij、Kijk及び暫定的スピン測定部3が暫定的に測定した他の擬似的スピンパルスSPj、SPkの擬似的なスピンσ、σに基づいて、ある擬似的スピンパルスSPiが関わる相互作用(σに対する比例係数λ+ΣJijσ+ΣKijkσσ)を暫定的に計算する。図4では、i、j、k=1~4の場合を示している。
 ここで、NP完全問題などが、イジングモデルにマッピングされた後、相互作用計算部4は、イジングモデルの結合係数λ、Jij、Kijkを入力する。
 相互作用実装部5は、ある擬似的スピンパルスSPiに対して注入される光の振幅及び位相を制御することにより、相互作用計算部4が暫定的に計算したある擬似的スピンパルスSPiが関わる相互作用(σに対する比例係数λ+ΣJijσ+ΣKijkσσ)の大きさ及び符号を暫定的に実装する。具体的には、相互作用実装部5は、図6及び図7を用いて後述する局部発振パルスLOを用いて、注入光パルスを生成する。
 擬似的スピン測定部6は、暫定的スピン測定部3、相互作用計算部4及び相互作用実装部5により構成されるフィードバックループが繰り返される過程で、複数の擬似的スピンパルスSP1~SP4が定常状態に到達した後に、複数の擬似的スピンパルスSP1~SP4の位相を測定することにより、複数の擬似的スピンパルスSP1~SP4の擬似的なスピンσ~σを測定する。具体的には、擬似的スピン測定部6は、図6及び図7を用いて後述する局部発振パルスLOを用いて、ホモダイン検波を行う。
 ここで、擬似的スピン測定部6が、イジングモデルのスピンσ~σを出力した後、イジングモデルは、NP完全問題などにデマッピングされる。
 このように、パラメトリック発振器1でポンピング電流を漸増制御し、複数の擬似的スピンパルスSP1~SP4のネットワーク全体で閾値利得が最低となる1つの発振モードを立ち上げ、複数の擬似的スピンパルスSP1~SP4の発振位相を測定し、複数の擬似的スピンパルスSP1~SP4に対応する各原子のスピンの方向を測定する。
 本発明のイジングモデルの量子計算装置Qの原理を図5に示す。局部発振パルスLOの発振位相0は、初期状態から定常状態まで変化しない。各擬似的スピンパルスSPの発振位相φ(t)は、初期状態においては、0又は±πであり(各擬似的スピンパルスSPは、パラメトリック発振器1により、パラメトリック発振されて、スクイーズド状態にある。)、定常状態においては、初期状態の発振位相0又は±πからずれた±π/2である。定常状態におけるφ(定常)=±π/2は、σ=±1に対応する(複号同順)。
 各擬似的スピンパルスSPについて、1体の相互作用の結合係数λが正であるときには、当該擬似的スピンパルスSPの擬似的なスピンσが-1であることが、エネルギー的に有利である。よって、相互作用実装部5は、当該擬似的スピンパルスSPの発振位相φ(定常)が-π/2であるような、発振モードが立ち上がりやすいようにする。
 各擬似的スピンパルスSPについて、1体の相互作用の結合係数λが負であるときには、当該擬似的スピンパルスSPの擬似的なスピンσが+1であることが、エネルギー的に有利である。よって、相互作用実装部5は、当該擬似的スピンパルスSPの発振位相φ(定常)が+π/2であるような、発振モードが立ち上がりやすいようにする。
 2つの擬似的スピンパルスSPについて、2体の相互作用の結合係数Jijが正であるときには、2つの擬似的スピンパルスSPの擬似的なスピンσが異符号であることが、エネルギー的に有利である。よって、相互作用実装部5は、2つの擬似的スピンパルスSPの発振位相φ(定常)が異符号であるような、発振モードが立ち上がりやすいようにする。
 2つの擬似的スピンパルスSPについて、2体の相互作用の結合係数Jijが負であるときには、2つの擬似的スピンパルスSPの擬似的なスピンσが同符号であることが、エネルギー的に有利である。よって、相互作用実装部5は、2つの擬似的スピンパルスSPの発振位相φ(定常)が同符号であるような、発振モードが立ち上がりやすいようにする。
 3つの擬似的スピンパルスSPについて、3体の相互作用の結合係数Kijkが正であるときには、(1)3つの擬似的スピンパルスSPの擬似的なスピンσが-1であること、又は、(2)2つの擬似的スピンパルスSPの擬似的なスピンσが+1であり、1つの擬似的スピンパルスSPの擬似的なスピンσが-1であることが、エネルギー的に有利である。よって、相互作用実装部5は、(1)3つの擬似的スピンパルスSPの発振位相φ(定常)が-π/2であるような、又は、(2)2つの擬似的スピンパルスSPの発振位相φ(定常)が+π/2であり、1つの擬似的スピンパルスSPの発振位相φ(定常)が-π/2であるような、発振モードが立ち上がりやすいようにする。
 3つの擬似的スピンパルスSPについて、3体の相互作用の結合係数Kijkが負であるときには、(1)3つの擬似的スピンパルスSPの擬似的なスピンσが+1であること、又は、(2)2つの擬似的スピンパルスSPの擬似的なスピンσが-1であり、1つの擬似的スピンパルスSPの擬似的なスピンσが+1であることが、エネルギー的に有利である。よって、相互作用実装部5は、(1)3つの擬似的スピンパルスSPの発振位相φ(定常)が+π/2であるような、又は、(2)2つの擬似的スピンパルスSPの発振位相φ(定常)が-π/2であり、1つの擬似的スピンパルスSPの発振位相φ(定常)が+π/2であるような、発振モードが立ち上がりやすいようにする。
 もっとも、イジングモデルの量子計算装置Qの全体において、一体として1つの発振モードが立ち上がるようにするのであり、各擬似的スピンパルスSPにおいて、上述の発振モードが実際に立ち上がることもあれば、必ずしも立ち上がらないこともある。
 図4及び図5で示した計算原理について詳述する。各擬似的スピンパルスSP1、SP2、SP3、SP4において、発振強度A(t)、発振位相φ(t)及びキャリアの反転分布数差NCi(t)について、レート方程式は、数式4-7のようになる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ωは、発振周波数である。Qは、各擬似的スピンパルスSPの共振器Q値である。Pは、反転分布を実現するために各擬似的スピンパルスSPについて毎秒注入される電子数、すなわちポンピングレートである。数式4の-(1/2)(ω/Q)A(t)は、発振強度A(t)が共振器損失に起因して時間経過につれて減少するレートを示している。
 τspは、レーザー発振モード以外の他の発振モードへの自然放出に起因する電子寿命である。βは、全自然放出光のうちレーザー発振モードへの結合定数である。数式4の(1/2)ECi(t)A(t)は、発振強度A(t)が誘導放出に起因して時間経過につれて増加するレートを示している。数式4のECi(t)は、発振強度A(t)が自然放出に起因して時間経過につれて増加するレートを示している。
 数式4、5のλが関わる項は、1体の相互作用に関わる項である。相互作用実装部5が、擬似的スピンパルスSPiに対して、1体の相互作用(σに対する比例係数λ)を実装するための注入光パルスを生成する方法を説明する。
 相互作用計算部4は、1体の相互作用(σに対する比例係数λ)を計算する。λが正であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をπ/2だけ遅くする位相変調を行い、|λ|に比例する振幅変調を行い、注入光パルスを生成する。λが負であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をπ/2だけ早くする位相変調を行い、|λ|に比例する振幅変調を行い、注入光パルスを生成する。
 数式4の(ω/Q)A{-λsinφ(t)}は、擬似的スピンパルスSPiに対して、1体の相互作用(σに対する比例係数λ)を実装するための注入光パルスが生成されたときに、i番目のサイトにおける発振強度A(t)が時間経過につれて変化するレートを示す。なお、数式4において、Aは、比例定数である。
 数式5の(1/A(t))(ω/Q)A{-λcosφ(t)}は、擬似的スピンパルスSPiに対して、1体の相互作用(σに対する比例係数λ)を実装するための注入光パルスが生成されたときに、i番目のサイトにおける発振位相φ(t)が時間経過につれて変化するレートを示す。なお、数式5において、Aは、比例定数である。
 数式4、5のJijが関わる項は、2体の相互作用に関わる項である。相互作用実装部5が、擬似的スピンパルスSPiに対して、2体の相互作用(σに対する比例係数ΣJijσ)を実装するための注入光パルスを生成する方法を説明する。
 暫定的スピン測定部3は、本周回前に、擬似的スピンパルスSPjの発振位相φ(t)及び擬似的なスピンσを測定している。相互作用計算部4は、2体の相互作用(σに対する比例係数ΣJijσ)を計算する。i、j番目のサイト間について、Jijが正であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をφ(t)に移して更なる逆相化を施す位相変調を行い、|Jij|に比例する振幅変調を行い、注入光パルスを生成する。i、j番目のサイト間について、Jijが負であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をφ(t)に移すが更なる逆相化を施さない位相変調を行い、|Jij|に比例する振幅変調を行い、注入光パルスを生成する。相互作用実装部5は、i、j番目のサイト間の全組み合わせについて、上述のように注入光パルスを生成する。
 数式4の-(ω/Q)(1/2)JijAcos{φ(t)-φ(t)}は、擬似的スピンパルスSPiに対して、2体の相互作用(σに対する比例係数ΣJijσ)を実装するための注入光パルスが生成されたときに、i番目のサイトにおける発振強度A(t)が時間経過につれて変化するレートを示す。数式4のΣ(j≠i)は、i番目のサイトにおける、i番目以外の他の全てのサイト(j番目)からの寄与を示す。
 数式5の-(1/A(t))(ω/Q)(1/2)JijAsin{φ(t)-φ(t)}は、擬似的スピンパルスSPiに対して、2体の相互作用(σに対する比例係数ΣJijσ)を実装するための注入光パルスが生成されたときに、i番目のサイトにおける発振位相φ(t)が時間経過につれて変化するレートを示す。数式5のΣ(j≠i)は、i番目のサイトにおける、i番目以外の他の全てのサイト(j番目)からの寄与を示す。
 数式4、5のKijkが関わる項は、3体の相互作用に関わる項である。相互作用実装部5が、擬似的スピンパルスSPiに対して、3体の相互作用(σに対する比例係数ΣKijkσσ)を実装するための注入光パルスを生成する方法を説明する。
 暫定的スピン測定部3は、本周回前に、擬似的スピンパルスSPj、SPkの発振位相φ(t)、φ(t)及び擬似的なスピンσ、σを測定している。相互作用計算部4は、3体の相互作用(σに対する比例係数ΣKijkσσ)を計算する。i、j、k番目のサイト間について、Kijkが正であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をφjk(t)に移して更なる逆相化を施す位相変調を行い、|Kijk|に比例する振幅変調を行い、注入光パルスを生成する。i、j、k番目のサイト間について、Kijkが負であるときには、相互作用実装部5は、局部発振パルスLO(発振位相0)に対して、発振位相をφjk(t)に移すが更なる逆相化を施さない位相変調を行い、|Kijk|に比例する振幅変調を行い、注入光パルスを生成する。相互作用実装部5は、i、j、k番目のサイト間の全組み合わせについて、上述のように注入光パルスを生成する。なお、φjk(t)は、数式12を用いて後述する。
 数式4の-(ω/Q)(1/2)KijkAcos{φjk(t)-φ(t)}は、擬似的スピンパルスSPiに対して、3体の相互作用(σに対する比例係数ΣKijkσσ)を実装するための注入光パルスが生成されたときに、i番目のサイトにおける発振強度A(t)が時間経過につれて変化するレートを示す。数式4のΣ(j、k≠i)は、i番目のサイトにおける、i番目以外の他の全てのサイト(j、k番目)からの寄与を示す。
 数式5の-(1/A(t))(ω/Q)(1/2)KijkAsin{φjk(t)-φ(t)}は、擬似的スピンパルスSPiに対して、3体の相互作用(σに対する比例係数ΣKijkσσ)を実装するための注入光パルスが生成されたときに、i番目のサイトにおける発振位相φ(t)が時間経過につれて変化するレートを示す。数式5のΣ(j、k≠i)は、i番目のサイトにおける、i番目以外の他の全てのサイト(j、k番目)からの寄与を示す。
 F、Fφ及びFは、それぞれ、i番目のサイトにおける、発振強度A(t)、発振位相φ(t)及びキャリアの反転分布数差NCi(t)に対する雑音を示す。
 定常状態において、数式4は、数式8のようになる。
Figure JPOXMLDOC01-appb-M000008
 Fを無視して、数式8を変形すると、数式9のようになる。
Figure JPOXMLDOC01-appb-M000009
 ここで、数式10、11が成立している。そこで、イジングモデル及びレーザーシステムの類似に着目して、数式12のようにおくと、数式9は、数式13のようになる。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 ここで、擬似的スピンパルスSPiに対して、2体の相互作用(σに対する比例係数ΣJijσ)を実装するためには、擬似的スピンパルスSPi、SPjを線形に重ね合わせるのみで足りる。しかし、擬似的スピンパルスSPiに対して、3体の相互作用(σに対する比例係数ΣKijkσσ)を実装するためには、擬似的スピンパルスSPi、SPj、SPkを線形に重ね合わせるのみでは足らない。
 しかし、擬似的スピンパルスSPi、SPj、SPkの間の非線形効果を利用すれば、イジングモデルの量子計算装置Qの回路構成が複雑になる。そこで、数式12のようにσσ=sinφjk(t)とおけば、擬似的スピンパルスSPi及び注入光パルスの間の線形の重ね合わせが利用できて、イジングモデルの量子計算装置Qの回路構成が簡易になる。
 数式13をM個の全部のサイトについて加算すると、数式14のようになり、レーザーシステムの全体の閾値利得ΣECiとして表わされる。
Figure JPOXMLDOC01-appb-M000014
 ここで、仮定として、数式15が成立している。そして、定常状態では、数式16、17が成立している。このとき、数式14は、数式18のようになる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ここで、レーザーの媒質が均一な媒質であるときには、レーザーシステム全体として、最小の閾値利得ΣECiを実現する発振位相状態{σ}が選択される。つまり、レーザーシステム全体として、1個の特定の発振モードが選択される。そして、発振モードの間の競合に起因して、1個の特定の発振モードは、他の発振モードを抑制する。つまり、レーザーシステム全体として、数式18のΣECiは最小化される。一方で、レーザーシステム全体として、数式18の(ω/Q)Mは一定である。よって、レーザーシステム全体として、数式18のΣλσ+ΣJijσσ+ΣKijkσσσは最小化される。つまり、数式3のイジングハミルトニアンを最小化する基底状態が実現されたことになる。
 ここで、計算精度を向上させるためには、レーザーシステム全体でのレーザー発振モードについて、最小の閾値利得及びその次に小さい閾値利得の差を、自然放出レートで決定される飽和利得E及び光子減衰率ω/Qの差であるβ(ω/Q)(1/R)より十分に大きくする必要がある。ここで、R=I/Ith-1は、規格化ポンプレートであり、I及びIthは、それぞれ注入電流及びそのレーザー発振閾値である。よって、βを小さくしRを高くすることにより、計算精度を向上させることができる。
 図4及び図5を用いて説明したように、複数の擬似的スピンパルスSPiは、同一の発振周波数を有するため、各擬似的スピンパルスSPiの初期状態の発振位相φ(t=0)が、各擬似的スピンパルスSPiの定常状態の2種類の発振位相φ(定常)=±π/2のうち、一方の位相へは近く他方の位相へは遠い、ということがない。よって、イジングモデルの量子計算装置Qにおいて、読み出しエラーを防止することができる。
 そして、イジングサイトがM個であるとき、第1及び第2の従来技術では、面発光レーザーVをM台も必要とするのに対して、本発明では、パラメトリック発振器1を1台のみ準備すれば足りる。さらに、イジングサイトがM個であるとき、第1及び第2の従来技術では、イジング相互作用実装部をM(M-1)/2個も必要とするのに対して、本発明では、フィードバックループを1系統のみ準備すれば足りる。よって、イジングモデルの量子計算装置Qにおいて、回路構成を簡易にすることができる。
 さらに、各擬似的スピンパルスSPi及び各注入光パルスの線形の重ね合わせの範囲内で、イジングモデルの3体以上の相互作用を実装することができる。ここで、イジングモデルの3体の相互作用を実装するときには、数式12のようにσσ=sinφjk(t)とおいて、擬似的スピンパルスSPi及び注入光パルスの線形の重ね合わせを行う。そして、イジングモデルの3体以上の相互作用を実装するときには、数式12と同様にσσσ・・・=sinφjkl・・・(t)(N体の相互作用について、φは(N-1)個のσの積)とおいて、擬似的スピンパルスSPi及び注入光パルスの線形の重ね合わせを行う。
(第1の実施形態のイジングモデルの量子計算装置の構成)
 第1の実施形態のイジングモデルの量子計算装置Qの構成を図6に示す。
 パラメトリック発振器1は、複数の擬似的スピンパルスSP1~SP(N)と同一の発振周波数を有し1対1のペアを組む複数の局部発振パルスLO1~LO(N)をパラメトリック発振させる。リング共振器2は、複数の局部発振パルスLO1~LO(N)を周回伝搬させる。複数の擬似的スピンパルスSP1~SP(N)及び複数の局部発振パルスLO1~LO(N)は、LO1、SP1、・・・、LO(N)、SP(N)、LO1、SP1、・・・、LO(N)、SP(N)、・・・の順序で、フィードバックループに入る。
 ここで、複数の擬似的スピンパルスSP1~SP(N)は、発振閾値の近傍でポンプパルスを用いてパラメトリック発振される。そして、複数の局部発振パルスLO1~LO(N)は、発振閾値より十分上でポンプパルスを用いてパラメトリック発振される。
 パルス同相化部7は、複数の局部発振パルスLO1~LO(N)の位相について、正相及び逆相の両方を含む状態から、正相及び逆相の一方を含む状態へと、同相化させる。よって、パルス同相化部7は、複数の局部発振パルスLO1~LO(N)の位相について、図5で示したように0とすることができる。例えば、パルス同相化部7は、2パルス分(隣接の局部発振パルスLOは、1つの擬似的スピンパルスSPを挟む。)の遅延線及び位相変調器を備える。ただし、パルス同相化部7は、複数の局部発振パルスLO1~LO(N)のみ位相変調すべきであり、複数の擬似的スピンパルスSP1~SP(N)まで位相変調すべきでなく、位相変調器のON/OFFの切り替えを行う。
 暫定的スピン測定部3は、複数の擬似的スピンパルスSP1~SP(N)の一部に対して、1対1のペアを組む複数の局部発振パルスLO1~LO(N)の一部を用いてホモダイン検波を行う。ここで、暫定的スピン測定部3は、cos成分及びsin成分を測定しており、各成分の測定部に1パルス分(1対1のペアを組む擬似的スピンパルスSP及び局部発振パルスLOは、隣接している。)の遅延線を備える。
 相互作用計算部4は、例えば、FPGA(Field Programmable Gate Array)であり、イジングモデルの結合係数λ、Jij、Kijkを入力する。相互作用実装部5は、ある擬似的スピンパルスSPiに対して、1対1のペアを組みその一部の振幅及び位相を制御された局部発振パルスLOiを注入する。ここで、相互作用実装部5は、1パルス分(1対1のペアを組む擬似的スピンパルスSP及び局部発振パルスLOは、隣接している。)の遅延線上に置かれる。
 擬似的スピン測定部6は、暫定的スピン測定部3と共用であり、複数の擬似的スピンパルスSP1~SP(N)の一部に対して、1対1のペアを組む複数の局部発振パルスLO1~LO(N)の一部を用いてホモダイン検波を行い、イジングモデルのスピンσを出力する。
 図6を用いて説明したように、複数の擬似的スピンパルスSPiの発振位相φ(t)の暫定的な測定結果を用いた、各擬似的スピンパルスSPiが関わる相互作用の大きさ及び符号のフィードバック実装を、具体的な構成を用いて行うことができる。そして、第1の実施形態によれば、第2の実施形態と比べて、擬似的スピンパルスSPi及び局部発振パルスLOiがペアとなってリング共振器2を周回伝搬するため、パルス発生器8からスピン測定部3、6への光路長の揺らぎの問題をなくすことができる。よって、イジングモデルの量子計算装置Qにおいて、読み出しエラーを防止することができる。
(第2の実施形態のイジングモデルの量子計算装置の構成)
 第2の実施形態のイジングモデルの量子計算装置Qの構成を図7に示す。
 パルス発生器8は、角周波数ωを有する局部発振パルスLOを発生させる。第二高調波発生器9は、角周波数ωを有する局部発振パルスLOを用いて、角周波数2ωを有するパルスを発生させる。パラメトリック発振器1は、角周波数2ωを有するパルスを用いて、複数の擬似的スピンパルスSP1~SP(N)をパラメトリック発振させる。複数の擬似的スピンパルスSP1~SP(N)は、SP1、・・・、SP(N)、SP1、・・・、SP(N)、・・・の順序で、フィードバックループに入る。
 ここで、複数の擬似的スピンパルスSP1~SP(N)は、発振閾値の近傍でポンプパルスを用いてパラメトリック発振される。そして、パルス発生器8は、例えば、モード同期レーザーを備える。よって、パルス発生器8は、角周波数ωを有する局部発振パルスLOの位相について、図5で示したように0とすることができる。
 暫定的スピン測定部3は、複数の擬似的スピンパルスSP1~SP(N)の一部に対して、角周波数ωを有する局部発振パルスLOを用いてホモダイン検波を行う。ここで、暫定的スピン測定部3は、cos成分及びsin成分を測定している。
 相互作用計算部4は、例えば、FPGA(Field Programmable Gate Array)であり、イジングモデルの結合係数λ、Jij、Kijkを入力する。相互作用実装部5は、ある擬似的スピンパルスSPiに対して、振幅及び位相を制御された角周波数ωを有する局部発振パルスLOを注入する。
 擬似的スピン測定部6は、暫定的スピン測定部3と共用であり、複数の擬似的スピンパルスSP1~SP(N)の一部に対して、角周波数ωを有する局部発振パルスLOを用いてホモダイン検波を行い、イジングモデルのスピンσを出力する。
 図7を用いて説明したように、複数の擬似的スピンパルスSPiの発振位相φ(t)の暫定的な測定結果を用いた、各擬似的スピンパルスSPiが関わる相互作用の大きさ及び符号のフィードバック実装を、具体的な構成を用いて行うことができる。そして、第2の実施形態によれば、第1の実施形態と比べて、擬似的スピンパルスSPi及び局部発振パルスLOがペアとなってリング共振器2を周回伝搬しないため、擬似的スピンパルスSPi及び局部発振パルスLOi間のクロストークをなくすことができ、全局部発振パルスLOiを同相化させるパルス同相化部7をなくすことができる。よって、イジングモデルの量子計算装置Qにおいて、読み出しエラーを防止することができる。
(本発明のイジングモデルの量子計算装置の計算結果)
 数式4-7のレート方程式のシミュレーション結果として、2体の相互作用を含むイジングモデルの量子計算装置Qの計算結果及び時間発展を図8及び図9に示す。イジングモデルのハミルトニアンは、図8の上段に示されている。
 このハミルトニアンの最小エネルギー状態では、ある2つのサイトのスピンσが上向きであり、他の2つのサイトのスピンσが下向きであり、これらの最小エネルギー状態は6通り存在することが、数式4-7のレート方程式によらず分かっている。
 図8では、本発明の計算処理を1000回繰り返した結果、6通りの最小エネルギー状態がほぼ等確率で導き出された一方、その他のエネルギー状態は導き出されなかった。つまり、エラーレートは、10-3以下であることが分かった。
 図9では、ホモダイン検波結果の時間発展は、σ=σ=+1、σ=σ=-1の最小エネルギー状態を指向している。初期状態から定常状態への所要時間は、~40×100μsであった。ここで、図9の横軸の時間は、共振器の光寿命(2kmの光ファイバにより構成されるリング共振器2では100μs)により規格化された時間である。
 数式4-7のレート方程式のシミュレーション結果として、4体の相互作用を含むイジングモデルの量子計算装置Qの計算結果及び時間発展を図10及び図11に示す。イジングモデルのハミルトニアンは、図10の上段に示されている。
 このハミルトニアンの最小エネルギー状態では、ある1つのサイトのスピンσと他の3つのサイトのスピンσが異符号であり、これらの最小エネルギー状態は8通り存在することが、数式4-7のレート方程式によらず分かっている。
 図10では、本発明の計算処理を1000回繰り返した結果、8通りの最小エネルギー状態がほぼ等確率で導き出された一方、その他のエネルギー状態は導き出されなかった。つまり、エラーレートは、10-3以下であることが分かった。
 図11では、ホモダイン検波結果の時間発展は、σ=+1、σ=σ=σ=-1の最小エネルギー状態を指向している。初期状態から定常状態への所要時間は、~80×100μsであった。ここで、図11の横軸の時間は、共振器の光寿命(2kmの光ファイバにより構成されるリング共振器2では100μs)により規格化された時間である。
 ここで、計算処理の初期段階において、各擬似的スピンパルスSPの読出結果は正しい答えであるとは限らず、計算処理の初期段階において、正しくない答えをフィードバックすれば、計算処理の終期段階において、正しい答えを得られない、という疑義が生ずる。
 そこで、相互作用実装部5は、ある擬似的スピンパルスSPに対して注入される光の振幅を、計算処理の初期段階ほど大きく制御し、計算処理の終期段階ほど小さく制御する。つまり、相互作用実装部5は、数式4、5における比例定数Aを、計算処理の初期段階ほど大きく制御し、計算処理の終期段階ほど小さく制御する。
 よって、計算処理の初期段階において、各擬似的スピンパルスSPの読出結果をできるだけ正しい答えにすることができる。たとえ、計算処理の初期段階において、ある擬似的スピンパルスSPの読出結果が正しい答えでないとしても、他の擬似的スピンパルスSPについての正しい答えをフィードバックすれば、計算処理の終期段階において、全擬似的スピンパルスSPについての正しい答えを得ることができる。つまり、イジングモデルの量子計算装置Qにおいて、読み出しエラーを防止することができる。
 計算処理の全段階で光注入強度を一定にした場合の時間発展を図12に示す。図12の場合には、定常状態において、不安定な発振状態が生じている。
 計算処理の初期段階に光注入強度を高くした場合の時間発展を図13に示す。図13の場合には、発振閾値直前において、光注入強度を減衰させることにより、定常状態において、不安定な発振状態がなくなっている。そして、初期段階において、光注入強度を高くすることにより、ある擬似的スピンパルスSPについて、初期段階においては、誤答が得られたとしても、終期段階においては、正答が得られるようになる。
 そして、数式15のA(t)=A(t)を仮定することで、数式18のイジングモデルの結合係数としてλ、Jij、Kijkを得ているところ、数式15のA(t)=A(t)が成立しなければ、数式18のイジングモデルの結合係数としてλ、Jij、Kijkと異なるλ’、J’ij、K’ijkが得られてしまう、という問題が生ずる。
 そこで、スピン測定部3、6は、複数の擬似的スピンパルスSPがリング共振器2を周回伝搬するたびに、複数の擬似的スピンパルスSPの振幅を暫定的に測定する。そして、パラメトリック発振器1は、スピン測定部3、6が測定した複数の擬似的スピンパルスSPの振幅に基づいて、複数の擬似的スピンパルスSPの振幅が等しくなるように、パラメトリック発振に用いるポンプパルスの振幅をフィードバック制御する。
 よって、各擬似的スピンパルスSPの振幅の不均衡による、イジングモデルの結合係数λ、Jij、Kijkの実質的な書き換えの問題をなくすことができる。つまり、イジングモデルの量子計算装置Qにおいて、読み出しエラーを防止することができる。
 複数の擬似的スピンパルスの強度を揃えない場合の時間発展を図14に示す。図14の場合には、各擬似的スピンパルスSPの強度によらず、各擬似的スピンパルスSPについて、ポンプパルスの強度が同様になるように制御されている。よって、各擬似的スピンパルスSPの強度が確実に揃えられるとは限らない。
 複数の擬似的スピンパルスの強度を揃えない場合の計算精度を図15に示す。イジングエネルギー(折れ線グラフで表す。)が低い状態の存在確率(ヒストグラムで示す。)は、本来は高いはずであるところ、図15の場合には、低くなっている。
 複数の擬似的スピンパルスの強度を揃えた場合の時間発展を図16に示す。図16の場合には、各擬似的スピンパルスSPの強度に応じて、各擬似的スピンパルスSPについて、ポンプパルスの強度がそれぞれに(同様でもよく、異なってもよい。)制御されている。よって、各擬似的スピンパルスSPの強度が確実に揃えられることができる。
 複数の擬似的スピンパルスの強度を揃えた場合の計算精度を図17に示す。イジングエネルギー(折れ線グラフで表す。)が低い状態の存在確率(ヒストグラムで示す。)は、本来は高いはずであるところ、図17の場合には、高くなっている。
(本発明のイジングモデルの量子計算方法のループ手順)
 本発明のイジングモデルの量子計算方法のループ手順を図18、19に示す。
 図18に示したイジングモデルの量子計算方法のループ手順を実現するために、図4、6、7に示したイジングモデルの量子計算装置Qのように、暫定的スピン測定部3(又は擬似的スピン測定部6)、パラメトリック発振器1及び相互作用実装部5が、リング共振器2中の擬似的スピンパルスSPの周回伝搬方向にこの順序で配置される。
 パラメトリック発振器1は、複数の擬似的スピンパルスSPをパラメトリック発振させる(ステップS1)。暫定的スピン測定部3は、擬似的なスピンσを暫定的に測定する(ステップS2)。相互作用計算部4は、イジング相互作用を暫定的に計算する(ステップS3)。パラメトリック発振器1は、複数の擬似的スピンパルスSPをパラメトリック増幅させる(ステップS4)。相互作用実装部5は、イジング相互作用を暫定的に実装する(ステップS5)。ステップS3、S4は、順序が入れ替わることがある。
 複数の擬似的スピンパルスSPが定常状態に到達しなければ(ステップS6においてNO)、ステップS2~S6のループ手順を繰り返す。複数の擬似的スピンパルスSPが定常状態に到達したならば(ステップS6においてYES)、擬似的スピン測定部6は、擬似的なスピンσを最終的に測定する(ステップS7)。
 このように、暫定的スピン測定ステップS2と相互作用実装ステップS5の間に、パラメトリック増幅ステップS4が入って、タイムラグがある程度生じるものの、イジングモデルのサイト間の実質には遅延のない相互作用を実装することができる。
 図19に示したイジングモデルの量子計算方法のループ手順を実現するために、図4、6、7に示したイジングモデルの量子計算装置Qと異なり、パラメトリック発振器1、暫定的スピン測定部3(又は擬似的スピン測定部6)及び相互作用実装部5が、リング共振器2中の擬似的スピンパルスSPの周回伝搬方向にこの順序で配置される。
 パラメトリック発振器1は、複数の擬似的スピンパルスSPをパラメトリック発振させる(ステップS11)。暫定的スピン測定部3は、擬似的なスピンσを暫定的に測定する(ステップS12)。相互作用計算部4は、イジング相互作用を暫定的に計算する(ステップS13)。相互作用実装部5は、イジング相互作用を暫定的に実装する(ステップS14)。パラメトリック発振器1は、複数の擬似的スピンパルスSPをパラメトリック増幅させる(ステップS15)。ステップS13、S15は、順序が入れ替わることがない。
 複数の擬似的スピンパルスSPが定常状態に到達しなければ(ステップS16においてNO)、ステップS12~S16のループ手順を繰り返す。複数の擬似的スピンパルスSPが定常状態に到達したならば(ステップS16においてYES)、擬似的スピン測定部6は、擬似的なスピンσを最終的に測定する(ステップS17)。
 このように、暫定的スピン測定ステップS12と相互作用実装ステップS14の間に、パラメトリック増幅ステップS15が入らず、タイムラグがほとんど生じないため、イジングモデルのサイト間のほとんど遅延のない相互作用を実装することができる。
(本発明のイジングモデルの量子並列計算装置の構成)
 本発明のイジングモデルの量子並列計算装置Pの構成を図20、21に示す。
 イジングモデルの量子並列計算装置Pは、第1番、第2番、・・・、第n番のイジングモデルの量子計算装置Q1、Q2、・・・、Qnを並列に備える。第1番、第2番、・・・、第n番のイジングモデルの量子計算装置Q1、Q2、・・・、Qnとして、図4、6、7に示したイジングモデルの量子計算装置Q及び図18、19に示したイジングモデルの量子計算方法を適用することができる。第1番、第2番、・・・、第n番のイジングモデルの量子計算装置Q1、Q2、・・・、Qnでは、イジングモデルの複数のスピンσのうち、第1群、第2群、・・・、第n群のスピンσに擬似的に対応する、第1群、第2群、・・・、第n群の擬似的スピンパルスSPが、各リング共振器2を周回伝搬する。
 暫定的スピン共有部10は、第1番、第2番、・・・、第n番のイジングモデルの量子計算装置Q1、Q2、・・・、Qnが備える各暫定的スピン測定部3が暫定的に測定した、第1群、第2群、・・・、第n群の擬似的スピンパルスSPの擬似的なスピンσの情報を、並列に備わるイジングモデルの量子計算装置Q1、Q2、・・・、Qnの間で共有させる。
 図20に示したイジングモデルの量子並列計算装置Pについて説明する。第1番、第2番、・・・、第n番のイジングモデルの量子計算装置Q1、Q2、・・・、Qnの各暫定的スピン測定部3は、第1群、第2群、・・・、第n群の擬似的スピンパルスSPの擬似的なスピンσの情報を、暫定的スピン共有部10及び各相互作用計算部4に出力する。
 暫定的スピン共有部10は、第1群より他の群(第2群、第n群等)の擬似的スピンパルスSPの擬似的なスピンσの情報を、第1番のイジングモデルの量子計算装置Q1の相互作用計算部4に出力する。暫定的スピン共有部10は、第2群より他の群(第1群、第n群等)の擬似的スピンパルスSPの擬似的なスピンσの情報を、第2番のイジングモデルの量子計算装置Q2の相互作用計算部4に出力する。・・・暫定的スピン共有部10は、第n群より他の群(第1群、第2群等)の擬似的スピンパルスSPの擬似的なスピンσの情報を、第n番のイジングモデルの量子計算装置Qnの相互作用計算部4に出力する。
 第1番のイジングモデルの量子計算装置Q1の相互作用計算部4は、第1群の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第1群の擬似的スピンパルスSPが関わる相互作用を暫定的に計算する。第2番のイジングモデルの量子計算装置Q2の相互作用計算部4は、第2群の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第2群の擬似的スピンパルスSPが関わる相互作用を暫定的に計算する。・・・第n番のイジングモデルの量子計算装置Qnの相互作用計算部4は、第n群の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第n群の擬似的スピンパルスSPが関わる相互作用を暫定的に計算する。
 このように、イジングモデルのサイト数が多いときでも、複数のイジングモデルの量子計算装置Q1、Q2、・・・、Qnが並列分散処理を実行することにより、各々のイジングモデルの量子計算装置Q1、Q2、・・・、Qnは計算処理負担を軽減することができる。
 図20に示したイジングモデルの量子並列計算装置Pでは、暫定的スピン共有部10は、複数のイジングモデルの量子計算装置Q1、Q2、・・・、Qnの相互作用計算部4に、擬似的スピンパルスSPの擬似的なスピンσの情報を出力する。よって、複数のイジングモデルの量子計算装置Q1、Q2、・・・、Qnの相互作用計算部4は、擬似的スピンパルスSPの間の相互作用の計算処理負担を軽減されない。しかし、図4、6、7に示したイジングモデルの量子計算装置Qと比べて、図20に示した各々のイジングモデルの量子計算装置Q1、Q2、・・・、Qnは、計算処理負担を軽減される。
 図21に示したイジングモデルの量子並列計算装置Pについて説明する。第1番、第2番、・・・、第n番のイジングモデルの量子計算装置Q1、Q2、・・・、Qnの各暫定的スピン測定部3は、第1群、第2群、・・・、第n群の擬似的スピンパルスSPの擬似的なスピンσの情報を、暫定的スピン共有部10及び各相互作用計算部4に出力する。
 暫定的スピン共有部10は、第1群と他の群(第2群、第n群等)の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第1群と他の群の擬似的スピンパルスSPの間の相互作用の情報を、第1番のイジングモデルの量子計算装置Q1の相互作用計算部4に出力する。暫定的スピン共有部10は、第2群と他の群(第1群、第n群等)の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第2群と他の群の擬似的スピンパルスSPの間の相互作用の情報を、第2番のイジングモデルの量子計算装置Q2の相互作用計算部4に出力する。・・・暫定的スピン共有部10は、第n群と他の群(第1群、第2群等)の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第n群と他の群の擬似的スピンパルスSPの間の相互作用の情報を、第n番のイジングモデルの量子計算装置Qnの相互作用計算部4に出力する。
 第1番のイジングモデルの量子計算装置Q1の相互作用計算部4は、第1群に属する複数の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第1群に属する複数の擬似的スピンパルスSPの間の相互作用を暫定的に計算する。第2番のイジングモデルの量子計算装置Q2の相互作用計算部4は、第2群に属する複数の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第2群に属する複数の擬似的スピンパルスSPの間の相互作用を暫定的に計算する。・・・第n番のイジングモデルの量子計算装置Qnの相互作用計算部4は、第n群に属する複数の擬似的スピンパルスSPが関わるイジングモデルの結合係数を保持しており、第n群に属する複数の擬似的スピンパルスSPの間の相互作用を暫定的に計算する。
 このように、イジングモデルのサイト数が多いときでも、複数のイジングモデルの量子計算装置Q1、Q2、・・・、Qnが並列分散処理を実行することにより、各々のイジングモデルの量子計算装置Q1、Q2、・・・、Qnは計算処理負担を軽減することができる。
 図21に示したイジングモデルの量子並列計算装置Pでは、暫定的スピン共有部10は、複数のイジングモデルの量子計算装置Q1、Q2、・・・、Qnの相互作用計算部4に、擬似的スピンパルスSPの間の相互作用の情報を出力する。よって、複数のイジングモデルの量子計算装置Q1、Q2、・・・、Qnの相互作用計算部4は、擬似的スピンパルスSPの間の相互作用の計算処理負担を軽減される。つまり、図20に示した各々のイジングモデルの量子計算装置Q1、Q2、・・・、Qnと比べて、図21に示した各々のイジングモデルの量子計算装置Q1、Q2、・・・、Qnは、計算処理負担を軽減される。
 本発明のイジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法は、イジングモデルにマッピングされるNP完全問題などを高速かつ容易に解くのに適している。
V、V1、V2、V3、V4:面発光レーザー
M:マスターレーザー
I12、I13、I14、I23、I24、I34:イジング相互作用実装部
Q、Q1、Q2、Qn:イジングモデルの量子計算装置
SP、SP1、SP2、SP3、SP4、SP(N):擬似的スピンパルス
LO、LO1~LON:局部発振パルス
P:イジングモデルの量子並列計算装置
1:パラメトリック発振器
2:リング共振器
3:暫定的スピン測定部
4:相互作用計算部
5:相互作用実装部
6:擬似的スピン測定部
7:パルス同相化部
8:パルス発生器
9:第二高調波発生器
10:暫定的スピン共有部

Claims (9)

  1.  イジングモデルの複数のスピンに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスをパラメトリック発振させるパラメトリック発振器と、
     前記複数の擬似的スピンパルスを周回伝搬させるリング共振器と、
     前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの位相を暫定的に測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを暫定的に測定する暫定的スピン測定部と、
     ある擬似的スピンパルスが関わる前記イジングモデルの結合係数及び前記暫定的スピン測定部が暫定的に測定した他の擬似的スピンパルスの擬似的なスピンに基づいて、前記ある擬似的スピンパルスが関わる相互作用を暫定的に計算する相互作用計算部と、
     前記ある擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算部が暫定的に計算した前記ある擬似的スピンパルスが関わる相互作用の大きさ及び符号を暫定的に実装する相互作用実装部と、
     前記暫定的スピン測定部、前記相互作用計算部及び前記相互作用実装部により構成されるフィードバックループが繰り返される過程で、前記複数の擬似的スピンパルスが定常状態に到達した後に、前記複数の擬似的スピンパルスの位相を測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを測定する擬似的スピン測定部と、
     を備えることを特徴とするイジングモデルの量子計算装置。
  2.  前記相互作用計算部は、前記ある擬似的スピンパルスが関わる前記イジングモデルの3体以上の結合係数及び前記暫定的スピン測定部が暫定的に測定した前記他の擬似的スピンパルスの擬似的なスピンに基づいて、前記ある擬似的スピンパルスが関わる3体以上の相互作用を暫定的に計算し、
     前記相互作用実装部は、前記ある擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算部が暫定的に計算した前記ある擬似的スピンパルスが関わる3体以上の相互作用の大きさ及び符号を暫定的に実装する
     ことを特徴とする請求項1に記載のイジングモデルの量子計算装置。
  3.  前記パラメトリック発振器は、前記複数の擬似的スピンパルスと同一の発振周波数を有し1対1のペアを組む複数の局部発振パルスをパラメトリック発振させ、
     前記リング共振器は、前記複数の局部発振パルスを周回伝搬させ、
     前記複数の局部発振パルスの位相について、正相及び逆相の両方を含む状態から、正相及び逆相の一方を含む状態へと、同相化させるパルス同相化部、をさらに備え、
     前記暫定的スピン測定部は、前記複数の擬似的スピンパルスの一部に対して、1対1のペアを組む前記複数の局部発振パルスの一部を用いてホモダイン検波を行い、
     前記相互作用実装部は、前記ある擬似的スピンパルスに対して、1対1のペアを組みその一部の振幅及び位相を制御された局部発振パルスを注入し、
     前記擬似的スピン測定部は、前記複数の擬似的スピンパルスの一部に対して、1対1のペアを組む前記複数の局部発振パルスの一部を用いてホモダイン検波を行う
     ことを特徴とする請求項1又は2に記載のイジングモデルの量子計算装置。
  4.  角周波数ωを有する局部発振パルスを発生させるパルス発生器と、
     前記角周波数ωを有する局部発振パルスを用いて、角周波数2ωを有するパルスを発生させる第二高調波発生器と、をさらに備え、
     前記パラメトリック発振器は、前記角周波数2ωを有するパルスを用いて、前記複数の擬似的スピンパルスをパラメトリック発振させ、
     前記暫定的スピン測定部は、前記複数の擬似的スピンパルスの一部に対して、前記角周波数ωを有する局部発振パルスを用いてホモダイン検波を行い、
     前記相互作用実装部は、前記ある擬似的スピンパルスに対して、振幅及び位相を制御された前記角周波数ωを有する局部発振パルスを注入し、
     前記擬似的スピン測定部は、前記複数の擬似的スピンパルスの一部に対して、前記角周波数ωを有する局部発振パルスを用いてホモダイン検波を行う
     ことを特徴とする請求項1又は2に記載のイジングモデルの量子計算装置。
  5.  前記相互作用実装部は、前記ある擬似的スピンパルスに対して注入される光の振幅を、計算処理の初期段階ほど大きく制御し、計算処理の終期段階ほど小さく制御する
     ことを特徴とする請求項1から4のいずれかに記載のイジングモデルの量子計算装置。
  6.  前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの振幅を暫定的に測定する暫定的振幅測定部、をさらに備え、
     前記パラメトリック発振器は、前記暫定的振幅測定部が測定した前記複数の擬似的スピンパルスの振幅に基づいて、前記複数の擬似的スピンパルスの振幅が等しくなるように、パラメトリック発振に用いるポンプパルスの振幅をフィードバック制御する
     ことを特徴とする請求項1から5のいずれかに記載のイジングモデルの量子計算装置。
  7.  前記イジングモデルの複数のスピンのうち第n群(nは1以上の整数)のスピンに擬似的に対応する第n群の擬似的スピンパルスが前記リング共振器を周回伝搬する、請求項1から6のいずれかに記載の第n番のイジングモデルの量子計算装置、を並列に備え、
     前記第n番のイジングモデルの量子計算装置が備える前記暫定的スピン測定部が暫定的に測定した前記第n群の擬似的スピンパルスの擬似的なスピンの情報を、並列に備わるイジングモデルの量子計算装置の間で共有させる暫定的スピン共有部、をさらに備える
     ことを特徴とするイジングモデルの量子並列計算装置。
  8.  イジングモデルの複数のスピンに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスをパラメトリック発振させるパラメトリック発振ステップと、
     前記複数の擬似的スピンパルスがリング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの位相を暫定的に測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを暫定的に測定する暫定的スピン測定ステップと、
     前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、ある擬似的スピンパルスが関わる前記イジングモデルの結合係数及び前記暫定的スピン測定ステップが暫定的に測定した他の擬似的スピンパルスの擬似的なスピンに基づいて、前記ある擬似的スピンパルスが関わる相互作用を暫定的に計算する相互作用計算ステップと、
     前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記ある擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算ステップが暫定的に計算した前記ある擬似的スピンパルスが関わる相互作用の大きさ及び符号を暫定的に実装する相互作用実装ステップと、
     前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスをパラメトリック増幅させるパラメトリック増幅ステップと、
     前記暫定的スピン測定ステップ、前記相互作用実装ステップ及び前記パラメトリック増幅ステップをこの順序で備えるフィードバックループが繰り返される過程で、前記複数の擬似的スピンパルスが定常状態に到達した後に、前記複数の擬似的スピンパルスの位相を測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを測定する擬似的スピン測定ステップと、
     を備えることを特徴とするイジングモデルの量子計算方法。
  9.  イジングモデルの複数のスピンに擬似的に対応し同一の発振周波数を有する複数の擬似的スピンパルスをパラメトリック発振させるパラメトリック発振ステップと、
     前記複数の擬似的スピンパルスがリング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスの位相を暫定的に測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを暫定的に測定する暫定的スピン測定ステップと、
     前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、ある擬似的スピンパルスが関わる前記イジングモデルの結合係数及び前記暫定的スピン測定ステップが暫定的に測定した他の擬似的スピンパルスの擬似的なスピンに基づいて、前記ある擬似的スピンパルスが関わる相互作用を暫定的に計算する相互作用計算ステップと、
     前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記複数の擬似的スピンパルスをパラメトリック増幅させるパラメトリック増幅ステップと、
     前記複数の擬似的スピンパルスが前記リング共振器を周回伝搬するたびに、前記ある擬似的スピンパルスに対して注入される光の振幅及び位相を制御することにより、前記相互作用計算ステップが暫定的に計算した前記ある擬似的スピンパルスが関わる相互作用の大きさ及び符号を暫定的に実装する相互作用実装ステップと、
     前記暫定的スピン測定ステップ、前記パラメトリック増幅ステップ及び前記相互作用実装ステップをこの順序で備えるフィードバックループが繰り返される過程で、前記複数の擬似的スピンパルスが定常状態に到達した後に、前記複数の擬似的スピンパルスの位相を測定することにより、前記複数の擬似的スピンパルスの擬似的なスピンを測定する擬似的スピン測定ステップと、
     を備えることを特徴とするイジングモデルの量子計算方法。
PCT/JP2015/059057 2014-04-11 2015-03-25 イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法 WO2015156126A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016512655A JP6255087B2 (ja) 2014-04-11 2015-03-25 イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法
US15/302,951 US10140580B2 (en) 2014-04-11 2015-03-25 Quantum computing device for Ising model, quantum parallel computing device for Ising model, and quantum computing method for Ising model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014082055 2014-04-11
JP2014-082055 2014-04-11

Publications (1)

Publication Number Publication Date
WO2015156126A1 true WO2015156126A1 (ja) 2015-10-15

Family

ID=54287703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059057 WO2015156126A1 (ja) 2014-04-11 2015-03-25 イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法

Country Status (3)

Country Link
US (1) US10140580B2 (ja)
JP (1) JP6255087B2 (ja)
WO (1) WO2015156126A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047666A1 (ja) * 2015-09-15 2017-03-23 日本電信電話株式会社 イジングモデルの量子計算装置
WO2017221390A1 (ja) * 2016-06-24 2017-12-28 大学共同利用機関法人情報・システム研究機構 スピン模型の光サンプリング装置及び方法
WO2018104861A1 (en) * 2016-12-05 2018-06-14 1Qb Information Technologies Inc. Method for estimating the thermodynamic properties of a quantum ising model with transverse field
JP2018147228A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
JP2018147227A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
JP2018147229A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
JP2018147225A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
JP2019028132A (ja) * 2017-07-26 2019-02-21 日本電信電話株式会社 イジングモデルの計算装置
WO2019078355A1 (ja) 2017-10-19 2019-04-25 日本電信電話株式会社 ポッツモデルの計算装置
WO2020050172A1 (ja) 2018-09-04 2020-03-12 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置
US11385522B2 (en) 2017-10-19 2022-07-12 Nippon Telegraph And Telephone Corporation Ising model calculation device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021864B2 (ja) * 2014-08-29 2016-11-09 株式会社日立製作所 半導体装置および情報処理装置
JP6701207B2 (ja) * 2015-08-24 2020-05-27 株式会社日立製作所 情報処理システム
US10069573B2 (en) * 2016-03-10 2018-09-04 Raytheon Bbn Technologies Corp. Optical ising-model solver using quantum annealing
WO2020027785A1 (en) * 2018-07-31 2020-02-06 The University Of Tokyo Data processing apparatus
JP7093009B2 (ja) * 2018-08-30 2022-06-29 富士通株式会社 最適化装置、最適化装置の制御方法及び最適化装置の制御プログラム
CN112486898B (zh) * 2019-09-11 2023-02-10 华为技术有限公司 一种光计算设备以及计算方法
KR20210088987A (ko) * 2020-01-07 2021-07-15 삼성전자주식회사 라이다 장치 및 그 동작 방법
JP2024514022A (ja) * 2021-03-06 2024-03-27 エヌティーティー リサーチ インコーポレイテッド コヒーレントイジングマシンを用いた基底状態および低エネルギーイジングスピン構成の効率的なサンプリングシステムおよび方法
JP7530341B2 (ja) * 2021-08-24 2024-08-07 株式会社日立製作所 レーザ発振器
WO2024123431A1 (en) * 2022-10-24 2024-06-13 Ntt Research, Inc. Using quantum state estimation to enable measurement-based optical computation at the few photon level

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118064A1 (ja) * 2011-03-01 2012-09-07 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP2014134710A (ja) * 2013-01-11 2014-07-24 Research Organization Of Information & Systems イジングモデルの量子計算装置及びイジングモデルの量子計算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300049B2 (ja) * 2013-07-09 2018-03-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 光パラメトリック発振器のネットワークを使用する計算

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118064A1 (ja) * 2011-03-01 2012-09-07 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP2014134710A (ja) * 2013-01-11 2014-07-24 Research Organization Of Information & Systems イジングモデルの量子計算装置及びイジングモデルの量子計算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
UTSUNOMIYA S. ET AL.: "Mapping of Ising medels onto injection-locked laser systems", OPTICS EXPRESS, vol. 19, no. 19, pages 18091 - 18108, XP055229174 *
WANG Z. ET AL.: "Coherent Ising machine based on degenerate optical parametric oscillators", PHYSICAL REVIEW A, vol. 88, 30 December 2013 (2013-12-30), pages 063853 - 1 -063853-9, XP055173774 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139703B2 (en) 2015-09-15 2018-11-27 Nippon Telegraph And Telephone Corporation Ising model quantum computation device
JPWO2017047666A1 (ja) * 2015-09-15 2018-07-05 日本電信電話株式会社 イジングモデルの量子計算装置
WO2017047666A1 (ja) * 2015-09-15 2017-03-23 日本電信電話株式会社 イジングモデルの量子計算装置
WO2017221390A1 (ja) * 2016-06-24 2017-12-28 大学共同利用機関法人情報・システム研究機構 スピン模型の光サンプリング装置及び方法
WO2018104861A1 (en) * 2016-12-05 2018-06-14 1Qb Information Technologies Inc. Method for estimating the thermodynamic properties of a quantum ising model with transverse field
JP2019537156A (ja) * 2016-12-05 2019-12-19 1キュービー インフォメーション テクノロジーズ インコーポレイテッド1Qb Information Technologies Inc. 横磁場量子イジング模型の熱力学的特性を推定するための方法
JP2018147228A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
JP2018147225A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
JP2018147229A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
JP2018147227A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
JP7018620B2 (ja) 2017-03-06 2022-02-14 日本電信電話株式会社 イジングモデルの計算装置
JP2019028132A (ja) * 2017-07-26 2019-02-21 日本電信電話株式会社 イジングモデルの計算装置
WO2019078355A1 (ja) 2017-10-19 2019-04-25 日本電信電話株式会社 ポッツモデルの計算装置
US11385522B2 (en) 2017-10-19 2022-07-12 Nippon Telegraph And Telephone Corporation Ising model calculation device
US11436394B2 (en) 2017-10-19 2022-09-06 Nippon Telegraph And Telephone Corporation Potts model calculation device
WO2020050172A1 (ja) 2018-09-04 2020-03-12 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置
JP2020038300A (ja) * 2018-09-04 2020-03-12 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置
JP6996457B2 (ja) 2018-09-04 2022-01-17 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置

Also Published As

Publication number Publication date
JPWO2015156126A1 (ja) 2017-04-13
US20180268315A2 (en) 2018-09-20
US10140580B2 (en) 2018-11-27
US20170024658A1 (en) 2017-01-26
JP6255087B2 (ja) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6255087B2 (ja) イジングモデルの量子計算装置、イジングモデルの量子並列計算装置及びイジングモデルの量子計算方法
JP6429346B2 (ja) イジングモデルの量子計算装置
JP5354233B2 (ja) イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP6260896B2 (ja) イジングモデルの量子計算装置
US20180225586A1 (en) Procedure for Systematic Tune Up of Crosstalk in a Cross-Resonance Gate and System Performing the Procedure and Using Results of the Same
JP6143325B2 (ja) イジングモデルの量子計算装置及びイジングモデルの量子計算方法
US11436394B2 (en) Potts model calculation device
JP6734997B2 (ja) イジングモデルの計算装置
JP2018147229A (ja) イジングモデルの計算装置
JP6684259B2 (ja) ポッツモデルの計算装置
Kong et al. Experimental simulation of shift operators in a quantum processor
JP2019028132A (ja) イジングモデルの計算装置
JP6581613B2 (ja) イジングモデルの計算装置
Polozova et al. Higher-dimensional Bell inequalities with noisy qudits
Kaila et al. Quantum magnetic resonance imaging diagnostics of human brain disorders
DeSavage et al. Raman resonances in arbitrary magnetic fields
JP2018147228A (ja) イジングモデルの計算装置
CN116107130B (zh) 一种宏观量子纠缠态的量子增强方法及其装置
Garcia Quantum Telecloning Circuits: Theory & Practice
Erickson Mixed-Species Quantum Logic with Trapped Ions for Gate Teleportation, Metrology, and High-Fidelity Indirect Readout
JP2024534058A (ja) 最適化ソリューションジェネレータシステムおよび方法のために光学的誤り訂正を用いるコヒーレントイジングマシン
Cox Quantum-enhanced measurements with atoms in cavities: Superradiance and spin squeezing
Grigoriev et al. Quantum optical device accelerating dynamic programming
Bazgan et al. Mechanical influences to the resonance fluorescence of ions in the dressed standing waves
Moonen Numerical Simulation of a 1D High-Gain Free-Electron Laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15775938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512655

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15302951

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15775938

Country of ref document: EP

Kind code of ref document: A1