WO2015154808A1 - Elektrischer leiter mit einer mehrzahl von einzeldrähten und herstellungsverfahren hierfür - Google Patents
Elektrischer leiter mit einer mehrzahl von einzeldrähten und herstellungsverfahren hierfür Download PDFInfo
- Publication number
- WO2015154808A1 WO2015154808A1 PCT/EP2014/057260 EP2014057260W WO2015154808A1 WO 2015154808 A1 WO2015154808 A1 WO 2015154808A1 EP 2014057260 W EP2014057260 W EP 2014057260W WO 2015154808 A1 WO2015154808 A1 WO 2015154808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductor
- individual wires
- region
- metallic component
- insulating material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
- H02G1/14—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for joining or terminating cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/70—Insulation of connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R43/00—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
- H01R43/005—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for making dustproof, splashproof, drip-proof, waterproof, or flameproof connection, coupling, or casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/02—Cable terminations
- H02G15/04—Cable-end sealings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/013—Sealing means for cable inlets
Definitions
- the invention relates to an electrical conductor having a plurality of individual wires, and a method for producing such an electrical conductor.
- the cable ends are garnished with copper or other metals cable lugs, plug contacts or the like, which allow contacting and attachment of the cable.
- cable lugs, plug contacts or the like which allow contacting and attachment of the cable.
- cables are exposed to extreme loads, in particular temperature changes, vibration stresses and moisture.
- the invention relates to an electrical conductor with a plurality of individual wires.
- a filling material is arranged between at least a part of the plurality of individual wires over a predeterminable length range along a longitudinal coordinate of the conductor.
- the individual wires are made of aluminum or copper, for example.
- some or all of the individual wires may each be electrically isolated per se, whereas in further embodiments, some or all of the individual wires may each also be uninsulated.
- a plurality of individual wires may also be insulated in groups. Combinations of the above variants are also conceivable.
- both additionally applied coatings of insulating material are to be understood as well as implicit isolations, as they are e.g. result in single wires of aluminum materials due to the formation of a surface layer of aluminum oxide on the individual wires.
- the filler material is a substantially homogeneous material, for example an elastic plastic, in particular a self-adhesive liquid silicone, 2K-LSR (two-component LSR, English "liquid silicone rubber”), a silicone rubber or a silicone elastomer or generally from the group of Polysiloxanes or polyorganosiloxanes or the like.
- an elastic plastic in particular a self-adhesive liquid silicone, 2K-LSR (two-component LSR, English "liquid silicone rubber”), a silicone rubber or a silicone elastomer or generally from the group of Polysiloxanes or polyorganosiloxanes or the like.
- the invention can increase and precisely adjust a stiffness of the conductor in the said length range (by the choice of material for the filling material and / or the location of the insertion between the individual wires and / or the extension or length of the longitudinal region), wherein the conductor advantageous overall remains elastic.
- the filling material may preferably be arranged on such axial sections of the conductor on which the electrical conductor is mechanically stressed in a special way. In particular, at an end portion and / or at an attachment portion of the conductor to which it is connected, for example, to a contact element and / or mechanically fixed thereto, the conductor stiffened according to the invention or be charged with the filler.
- the rigidity of the conductor can be increased at an axially middle section, to which the conductor is (additionally) mechanically fixed and / or electrically contacted.
- the provision of the filling material according to the invention between at least part of the individual wires enables effective protection of individual individual wires against the aforementioned stresses or their mechanical stabilization.
- the invention also has the advantage that the inventively constructed conductor comparatively little by vibration loads, for example at accelerations of about 190 m / s (meters per second) and for example at frequencies of about 20 Hz to 2000 Hz (Hertz), and for example in a temperature range of about -40 ° C to + 160 ° C (degrees Celsius) is claimed.
- Such loads may arise in particular in an ultrasonic welding of the conductor according to the invention to a contact partner, such as a cable lug, a plug contact or the like.
- the length range is about 5 millimeters to about 50 centimeters, preferably about 10 millimeters to about 10 centimeters, more preferably about 10 millimeters to about 4 centimeters.
- Embodiments of the invention can be applied in a particularly simple and advantageous manner if the individual wires are surrounded radially on the outside by a jacket.
- the sheath in a simple manner, to arrange the filler between at least a portion of the plurality of individual wires, in particular to inject in the axial direction between the individual wires.
- the jacket surrounding the individual wires also forms an advantageous radial boundary for the filling material.
- FM filling material
- percent minimum filling values are specified, which are particularly suitable for achieving the desired mechanical properties of the conductor.
- the stated percentages of the filling material are provided in the same way for embodiments of the electrical conductor with or without sheath.
- the cross-sectional area of an embodiment the cross-sectional area is understood, which is defined by an outer contour of the conductor or a free inner cross-section in a conductor with sheath, minus the sum of the cross-sectional areas of all the individual wires of the conductor.
- a cross-sectional surface area of 100% describes the entire free cross-section of the conductor (within the outer contour or the inner surface of the jacket), which is not occupied by individual wires or their insulation.
- the length region is arranged in the region of an axial end section of the conductor, wherein the length region is preferably spaced approximately 5 millimeters or more from one end of the conductor, in particular approximately two centimeters or more.
- the spacing is advantageously made possible that one end of the conductor or one end of the plurality of individual wires with at least one contact partner, which is for example a cable lug or a plug contact, can be connected.
- the connection can be advantageously carried out without an optionally disturbing influence of the filling material.
- the filling material starting from an (axial) beginning (or end) of the jacket over at least about 5 millimeters along the longitudinal coordinate within the shell, and in particular between the individual wires, preferably over at least about 2 centimeters .
- the filling material extends from the beginning (or the end) of the shell in both axial directions. This can be avoided in a particularly suitable manner, an axial stiffness jump at the beginning (or at the end) of the shell and a vibration damping or kink protection of the conductor are made particularly effective.
- connection region in particular cohesively, connected to a metallic component
- the connection is preferably located in an axial end portion of the conductor.
- a connection may also be arranged at one or more other axial positions of the conductor.
- the metallic component is, for example, another conductor, a cable lug, a plug contact, a flat contact or the like.
- the connection of the plurality of individual wires to the metallic component can be mechanically and electrically protected in a particularly suitable manner.
- the insulating material is elastic.
- An arrangement of the conductor can be improved if the insulating material simultaneously forms the filling material for the predeterminable length range and / or is formed integrally with the filling material. Due to the resulting homogeneity of the insulating material with the filler, the arrangement formed from the conductor and the metallic component can be particularly well damped against possible vibrations, whereby the fatigue strength of the arrangement of the conductor can be increased.
- At least part of the metallic component and / or at least part of the plurality of individual wires has a contact layer, the contact layer in particular having a nickel-phosphorus alloy, in particular being formed from a nickel-phosphorus alloy.
- the contact layer according to the invention has a relatively low galvanic potential, which reduces corrosion effects in compounds containing metallic components.
- the contact layer according to the invention makes it possible to produce a permanent, moisture-tight connection between the metallic component having the contact layer and the insulating material or filling material and / or other insulation possibly to be applied to the metallic component.
- the invention relates to a method for producing a conductor having a plurality of individual wires, wherein the plurality of individual wires is provided, characterized in that over a predeterminable length range along a longitudinal coordinate of the conductor, a filler between at least a portion of the plurality of individual wires is arranged.
- the filling material can be pressed in the liquid state with a comparatively high pressure between the plurality of individual wires.
- a curing of the filling material can then be carried out by means of cooling or by chemical modification (for example by crosslinking with heat or heat), wherein the thus hardened filler material remains elastic.
- At least one jacket surrounding the individual wires is provided radially on the outside, wherein the filler material is arranged, starting from an (axial) start of the jacket over at least approximately 5 millimeters along the longitudinal coordinate within the jacket, and in particular between the individual wires about at least about 2 inches.
- the jacket not only improves the mechanical properties of the individual wires as a whole, but also makes it easier to introduce the filler material between the individual wires of the conductor, in particular to inject.
- connection region in particular a material fit
- connection preferably lies in an axial end section of the conductor
- at least a part of the plurality of individual wires and / or or at least a part of a jacket of the conductor and / or at least a part of the metallic component in the connecting region surrounded by an insulating material, in particular encapsulated is.
- the compound thus produced and the axially adjacent portions of the metallic component and / or the conductor are encapsulated with the insulating material. This is preferably done in such a way that the compound is protected radially encircling mechanically, electrically and against ingress of moisture.
- the inventive method can provide that the insulating material simultaneously forms the filling material for the predeterminable length range, and / or that the filling material and the insulating material are provided in the same method step.
- this method step preferably takes place using a tool that at least partially encloses the metallic component on the one hand and the conductor on the other hand.
- the insulating material not only completely surround the connection region, but it can be sprayed under pressure at the same time between the individual wires of the conductor, which thus results in the function of the filling material.
- the method is not only simplified in an advantageous manner, but the insulating material can be transferred continuously into the region of the filling material, so that the mechanical properties of the conductor or the arrangement produced in this way are improved.
- Figure 1 is a side view of an electrical conductor with a plurality of individual wires according to a first embodiment
- Figure 2 is a side view of an electrical conductor with a plurality of individual wires according to a second embodiment
- 3a shows a side view of an electrical conductor with a plurality of individual wires and a jacket according to a third embodiment
- FIG. 3b shows a side view of an electrical conductor with a plurality of individual wires and a jacket according to a fourth embodiment
- Figure 4 is a radial sectional view of the electrical conductor of Figure 3b;
- Figure 5 is a partial longitudinal section through an arrangement of an electrical conductor with a plurality of individual wires, a metallic component, and an insulating material;
- FIG. 6a shows a first radial sectional view through the arrangement of FIG. 5;
- FIG. 6b shows a second radial sectional view through the arrangement of FIG. 5;
- FIG. 6c shows a third radial sectional view through the arrangement of FIG. 5;
- FIG. 7 shows a flowchart for a method for producing an electrical conductor having a plurality of individual wires according to an embodiment.
- FIG. 1 shows schematically a side view of an electrical conductor 100 with a plurality of individual wires 102 according to one embodiment.
- a predeterminable length range L1 is shown.
- a filler material FM is arranged between at least part of the plurality of individual wires 102.
- the length range L1 is about 5 millimeters to about 50 centimeters.
- the length range L1 may also be about 10 millimeters to about 10 centimeters or about 10 millimeters to about 4 centimeters.
- the plurality of individual wires 102 may, for example, correspond to the individual wires 102 in a strand, wherein the individual wires 102 (in particular if they are made of a copper material) are electrically conductive at their radial outer surfaces and can thus contact each other electrically.
- the individual wires are made of aluminum material.
- the plurality of individual wires 102 it is possible according to the invention for the plurality of individual wires 102 to be electrically insulated from one another, for example by means of a lacquer layer or by means of an individual sheath 104 made of plastic.
- the individual wires 102 have the function of wires, as used for example in a multipolar cable.
- the predeterminable length region L1 can be arranged at any point along the electrical conductor 100. This can also be at several sections along the longitudinal coordinate x at the same time.
- the filling material FM can be arranged between the at least one part of the plurality of individual wires 102 along the electrical conductor 100 at one or more locations, whereby the electrical conductor 100 has a greater rigidity at least in some sections.
- the electrical conductor 100 may be bent or kinked to some extent at those areas where the filler material FM is disposed between the individual wires 102, with little risk of breaking some or more of the individual wires 102.
- FIG. 2 shows an arrangement of an electrical conductor 100a according to a further embodiment, similar to FIG. 1, wherein in the present case the length region L1 is arranged in the region of an axial end section AE of the conductor 100a.
- the length region L1 is, for example, spaced about 5 millimeters or further away from one end 106a of the conductor 100. This corresponds in FIG. 2 to a difference between the longitudinal coordinates x0 and x1.
- the length region L1 it is readily possible for the length region L1 to be farther from the end 106a of the conductor 100, in particular about 2 centimeters or more.
- the filling material FM is arranged in a region of the electrical conductor 100 between the longitudinal coordinates x1 and x2.
- a right-hand region between the longitudinal coordinates x2 and x3 in FIG. 2 has no filler material FM.
- three points indicate that the structure of the conductor 100 can be continued in any desired manner.
- the individual wires 102 can be continued as desired without using the filling material FM, or an axial region can be provided on the individual wires 102 corresponding to FIG. 1, in which a further length region L1 (not shown) is a filler material FM similar to the arrangement according to FIG having.
- the filler material FM used according to the invention generally has preferably elastic properties.
- the filler material FM is a self-adhesive liquid silicone, 2K-LSR (two-component LSR, liquid silicone rubber).
- 2K-LSR two-component LSR, liquid silicone rubber
- other types of silicone rubbers or silicone elastomers or other elastic plastics may be suitable for the filling material FM, generally materials from the group of polysiloxanes or polyorganosiloxanes or the like.
- FIG. 3 a shows a longitudinal view of an electrical conductor 100 b having a plurality of individual wires 102 according to a further embodiment, which are surrounded by a jacket 104 together radially on the outside. Similar to FIG. 2, in FIG. 3a along the length region L1a, in a section between the longitudinal coordinates x4 and x5, the filler material FM is arranged between at least part of the plurality of individual wires 102. This is indicated in FIG. 3a by a dashed border. In particular, the longitudinal coordinate x4 characterizes an axial beginning or an axial end of the jacket 104.
- the filling material FM extends from the beginning x4 of the shell 104 over at least about 5 millimeters, preferably over at least about 2 centimeters, along the longitudinal coordinate x within the shell 104, in particular between the individual wires 102.
- FIG. 3b shows an electrical conductor 100c according to a further embodiment.
- the jacket 104 surrounding the individual wires 102 is further spaced from the end 106 a.
- the left-hand end of the jacket 104 in FIG. 3b is identified by the longitudinal coordinate x7.
- the filling material FM is also arranged between at least a part of the plurality of individual wires 102 in the FIG. 3 b, wherein in the present case a first part of the filling material FM is arranged between the longitudinal coordinates x 6 and x 7 outside of the jacket 104.
- a second part of the filling material FM is comparable to the figure 3a radially disposed within the shell 104 between the individual wires 102 to the longitudinal coordinate x8.
- the filler material FM in FIG. 3 b preferably forms a monolithic body, in particular as well as in the other variants, which effectively protects the individual wires 102 from mechanical stress or reduces them.
- FIG. 4 shows a radial cross section of the electrical conductor 100 shown in FIG. 3b at a longitudinal coordinate x71.
- the jacket 104 has a substantially circular cross-section.
- this is not mandatory.
- elliptical or approximately rectangular cross sections are possible.
- FIG. 4 shows the jacket 104 radially on the outside, and the individual wires 102 and the filler material FM arranged between the individual wires 102 radially inwardly therefrom.
- a cross-sectional area within the shell 104 between the individual wires 102 is approximately 100 percent filled with the filling material FM.
- said cross-sectional area is at least about 20 percent, or even at least about 60 percent filled with the filler FM, with the filler being distributed evenly (eg, within predeterminable sector areas) or unevenly across the cross-sectional area according to various embodiments can be.
- a mass coating (defined as mass per unit length along the longitudinal coordinate x) of the conductor 100 increases by providing the filler FM by at least 2 percent, preferably at least 5 percent. It should be noted that the inventive use of the filler material FM and the insulating material 108 is also possible in those embodiments of the conductor 100 in which the conductor 100 does not include a jacket 104.
- FIG. 5 shows a partial longitudinal section through a conductor arrangement 200, which in the present case comprises the electrical conductor 100d with a plurality of individual wires 102, a metallic component 110 and an insulating material 108.
- the metallic component 110 is designed as a contact element on a left end section in the drawing, which can preferably releasably connect the electrical conductor 100 to an electrical connection or contact (not shown).
- a left-side end of the metallic component 110 in FIG. 5 is designed as a pin contact, as a flat contact, as a screw contact, as an electrical cable lug or the like.
- a right in the figure 5 end portion 112 of the metallic member 110 - in the drawing approximately in the middle - is formed such that it in a region of the axial end portion AE (see Figure 2) of the electrical conductor 100d the jacket 104 and optionally a part the individual wires 102 can hold by means of adhesion and / or positive fit.
- the said right end portion 112 of the metallic component 110 is designed such that it can be crushed, clamped or crimped onto the conductor 100d, whereby the conductor 100d or the jacket 104 is enclosed at least over a radial angle range.
- the individual wires 102 are in the present case designed as aluminum wires, which are naturally surrounded by an insulating aluminum oxide layer.
- the electrical conductor 100d corresponds to a single cable designed as a stranded wire.
- Said cohesive connection of the individual wires 102 to the metallic component 110 takes place here by means of friction welding, in particular ultrasonic welding.
- friction welding in particular ultrasonic welding.
- other material connections known to the person skilled in the art between the individual wires 102 and the metallic component 110 are also possible.
- a crimp connection, a press connection, a crimp connection, a clamp connection, or a screw connection are also possible for producing an electrical contact between the individual wires 102 and the metallic component 110.
- the individual wires 102 are made of copper.
- the connection can be made at the connection region VB between the individual wires 102 and the metallic component 110, for example also by means of soft soldering.
- FIG. 5 shows that an axial section of the plurality of individual wires 102 and an axial section of the jacket 104 of the conductor 100d and an axial section of the metallic component 110, in particular in an environment of the connection region VB, are surrounded, in particular encapsulated, by an insulating material 108 , are. It can be seen in FIG. 5 that a left-hand end section of the electrical conductor 100d in the drawing and a middle section of the metallic component 110 in the middle of the drawing are radially enclosed by the insulating material 108.
- the following functions can be performed: a mechanical coupling supplementing the crimp connection or the crimped connection between the metallic component 110 and the conductor 100d, electrical insulation in said axial region, protection against oxidation and penetration of Moisture in particular at the connection region VB between the conductor 100 and the metallic component 110, and an additional mechanical and / or electrical protection for better handling of the electrical conductor 100th
- the filling material FM is arranged in the drawing up to a longitudinal coordinate x17 between at least a part of the individual wires 102.
- the filler material FM clearly penetrates further to the right between the individual wires 102 in the drawing than the insulating material 108 surrounding the conductor 100d or the jacket 104 on the outside.
- the filling material FM and the insulating material 108 are both preferably designed as elastic material. According to the embodiment of the electrical conductor 100d shown in FIG. 5, this also advantageously results in an additional anti-buckling protection for the electrical conductor 100, in particular at the end section 112.
- the insulating material 108 simultaneously forms the filling material FM for the predeterminable longitudinal region L1.
- the insulating material 108 is formed integrally with the filler FM.
- a possible movement of the electrical conductor 100d in a right-hand area in FIG. 5 can be intercepted in cascade, so to speak. That is, a rigidity of the electrical conductor 100 between the longitudinal coordinates x14 and x16 is greater than a rigidity between the longitudinal coordinates x16 and x17, and this in turn is greater than a rigidity of the electrical conductor 100 in the drawing to the right of the longitudinal coordinate x17 , As a result, it is advantageously possible to prevent a possible breakage of individual wires 102 during a possible movement of the conductor 100d.
- the electrical conductor 100d according to the invention is therefore also less susceptible to possible vibrations or load changes on the conductor 100d.
- FIG. 6a shows a radial sectional view corresponding to FIG. 5 at a longitudinal coordinate x11.
- FIG. 6b shows a radial sectional view of the arrangement of FIG. 5 at a longitudinal coordinate x12 in a region of the connection region VB.
- FIG. 6c shows a radial sectional view of the arrangement of FIG. 5 at a longitudinal coordinate x15.
- Figure 6c thus additionally shows the insulating material 108, with which the conductor 100d is encapsulated.
- At least a part of the metallic component 110 (FIG. 5) and / or at least part of the plurality of individual wires 102 has a contact layer, wherein the contact layer has in particular a nickel-phosphorus alloy, in particular one Nickel-phosphorus alloy is formed.
- FIG. 7 shows a flowchart for a method for producing an electrical conductor 100, 100 a, 100 b, 100 c, 100 d having a plurality of individual wires 102, for example according to the conductor arrangement 200 of FIG. 5.
- a part of the jacket 104 becomes at an end portion of the conductor 100 (see the longitudinal coordinates x12 to x13 of Fig. 5).
- the end section 112 of the metallic component 110 is mechanically connected to an end section of the jacket 104 by means of crimping or crimping.
- ends 106a of the individual wires 102 are adhesively bonded to the metallic component 110 at the connection region VB, for example by means of ultrasonic welding.
- step 306 the thus preassembled conductor arrangement 200 in a tool, which preferably encloses an axial region of the metallic component 110 and an axial region of the conductor 100, is encapsulated with the insulating material 108, so that the components with the reference symbols 102, 104, 110, 112 and VB are at least partially enclosed by it, compare FIG. 5.
- the insulating material 108 is introduced into the tool in a liquid state and at high pressure, so that the insulating material 108 advantageously also in an axial region between the longitudinal coordinates x13 and x17 (see Figure 5) between at least a portion of the plurality of individual wires 102nd arranges and thus at the same time forms the filler FM.
- this spraying operation occurs e.g. in the axial direction.
- the injection process can take place axially and / or radially. In this way, the filler material FM and the insulating material 108 are made in one piece and chemically the same. The resulting particularly homogeneous arrangement can provide additional advantages in terms of corrosion resistance and / or fatigue strength.
- the filler material FM or the insulating material 108 is injected cold between or radially outside around the individual wires 102 and can then be chemically cured. This is particularly easily possible if the filling material FM or the insulating material 108 consists of a two-component material, for example from the 2k LSR described above.
- the insulating material 108 or the filling material FM is heated in method step 306 in order to obtain the viscosity required for the injection process and / or to initiate a crosslinking reaction.
- a time is waited until the insulating material 108 or the filling material FM has hardened sufficiently, and then the conductor arrangement 200 is removed from the mold.
- step 306 first, the filler FM is placed between at least a portion of the plurality of individual wires 102, and thereafter the insulating material 108 is applied to the conductor assembly 200, see FIG. 5.
- the filling material FM is arranged between at least part of the plurality of individual wires 102 after method step 300 ("stripping") and before method step 302 ("crimping").
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Abstract
Description
Claims (14)
- Elektrischer Leiter (100; 100a; 100b; 100c; 100d) mit einer Mehrzahl von Einzeldrähten (102), dadurch gekennzeichnet, dass über einen vorgebbaren Längenbereich (L1) entlang einer Längskoordinate (x) des Leiters (100) ein Füllmaterial (FM) zwischen wenigstens einem Teil der Mehrzahl von Einzeldrähten (102) angeordnet ist.
- Leiter (100) nach Anspruch 1, wobei der Längenbereich (L1) etwa 5 Millimeter bis etwa 50 Zentimeter beträgt, vorzugsweise etwa 10 Millimeter bis etwa 10 Zentimeter, weiter vorzugsweise etwa 10 Millimeter bis etwa 4 Zentimeter.
- Leiter (100) nach einem der vorstehenden Ansprüche, wobei mindestens ein die Einzeldrähte (102) radial außenseitig umgebender Mantel (104) vorgesehen ist.
- Leiter (100) nach Anspruch 3, wobei, vorzugsweise entlang des gesamten Längenbereichs (L1), ein Querschnittsflächenbereich innerhalb des Mantels (104) und zwischen den Einzeldrähten (102) zu mindestens etwa 20 Prozent, vorzugsweise zu mindestens etwa 60 Prozent, mit dem Füllmaterial (FM) gefüllt ist.
- Leiter (100) nach einem der vorstehenden Ansprüche, wobei der Längenbereich (L1) im Bereich eines axialen Endabschnitts (AE) des Leiters (100) angeordnet ist, wobei der Längenbereich (L1) vorzugsweise etwa 5 Millimeter oder weiter entfernt von einem Ende (106a) des Leiters (100) beabstandet ist, insbesondere etwa zwei Zentimeter oder weiter.
- Leiter (100) nach einem der Ansprüche 3 bis 5, wobei sich das Füllmaterial (FM) ausgehend von einem Beginn (x4) des Mantels (104) über mindestens etwa 5 Millimeter entlang der Längskoordinate (x) innerhalb des Mantels (104), und insbesondere zwischen den Einzeldrähten (102), erstreckt, vorzugsweise über mindestens etwa 2 Zentimeter.
- Leiter (100) nach einem der vorstehenden Ansprüche, wobei wenigstens ein Teil der Mehrzahl von Einzeldrähten (102) in einem Verbindungsbereich (VB), insbesondere stoffschlüssig, mit einem metallischen Bauteil (110) verbunden ist, wobei die Verbindung vorzugsweise in einem axialen Endabschnitt (AE) des Leiters (100) liegt.
- Leiter (100) nach Anspruch 7, wobei wenigstens ein Teil der Mehrzahl von Einzeldrähten (102) und/oder wenigstens ein Teil eines Mantels (104) des Leiters (100) und/oder wenigstens ein Teil des metallischen Bauteils (110) in dem Verbindungsbereich (VB) mit einem Isolierstoff (108) umspritzt ist.
- Leiter (100) nach Anspruch 8, wobei der Isolierstoff (108) gleichzeitig das Füllmaterial (FM) für den vorgebbaren Längenbereich (L1) bildet und/oder einstückig mit dem Füllmaterial (FM) ausgebildet ist.
- Leiter (100) nach einem der Ansprüche 7 bis 9, wobei wenigstens ein Teil des metallischen Bauteils (110) und/oder wenigstens ein Teil der Mehrzahl von Einzeldrähten (102) eine Kontaktschicht aufweist, wobei die Kontaktschicht insbesondere eine Nickel-Phosphor-Legierung aufweist, insbesondere aus einer Nickel-Phosphor-Legierung gebildet ist.
- Verfahren zur Herstellung eines Leiters (100) mit einer Mehrzahl von Einzeldrähten (102), wobei die Mehrzahl von Einzeldrähten (102) bereitgestellt wird, dadurch gekennzeichnet, dass über einen vorgebbaren Längenbereich (L1) entlang einer Längskoordinate (x) des Leiters (100) ein Füllmaterial (FM) zwischen wenigstens einem Teil der Mehrzahl von Einzeldrähten (102) angeordnet wird.
- Verfahren nach Anspruch 11, wobei mindestens ein die Einzeldrähte (102) radial außenseitig umgebender Mantel (104) vorgesehen ist, und wobei das Füllmaterial (FM) ausgehend von einem Beginn (x4) des Mantels (104) über mindestens etwa 5 Millimeter entlang der Längskoordinate (x) innerhalb des Mantels (104), und insbesondere zwischen den Einzeldrähten (102), angeordnet wird, vorzugsweise über mindestens etwa 2 Zentimeter.
- Verfahren nach Anspruch 11 oder 12, wobei wenigstens ein Teil der Mehrzahl von Einzeldrähten (102) in einem Verbindungsbereich (VB), insbesondere stoffschlüssig, mit einem metallischen Bauteil (110) verbunden wird, wobei die Verbindung vorzugsweise in einem axialen Endabschnitt (AE) des Leiters (100) liegt, wobei wenigstens ein Teil der Mehrzahl von Einzeldrähten (102) und/oder wenigstens ein Teil eines Mantels (104) des Leiters (100) und/oder wenigstens ein Teil des metallischen Bauteils (110) in dem Verbindungsbereich (VB) mit einem Isolierstoff (108) umgeben, insbesondere umspritzt, wird.
- Verfahren nach Anspruch 13, wobei der Isolierstoff (108) gleichzeitig das Füllmaterial (FM) für den vorgebbaren Längenbereich (L1) bildet, und wobei das Füllmaterial (FM) und der Isolierstoff (108) in demselben Verfahrensschritt (306) vorgesehen werden.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112014006287.1T DE112014006287B4 (de) | 2014-04-10 | 2014-04-10 | Elektrischer Leiter mit einer Mehrzahl von Einzeldrähten und Herstellungsverfahren hierfür |
PCT/EP2014/057260 WO2015154808A1 (de) | 2014-04-10 | 2014-04-10 | Elektrischer leiter mit einer mehrzahl von einzeldrähten und herstellungsverfahren hierfür |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/057260 WO2015154808A1 (de) | 2014-04-10 | 2014-04-10 | Elektrischer leiter mit einer mehrzahl von einzeldrähten und herstellungsverfahren hierfür |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015154808A1 true WO2015154808A1 (de) | 2015-10-15 |
Family
ID=50624550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/057260 WO2015154808A1 (de) | 2014-04-10 | 2014-04-10 | Elektrischer leiter mit einer mehrzahl von einzeldrähten und herstellungsverfahren hierfür |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE112014006287B4 (de) |
WO (1) | WO2015154808A1 (de) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340112A (en) * | 1963-02-04 | 1967-09-05 | Reliance Cords & Cables Ltd | Method of making multi-conductor telephone cables with axially spaced water barriers |
EP0296333A2 (de) * | 1987-06-24 | 1988-12-28 | DSG Schrumpfschlauch GmbH | Vorrichtung zur Wärmebehandlung von radialschrumpfenden Wärmeschrumpfschläuchen |
EP0332821A2 (de) * | 1988-03-18 | 1989-09-20 | DSG Schrumpfschlauch GmbH | Verfahren und Vorrichtung zum Längswasserabdichten vieladriger Kabelbündel |
WO1996016415A1 (de) * | 1994-11-22 | 1996-05-30 | Dsg Schrumpfschlauch Gmbh | Verfahren und vorrichtung zum abschnittsweisen ummanteln von eine vielzahl von adern aufweisenden verdrahtungssystemen mit kunststoff |
US5849424A (en) * | 1996-05-15 | 1998-12-15 | Dowa Mining Co., Ltd. | Hard coated copper alloys, process for production thereof and connector terminals made therefrom |
EP1291992A1 (de) * | 2001-03-01 | 2003-03-12 | The Furukawa Electric Co., Ltd. | Stromverteilerbaugruppe |
DE10345676A1 (de) * | 2003-10-01 | 2005-04-21 | Volkswagen Ag | Vorrichtung und Verfahren zur Längswasserabdichtung von Leitungen |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3705958C1 (en) | 1987-02-25 | 1988-04-28 | Kostal Leopold Gmbh & Co Kg | Method for sealing an electrical cable |
DE9001191U1 (de) | 1990-02-03 | 1990-04-05 | Richard Hirschmann Ges.M.B.H., Rankweil | Elektrischer Steckverbinder für Schlauchleitungen |
DE4439701A1 (de) | 1994-11-05 | 1996-05-09 | Minnesota Mining & Mfg | Verfahren und Vorrichtung zum Bedecken von Kontaktelementen in elektrischen Verbindern mit einem Schutzmittel sowie elektrische Verbinder mit einem Schutzmittel |
-
2014
- 2014-04-10 WO PCT/EP2014/057260 patent/WO2015154808A1/de active Application Filing
- 2014-04-10 DE DE112014006287.1T patent/DE112014006287B4/de active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3340112A (en) * | 1963-02-04 | 1967-09-05 | Reliance Cords & Cables Ltd | Method of making multi-conductor telephone cables with axially spaced water barriers |
EP0296333A2 (de) * | 1987-06-24 | 1988-12-28 | DSG Schrumpfschlauch GmbH | Vorrichtung zur Wärmebehandlung von radialschrumpfenden Wärmeschrumpfschläuchen |
EP0332821A2 (de) * | 1988-03-18 | 1989-09-20 | DSG Schrumpfschlauch GmbH | Verfahren und Vorrichtung zum Längswasserabdichten vieladriger Kabelbündel |
WO1996016415A1 (de) * | 1994-11-22 | 1996-05-30 | Dsg Schrumpfschlauch Gmbh | Verfahren und vorrichtung zum abschnittsweisen ummanteln von eine vielzahl von adern aufweisenden verdrahtungssystemen mit kunststoff |
US5849424A (en) * | 1996-05-15 | 1998-12-15 | Dowa Mining Co., Ltd. | Hard coated copper alloys, process for production thereof and connector terminals made therefrom |
EP1291992A1 (de) * | 2001-03-01 | 2003-03-12 | The Furukawa Electric Co., Ltd. | Stromverteilerbaugruppe |
DE10345676A1 (de) * | 2003-10-01 | 2005-04-21 | Volkswagen Ag | Vorrichtung und Verfahren zur Längswasserabdichtung von Leitungen |
Also Published As
Publication number | Publication date |
---|---|
DE112014006287A5 (de) | 2017-01-19 |
DE112014006287B4 (de) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3138160B1 (de) | Crimp-schweissverbindung | |
DE112008003375T5 (de) | Wasserabdichtverfahren für einen Draht und Draht, welcher ein wasserdichtes Teil aufweist, welches durch das Wasserabdichtverfahren gebildet ist | |
DE112018003812B4 (de) | Isolierter elektrischer Draht | |
DE112018003824T5 (de) | Herstellungsverfahren für einen isolierten elektrischen draht und isolierter elektrischer draht | |
DE112013007549B4 (de) | Verbinder | |
EP2109194B1 (de) | Steckverbindung mit einem Steckverbinder und einem daran angeschlossenen Kabel | |
DE102014109604B4 (de) | Kontaktierung eines Litzenleiters | |
DE112012003789B4 (de) | Aufbau einer Verbindung zwischen Koaxialkabel und Abschirmklemme sowie Verfahren zum Herstellen der Verbindung derselben | |
DE102010002721A1 (de) | Draht und Verfahren zur Herstellung eines Drahts | |
DE102017006767A1 (de) | Steckverbinderanordnung | |
EP1683235B1 (de) | Verbindung zwischen einem Koaxialkabel und einem Steckverbinder und ihr Herstellungsverfahren | |
WO2015154808A1 (de) | Elektrischer leiter mit einer mehrzahl von einzeldrähten und herstellungsverfahren hierfür | |
DE102010013500B4 (de) | Steckervorrichtung und Verfahren zur Herstellung der Steckervorrichtung | |
WO2017076984A1 (de) | Datenkabel sowie verwendung des datenkabels in einem kraftfahrzeug | |
DE102008031085A1 (de) | Kupplungsteil für eine elektrische Leitung | |
EP2001085B1 (de) | Verfahren zur Herstellung einer elektrisch leitenden Verbindung | |
DE102013215686B4 (de) | Verfahren zum Herstellen einer Anordnung mit einer Litze und Anordnung mit einer Litze | |
DE102011077885B4 (de) | Leitung sowie Verfahren zur Konfektionierung einer derartigen Leitung | |
EP4179599A1 (de) | Kabelverbindung umfassend einen an einem freiende eines elektrischen leiters mittels eines schrumpfschlauchs verbundenes kontaktteil sowie herstellungsverfahren dafür | |
EP2747205B1 (de) | Verfahren zum elektrisch leitenden Verbinden eines Litzenleiters mit einem Kontaktelement | |
DE102019211473A1 (de) | Zwischenprodukt und Verfahren zum Vercrimpen eines elektrischen Leiters | |
DE102019205280B4 (de) | Bordnetz-Baugruppe und Verfahren zur Herstellung einer Bordnetz-Baugruppe | |
WO2015039791A1 (de) | Abschirmungsanordnung für hochstromanwendungen | |
DE102017011862A1 (de) | Kabelanschlussvorrichtung und Verfahren zum Herstellen einer solchen Kabelanschlussvorrichtung | |
DE102009012726A1 (de) | Kontaktstecker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14720061 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014006287 Country of ref document: DE |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: R225 Ref document number: 112014006287 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14720061 Country of ref document: EP Kind code of ref document: A1 |