WO2015154487A1 - 一种基于视觉测量的群孔垂直度检测系统和方法 - Google Patents

一种基于视觉测量的群孔垂直度检测系统和方法 Download PDF

Info

Publication number
WO2015154487A1
WO2015154487A1 PCT/CN2014/092654 CN2014092654W WO2015154487A1 WO 2015154487 A1 WO2015154487 A1 WO 2015154487A1 CN 2014092654 W CN2014092654 W CN 2014092654W WO 2015154487 A1 WO2015154487 A1 WO 2015154487A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
image
module
verticality
holes
Prior art date
Application number
PCT/CN2014/092654
Other languages
English (en)
French (fr)
Inventor
汤勇
张仕伟
陆龙生
唐陶
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2015154487A1 publication Critical patent/WO2015154487A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Definitions

  • the present invention relates to the field of measurement technologies, and in particular, to a group hole verticality detection system and method based on visual measurement and image processing.
  • the function of the steam generator in the primary circuit of the nuclear power plant is to transfer the heat of the heat carrier in the reactor to the secondary circuit, so that the steam with a certain pressure on the secondary circuit side medium is dried by the first and second steam separators and then supplied to the steam turbine for operation. Directly affect the power and efficiency of the power station.
  • the steam generator is used to provide steam power for steam heat exchange, and also acts as a barrier to radioactive heat carrier. It is a Class I device at a safety level and must have high reliability and safety.
  • Tube sheet processing is one of the key processes in steam generators with the highest technical requirements and the most difficult manufacturing. According to the design, the total thickness of the tube plate of the steam generator is 584.58 mm, wherein the nickel-base alloy surfacing layer is 6.4 mm.
  • Tube sheet processing is to drill 9280 tube-shaped 1930 tube holes in a rectangular tube.
  • the tube plate has two parallel reference planes.
  • the group holes are evenly distributed and run through between two reference planes. Both are perpendicular to the reference plane.
  • the deviation of the verticality of the deep hole will directly affect the installation of the support plate afterwards, and can smoothly and accurately pass through the U-shaped tube bundle of more than ten meters in nearly 10,000 pipe holes.
  • the traditional deep hole perpendicularity measurement method uses a mandrel to simulate a central axis, inserts a mandrel into a hole to be measured, and uses an end face as a reference surface to measure an angular deviation between a central axis and an end face.
  • the measurement error is large and the mandrel is difficult to manufacture.
  • the prior art has the following limitations and defects for the measurement of deep hole verticality: 1.
  • the human reading and recording measurement data has large error, and the measurement accuracy and measurement efficiency are low; 2.
  • the prior art uses the core.
  • Rod simulation method the measurement length of the measured hole is limited by the length of the mandrel, which is not convenient and quick to measure, and the error caused by the gap between the mandrel and the hole to be tested is large; 3, due to the hole The number is very large, the measurement time is long, and the measurement record data is confusing. Therefore, its verticality detection urgently needs a fast, efficient and high precision non-contact detection method.
  • an object of the present invention is to provide a non-contact, vision-based group hole verticality detecting system and method for automatically performing group hole measurement and verticality calculation.
  • a group hole verticality detecting system based on visual measurement comprising: an industrial camera, a reference positioning device, a cold light source and a verticality detecting system; the workpiece to be tested has two parallel reference planes, the group holes are evenly distributed and run through two Between the reference planes; the industrial camera is facing the reference plane, obtaining a clear image of the two groups of holes under the illumination of the cold light source; the reference positioning device is mounted on the reference plane; the verticality detection system corrects the image of the group aperture by the reference positioning device And the coordinate data of the two groups of holes are calculated by the image, and the verticality of the group holes is calculated from the two sets of coordinate data.
  • the group hole includes a plurality of holes arranged in a rectangular array, and the axis of the hole is perpendicular to the reference plane. That is, the plurality of holes are parallel to each other and penetrate between the two reference planes.
  • the reference positioning device includes four reference scales that are enclosed in a rectangle; the reference ruler surrounds the group of holes to be tested.
  • Both ends of the reference ruler are provided with a highlight artificial light reflection mark, the measurement accuracy of the reference ruler is less than 5um, the flatness of the lower end face of the reference ruler is less than 10um, and the maximum thickness difference of the reference ruler is 20um.
  • the highlight artificial back light reflection mark is used for coordinate calibration of the industrial camera; the length of the reference ruler is better than 5um after the calibration of the coordinate measuring machine and the temperature correction, and the measurement accuracy of the reference ruler refers to the measured length relative to The degree of deviation of the measured true value; the flatness of the lower end surface of the reference ruler is better than 10um after milling, and the flatness of the lower end face of the reference ruler and the maximum thickness of the reference ruler are preferably used to ensure that the reference ruler and the reference face are closely fitted.
  • the material of the reference rule is a high-strength chromium-tungsten-manganese alloy.
  • the reference ruler may also use other materials having a small or relatively stable expansion coefficient.
  • the reference ruler is fixed in a rectangular shape by screws; the reference positioning device further includes a plurality of positioning posts that are connected to the reference ruler.
  • the positioning post is a combination of a cone and a fixed hole on the member to be tested for axial center coincidence.
  • the verticality detecting system comprises: an image processing system, a data processing module and an output display module; the image processing system processes the clear image and obtains the central coordinates of each hole; the data processing module performs vertical scaling of the center coordinates of each hole; The display module outputs the final result.
  • the image processing system comprises: a reading image module, an image preprocessing module, a coordinate edge position module, a Canny module, an edge recognition module and an ellipse fitting module; the image preprocessing module comprises: an image graying submodule, an image filtering submodule and Image binarization submodule.
  • the function of the reading image module is to extract the frame frequency of the video image and the resolution information of the image, and the image preprocessing module performs grayscale on the image.
  • the coordinate edge position module identifies the edge position of the image
  • the Canny module and the edge recognition module are respectively used to facilitate the extraction and refinement of the image edge
  • the ellipse fitting module is the opposite The edges of the extracted circle are further trimmed to obtain the best ellipse.
  • a method for detecting group hole verticality based on visual measurement comprising the following steps:
  • n is a positive integer greater than 1, and the reference positioning device is mounted on the side reference plane to surround the group of holes;
  • the verticality detection system processes the image obtained in step b, determines the center and edge of the hole, and uses the high-precision known length value of the reference positioning device as a control condition to obtain an orthographic image of the hole feature by image geometric correction. After the proportional correction, the actual value of the hole feature quantity is obtained, and the coordinate of the center of the (1, 1) hole is taken as the origin, and the center coordinates of each hole of the measured area are obtained and stored;
  • a and b are selected from a positive integer from 1 to n; the depth of the deep hole is H, the perpendicularity of the hole is obtained, and the angle ⁇ of the axis deviation of the hole is:
  • step e Repeat step e to obtain the verticality of all the holes, and judge whether it is qualified, and output the result.
  • the image is read by the read image module, and then the image is processed by the image graying sub-module by the image pre-processing module, and then filtered by the image filtering sub-module, and finally by the image binary
  • the sub-module proposes the values of the center and edge of each hole.
  • the length of the reference positioning device is used as the control reference.
  • the error equations are listed by the length constraint, and the necessary outer orientation elements of the image are calculated.
  • the present invention has the following advantages: simple structure, convenient operation, high efficiency, and small error.
  • the visual measurement-based group hole verticality detecting system of the present invention automatically calculates the verticality of each deep hole by using image processing system software, and performs display and storage, thereby effectively reducing errors in human reading, recording, and calculation.
  • the visual measurement-based group hole verticality detecting system of the present invention only needs to acquire the surface image of the device to be tested without complicated and complicated steps such as the alignment and centering required by the conventional measuring method, thereby simplifying
  • the measurement method greatly reduces the processing accuracy requirements of the system components.
  • the visual measurement-based group hole verticality detecting system of the present invention can simultaneously measure a plurality of deep holes in batches, and greatly improves the detection efficiency under the premise of satisfying the measurement accuracy.
  • FIG. 1 is a schematic structural view of a group hole verticality detecting system based on visual measurement according to the present invention.
  • FIG. 2 is a schematic structural view of a reference positioning device of the present invention.
  • Figures 3a and 3b are schematic illustrations of images acquired for two measurements.
  • FIG. 4 is a structural block diagram of a verticality detecting system.
  • Figure 5 is a flow chart of an algorithm of an image processing system.
  • 1 is the reference positioning device
  • 2 is the reference plane
  • 3 is the workpiece to be tested
  • 4 is the cold light source
  • 5 is the industrial camera
  • 6 is the computer (the verticality detection system is integrated therein)
  • 11 is the highlight artificial light reflection.
  • Mark, 12 is the screw
  • 13 is the reference ruler
  • 14 is the positioning post
  • 21-28 is the hole.
  • a group hole verticality detecting system based on visual measurement includes: a reference positioning device, a cold light source, an industrial camera, and computer.
  • the reference positioning device is adsorbed on one side of the reference plane of the device to be tested, and the output of the industrial camera is connected to the computer.
  • the test piece is a tube plate of a steam generator, and has two parallel reference planes.
  • the group holes are evenly distributed and run between the two reference planes.
  • the axis of each hole is perpendicular to the reference plane, and one end of the group hole is at the reference plane. It is evenly arranged along the rectangular array.
  • the first reference plane is first detected, at which time the reference positioning device is mounted on the surface, and the industrial camera and the cold light source are also facing the surface; after the measurement of the first reference plane is completed, the second is performed.
  • the reference plane is tested.
  • the two ends of the reference ruler are marked with a high-brightness artificial light reflection mark.
  • the length of the reference ruler is better than 5um after being measured by the coordinate measuring machine and the temperature is corrected.
  • the material of the reference rule should have a small expansion coefficient or a relatively stable requirement. In this case, a high-strength chromium-tungsten-manganese alloy is used.
  • the lower end surface of the reference ruler is more than 10um flat after milling, and the difference in maximum thickness is 20um.
  • the four reference scales after machining are fixed by screws and have a rectangular shape and form a reference positioning device together with the positioning post. When measuring, the reference ruler will surround the group hole to be tested.
  • the verticality detection system includes an image processing system, a data processing module, and an output display module.
  • the image processing system processes the acquired image to obtain the center coordinates of each hole, and the data processing module receives the center coordinates of each hole, performs verticality conversion, and outputs the final result through the output display module.
  • the image processing system takes the form of software installed in a computer, and includes a reading image module, an image preprocessing module, a coordinate edge position module, a Canny module, an edge recognition module, and an ellipse fitting module.
  • the image preprocessing module processes the acquired image through the image graying sub-module and filters the image
  • the sub-module performs filtering and finally the value of each point is proposed by the image binarization sub-module.
  • the image processing system uses the length of the reference rule as the control reference to list the error equations by using the length constraint, and calculates the necessary outer orientation elements of the image.
  • the benchmark of the tube tube is obtained.
  • the method for detecting the verticality of a group hole by using the above detection system is characterized in that the method comprises the following steps (taking 100 holes on the object to be tested as an example):
  • the computer processes the received digital image to accurately determine the center and edge of the circular hole, and uses the high-precision known length value of the reference rule as the control condition to obtain the orthophoto image of the tube hole feature through the image geometric correction. Correction, the actual value of the tube hole feature quantity is obtained, and the coordinate transformation is performed with the center of the (1, 1) hole as the origin, and the positive direction of the X-axis is from left to right, and the positive direction of the Y-axis is from top to bottom. The center coordinates of each hole in the area are measured, and the obtained first set of data is stored.
  • the first hole in the upper right corner is marked as (1', 1'). That is, the hole 25, the label is increased from right to left and from top to bottom, that is, Among them, (10', 1') is a hole 26, (1', 10') is a hole 27, and (10', 10') is a hole 28.
  • (10', 1') is a hole 26
  • (1', 10') is a hole 27
  • (10', 10') is a hole 28.
  • the depth of the deep hole is H (H is the distance between two reference planes directly measured), and the perpendicularity of the hole can be obtained.
  • the angle ⁇ at which the axis of the hole deviates is:
  • the same method obtains the verticality of all the holes and judges whether it is acceptable or not, and the final result is displayed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于视觉测量的群孔垂直度检测系统,包括:工业相机(5)、基准定位装置(1)、冷光源(4)和计算机(6);待测件(3)有两个相互平行的基准平面(2),群孔(21-28)均匀分布且贯穿在两个基准平面(2)之间;工业相机(5)正对基准平面(2),在冷光源(4)的照明下获得两侧群孔(21-28)的清晰图像;基准定位装置(1)安装在基准平面(2)上;计算机(6)通过基准定位装置(1)校正群孔(21-28)的图像,并通过图像计算出两组群孔(21-28)的坐标数据,由两组坐标数据计算出群孔(21-28)的垂直度,具有结构简单、操作方便、效率高、误差小的优点。还提供一种基于视觉测量的群孔垂直度检测方法。

Description

一种基于视觉测量的群孔垂直度检测系统和方法 技术领域
本发明涉及测量技术领域,尤其涉及一种基于视觉测量和图像处理的群孔垂直度检测系统和方法。
背景技术
蒸汽发生器在核电站一回路中的功能是将反应堆内载热剂的热量传递到二回路,使二回路侧介质产生一定压力的蒸汽经一、二级汽水分离器干燥后供汽轮机工作,其品质直接影响电站的功率与效率。蒸汽发生器在用于水蒸汽热量交换提供蒸汽动力的同时,还起着阻隔放射性载热剂的作用,在安全等级上属I级设备,必须具备极高的可靠性和安全性。管板加工是蒸汽发生器中技术要求最高、制造难度最大的关键工序之一。根据设计,蒸汽发生器的管板的总厚度为584.58毫米,其中镍基合金堆焊层6.4mm。管板加工就是在管板上枪钻9280个呈矩形排列的中1930管孔,管板具有两个相互平行的基准平面,群孔均匀分布且贯穿在两个基准平面之间,各个孔的轴线均垂直于基准平面。深孔垂直度的偏差将直接影响到之后支撑板的安装,及在近万个管孔内能否顺利、准确的穿过长达十几米的U型管束。
传统的深孔垂直度测量方法是利用芯棒模拟中心轴线,将芯棒插入被测孔中,以端面为基准面,测量中心轴线与端面的角度偏差。但是若被测孔尺寸较小或孔深很大时,测量误差大且芯棒制造困难。此外现有技术中也有利用三坐标进行测量的方法,但是由于设备昂贵且受到场地以及工件大小的限制对于管板零件不适用。
综上所述,现有技术中对深孔垂直度测量有以下限制和缺陷:1,人为读取记录测量数据,误差较大,测量精度以及测量效率均较低;2,现有技术采用芯棒模拟法,被测孔的测量长度受到芯棒长度的限制,无法实现方便快捷的测量,且由于芯棒与被测孔之间为间隙配合,所带来的误差较大;3,由于孔数量非常多,测量时间长,测量记录数据易混淆。因此其垂直度检测急需一种快速高效、精度高的非接触式检测方法。
发明内容
针对现有技术中存在的技术问题,本发明的目的是:提供一种非接触式的、自动进行群孔测量和垂直度计算的基于视觉测量的群孔垂直度检测系统和方法。
为了达到上述目的,本发明采用如下技术方案:
一种基于视觉测量的群孔垂直度检测系统,包括:工业相机、基准定位装置、冷光源和垂直度检测系统;待测件有两个相互平行的基准平面,群孔均匀分布且贯穿在两个基准平面之间;工业相机正对基准平面,在冷光源的照明下获得两侧群孔的清晰图像;基准定位装置安装在基准平面上;垂直度检测系统通过基准定位装置校正群孔的图像,并通过图像计算出两组群孔的坐标数据,由两组坐标数据计算出群孔的垂直度。
待测件中,群孔包括多个矩形阵列排布的孔,孔的轴线垂直于基准平面。即多个孔相互平行,贯穿在两个基准平面之间。
基准定位装置包括四根围成矩形的基准尺;基准尺将待测群孔包围在内。
基准尺的两端设有高亮人工回光反射标志,基准尺的测量精度小于5um,基准尺的下端面的平面度小于10um,基准尺的最大厚度差为20um。其中,高亮人工回光反射标志用于进行工业相机的坐标标定;基准尺的长度经三坐标机测量标定和温度改正后精度优于5um,基准尺的测量精度指的是所测量的长度相对于被测量真值的偏离程度;基准尺的下端面经铣磨后平面度优于10um,优选基准尺下端面的平面度和基准尺的最大厚度是为了保证基准尺与基准面紧密贴合。
基准尺的材料为高强度铬钨锰合金。此外,基准尺也可选用具有膨胀系数小或相对稳定的要求的其他材料。
基准尺通过螺丝固定为矩形;基准定位装置还包括若干与基准尺相接的定位柱。定位柱为圆锥体与在待测件上选择固定孔进行轴心重合的配合。
垂直度检测系统包括:图像处理系统、数据处理模块和输出显示模块;图像处理系统将清晰的图像进行处理并得到各个孔的中心坐标;数据处理模块将各个孔的中心坐标进行垂直度换算;输出显示模块将最终结果进行输出。
图像处理系统包括:读取图像模块、图像预处理模块、坐标边缘位置模块、Canny模块、边缘识别模块和椭圆拟合模块;图像预处理模块包括:图像灰度化子模块、图像滤波子模块和图像二值化子模块。读取图像模块的作用是提取出视频图像的帧频率以及图像的分辨率信息,图像预处理模块是对图像进行灰度 化处理,滤波处理以及二值化处理,坐标边缘位置模块是对图像的边缘位置进行识别,Canny模块和边缘识别模块分别用于对图像边缘便于进行提取和细化,椭圆拟合模块是对所提取的圆的边缘进一步修整得到最佳椭圆。
一种基于视觉测量的群孔垂直度检测方法,包括如下步骤:
a.将待测件的一侧基准平面上的群孔分区并标注:第一次测量时,将左上方的孔标定为(1,1)孔,标号由左到右、由上到下递增,即
Figure PCTCN2014092654-appb-000001
其中n为大于1的正整数,并将基准定位装置安装于该侧基准平面上,将该区群孔包围;
b.安装工业相机,在冷光源的照明下获得步骤a中一侧基准平面的清晰图像;
c.垂直度检测系统对步骤b中获得的图像进行处理,确定孔的中心和边缘,利用基准定位装置的高精度已知长度值作为控制条件,通过图像几何纠正,获得孔特征的正射图像,经过比例改正,得到孔特征量的实际值,以(1,1)孔的圆心为原点进行坐标转换,得到所测区域各个孔的圆心坐标,并存储;
d.将待测件在水平面上旋转180°对另一侧基准平面获取清晰图像并进行测量,或者直接对另一侧基准平面获取清晰图像并进行测量,此时右上角的第一个孔标记为(1’,1’),标号由右到左、由上到下递增,即
Figure PCTCN2014092654-appb-000002
经垂直度检测系统处理后获得以(1’,1’)孔的圆心为原点的新坐标下的所测区域各个孔的圆心坐标,并存储;
e.提取两组坐标数据,比较同一孔对应两侧基准平面的(a,b)孔的圆心坐标(xa,yb)和(a’,b’)孔的圆心坐标(xa′,yb′),获得
Figure PCTCN2014092654-appb-000003
其中,a和b在1至n中的正整数中选取;该深孔的孔深为H,则可得到该孔的垂直度,该孔的轴线偏离的角度θ为:
Figure PCTCN2014092654-appb-000004
f.重复步骤e获得所有孔的垂直度,并判断是否合格,将结果输出。
步骤c至e中,先由读取图像模块读取图片,再由图像预处理模块将所获取的图片经图像灰度化子模块处理后,由图像滤波子模块进行滤波,最后由图像二值化子模块提出各个孔的中心和边缘的数值,最后以基准定位装置的长度作为控制基准利用长度约束条件列出误差方程组,解算出图片的必要外方位元素,依据图像坐标倾斜纠正和正直摄影理论,得到待测件表面群孔的实际坐标。
总的说来,本发明具有如下优点:结构简单、操作方便、效率高、误差小。
(1)本发明的基于视觉测量的群孔垂直度检测系统,利用图像处理系统软件,自动计算各个深孔的垂直度,并进行显示与存储,有效减少人为读取、记录和计算的误差。
(2)本发明的基于视觉测量的群孔垂直度检测系统,只需要获取待测件的表面图像,而无需像传统测量方法所需的找正对心等复杂繁琐的步骤,因此,既简化了测量方法,又极大降低了系统部件的加工精度要求。
(3)本发明的基于视觉测量的群孔垂直度检测系统,可批量同时测量多个深孔,在满足测量精度的前提下极大程度的提高了检测效率。
附图说明
图1为本发明的一种基于视觉测量的群孔垂直度检测系统的结构示意图。
图2为本发明的基准定位装置的结构示意图。
图3a和3b为两次测量所获取的图像示意图。
图4为垂直度检测系统的结构框图。
图5为图像处理系统的算法流程图。
其中,1为基准定位装置,2为基准平面,3为待测件,4为冷光源,5为工业相机,6为计算机(垂直度检测系统整合在其中),11为高亮人工回光反射标志,12为螺丝,13为基准尺,14为定位柱,21-28为孔。
具体实施方式
下面将结合附图和具体实施方式来对本发明做进一步详细的说明。
图1为本发明一种基于视觉测量的群孔垂直度检测系统的结构示意图,由图1可知,一种基于视觉测量的群孔垂直度检测系统包括:基准定位装置,冷光源,工业相机和计算机。基准定位装置吸附在待测件的一侧基准平面上,工业相机的输出端与计算机相连。待测件为蒸汽发生器的管板,有两个相互平行的基准平面,群孔均匀分布且贯穿在两个基准平面之间,各个孔的轴线垂直于基准平面,群孔的一端在基准平面上沿着矩形阵列均匀排布。测量时,先对第一个基准平面进行检测,此时基准定位装置安装在该面上,工业相机和冷光源也正对该面;第一个基准平面的测量完成后,再对第二个基准平面进行检测。
基准定位装置共有四根基准尺,基准尺两端贴有高亮人工回光反射标志,基准尺的长度经三坐标机测量标定和温度改正后精度优于5um。基准尺的材料应具有膨胀系数小或相对稳定的要求,本例选用高强度铬钨锰合金。基准尺的下端面经铣磨后平面度优于10um,最大厚度之差为20um。加工后的四根基准尺用螺丝固定后呈矩形并与定位柱共同组成基准定位装置。测量时,基准尺将待测群孔包围。
垂直度检测系统包括图像处理系统、数据处理模块以及输出显示模块。图像处理系统将获取的图像进行处理得到各个孔的中心坐标,数据处理模块接受到各个孔的中心坐标后进行垂直度换算,并将最终结果经输出显示模块输出。
图像处理系统采用安装在计算机中的软件的形式,共包括读取图像模块、图像预处理模块、坐标边缘位置模块、Canny模块,边缘识别模块以及椭圆拟合模块。
图像预处理模块将所获取的图片经图像灰度化子模块处理后,由图像滤波 子模块进行滤波最后由图像二值化子模块提出每个点的数值。
图像处理系统在获得图像后,以基准尺的长度作为控制基准利用长度约束条件列出误差方程组,解算出图像的必要外方位元素,依据图像坐标倾斜纠正和正直摄影理论,得到板管的基准面上待测孔的实际坐标;最后进行各个孔的特征几何分析,实现测量。
利用上述检测系统对群孔垂直度的检测方法,其特点在于该方法包括下列步骤,(以待测件上的100个孔为例):
1,对群孔的两基准平面要测量的孔进行分区并标注,先标注第一个基准平面,如图3a虚线区域,第一次测量时,将左上方的孔标定为(1,1)孔,即孔21,标号由左到右由上到下递增,即
Figure PCTCN2014092654-appb-000005
(10,1)为孔22,(10,10)为孔23,(1,10)为孔24;并将基准定位装置安装在该基准平面。
2,安装工业相机,使相机镜头平面与基准平面平行。调节冷光源及相机焦距,获取高质量图像。
3,计算机对接收到的数字图像进行处理,精确确定圆孔中心和边缘,利用基准尺的高精度已知长度值作为控制条件,通过图像几何纠正,获得管孔特征的正射图像,经过比例改正,得到管孔特征量的实际值,以(1,1)孔的圆心为原点进行坐标转换,从左到右为X轴的正方向,从上到下为Y轴的正方向,得到所测区域各孔圆心坐标,并存储得到的第一组数据。
4,将待测件旋转180°或者在待测件的另一侧对第二个基准平面再进行第二次测量,此时右上角的第一个孔标记为(1’,1’),即孔25,标号由右至 左、由上至下递增,即
Figure PCTCN2014092654-appb-000006
其中,(10’,1’)为孔26,(1’,10’)为孔27,(10’,10’)为孔28。经计算机图像处理后获得以(1’,1’)孔的圆心为原点的新坐标下的所测区域各个孔的圆心坐标,并存储第二组数据,从右到左为X轴的正方向,从上到下为Y轴的正方向。
5,提取两组数据,比较同一个孔两端相对应的圆心坐标,如(1,1)和(1’,1’),获得
Figure PCTCN2014092654-appb-000007
该深孔的孔深为H(H为直接测量两基准平面之间的距离),则可得到该孔的垂直度。该孔的轴线偏离的角度θ为:
θ=tan-1(L/H);
同样的方法获得所有孔的垂直度,并判断是否合格,将最终结果显示出来。
除了垂直度外还可获得表面孔径、孔桥等各种参数。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于视觉测量的群孔垂直度检测系统,其特征在于:包括:工业相机、基准定位装置、冷光源和垂直度检测系统;
    待测件有两个相互平行的基准平面,群孔均匀分布且贯穿在两个基准平面之间;
    工业相机正对基准平面,在冷光源的照明下获得两侧群孔的清晰图像;
    基准定位装置安装在基准平面上;
    垂直度检测系统通过基准定位装置校正群孔的图像,并通过图像计算出两组群孔的坐标数据,由两组坐标数据计算出群孔的垂直度。
  2. 按照权利要求1所述的一种基于视觉测量的群孔垂直度检测系统,其特征在于:所述待测件中,群孔包括多个矩形阵列排布的孔,孔的轴线垂直于基准平面。
  3. 按照权利要求1所述的一种基于视觉测量的群孔垂直度检测系统,其特征在于:所述基准定位装置包括四根围成矩形的基准尺;基准尺将待测群孔包围在内。
  4. 按照权利要求3所述的一种基于视觉测量的群孔垂直度检测系统,其特征在于:所述基准尺的两端设有高亮人工回光反射标志,基准尺的测量精度小于5um,基准尺的下端面的平面度小于10um,基准尺的最大厚度差为20um。
  5. 按照权利要求3所述的一种基于视觉测量的群孔垂直度检测系统,其特征在于:所述基准尺的材料为高强度铬钨锰合金。
  6. 按照权利要求3所述的一种基于视觉测量的群孔垂直度检测系统,其特征在于:所述基准尺通过螺丝固定为矩形;基准定位装置还包括若干与基准尺相接的定位柱。
  7. 按照权利要求1所述的一种基于视觉测量的群孔垂直度检测系统,其特征在于:所述垂直度检测系统包括:图像处理系统、数据处理模块和输出显示模块;
    图像处理系统将清晰的图像进行处理并得到各个孔的中心坐标;
    数据处理模块将各个孔的中心坐标进行垂直度换算;
    输出显示模块将最终结果进行输出。
  8. 按照权利要求7所述的一种基于视觉测量的群孔垂直度检测系统,其特征在于:
    所述图像处理系统包括:读取图像模块、图像预处理模块、坐标边缘位置模块、 Canny模块、边缘识别模块和椭圆拟合模块;
    图像预处理模块包括:图像灰度化子模块、图像滤波子模块和图像二值化子模块。
  9. 一种基于视觉测量的群孔垂直度检测方法,其特征在于:包括如下步骤:
    a.将待测件的一侧基准平面上的群孔分区并标注:第一次测量时,将左上方的孔标定为(1,1)孔,标号由左到右、由上到下递增,即
    Figure PCTCN2014092654-appb-100001
    其中n为大于1的正整数,并将基准定位装置安装于该侧基准平面上,将该区群孔包围;
    b.安装工业相机,在冷光源的照明下获得步骤a中一侧基准平面的清晰图像;
    c.垂直度检测系统对步骤b中获得的图像进行处理,确定孔的中心和边缘,利用基准定位装置的高精度已知长度值作为控制条件,通过图像几何纠正,获得孔特征的正射图像,经过比例改正,得到孔特征量的实际值,以(1,1)孔的圆心为原点进行坐标转换,得到所测区域各个孔的圆心坐标,并存储;
    d.将待测件在水平面上旋转180°对另一侧基准平面获取清晰图像并进行测量,或者直接对另一侧基准平面获取清晰图像并进行测量,此时右上角的第一个孔标记为(1’,1’),标号由右到左、由上到下递增,即
    Figure PCTCN2014092654-appb-100002
    经垂直度检测系统处理后获得以(1’,1’)孔的圆心为原点的新坐标下的所测区域各个孔的圆心坐标,并存储;
    e.提取两组坐标数据,比较同一孔对应两侧基准平面的(a,b)孔的圆心坐标(xa,yb)和(a’,b’)孔的圆心坐标(xa′,yb′),获得
    Figure PCTCN2014092654-appb-100003
    其中,a和b在1至n中的正整数中选取;该深孔的孔深为H,则可得到该孔的垂直度,该孔的轴线偏离的角度0为:
    Figure PCTCN2014092654-appb-100004
    f.重复步骤e获得所有孔的垂直度,并判断是否合格,将结果输出。
  10. 按照权利要求9所述的一种基于视觉测量的群孔垂直度检测方法,其特征在于:所述步骤c至e中,先由读取图像模块读取图片,再由图像预处理模块将所获取的图片经图像灰度化子模块处理后,由图像滤波子模块进行滤波,由图像二值化子模块提出各个孔的中心和边缘的数值,最后以基准定位装置的长度作为控制基准,利用长度约束条件列出误差方程组,解算出图片的必要外方位元素,依据图像坐标倾斜纠正和正直摄影理论,得到待测件表面群孔的实际坐标。
PCT/CN2014/092654 2014-04-09 2014-12-01 一种基于视觉测量的群孔垂直度检测系统和方法 WO2015154487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410141149.1 2014-04-09
CN201410141149.1A CN103940374B (zh) 2014-04-09 2014-04-09 一种基于视觉测量的群孔垂直度检测方法及采用该方法的基于视觉测量的群孔垂直度检测系统

Publications (1)

Publication Number Publication Date
WO2015154487A1 true WO2015154487A1 (zh) 2015-10-15

Family

ID=51188145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092654 WO2015154487A1 (zh) 2014-04-09 2014-12-01 一种基于视觉测量的群孔垂直度检测系统和方法

Country Status (2)

Country Link
CN (1) CN103940374B (zh)
WO (1) WO2015154487A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767570A (zh) * 2016-12-30 2017-05-31 苏州光宝科技股份有限公司 一种工业测量系统
CN107560540A (zh) * 2017-08-25 2018-01-09 西安工业大学 天幕立靶结构参数出厂标定系统及其标定方法
CN108022266A (zh) * 2017-12-14 2018-05-11 杭州电子科技大学 面向光伏电池在线位置检测的人工智能图像识别方法
CN108759676A (zh) * 2018-07-12 2018-11-06 浙江大学 基于棋盘格的传动箱端面大尺寸形位公差检测装置与方法
CN109636858A (zh) * 2018-10-30 2019-04-16 广州超音速自动化科技股份有限公司 锂电池涂布图像采集标定方法、系统、设备及存储介质
CN110340728A (zh) * 2019-06-13 2019-10-18 浙江大学 面向拖拉机制造过程孔组加工的质量控制系统与方法
CN112529869A (zh) * 2020-12-11 2021-03-19 中国航空工业集团公司金城南京机电液压工程研究中心 一种阀套节流方孔检测方法
CN113008267A (zh) * 2021-01-05 2021-06-22 上海大学 基于图像处理技术的水平尺极限倾斜合格检测系统及方法
CN113063351A (zh) * 2021-03-23 2021-07-02 江南造船(集团)有限责任公司 管尺寸偏差自动测量系统及测量方法
CN113086238A (zh) * 2021-03-29 2021-07-09 中国航空制造技术研究院 一种基于基准孔孔位测量的自动制孔孔位在线修正方法
CN113237459A (zh) * 2021-04-12 2021-08-10 机械工业第九设计研究院有限公司 一种建筑物沉降长期监测方法及监测系统
CN114383505A (zh) * 2022-01-06 2022-04-22 江苏大学 一种用于短轴类零件尺寸的自动检测装置
CN114459345A (zh) * 2021-12-22 2022-05-10 上海智能制造功能平台有限公司 基于视觉空间定位的飞机机身位置姿态检测系统及方法
CN116295125A (zh) * 2023-04-21 2023-06-23 成都飞机工业(集团)有限责任公司 一种孔垂直度测量装置及测量方法
CN116878381A (zh) * 2023-08-01 2023-10-13 湖南视比特机器人有限公司 一种基于多目视觉的在线全尺寸检测方法及系统
CN114383505B (zh) * 2022-01-06 2024-06-07 江苏大学 一种用于短轴类零件尺寸的自动检测装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940374B (zh) * 2014-04-09 2017-01-04 华南理工大学 一种基于视觉测量的群孔垂直度检测方法及采用该方法的基于视觉测量的群孔垂直度检测系统
CN105159231B (zh) * 2015-07-22 2018-02-16 中国地质大学(武汉) 一种数控系统双头加工轨迹优化的在线计算方法
CN106441162A (zh) * 2016-10-13 2017-02-22 中国科学院上海技术物理研究所 一种柱状物体垂直度的非接触式检测装置及方法
CN107525480B (zh) * 2017-08-31 2021-06-04 长江存储科技有限责任公司 一种深孔测量方法及装置
CN108188835B (zh) * 2017-12-08 2020-11-10 西安交通大学 基于机器视觉的数控机床主轴热伸长测试装置及测试方法
CN108662990B (zh) * 2018-03-23 2020-08-11 舟山市宏基工业产品设计研究所 一种气缸盖斜孔的斜度测量装置及方法
CN109451283A (zh) * 2018-12-21 2019-03-08 核动力运行研究所 一种蒸汽发生器水室环境图像采集系统
CN111442717B (zh) * 2019-11-02 2020-11-13 福州恒术信息科技有限公司 坐标检测平台、方法及存储介质
CN111121655B (zh) * 2019-12-18 2021-01-19 浙江大学 一种共面等大多孔型工件位姿与孔径视觉检测方法
CN114170132B (zh) * 2021-10-20 2023-05-05 中国航发四川燃气涡轮研究院 一种基于机器视觉的流量管静压孔质量检测方法及系统
CN114136341B (zh) * 2021-11-30 2024-03-15 中国科学院长春光学精密机械与物理研究所 经纬仪标校误差的检测方法
CN118009889A (zh) * 2024-04-09 2024-05-10 常州铭赛机器人科技股份有限公司 工件点胶槽位置的测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388355A (zh) * 2001-05-28 2003-01-01 株式会社东京精密 工件的中心位置检测方法及装置
JP2007010492A (ja) * 2005-06-30 2007-01-18 Hitachi Metals Ltd セラミックハニカムフィルタの検査方法
JP4207327B2 (ja) * 1999-09-10 2009-01-14 株式会社デンソー 回転位置検出装置
CN101435697A (zh) * 2007-11-15 2009-05-20 比亚迪股份有限公司 一种通孔的位置检测方法及系统
CN102840842A (zh) * 2012-09-06 2012-12-26 上海电气核电设备有限公司 深孔垂直度激光测量系统及测量方法
CN103119424A (zh) * 2010-11-16 2013-05-22 东洋钢钣株式会社 多孔板表面检查方法以及多孔板表面检查装置
CN103697837A (zh) * 2013-12-20 2014-04-02 华南理工大学 一种单侧膨胀定心的垂直度激光检测系统及其检测方法
CN103940374A (zh) * 2014-04-09 2014-07-23 华南理工大学 一种基于视觉测量的群孔垂直度检测系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194133A (ja) * 2000-01-17 2001-07-19 Nippon Dejitetsuku:Kk 円筒形部品の同軸度測定方法及び測定装置
CN101865676B (zh) * 2009-04-15 2012-04-25 中国科学院半导体研究所 一种测量光子晶体孔洞侧壁垂直度的方法
CN101788265B (zh) * 2010-03-25 2011-05-11 天津大学 发动机缸体结合面孔组快速测量全局统一标定方法
CN101839697A (zh) * 2010-04-20 2010-09-22 天津大学 一种应用于轴孔直径测量的光学系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207327B2 (ja) * 1999-09-10 2009-01-14 株式会社デンソー 回転位置検出装置
CN1388355A (zh) * 2001-05-28 2003-01-01 株式会社东京精密 工件的中心位置检测方法及装置
JP2007010492A (ja) * 2005-06-30 2007-01-18 Hitachi Metals Ltd セラミックハニカムフィルタの検査方法
CN101435697A (zh) * 2007-11-15 2009-05-20 比亚迪股份有限公司 一种通孔的位置检测方法及系统
CN103119424A (zh) * 2010-11-16 2013-05-22 东洋钢钣株式会社 多孔板表面检查方法以及多孔板表面检查装置
CN102840842A (zh) * 2012-09-06 2012-12-26 上海电气核电设备有限公司 深孔垂直度激光测量系统及测量方法
CN103697837A (zh) * 2013-12-20 2014-04-02 华南理工大学 一种单侧膨胀定心的垂直度激光检测系统及其检测方法
CN103940374A (zh) * 2014-04-09 2014-07-23 华南理工大学 一种基于视觉测量的群孔垂直度检测系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, PEICHANG ET AL.: "Development of Coaxiality Inspecting System for Multiple Circles", JOURNAL OF OPTOELECTRONICS . LASER, vol. 21, no. 01, 31 January 2010 (2010-01-31), pages 87 - 90 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767570A (zh) * 2016-12-30 2017-05-31 苏州光宝科技股份有限公司 一种工业测量系统
CN107560540A (zh) * 2017-08-25 2018-01-09 西安工业大学 天幕立靶结构参数出厂标定系统及其标定方法
CN107560540B (zh) * 2017-08-25 2023-07-07 西安工业大学 天幕立靶结构参数出厂标定系统及其标定方法
CN108022266A (zh) * 2017-12-14 2018-05-11 杭州电子科技大学 面向光伏电池在线位置检测的人工智能图像识别方法
CN108022266B (zh) * 2017-12-14 2024-02-02 杭州电子科技大学 面向光伏电池在线位置检测的人工智能图像识别方法
CN108759676A (zh) * 2018-07-12 2018-11-06 浙江大学 基于棋盘格的传动箱端面大尺寸形位公差检测装置与方法
CN108759676B (zh) * 2018-07-12 2023-11-03 浙江大学 基于棋盘格的传动箱端面大尺寸形位公差检测装置与方法
CN109636858B (zh) * 2018-10-30 2024-01-12 超音速人工智能科技股份有限公司 锂电池涂布图像采集标定方法、系统、设备及存储介质
CN109636858A (zh) * 2018-10-30 2019-04-16 广州超音速自动化科技股份有限公司 锂电池涂布图像采集标定方法、系统、设备及存储介质
CN110340728A (zh) * 2019-06-13 2019-10-18 浙江大学 面向拖拉机制造过程孔组加工的质量控制系统与方法
CN110340728B (zh) * 2019-06-13 2023-08-18 浙江大学 面向拖拉机制造过程孔组加工的质量控制系统与方法
CN112529869A (zh) * 2020-12-11 2021-03-19 中国航空工业集团公司金城南京机电液压工程研究中心 一种阀套节流方孔检测方法
CN112529869B (zh) * 2020-12-11 2023-07-21 中国航空工业集团公司金城南京机电液压工程研究中心 一种阀套节流方孔检测方法
CN113008267A (zh) * 2021-01-05 2021-06-22 上海大学 基于图像处理技术的水平尺极限倾斜合格检测系统及方法
CN113008267B (zh) * 2021-01-05 2023-09-15 上海大学 基于图像处理技术的水平尺极限倾斜合格检测系统及方法
CN113063351B (zh) * 2021-03-23 2023-03-14 江南造船(集团)有限责任公司 管尺寸偏差自动测量系统及测量方法
CN113063351A (zh) * 2021-03-23 2021-07-02 江南造船(集团)有限责任公司 管尺寸偏差自动测量系统及测量方法
CN113086238A (zh) * 2021-03-29 2021-07-09 中国航空制造技术研究院 一种基于基准孔孔位测量的自动制孔孔位在线修正方法
CN113237459B (zh) * 2021-04-12 2022-10-11 机械工业第九设计研究院股份有限公司 一种建筑物沉降长期监测方法及监测系统
CN113237459A (zh) * 2021-04-12 2021-08-10 机械工业第九设计研究院有限公司 一种建筑物沉降长期监测方法及监测系统
CN114459345A (zh) * 2021-12-22 2022-05-10 上海智能制造功能平台有限公司 基于视觉空间定位的飞机机身位置姿态检测系统及方法
CN114459345B (zh) * 2021-12-22 2024-05-24 上海智能制造功能平台有限公司 基于视觉空间定位的飞机机身位置姿态检测系统及方法
CN114383505B (zh) * 2022-01-06 2024-06-07 江苏大学 一种用于短轴类零件尺寸的自动检测装置
CN114383505A (zh) * 2022-01-06 2022-04-22 江苏大学 一种用于短轴类零件尺寸的自动检测装置
CN116295125A (zh) * 2023-04-21 2023-06-23 成都飞机工业(集团)有限责任公司 一种孔垂直度测量装置及测量方法
CN116295125B (zh) * 2023-04-21 2024-06-11 成都飞机工业(集团)有限责任公司 一种孔垂直度测量装置及测量方法
CN116878381A (zh) * 2023-08-01 2023-10-13 湖南视比特机器人有限公司 一种基于多目视觉的在线全尺寸检测方法及系统
CN116878381B (zh) * 2023-08-01 2024-01-30 湖南视比特机器人有限公司 一种基于多目视觉的在线全尺寸检测方法及系统

Also Published As

Publication number Publication date
CN103940374A (zh) 2014-07-23
CN103940374B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2015154487A1 (zh) 一种基于视觉测量的群孔垂直度检测系统和方法
US7015473B2 (en) Method and apparatus for internal feature reconstruction
CN102063718B (zh) 一种点激光测量系统的现场标定和精密测量方法
CN102376089B (zh) 一种标靶校正方法及系统
CN102135417B (zh) 一种全自动三维特征提取方法
CN103615980B (zh) 一种板件上圆孔参数的测量方法及系统
CN106767524A (zh) 一种水力机械叶片曲面检测方法和装置
März et al. Validation of two optical measurement methods for the qualification of the shape accuracy of mirror panels for concentrating solar systems
CN102661956B (zh) 超光滑表面缺陷检测系统的畸变校正方法
CN204313798U (zh) 一种激光束现场标定装置
CN101576372A (zh) 手术器械使用部位尺寸自动检测装置及其检测方法
CN100545610C (zh) 数码相机可量测化检测方法
CN102661849A (zh) 一种检测微透镜阵列焦距的方法
CN110018170A (zh) 一种基于蜂巢模型的飞机蒙皮小型损伤定位方法
CN110987375A (zh) 一种摄像头视场角测量方法
CN105987806B (zh) 一种转折镜头的测试装置及测试方法
CN101726316A (zh) 内方位元素及畸变测试仪
CN101329515B (zh) 用于步进光刻机对准系统的测校装置及其测校方法
CN110108219A (zh) 电缆截面结构的测算方法、系统、设备及可读存储介质
CN112802115A (zh) 一种多焦面拼接大视场离轴相机的几何标定方法及装置
CN108548506A (zh) 一种利用光学标志对高精度平面进行平面度测量的方法
CN201277864Y (zh) 内方位元素及畸变测试仪
CN112304214B (zh) 基于摄影测量的工装检测方法和工装检测系统
CN110006322A (zh) 一种机床两直线轴运动间的垂直度检测装置及方法
CN108898585A (zh) 一种轴类零件检测方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888773

Country of ref document: EP

Kind code of ref document: A1