WO2015155964A1 - 内燃機関の冷却装置 - Google Patents

内燃機関の冷却装置 Download PDF

Info

Publication number
WO2015155964A1
WO2015155964A1 PCT/JP2015/001891 JP2015001891W WO2015155964A1 WO 2015155964 A1 WO2015155964 A1 WO 2015155964A1 JP 2015001891 W JP2015001891 W JP 2015001891W WO 2015155964 A1 WO2015155964 A1 WO 2015155964A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
control valve
cooling water
radiator
water temperature
Prior art date
Application number
PCT/JP2015/001891
Other languages
English (en)
French (fr)
Inventor
健雄 松本
大介 中西
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201580017467.XA priority Critical patent/CN106164438B/zh
Priority to EP15776348.3A priority patent/EP3130777B1/en
Priority to US15/301,551 priority patent/US10132227B2/en
Publication of WO2015155964A1 publication Critical patent/WO2015155964A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • F01P2031/18Detecting fluid leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the present disclosure relates to a cooling device for an internal combustion engine including a flow rate control valve that adjusts a cooling water flow rate of a cooling water flow path through which the cooling water of the internal combustion engine flows.
  • Patent Document 1 As a technique for controlling the cooling water temperature of an internal combustion engine, for example, there is one described in Patent Document 1. This includes a radiator flow path for circulating cooling water through the radiator, a bypass flow path for circulating cooling water around the radiator, and a flow rate control valve for adjusting the cooling water flow rate of the radiator flow path and the bypass flow path. And the flow rate control valve is controlled to control the cooling water temperature.
  • the radiator flow path closing position of the flow control valve (the operation position of the flow control valve that closes the radiator flow path) may fluctuate due to individual differences (manufacturing variation) of the flow control valves or changes over time.
  • the following phenomenon may occur due to fluctuation (variation) in the flow path closing position.
  • Some are designed to promote the warming up of the internal combustion engine by stopping the circulation of the cooling water to the radiator flow path during the warming up of the internal combustion engine to promote the temperature rise of the cooling water.
  • the radiator flow path closing position of the flow control valve is fluctuating, the operating position of the flow control valve is stopped when the flow path control valve closes the radiator flow path and stops the circulation of the cooling water to the radiator flow path.
  • Cannot be controlled to the correct radiator flow path closing position and the amount of cooling water leakage to the radiator flow path (the amount of cooling water flowing to the radiator flow path) may increase. If the amount of cooling water leakage to the radiator flow path increases, the cooling water temperature increase promoting effect (internal combustion engine warming up promoting effect) may be reduced, leading to deterioration in fuel consumption.
  • the cooling water flow rate of the road has a great influence on the cooling water temperature.
  • the radiator flow path closing position of the flow control valve fluctuates, when the cooling water flow rate is controlled by controlling the cooling water flow rate of the radiator flow path with the flow control valve, the correct radiator flow path closing position is used as a reference. Therefore, the operating position of the flow rate control valve cannot be controlled, and the controllability of the coolant flow rate in the radiator flow path may be reduced. If the controllability of the cooling water flow rate in the radiator flow path is lowered, the controllability of the cooling water temperature is lowered, which may lead to deterioration of fuel consumption and emission.
  • an object of the present disclosure is to provide a cooling apparatus for an internal combustion engine that can improve the controllability of the cooling water temperature by suppressing problems caused by fluctuations (variations) in the flow path closing position of the flow control valve.
  • a cooling device for an internal combustion engine includes a cooling water flow path through which cooling water of the internal combustion engine flows, a flow rate control valve that adjusts a cooling water flow rate of the cooling water flow path, and a flow rate control that closes the cooling water flow path.
  • the cooling water flow path is at least one of a radiator flow path for circulating cooling water through the radiator, a heater core flow path for circulating cooling water through the heater core, and an oil cooler flow path for circulating cooling water through the oil cooler.
  • the closed position learning device closes the operating position of the flow control valve that closes the radiator flow path, the operating position of the flow control valve that closes the heater core flow path, and the oil cooler flow path as the flow path closed position. You may learn at least one of the operation positions of a flow control valve.
  • the radiator flow path closed position (the operating position of the flow control valve that closes the radiator flow path), the heater core flow path closed position (the operating position of the flow control valve that closes the heater core flow path), and the oil cooler flow path
  • the closed position (the operating position of the flow control valve that closes the oil cooler flow path) can be learned. For example, if the radiator flow path closing position is learned, even if the radiator flow path closing position of the flow control valve fluctuates due to individual differences (manufacturing variation) of the flow control valve or changes over time, the radiator flow By learning the path closing position, it is possible to grasp the correct radiator channel closing position.
  • the operation position of the flow control valve is set to the correct radiator flow path closed position.
  • the amount of cooling water leakage to the radiator flow path (that is, the amount of cooling water flowing through the radiator flow path) can be reduced.
  • the deterioration of the cooling water temperature increase effect (that is, the warming-up acceleration effect of the internal combustion engine) and suppress the deterioration of fuel consumption.
  • the operating position of the flow control valve can be controlled based on the correct radiator flow path closing position.
  • the controllability of the flow rate of the cooling water in the passage can be improved.
  • the controllability of the cooling water temperature can be improved and deterioration of fuel consumption and emission can be suppressed.
  • FIG. 1 It is a figure showing a schematic structure of an engine cooling system in a 1st embodiment of this indication. It is a figure which shows the relationship between the valve rotation angle of the flow control valve in 1st Embodiment, and the opening degree of each port. It is a flowchart which shows the flow of a process of the closing position learning routine in 1st Embodiment. It is a figure which shows the 1st example of control for learning in 1st Embodiment. It is a figure which shows the electricity supply method of the flow control valve in the control for learning of FIG. It is a figure which shows the 2nd example of control for learning in 1st Embodiment. It is a figure which shows the electricity supply method of the flow control valve in the control for learning of FIG.
  • a water pump 13 for circulating cooling water of the engine 11 is provided in the inlet passage 12 connected to the inlet side of the water jacket (cooling water passage) of the engine 11 which is an internal combustion engine.
  • the water pump 13 is a mechanical water pump that is driven by the power of the engine 11.
  • an outlet passage 14 connected to the outlet side of the water jacket of the engine 11 has three cooling water passages including a radiator passage 16, a heater core passage 17, and an oil cooler passage 18 via a flow control valve 15. Is connected.
  • the radiator flow path 16 is a flow path for circulating the coolant of the engine 11 through the radiator 19.
  • the heater core flow path 17 is a flow path for circulating cooling water of the engine 11 through the heater core 20
  • the oil cooler flow path 18 is a flow path for circulating cooling water of the engine 11 through the oil cooler 21.
  • Each of the heater core channel 17 and the oil cooler channel 18 is a bypass channel that circulates the cooling water of the engine 11 without passing through the radiator 19.
  • a radiator 19 that dissipates heat of the cooling water is provided.
  • a heater core 20 for heating is provided in the middle of the heater core flow path 17, and an oil cooler 21 for engine oil for cooling the engine oil is provided in the middle of the oil cooler flow path 18.
  • the thermostat valve which opens and closes according to cooling water temperature (cooling water temperature) is not provided.
  • outlet flow path 14 is provided with an outlet water temperature sensor 22 that detects a cooling water temperature on the cooling water outlet side of the engine 11 (hereinafter referred to as “outlet water temperature”), and the inlet flow path 12 has cooling water for the engine 11.
  • An inlet water temperature sensor 23 for detecting the cooling water temperature on the inlet side (hereinafter referred to as “inlet water temperature”) is provided.
  • the flow rate control valve 15 opens and closes a radiator port (inlet to the radiator channel 16), a heater core port (inlet to the heater core channel 17), and an oil cooler port (inlet to the oil cooler channel 18). (Not shown), and is configured to adjust the flow rate of the cooling water in each of the flow paths 16 to 18 in accordance with the rotation angle (operating position) of the valve.
  • This flow control valve 15 uses a motor or the like as a drive source, the valve rotates when energized, the valve rotation angle changes, the rotation of the valve stops when energization stops, and the valve rotation angle is held at the rotation stop position. In other words, there is no self-return function for returning the valve rotation angle to the initial position when the energization is stopped.
  • valve rotation angle (operating position) of the flow control valve 15 is the fully closed position ⁇ 0, the radiator port, the heater core port, and the oil cooler port are all closed to cool the flow paths 16-18. Water circulation is stopped.
  • the heater core flow path closing position ⁇ 1 is the operating position of the flow control valve 15 just before the heater core port is opened, that is, the operating position of the flow control valve 15 just before the cooling water starts to circulate through the heater core flow path 17.
  • the heater core port opens as the valve rotation angle of the flow control valve 15 increases.
  • the degree (opening area) increases and the cooling water flow rate of the heater core channel 17 increases.
  • the oil cooler flow path closing position ⁇ 2 is the operating position of the flow control valve 15 just before the oil cooler port is opened, that is, the operating position of the flow control valve 15 just before the cooling water starts to circulate through the oil cooler flow path 18. is there.
  • the oil cooler port increases as the valve rotation angle of the flow control valve 15 increases. And the coolant flow rate in the oil cooler passage 18 increases.
  • the radiator flow path closing position ⁇ 3 is the operating position of the flow control valve 15 just before the radiator port is opened, that is, the operating position of the flow control valve 15 just before the cooling water starts to circulate through the radiator flow path 16.
  • the radiator port opens as the valve rotation angle of the flow control valve 15 increases.
  • the degree (opening area) increases, and the cooling water flow rate of the radiator flow path 16 increases.
  • the outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 24.
  • the ECU 24 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state.
  • the throttle opening (intake air amount) and the like are controlled.
  • the ECU 24 closes the radiator port by setting the valve rotation angle of the flow control valve 15 to the radiator flow path closing position ⁇ 3 or less during the warm-up of the engine 11 to stop the circulation of the cooling water to the radiator flow path 16.
  • the temperature rise of the cooling water is promoted and the warm-up of the engine 11 is promoted.
  • the ECU 24 executes the water temperature control after warming up.
  • the valve rotation angle of the flow rate control valve 15 is made larger than the radiator flow path closing position ⁇ 3 ⁇ , the radiator port is opened, and the cooling water is circulated through the radiator flow path 16. Further, by controlling the valve rotation angle of the flow rate control valve 15 according to the outlet water temperature and the inlet water temperature, the cooling water flow rate of the radiator flow path 16 is controlled to control the cooling water temperature. At that time, the valve rotation angle of the flow rate control valve 15 is controlled on the basis of the radiator flow path closing position ⁇ 3.
  • the flow rate control valve 15 that closes the radiator flow path 16 by closing the radiator flow path closed position ⁇ 3 of the flow control valve 15 due to individual differences (for example, manufacturing variation) of the flow control valve 15 or changes with time, and the like.
  • the operating position may vary.
  • the flow rate control valve 15 is closed when the flow rate control valve 15 closes the radiator port and stops the circulation of the cooling water to the radiator flow path 16.
  • the valve rotation angle of 15 cannot be controlled to the correct radiator flow path closing position ⁇ 3, and the amount of cooling water leakage to the radiator flow path 16, that is, the amount of cooling water flowing to the radiator flow path 16 may increase. There is. If the amount of cooling water leakage to the radiator flow path 16 increases, the cooling water temperature increase promoting effect, in other words, the warming up acceleration effect of the engine 11 may be reduced, leading to deterioration in fuel consumption.
  • the radiator flow path closing position ⁇ 3 of the flow control valve 15 is fluctuating, when the flow rate control valve 15 controls the cooling water flow rate in the radiator flow path 16 to control the cooling water temperature, the correct radiator flow path closing is performed.
  • the valve rotation angle of the flow rate control valve 15 cannot be controlled on the basis of the position ⁇ 3, and the controllability of the coolant flow rate in the radiator flow path 16 may deteriorate.
  • the controllability of the cooling water flow rate in the radiator flow path 16 is lowered, the controllability of the cooling water temperature is lowered, and there is a possibility that fuel consumption and emission are deteriorated.
  • the ECU 24 learns the radiator flow path closing position ⁇ 3 based on at least one of the outlet water temperature and the inlet water temperature by executing a closing position learning routine 100 shown in FIG. I have to.
  • the valve rotation angle of the flow control valve 15 exceeds the radiator flow path closing position ⁇ 3
  • the cooling water circulates in the radiator flow path 16 and the outlet water temperature and the inlet water temperature change. Therefore, if the outlet water temperature or the inlet water temperature is monitored, the radiator flow path closing position ⁇ 3 can be learned.
  • valve rotation angle of the flow control valve 15 is changed from the state in which the radiator port is closed, that is, the state in which the radiator flow path 16 is closed, to the opening direction of the radiator port, in other words, the opening direction of the radiator flow path 16.
  • the valve rotation angle of the flow control valve 15 immediately before at least one of the outlet water temperature and the inlet water temperature starts to decrease is learned as the radiator flow path closing position ⁇ 3 ⁇ .
  • the valve rotation angle of the flow rate control valve 15 when the valve rotation angle of the flow rate control valve 15 is changed in the opening direction of the radiator port from the state in which the radiator port is closed, when the valve rotation angle of the flow rate control valve 15 exceeds the radiator flow path closing position ⁇ 3. Then, the cooling water circulates in the radiator flow path 16 and the outlet water temperature and the inlet water temperature begin to decrease. Paying attention to such characteristics, the valve rotation angle of the flow rate control valve 15 immediately before the outlet water temperature or the inlet water temperature starts to drop, that is, the valve rotation angle of the flow rate control valve just before the cooling water starts to circulate in the radiator flow path 16. Is learned as the radiator flow path closing position ⁇ 3.
  • the processing contents of the closed position learning routine 100 of FIG. 3 executed by the ECU 24 in the first embodiment will be described. 3 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 24.
  • the part of the ECU 24 that executes the closed position learning routine 100 may be used as an example of a closed position learning device that learns the flow path closed position.
  • step 101 If it is determined in step 101 that both the heater core port and the oil cooler port are open and the radiator port is closed, the process proceeds to step 102 where the engine water temperature (cooling water temperature of the engine 11) is predetermined. It is determined whether or not it is greater than or equal to the value. In this case, for example, whether or not the engine water temperature is equal to or higher than a predetermined value is determined by whether or not the outlet water temperature detected by the outlet water temperature sensor 22 or the inlet water temperature detected by the inlet water temperature sensor 23 is equal to or higher than a predetermined value. Alternatively, whether or not the engine water temperature is equal to or higher than a predetermined value may be determined based on whether or not both the outlet water temperature and the inlet water temperature are equal to or higher than a predetermined value. Further, the engine wall temperature (that is, the wall temperature of the engine 11) may be estimated, and it may be determined whether or not the estimated engine wall temperature is equal to or higher than a predetermined value.
  • the engine wall temperature that is, the wall temperature of
  • step 102 When it is determined in step 102 that the engine water temperature is equal to or higher than the predetermined value or the engine wall temperature is equal to or higher than the predetermined value, the process proceeds to step 103.
  • step 103 radiator water flow control is performed to perform control for circulating the cooling water to the radiator flow path 16.
  • step 104 it is determined whether or not the engine operating state (for example, engine speed and load) is within a learnable region.
  • the learnable region is set to an engine operation region (for example, a low rotation speed region or a low load region) in which the engine water temperature or the engine wall temperature does not rise rapidly.
  • step 110 the process proceeds to step 110 in order to avoid the engine water temperature and the engine wall temperature from becoming too high, and the water temperature control after the warm-up is performed.
  • the valve rotation angle of the flow rate control valve 15 is made larger than the radiator flow path closing position ⁇ 3 ⁇ , the radiator port is opened, and the cooling water is circulated through the radiator flow path 16. Further, by controlling the valve rotation angle of the flow rate control valve 15 according to the outlet water temperature and the inlet water temperature, the cooling water flow rate of the radiator flow path 16 is controlled to control the cooling water temperature. At this time, the valve rotation angle of the flow rate control valve 15 is controlled based on the learning value of the radiator flow path closing position ⁇ 3 ⁇ .
  • step 104 determines whether or not the engine operating state is within the learnable region.
  • step 104 determines whether or not a learning condition (for example, a condition for stabilizing the water temperature) is satisfied. The determination is made based on whether or not the vehicle speed is within a low vehicle speed region where the vehicle speed is a predetermined value or less and is in a constant speed state.
  • the constant speed state may mean a state other than acceleration and deceleration. If it is determined in step 105 that the learning condition is not satisfied, the process returns to step 104.
  • step 105 if it is determined in step 105 that the learning condition is satisfied, the process proceeds to step 106 and learning control is executed.
  • this learning control for example, as shown in FIG. 4, first, the valve rotation angle of the flow control valve 15 is controlled to the reference position ⁇ b ⁇ of the learning control to close the radiator port, that is, the radiator flow path 16 Keep it closed.
  • the reference position ⁇ b of the learning control is set by the following method (1) or (2), for example.
  • valve rotation is returned by a predetermined amount from the provisional learning value (for example, the design center value of the radiator passage closing position ⁇ 3) in the radiator port closing direction.
  • the provisional learning value for example, the design center value of the radiator passage closing position ⁇ 3
  • the valve rotation angle returned by the predetermined amount in the radiator port closing direction from the previous learning value of the radiator flow passage closing position ⁇ 3 is the reference position ⁇ b. Set to.
  • the valve rotation angle returned from the temporary learning value by the predetermined amount in the closing direction of the radiator port is set as the reference position. Set to ⁇ b.
  • the valve rotation angle of the flow control valve 15 is gradually changed by a predetermined step amount (a constant value) from the reference position ⁇ b in the opening direction of the radiator port.
  • a predetermined step amount a constant value
  • the energization of the flow rate control valve 15 outputs energized pulses having a constant energization duty and a constant pulse width to the flow rate control valve 15 at predetermined time intervals.
  • step 107 the routine proceeds to step 107, and whether the outlet water temperature detected by the outlet water temperature sensor 22 or the inlet water temperature detected by the inlet water temperature sensor 23 has decreased by a predetermined value or more. Determine whether or not.
  • step 107 If it is determined in step 107 that the outlet water temperature or the inlet water temperature has not decreased by a predetermined value or more, the process returns to step 106 and the learning control is continued.
  • step 107 when it is determined in step 107 that the outlet water temperature or the inlet water temperature has decreased by a predetermined value or more, it is determined that the outlet water temperature or the inlet water temperature has started to decrease, and the process proceeds to step 108, where the outlet water temperature or the inlet water temperature is decreased.
  • the valve rotation angle of the flow control valve 15 immediately before starting to decrease, that is, the previous valve rotation angle of the flow control valve 15 is learned as the radiator flow path closing position ⁇ 3 ⁇ .
  • the routine proceeds to step 109, where the current learning value of the radiator flow path closing position ⁇ 3 is stored in a rewritable nonvolatile memory such as a backup RAM (not shown) of the ECU 24, and the learning value of the radiator flow passage closing position ⁇ 3.
  • a store process for updating (stored value) is performed.
  • the nonvolatile memory may mean a rewritable memory that holds stored data even when the ECU 24 is powered off.
  • step 110 the process proceeds to step 110 to execute the water temperature control after warming up.
  • the valve rotation angle of the flow rate control valve 15 is made larger than the radiator flow path closing position ⁇ 3 ⁇ , the radiator port is opened, and the cooling water is circulated through the radiator flow path 16. Further, by controlling the valve rotation angle of the flow rate control valve 15 according to the outlet water temperature and the inlet water temperature, the cooling water flow rate of the radiator flow path 16 is controlled to control the cooling water temperature. At that time, the valve rotation angle of the flow rate control valve 15 is controlled based on the learned value of the radiator flow path closing position ⁇ 3 ⁇ .
  • the radiator flow path closing position ⁇ 3 is learned based on the outlet water temperature and the inlet water temperature. In this way, even if the radiator flow path closing position ⁇ 3 of the flow control valve 15 fluctuates due to individual differences (manufacturing variation or the like) of the flow control valve 15 or changes with time, the radiator flow path closing position ⁇ 3 is changed. By learning, the correct radiator flow path closing position ⁇ 3 can be grasped.
  • the valve rotation angle of the flow control valve 15 is set to the correct radiator flow path.
  • the closed position ⁇ 3 can be controlled, and the amount of cooling water leakage to the radiator flow path 16 can be reduced.
  • the valve rotation angle of the flow rate control valve 15 is controlled based on the correct radiator flow path closing position ⁇ 3 ⁇ .
  • the controllability of the cooling water flow rate in the radiator flow channel 16 can be improved.
  • the controllability of the cooling water temperature can be improved and deterioration of fuel consumption and emission can be suppressed.
  • the radiator flow path closing position ⁇ 3 ⁇ is learned based on the outlet water temperature detected by the outlet water temperature sensor 22 and the inlet water temperature detected by the inlet water temperature sensor 23.
  • the radiator flow path closing position ⁇ 3 can be learned using the outlet water temperature sensor 22 and the inlet water temperature sensor 23 used for cooling water temperature control of the engine 11, etc., and therefore the radiator flow path closing position ⁇ 3 is set. It is not necessary to newly provide a sensor for learning (for example, a sensor for detecting the flow rate or pressure of cooling water), and the demand for cost reduction can be satisfied.
  • the radiator When the valve rotation angle of the flow control valve 15 is changed in the opening direction of the radiator port from the state in which the radiator port is closed, the radiator is turned when the valve rotation angle of the flow control valve 15 exceeds the radiator flow path closing position ⁇ 3.
  • the cooling water circulates in the flow path 16 and the outlet water temperature and the inlet water temperature begin to decrease.
  • the radiator flow path closing position ⁇ 3 when the valve rotation angle of the flow control valve 15 is changed in the opening direction of the radiator port from the state in which the radiator port is closed, the outlet water temperature and the inlet water temperature are decreased.
  • the valve rotation angle of the flow control valve 15 immediately before the start of the learning is learned as the radiator flow path closing position ⁇ 3. Thereby, the radiator flow path closing position ⁇ 3 can be learned with high accuracy.
  • the valve rotation angle of the flow control valve 15 immediately before that is learned as the radiator flow path closing position.
  • the present invention is not limited to this.
  • the valve rotation angle of the flow control valve 15 immediately before that may be learned as the radiator flow path closing position.
  • the predicted engine wall temperature is calculated by a map or the like based on the engine operating state (for example, the engine speed or load), and the engine wall temperature is calculated based on at least one of the outlet water temperature, the inlet water temperature, and the oil temperature.
  • An estimated value is calculated, and when the difference (deviation amount) between the predicted engine wall temperature and the estimated engine wall temperature is equal to or greater than a predetermined value, the valve rotation angle of the flow control valve 15 immediately before that is set as the radiator flow path closing position. You may make it learn as.
  • the actual engine wall temperature is detected by a sensor, and the estimated engine wall temperature is calculated based on at least one of the outlet water temperature, the inlet water temperature, and the oil temperature, and the actual engine wall temperature and the estimated engine wall temperature are calculated.
  • the difference (amount of deviation) from the value becomes equal to or greater than a predetermined value, the valve rotation angle of the flow control valve 15 immediately before that may be learned as the radiator flow path closing position.
  • the learning control is not limited to that described in the first embodiment, and may be changed as appropriate.
  • FIG. 7 an example of the learning control is shown in FIG.
  • the valve rotation angle of the flow control valve 15 is changed by a predetermined step amount from the reference position ⁇ b to the opening direction of the radiator port.
  • the predetermined step amount is increased from the previous time.
  • the energization of the flow control valve 15 is performed every time an energization pulse is output while an energization pulse having a constant energization duty is output to the flow control valve 15 at predetermined time intervals. Will be increased from the previous time.
  • FIG. 10 Another example of the learning control is shown in FIG.
  • the valve rotation angle of the flow control valve 15 is controlled to the reference position ⁇ b for learning control
  • the valve rotation angle of the flow control valve 15 is changed from the reference position ⁇ b by the predetermined step amount in the opening direction of the radiator port.
  • the predetermined step amount is decreased from the previous time while repeating the process of changing the predetermined step amount in the closing direction of the radiator port after the predetermined time has elapsed.
  • the flow control valve 15 is energized, for example, as shown in FIG. 9, each time an energization pulse is output while an energization pulse having a constant energization duty is output to the flow control valve 15 at predetermined time intervals.
  • the ECU 24 executes routines 200, 300, 400, and 500 shown in FIGS. 11 to 14 to be described later, so that the heater core channel closed position ⁇ 1 and the oil cooler channel are warmed up while the engine 11 is warmed up.
  • the closed position ⁇ 2 and the radiator flow path closed position ⁇ 3 are learned.
  • the control mode is set to MODE 1 at the time t 0 when the engine 11 is started (or immediately after the ECU 24 is turned on).
  • the valve rotation angle of the flow control valve 15 is controlled to the fully closed position ⁇ 0, and the radiator port, the heater core port, and the oil cooler port are all closed, that is, the heater core channel 17, the oil cooler channel 18, and the radiator. All the flow paths 16 are closed.
  • the learning execution condition for the heater core channel closing position ⁇ 1 is satisfied during the control mode MODE1, the learning of the heater core channel closing position ⁇ 1 is performed at the time t1 (for example, when the outlet water temperature T1 exceeds a predetermined value). Do as follows.
  • valve rotation angle of the flow control valve 15 When the valve rotation angle of the flow control valve 15 is changed from the state in which the heater core port is closed, that is, the state in which the heater core channel 17 is closed, to the opening direction of the heater core port, that is, the opening direction of the heater core channel 17, the inlet water temperature T2
  • the valve rotation angle of the flow control valve 15 immediately before starting to decrease is learned as the heater core flow path closing position ⁇ 1.
  • valve rotation angle of the flow control valve 15 when the valve rotation angle of the flow control valve 15 is changed in the opening direction of the heater core port from the state where the heater core port is closed, the valve rotation angle of the flow control valve 15 exceeds the heater core flow path closing position ⁇ 1 ⁇ . Then, the cooling water circulates to the heater core channel 17 and the inlet water temperature T2 starts to decrease.
  • the valve rotation angle of the flow control valve 15 immediately before the inlet water temperature T2 ⁇ ⁇ ⁇ begins to decrease, that is, the valve rotation angle of the flow control valve immediately before the cooling water starts to circulate through the heater core flow path 17 is determined. Learning as the channel closing position ⁇ 1.
  • the control mode is switched to MODE 2 at time t2 when the outlet water temperature T1 becomes equal to or higher than the target water temperature.
  • the valve rotation angle of the flow control valve 15 is F / B controlled (feedback control) within the use range of MODE2 based on the deviation between the outlet water temperature T1 and the target water temperature.
  • the use range of MODE 2 is set to a range from the heater core channel closed position ⁇ 1 to the oil cooler channel closed position ⁇ 2. Thereby, the opening degree of the heater core port is controlled so as to reduce the deviation between the outlet water temperature T1 ⁇ and the target water temperature, thereby controlling the cooling water flow rate of the heater core channel 17.
  • valve rotation angle of the flow control valve 15 When the valve rotation angle of the flow control valve 15 is changed from the state in which the oil cooler port is closed, that is, the state in which the oil cooler passage 18 is closed, to the opening direction of the oil cooler port, that is, in the opening direction of the oil cooler passage 18.
  • the valve rotation angle of the flow control valve 15 immediately before the inlet water temperature T2 starts to decrease is learned as the oil cooler flow path closing position ⁇ 2.
  • valve rotation angle of the flow control valve 15 when the valve rotation angle of the flow control valve 15 is changed in the opening direction of the oil cooler port from the state where the oil cooler port is closed, the valve rotation angle of the flow control valve 15 exceeds the oil cooler flow path closing position ⁇ 2. At that time, the cooling water circulates in the oil cooler passage 18 and the inlet water temperature T2 starts to decrease. Paying attention to such characteristics, the valve rotation angle of the flow control valve 15 immediately before the inlet water temperature T2 begins to decrease, that is, the valve rotation angle of the flow control valve immediately before the cooling water starts to circulate in the oil cooler flow path 18 is obtained. It learns as oil cooler channel closed position ⁇ 2.
  • the control mode is switched to MODE3 at time t4 when the outlet water temperature T1 is equal to or higher than the target water temperature for a predetermined time or longer.
  • the valve rotation angle of the flow rate control valve 15 is F / B controlled within the use range of MODE 3 based on the deviation between the outlet water temperature T1 and the target water temperature.
  • the use range of MODE 3 is set to a range from the oil cooler channel closed position ⁇ 2 to the radiator channel closed position ⁇ 3. Thereby, the opening degree of the oil cooler port is controlled so as to reduce the deviation between the outlet water temperature T1 and the target water temperature, and the cooling water flow rate of the oil cooler flow path 18 is controlled.
  • the learning execution condition for the radiator flow path closing position ⁇ 3 is satisfied during the period in which the control mode is MODE3 (for example, when the change amount ⁇ T1 of the outlet water temperature T1 per predetermined time becomes equal to or less than the predetermined value)
  • the learning of the road closing position ⁇ 3 is performed as follows.
  • valve rotation angle of the flow rate control valve 15 when the valve rotation angle of the flow rate control valve 15 is changed in the opening direction of the radiator port from the state in which the radiator port is closed, when the valve rotation angle of the flow rate control valve 15 exceeds the radiator flow path closing position ⁇ 3. Then, the cooling water circulates in the radiator flow path 16 and the inlet water temperature T2 starts to decrease. Paying attention to such characteristics, the valve rotation angle of the flow rate control valve 15 immediately before the inlet water temperature T2 begins to decrease, that is, the valve rotation angle of the flow rate control valve immediately before the cooling water starts to circulate in the radiator flow path 16 is set to the radiator. Learning as the channel closed position ⁇ 3.
  • the control mode is switched to MODE 4 at a time t6 when the state where the outlet water temperature T1 is equal to or higher than the target water temperature continues for a predetermined time or more.
  • the valve rotation angle of the flow control valve 15 is F / B controlled within the use range of MODE 4 based on the deviation between the outlet water temperature T1 ⁇ and the target water temperature.
  • the use range of MODE 4 is set to a range equal to or greater than the radiator flow path closing position ⁇ 3. Thereby, the opening degree of the radiator port is controlled so as to reduce the deviation between the outlet water temperature T1 and the target water temperature, and the cooling water flow rate of the radiator flow path 16 is controlled.
  • or FIG. 14 which ECU24 performs by this 2nd Embodiment is demonstrated.
  • the mode switching routine 200 shown in FIG. 11 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 24.
  • this routine 200 is started, first, at step 201, it is determined whether or not the control mode is MODE1.
  • the control mode is set to MODE1 when the engine is started or immediately after the ECU 24 is turned on.
  • step 201 If it is determined in step 201 that the control mode is MODE1, the process proceeds to step 202 where the valve rotation angle of the flow control valve 15 is controlled to the fully closed position ⁇ 0, and the radiator port, heater core port, oil cooler Keep all ports closed.
  • step 203 it is determined whether or not the outlet water temperature T1 detected by the outlet water temperature sensor 22 is equal to or higher than the target water temperature. If it is determined that the outlet water temperature T1 is lower than the target water temperature, the control mode Is set to MODE1 and the routine 200 is terminated.
  • step 203 the routine proceeds to step 204, the control mode is switched to MODE2, and the routine 200 is terminated.
  • the control mode may be switched to MODE2 after the learning of the heater core channel closing position ⁇ 1 is completed.
  • step 201 determines whether or not the control mode is MODE1
  • step 205 it is determined whether or not the control mode is MODE2. If it is determined in step 205 that the control mode is MODE2, the process proceeds to step 206, where the valve rotation of the flow rate control valve 15 is determined based on the deviation between the outlet water temperature T1 detected by the outlet water temperature sensor 22 and the target water temperature. The angle is F / B controlled within the use range of MODE 2 (see FIG. 10). Thereby, the opening degree of the heater core port is controlled so as to reduce the deviation between the outlet water temperature T1 ⁇ and the target water temperature, thereby controlling the cooling water flow rate of the heater core channel 17.
  • step 207 it is determined whether or not the state where the outlet water temperature T1 detected by the outlet water temperature sensor 22 is equal to or higher than the target water temperature has continued for a predetermined time or longer. If it is determined not to continue, the routine 200 is terminated while the control mode is set to MODE2.
  • step 207 when it is determined that the state where the outlet water temperature T1 is equal to or higher than the target water temperature has continued for a predetermined time or longer, the routine proceeds to step 208, the control mode is switched to MODE3, and the routine 200 is terminated. At this time, if the learning of the oil cooler flow path closing position ⁇ 2 is not yet completed, the control mode may be switched to MODE3 after the learning of the oil cooler flow path closing position ⁇ 2 is completed.
  • step 205 if it is determined in step 205 that the control mode is not MODE2, the process proceeds to step 209, and it is determined whether or not the control mode is MODE3.
  • step 209 If it is determined in step 209 that the control mode is MODE3, the process proceeds to step 210, and the valve rotation of the flow rate control valve 15 is determined based on the deviation between the outlet water temperature T1 detected by the outlet water temperature sensor 22 and the target water temperature.
  • the angle is F / B controlled within the use range of MODE 3 (see FIG. 10).
  • the opening degree of the oil cooler port is controlled so as to reduce the deviation between the outlet water temperature T1 and the target water temperature, and the cooling water flow rate of the oil cooler flow path 18 is controlled.
  • step 211 it is determined whether or not the state where the outlet water temperature T1 detected by the outlet water temperature sensor 22 is equal to or higher than the target water temperature continues for a predetermined time or more. If it is determined not to continue, the routine 200 is terminated while the control mode is set to MODE3.
  • step 211 when it is determined in step 211 that the state where the outlet water temperature T1 is equal to or higher than the target water temperature has continued for a predetermined time or longer, the process proceeds to step 212, the control mode is switched to MODE4, and the routine 200 is terminated. At this time, if learning of the radiator flow path closing position ⁇ 3 is not yet completed, the control mode may be switched to MODE3 after learning of the radiator flow path closing position ⁇ 3 is completed.
  • step 209 determines whether or not the control mode is MODE3
  • the process proceeds to step 213, and it is determined whether or not the control mode is MODE4.
  • step 213 If it is determined in step 213 that the control mode is MODE 4, the process proceeds to step 214, and the valve rotation of the flow rate control valve 15 is determined based on the deviation between the outlet water temperature T1 detected by the outlet water temperature sensor 22 and the target water temperature.
  • the angle is F / B controlled within the use range of MODE 4 (see FIG. 10).
  • the opening degree of the radiator port is controlled so as to reduce the deviation between the outlet water temperature T1 and the target water temperature, and the cooling water flow rate of the radiator flow path 16 is controlled.
  • the part of the ECU 24 that executes the heater core flow path closing position learning routine 300 may be used as an example of a closed position learning device that learns the flow path closed position.
  • this routine 300 is started, first, at step 301, it is determined whether or not the control mode is MODE1, and when it is determined that the control mode is not MODE1, the processing after step 302 is executed. Then, the routine 300 ends.
  • step 301 if it is determined in step 301 that the control mode is MODE1, the process proceeds to step 302 to determine whether or not the learning execution condition for the heater core flow path closing position ⁇ 1 is satisfied, for example, the outlet water temperature T1. Is determined based on whether or not is equal to or higher than a predetermined value (for example, a target water temperature or a temperature slightly lower than the target water temperature).
  • a predetermined value for example, a target water temperature or a temperature slightly lower than the target water temperature.
  • step 302 When it is determined in step 302 that the learning execution condition for the heater core flow path closing position ⁇ 1 is satisfied, the process proceeds to step 303 to determine whether or not the accuracy deterioration prediction state is set, that is, the heater core flow path closing position ⁇ 1 is set. It is determined whether or not deterioration of learning accuracy is predicted. For example, it is determined that the current state is the accuracy deterioration prediction state based on whether or not at least one of the following conditions (1) to (6) is satisfied.
  • the fuel supply to stop the fuel injection of the engine 11 is stopped (2)
  • the cylinder reduction operation to stop the combustion of some cylinders of the engine 11 is being performed (3)
  • the operation of the engine 11 is stopped
  • the vehicle is running in EV mode (only for hybrid vehicles).
  • the vehicle is stopped (5)
  • the vehicle speed is running at a high speed exceeding the predetermined value (6)
  • the outside air temperature is a low temperature state below the predetermined value.
  • the heat dissipation amount of the cooling water is larger than usual, and the inlet water temperature when the valve rotation angle of the flow control valve 15 exceeds the flow path closing position. Since the behavior of T2 (determination parameter) is different from normal, it can be determined that the accuracy deterioration prediction state.
  • step 303 If it is determined in this step 303 that the accuracy deterioration prediction state has been established, learning of the heater core flow path closing position ⁇ 1 is prohibited, and the process returns to step 302 above.
  • step 304 the process proceeds to step 304, and the learning control of the heater core flow path closing position ⁇ 1 is executed.
  • the valve rotation angle of the flow rate control valve 15 is controlled to the reference position ⁇ b1 for learning control of the heater core flow path closing position ⁇ 1.
  • the port is closed, that is, the heater core channel 17 is closed.
  • the reference position ⁇ b1 for learning control of the heater core flow path closing position ⁇ 1 is set to a valve rotation angle that is returned by a predetermined amount in the closing direction of the heater core port from the previous learning value of the heater core flow path closing position ⁇ 1.
  • the valve rotation angle is set back from the provisional learning value (for example, the design center value of the heater core flow path closing position ⁇ 1) by a predetermined amount in the heater core port closing direction.
  • valve rotation angle of the flow rate control valve 15 is changed from the reference position ⁇ b1 in the opening direction of the heater core port (that is, the direction indicated by the arrow in FIG. 15) by a predetermined operation step amount or at a predetermined operation speed.
  • the operation step amount or the operation speed of the flow control valve 15 is set according to the outside air temperature, the rotational speed of the water pump 13 and the number of open flow paths.
  • the number of open flow paths means the number of open paths among the radiator flow path 16, the heater core flow path 17, and the oil cooler flow path 18.
  • the lower the outside air temperature the smaller the operation step amount of the flow control valve 15 (see FIG. 16) or the operation speed (see FIG. 17). Further, as the rotational speed of the water pump 13 (engine rotational speed) is higher, the operation step amount of the flow control valve 15 is reduced (see FIG. 16) or the operation speed is decreased (see FIG. 17). Further, the smaller the number of open channels, the smaller the operation step amount of the flow control valve 15 (see FIG. 16) or the operation speed (see FIG. 17). Here, the number of open channels is “0” when learning the heater core channel closed position ⁇ 1, “1” when learning the oil cooler channel closed position ⁇ 2, and the radiator channel closed position ⁇ 3. Is “2”.
  • the outside air temperature, the rotation speed of the water pump 13 and the number of open flow paths are calculated using a map of the operation step amount or the operation speed using the outside air temperature, the rotation speed of the water pump 13 and the number of open flow paths as parameters.
  • the operation step amount or the operation speed may be calculated according to the above.
  • the base value of the operation step amount or the base value of the operation speed is obtained. Correction may be made so as to obtain the operation step amount or the operation speed according to the outside air temperature, the rotation speed of the water pump 13 and the number of open flow paths.
  • step 305 it is determined whether or not the inlet water temperature T2 detected by the inlet water temperature sensor 23 has decreased by a predetermined value or more. If it is determined in step 305 that the inlet water temperature T2 has not decreased by a predetermined value or more, the process returns to step 304 and the learning control is continued.
  • step 305 when it is determined in step 305 that the inlet water temperature T2 has decreased by a predetermined value or more, it is determined that the inlet water temperature T2 has started to decrease, the process proceeds to step 306, and the flow rate immediately before the inlet water temperature T2 starts to decrease.
  • the valve rotation angle of the control valve 15 (that is, the previous valve rotation angle of the flow control valve 15) is learned as the heater core flow path closing position ⁇ 1.
  • step 307 the current learning value of the heater core channel closing position ⁇ 1 is stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 24, and the learning value (memory value) of the heater core channel closing position ⁇ 1 is stored. Execute store processing to be updated.
  • the oil cooler flow path closing position learning routine 400 shown in FIG. 13 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 24.
  • the part of the ECU 24 that executes the oil cooler channel closing position learning routine 400 may be used as an example of a closing position learning device that learns the channel closing position.
  • step 401 if it is determined in step 401 that the control mode is MODE2, the process proceeds to step 402, where it is determined whether or not the learning execution condition for the oil cooler flow path closing position ⁇ 2 is satisfied, for example, the outlet water temperature Judgment is made based on whether or not the amount of change ⁇ T1 per predetermined time of T1 ⁇ is below a predetermined value (the outlet water temperature T1 is stable).
  • step 402 When it is determined in step 402 that the learning execution condition for the oil cooler flow path closing position ⁇ 2 is satisfied, the process proceeds to step 403, and in the same way as in step 303 in FIG. It is determined whether or not there is a state where the learning accuracy of the oil cooler channel closing position ⁇ 2 ⁇ is expected to deteriorate. If it is determined in step 403 that the accuracy deterioration prediction state is set, learning of the oil cooler flow path closing position ⁇ 2 is prohibited, and the process returns to step 402.
  • step 403 the process proceeds to step 404 to execute control for learning of the oil cooler flow path closing position ⁇ 2.
  • the valve rotation angle of the flow rate control valve 15 is controlled to the reference position ⁇ b2 for the learning control of the oil cooler flow path closing position ⁇ 2, and the oil cooler port is closed.
  • the state (the state in which the oil cooler flow path 18 is closed) is set.
  • the reference position ⁇ b2 for learning control of the oil cooler flow path closing position ⁇ 2 is set to a valve rotation angle that is returned by a predetermined amount in the closing direction of the oil cooler port from the previous learning value of the oil cooler flow path closing position ⁇ 2.
  • the valve rotation angle is set back from the provisional learning value (for example, the design center value of the oil cooler flow path closing position ⁇ 2) by a predetermined amount in the oil cooler port closing direction.
  • the valve rotation angle of the flow rate control valve 15 is changed from the reference position ⁇ b2 in the opening direction of the oil cooler port by a predetermined operation step amount or at a predetermined operation speed.
  • the operation step amount or the operation speed of the flow rate control valve 15 is set according to the outside air temperature, the rotational speed of the water pump 13 and the number of open flow paths in the same manner as in step 304 of FIG. That is, the lower the outside air temperature, the smaller the operation step amount of the flow control valve 15 or the operation speed. Further, the higher the rotational speed (engine rotational speed) of the water pump 13, the smaller the operation step amount of the flow control valve 15 or the slower the operation speed. Furthermore, the smaller the number of open channels, the smaller the operation step amount of the flow control valve 15 or the operation speed.
  • step 405 it is determined whether or not the inlet water temperature T2 detected by the inlet water temperature sensor 23 has decreased by a predetermined value or more. If it is determined in step 405 that the inlet water temperature T2 has not decreased by a predetermined value or more, the process returns to step 404 and the learning control is continued.
  • step 405 when it is determined in step 405 that the inlet water temperature T2 has decreased by a predetermined value or more, it is determined that the inlet water temperature T2 has started to decrease.
  • the valve rotation angle of the control valve 15 (the previous valve rotation angle of the flow control valve 15) is learned as the oil cooler flow path closing position ⁇ 2.
  • step 407 the current learning value of the oil cooler channel closing position ⁇ 2 is stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 24, and the learning value (memory value) of the oil cooler channel closing position ⁇ 2 is stored. ) Store processing is updated.
  • the portion of the ECU 24 that executes the radiator flow path closing position learning routine 500 may be used as an example of a closed position learning device that learns the flow path closed position.
  • this routine 500 is started, first, at step 501, it is determined whether or not the control mode is MODE3. If it is determined that the control mode is not MODE3, the processing after step 502 is executed. The routine 500 ends without any processing.
  • step 501 determines whether or not the learning execution condition for the radiator flow path closing position ⁇ 3 is satisfied, for example, the outlet water temperature T1.
  • the change amount ⁇ T1 per predetermined time is determined to be less than a predetermined value (the outlet water temperature T1 is stable).
  • step 502 When it is determined in step 502 that the learning execution condition for the radiator flow path closing position ⁇ 3 is satisfied, the process proceeds to step 503, and the accuracy deterioration prediction state is obtained in the same manner as in step 303 in FIG. Whether or not the deterioration of the learning accuracy of the radiator flow path closing position ⁇ 3 is predicted. If it is determined in step 503 that the accuracy deterioration prediction state is set, learning of the radiator flow path closing position ⁇ 3 ⁇ is prohibited, and the process returns to step 502.
  • step 503 if it is determined in step 503 that the accuracy deterioration prediction state is not established, the process proceeds to step 504, where learning control of the radiator flow path closing position ⁇ 3 is executed.
  • learning control of the radiator flow path closing position ⁇ 3 first, a state in which the radiator port is closed by controlling the valve rotation angle of the flow control valve 15 to the reference position ⁇ b3 of the learning control of the radiator flow path closing position ⁇ 3, that is, The radiator flow path 16 is closed.
  • the reference position ⁇ b3 for learning control of the radiator flow path closing position ⁇ 3 is set to a valve rotation angle that is returned by a predetermined amount in the closing direction of the radiator port from the previous learning value of the radiator flow path closing position ⁇ 3.
  • the valve rotation angle is set back by a predetermined amount in the closing direction of the radiator port from the provisional learning value (for example, the design center value of the radiator flow path closing position ⁇ 3 ⁇ ⁇ ⁇ ).
  • the valve rotation angle of the flow control valve 15 is changed from the reference position ⁇ b3 in the opening direction of the radiator port by a predetermined operation step amount or at a predetermined operation speed.
  • the operation step amount or the operation speed of the flow rate control valve 15 is set according to the outside air temperature, the rotational speed of the water pump 13 and the number of open flow paths in the same manner as in step 304 of FIG. That is, the lower the outside air temperature, the smaller the operation step amount of the flow control valve 15 or the operation speed. Further, the higher the rotational speed (engine rotational speed) of the water pump 13, the smaller the operation step amount of the flow control valve 15 or the slower the operation speed. Furthermore, the smaller the number of open channels, the smaller the operation step amount of the flow control valve 15 or the operation speed.
  • step 505 it is determined whether or not the inlet water temperature T2 detected by the inlet water temperature sensor 23 has decreased by a predetermined value or more. If it is determined in step 405 that the inlet water temperature T2 has not decreased by a predetermined value or more, the process returns to step 504 and the learning control is continued.
  • step 505 when it is determined in step 505 that the inlet water temperature T2 has decreased by a predetermined value or more, it is determined that the inlet water temperature T2 has started to decrease.
  • the valve rotation angle of the control valve 15 (that is, the previous valve rotation angle of the flow control valve 15) is learned as the radiator flow path closing position ⁇ 3.
  • step 507 the current learning value of the radiator flow path closing position ⁇ 3 is stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 24, and the learning value (stored value) of the radiator flow path closing position ⁇ 3 is stored. Execute store processing to be updated.
  • the heater core flow path closing position ⁇ 1 ⁇ , the oil cooler flow path closing position ⁇ 2, and the radiator flow path closing position ⁇ 3 ⁇ ⁇ of the flow rate control valve 15 are learned.
  • the heater core flow path closed position ⁇ 1 ⁇ ⁇ ⁇ ⁇ , the oil cooler flow path closed position ⁇ 2, and the radiator flow path closed position ⁇ 3 of the flow rate control valve 15 due to individual differences (for example, manufacturing variations) of the flow rate control valve 15 and changes over time. Even if fluctuates, it is possible to learn those channel closed positions and grasp the correct channel closed position. Thereby, the controllability of the cooling water temperature in each control mode (MODEs 2 to 4) can be improved.
  • the accuracy deterioration prediction state is set, that is, whether or not the learning accuracy of the channel closing position is predicted to be deteriorated.
  • the accuracy deterioration is predicted, learning of the flow path closing position is prohibited. In this way, it is possible to prevent the learning accuracy of the channel closing position from deteriorating, and to avoid erroneous learning of the channel closing position.
  • a predetermined value is satisfied during the stop of fuel supply, the reduced-cylinder operation, the EV travel, the stop, and the high speed travel.
  • the heat generation amount of the engine 11 and the flow rate of the cooling water are smaller than usual, and the valve rotation angle of the flow rate control valve 15 becomes the flow path closed position. Since the behavior of the inlet water temperature T2 (determination parameter) when it exceeds the normal temperature is different from normal, it can be determined that the accuracy is predicted to be deteriorated.
  • the heat dissipation amount of the cooling water is larger than usual, and the inlet water temperature when the valve rotation angle of the flow control valve 15 exceeds the flow path closing position. Since the behavior of T2 (determination parameter) is different from the normal behavior, it can be determined that the accuracy deterioration prediction state.
  • the valve rotation angle of the flow rate control valve 15 exceeds the flow path closed position and the cooling water temperature (inlet water temperature T2) is increased. It is necessary to change the valve rotation angle of the flow control valve 15 until it changes. At that time, since the amount of cooling water leakage from the engine side to the flow path side increases by the amount that the valve rotation angle of the flow control valve 15 exceeds the flow path closing position, the cooling water temperature decreases as the outside air temperature decreases. 11 warm-up may be delayed.
  • the lower the outside air temperature the smaller the operation step amount of the flow control valve 15 or the slower the operation speed.
  • the operation step amount of the flow control valve 15 is reduced or the operation speed is decreased, and the amount by which the valve rotation angle of the flow control valve 15 exceeds the flow path closing position is reduced.
  • the amount of cooling water leakage can be reduced.
  • the learning error of the channel closing position (that is, the difference between the learned value of the channel closing position and the correct channel closing position) is reduced.
  • the learning accuracy can be improved by reducing the size.
  • the higher the rotational speed of the water pump 13 the larger the change in the flow rate of the cooling water with respect to the change in the opening degree of the flow control valve 15, so that the valve rotation angle of the flow control valve 15 exceeds the flow path closing position.
  • the operation speed can be slowed down so that the amount of the valve rotation angle of the flow rate control valve 15 exceeding the channel closing position can be reduced, and an increase in the amount of cooling water leakage can be suppressed.
  • the smaller the number of open flow paths (the number of open flow paths among the cooling water flow paths 16 to 18), the larger the change in the flow rate of the cooling water with respect to the change in the opening degree of the flow control valve 15, so that Even if the valve rotation angle of the flow rate control valve 15 exceeds the channel closing position, the amount of cooling water leakage from the engine side to the channel side increases as the number of open channels decreases.
  • the smaller the number of open channels the smaller the operation step amount of the flow control valve 15 or the slower the operation speed.
  • the smaller the number of open flow paths the smaller the operation step amount of the flow control valve 15 or the operation corresponding to the greater change in the flow rate of the cooling water relative to the change in the opening degree of the flow control valve 15.
  • the speed can be reduced to reduce the amount by which the valve rotation angle of the flow rate control valve 15 exceeds the flow path closing position, and an increase in the amount of cooling water leakage can be suppressed.
  • the fall of the cooling water temperature by learning control can be decreased, and a warming-up delay can be suppressed (refer FIG. 18).
  • the learning error of the flow path closing position can be reduced and the learning accuracy can be improved.
  • the operation step amount or the operation speed of the flow control valve 15 is set according to the outside air temperature, the rotational speed of the water pump 13 and the number of open flow paths. ing.
  • the present invention is not limited to this, and the operation step amount or the operation speed of the flow control valve 15 is set according to one or two of the outside air temperature, the rotation speed of the water pump 13 and the number of open flow paths. Also good.
  • the channel closing position is learned based on the inlet water temperature.
  • the present invention is not limited to this.
  • the channel closing position is learned based on the outlet water temperature, or The channel closing position may be learned based on both the inlet water temperature and the outlet water temperature.
  • the learning value (memory value) of the channel closing position is updated every time the channel closing position is learned.
  • the present invention is not limited to this.
  • the flow path closing position is considered to fluctuate in conjunction with the fully closed position or the fully opened position of the flow control valve 15, and therefore one or both of the fully closed position and the fully opened position are You may make it update the learning value of a flow-path closed position, when it fluctuates more than predetermined value.
  • the flow path closing position is learned based on the cooling water temperature (exit water temperature or inlet water temperature) detected by the water temperature sensor.
  • the present invention is not limited to this.
  • the flow path closing position may be learned based on the cooling water pressure detected by the pressure sensor, the cooling water flow detected by the flow sensor, and the rotation speed of the water pump 13. good.
  • the valve rotation angle of the flow rate control valve 15 exceeds the flow path closing position, the pressure of the cooling water, the flow rate of the cooling water, the rotation speed of the water pump 13 and the like change, so the pressure of the cooling water, the flow rate of the cooling water, the water If the rotational speed of the pump 13 or the like is monitored, the channel closing position can be learned.
  • the heater core flow path ⁇ oil cooler flow path ⁇ radiator flow path (heater core port ⁇ oil cooler port ⁇ radiator port) as the valve rotation angle of the flow control valve increases.
  • the present disclosure is applied to a system released in However, the present invention is not limited to this.
  • the oil cooler flow path ⁇ heater core flow path ⁇ radiator flow path (oil cooler port ⁇ heater core port ⁇ radiator port) is opened in this order.
  • the present disclosure may be applied to other systems that are opened in other orders.
  • the present disclosure is applied to a system that adjusts the flow rate of each cooling water flow path (heater core flow path, oil cooler flow path, and radiator flow path) with a single flow rate control valve.
  • the present disclosure is not limited to this, and the present disclosure may be applied to a system that adjusts the flow rate of each cooling water flow path with a plurality of (two or more) flow control valves.
  • cooling water passages for example, an oil cooler passage provided with an oil cooler for transmission oil, an EGR cooler passage provided with an EGR cooler, a cooling water passage for cooling a supercharger, a throttle
  • the present disclosure may be applied to a system including a cooling water flow path for cooling a valve and the like, and a flow path closing position of another cooling water flow path may be learned.
  • a mechanical water pump driven by engine power is provided.
  • the present invention is not limited to this, and an electric water pump driven by a motor is used. It is good also as the provided structure.
  • the present disclosure departs from the gist such that the configuration of the engine cooling system (for example, the connection method of each cooling water flow path, the position and number of flow control valves, the position and number of water temperature sensors, etc.) may be changed as appropriate. Various modifications can be made without departing from the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 ラジエータ流路(16)を閉鎖した状態から流量制御弁(15)のバルブ回転角度をラジエータ流路(16)の開方向へ変化させたときに、流量制御弁(15)のバルブ回転角度がラジエータ流路閉鎖位置を越えた時点で、ラジエータ流路(16)へ冷却水が循環してエンジン(11)の出口水温や入口水温が低下し始める。ラジエータ流路(16)を閉鎖した状態から流量制御弁(15)のバルブ回転角度をラジエータ流路(16)の開方向へ変化させたときに出口水温センサ(22)で検出した出口水温又は入口水温センサ(23)で検出した入口水温が低下し始める直前の流量制御弁(15)のバルブ回転角度をラジエータ流路閉鎖位置として学習する。これにより、ラジエータ流路等の冷却水流量を調節する流量制御弁(15)のラジエータ流路閉鎖位置の変動による不具合を抑制できるようにする。

Description

内燃機関の冷却装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年4月7日に出願された日本特許出願2014-078312および、2015年3月6日に出願された日本特許出願2015-045177を基にしている。
 本開示は、内燃機関の冷却水が流れる冷却水流路の冷却水流量を調節する流量制御弁を備えた内燃機関の冷却装置に関する。
 内燃機関の冷却水温を制御する技術として、例えば、特許文献1に記載されたものがある。このものは、冷却水をラジエータを通して循環させるラジエータ流路と、冷却水をラジエータを迂回して循環させるバイパス流路と、ラジエータ流路及びバイパス流路の冷却水流量を調節する流量制御弁とを備え、この流量制御弁を制御して冷却水温を制御するようにしている。
特開2003-269171号公報
 ところで、流量制御弁の個体差(製造ばらつき)や経時変化等によって、流量制御弁のラジエータ流路閉鎖位置(ラジエータ流路を閉鎖する流量制御弁の動作位置)が変動することがあり、このラジエータ流路閉鎖位置の変動(ばらつき)により、次のような現象が発生する可能性がある。
 内燃機関の暖機中にラジエータ流路への冷却水の循環を停止することで冷却水の昇温を促進して内燃機関の暖機を促進するようにしたものがある。しかし、流量制御弁のラジエータ流路閉鎖位置が変動していると、流量制御弁でラジエータ流路を閉鎖してラジエータ流路への冷却水の循環を停止する際に、流量制御弁の動作位置を正しいラジエータ流路閉鎖位置に制御することができず、ラジエータ流路への冷却水漏れ量(ラジエータ流路に流れる冷却水の量)が増大してしまう可能性がある。ラジエータ流路への冷却水漏れ量が増大すると、冷却水の昇温促進効果(内燃機関の暖機促進効果)が低下して、燃費の悪化を招く可能性がある。
 また、ラジエータ流路を通った冷却水とバイパス流路を通った冷却水とでは水温差が大きく、且つ、バイパス流路よりもラジエータ流路を流れる冷却水の量の方が多いため、ラジエータ流路の冷却水流量は、冷却水温に対する影響が大きい。しかし、流量制御弁のラジエータ流路閉鎖位置が変動していると、流量制御弁でラジエータ流路の冷却水流量を制御して冷却水温を制御する際に、正しいラジエータ流路閉鎖位置を基準にして流量制御弁の動作位置を制御することができず、ラジエータ流路の冷却水流量の制御性が低下する可能性がある。ラジエータ流路の冷却水流量の制御性が低下すると、冷却水温の制御性が低下して、燃費やエミッションの悪化を招く可能性がある。
 そこで、本開示の目的は、流量制御弁の流路閉鎖位置の変動(ばらつき)による不具合を抑制して冷却水温の制御性を向上させることができる内燃機関の冷却装置を提供することにある。
 本開示の一態様によると、内燃機関の冷却装置は、内燃機関の冷却水が流れる冷却水流路と、冷却水流路の冷却水流量を調節する流量制御弁と、冷却水流路を閉鎖する流量制御弁の動作位置である路閉鎖位置を学習する閉鎖位置学習装置と、を備えている。
 この構成では、流量制御弁の個体差(製造ばらつき)や経時変化等によって、流量制御弁の流路閉鎖位置が変動していても、その流路閉鎖位置を学習して、正しい流路閉鎖位置を把握することができる。これにより、流量制御弁の流路閉鎖位置の変動(ばらつき)による不具合を抑制して冷却水温の制御性を向上させることができる。
 この場合、冷却水流路は、冷却水をラジエータを通して循環させるラジエータ流路と、冷却水をヒータコアを通して循環させるヒータコア流路と、冷却水をオイルクーラを通して循環させるオイルクーラ流路のうちの少なくとも一つを含み、閉鎖位置学習装置は、流路閉鎖位置として、ラジエータ流路を閉鎖する流量制御弁の動作位置と、ヒータコア流路を閉鎖する流量制御弁の動作位置と、オイルクーラ流路を閉鎖する流量制御弁の動作位置のうちの少なくとも一つを学習しても良い。
 このようにすれば、ラジエータ流路閉鎖位置(ラジエータ流路を閉鎖する流量制御弁の動作位置)やヒータコア流路閉鎖位置(ヒータコア流路を閉鎖する流量制御弁の動作位置)やオイルクーラ流路閉鎖位置(オイルクーラ流路を閉鎖する流量制御弁の動作位置)を学習することができる。例えば、ラジエータ流路閉鎖位置を学習するようにすれば、流量制御弁の個体差(製造ばらつき)や経時変化等によって、流量制御弁のラジエータ流路閉鎖位置が変動していても、そのラジエータ流路閉鎖位置を学習して、正しいラジエータ流路閉鎖位置を把握することができる。これにより、内燃機関の暖機中に流量制御弁でラジエータ流路を閉鎖してラジエータ流路への冷却水の循環を停止する際に、流量制御弁の動作位置を正しいラジエータ流路閉鎖位置に制御することができ、ラジエータ流路への冷却水漏れ量(すなわち、ラジエータ流路に流れる冷却水の量)を低減することができる。その結果、冷却水の昇温促進効果(すなわち、内燃機関の暖機促進効果)の低下を抑制して、燃費の悪化を抑制することができる。また、流量制御弁でラジエータ流路の冷却水流量を制御して冷却水温を制御する際に、正しいラジエータ流路閉鎖位置を基準にして流量制御弁の動作位置を制御することができ、ラジエータ流路の冷却水流量の制御性を向上させることができる。その結果、冷却水温の制御性を向上させることができ、燃費やエミッションの悪化を抑制することができる。
本開示の第1実施形態におけるエンジン冷却システムの概略構成を示す図である。 第1実施形態における流量制御弁のバルブ回転角度と各ポートの開度との関係を示す図である。 第1実施形態における閉鎖位置学習ルーチンの処理の流れを示すフローチャートである。 第1実施形態における学習用制御の第1例を示す図である。 図4の学習用制御における流量制御弁の通電方法を示す図である。 第1実施形態における学習用制御の第2例を示す図である。 図6の学習用制御における流量制御弁の通電方法を示す図である。 第1実施形態における学習用制御の第3例を示す図である。 図8の学習用制御における流量制御弁の通電方法を示す図である。 本開示の第2実施形態における流路閉鎖位置の学習を説明するタイムチャートである。 第2実施形態におけるモード切換ルーチンの処理の流れを示すフローチャートである。 第2実施形態におけるヒータコア流路閉鎖位置の学習ルーチンの処理の流れを示すフローチャートである。 第2実施形態におけるオイルクーラ流路閉鎖位置の学習ルーチンの処理の流れを示すフローチャートである。 第2実施形態におけるラジエータ流路閉鎖位置の学習ルーチンの処理の流れを示すフローチャートである。 第2実施形態における学習用制御を説明する図である。 第2実施形態における流量制御弁の動作ステップ量の設定方法を説明する図である。 第2実施形態における流量制御弁の動作速度の設定方法を説明する図である。 第2実施形態における流量制御弁の動作ステップ量を小さくした場合の効果を説明する図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
 本開示の第1実施形態を図1乃至図9に基づいて説明する。
 まず、図1に基づいてエンジン冷却システム(内燃機関の冷却装置)の概略構成を説明する。
 内燃機関であるエンジン11のウォータジャケット(冷却水通路)の入口側に接続された入口流路12には、エンジン11の冷却水を循環させるためのウォータポンプ13が設けられている。このウォータポンプ13は、エンジン11の動力で駆動される機械式のウォータポンプである。一方、エンジン11のウォータジャケットの出口側に接続された出口流路14には、流量制御弁15を介してラジエータ流路16とヒータコア流路17とオイルクーラ流路18の三系統の冷却水流路が接続されている。
 ラジエータ流路16は、エンジン11の冷却水をラジエータ19を通して循環させる流路である。また、ヒータコア流路17は、エンジン11の冷却水をヒータコア20を通して循環させる流路であり、オイルクーラ流路18は、エンジン11の冷却水をオイルクーラ21を通して循環させる流路である。ヒータコア流路17とオイルクーラ流路18は、いずれもエンジン11の冷却水をラジエータ19を通さずに循環させるバイパス流路である。これらの流路16~18は、ウォータポンプ13の手前で合流してウォータポンプ13の吸入口に繋がっている。
 ラジエータ流路16の途中には、冷却水の熱を放熱させるラジエータ19が設けられている。また、ヒータコア流路17の途中には、暖房用のヒータコア20が設けられ、オイルクーラ流路18の途中には、エンジンオイルを冷却するエンジンオイル用のオイルクーラ21が設けられている。尚、冷却水温(冷却水の温度)に応じて開閉するサーモスタットバルブは設けられていない。
 更に、出口流路14には、エンジン11の冷却水出口側の冷却水温(以下「出口水温」という)を検出する出口水温センサ22が設けられ、入口流路12には、エンジン11の冷却水入口側の冷却水温(以下「入口水温」という)を検出する入口水温センサ23が設けられている。
 流量制御弁15は、ラジエータポート(ラジエータ流路16への流入口)とヒータコアポート(ヒータコア流路17への流入口)とオイルクーラポート(オイルクーラ流路18への流入口)を開閉するバルブ(図示せず)を有し、このバルブの回転角度(動作位置)に応じて各流路16~18の冷却水流量を調節するように構成されている。この流量制御弁15は、モータ等を駆動源とし、通電時にバルブが回転してバルブ回転角度が変化し、通電停止時にバルブの回転が停止してその回転停止位置にバルブ回転角度が保持されるようになっているつまり通電停止時にバルブ回転角度が初期位置に戻る自戻り機能は備えていない。
 図2に示すように、流量制御弁15のバルブ回転角度(動作位置)が全閉位置θ0 のときには、ラジエータポートとヒータコアポートとオイルクーラポートが全て閉鎖されて、各流路16~18の冷却水の循環が停止される。
 流量制御弁15のバルブ回転角度が増加してヒータコア流路閉鎖位置θ1すなわち、ヒータコアポートを閉鎖する流量制御弁15の動作位置を越えると、ヒータコアポートが開放される。これにより、エンジン11のウォータジャケット→出口流路14→ヒータコア流路17(ヒータコア20)→ウォータポンプ13→入口流路12→エンジン11のウォータジャケットの経路で冷却水が循環する。ヒータコア流路閉鎖位置θ1 は、ヒータコアポートが開放される直前の流量制御弁15の動作位置、つまり、ヒータコア流路17へ冷却水が循環し始める直前の流量制御弁15の動作位置である。流量制御弁15のバルブ回転角度がヒータコア流路閉鎖位置θ1 以上の所定領域(例えば、図2におけるθ1 からθ11までの領域)では、流量制御弁15のバルブ回転角度が増加するに従ってヒータコアポートの開度(開口面積)が増加してヒータコア流路17の冷却水流量が増加する。
 更に、流量制御弁15のバルブ回転角度が増加してオイルクーラ流路閉鎖位置θ2 すなわち、オイルクーラポートを閉鎖する流量制御弁15の動作位置を越えると、オイルクーラポートも開放される。これにより、エンジン11のウォータジャケット→出口流路14→オイルクーラ流路18(オイルクーラ21)→ウォータポンプ13→入口流路12→エンジン11のウォータジャケットの経路でも冷却水が循環する。オイルクーラ流路閉鎖位置θ2 は、オイルクーラポートが開放される直前の流量制御弁15の動作位置、つまり、オイルクーラ流路18へ冷却水が循環し始める直前の流量制御弁15の動作位置である。流量制御弁15のバルブ回転角度がオイルクーラ流路閉鎖位置θ2 以上の所定領域(例えば、図2におけるθ2 からθ22までの領域)では、流量制御弁15のバルブ回転角度が増加するに従ってオイルクーラポートの開度(開口面積)が増加してオイルクーラ流路18の冷却水流量が増加する。
 更に、流量制御弁15のバルブ回転角度が増加してラジエータ流路閉鎖位置θ3 すなわち、ラジエータポートを閉鎖する流量制御弁15の動作位置を越えると、ラジエータポートも開放される。これにより、エンジン11のウォータジャケット→出口流路14→ラジエータ流路16(ラジエータ19)→ウォータポンプ13→入口流路12→エンジン11のウォータジャケットの経路でも冷却水が循環する。ラジエータ流路閉鎖位置θ3 は、ラジエータポートが開放される直前の流量制御弁15の動作位置、つまり、ラジエータ流路16へ冷却水が循環し始める直前の流量制御弁15の動作位置である。流量制御弁15のバルブ回転角度がラジエータ流路閉鎖位置θ3 以上の所定領域(例えば、図2におけるθ3 からθ33までの領域)では、流量制御弁15のバルブ回転角度が増加するに従ってラジエータポートの開度(開口面積)が増加してラジエータ流路16の冷却水流量が増加する。
 上述した各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)24に入力される。このECU24は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。
 また、ECU24は、エンジン11の暖機中に流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置θ3 以下にしてラジエータポートを閉鎖して、ラジエータ流路16への冷却水の循環を停止することで、冷却水の昇温を促進してエンジン11の暖機を促進する。
 その後、ECU24は、出口水温センサ22で検出した出口水温又は入口水温センサ23で検出した入口水温が所定値以上になった場合には、暖機後水温制御を実行する。この暖機後水温制御では、流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置θ3 よりも大きくしてラジエータポートを開放して、ラジエータ流路16へ冷却水を循環させる。更に、出口水温や入口水温に応じて流量制御弁15のバルブ回転角度を制御することでラジエータ流路16の冷却水流量を制御して冷却水温を制御する。その際、ラジエータ流路閉鎖位置θ3 を基準にして流量制御弁15のバルブ回転角度を制御する。
 ところで、流量制御弁15の個体差(例えば製造ばらつき)や経時変化等によって、流量制御弁15のラジエータ流路閉鎖位置θ3 すなわち、ラジエータポートを閉鎖してラジエータ流路16を閉鎖する流量制御弁15の動作位置が変動することがある。
 しかし、流量制御弁15のラジエータ流路閉鎖位置θ3 が変動していると、流量制御弁15でラジエータポートを閉鎖してラジエータ流路16への冷却水の循環を停止する際に、流量制御弁15のバルブ回転角度を正しいラジエータ流路閉鎖位置θ3 に制御することができず、ラジエータ流路16への冷却水漏れ量すなわち、ラジエータ流路16に流れる冷却水の量が増大してしまう可能性がある。ラジエータ流路16への冷却水漏れ量が増大すると、冷却水の昇温促進効果、言い換えればエンジン11の暖機促進効果が低下して、燃費の悪化を招く可能性がある。
 また、流量制御弁15のラジエータ流路閉鎖位置θ3 が変動していると、流量制御弁15でラジエータ流路16の冷却水流量を制御して冷却水温を制御する際に、正しいラジエータ流路閉鎖位置θ3 を基準にして流量制御弁15のバルブ回転角度を制御することができず、ラジエータ流路16の冷却水流量の制御性が低下する可能性がある。ラジエータ流路16の冷却水流量の制御性が低下すると、冷却水温の制御性が低下して、燃費やエミッションの悪化を招く可能性がある。
 そこで、本第1実施形態では、ECU24により後述する図3の閉鎖位置学習ルーチン100を実行することで、出口水温と入口水温のうちの少なくとも一方に基づいてラジエータ流路閉鎖位置θ3 を学習するようにしている。流量制御弁15のバルブ回転角度がラジエータ流路閉鎖位置θ3 を越えると、ラジエータ流路16へ冷却水が循環して出口水温や入口水温が変化する。従って、出口水温や入口水温を監視すれば、ラジエータ流路閉鎖位置θ3 を学習することができる。
 具体的には、ラジエータポートを閉鎖した状態、すなわちラジエータ流路16を閉鎖した状態から流量制御弁15のバルブ回転角度をラジエータポートの開方向、言い換えればラジエータ流路16の開方向へ変化させたときに出口水温と入口水温のうちの少なくとも一方が低下し始める直前の流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置θ3 として学習するようにしている。
 つまり、ラジエータポートを閉鎖した状態から流量制御弁15のバルブ回転角度をラジエータポートの開方向へ変化させたときに、流量制御弁15のバルブ回転角度がラジエータ流路閉鎖位置θ3 を越えた時点で、ラジエータ流路16へ冷却水が循環して出口水温や入口水温が低下し始める。このような特性に着目して、出口水温や入口水温が低下し始める直前の流量制御弁15のバルブ回転角度、すなわちラジエータ流路16へ冷却水が循環し始める直前の流量制御弁のバルブ回転角度をラジエータ流路閉鎖位置θ3 として学習する。
 以下、本第1実施形態で、ECU24が実行する図3の閉鎖位置学習ルーチン100の処理内容を説明する。 図3に示す閉鎖位置学習ルーチン100は、ECU24の電源オン期間中に所定周期で繰り返し実行される。閉鎖位置学習ルーチン100を実行するECU24の部分は、流路閉鎖位置を学習する閉鎖位置学習装置の一例として用いられても良い。本ルーチン100が起動されると、まず、ステップ101で、ヒータコアポートとオイルクーラポートが両方とも開放されてラジエータポートが閉鎖された状態であるか否かを判定する。
 このステップ101で、ヒータコアポートとオイルクーラポートが両方とも開放されてラジエータポートが閉鎖された状態であると判定された場合には、ステップ102に進み、エンジン水温(エンジン11の冷却水温)が所定値以上であるか否かを判定する。この場合、例えば、エンジン水温が所定値以上であるか否かを、出口水温センサ22で検出した出口水温又は入口水温センサ23で検出した入口水温が所定値以上であるか否かによって判定する。或は、エンジン水温が所定値以上であるか否かを、出口水温と入口水温が両方とも所定値以上であるか否かによって判定するようにしても良い。また、エンジン壁温(すなわちエンジン11の壁温)を推定し、推定したエンジン壁温が所定値以上であるか否かを判定するようにしても良い。
 このステップ102で、エンジン水温が所定値以上である又はエンジン壁温が所定値以上であると判定された時点で、ステップ103に進む。ステップ103では、ラジエータ流路16へ冷却水を循環させる制御を行うラジエータ通水制御が実行される。
 まず、ステップ104で、エンジン運転状態(例えばエンジン回転速度と負荷等)が学習可能領域内にあるか否かを判定する。ここで、学習可能領域は、エンジン水温やエンジン壁温が急上昇しないようなエンジン運転領域(例えば低回転速度領域や低負荷領域)に設定されている。
 このステップ104で、エンジン運転状態が学習可能領域内ではないと判定された場合には、エンジン水温やエンジン壁温が高くなり過ぎることを回避するために、ステップ110に進み、暖機後水温制御を実行する。この暖機後水温制御では、流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置θ3 よりも大きくしてラジエータポートを開放して、ラジエータ流路16へ冷却水を循環させる。更に、出口水温や入口水温に応じて流量制御弁15のバルブ回転角度を制御することでラジエータ流路16の冷却水流量を制御して冷却水温を制御する。その際、ラジエータ流路閉鎖位置θ3 の学習値を基準にして流量制御弁15のバルブ回転角度を制御する。
 一方、上記ステップ104で、エンジン運転状態が学習可能領域内であると判定された場合には、ステップ105に進み、学習条件(例えば水温が安定する条件)が成立しているか否かを、例えば、車速が所定値以下の低車速領域内で且つ定速状態であるか否か等によって判定する。定速状態とは、加速及び減速ではない状態を意味してもよい。このステップ105で、学習条件が不成立であると判定された場合には、上記ステップ104に戻る。
 一方、上記ステップ105で、学習条件が成立していると判定された場合には、ステップ106に進み、学習用制御を実行する。この学習用制御では、例えば、図4に示すように、まず、流量制御弁15のバルブ回転角度を学習用制御の基準位置θb に制御してラジエータポートを閉鎖した状態すなわち、ラジエータ流路16を閉鎖した状態にする。
 ここで、学習用制御の基準位置θb は、例えば次の(1) 又は(2) の方法で設定する。
 (1) ラジエータ流路閉鎖位置θ3 の前回の学習値の有無に拘らず、仮学習値(例えばラジエータ流路閉鎖位置θ3 の設計中心値)からラジエータポートの閉方向へ所定量だけ戻ったバルブ回転角度を基準位置θb に設定する。
 (2) ラジエータ流路閉鎖位置θ3 の前回の学習値が有る場合には、ラジエータ流路閉鎖位置θ3 の前回の学習値からラジエータポートの閉方向へ所定量だけ戻ったバルブ回転角度を基準位置θb に設定する。一方、ラジエータ流路閉鎖位置θ3 の前回の学習値が無い場合(例えばECU24が交換された場合等)には、仮学習値からラジエータポートの閉方向へ所定量だけ戻ったバルブ回転角度を基準位置θb に設定する。
 この後、流量制御弁15のバルブ回転角度を基準位置θb からラジエータポートの開方向へ所定ステップ量(一定値)ずつ徐々に変化させる。この場合、流量制御弁15の通電は、例えば、図5に示すように、通電デューティが一定でパルス幅が一定の通電パルスを所定時間間隔で流量制御弁15に出力する。
 この学習用制御で、流量制御弁15のバルブ回転角度を変化させる毎にステップ107に進み、出口水温センサ22で検出した出口水温又は入口水温センサ23で検出した入口水温が所定値以上低下したか否かを判定する。
 このステップ107で、出口水温又は入口水温が所定値以上低下していないと判定された場合には、上記ステップ106に戻り、学習用制御を継続する。
 その後、上記ステップ107で、出口水温又は入口水温が所定値以上低下したと判定された時点で、出口水温又は入口水温が低下し始めたと判断して、ステップ108に進み、出口水温又は入口水温が低下し始める直前の流量制御弁15のバルブ回転角度すなわち、流量制御弁15の前回のバルブ回転角度をラジエータ流路閉鎖位置θ3 として学習する。
 この後、ステップ109に進み、ラジエータ流路閉鎖位置θ3 の今回の学習値をECU24のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリに記憶してラジエータ流路閉鎖位置θ3 の学習値(記憶値)を更新するストア処理を実施する。不揮発性メモリは、ECU24の電源オフ中でも記憶データを保持する書き換え可能なメモリを意味しても良い。
 この後、ステップ110に進み、暖機後水温制御を実行する。この暖機後水温制御では、流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置θ3 よりも大きくしてラジエータポートを開放して、ラジエータ流路16へ冷却水を循環させる。更に、出口水温や入口水温に応じて流量制御弁15のバルブ回転角度を制御することでラジエータ流路16の冷却水流量を制御して冷却水温を制御する。その際、ラジエータ流路閉鎖位置θ3 の学習値を基準にして流量制御弁15のバルブ回転角度を制御する。
 以上説明した本第1実施形態では、流量制御弁15のバルブ回転角度がラジエータ流路閉鎖位置θ3 を越えると、ラジエータ流路16へ冷却水が循環して出口水温や入口水温が変化することに着目して、出口水温や入口水温に基づいてラジエータ流路閉鎖位置θ3 を学習するようにしている。このようにすれば、流量制御弁15の個体差(製造ばらつき等)や経時変化等によって、流量制御弁15のラジエータ流路閉鎖位置θ3 が変動していても、そのラジエータ流路閉鎖位置θ3 を学習して、正しいラジエータ流路閉鎖位置θ3 を把握することができる。
 これにより、エンジン11の暖機中に流量制御弁15でラジエータポートを閉鎖してラジエータ流路16への冷却水の循環を停止する際に、流量制御弁15のバルブ回転角度を正しいラジエータ流路閉鎖位置θ3 に制御することができ、ラジエータ流路16への冷却水漏れ量を低減することができる。その結果、冷却水の昇温促進効果、言い換えればエンジン11の暖機促進効果の低下を抑制して、燃費の悪化を抑制することができる。また、流量制御弁15でラジエータ流路16の冷却水流量を制御して冷却水温を制御する際に、正しいラジエータ流路閉鎖位置θ3 を基準にして流量制御弁15のバルブ回転角度を制御することができ、ラジエータ流路16の冷却水流量の制御性を向上させることができる。その結果、冷却水温の制御性を向上させることができ、燃費やエミッションの悪化を抑制することができる。
 また、本第1実施形態では、出口水温センサ22で検出した出口水温や入口水温センサ23で検出した入口水温に基づいてラジエータ流路閉鎖位置θ3 を学習するようにしている。このようにすれば、エンジン11の冷却水温制御等に使用する出口水温センサ22や入口水温センサ23を利用してラジエータ流路閉鎖位置θ3 を学習することができるため、ラジエータ流路閉鎖位置θ3 を学習するためのセンサ(例えば冷却水の流量や圧力を検出するセンサ等)を新たに設ける必要がなく、低コスト化の要求を満たすことができる。
 ラジエータポートを閉鎖した状態から流量制御弁15のバルブ回転角度をラジエータポートの開方向へ変化させたときに、流量制御弁15のバルブ回転角度がラジエータ流路閉鎖位置θ3 を越えた時点で、ラジエータ流路16へ冷却水が循環して出口水温や入口水温が低下し始める。
 このような特性に着目して、本第1実施形態では、ラジエータポートを閉鎖した状態から流量制御弁15のバルブ回転角度をラジエータポートの開方向へ変化させたときに出口水温や入口水温が低下し始める直前の流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置θ3 として学習するようにしている。これにより、ラジエータ流路閉鎖位置θ3 を精度良く学習することができる。
 尚、上記第1実施形態では、出口水温又は入口水温が所定値以上低下したときに、その直前の流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置として学習するようにしている。しかし、これに限定されず、例えば、出口水温と入口水温がそれぞれ所定値以上低下したときに、その直前の流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置として学習するようにしても良い。
 或は、エンジン運転状態(例えばエンジン回転速度や負荷等)に基づいて予想エンジン壁温をマップ等により算出すると共に、出口水温と入口水温と油温のうちの少なくとも一つに基づいてエンジン壁温推定値を算出し、予想エンジン壁温とエンジン壁温推定値との差(乖離量)が所定値以上になったときに、その直前の流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置として学習するようにしても良い。
 或は、実エンジン壁温をセンサで検出すると共に、出口水温と入口水温と油温のうちの少なくとも一つに基づいてエンジン壁温推定値を算出し、実エンジン壁温とエンジン壁温推定値との差(乖離量)が所定値以上になったときに、その直前の流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置として学習するようにしても良い。
 また、学習用制御は上記第1実施形態で説明したものに限定されず、適宜変更しても良い。
 例えば、学習用制御の一例を図6に示す。この例では、流量制御弁15のバルブ回転角度を学習用制御の基準位置θb に制御した後、流量制御弁15のバルブ回転角度を基準位置θb からラジエータポートの開方向へ所定ステップ量だけ変化させた後に基準位置θb に戻す処理を繰り返しながら、所定ステップ量を前回よりも増加させていく。この場合、流量制御弁15の通電は、例えば、図7に示すように、通電デューティが一定の通電パルスを所定時間間隔で流量制御弁15に出力しながら、通電パルスを出力する毎にパルス幅を前回よりも増加させていく。
 或は、学習用制御の他の一例を図8に示す。この例では、流量制御弁15のバルブ回転角度を学習用制御の基準位置θb に制御した後、流量制御弁15のバルブ回転角度を基準位置θb からラジエータポートの開方向へ所定ステップ量だけ変化させて所定時間経過後にラジエータポートの閉方向へ所定ステップ量だけ変化させる処理を繰り返しながら、所定ステップ量を前回よりも減少させていく。この場合、流量制御弁15の通電は、例えば、図9に示すように、通電デューティが一定の通電パルスを所定時間間隔で流量制御弁15に出力しながら、通電パルスを出力する毎にパルス幅を前回よりも減少させると共に所定時間間隔を短くする。
(第2実施形態)
 次に、図10乃至図18を用いて本開示の第2実施形態を説明する。但し、前記第1実施形態と実質的に同一部分については説明を省略又は簡略化し、主として前記第1実施形態と異なる部分について説明する。
 本第2実施形態では、ECU24により後述する図11乃至図14の各ルーチン200、300、400、500を実行することで、エンジン11の暖機中にヒータコア流路閉鎖位置θ1 とオイルクーラ流路閉鎖位置θ2 とラジエータ流路閉鎖位置θ3 を学習するようにしている。
 具体的には、図10に示すように、まず、エンジン11が始動された時点t0 (又はECU24の電源オン直後)に制御モードをMODE1に設定する。このMODE1では、流量制御弁15のバルブ回転角度を全閉位置θ0 に制御して、ラジエータポートとヒータコアポートとオイルクーラポートを全て閉鎖した状態すなわち、ヒータコア流路17とオイルクーラ流路18とラジエータ流路16を全て閉鎖した状態にする。
 制御モードがMODE1の期間中に、ヒータコア流路閉鎖位置θ1 の学習実行条件が成立した時点t1 (例えば出口水温T1 が所定値以上になった時点)で、ヒータコア流路閉鎖位置θ1 の学習を次のようにして行う。
 ヒータコアポートを閉鎖した状態すなわち、ヒータコア流路17を閉鎖した状態から流量制御弁15のバルブ回転角度をヒータコアポートの開方向すなわち、ヒータコア流路17の開方向へ変化させたときに入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度をヒータコア流路閉鎖位置θ1 として学習する。
 つまり、ヒータコアポートを閉鎖した状態から流量制御弁15のバルブ回転角度をヒータコアポートの開方向へ変化させたときに、流量制御弁15のバルブ回転角度がヒータコア流路閉鎖位置θ1 を越えた時点で、ヒータコア流路17へ冷却水が循環して入口水温T2 が低下し始める。このような特性に着目して、入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度すなわち、ヒータコア流路17へ冷却水が循環し始める直前の流量制御弁のバルブ回転角度をヒータコア流路閉鎖位置θ1 として学習する。
 この後、出口水温T1 が目標水温以上になった時点t2 で、制御モードをMODE2に切り換える。このMODE2では、出口水温T1 と目標水温との偏差に基づいて流量制御弁15のバルブ回転角度をMODE2の使用範囲内でF/B制御(フィードバック制御)する。MODE2の使用範囲は、ヒータコア流路閉鎖位置θ1 からオイルクーラ流路閉鎖位置θ2 までの範囲に設定されている。これにより、出口水温T1 と目標水温との偏差を小さくするようにヒータコアポートの開度を制御してヒータコア流路17の冷却水流量を制御する。
 制御モードがMODE2の期間中に、オイルクーラ流路閉鎖位置θ2 の学習実行条件が成立した時点t3 (例えば出口水温T1 の所定時間当りの変化量ΔT1 が所定値以下になった時点)で、オイルクーラ流路閉鎖位置θ2 の学習を次のようにして行う。
 オイルクーラポートを閉鎖した状態すなわち、オイルクーラ流路18を閉鎖した状態から流量制御弁15のバルブ回転角度をオイルクーラポートの開方向すなわち、オイルクーラ流路18の開方向へ変化させたときに入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度をオイルクーラ流路閉鎖位置θ2 として学習する。
 つまり、オイルクーラポートを閉鎖した状態から流量制御弁15のバルブ回転角度をオイルクーラポートの開方向へ変化させたときに、流量制御弁15のバルブ回転角度がオイルクーラ流路閉鎖位置θ2 を越えた時点で、オイルクーラ流路18へ冷却水が循環して入口水温T2 が低下し始める。このような特性に着目して、入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度すなわち、オイルクーラ流路18へ冷却水が循環し始める直前の流量制御弁のバルブ回転角度をオイルクーラ流路閉鎖位置θ2 として学習する。
 この後、出口水温T1 が目標水温以上の状態が所定時間以上継続した時点t4 で、制御モードをMODE3に切り換える。このMODE3では、出口水温T1 と目標水温との偏差に基づいて流量制御弁15のバルブ回転角度をMODE3の使用範囲内でF/B制御する。MODE3の使用範囲は、オイルクーラ流路閉鎖位置θ2 からラジエータ流路閉鎖位置θ3 までの範囲に設定されている。これにより、出口水温T1 と目標水温との偏差を小さくするようにオイルクーラポートの開度を制御してオイルクーラ流路18の冷却水流量を制御する。
 制御モードがMODE3の期間中に、ラジエータ流路閉鎖位置θ3 の学習実行条件が成立した時点t5 (例えば出口水温T1 の所定時間当りの変化量ΔT1 が所定値以下になった時点)で、ラジエータ流路閉鎖位置θ3 の学習を次のようにして行う。
 ラジエータポートを閉鎖した状態すなわち、ラジエータ流路16を閉鎖した状態から流量制御弁15のバルブ回転角度をラジエータポートの開方向すなわち、ラジエータ流路16の開方向へ変化させたときに入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置θ3 として学習する。
 つまり、ラジエータポートを閉鎖した状態から流量制御弁15のバルブ回転角度をラジエータポートの開方向へ変化させたときに、流量制御弁15のバルブ回転角度がラジエータ流路閉鎖位置θ3 を越えた時点で、ラジエータ流路16へ冷却水が循環して入口水温T2 が低下し始める。このような特性に着目して、入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度すなわち、ラジエータ流路16へ冷却水が循環し始める直前の流量制御弁のバルブ回転角度をラジエータ流路閉鎖位置θ3 として学習する。
 この後、出口水温T1 が目標水温以上の状態が所定時間以上継続した時点t6 で、制御モードをMODE4に切り換える。このMODE4では、出口水温T1 と目標水温との偏差に基づいて流量制御弁15のバルブ回転角度をMODE4の使用範囲内でF/B制御する。MODE4の使用範囲は、ラジエータ流路閉鎖位置θ3 以上の範囲に設定されている。これにより、出口水温T1 と目標水温との偏差を小さくするようにラジエータポートの開度を制御してラジエータ流路16の冷却水流量を制御する。以下、本第2実施形態でECU24が実行する図11乃至図14の各ルーチン200、300、400、500の処理内容を説明する。
 図11に示すモード切換ルーチン200は、ECU24の電源オン期間中に所定周期で繰り返し実行される。本ルーチン200が起動されると、まず、ステップ201で、制御モードがMODE1であるか否かを判定する。尚、制御モードは、エンジン始動時又はECU24の電源オン直後にMODE1に設定される。
 このステップ201で、制御モードがMODE1であると判定された場合には、ステップ202に進み、流量制御弁15のバルブ回転角度を全閉位置θ0 に制御して、ラジエータポートとヒータコアポートとオイルクーラポートを全て閉鎖した状態にする。
 この後、ステップ203に進み、出口水温センサ22で検出した出口水温T1 が目標水温以上であるか否かを判定し、出口水温T1 が目標水温よりも低いと判定された場合には、制御モードをMODE1に設定したまま、本ルーチン200を終了する。
 その後、上記ステップ203で、出口水温T1 が目標水温以上と判定された時点で、ステップ204に進み、制御モードをMODE2に切り換えて、本ルーチン200を終了する。この際、ヒータコア流路閉鎖位置θ1 の学習がまだ完了していない場合には、ヒータコア流路閉鎖位置θ1 の学習が完了してから制御モードをMODE2に切り換えるようにしても良い。
 一方、上記ステップ201で、制御モードがMODE1ではないと判定された場合には、ステップ205に進み、制御モードがMODE2であるか否かを判定する。このステップ205で、制御モードがMODE2であると判定された場合には、ステップ206に進み、出口水温センサ22で検出した出口水温T1 と目標水温との偏差に基づいて流量制御弁15のバルブ回転角度をMODE2の使用範囲(図10参照)内でF/B制御する。これにより、出口水温T1 と目標水温との偏差を小さくするようにヒータコアポートの開度を制御してヒータコア流路17の冷却水流量を制御する。
 この後、ステップ207に進み、出口水温センサ22で検出した出口水温T1 が目標水温以上の状態が所定時間以上継続したか否かを判定し、出口水温T1 が目標水温以上の状態が所定時間以上継続していないと判定された場合には、制御モードをMODE2に設定したまま、本ルーチン200を終了する。
 その後、上記ステップ207で、出口水温T1 が目標水温以上の状態が所定時間以上継続したと判定された時点で、ステップ208に進み、制御モードをMODE3に切り換えて、本ルーチン200を終了する。この際、オイルクーラ流路閉鎖位置θ2 の学習がまだ完了していない場合には、オイルクーラ流路閉鎖位置θ2 の学習が完了してから制御モードをMODE3に切り換えるようにしても良い。
 一方、上記ステップ205で、制御モードがMODE2ではないと判定された場合には、ステップ209に進み、制御モードがMODE3であるか否かを判定する。
 このステップ209で、制御モードがMODE3であると判定された場合には、ステップ210に進み、出口水温センサ22で検出した出口水温T1 と目標水温との偏差に基づいて流量制御弁15のバルブ回転角度をMODE3の使用範囲(図10参照)内でF/B制御する。これにより、出口水温T1 と目標水温との偏差を小さくするようにオイルクーラポートの開度を制御してオイルクーラ流路18の冷却水流量を制御する。
 この後、ステップ211に進み、出口水温センサ22で検出した出口水温T1 が目標水温以上の状態が所定時間以上継続したか否かを判定し、出口水温T1 が目標水温以上の状態が所定時間以上継続していないと判定された場合には、制御モードをMODE3に設定したまま、本ルーチン200を終了する。
 その後、上記ステップ211で、出口水温T1 が目標水温以上の状態が所定時間以上継続したと判定された時点で、ステップ212に進み、制御モードをMODE4に切り換えて、本ルーチン200を終了する。この際、ラジエータ流路閉鎖位置θ3 の学習がまだ完了していない場合には、ラジエータ流路閉鎖位置θ3 の学習が完了してから制御モードをMODE3に切り換えるようにしても良い。
 一方、上記ステップ209で、制御モードがMODE3ではないと判定された場合には、ステップ213に進み、制御モードがMODE4であるか否かを判定する。
 このステップ213で、制御モードがMODE4であると判定された場合には、ステップ214に進み、出口水温センサ22で検出した出口水温T1 と目標水温との偏差に基づいて流量制御弁15のバルブ回転角度をMODE4の使用範囲(図10参照)内でF/B制御する。これにより、出口水温T1 と目標水温との偏差を小さくするようにラジエータポートの開度を制御してラジエータ流路16の冷却水流量を制御する。
 図12に示すヒータコア流路閉鎖位置の学習ルーチン300は、ECU24の電源オン期間中に所定周期で繰り返し実行される。ヒータコア流路閉鎖位置の学習ルーチン300を実行するECU24の部分は、流路閉鎖位置を学習する閉鎖位置学習装置の一例として用いられても良い。本ルーチン300が起動されると、まず、ステップ301で、制御モードがMODE1であるか否かを判定し、制御モードがMODE1ではないと判定された場合には、ステップ302以降の処理を実行することなく、本ルーチン300終了する。
 一方、上記ステップ301で、制御モードがMODE1であると判定された場合には、ステップ302に進み、ヒータコア流路閉鎖位置θ1 の学習実行条件が成立しているか否かを、例えば、出口水温T1 が所定値(例えば目標水温又はそれよりも少し低い温度)以上であるか否かによって判定する。
 このステップ302で、ヒータコア流路閉鎖位置θ1 の学習実行条件が成立していると判定された時点で、ステップ303に進み、精度悪化予測状態であるか否か、すなわちヒータコア流路閉鎖位置θ1 の学習精度の悪化が予測される状態であるか否かを判定する。例えば、次の(1) ~(6) の条件のうちの少なくとも一つが成立しているか否かによって精度悪化予測状態であると判定する。
 (1) エンジン11の燃料噴射を停止する燃料供給停止中であること
 (2) エンジン11の一部の気筒の燃焼を停止させる減筒運転中であること
 (3) エンジン11の運転を停止してモータの動力のみで車両を走行させるEV走行中であること(但しハイブリッド車の場合)
 (4) 車両の停車中であること
 (5) 車速が所定値以上の高速走行中であること
 (6) 外気温が所定値以下の低温状態であること
 燃料供給停止中、減筒運転中、EV走行中、停車中は、エンジン11の発熱量や冷却水の流量が通常よりも少なくなって、流量制御弁15のバルブ回転角度が流路閉鎖位置を越えたときの入口水温T2 (判定パラメータ)の挙動が通常と異なってくるため、精度悪化予測状態であると判定することができる。また、高速走行中、外気温が所定値以下の低温状態は、冷却水の放熱量が通常よりも多くなって、流量制御弁15のバルブ回転角度が流路閉鎖位置を越えたときの入口水温T2 (判定パラメータ)の挙動が通常と異なってくるため、精度悪化予測状態であると判定することができる。
 上記(1) ~(6) の条件のうちのいずれか1つを満たせば、精度悪化予測状態であると判定するが、上記(1) ~(6) の条件を全て満たさなければ、精度悪化予測状態ではないと判定する。
 このステップ303で、精度悪化予測状態であると判定された場合は、ヒータコア流路閉鎖位置θ1 の学習を禁止して、上記ステップ302に戻る。
 その後、上記ステップ303で、精度悪化予測状態ではないと判定された場合には、ステップ304に進み、ヒータコア流路閉鎖位置θ1 の学習用制御を実行する。このヒータコア流路閉鎖位置θ1 の学習用制御では、図15に示すように、まず、流量制御弁15のバルブ回転角度をヒータコア流路閉鎖位置θ1 の学習用制御の基準位置θb1に制御してヒータコアポートを閉鎖した状態すなわち、ヒータコア流路17を閉鎖した状態にする。
 ヒータコア流路閉鎖位置θ1 の学習用制御の基準位置θb1は、ヒータコア流路閉鎖位置θ1 の前回の学習値からヒータコアポートの閉方向へ所定量だけ戻ったバルブ回転角度に設定する。或は、仮学習値(例えばヒータコア流路閉鎖位置θ1 の設計中心値)からヒータコアポートの閉方向へ所定量だけ戻ったバルブ回転角度に設定する。
 この後、流量制御弁15のバルブ回転角度を基準位置θb1からヒータコアポートの開方向(すなわち図15に矢印で示す方向)へ所定の動作ステップ量ずつ変化させる又は所定の動作速度で変化させる。この際、外気温とウォータポンプ13の回転速度と開放流路数とに応じて、流量制御弁15の動作ステップ量又は動作速度を設定する。開放流路数とは、ラジエータ流路16とヒータコア流路17とオイルクーラ流路18のうち開放されている流路の数の意味である。
 具体的には、外気温が低いほど流量制御弁15の動作ステップ量を小さくする(図16参照)又は動作速度を遅くする(図17参照)。また、ウォータポンプ13の回転速度(エンジン回転速度)が高いほど流量制御弁15の動作ステップ量を小さくする(図16参照)又は動作速度を遅くする(図17参照)。更に、開放流路数が少ないほど流量制御弁15の動作ステップ量を小さくする(図16参照)又は動作速度を遅くする(図17参照)。ここで、開放流路数は、ヒータコア流路閉鎖位置θ1 を学習する場合は「0」、オイルクーラ流路閉鎖位置θ2 を学習する場合は「1」、ラジエータ流路閉鎖位置θ3 を学習する場合は「2」とする。
 この場合、例えば、外気温とウォータポンプ13の回転速度と開放流路数とをパラメータとする動作ステップ量又は動作速度のマップを用いて、外気温とウォータポンプ13の回転速度と開放流路数とに応じた動作ステップ量又は動作速度を算出するようにしても良い。或は、外気温に応じた補正値とウォータポンプ13の回転速度に応じた補正値と開放流路数に応じた補正値とを用いて、動作ステップ量のベース値又は動作速度のベース値を補正して、外気温とウォータポンプ13の回転速度と開放流路数とに応じた動作ステップ量又は動作速度を求めるようにしても良い。
 この後、ステップ305に進み、入口水温センサ23で検出した入口水温T2 が所定値以上低下したか否かを判定する。このステップ305で、入口水温T2 が所定値以上低下していないと判定された場合には、上記ステップ304に戻り、学習用制御を継続する。
 その後、上記ステップ305で、入口水温T2 が所定値以上低下したと判定された時点で、入口水温T2 が低下し始めたと判断して、ステップ306に進み、入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度(すなわち、流量制御弁15の前回のバルブ回転角度)をヒータコア流路閉鎖位置θ1 として学習する。
 この後、ステップ307に進み、ヒータコア流路閉鎖位置θ1 の今回の学習値をECU24のバックアップRAM等の書き換え可能な不揮発性メモリに記憶してヒータコア流路閉鎖位置θ1 の学習値(記憶値)を更新するストア処理を実施する。
 図13に示すオイルクーラ流路閉鎖位置の学習ルーチン400は、ECU24の電源オン期間中に所定周期で繰り返し実行される。オイルクーラ流路閉鎖位置の学習ルーチン400を実行するECU24の部分は、流路閉鎖位置を学習する閉鎖位置学習装置の一例として用いられても良い。本ルーチン400が起動されると、まず、ステップ401で、制御モードがMODE2であるか否かを判定し、制御モードがMODE2ではないと判定された場合には、ステップ402以降の処理を実行することなく、本ルーチン400終了する。
 一方、上記ステップ401で、制御モードがMODE2であると判定された場合には、ステップ402に進み、オイルクーラ流路閉鎖位置θ2 の学習実行条件が成立しているか否かを、例えば、出口水温T1 の所定時間当りの変化量ΔT1 が所定値以下である(出口水温T1 が安定している)か否かによって判定する。
 このステップ402で、オイルクーラ流路閉鎖位置θ2 の学習実行条件が成立していると判定された時点で、ステップ403に進み、前記図12のステップ303と同様の方法で、精度悪化予測状態であるか否か、すなわち、オイルクーラ流路閉鎖位置θ2 の学習精度の悪化が予測される状態であるか否かを判定する。このステップ403で、精度悪化予測状態であると判定された場合は、オイルクーラ流路閉鎖位置θ2 の学習を禁止して、上記ステップ402に戻る。
 その後、上記ステップ403で、精度悪化予測状態ではないと判定された場合には、ステップ404に進み、オイルクーラ流路閉鎖位置θ2 の学習用制御を実行する。このオイルクーラ流路閉鎖位置θ2 の学習用制御では、まず、流量制御弁15のバルブ回転角度をオイルクーラ流路閉鎖位置θ2 の学習用制御の基準位置θb2に制御してオイルクーラポートを閉鎖した状態(オイルクーラ流路18を閉鎖した状態)にする。
 オイルクーラ流路閉鎖位置θ2 の学習用制御の基準位置θb2は、オイルクーラ流路閉鎖位置θ2 の前回の学習値からオイルクーラポートの閉方向へ所定量だけ戻ったバルブ回転角度に設定する。或は、仮学習値(例えばオイルクーラ流路閉鎖位置θ2 の設計中心値)からオイルクーラポートの閉方向へ所定量だけ戻ったバルブ回転角度に設定する。
 この後、流量制御弁15のバルブ回転角度を基準位置θb2からオイルクーラポートの開方向へ所定の動作ステップ量ずつ変化させる又は所定の動作速度で変化させる。この際、前記図12のステップ304と同様の方法で、外気温とウォータポンプ13の回転速度と開放流路数とに応じて、流量制御弁15の動作ステップ量又は動作速度を設定する。つまり、外気温が低いほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くする。また、ウォータポンプ13の回転速度(エンジン回転速度)が高いほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くする。更に、開放流路数が少ないほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くする。
 この後、ステップ405に進み、入口水温センサ23で検出した入口水温T2 が所定値以上低下したか否かを判定する。このステップ405で、入口水温T2 が所定値以上低下していないと判定された場合には、上記ステップ404に戻り、学習用制御を継続する。
 その後、上記ステップ405で、入口水温T2 が所定値以上低下したと判定された時点で、入口水温T2 が低下し始めたと判断して、ステップ406に進み、入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度(流量制御弁15の前回のバルブ回転角度)をオイルクーラ流路閉鎖位置θ2 として学習する。
 この後、ステップ407に進み、オイルクーラ流路閉鎖位置θ2 の今回の学習値をECU24のバックアップRAM等の書き換え可能な不揮発性メモリに記憶してオイルクーラ流路閉鎖位置θ2 の学習値(記憶値)を更新するストア処理を実施する。
 図14に示すラジエータ流路閉鎖位置の学習ルーチン500は、ECU24の電源オン期間中に所定周期で繰り返し実行される。ラジエータ流路閉鎖位置の学習ルーチン500を実行するECU24の部分は、流路閉鎖位置を学習する閉鎖位置学習装置の一例として用いられても良い。本ルーチン500が起動されると、まず、ステップ501で、制御モードがMODE3であるか否かを判定し、制御モードがMODE3ではないと判定された場合には、ステップ502以降の処理を実行することなく、本ルーチン500終了する。
 一方、上記ステップ501で、制御モードがMODE3であると判定された場合には、ステップ502に進み、ラジエータ流路閉鎖位置θ3 の学習実行条件が成立しているか否かを、例えば、出口水温T1 の所定時間当りの変化量ΔT1 が所定値以下である(出口水温T1 が安定している)か否かによって判定する。
 このステップ502で、ラジエータ流路閉鎖位置θ3 の学習実行条件が成立していると判定された時点で、ステップ503に進み、前記図12のステップ303と同様の方法で、精度悪化予測状態であるか否か、すなわちラジエータ流路閉鎖位置θ3 の学習精度の悪化が予測される状態であるか否かを判定する。このステップ503で、精度悪化予測状態であると判定された場合は、ラジエータ流路閉鎖位置θ3 の学習を禁止して、上記ステップ502に戻る。
 その後、上記ステップ503で、精度悪化予測状態ではないと判定された場合には、ステップ504に進み、ラジエータ流路閉鎖位置θ3 の学習用制御を実行する。このラジエータ流路閉鎖位置θ3 の学習用制御では、まず、流量制御弁15のバルブ回転角度をラジエータ流路閉鎖位置θ3 の学習用制御の基準位置θb3に制御してラジエータポートを閉鎖した状態、すなわちラジエータ流路16を閉鎖した状態にする。
 ラジエータ流路閉鎖位置θ3 の学習用制御の基準位置θb3は、ラジエータ流路閉鎖位置θ3 の前回の学習値からラジエータポートの閉方向へ所定量だけ戻ったバルブ回転角度に設定する。或は、仮学習値(例えばラジエータ流路閉鎖位置θ3 の設計中心値)からラジエータポートの閉方向へ所定量だけ戻ったバルブ回転角度に設定する。
 この後、流量制御弁15のバルブ回転角度を基準位置θb3からラジエータポートの開方向へ所定の動作ステップ量ずつ変化させる又は所定の動作速度で変化させる。この際、前記図12のステップ304と同様の方法で、外気温とウォータポンプ13の回転速度と開放流路数とに応じて、流量制御弁15の動作ステップ量又は動作速度を設定する。つまり、外気温が低いほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くする。また、ウォータポンプ13の回転速度(エンジン回転速度)が高いほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くする。更に、開放流路数が少ないほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くする。
 この後、ステップ505に進み、入口水温センサ23で検出した入口水温T2 が所定値以上低下したか否かを判定する。このステップ405で、入口水温T2 が所定値以上低下していないと判定された場合には、上記ステップ504に戻り、学習用制御を継続する。
 その後、上記ステップ505で、入口水温T2 が所定値以上低下したと判定された時点で、入口水温T2 が低下し始めたと判断して、ステップ506に進み、入口水温T2 が低下し始める直前の流量制御弁15のバルブ回転角度(すなわち、流量制御弁15の前回のバルブ回転角度)をラジエータ流路閉鎖位置θ3 として学習する。
 この後、ステップ507に進み、ラジエータ流路閉鎖位置θ3 の今回の学習値をECU24のバックアップRAM等の書き換え可能な不揮発性メモリに記憶してラジエータ流路閉鎖位置θ3 の学習値(記憶値)を更新するストア処理を実施する。
 以上説明した本第2実施形態では、流量制御弁15のヒータコア流路閉鎖位置θ1 とオイルクーラ流路閉鎖位置θ2 とラジエータ流路閉鎖位置θ3 を学習するようにしている。このようにすれば、流量制御弁15の個体差(例えば製造ばらつき)や経時変化等によって、流量制御弁15のヒータコア流路閉鎖位置θ1 やオイルクーラ流路閉鎖位置θ2 やラジエータ流路閉鎖位置θ3 が変動していても、それらの流路閉鎖位置を学習して、正しい流路閉鎖位置を把握することができる。これにより、各制御モード(MODE2~4)での冷却水温の制御性を向上させることができる。
 また、本第2実施形態では、精度悪化予測状態であるか否か、すなわち流路閉鎖位置の学習精度の悪化が予測される状態であるか否かを判定する。精度悪化予測状態であると判定したときに、流路閉鎖位置の学習を禁止するようにしている。このようにすれば、流路閉鎖位置の学習精度の悪化を未然に防止することができ、流路閉鎖位置の誤学習を回避することができる。
 その際、本第2実施形態では、燃料供給停止中、減筒運転中、EV走行中、停車中、高速走行中、外気温が所定値以下の低温状態のうちの少なくとも一つの条件が成立したときに、精度悪化予測状態であると判定するようにしている。燃料供給停止中、減筒運転中、EV走行中、停車中は、エンジン11の発熱量や冷却水の流量が通常よりも少なくなって、流量制御弁15のバルブ回転角度が流路閉鎖位置を越えたときの入口水温T2 (判定パラメータ)の挙動が通常と異なってくるため、精度悪化予測状態であると判定することができる。また、高速走行中、外気温が所定値以下の低温状態は、冷却水の放熱量が通常よりも多くなって、流量制御弁15のバルブ回転角度が流路閉鎖位置を越えたときの入口水温T2 (判定パラメータ)の挙動が通常と異なってくるため、精度悪化予測状態であると判定することができる。
 ところで、流路閉鎖位置を学習するために流量制御弁15を動作させる学習用制御の際には、流量制御弁15のバルブ回転角度が流路閉鎖位置を越えて冷却水温(入口水温T2 )が変化するまで流量制御弁15のバルブ回転角度を変化させる必要がある。その際、流量制御弁15のバルブ回転角度が流路閉鎖位置を越えた分だけ、エンジン側から流路側への冷却水漏れ量が増加するため、外気温が低いほど冷却水温が低下してエンジン11の暖機が遅れる可能性がある。
 そこで、本第2実施形態では、学習用制御の際に、外気温が低いほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くするようにしている。このようにすれば、外気温が低いほど、流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くして、流量制御弁15のバルブ回転角度が流路閉鎖位置を越える分を小さくすることができ、冷却水漏れ量を減少させることができる。これにより、外気温が低いときでも、学習用制御による冷却水温の低下を少なくして、暖機遅れを抑制することができる(図18参照)。しかも、流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くすることで、流路閉鎖位置の学習誤差(すなわち、流路閉鎖位置の学習値と正しい流路閉鎖位置との差)を小さくして、学習精度を向上させることができる。
 また、ウォータポンプ13の回転速度が高いほど、流量制御弁15の開度変化に対する冷却水の流量変化が大きくなる傾向があるため、流量制御弁15のバルブ回転角度が流路閉鎖位置を越える分が同じでも、ウォータポンプ13の回転速度が高いほど、エンジン側から流路側への冷却水漏れ量が増加する。
 そこで、本第2実施形態では、学習用制御の際に、ウォータポンプ13の回転速度(エンジン回転速度)が高いほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くするようにしている。このようにすれば、ウォータポンプ13の回転速度が高いほど、流量制御弁15の開度変化に対する冷却水の流量変化が大きくなるのに対応して、流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くして、流量制御弁15のバルブ回転角度が流路閉鎖位置を越える分を小さくすることができ、冷却水漏れ量の増加を抑制することができる。これにより、ウォータポンプ13の回転速度が高いときでも、学習用制御による冷却水温の低下を少なくして、暖機遅れを抑制することができる(図18参照)。しかも、流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くすることで、流路閉鎖位置の学習誤差を小さくして、学習精度を向上させることができる。
 また、開放流路数(冷却水流路16~18のうち開放されている流路の数)が少ないほど、流量制御弁15の開度変化に対する冷却水の流量変化が大きくなる傾向があるため、流量制御弁15のバルブ回転角度が流路閉鎖位置を越える分が同じでも、開放流路数が少ないほど、エンジン側から流路側への冷却水漏れ量が増加する。
 そこで、本第2実施形態では、学習用制御の際に、開放流路数が少ないほど流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くするようにしている。このようにすれば、開放流路数が少ないほど、流量制御弁15の開度変化に対する冷却水の流量変化が大きくなるのに対応して、流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くして、流量制御弁15のバルブ回転角度が流路閉鎖位置を越える分を小さくすることができ、冷却水漏れ量の増加を抑制することができる。これにより、開放流路数が少ないときでも、学習用制御による冷却水温の低下を少なくして、暖機遅れを抑制することができる(図18参照)。しかも、流量制御弁15の動作ステップ量を小さくする又は動作速度を遅くすることで、流路閉鎖位置の学習誤差を小さくして、学習精度を向上させることができる。
 尚、上記第2実施形態では、学習用制御の際に、外気温とウォータポンプ13の回転速度と開放流路数とに応じて流量制御弁15の動作ステップ量又は動作速度を設定するようにしている。しかし、これに限定されず、外気温とウォータポンプ13の回転速度と開放流路数のうちの一つ又は二つに応じて流量制御弁15の動作ステップ量又は動作速度を設定するようにしても良い。
 上記第2実施形態では、入口水温に基づいて流路閉鎖位置を学習するようにしたが、これに限定されず、例えば、出口水温に基づいて流路閉鎖位置を学習するようにしたり、或は、入口水温と出口水温の両方に基づいて流路閉鎖位置を学習するようにしても良い。
 また、上記各第1,第2実施形態では、流路閉鎖位置を学習する毎に流路閉鎖位置の学習値(記憶値)を更新するようにしている。しかし、これに限定されず、例えば、流路閉鎖位置は、流量制御弁15の全閉位置や全開位置と連動して変動すると考えられるため、全閉位置と全開位置のうちの一方又は両方が所定値以上変動したときに流路閉鎖位置の学習値を更新するようにしても良い。
 また、上記各第1,第2実施形態では、水温センサで検出した冷却水温(出口水温や入口水温)に基づいて流路閉鎖位置を学習するようにしている。しかし、これに限定されず、例えば、圧力センサで検出した冷却水の圧力や流量センサで検出した冷却水の流量やウォータポンプ13の回転速度に基づいて流路閉鎖位置を学習するようにしても良い。流量制御弁15のバルブ回転角度が流路閉鎖位置を越えると、冷却水の圧力、冷却水の流量、ウォータポンプ13の回転速度等が変化するため、冷却水の圧力、冷却水の流量、ウォータポンプ13の回転速度等を監視すれば、流路閉鎖位置を学習することができる。
 また、上記各第1,第2実施形態では、流量制御弁のバルブ回転角度が増加するに従って、ヒータコア流路→オイルクーラ流路→ラジエータ流路(ヒータコアポート→オイルクーラポート→ラジエータポート)の順で開放されるシステムに本開示を適用している。しかし、これに限定されず、例えば、流量制御弁のバルブ回転角度が増加するに従って、オイルクーラ流路→ヒータコア流路→ラジエータ流路(オイルクーラポート→ヒータコアポート→ラジエータポート)の順で開放されるシステムや、これ以外の他の順で開放されるシステムに本開示を適用しても良い。
 また、上記各第1,第2実施形態では、一つの流量制御弁で各冷却水流路(ヒータコア流路とオイルクーラ流路とラジエータ流路)の流量を調節するシステムに本開示を適用したが、これに限定されず、複数(二つ以上)の流量制御弁で各冷却水流路の流量を調節するシステムに本開示を適用しても良い。
 更に、上記以外の他の冷却水流路(例えば、トランスミッションオイル用のオイルクーラが設けられたオイルクーラ流路、EGRクーラが設けられたEGRクーラ流路、過給機冷却用の冷却水流路、スロットルバルブ冷却用の冷却水流路等)を備えたシステムに本開示を適用して、他の冷却水流路の流路閉鎖位置を学習するようにしても良い。
 また、上記各第1,第2実施形態では、エンジンの動力で駆動される機械式のウォータポンプを設けた構成としたが、これに限定されず、モータで駆動される電動式のウォータポンプを設けた構成としても良い。
 その他、本開示は、エンジン冷却システムの構成(例えば、各冷却水流路の接続方法、流量制御弁の位置や数、水温センサの位置や数等)を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。

Claims (10)

  1.  内燃機関(11)の冷却水が流れる冷却水流路(16,17,18)と、
     該冷却水流路(16,17,18)の冷却水流量を調節する流量制御弁(15)と、
     前記冷却水流路(16,17,18)を閉鎖する前記流量制御弁(15)の動作位置である流路閉鎖位置を学習する閉鎖位置学習装置(24)と、を備えている内燃機関の冷却装置。
  2.  前記冷却水流路は、前記冷却水をラジエータ(19)を通して循環させるラジエータ流路(16)と、前記冷却水をヒータコア(20)を通して循環させるヒータコア流路(17)と、前記冷却水をオイルクーラ(21)を通して循環させるオイルクーラ流路(18)のうちの少なくとも一つを含み、
     前記閉鎖位置学習装置(24)は、前記流路閉鎖位置として、前記ラジエータ流路(16)を閉鎖する前記流量制御弁(15)の動作位置と、前記ヒータコア流路(17)を閉鎖する前記流量制御弁(15)の動作位置と、前記オイルクーラ流路(18)を閉鎖する前記流量制御弁(15)の動作位置のうちの少なくとも一つを学習する請求項1に記載の内燃機関の冷却装置。
  3.  前記閉鎖位置学習装置(24)は、前記冷却水の温度、前記冷却水の圧力、前記冷却水の流量、前記冷却水を循環させるウォータポンプ(13)の回転速度のうちの少なくとも一つを判定パラメータとして用い、
     前記閉鎖位置学習装置(24)は、前記判定パラメータに基づいて前記流路閉鎖位置を学習する請求項1又は2に記載の内燃機関の冷却装置。
  4.  前記閉鎖位置学習装置(24)は、前記冷却水流路(16,17,18)を閉鎖した状態から前記流量制御弁(15)の動作位置を前記冷却水流路(16,17,18)の開方向へ変化させたときに前記判定パラメータが変化し始める直前の前記流量制御弁(15)の動作位置を前記流路閉鎖位置として学習する請求項3に記載の内燃機関の冷却装置。
  5.  前記内燃機関(11)の冷却水出口側の冷却水の温度である出口水温を検出する出口水温センサ(22)と前記内燃機関(11)の冷却水入口側の冷却水の温度である入口水温を検出する入口水温センサ(23)のうちの少なくとも一方をさらに備え、
     前記閉鎖位置学習装置(24)は、前記出口水温と前記入口水温のうちの少なくとも一方を前記判定パラメータとして用いる請求項3又は4に記載の内燃機関の冷却装置。
  6.  前記閉鎖位置学習装置(24)は、前記流路閉鎖位置の学習精度の悪化が予測される状態である精度悪化予測状態であるか否かを判定し、前記精度悪化予測状態であると判定したときに前記流路閉鎖位置の学習を禁止する請求項1乃至5のいずれかに記載の内燃機関の冷却装置。
  7.  前記閉鎖位置学習装置(24)は、前記内燃機関(11)の燃料供給停止中、前記内燃機関(11)の減筒運転中、前記内燃機関(11)の運転を停止してモータの動力のみで車両を走行させるEV走行中、車両の停車中、車速が所定値以上の高速走行中、外気温が所定値以下の低温状態のうちの少なくとも一つの条件が成立したときに、前記精度悪化予測状態であると判定する請求項6に記載の内燃機関の冷却装置。
  8.  前記閉鎖位置学習装置(24)は、前記流路閉鎖位置を学習するために前記流量制御弁(15)を動作させる学習用制御の際に、外気温の低下に伴って前記流量制御弁(15)の動作ステップ量を小さくする又は動作速度を遅くする請求項1乃至7のいずれかに記載の内燃機関の冷却装置。
  9.  前記閉鎖位置学習装置(24)は、前記流路閉鎖位置を学習するために前記流量制御弁(15)を動作させる学習用制御の際に、前記冷却水を循環させるウォータポンプ(13)の回転速度の上昇に伴って前記流量制御弁(15)の動作ステップ量を小さくする又は動作速度を遅くする請求項1乃至8のいずれかに記載の内燃機関の冷却装置。
  10.  前記閉鎖位置学習装置(24)は、前記流路閉鎖位置を学習するために前記流量制御弁(15)を動作させる学習用制御の際に、前記冷却水流路(16,17,18)のうち開放されている流路の数の減少に伴って前記流量制御弁(15)の動作ステップ量を小さくする又は動作速度を遅くする請求項1乃至9のいずれかに記載の内燃機関の冷却装置。
PCT/JP2015/001891 2014-04-07 2015-04-02 内燃機関の冷却装置 WO2015155964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580017467.XA CN106164438B (zh) 2014-04-07 2015-04-02 内燃机的冷却装置
EP15776348.3A EP3130777B1 (en) 2014-04-07 2015-04-02 Cooling device for internal combustion engine
US15/301,551 US10132227B2 (en) 2014-04-07 2015-04-02 Cooling device for internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-078312 2014-04-07
JP2014078312 2014-04-07
JP2015-045177 2015-03-06
JP2015045177A JP6394441B2 (ja) 2014-04-07 2015-03-06 内燃機関の冷却装置

Publications (1)

Publication Number Publication Date
WO2015155964A1 true WO2015155964A1 (ja) 2015-10-15

Family

ID=54287550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001891 WO2015155964A1 (ja) 2014-04-07 2015-04-02 内燃機関の冷却装置

Country Status (5)

Country Link
US (1) US10132227B2 (ja)
EP (1) EP3130777B1 (ja)
JP (1) JP6394441B2 (ja)
CN (1) CN106164438B (ja)
WO (1) WO2015155964A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163088A1 (ja) * 2015-04-06 2016-10-13 株式会社デンソー エンジン冷却システムの制御装置
WO2017068881A1 (ja) * 2015-10-19 2017-04-27 株式会社デンソー 弁制御装置
CN106812585A (zh) * 2015-12-02 2017-06-09 通用汽车环球科技运作有限责任公司 用于基于冷却剂压力调整通过发动机的冷却剂流的速率的系统和方法
WO2017148784A1 (de) * 2016-03-03 2017-09-08 Audi Ag Verfahren zum ermitteln eines verhaltens eines in einem fahrzeug verbauten ventils, sowie ein fahrzeug
EP3260679A1 (en) * 2016-06-20 2017-12-27 Hyundai Motor Company Diagnostic apparatus and method for coolant control valve
CN111636959A (zh) * 2019-03-01 2020-09-08 现代自动车株式会社 控制内燃机的电动冷却剂阀的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170169333A1 (en) * 2015-12-10 2017-06-15 International Business Machines Corporation Utilizing crowd source viewing behavior of users to recommend a viewing order to a user
FR3048260B1 (fr) * 2016-02-29 2020-03-06 Renault S.A.S Systeme de commande d'un moyen de regulation thermique d'un circuit de refroidissement d'un moteur d'un vehicule automobile et procede de commande dudit systeme de commande
US9926901B2 (en) * 2016-05-17 2018-03-27 Southwest Research Institute Hydraulic starter and pre-lubrication system for an internal combustion engine
JP6572824B2 (ja) * 2016-05-18 2019-09-11 株式会社デンソー 車両用冷却装置
JP6523230B2 (ja) * 2016-09-09 2019-05-29 ファナック株式会社 オイルミスト濃度管理装置、オイルミスト管理システム及びオイルミスト管理方法
CN106401726B (zh) * 2016-11-28 2019-07-16 新奥泛能网络科技股份有限公司 一种内燃机缸套水的冷却系统
JP6604349B2 (ja) * 2017-03-16 2019-11-13 トヨタ自動車株式会社 機関冷却システム
US10132403B1 (en) * 2017-05-18 2018-11-20 Ford Global Technologies, Llc Engine and transmission temperature control system
CN107165715B (zh) * 2017-07-20 2019-09-24 安徽江淮汽车集团股份有限公司 一种车辆冷却系统
CN107246313A (zh) * 2017-07-20 2017-10-13 安徽江淮汽车集团股份有限公司 一种应用于车辆冷却系统的流量控制结构
JP6844477B2 (ja) * 2017-09-12 2021-03-17 トヨタ自動車株式会社 内燃機関の制御装置
JP6806016B2 (ja) * 2017-09-25 2020-12-23 トヨタ自動車株式会社 エンジン冷却装置
KR102391010B1 (ko) * 2017-10-18 2022-04-27 현대자동차주식회사 차량용 냉각시스템의 페일세이프 제어방법
KR102398887B1 (ko) * 2017-10-25 2022-05-18 현대자동차주식회사 차량용 냉각시스템의 제어방법
KR102478089B1 (ko) * 2017-11-07 2022-12-16 현대자동차주식회사 차량용 냉각시스템 제어방법
JP7257243B2 (ja) * 2019-04-25 2023-04-13 本田技研工業株式会社 船外機
KR20200141184A (ko) * 2019-06-10 2020-12-18 현대자동차주식회사 자동차의 엔진 냉각수 쿨링 시스템
KR102639777B1 (ko) * 2019-09-03 2024-02-21 엘지전자 주식회사 가스엔진 발전 시스템 및 그에 사용되는 엔진 냉각수의 제어 방법
US11078825B2 (en) * 2019-10-01 2021-08-03 GM Global Technology Operations LLC Method and apparatus for control of propulsion system warmup based on engine wall temperature
CN112648062B (zh) * 2019-10-10 2021-09-14 广州汽车集团股份有限公司 汽车用温控模块的自学习方法
CN113532899B (zh) * 2021-07-22 2023-06-30 中国北方车辆研究所 小功率散热性能试验进口油、水温度稳定装置
CN114046200B (zh) * 2021-11-09 2023-02-17 上海新动力汽车科技股份有限公司 混合动力发动机的防过热冷却系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269171A (ja) * 2002-03-15 2003-09-25 Denso Corp 水温制御バルブの故障検出装置
JP2007315184A (ja) * 2006-05-23 2007-12-06 Aisan Ind Co Ltd 電子制御スロットル装置
JP2008196389A (ja) * 2007-02-13 2008-08-28 Isuzu Motors Ltd バルブ位置学習装置
JP2010168900A (ja) * 2009-01-20 2010-08-05 Nissan Motor Co Ltd エンジンの制御装置
JP2013124656A (ja) * 2011-12-16 2013-06-24 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644262B2 (ja) 1998-07-29 2005-04-27 株式会社デンソー 液冷式内燃機関の冷却装置
JP4225645B2 (ja) * 1999-08-25 2009-02-18 株式会社日立製作所 車両用コントロールユニットのデータ書き換え装置
JP4277677B2 (ja) 2003-06-27 2009-06-10 株式会社デンソー ディーゼル機関の噴射量制御装置
JP4743030B2 (ja) * 2006-07-07 2011-08-10 株式会社デンソー ディーゼル機関用燃料噴射制御装置
JP5012442B2 (ja) * 2007-11-13 2012-08-29 トヨタ自動車株式会社 油圧システムの制御装置及びバルブタイミング制御装置
FR2955168B1 (fr) * 2010-01-14 2012-02-10 Mann & Hummel Gmbh Vanne de commande pour circuit de circulation de liquide
US8689617B2 (en) * 2012-03-30 2014-04-08 Ford Global Technologies, Llc Engine cooling system control
JP5925604B2 (ja) 2012-06-01 2016-05-25 株式会社ミクニ 冷却水制御弁
JP5642233B1 (ja) * 2013-07-12 2014-12-17 三菱電機株式会社 内燃機関の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269171A (ja) * 2002-03-15 2003-09-25 Denso Corp 水温制御バルブの故障検出装置
JP2007315184A (ja) * 2006-05-23 2007-12-06 Aisan Ind Co Ltd 電子制御スロットル装置
JP2008196389A (ja) * 2007-02-13 2008-08-28 Isuzu Motors Ltd バルブ位置学習装置
JP2010168900A (ja) * 2009-01-20 2010-08-05 Nissan Motor Co Ltd エンジンの制御装置
JP2013124656A (ja) * 2011-12-16 2013-06-24 Toyota Motor Corp 内燃機関の制御装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163088A1 (ja) * 2015-04-06 2016-10-13 株式会社デンソー エンジン冷却システムの制御装置
JP2016196862A (ja) * 2015-04-06 2016-11-24 株式会社デンソー エンジン冷却システムの制御装置
WO2017068881A1 (ja) * 2015-10-19 2017-04-27 株式会社デンソー 弁制御装置
CN107709721A (zh) * 2015-10-19 2018-02-16 株式会社电装 阀控制装置
CN107709721B (zh) * 2015-10-19 2020-01-21 株式会社电装 阀控制装置
CN106812585A (zh) * 2015-12-02 2017-06-09 通用汽车环球科技运作有限责任公司 用于基于冷却剂压力调整通过发动机的冷却剂流的速率的系统和方法
WO2017148784A1 (de) * 2016-03-03 2017-09-08 Audi Ag Verfahren zum ermitteln eines verhaltens eines in einem fahrzeug verbauten ventils, sowie ein fahrzeug
CN108700132A (zh) * 2016-03-03 2018-10-23 奥迪股份公司 用于确定安装在车辆中的阀的特性的方法及车辆
US10815866B2 (en) 2016-03-03 2020-10-27 Audi Ag Method for ascertaining behavior of a valve installed in a vehicle, and vehicle
EP3260679A1 (en) * 2016-06-20 2017-12-27 Hyundai Motor Company Diagnostic apparatus and method for coolant control valve
US9951676B2 (en) 2016-06-20 2018-04-24 Hyundai Motor Company Diagnostic apparatus and method for coolant control valve
CN111636959A (zh) * 2019-03-01 2020-09-08 现代自动车株式会社 控制内燃机的电动冷却剂阀的方法

Also Published As

Publication number Publication date
CN106164438B (zh) 2019-07-05
EP3130777B1 (en) 2019-07-31
US20170022881A1 (en) 2017-01-26
US10132227B2 (en) 2018-11-20
JP2015206356A (ja) 2015-11-19
CN106164438A (zh) 2016-11-23
EP3130777A4 (en) 2017-03-29
EP3130777A1 (en) 2017-02-15
JP6394441B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6394441B2 (ja) 内燃機関の冷却装置
EP3109430B1 (en) Internal combustion engine with cooling apparatus
JP6378055B2 (ja) 内燃機関の冷却制御装置
JP6473105B2 (ja) 車両用内燃機関の冷却装置及び冷却装置の制御方法
KR102398887B1 (ko) 차량용 냉각시스템의 제어방법
JP5618945B2 (ja) 内燃機関の冷却制御装置
US10590829B2 (en) Control device for internal combustion engine and control method for cooling device
US20160333769A1 (en) Cooling system with a coolant pump for an internal combustion engine
JP6154159B2 (ja) 流量制御装置、流量制御方法
CN103415680A (zh) 内燃机的暖机促进装置
US10060332B2 (en) Cooling apparatus for internal combustion engine
JP7346948B2 (ja) 流量制御弁の制御装置
JP6222161B2 (ja) 内燃機関の冷却装置
JP2010242525A (ja) ウォータポンプの制御装置
US10113474B2 (en) Cooling device for internal combustion engine
KR20170067523A (ko) 하이브리드 차량의 제어 장치 및 방법
JP2011117410A (ja) 内燃機関の吸入空気量制御方法
JP2012197708A (ja) 内燃機関の燃料カット制御方法
KR101305616B1 (ko) 엔진 냉각계 열관리제어방법
JP6911634B2 (ja) 内燃機関冷却制御装置
WO2021131195A1 (ja) エンジンシステム
JP2016102414A (ja) 冷却装置
JP6213274B2 (ja) 内燃機関
JP2018204454A (ja) 診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776348

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015776348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015776348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15301551

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE