WO2015155937A1 - 物体検知装置および物体検知方法 - Google Patents

物体検知装置および物体検知方法 Download PDF

Info

Publication number
WO2015155937A1
WO2015155937A1 PCT/JP2015/001327 JP2015001327W WO2015155937A1 WO 2015155937 A1 WO2015155937 A1 WO 2015155937A1 JP 2015001327 W JP2015001327 W JP 2015001327W WO 2015155937 A1 WO2015155937 A1 WO 2015155937A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
controller
area
self
Prior art date
Application number
PCT/JP2015/001327
Other languages
English (en)
French (fr)
Inventor
晃寿 上田
彰吾 相良
隼人 成瀬
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US15/300,727 priority Critical patent/US9678207B2/en
Priority to CN201580017653.3A priority patent/CN106133550B/zh
Priority to EP15776342.6A priority patent/EP3130938B1/en
Publication of WO2015155937A1 publication Critical patent/WO2015155937A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • G01S15/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector wherein transceivers are operated, either sequentially or simultaneously, both in bi-static and in mono-static mode, e.g. cross-echo mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S2007/52009Means for monitoring or calibrating of sensor obstruction, e.g. dirt- or ice-coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4039Means for monitoring or calibrating of parts of a radar system of sensor or antenna obstruction, e.g. dirt- or ice-coating

Definitions

  • the present disclosure relates to an object detection device, and more particularly to an object detection device and an object detection method that measure a distance to an object using energy waves.
  • the object detection device of Patent Document 1 includes a plurality of ultrasonic sensors, a control circuit, a buzzer, and a display.
  • the ultrasonic sensor emits an ultrasonic wave and receives a reflected wave reflected by an object. By measuring the time from transmission to reception, the distance from the ultrasonic sensor to the object is measured.
  • the ultrasonic sensor is set to receive a reflected wave based on the emission wave emitted by itself, but not to receive a reflected wave based on emission waves transmitted from other ultrasonic sensors.
  • An object detection device in the present disclosure includes a controller, a first sensor, and a second sensor.
  • the first sensor receives a first control signal from the controller and transmits a first energy wave to the first region.
  • the second sensor receives a second control signal from the controller and transmits a second energy wave to a second area partially overlapping the first area.
  • the first sensor receives the reflected wave of the first energy wave, converts it into a first self signal and transmits it to the controller, and receives the reflected wave of the second energy wave, and It is configured to be converted into a signal and sent to the controller.
  • the second sensor receives the reflected wave of the second energy wave, converts it into a second self signal and transmits it to the controller, and receives the reflected wave of the first energy wave, and It is configured to be converted into a signal and sent to the controller.
  • the controller is configured to detect an object from the first self signal, the first mutual signal, the second self signal, and the second mutual signal.
  • the object detection method in the present disclosure is Sending a first control signal to the first sensor and sending a second control signal to the second sensor, Transmitting a first energy wave from the first sensor to the first region, Transmitting a second energy wave from the second sensor to a second area partially overlapping the first area;
  • the first sensor receives the reflected wave of the first energy wave, converts it to a first self signal, and receives the reflected wave of the second energy wave, and converts it to a first mutual signal
  • the second sensor receives the reflected wave of the second energy wave, converts it to a second self signal, receives the reflected wave of the first energy wave, and converts it to a second mutual signal,
  • An object is detected from the first self signal, the first mutual signal, the second self signal, and the second mutual signal.
  • FIG. 1 is a block diagram of an object detection apparatus according to the present embodiment.
  • FIG. 2 is a schematic view showing a detection area of the object detection device in the present embodiment.
  • FIG. 1 is a block diagram of an object detection apparatus 50 according to the present embodiment.
  • FIG. 2 is a schematic view showing a detection area of the object detection device 50 in the present embodiment.
  • the object detection device 50 includes a controller 2, a first sensor 1A, and a second sensor 1B.
  • the first sensor 1A receives a first control signal from the controller 2 and transmits a first energy wave to the first region 100A.
  • the second sensor 1B receives a second control signal from the controller 2 and transmits a second energy wave to a second area 100B partially overlapping the first area 100A.
  • the first sensor 1A receives the reflected wave of the first energy wave, converts it into a first self signal and transmits it to the controller 2, and receives the reflected wave of the second energy wave, It is configured to be converted into one mutual signal and transmitted to the controller 2.
  • the second sensor 1B receives the reflected wave of the second energy wave, converts it into a second self signal, transmits it to the controller 2, and receives the reflected wave of the first energy wave, It is comprised so that it may convert into 2 mutual signals and may transmit to the controller 2.
  • the controller 2 is configured to detect an object from the first self signal, the first mutual signal, the second self signal, and the second mutual signal.
  • the object detection device 50 of the present disclosure will be described in detail.
  • the object detection device 50 includes a first sensor 1A, a second sensor 1B, and a controller 2.
  • the first sensor 1A and the second sensor 1B are respectively disposed at different positions in the horizontal direction of the bumper 4 fixed to the vehicle 3.
  • the bumper 4 is at least one of a front bumper and a rear bumper.
  • the first sensor 1A and the second sensor 1B are configured to transmit ultrasonic waves that are energy waves (waves), but transmit energy waves other than ultrasonic waves, for example, radio waves. It may be configured as follows.
  • the controller 2 has, for example, a microcontroller.
  • the controller 2 is configured to transmit ultrasonic waves of a predetermined duration from the first sensor 1A and the second sensor 1B.
  • the controller 2 transmits control signals to the drive circuit 11A of the first sensor 1A and the drive circuit 11B of the second sensor 1B, whereby the oscillators (not shown) of the drive circuit 11A and the drive circuit 11B. Control the oscillation of the
  • the first sensor 1A includes a drive circuit 11A, an ultrasonic wave generator 12A, an ultrasonic wave receiver 13A, and a detection circuit 14A.
  • the second sensor 1B also includes a drive circuit 11B, an ultrasonic wave generator 12B, an ultrasonic wave receiver 13B, and a detection circuit 14B.
  • the drive circuit 11A receives a control signal from the controller 2, generates an oscillation signal by an oscillator, and outputs the oscillation signal as a drive signal to the ultrasonic wave generator 12A.
  • the piezoelectric vibrator (not shown) of the ultrasonic wave generator 12A vibrates by the drive signal from the drive circuit 11A, and the ultrasonic wave is transmitted.
  • Ultrasonic waves are generated along the beam axis 10A from the transmission wave front of the ultrasonic wave generator 12A.
  • the transmission wave front of the ultrasonic wave generator 12A is a plane
  • the beam axis 10A coincides with the normal direction of the transmission wave.
  • the ultrasonic wave receiver 13A receives ultrasonic waves arriving from the first area 100A, the second area 100B, etc. at the wave receiving surface, and converts the ultrasonic waves into electric signals by the piezoelectric vibrator.
  • the drive circuit 11B receives a control signal from the controller 2, generates an oscillation signal by an oscillator, and outputs the oscillation signal as a drive signal to the ultrasonic wave generator 12B.
  • the piezoelectric vibrator (not shown) of the ultrasonic wave generator 12B vibrates by the drive signal from the drive circuit 11B, and the ultrasonic wave is transmitted.
  • Ultrasonic waves are generated along the beam axis 10B from the transmission wave front of the ultrasonic wave generator 12B.
  • the transmission surface of the ultrasonic wave generator 12B is a plane
  • the beam axis 10B coincides with the normal direction of the transmission surface.
  • the ultrasonic wave receiver 13B receives ultrasonic waves arriving from the first area 100A, the second area 100B, etc. at the wave receiving surface, and converts the ultrasonic waves into electric signals by the piezoelectric vibrator.
  • the ultrasonic wave generator 12A and the ultrasonic wave receiver 13A may be configured, for example, as one ultrasonic wave transmitter-receiver having a piezoelectric vibrator.
  • the ultrasonic wave generator 12B and the ultrasonic wave receiver 13B may be configured, for example, as one ultrasonic wave transmitter-receiver having a piezoelectric vibrator.
  • the first sensor 1A and the second sensor 1B are attached to the bumper 4 in an inclined state, and the beam axis 10A of the first sensor 1A and the beam axis 10B of the second sensor 1B are , Cross each other in front of the bumper 4.
  • the detection circuit 14A includes an amplifier, a comparator, a Schmitt trigger, an A / D converter, and the like (not shown).
  • the detection circuit 14A amplifies the electric signal output from the ultrasonic wave reception device 13A with an amplifier, detects it with a comparator or the like, generates a detection signal (received signal), and outputs it to the controller 2.
  • the detection circuit 14B includes an amplifier, a comparator, a Schmitt trigger, an A / D converter, etc. (not shown).
  • the detection circuit 14B amplifies the electric signal output from the ultrasonic wave reception device 13B with an amplifier, detects it with a comparator or the like, generates a detection signal (received signal), and outputs it to the controller 2.
  • the controller 2 is configured to detect an area (a first area 100A) detectable by the first sensor 1A and a second sensor 1B from received wave signals received from the first sensor 1A and the second sensor 1B.
  • An object present in a detectable area (second area 100B) is detected.
  • the controller 2 measures the distance to the object from the elapsed time from the output of the control signal to the reception of the reception signal and the velocity of the ultrasonic wave (about 320 meters per second).
  • the beam axis 10A of the first sensor 1A and the beam axis 10B of the second sensor 1B cross each other in front of the bumper 4. Therefore, the ultrasonic wave transmitted from the first sensor 1A and reflected by the object is received not only by the first sensor 1A that is the transmission source but also by the second sensor 1B. Similarly, the ultrasonic wave transmitted from the second sensor 1B and reflected by the object is received not only by the second sensor 1B as the transmission source but also by the first sensor 1A.
  • a reflected wave of the ultrasonic wave transmitted from the first sensor 1A is referred to as a received signal obtained by receiving the first sensor 1A as a first self signal.
  • the reflected wave of the ultrasonic wave transmitted from the second sensor 1B is referred to as a received signal obtained by receiving the second sensor 1B as a second self signal.
  • the reflected wave of the ultrasonic wave transmitted from the second sensor 1B is referred to as a first mutual signal as a received signal obtained by the first sensor 1A receiving the wave.
  • the reflected wave of the ultrasonic wave transmitted from the first sensor 1A is referred to as a second mutual signal as a received signal obtained by receiving the second sensor 1B.
  • FIG. 2 shows a first area 100A, a second area 100B, and a third area 100C when the vehicle 3 is viewed from above.
  • the first area 100A is an area in which an object can be detected by the first sensor 1A receiving the reflected wave of the ultrasonic wave transmitted from the first sensor 1A.
  • the second area 100B is an area in which the second sensor 1B can detect an object by receiving the reflected wave of the ultrasonic wave transmitted from the second sensor 1B.
  • the third area 100C is an area where an object can be detected by the first sensor 1A receiving the reflected wave of the ultrasonic wave transmitted from the second sensor 1B, and the area transmitted from the first sensor 1A This is an area where the second sensor 1B can detect an object by receiving the reflected waves of the ultrasonic waves.
  • An area (maximum detection area) in which the object detection apparatus 50 can detect an object is defined by the first area 100A, the second area 100B, and the third area 100C.
  • the third area 100C is equal to or less than the area obtained by combining the first area 100A and the second area 100B.
  • the magnitude relationship between the first area 100A, the second area 100B, and the third area 100C is as follows: first start time, second start time, first prescribed time, second prescribed time Determined by
  • the controller 2 outputs a control signal to the first sensor 1A, operates the first timer circuit (not shown), and starts measuring the first elapsed time.
  • the first sensor 1A receives a control signal from the controller 2 and generates an ultrasonic wave.
  • the first sensor 1 ⁇ / b> A and the second sensor 1 ⁇ / b> B receive the reflected wave of the ultrasonic wave and transmit a received signal to the controller 2.
  • the controller 2 can receive the received signal (first self signal) from the first sensor 1A. That is, the near end of the first sensor 1A in the first region 100A is determined by the first start time.
  • the controller 2 can receive a received signal (second mutual signal) from the second sensor 1B. That is, the near end of the first sensor 1A in the third region 100C is determined by the second start time.
  • the time during which the controller 2 outputs a control signal to the first sensor 1A is longer than each of the first start time and the second start time. It is set to a short time.
  • the controller 2 When the controller 2 receives the first self signal from the first sensor 1A, the controller 2 acquires a first elapsed time from the first timer circuit. Then, a first elapsed time at that time is defined as a first measurement time. That is, the first measurement time is the time from when the controller 2 transmits the control signal to the first sensor 1A to when the first self signal is received. The controller 2 determines that an object is present in the first region 100A if the first measurement time is equal to or less than the first predetermined time.
  • the controller 2 when the controller 2 receives the second mutual signal from the second sensor 1B, the controller 2 acquires a first elapsed time from the first timer circuit. Then, a first elapsed time at that time is defined as a second measurement time. That is, the second measurement time is the time from when the controller 2 transmits the control signal to the first sensor 1A to when the second mutual signal is received.
  • the controller 2 determines that an object is present in the third region 100C if the second measurement time is equal to or less than the second prescribed time. Furthermore, the controller 2 can calculate the distance to the object from the first measurement time and the second measurement time.
  • the controller 2 stops receiving the first self signal from the first sensor 1A. Thereby, the far end of the first sensor 1A of the first area 100A is defined by the first prescribed time.
  • the controller 2 stops receiving the second mutual signal from the second sensor 1B.
  • the far end of the first sensor 1A of the third region 100C is defined by the second prescribed time.
  • the first prescribed time and the second prescribed time may be the same or different.
  • the controller 2 outputs a control signal to the second sensor 1B, operates the second timer circuit (not shown), and starts measuring the second elapsed time.
  • the second sensor 1B receives a control signal from the controller 2 and generates an ultrasonic wave.
  • the first sensor 1 ⁇ / b> A and the second sensor 1 ⁇ / b> B receive the reflected wave of the ultrasonic wave and transmit a received signal to the controller 2.
  • the controller 2 can receive the received signal (second self signal) from the second sensor 1B. That is, the near end of the second sensor 1B in the second region 100B is determined by the first start time.
  • the controller 2 can receive the received wave signal (first mutual signal) from the first sensor 1A. That is, the near end of the second sensor 1B in the third region 100C is determined by the second start time.
  • the time during which the controller 2 outputs the control signal to the second sensor 1B is longer than each of the first start time and the second start time. It is set to a short time.
  • the controller 2 When the controller 2 receives the second self signal from the second sensor 1B, the controller 2 acquires a second elapsed time from the second timer circuit. Then, the second elapsed time at that time is defined as a third measurement time. That is, the third measurement time is a time from when the controller 2 operates the second timer circuit to transmit the control signal to the second sensor 1B and receives the second self signal. The controller 2 determines that an object is present in the second region 100B if the third measurement time is equal to or less than the first predetermined time.
  • the controller 2 when the controller 2 receives the first mutual signal from the first sensor 1A, the controller 2 acquires a second elapsed time from the second timer circuit. Then, the second elapsed time at that time is defined as a fourth measurement time. That is, the fourth measurement time is a time from when the controller 2 operates the second timer circuit to transmit the control signal to the second sensor 1 B and receives the first mutual signal.
  • the controller 2 determines that an object is present in the third region 100C if the fourth measurement time is equal to or less than the second prescribed time. Furthermore, the controller 2 can calculate the distance to the object from the first measurement time and the second measurement time.
  • the controller 2 stops receiving the second self signal from the second sensor 1B. Thereby, the far end of the second sensor 1B in the second region 100B is defined by the first prescribed time.
  • the controller 2 stops receiving the first mutual signal from the first sensor 1A.
  • the far end of the second sensor 1B in the third region 100C is defined by the second prescribed time.
  • the first prescribed time and the second prescribed time may be the same or different.
  • the ultrasonic wave generating devices 12A and 12B transmit ultrasonic waves. It can transmit.
  • the ultrasonic wave reflected wave
  • the ultrasonic wave reception devices 13A and 13B Can not receive a reflected wave.
  • the first condition is a condition that the second mutual signal is equal to or higher than the threshold and the first self signal is smaller than the threshold.
  • the fact that the second mutual signal is greater than or equal to the threshold means that an object is detected in the third region 100C.
  • the object should be detected in both the second mutual signal and the first self signal. However, if an object is detected by the second mutual signal and no object is detected by the first self signal, there is a possibility that foreign matter is attached to the wave receiving surface of the first sensor 1A.
  • the controller 2 is more preferably configured to determine that foreign matter is attached to the first sensor 1A when the second condition is satisfied.
  • the second condition is a condition that the second self signal is equal to or higher than the threshold and the first mutual signal is smaller than the threshold.
  • the fact that the second self signal is equal to or higher than the threshold means that an object is detected in the second area 100B.
  • the third condition is a condition that an object in the third region 100C is detected by the signal level of the first mutual signal, and the second self signal is equal to or less than a predetermined lower limit value.
  • the object should be detected in both the first mutual signal and the second self signal. However, if an object is detected by the first mutual signal and no object is detected by the second self signal, there is a possibility that foreign matter is attached to the receiving surface of the second sensor 1B.
  • the controller 2 is more preferably configured to determine that foreign matter is attached to the second sensor 1B when the fourth condition is satisfied.
  • the fourth condition is a condition that an object is detected in the first region 100A by the first self signal and the signal level of the second mutual signal is equal to or less than a predetermined lower limit value.
  • two sensors a first sensor 1A and a second sensor 1B, are used.
  • three or more sensors may be used.
  • the first sensor 1A and the second sensor 1B not only detect individually but also detect as a pair, so the detection accuracy of the object is improved. Furthermore, the object detection apparatus 50 of the present disclosure can detect adhesion of foreign matter such as snow and mud easily by detecting the first sensor 1A and the second sensor 1B as a pair.
  • the detection accuracy of the object can be improved, and adhesion of foreign matter can be easily detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

 物体検知装置は、コントローラと、第1のセンサと、第2のセンサと、 を備える。第1のセンサは、第1のエネルギー波を送波し、第2のセンサは、第2のエネルギー波を送波する。第1のセンサは、第1のエネルギー波の反射波を受波し、第1自己信号に変換し、且つ、第2のエネルギー波の反射波を受波し、第1相互信号に変換する。第2のセンサは、第2のエネルギー波の反射波を受波し、第2自己信号に変換し、且つ、第1のエネルギー波の反射波を受波し、第2相互信号に変換する。

Description

物体検知装置および物体検知方法
 本開示は、物体検知装置に関し、特に、エネルギー波(波動)を利用して物体までの距離を計測する物体検知装置および物体検知方法に関する。
 物体までの距離を計測できる物体検知装置が知られている。特許文献1の物体検知装置は、複数の超音波センサと、制御回路と、ブザーと、表示器とを備えている。超音波センサは、超音波を発信し、物体で反射した反射波を受信する。発信から受信までの時間を計測することにより、超音波センサから物体までの距離が計測される。超音波センサは、自身が発信した発射波に基づく反射波は受信するが、他の超音波センサから発信された発射波に基づく反射波は受信しないように設定されている。そして、制御回路は、超音波センサの送受信に基づいて車両周辺の物体を検出し、且つ超音波センサが受信した残響波の長さ(時間)により、超音波センサの周辺に雪が付着しているかどうかを判定する。
特開2011-215002号公報
 本開示における物体検知装置は、コントローラと、第1のセンサと、第2のセンサと、を備える。第1のセンサは、コントローラから第1の制御信号を受信し、第1の領域に第1のエネルギー波を送波する。第2のセンサは、コントローラから第2の制御信号を受信し、第1の領域と部分的に重なる第2の領域に第2のエネルギー波を送波する。
 第1のセンサは、第1のエネルギー波の反射波を受波し、第1自己信号に変換してコントローラに送信し、且つ、第2のエネルギー波の反射波を受波し、第1相互信号に変換してコントローラに送信するように構成されている。第2のセンサは、第2のエネルギー波の反射波を受波し、第2自己信号に変換してコントローラに送信し、且つ、第1のエネルギー波の反射波を受波し、第2相互信号に変換してコントローラに送信するように構成されている。
 コントローラは、第1自己信号と、第1相互信号と、第2自己信号と、第2相互信号とから物体を検知するように構成されている。
 また、本開示における物体検知方法は、
第1のセンサに第1の制御信号を送信し、且つ、第2のセンサに第2の制御信号を送信し、
第1のセンサから第1の領域に第1のエネルギー波を送波し、
第2のセンサから第1の領域と部分的に重なる第2の領域に第2のエネルギー波を送波し、
第1のセンサにより、第1のエネルギー波の反射波を受波し、第1自己信号に変換し、且つ、第2のエネルギー波の反射波を受波し、第1相互信号に変換し、
第2のセンサにより、第2のエネルギー波の反射波を受波し、第2自己信号に変換し、且つ、第1のエネルギー波の反射波を受波し、第2相互信号に変換し、
第1自己信号と、第1相互信号と、第2自己信号と、第2相互信号とから物体を検知する。
図1は、本実施の形態における物体検知装置のブロック図である。 図2は、本実施の形態における物体検知装置の検知領域を示す模式図である。
 図1は、本実施の形態における物体検知装置50のブロック図である。
 図2は、本実施の形態における物体検知装置50の検知領域を示す模式図である。
 物体検知装置50は、コントローラ2と、第1のセンサ1Aと、第2のセンサ1Bと、を備える。第1のセンサ1Aは、コントローラ2から第1の制御信号を受信し、第1の領域100Aに第1のエネルギー波を送波する。第2のセンサ1Bは、コントローラ2から第2の制御信号を受信し、第1の領域100Aと部分的に重なる第2の領域100Bに第2のエネルギー波を送波する。
 第1のセンサ1Aは、第1のエネルギー波の反射波を受波し、第1自己信号に変換してコントローラ2に送信し、且つ、第2のエネルギー波の反射波を受波し、第1相互信号に変換してコントローラ2に送信するように構成されている。第2のセンサ1Bは、第2のエネルギー波の反射波を受波し、第2自己信号に変換してコントローラ2に送信し、且つ、第1のエネルギー波の反射波を受波し、第2相互信号に変換してコントローラ2に送信するように構成されている。
 コントローラ2は、第1自己信号と、第1相互信号と、第2自己信号と、第2相互信号とから物体を検知するように構成されている。
 以下、本開示の物体検知装置50について、詳細に説明する。
 物体検知装置50は、第1のセンサ1Aと、第2のセンサ1Bと、コントローラ2とを備える。第1のセンサ1Aと第2のセンサ1Bは、車両3に固定されたバンパー4の水平方向における異なる位置にそれぞれ配置されている。バンパー4は、フロントバンパー又はリアバンパーの少なくとも何れか一方である。なお、第1のセンサ1Aと第2のセンサ1Bは、エネルギー波(波動)である超音波を送波するように構成されているが、超音波以外のエネルギー波、例えば、電波を送波するように構成されていてもよい。
 コントローラ2は、例えば、マイクロコントローラを有している。コントローラ2は、第1のセンサ1Aと第2のセンサ1Bから、予め決められた持続時間の超音波を送波させるように構成されている。例えば、コントローラ2は、第1のセンサ1Aの駆動回路11Aと第2のセンサ1Bの駆動回路11Bに対して制御信号を送信することにより、駆動回路11Aおよび駆動回路11Bの発振器(図示せず)の発振を制御する。
 第1のセンサ1Aは、駆動回路11Aと、超音波発生装置12Aと、超音波受波装置13Aと、検波回路14Aとを含む。また、第2のセンサ1Bは、駆動回路11Bと、超音波発生装置12Bと、超音波受波装置13Bと、検波回路14Bとを含む。
 駆動回路11Aは、コントローラ2から制御信号を受信し、発振器により発振信号を生成し、その発振信号を駆動信号として超音波発生装置12Aに出力する。駆動回路11Aからの駆動信号により、超音波発生装置12Aの圧電振動子(図示せず)が振動し、超音波が送波される。
 超音波発生装置12Aの送波面からビーム軸10Aに沿って超音波が発生する。超音波発生装置12Aの送波面が平面である場合、ビーム軸10Aは、送波面の法線方向に一致する。
 超音波受波装置13Aは、第1の領域100Aや第2の領域100Bなどから到来した超音波を受波面で受波し、圧電振動子で電気信号に変換する。
 また、駆動回路11Bは、コントローラ2から制御信号を受信し、発振器により発振信号を生成し、その発振信号を駆動信号として超音波発生装置12Bに出力する。駆動回路11Bからの駆動信号により、超音波発生装置12Bの圧電振動子(図示せず)が振動し、超音波が送波される。
 超音波発生装置12Bの送波面からビーム軸10Bに沿って超音波が発生する。超音波発生装置12Bの送波面が平面である場合、ビーム軸10Bは、送波面の法線方向に一致する。
 超音波受波装置13Bは、第1の領域100Aや第2の領域100Bなどから到来した超音波を受波面で受波し、圧電振動子で電気信号に変換する。
 ここで、超音波発生装置12Aと超音波受波装置13Aは、例えば、圧電振動子を有する1つの超音波送受波装置として構成されていてもよい。また、超音波発生装置12Bと超音波受波装置13Bは、例えば、圧電振動子を有する1つの超音波送受波装置として構成されていてもよい。
 なお、第1のセンサ1Aと第2のセンサ1Bは、それぞれ傾いた状態でバンパー4に取り付けられており、第1のセンサ1Aのビーム軸10Aと、第2のセンサ1Bのビーム軸10Bとは、互いにバンパー4の前方で交差している。
 検波回路14Aは、増幅器や、コンパレータや、シュミットトリガ又はA/Dコンバータなど(図示せず)を有する。検波回路14Aは、超音波受波装置13Aから出力された電気信号を増幅器で増幅した後、コンパレータ等で検波して検波信号(受波信号)を生成し、コントローラ2に出力する。
 同様に、検波回路14Bは、増幅器や、コンパレータや、シュミットトリガ又はA/Dコンバータなど(図示せず)を有する。検波回路14Bは、超音波受波装置13Bから出力された電気信号を増幅器で増幅した後、コンパレータ等で検波して検波信号(受波信号)を生成し、コントローラ2に出力する。
 また、コントローラ2は、第1のセンサ1Aと第2のセンサ1Bから受信した受波信号から、第1のセンサ1Aの検知可能な領域(第1の領域100A)、並びに第2のセンサ1Bの検知可能な領域(第2の領域100B)に存在する物体を検知する。具体的には、コントローラ2は、制御信号を出力してから受波信号を受け取るまでの経過時間と、超音波の速度(約320メートル毎秒)とから物体までの距離を計測する。
 第1のセンサ1Aのビーム軸10Aと、第2のセンサ1Bのビーム軸10Bとは、互いにバンパー4の前方で交差している。したがって、第1のセンサ1Aから送波され、物体で反射した超音波は、送波元である第1のセンサ1Aだけでなく、第2のセンサ1Bでも受波される。同様に、第2のセンサ1Bから送波され、物体で反射した超音波は、送波元である第2のセンサ1Bだけでなく、第1のセンサ1Aでも受波される。
 以下の説明では、第1のセンサ1Aから送波された超音波の反射波を、第1のセンサ1Aが受波することにより得られる受波信号を第1自己信号と称する。第2のセンサ1Bから送波された超音波の反射波を、第2のセンサ1Bが受波することにより得られる受波信号を第2自己信号と称する。第2のセンサ1Bから送波された超音波の反射波を、第1のセンサ1Aが受波することにより得られる受波信号を第1相互信号と称する。第1のセンサ1Aから送波された超音波の反射波を、第2のセンサ1Bが受波することにより得られる受波信号を第2相互信号と称する。
 図2は、車両3を上から見た場合の第1の領域100Aと、第2の領域100Bと、第3の領域100Cとを示している。第1の領域100Aは、第1のセンサ1Aから送波された超音波の反射波を、第1のセンサ1Aが受波することにより物体を検知できる領域である。第2の領域100Bは、第2のセンサ1Bから送波された超音波の反射波を、第2のセンサ1Bが受波することにより物体を検知できる領域である。第3の領域100Cは、第2のセンサ1Bから送波された超音波の反射波を、第1のセンサ1Aが受波することにより物体を検知できる領域、および第1のセンサ1Aから送波された超音波の反射波を、第2のセンサ1Bが受波することにより物体を検知できる領域である。物体検知装置50が物体を検知可能な領域(最大検知領域)は、第1の領域100Aと、第2の領域100Bと、第3の領域100Cとによって定められる。ただし、第3の領域100Cは、第1の領域100A、第2の領域100Bを合わせた領域以下である。そして、第1の領域100Aと、第2の領域100Bと、第3の領域100Cとの大小関係は、以下の第1開始時間、第2開始時間、第1の規定時間、第2の規定時間によって定められる。
 次に、物体検知装置50の動作について説明する。コントローラ2は、第1のセンサ1Aに制御信号を出力すると共に、第1タイマ回路(図示せず)を作動し、第1の経過時間を計測し始める。第1のセンサ1Aはコントローラ2から制御信号を受信し、超音波を発生する。第1のセンサ1Aと第2のセンサ1Bは、超音波の反射波を受波し、受波信号をコントローラ2に送信する。
 第1の経過時間が第1開始時間に達した時に、コントローラ2は、第1のセンサ1Aからの受波信号(第1自己信号)を受け入れ可能となる。すなわち、第1の領域100Aにおける第1のセンサ1Aの近端が第1開始時間によって定められる。
 また、第1の経過時間が第2開始時間に達した時に、コントローラ2は、第2のセンサ1Bからの受波信号(第2相互信号)を受け入れ可能となる。すなわち、第3の領域100Cにおける第1のセンサ1Aの近端が第2開始時間によって定められる。
 なお、コントローラ2が第1のセンサ1Aに制御信号を出力する時間、すなわち、第1のセンサ1Aから送波される超音波の持続時間は、第1開始時間及び第2開始時間の各々よりも短い時間に設定されている。
 コントローラ2は、第1のセンサ1Aから第1自己信号を受信すると、第1タイマ回路から第1の経過時間を取得する。そして、その時の第1の経過時間を第1計測時間と規定する。すなわち、第1計測時間は、コントローラ2が、第1のセンサ1Aに制御信号を送信してから、第1自己信号を受信するまでの時間である。コントローラ2は、第1計測時間が第1の規定時間以下であれば、第1の領域100A内に物体が存在すると判定する。
 また、コントローラ2は、第2のセンサ1Bから第2相互信号を受信すると、第1タイマ回路から第1の経過時間を取得する。そして、その時の第1の経過時間を第2計測時間と規定する。すなわち、第2計測時間は、コントローラ2が、第1のセンサ1Aに制御信号を送信してから、第2相互信号を受信するまでの時間である。コントローラ2は、第2計測時間が第2の規定時間以下であれば、第3の領域100C内に物体が存在すると判定する。さらに、コントローラ2は、第1計測時間及び第2計測時間から物体までの距離を演算できる。
 第1の経過時間が第1の規定時間を超えた場合、コントローラ2は、第1のセンサ1Aから第1自己信号を受け取ることを止める。これにより、第1の領域100Aの第1のセンサ1Aの遠端が第1の規定時間によって定められる。
 また、第1の経過時間が第2の規定時間を超えた場合、コントローラ2は、第2のセンサ1Bから第2相互信号を受け取ることを止める。これにより、第3の領域100Cの第1のセンサ1Aの遠端が第2の規定時間によって定められる。ここで、第1の規定時間と第2の規定時間は同じであってもよく、異なっていてもよい。
 一方、コントローラ2は、第2のセンサ1Bに制御信号を出力すると共に、第2タイマ回路(図示せず)を作動し、第2の経過時間を計測し始める。第2のセンサ1Bはコントローラ2から制御信号を受信し、超音波を発生する。第1のセンサ1Aと第2のセンサ1Bは、超音波の反射波を受波し、受波信号をコントローラ2に送信する。
 第2の経過時間が第1開始時間に達した時に、コントローラ2は、第2のセンサ1Bからの受波信号(第2自己信号)を受け入れ可能となる。すなわち、第2の領域100Bにおける第2のセンサ1Bの近端が第1開始時間によって定められる。
 また、第2の経過時間が第2開始時間に達した時に、コントローラ2は、第1のセンサ1Aからの受波信号(第1相互信号)を受け入れ可能となる。すなわち、第3の領域100Cにおける第2のセンサ1Bの近端が第2開始時間によって定められる。
 なお、コントローラ2が第2のセンサ1Bに制御信号を出力する時間、すなわち、第2のセンサ1Bから送波される超音波の持続時間は、第1開始時間及び第2開始時間の各々よりも短い時間に設定されている。
 コントローラ2は、第2のセンサ1Bから第2自己信号を受信すると、第2タイマ回路から第2の経過時間を取得する。そして、その時の第2の経過時間を第3計測時間と規定する。すなわち、第3計測時間は、コントローラ2が、第2タイマ回路を作動し、第2のセンサ1Bに制御信号を送信してから、第2自己信号を受信するまでの時間である。コントローラ2は、第3計測時間が第1の規定時間以下であれば、第2の領域100B内に物体が存在すると判定する。
 また、コントローラ2は、第1のセンサ1Aから第1相互信号を受信すると、第2タイマ回路から第2の経過時間を取得する。そして、その時の第2の経過時間を第4計測時間と規定する。すなわち、第4計測時間は、コントローラ2が、第2タイマ回路を作動し、第2のセンサ1Bに制御信号を送信してから、第1相互信号を受信するまでの時間である。
 コントローラ2は、第4計測時間が第2の規定時間以下であれば、第3の領域100C内に物体が存在すると判定する。さらに、コントローラ2は、第1計測時間及び第2計測時間から物体までの距離を演算できる。
 第2の経過時間が第1の規定時間を超えた場合、コントローラ2は、第2のセンサ1Bから第2自己信号を受け取ることを止める。これにより、第2の領域100Bにおける第2のセンサ1Bの遠端が第1の規定時間によって定められる。
 また、第2の経過時間が第2の規定時間を超えた場合、コントローラ2は、第1のセンサ1Aから第1相互信号を受け取ることを止める。これにより、第3の領域100Cにおける第2のセンサ1Bの遠端が第2の規定時間によって定められる。第1の規定時間と第2の規定時間は同じであってもよく、異なっていてもよい。
 ここで、超音波発生装置12A、12Bの送波面に雪や泥などの異物が付着している場合でも、異物は送波面と一緒に振動するため、超音波発生装置12A、12Bは超音波を送波できる。一方、超音波受波装置13A、13Bの受波面に雪や泥などの異物が付着している場合、超音波(反射波)は異物で反射されてしまうため、超音波受波装置13A、13Bは反射波を受波できない。
 そこで、コントローラ2は、第1の条件が満たされる場合に第1のセンサ1Aに異物が付着している可能性があると判定する。第1の条件とは、第2相互信号がしきい値以上であり、且つ第1自己信号がしきい値より小さいという条件である。ここで、第2相互信号がしきい値以上ということは、第3の領域100C内に物体が検知されているということである。
 第3の領域100Cに物体が存在していれば、第2相互信号と第1自己信号の双方で物体が検知されるはずである。しかし、第2相互信号で物体が検知され、第1自己信号で物体が検知されなければ、第1のセンサ1Aの受波面に異物が付着している可能性がある。
 さらに、コントローラ2は、第1の条件に加えて、第2の条件が満たされる場合に第1のセンサ1Aに異物が付着していると判定するように構成されることがさらに好ましい。第2の条件とは、第2自己信号がしきい値以上であり、且つ第1相互信号がしきい値より小さいという条件である。ここで、第2自己信号がしきい値以上ということは、第2の領域100B内に物体が検知されているということである。
 第1の条件だけでなく、第2の条件も満たされれば、第1のセンサ1Aの受波面に異物が付着している可能性がより高いと判定できる。
 また、コントローラ2は、第3の条件が満たされる場合に第2のセンサ1Bに異物が付着している可能性があると判定する。第3の条件とは、第1相互信号の信号レベルにより、第3の領域100C内の物体が検知され、且つ第2自己信号が所定の下限値以下であるという条件である。
 第3の領域100Cに物体が存在していれば、第1相互信号と第2自己信号の双方で物体が検知されるはずである。しかし、第1相互信号で物体が検知され、第2自己信号で物体が検知されなければ、第2のセンサ1Bの受波面に異物が付着している可能性がある。
 さらに、コントローラ2は、第3の条件に加えて、第4の条件が満たされる場合に第2のセンサ1Bに異物が付着していると判定するように構成されることがさらに好ましい。第4の条件とは、第1自己信号により第1の領域100Aに物体を検知し、且つ第2相互信号の信号レベルが所定の下限値以下であるという条件である。
 第3の条件だけでなく、第4の条件も満たされれば、第2のセンサ1Bの受波面に異物が付着している可能性がより高いと判定できる。
 なお、本実施の形態では、第1のセンサ1Aと、第2のセンサ1Bの2つのセンサを用いている。しかし、センサは3つ以上でもよい。
 本開示の物体検知装置50は、第1のセンサ1Aと第2のセンサ1Bがそれぞれ個別に検知するだけでなく、一対になって検知するので、物体の検知精度が向上する。さらに、本開示の物体検知装置50は、第1のセンサ1Aと第2のセンサ1Bが一対になって検知することにより、雪や泥などの異物の付着が容易に検知できる。
 本開示の物体検知装置50を用いることにより、物体の検知精度が向上し、且つ異物の付着を容易に検知できる。
 1A 第1のセンサ
 1B 第2のセンサ
 2 コントローラ
 3 車両
 4 バンパー
 10A ビーム軸
 10B ビーム軸
 11A,11B 駆動回路
 12A,12B 超音波発生装置
 13A,13B 超音波受波装置
 14A,14B 検波回路
 50 物体検知装置
 100A 第1の領域
 100B 第2の領域
 100C 第3の領域

Claims (8)

  1. コントローラと、
    前記コントローラから第1の制御信号を受信し、第1の領域に第1のエネルギー波を送波する第1のセンサと、
    前記コントローラから第2の制御信号を受信し、前記第1の領域と部分的に重なる第2の領域に第2のエネルギー波を送波する第2のセンサと、
    を備え、
    前記第1のセンサは、前記第1のエネルギー波の反射波を受波し、第1自己信号に変換して前記コントローラに送信し、且つ、前記第2のエネルギー波の反射波を受波し、第1相互信号に変換して前記コントローラに送信するように構成され、
    前記第2のセンサは、前記第2のエネルギー波の反射波を受波し、第2自己信号に変換して前記コントローラに送信し、且つ、前記第1のエネルギー波の反射波を受波し、第2相互信号に変換して前記コントローラに送信するように構成され、
    前記コントローラは、前記第1自己信号と、前記第1相互信号と、前記第2自己信号と、前記第2相互信号とから物体を検知するように構成されている
    物体検知装置。
  2. 前記第2相互信号がしきい値以上であり、且つ前記第1自己信号が前記しきい値より小さい場合、前記コントローラは、前記第1のセンサに異物が付着していると判定する
    請求項1記載の物体検知装置。
  3. 前記第2相互信号がしきい値以上であり、且つ前記第1自己信号が前記しきい値より小さく、且つ、前記第2自己信号が前記しきい値以上であり、且つ前記第1相互信号の信号レベルが前記しきい値より小さい場合、前記コントローラは、前記第1のセンサに異物が付着していると判定する
    請求項1記載の物体検知装置。
  4. 前記コントローラは、第1の規定時間内に前記第1自己信号を受信した場合、前記第1の領域に前記物体が存在すると判定し、
    前記第1の規定時間内に前記第2自己信号を受信した場合、前記第2の領域に前記物体が存在すると判定し、
    第2の規定時間内に前記第1相互信号または前記第2相互信号を受信した場合、前記第1の領域と前記第2の領域の少なくとも一部に前記物体が存在すると判定する
    請求項1記載の物体検知装置。
  5. 第1のセンサに第1の制御信号を送信し、且つ、第2のセンサに第2の制御信号を送信し、
    前記第1のセンサから第1の領域に第1のエネルギー波を送波し、
    前記第2のセンサから前記第1の領域と部分的に重なる第2の領域に第2のエネルギー波を送波し、
    前記第1のセンサにより、前記第1のエネルギー波の反射波を受波し、第1自己信号に変換し、且つ、前記第2のエネルギー波の反射波を受波し、第1相互信号に変換し、
    前記第2のセンサにより、前記第2のエネルギー波の反射波を受波し、第2自己信号に変換し、且つ、前記第1のエネルギー波の反射波を受波し、第2相互信号に変換し、
    前記第1自己信号と、前記第1相互信号と、前記第2自己信号と、前記第2相互信号とから物体を検知する
    物体検知方法。
  6. 前記第2相互信号がしきい値以上であり、且つ前記第1自己信号が前記しきい値より小さい場合、前記第1のセンサに異物が付着していると判定する
    請求項5記載の物体検知方法。
  7. 前記第2相互信号がしきい値以上であり、且つ前記第1自己信号が前記しきい値より小さく、且つ、前記第2自己信号が前記しきい値以上であり、且つ前記第1相互信号の信号レベルが前記しきい値より小さい場合、前記第1のセンサに異物が付着していると判定する
    請求項5記載の物体検知方法。
  8. 第1の規定時間内に前記第1自己信号が受信された場合、前記第1の領域に前記物体が存在すると判定し、
    前記第1の規定時間内に前記第2自己信号が受信された場合、前記第2の領域に前記物体が存在すると判定し、
    第2の規定時間内に前記第1相互信号または前記第2相互信号が受信された場合、前記第1の領域と前記第2の領域の少なくとも一部に前記物体が存在すると判定する
    請求項5記載の物体検知方法。
PCT/JP2015/001327 2014-04-08 2015-03-11 物体検知装置および物体検知方法 WO2015155937A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/300,727 US9678207B2 (en) 2014-04-08 2015-03-11 Object detection device and object detection method
CN201580017653.3A CN106133550B (zh) 2014-04-08 2015-03-11 物体探测装置以及物体探测方法
EP15776342.6A EP3130938B1 (en) 2014-04-08 2015-03-11 Object detection device and object detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-079246 2014-04-08
JP2014079246A JP6467748B2 (ja) 2014-04-08 2014-04-08 物体検知装置

Publications (1)

Publication Number Publication Date
WO2015155937A1 true WO2015155937A1 (ja) 2015-10-15

Family

ID=54287527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001327 WO2015155937A1 (ja) 2014-04-08 2015-03-11 物体検知装置および物体検知方法

Country Status (5)

Country Link
US (1) US9678207B2 (ja)
EP (1) EP3130938B1 (ja)
JP (1) JP6467748B2 (ja)
CN (1) CN106133550B (ja)
WO (1) WO2015155937A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044860A (ja) * 2016-09-14 2018-03-22 株式会社Soken 物体検知装置
CN110221303A (zh) * 2018-03-02 2019-09-10 株式会社万都 用于基于检测到的物体来控制车辆的设备和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701069B2 (ja) * 2016-12-26 2020-05-27 株式会社Soken 物体検知装置
DE102017111932A1 (de) * 2017-05-31 2018-12-06 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug zum Überwachen eines Bodenbereichs unterhalb des Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
JP6992439B2 (ja) * 2017-11-22 2022-01-13 株式会社アイシン 物体検出装置
CN113811788A (zh) * 2019-05-14 2021-12-17 三菱电机株式会社 车载用物体检测系统
US20220101634A1 (en) * 2019-05-31 2022-03-31 Mitsubishi Electric Corporation Object detection system and object detection method
JP7354639B2 (ja) * 2019-07-18 2023-10-03 株式会社デンソー 超音波センサ
DE102020129666A1 (de) 2020-11-11 2022-06-30 Valeo Schalter Und Sensoren Gmbh Verfahren zur Bestimmung einer Verschmutzung eines ersten Ultraschallsensors, Computerprogrammprodukt, computerlesbares Speichermedium, Ultraschallsensorvorrichtung sowie Assistenzsystem

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274284A (ja) * 1986-05-22 1987-11-28 Matsushita Electric Works Ltd 車両用障害物検知装置
JPH06118167A (ja) * 1991-03-13 1994-04-28 Moba Elektron G Fuer Mobil Autom Mbh 基準物体に対する建築機械または農業機械の横の位置を制御する方法
JPH11304919A (ja) * 1998-04-16 1999-11-05 Mazda Motor Corp 障害物検出装置及び障害物の検出方法
JP2000321350A (ja) * 1999-05-13 2000-11-24 Tokyu Car Corp レーダ故障診断機能付き自動走行車
JP2002131428A (ja) * 2000-10-25 2002-05-09 Mitsubishi Electric Corp 超音波障害物検出装置
US6765491B1 (en) * 1999-05-29 2004-07-20 Robert Bosch Gmbh Distance detecting device
JP2004526976A (ja) * 2001-05-22 2004-09-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング レーダーセンサ装置の作動のための方法および装置
JP2005505074A (ja) * 2001-10-05 2005-02-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 対象検出装置
US20080266052A1 (en) * 2005-03-03 2008-10-30 Roland Schmid Distance Measuring Device and Method for Testing the Operation of a Distance Measuring System
WO2011129001A1 (ja) * 2010-04-15 2011-10-20 パナソニック電工株式会社 障害物検出システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206990A1 (de) * 1991-03-13 1992-09-24 Moba Electronic Mobil Automat Verfahren zum steuern der seitlichen lage einer baumaschine oder einer landwirtschaftlichen maschine relativ zu einem bezugsobjekt
JP3915742B2 (ja) * 2003-06-20 2007-05-16 株式会社デンソー 車両用物体認識装置
JP4447389B2 (ja) * 2004-07-09 2010-04-07 本田技研工業株式会社 レーダ装置、及び該レーダ装置を備えた車両制御装置
DE102005013146A1 (de) * 2005-03-22 2006-09-28 Robert Bosch Gmbh Ortungssystem mit Blindheitserkennung
DE102008008956A1 (de) * 2008-02-13 2009-08-20 Valeo Schalter Und Sensoren Gmbh Verfahren und Anordnung zur Verfügbarkeitsprüfung von Ultraschallsensoren
JP5322037B2 (ja) 2010-03-31 2013-10-23 株式会社デンソー 超音波センサを用いた車両用物体検出装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274284A (ja) * 1986-05-22 1987-11-28 Matsushita Electric Works Ltd 車両用障害物検知装置
JPH06118167A (ja) * 1991-03-13 1994-04-28 Moba Elektron G Fuer Mobil Autom Mbh 基準物体に対する建築機械または農業機械の横の位置を制御する方法
JPH11304919A (ja) * 1998-04-16 1999-11-05 Mazda Motor Corp 障害物検出装置及び障害物の検出方法
JP2000321350A (ja) * 1999-05-13 2000-11-24 Tokyu Car Corp レーダ故障診断機能付き自動走行車
US6765491B1 (en) * 1999-05-29 2004-07-20 Robert Bosch Gmbh Distance detecting device
JP2002131428A (ja) * 2000-10-25 2002-05-09 Mitsubishi Electric Corp 超音波障害物検出装置
JP2004526976A (ja) * 2001-05-22 2004-09-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング レーダーセンサ装置の作動のための方法および装置
JP2005505074A (ja) * 2001-10-05 2005-02-17 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 対象検出装置
US20080266052A1 (en) * 2005-03-03 2008-10-30 Roland Schmid Distance Measuring Device and Method for Testing the Operation of a Distance Measuring System
WO2011129001A1 (ja) * 2010-04-15 2011-10-20 パナソニック電工株式会社 障害物検出システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3130938A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044860A (ja) * 2016-09-14 2018-03-22 株式会社Soken 物体検知装置
WO2018051669A1 (ja) * 2016-09-14 2018-03-22 株式会社デンソー 物体検知装置
DE112017004618B4 (de) 2016-09-14 2023-03-09 Denso Corporation Objekterfassungsvorrichtung
CN110221303A (zh) * 2018-03-02 2019-09-10 株式会社万都 用于基于检测到的物体来控制车辆的设备和方法

Also Published As

Publication number Publication date
CN106133550A (zh) 2016-11-16
US20170108586A1 (en) 2017-04-20
JP2015200563A (ja) 2015-11-12
CN106133550B (zh) 2019-03-08
EP3130938B1 (en) 2020-07-15
EP3130938A4 (en) 2017-06-07
US9678207B2 (en) 2017-06-13
JP6467748B2 (ja) 2019-02-13
EP3130938A1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2015155937A1 (ja) 物体検知装置および物体検知方法
CY1124132T1 (el) Συσκευη και μεθοδος για τον προσδιορισμο θεσης
WO2009028591A1 (ja) 超音波伝播時間測定システム
US10838051B2 (en) Method of detecting objects and corresponding apparatus
JP6340713B2 (ja) 障害物検知装置
RU2012158127A (ru) Конфигурационный блок и способ конфигурирования датчика обнаружения присутствия
JP2015517096A5 (ja)
JP2013124982A (ja) 車両用障害物検出装置
US20160356883A1 (en) Object detection apparatus
US6898977B2 (en) Ultrasonic distance-measuring method and device
JP2012220434A (ja) 物体検知装置
JP5807197B2 (ja) 物体検知装置
KR20130010716A (ko) 간접신호를 이용한 근접물체 위치 판별 장치 및 방법
CN105467395B (zh) 一种超远距离超声波测量仪
JP2011174735A (ja) 運転支援装置及び障害物検出方法
KR102263722B1 (ko) 차량 초음파센서의 노이즈 감지장치 및 이의 노이즈 감지방법
JP6383237B2 (ja) ユーザ検出方法、ユーザ検出装置および画像形成装置
CN105030494A (zh) 一种盲人避障装置及其避障提示方法
JP2016194451A (ja) 障害物検出装置および超音波センサ調整方法
Wobschall et al. An ultrasonic/optical pulse sensor for precise distance measurements
Gholamzadeh et al. Sensor system to detect accidental bucket contact with structures and people
KR20190046496A (ko) 초음파 센서 및 그 제어 방법
JPH07280932A (ja) 超音波距離測定装置
JP2019113360A (ja) 距離計測装置
JP6955222B2 (ja) 障害物検出装置、及び、障害物検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15300727

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015776342

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015776342

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE