WO2015151975A1 - アルミニウム合金積層板 - Google Patents

アルミニウム合金積層板 Download PDF

Info

Publication number
WO2015151975A1
WO2015151975A1 PCT/JP2015/059228 JP2015059228W WO2015151975A1 WO 2015151975 A1 WO2015151975 A1 WO 2015151975A1 JP 2015059228 W JP2015059228 W JP 2015059228W WO 2015151975 A1 WO2015151975 A1 WO 2015151975A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
core material
brazing
aluminum alloy
less
Prior art date
Application number
PCT/JP2015/059228
Other languages
English (en)
French (fr)
Inventor
松本 克史
杵渕 雅男
孝裕 泉
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/129,767 priority Critical patent/US20170182602A1/en
Priority to CN201580016823.6A priority patent/CN106164310B/zh
Publication of WO2015151975A1 publication Critical patent/WO2015151975A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the present invention relates to an aluminum alloy laminate used for a heat exchanger such as an automobile.
  • laminated board As appropriate, various aluminum alloy laminates (hereinafter referred to as “lamination” as appropriate) are used as tube materials for refrigerant passages such as radiators, evaporators, condensers and the like for automobile heat exchangers. Board)).
  • laminated board In order for this laminated board to be suitably applied as a tube material for heat exchangers, it is necessary to have strength, corrosion resistance, erosion resistance, fatigue characteristics, etc. above a predetermined level. Many have been proposed.
  • Patent Document 1 discloses a laminate in which the number density of intermetallic compounds having a predetermined size (0.02 to 0.2 ⁇ m) in the core material is limited to 10 to 2000 / ⁇ m 3 . According to this technique, the post-brazing strength and corrosion resistance of the laminate can be improved by limiting the number density of the intermetallic compound.
  • Patent Document 2 discloses a laminated plate in which a core material is limited to 5 or less intermetallic compounds having a predetermined size (0.01 to 0.1 ⁇ m) in a 2 ⁇ m ⁇ 2 ⁇ m field of view. According to this technique, by limiting the number of intermetallic compounds in a predetermined visual field, the erosion resistance can be improved without impairing the moldability of the laminate.
  • Patent Document 3 discloses a laminate in which the average number density of precipitates in the range of 0.1 to 0.5 ⁇ m in the core material is 150 / ⁇ m 3 or less. According to this technique, the fatigue properties of the laminate can be improved by limiting the average number density of precipitates.
  • Patent Document 4 discloses a laminated plate in which Cu is limited to 0.5 mass% to 1.0 mass% or less in the core material and the crystal grain size in the rolling direction is limited to 150 to 200 ⁇ m. According to this technique, the fatigue characteristics of the laminate can be improved by controlling the Cu content and the crystal grain size of the core material.
  • Japanese Unexamined Patent Publication No. 8-246117 Japanese Unexamined Patent Publication No. 2002-126894 Japanese Unexamined Patent Publication No. 2009-191293 Japanese Unexamined Patent Publication No. 2003-82427
  • the improvement of fatigue characteristics is not limited to the fatigue life within the elastic region of the tube material of the heat exchanger (specifically, the fatigue life indicated by repeated stresses within the elastic region), as well as the amount of strain. It is important to increase the fatigue life including the fatigue life within the plastic region of the tube material (specifically, the fatigue life shown under repeated stress in the plastic region). However, there are many unclear points regarding means for improving fatigue properties including fatigue life in such a plastic region.
  • the present invention has been made in view of such points, and an object of the present invention is to provide an aluminum alloy laminated plate excellent in strength (strength after brazing), erosion resistance and fatigue characteristics.
  • the inventors of the present invention have a large influence on the number density of dispersed particles before brazing equivalent heating greatly affects the average crystal grain size, average aspect ratio, and proportion of low-angle grain boundaries after brazing equivalent heating.
  • the present invention has been found by determining the influence of strength, erosion resistance and fatigue characteristics.
  • an aluminum alloy laminate according to the present invention is an aluminum alloy laminate in which a sacrificial material is clad on at least one side surface of a core material, and the core material has Mn: 0.5 to 1 8 mass%, Si: 0.4 to 1.5 mass%, Cu: 0.05 to 1.2 mass% or less, Fe: more than 0 mass%, 1.0 mass% or less, Ti: It contains at least one of more than 0% by mass and 0.3% by mass or less, with the balance being Al and inevitable impurities, and the core material has a number density of dispersed particles having a particle size of 0.01 to 0.5 ⁇ m. 20 to 80 / ⁇ m 3 .
  • This aluminum alloy laminated sheet controls strength (post-brazing strength), erosion resistance and fatigue characteristics by controlling the number density of dispersed particles within a predetermined range while controlling the amount of each element of the core material to a predetermined amount. Can be improved.
  • the core material may further contain at least one of Cr: 0.02 to 0.4 mass% and Zr: 0.02 to 0.4 mass%. preferable.
  • This aluminum alloy laminate can contain a predetermined amount of Cr and Zr, thereby preventing a decrease in formability and more reliably controlling the number density of dispersed particles in the core material within a predetermined range. .
  • the core material preferably further contains Zn: more than 0 mass% and 1.0 mass% or less.
  • This aluminum alloy laminate can further increase the strength of the core material by containing a predetermined amount of Zn.
  • the core material preferably further contains Mg: more than 0 mass% and 1.0 mass% or less.
  • This aluminum alloy laminate can further increase the strength of the core material by containing a predetermined amount of Mg.
  • the aluminum alloy laminate according to the present invention preferably has a plate thickness of 0.2 mm or less.
  • This aluminum alloy laminated sheet can satisfy the requirement for reducing the weight of a heat exchanger such as an automobile by having a plate thickness of 0.2 mm or less.
  • the aluminum alloy laminate according to the present invention has a structure after heating equivalent to brazing of the aluminum alloy laminate, and the core material has an average crystal grain size in the rolling direction in a longitudinal section of the rolling direction of 50 ⁇ m or more.
  • the core material has an average aspect ratio of crystal grains (average crystal grain size in the rolling direction / average crystal grain size in the plate thickness direction) of 3.0 or more, and the core material is a small-angle particle having an inclination angle of 5 to 15 °.
  • the boundary ratio is preferably 10.0% or less.
  • This aluminum alloy laminated plate has a strength (strength after brazing) by further controlling the average crystal grain size, average aspect ratio, and low-angle grain boundary for the structure of the core material after heating equivalent to brazing. Further, the erosion resistance and fatigue characteristics can be improved more reliably.
  • the aluminum alloy laminate according to the present invention controls the strength of the core material by controlling the number density of dispersed particles within a predetermined range while controlling the amount of each element of the core material to a predetermined amount. Further, erosion resistance and fatigue characteristics can be improved.
  • An aluminum alloy laminated plate is a plate material used for a member of a heat exchanger such as an automobile, and is a plate material in which a sacrificial material is clad on at least one side surface of a core material.
  • a three-layer structure composed of a core material, a sacrificial material clad on one side surface of the core material, and a brazing material clad on the other side surface of the core material is used. Further, it may be a four-layer structure in which another layer is clad with an aluminum alloy material.
  • the aluminum alloy laminate preferably has a thickness of 0.2 mm or less.
  • Many conventional aluminum alloy laminated plates are set to a plate thickness exceeding 0.2 mm, and performance such as strength was ensured by setting the plate thickness thick, but with the trend of thinning, It becomes difficult to secure these performances, that is, when the plate thickness is set to 0.2 mm or less, the problem of deterioration of these performances clearly appears.
  • the aluminum alloy laminate according to the present invention has a remarkable effect (strength, erosion resistance, fatigue) that cannot be exhibited by the conventional aluminum alloy laminate when the plate thickness is 0.2 mm or less. (Improvement of characteristics).
  • the core material contains Mn: 0.5 to 1.8% by mass, Si: 0.4 to 1.5% by mass, Cu: 0.05 to 1.2% by mass or less, and Fe: more than 0% by mass 1.0% by mass or less, Ti: more than 0% by mass, and at least one of 0.3% by mass or less, with the balance being made of Al and inevitable impurities.
  • the core material has a number density of dispersed particles having a predetermined particle diameter of 20 to 80 particles / ⁇ m 3 .
  • the core material further contains at least one of Cr: 0.02 to 0.40 mass%, Zr: 0.02 to 0.40 mass%, Zn: 1.0 mass% or less, Mg: 1 It is preferable to further contain 0.0 mass% or less. The reason why the respective compositions of the core material of the aluminum alloy laminated plate according to the present invention and the number density of dispersed particles are numerically limited will be described below.
  • Mn is an element for distributing the dispersed particles having a predetermined size defined in the present invention in the aluminum alloy plate and improving the strength by dispersion strengthening without reducing the corrosion resistance of the core material. For this reason, in order to ensure the required intensity
  • Si dissolves in the matrix and provides the core material (heat exchanger member) with the necessary strength.
  • Si since Si may be consumed by the Al—Mn—Si based dispersed particles, Si is contained in an amount of 0.4% by mass or more from the viewpoint of securing the amount of dissolved Si.
  • Si also has the effect of increasing the strength of the core material, especially by forming the Al—Mn—Si based dispersed particles.
  • the Si content is less than 0.4% by mass, the above effect cannot be obtained sufficiently.
  • the Si content is too large, the melting point of the core material is lowered and the core material is melted during brazing due to an increase in the low melting point phase. Therefore, the Si content is 1.5% by mass. The following. Therefore, the Si content range is 0.4 to 1.5 mass%.
  • Cu 0.05 to 1.2% by mass
  • Cu is present in the aluminum alloy plate in a solid solution state, and is an element that improves the strength of the core material, and also improves the corrosion resistance on the brazing material side.
  • the Cu content is too high, coarse Cu-based compounds are likely to precipitate at the grain boundaries during cooling after brazing equivalent heating, and intergranular corrosion is likely to occur.
  • Corrosion resistance as a laminate after brazing equivalent heating Decreases. Further, since the melting point of the core material is lowered, the core material is melted during brazing. For this reason, content of Cu shall be 1.2 mass% or less.
  • the Cu content range is 0.05 to 1.2% by mass.
  • Fe more than 0% by mass, 1.0% by mass or less
  • Fe has an effect of increasing the brazing property of the core material while forming an intermetallic compound with Si to increase the strength of the core material.
  • the content is too large, the self-corrosion resistance of the core material is significantly reduced.
  • a coarse compound is formed, the moldability of a laminated board falls, and there exists a possibility that a laminated board may be cracked at the time of processes, such as an assembly
  • the lower limit with preferable Fe content is 0.01 mass%, More preferably, it is 0.05 mass%.
  • a preferable upper limit is 0.8 mass%, More preferably, it is 0.5 mass%.
  • Ti more than 0% by mass, 0.3% by mass or less
  • Ti has the function of forming a fine intermetallic compound in the aluminum alloy plate and improving the corrosion resistance of the core material.
  • the content range of Ti shall be more than 0 mass% and 0.3 mass% or less.
  • it precipitates in a layer form in a core material, suppresses a pitting corrosion progressing to a depth direction, and can add the core material potential noble by addition of Ti.
  • Ti has a low diffusion rate in an aluminum alloy and moves little during brazing
  • the addition of Ti maintains the potential difference between the core material and the brazing material, or the core material and the sacrificial material, and electrochemically forms the core material.
  • Ti precipitates in layers in the core material, it exerts the pinning effect of crystal grain boundary movement, suppresses the growth of crystal grains in the plate thickness direction, and promotes the growth in the rolling plane, thereby forming the layer This is effective in improving fatigue characteristics and erosion resistance.
  • the upper limit with preferable Ti content is 0.2 mass%, More preferably, it is 0.1 mass%.
  • the brazing property of a laminated board, corrosion resistance, a fatigue characteristic, and erosion resistance can be improved by making it contain in the said containing range.
  • Cr and Zr are elements for distributing precipitates (intermetallic compounds) having a size equivalent to a circle of a submicron level having an equivalent circle diameter of 100 nm or less in an aluminum alloy plate, and contain at least one of these. .
  • Zr has the greatest effect of distributing finely dispersed particles in the aluminum alloy plate. If Cr and Zr are less than the respective specified lower limit amounts, the finely dispersed particles cannot be sufficiently distributed, and the effect of improving the strength by dispersion strengthening cannot be obtained.
  • precipitates due to these additive elements are deposited during soaking and hot rolling, and are distributed in a layered manner in the rolling direction.
  • the effect of pinning the grain boundaries suppresses the growth of crystal grains in the plate thickness direction and promotes the growth in the rolling plane, thereby forming a layered crystal grain form and fatigue.
  • each element must be added in an amount not less than the specified lower limit amount.
  • Cr and Zr exceeding the specified upper limit amounts, a coarse compound is formed, the moldability of the laminate is reduced, and the laminate may be broken during processing such as assembly to a part shape.
  • Cr and Zr are contained, it is preferable that Cr is in a range of 0.02 to 0.4 mass% and Zr is in a range of 0.02 to 0.4 mass%.
  • Zn more than 0% by mass, 1.0% by mass or less
  • Zn has the effect of increasing the strength of the core material by precipitation strengthening.
  • Zn has the action of preferentially corroding the base phase potential
  • the content range of Zn is preferably more than 0 mass% and 1.0 mass% or less.
  • the lower limit with preferable Zn content is 0.01 mass%, More preferably, it is 0.05 mass%.
  • a preferable upper limit is 0.8 mass%, More preferably, it is 0.5 mass%.
  • Mg more than 0% by mass, 1.0% by mass or less
  • Mg has the effect of increasing the strength of the core material, but if its content is large, the influence of Mg diffusion into the brazing material becomes stronger, so brazing in the Nocolok brazing method using fluoride flux, etc.
  • the fluoride flux applied to the surface of the brazing material reacts with the Mg, and the brazing performance is significantly reduced. Therefore, when Mg is contained, the content range of Mg is preferably more than 0% by mass and 1.0% by mass or less.
  • the lower limit with preferable Mg content is 0.05 mass%, More preferably, it is 0.1 mass%.
  • the balance is Al and inevitable impurities
  • the remainder of the core material consists of Al and inevitable impurities.
  • V, B, etc. other than Cr, Zr, Zn, Mg which are selectively added as mentioned above are mentioned, for example.
  • the core material of the laminate before heating corresponding to brazing has a number density of dispersed particles having a particle size of 0.01 to 0.5 ⁇ m of 20 to 80 particles / ⁇ m 3 .
  • the dispersion described above It is necessary to satisfy the definition of the number density of the particles.
  • the accumulated strain disappears in the temperature raising process, but in the process, discontinuous recrystallization or continuous recrystallization occurs, and a new crystal grain structure is formed.
  • the finely dispersed particles formed by the originally added Mn element and the additionally added transition element are formed in layers in the rolling direction, the growth of crystal grains in the plate thickness direction is suppressed, Promotes growth of recrystallized grains in the rolling direction and width direction.
  • the dispersed particles in the title size range have a strong pinning effect on the grain boundary, and the larger the number density, the stronger the tendency to be distributed in layers in the rolling direction, and the effect of suppressing the growth of crystal grains in the plate thickness direction. Become prominent.
  • the growth of recrystallized grains in the rolling direction or the rolling width direction is promoted, resulting in coarsening of crystal grains on the rolling surface and an increase in aspect ratio, thereby contributing to an increase in fatigue life.
  • the number density of dispersed particles in the title size range is less than the lower limit, the effect of suppressing the growth of crystal grains in the plate thickness direction cannot be obtained, and the crystal grains tend to grow in the plate thickness direction, and the desired aspect is achieved. The ratio is not obtained and the fatigue life is reduced. If the dispersed particles in the title size range exceed the upper limit, these dispersed particles remain in a state close to the state before brazing equivalent heating even after heating equivalent to brazing, and thus are responsible for propagation of cracks during fatigue fracture.
  • the number density of dispersed particles having a particle size of 0.01 to 0.5 ⁇ m is preferably 30 to 70 particles / ⁇ m 3 .
  • the dispersed particles in the present invention are alloy elements such as Si, Cu, Mn, and Ti, intermetallic compounds of elements contained such as Fe and Mg, and intermetallic compounds of these elements and Al.
  • alloy elements such as Si, Cu, Mn, and Ti
  • intermetallic compounds of elements contained such as Fe and Mg
  • intermetallic compounds of these elements and Al are alloy elements such as Si, Cu, Mn, and Ti
  • intermetallic compounds of these elements and Al intermetallic compounds of these elements and Al.
  • the sacrificial material (sacrificial anticorrosive material, sacrificial material, lining material, skin material) and brazing material (brazing material) are not particularly limited.
  • a known sacrificial material aluminum alloy containing Zn such as a 7000 series aluminum alloy such as JIS7072 of Al—Zn composition that has been widely used conventionally, can be used.
  • a known brazing material aluminum alloy such as a 4000 series Al—Si based alloy brazing material such as JIS4043, 4045, 4047 of Al—Si composition which has been widely used conventionally can be used.
  • the heating equivalent to brazing in the present invention refers to heating that simulates brazing normally performed when a laminated plate is used as a heat exchanger member (tube material), and more specifically, 10% pre-strain. This is a heat treatment in which, after application, heating and holding at a temperature of 600 ° C. for 3 minutes and then cooling at an average cooling rate of 100 ° C./min.
  • the average crystal particle diameter, average aspect ratio, and the ratio of the low-angle grain boundary of the core material are as follows: The desired range is controlled.
  • disconnected along the rolling direction) of a rolling direction is 50 micrometers or more.
  • the average crystal grain size in the rolling direction is 50 ⁇ m or more, so that the effect of improving erosion resistance can be ensured.
  • the average grain size in the rolling direction is less than 50 ⁇ m, the erosion resistance is lowered.
  • the average crystal grain size in the rolling direction is preferably 80 ⁇ m or more, and more preferably 150 ⁇ m or more.
  • the average aspect ratio of crystal grains (average crystal grain size in rolling direction / average crystal grain size in plate thickness direction) is 3.0 or more.
  • the average aspect ratio is 3.0 or more, the crystal grain size in the plate thickness direction becomes smaller than the crystal grain size in the rolling direction (the number of crystal grains in the plate thickness direction increases), and the crack progresses during fatigue failure. Resistance and fatigue life (fatigue characteristics) is improved.
  • the average aspect ratio is less than 3.0, sufficient resistance to crack propagation at the time of fatigue failure cannot be obtained, and the fatigue life is reduced.
  • the average aspect ratio is preferably 4.0 or more.
  • the proportion of the low-inclination grain boundaries having an inclination angle of 5 to 15 ° is 10.0% or less.
  • the ratio of the low-angle grain boundary in the crystal grain boundary is 10.0% or less, the effect of the crystal grain boundary that serves as resistance to crack propagation at the time of fatigue fracture is sufficiently exhibited, and the fatigue life is improved.
  • the proportion of the low-angle grain boundaries exceeds 10.0%, sufficient resistance to crack propagation at the time of fatigue failure cannot be obtained, and the fatigue life is reduced.
  • the ratio of the low-angle grain boundary is preferably 8.0% or less.
  • a core material, a sacrificial material, and a brazing material which are materials of the aluminum alloy laminate, are manufactured.
  • the manufacturing method of the core material, the sacrificial material, and the brazing material is not particularly limited.
  • the core material can be manufactured by casting the aluminum alloy for the core material having the above composition at a predetermined casting temperature, then chamfering the obtained ingot to a desired thickness and performing a homogenization heat treatment. Further, after casting a sacrificial material aluminum alloy and a brazing material aluminum alloy having a predetermined composition at a predetermined casting temperature, the obtained ingot is chamfered to a desired thickness and subjected to a homogenization heat treatment.
  • the sacrificial material is stacked on one side of the core material, the brazing material is stacked on the other side, and the plate is clad. And while performing hot rolling and intermediate annealing with respect to the said board
  • the average increase in the high temperature region during the temperature rise is controlled.
  • the temperature rate is controlled within a predetermined range. Specifically, the temperature range of 400 ° C. or higher is increased at an average temperature increase rate of 20 ° C./hr or more and 200 ° C./hr or less. Fine precipitates formed in the temperature range of less than 400 ° C. in the temperature raising process are promoted in solid solution in the subsequent temperature raising process, but the diffusion rate of atoms is also high, and as a result, the precipitates are likely to become coarse. In the temperature range of 400 ° C.
  • the temperature is increased within this temperature increase rate range, so that the solid solution is promoted while suppressing the coarsening / remaining of the fine precipitates, increasing the amount of the solid solution, and before brazing.
  • the number density of precipitates in the desired size range at the stage of the laminate is the target range.
  • an average rate of temperature increase exceeding 200 ° C./hr consumes power very much, which is not practical from an industrial viewpoint.
  • a large number of fine precipitates formed at less than 400 ° C. are likely to be coarsened due to a decrease in the temperature increase rate.
  • the number density of precipitates in a desired size range is lower than the target range. More preferably, the temperature range of 400 ° C. or higher is preferably increased at an average temperature increase rate of 30 ° C./hr or more and 200 ° C./hr or less.
  • the soaking temperature to 450 ° C. or higher, coarse Mg 2 Si, Al—Mg—Cu—Si compounds, and the like are dissolved, and the amount of solid solution in the matrix is increased.
  • the greater the amount of solid solution in the matrix the less the development of a specific recrystallization orientation (for example, the Cube orientation that develops remarkably in pure aluminum, etc.) during recrystallization that occurs during the subsequent hot rolling process. It works in the direction of relative randomization of the crystal orientation distribution.
  • a specific recrystallization orientation for example, the Cube orientation that develops remarkably in pure aluminum, etc.
  • the ratio of the low-angle grain boundary of the core material (collected sample) after brazing equivalent heating is reduced to the target range.
  • the soaking temperature is less than 450 ° C, the amount of solid solution in the matrix decreases, the orientation randomizing effect in the hot rolling process decreases, and finally the core material after heating corresponding to brazing (collecting)
  • the ratio of the small-angle grain boundary of the sample becomes larger than the target range. More preferably, the soaking temperature is 480 ° C. or higher. In terms of the aspect ratio of the crystal grains after brazing equivalent heating, if the soaking temperature reaches 450 ° C.
  • the fine dispersed particles that are formed are formed in layers in the rolling direction, so that crystals with a predetermined aspect ratio are within a predetermined soaking temperature range.
  • the grains are formed after the brazing equivalent heating step, when the soaking temperature reaches 550 ° C. or more, the coarsening of the precipitate occurs, the number density of the precipitate decreases, and the title aspect ratio falls within the predetermined range. Aspect ratio is reduced. Therefore, it is preferably less than 550 ° C. from the viewpoint of the aspect ratio of the crystal grains after brazing equivalent heating.
  • cold rolling, annealing, etc. are performed after hot rolling, and the tempering is performed in the H1n process (intermediate annealing is performed during the cold rolling, and finally cold rolling is performed), and the H2n process (during cold rolling) No intermediate annealing is performed, and final annealing is performed after cold rolling.
  • the laminated plate is bent in the width direction by a forming roll or the like, and formed into a flat tube so that the skin material is disposed on the inner surface side of the tube. Then, the tube material can be manufactured by forming it into a flat tubular shape by electro-welding welding or the like.
  • a flat tubular tube material (laminated member) is manufactured (assembled) as a heat exchanger such as a radiator integrally with brazing radiating fins and other members such as a header by brazing. .
  • a portion where the tube material (laminated member) and the heat radiating fin are integrated is also referred to as a core of the heat exchanger.
  • brazing is performed by heating to a high temperature of 585 to 620 ° C., preferably 590 to 600 ° C., which is equal to or higher than the solidus temperature of the brazing material.
  • a flux brazing method, a noclock brazing method using a non-corrosive flux, etc. are generally used.
  • the number density of dispersed particles per unit volume is determined by measuring and calculating the number density of dispersed particles relative to the TEM observation visual field area by measuring the film thickness t of the TEM observation sample by a known contamination spot method. It is converted into number density.
  • the structure observation by FE-TEM at the central part of the thickness of the core material is performed so that the total area of the observation field is 4 ⁇ m 2 or more at one central part of the thickness, and this is performed in the width direction of the plate (the vertical direction of rolling). Observe at 10 points at an appropriate distance.
  • the particle diameter of the dispersed particles in the present invention is the diameter of the center of gravity, and is a size (circular diameter: equivalent circle diameter) when converted to an equivalent circular diameter of the dispersed particles per dispersed particle.
  • the crystal grain size after brazing equivalent heating is the crystal grain size in the rolling direction in the longitudinal section of the core material in the rolling direction (cross section of the plate cut along the rolling direction).
  • the grain size aspect ratio of the core material after brazing equivalent heating is the crystal grain size in the rolling direction at the rolling surface at the center of the thickness of the core material, and the crystal grain size in the thickness direction in the longitudinal section of the core material in the rolling direction. And calculated as a ratio.
  • the crystal grain size in the rolling direction of the rolled surface at the center in the thickness direction of the core material is determined by mechanical polishing and electrolytic polishing of the rolled surface at the center in the thickness direction of the core material (sampled sample) after brazing equivalent heating.
  • the section length is measured as an individual crystal grain size using a 50 ⁇ optical microscope. This is measured at 10 arbitrary locations, and the average crystal grain size is calculated.
  • one measurement line length is 0.5 mm or more, and three measurement lines per one visual field are used, and five visual fields are observed per one measurement location.
  • the average crystal grain size measured sequentially for each measurement line is averaged sequentially per field of view (3 measurement lines), 5 fields of view per 1 measurement location, 10 measurement locations, and the average crystal referred to in the present invention.
  • the particle size is averaged sequentially per field of view (3 measurement lines), 5 fields of view per 1 measurement location, 10 measurement locations, and the average crystal referred to in the present invention.
  • the crystal grain size in the plate thickness direction in the longitudinal section of the core material in the rolling direction is obtained by adjusting the longitudinal section in the rolling direction of the core material (collected sample) of the laminated sheet after brazing equivalent heating by mechanical polishing and electrolytic polishing. Observe using a 50 ⁇ optical microscope. At this time, a straight line is drawn in the plate thickness direction, and the section length of each crystal grain located on this straight line is measured by a cutting method (line intercept method) in which each crystal grain size is measured. This is measured at 10 arbitrary locations, and the average crystal grain size is calculated. At this time, the length of one measurement line is 0.1 mm or more, and five measurement lines per one visual field are used, and five visual fields are observed per one measurement location.
  • the average grain size measured sequentially for each measurement line is averaged sequentially per field of view (5 measurement lines) per 5 fields of view / 1 measurement location, 10 measurement locations, and average grain size in the plate thickness direction.
  • the diameter is set as the average aspect ratio said by this invention by taking ratio of the average crystal grain diameter of a rolling direction mentioned above and the average crystal grain diameter of a plate
  • the ratio of the low-angle grain boundary in the present invention is measured by a backscattered electron diffraction image EBSD (Electron Microscope) by means of a scanning electron microscope SEM (Scanning Electron Microscope) or a field emission scanning electron microscope FE-SEM (Field Emission Scanning Electron Microscope). Measurement is performed by a crystal orientation analysis method using a diffraction pattern). Specifically, the rolled surface at the center in the thickness direction of the core material (collected sample) in the laminated plate after brazing equivalent heating is subjected to mechanical polishing and buff polishing, and then subjected to electrolytic polishing to adjust the surface.
  • EBSD Backscattered electron diffraction image EBSD
  • SEM Sccanning Electron Microscope
  • FE-SEM Field Emission Scanning Electron Microscope
  • the SEM and FE-SEM used for the measurement may be, for example, devices manufactured by JEOL, SII Nanotechnology, Hitachi High-Technologies, or other manufacturers.
  • EBSD and its analysis software are also available from TSL. “OIM Analysis” manufactured by HKL, “Channel 5” manufactured by HKL, or any device or analysis software of any other manufacturer may be used.
  • EBSD measurement conditions are as follows: EBSD measurement is performed with a measurement step of 4 ⁇ m in a measurement field of 1000 ⁇ m ⁇ 1000 ⁇ m at a magnification of 25 times of SEM or FESEM. In the EBSD map obtained by measurement, it is necessary to first determine the grain boundaries.
  • the crystal orientation of each measurement point is analyzed in the data of the two-dimensionally measured crystal structure, and the boundary between the measurement points where the orientation difference between adjacent measurement points is 5 ° or more is defined as the grain boundary. That is, crystals having an orientation difference of less than 5 ° are regarded as substantially one crystal, and in this measurement, one crystal grain means a structure surrounded by a grain boundary having an orientation difference of 5 ° or more. . Then, in the structure measured and analyzed in two dimensions, a boundary line (grain boundary) connecting the three boundaries of grain boundaries is regarded as a grain boundary having one specific orientation difference.
  • the ratio of crystal grain boundaries (small tilt grain boundaries) whose orientation difference is 5 ° or more and 15 ° or less in all crystal grain boundaries is obtained.
  • the average value of the ratio of the low-inclination grain boundaries obtained at each of the ten locations on the rolled surface of the center portion of the core material thickness where the title measurement and analysis are performed is obtained.
  • the production of the laminate was as follows.
  • An aluminum alloy core material ingot was manufactured by melting and casting a 3000 series aluminum alloy composition having the composition of A to V shown in Table 1. As shown in Table 2, only the core material ingot was subjected to various soaking temperatures to control the solid solution amount of the alloy elements. Thereafter, a JIS7072 aluminum alloy plate made of an Al-1 wt% Zn composition is used as a sacrificial anticorrosive material on one surface of the core material ingot, and a JIS4045 aluminum alloy plate made of an Al-10 wt% Si composition is used as a brazing material on the other surface. Each was clad.
  • clad plates were cold-rolled while being subjected to hot rolling and intermediate annealing to obtain a laminated plate of H14 tempered material or H24 tempered material.
  • the soaking temperature is varied in various ways together with the average heating rate during soaking, the amount of solid solution of the alloy element is controlled, and the lamination before brazing A plate was made.
  • holding during soaking was performed for 6 hours, and holding during reheating was performed for 2 hours. Except for some examples (Comparative Example No. 31), roughening after hot rolling was omitted.
  • annealing was performed at 400 ° C. for 4 hours in a batch furnace as an intermediate annealing condition.
  • the temperature raising / lowering speed at that time was 40 degreeC / hr.
  • Example No. 1 to 13 Comparative Example No.
  • the tempering steps 19 to 28, 30, and 32 are H14 tempering steps. 14-18, Comparative Example No.
  • the tempering steps 29 and 31 are H24 tempering steps.
  • the thickness of the core material was 0.14 mm, and the thickness of both the brazing material and the sacrificial material laminated on each surface of the core material was in the range of 20 to 30 ⁇ m.
  • comparative example No. No. 30 is a laminate produced by the method described in Patent Document 1
  • Comparative Example No. No. 31 is a laminate produced by the method described in Patent Document 2, and Comparative Example No. About 32, it is the laminated board manufactured by the method described in patent document 3.
  • the time from the end of reheating to the start of hot rolling was set to 30 minutes, and 450 ° C. ⁇ 3 hr heat treatment and 350 ° C. ⁇ 10 hr heat treatment were performed as rough conditions.
  • the final annealing after cold rolling was performed at a rate of temperature increase of 20 ° C./hr.
  • ⁇ Other measured values of heartwood> The number density of the dispersed particles of the core material, the average crystal grain size, the average aspect ratio, and the proportion of the low-angle grain boundaries were measured based on the measurement conditions described above.
  • ⁇ Erosion resistance> About each example, the erosion depth was measured and erosion resistance was evaluated. A commercially available non-corrosive flux of 3 to 5 g / m 2 was applied to the laminate before heating corresponding to brazing, and kept at 600 ° C. for 5 minutes or more in an atmosphere having an oxygen concentration of 200 ppm or less. Produced. Next, a longitudinal section in the rolling direction of the laminated plate subjected to heating corresponding to brazing was pretreated by mechanical polishing and electrolytic etching, and then observed with five fields of view using a 100 ⁇ optical microscope. Within the five fields of view, the penetration depth (erosion depth) of the brazing material into the core material was measured, and the erosion depth ( ⁇ m) was determined as an average value thereof.
  • the fatigue life was evaluated at room temperature using a known swing-type plane bending fatigue tester. That is, a test piece of 10 mm ⁇ 60 mm ⁇ sheet thickness was cut out from each laminated plate after the brazing equivalent heating so as to be parallel to the rolling direction, thereby preparing a test piece. One end of this test piece was attached to the fixed side of a single swing plane bending fatigue tester. And the other end of this test piece was clamped with the knife edge of the drive side. In the bending fatigue test, the plane bending of the test piece was repeatedly performed so that the swinging width was constant (5 mm in the vertical direction) while changing the test piece set length by moving the position of the knife edge. .
  • the test piece set length was adjusted so that the additional bending stress had a maximum strain of about 0.009 at the fracture portion. Under such conditions, the number of repetitions of plane bending until each test piece broke was determined. In the evaluation, the fatigue life was very good when it was 12,000 times or more: A fatigue life was good when it was 10,000 times or more: ⁇ The fatigue life was insufficient when it was less than 10,000 times: x. Since the strain gauge cannot be applied directly to the fracture site, the strain gauge is affixed to two or three predetermined positions slightly apart from the fracture site, and the strain gauge for each test piece length. The strain amount at the fracture site was estimated by interpolating the strain amount at the fracture site from the strain value, and the load stress, that is, the test piece set length was adjusted based on this. These results are shown in Table 2.
  • Example No. In order to satisfy the requirements of the present invention, the laminates 1 to 18 had a tensile strength of 180 MPa or more, an erosion depth of 40 ⁇ m or less, and excellent fatigue properties. That is, it was found that a laminated board satisfying the requirements of the present invention is excellent in strength (strength after brazing), erosion resistance, and fatigue characteristics. On the other hand, Comparative Example No. Since the laminates 19 to 32 did not satisfy any of the requirements defined in the present invention, they were not evaluated well.
  • Comparative Example No. 19 Comparative Example No. In No. 19, the average heating rate during soaking (high temperature region: 400 ° C. or higher) was too slow, so the number density of dispersed particles before brazing equivalent heating, the average aspect ratio after brazing equivalent heating, small The ratio of the tilt grain boundaries did not fall within the range defined by the present invention. As a result, the tensile strength was less than 180 MPa and the fatigue characteristics were insufficient.
  • the core material composition does not satisfy the requirements of the present invention, the number density of dispersed particles before brazing equivalent heating, the average crystal grain size after brazing equivalent heating, the average aspect ratio, and the small inclination angle At least one of the grain boundary ratios did not fall within the range defined by the present invention.
  • the tensile strength was less than 180 MPa and the fatigue characteristics were insufficient (and the erosion depth exceeded 40 ⁇ m).
  • the laminated plate 30 is a laminated plate produced by the method described in Patent Document 1, and is not subjected to soaking unlike the conditions for producing the laminated plate of the present invention. Therefore, Comparative Example No.
  • the laminated plate of 30 did not fall within the range defined by the present invention in terms of the number density of dispersed particles before brazing equivalent heating, the average aspect ratio after brazing equivalent heating, and the low-angle grain boundaries. As a result, the tensile strength was less than 180 MPa and the fatigue characteristics were insufficient.
  • the laminated board 31 is a laminated board produced by the method described in Patent Document 2, and is subjected to roughening under predetermined conditions, unlike the conditions for producing the laminated board of the present invention. Therefore, Comparative Example No.
  • the number 31 of the laminated plate before the brazing equivalent heating and the average aspect ratio after the brazing equivalent heating did not fall within the range defined by the present invention. As a result, the tensile strength was less than 180 MPa and the fatigue characteristics were insufficient.
  • Comparative Example No. 32 is a laminate produced by the method described in Patent Document 3, and is not described in terms of the average heating rate during soaking, but has the same mechanical properties as Patent Document 3.
  • the average heating rate of 400 ° C. or higher was 15 ° C./hr. This condition is outside the condition range of the present invention.
  • the number 32 of the dispersed particles before heating equivalent to brazing, the average aspect ratio after heating equivalent to brazing, and the ratio of low-angle grain boundaries did not fall within the range defined by the present invention.
  • the tensile strength was less than 180 MPa and the fatigue characteristics were insufficient.
  • the Si addition amount of the core material is regulated to 0.2% by mass or less, which is less than the preferable Si addition amount range of the present application. Therefore, Si element does not sufficiently dissolve, and the number density of dispersed particles before heating equivalent to brazing, the average crystal grain size after heating equivalent to brazing, the aspect ratio, and the ratio of the low-angle grain boundaries are at least One seems not to fall within the scope defined by the present invention. As a result, it appears that at least one of tensile strength, fatigue characteristics, and erosion depth is not good.
  • the aluminum alloy laminate of the present invention is excellent in strength after brazing, erosion resistance, fatigue characteristics, and the like, and is useful for heat exchangers such as automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

心材の少なくとも一側面に犠牲材をクラッドしたアルミニウム合金積層板であって、前記心材は、Mn:0.5~1.8質量%、Si:0.4~1.5質量%、Cu:0.05~1.2質量%を含有するとともに、Fe:0質量%超、1.0質量%以下、Ti:0質量%超、0.3質量%以下のうち少なくとも1種を含有し、残部がAlおよび不可避的不純物であり、かつ、粒径0.01~0.5μmの分散粒子の数密度が20~80個/μmである。

Description

アルミニウム合金積層板
 本発明は、自動車等の熱交換器に使用されるアルミニウム合金積層板に関する。
 一般に、自動車用熱交換器であるラジエータ、エバポレータ、コンデンサ等の冷媒通路に用いるチューブ材として、心材の片面または両面にろう材、犠牲材をクラッドした種々のアルミニウム合金積層板(以下、適宜「積層板」という)が使用されている。
 この積層板は、熱交換器のチューブ材として好適に適用されるために、所定以上の強度、耐食性、耐エロージョン性、疲労特性等を有する必要があり、この点に着目した技術が、これまでにも数多く提案されている。
 例えば、特許文献1には、心材において所定の大きさ(0.02~0.2μm)の金属間化合物の数密度を10~2000個/μmに制限した積層板が開示されている。この技術によると、金属間化合物の数密度を制限することにより、積層板のろう付け後強度、耐食性を向上させることができる。
 また、特許文献2には、心材において所定の大きさ(0.01~0.1μm)の金属間化合物を2μm×2μm視野で5個以下に制限した積層板が開示されている。この技術によると、金属間化合物の所定視野における数を制限することにより、積層板の成形性を損なうことなく耐エロージョン性を向上させることができる。
 また、特許文献3には、心材において0.1~0.5μmの範囲の析出物の平均数密度を150個/μm以下とした積層板が開示されている。この技術によると、析出物の平均数密度を制限することにより、積層板の疲労特性を改善させることができる。
 また、特許文献4には、心材においてCuを0.5質量%超え1.0質量%以下に制限し、圧延方向の結晶粒径を150~200μmに制限した積層板が開示されている。この技術によると、心材のCu含有量および結晶粒径を制御することにより、積層板の疲労特性を向上させることができる。
日本国特開平8-246117号公報 日本国特開2002-126894号公報 日本国特開2009-191293号公報 日本国特開2003-82427号公報
 しかしながら、近年における自動車等の熱交換器の軽量化の流れの中で、さらなるチューブ材の薄肉化(現状0.2mm超え→0.2mm以下)が求められており、当該薄肉化に伴う、強度および耐エロージョン性の低下を防止する必要がある。つまり、積層板の強度および耐エロージョン性のさらなる向上が求められている。
 加えて、自動車等の熱交換器に使用される冷媒の圧力は、従来よりも高く設定されるようになってきており、熱交換器のチューブ材はこのような厳しい使用条件に耐え得るよう、疲労特性(疲労寿命)についてもさらなる向上が求められている。
 さらに、疲労特性の向上といっても、熱交換器のチューブ材の弾性域内での疲労寿命(詳細には、弾性域内での繰り返し応力下で示される疲労寿命)だけでなく、さらにひずみ量を大きくし、チューブ材の塑性域内での疲労寿命(詳細には、塑性域内での繰り返し応力下で示される疲労寿命)を含めた疲労寿命を向上させることが重要である。しかし、このような塑性域内での疲労寿命を含めた疲労特性を向上させる手段等については不明な点が多かった。
 なお、後段において、本発明と比較しつつ詳述するが、前記した各特許文献に係る積層板は、所定の製造工程により製造されていることから、今後の自動車等の熱交換器の積層板に要求されるようなレベルの強度および耐エロージョン性については十分に発揮し得ないと考える。
 また、前記した各特許文献に係る積層板は、板厚が厚く設定(250μm以上)されているものが多く、この程度の板厚に設定することで剛性等をある程度確保することができていたが、薄肉化、冷媒の高圧力化の流れの中では、剛性等が低下することは避けられず、当然、疲労特性(疲労寿命)が低下し、今後の自動車等の熱交換器の積層板に要求されるようなレベルの疲労特性を有さないと考える。
 本発明はかかる点に鑑みてなされたものであって、強度(ろう付け後強度)、耐エロージョン性および疲労特性に優れたアルミニウム合金積層板を提供することを課題とする。
 本発明者らは、ろう付け相当加熱前の分散粒子の数密度が、ろう付け相当加熱後の平均結晶粒径、平均アスペクト比および小傾角粒界の割合に大きな影響を与え、最終的には、強度、耐エロージョン性および疲労特性を左右することを見出し、本発明を創出した。
 すなわち、前記した課題を解決するために本発明に係るアルミニウム合金積層板は、心材の少なくとも一側面に犠牲材をクラッドしたアルミニウム合金積層板であって、前記心材は、Mn:0.5~1.8質量%、Si:0.4~1.5質量%、Cu:0.05~1.2質量%以下を含有するとともに、Fe:0質量%超、1.0質量%以下、Ti:0質量%超、0.3質量%以下のうち少なくとも1種を含有し、残部がAlおよび不可避的不純物であり、前記心材は、粒径0.01~0.5μmの分散粒子の数密度が20~80個/μmであることを特徴とする。
 このアルミニウム合金積層板は、心材の各元素の量を所定量に制御しつつ、分散粒子の数密度を所定範囲に制御することにより、強度(ろう付け後強度)、耐エロージョン性および疲労特性を向上させることができる。
 また、本発明に係るアルミニウム合金積層板は、前記心材が、Cr:0.02~0.4質量%、Zr:0.02~0.4質量%のうち少なくとも1種をさらに含有することが好ましい。
 このアルミニウム合金積層板は、Cr、Zrを所定量含有させることにより、成形性の低下を防止することができるとともに、心材中の分散粒子の数密度をより確実に所定範囲に制御することができる。
 また、本発明に係るアルミニウム合金積層板は、前記心材が、Zn:0質量%超、1.0質量%以下をさらに含有することが好ましい。
 このアルミニウム合金積層板は、Znを所定量含有させることにより、心材の強度をさらに高めることができる。
 また、本発明に係るアルミニウム合金積層板は、前記心材が、Mg:0質量%超、1.0質量%以下をさらに含有することが好ましい。
 このアルミニウム合金積層板は、Mgを所定量含有させることにより、心材の強度をさらに高めることができる。
 また、本発明に係るアルミニウム合金積層板は、板厚が0.2mm以下であることが好ましい。
 このアルミニウム合金積層板は、板厚が0.2mm以下であることにより、自動車等の熱交換器の軽量化の要求を満たすことができる。
 また、本発明に係るアルミニウム合金積層板は、前記アルミニウム合金積層板のろう付け相当の加熱後の組織として、前記心材は、圧延方向の縦断面における圧延方向の平均結晶粒径が50μm以上であり、前記心材は、結晶粒の平均アスペクト比(圧延方向の平均結晶粒径/板厚方向の平均結晶粒径)が3.0以上であり、前記心材は、傾角5~15°の小傾角粒界の割合が10.0%以下であることが好ましい。
 このアルミニウム合金積層板は、ろう付け相当の加熱後の心材の組織について、平均結晶粒径と、平均アスペクト比と、小傾角粒界とを、さらに制御することにより、強度(ろう付け後強度)、耐エロージョン性および疲労特性をより確実に向上させることができる。
 本発明に係るアルミニウム合金積層板は、心材の各元素の量を所定量に制御しつつ、心材の組織について、分散粒子の数密度を所定範囲に制御することにより、強度(ろう付け後強度)、耐エロージョン性および疲労特性を向上させることができる。
 以下、実施形態に係るアルミニウム合金積層板について、詳細に説明する。
≪アルミニウム合金積層板≫
 アルミニウム合金積層板(ブレージングシート)とは、自動車等の熱交換器の部材等に用いられる板材であり、心材の少なくとも一側面に犠牲材をクラッドした板材である。なお、心材と、心材の一側面にクラッドした犠牲材と、心材の他側面にクラッドしたろう材と、から構成される3層構造のものが一般的であるが、心材とろう材との間にさらにもう1層、アルミニウム合金材をクラッドした4層構造のものであってもよい。
 そして、アルミニウム合金積層板は、板厚が0.2mm以下であることが好ましい。
 従来のアルミニウム合金積層板は、0.2mmを超える板厚に設定されているものが多く、板厚を厚く設定することにより強度等の性能を担保していたが、薄肉化の流れに伴い、これら性能の確保が困難となる、つまり、板厚を0.2mm以下とすることにより、これら性能の低下という課題が明確に現れることとなる。
 言い換えると、本発明に係るアルミニウム合金積層板は、板厚が0.2mm以下である場合に、従来のアルミニウム合金積層板では発揮することができなかった顕著な効果(強度、耐エロージョン性、疲労特性の向上)を発揮することができる。
<心材>
 心材は、Mn:0.5~1.8質量%、Si:0.4~1.5質量%、Cu:0.05~1.2質量%以下を含有するとともに、Fe:0質量%超、1.0質量%以下、Ti:0質量%超、0.3質量%以下のうち少なくとも1種を含有し、残部がAlおよび不可避的不純物からなる。そして、心材は、所定の粒径の分散粒子の数密度が20~80個/μmである。
 また、心材は、Cr:0.02~0.40質量%、Zr:0.02~0.40質量%のうち少なくとも1種をさらに含有し、Zn:1.0質量%以下、Mg:1.0質量%以下、をさらに含有することが好ましい。
 以下に、本発明に係るアルミニウム合金積層板の心材の各組成、分散粒子の数密度を数値限定した理由について説明する。 
(Mn:0.5~1.8質量%)
 Mnは、本発明が規定する所定サイズの分散粒子をアルミニウム合金板中に分布させ、心材の耐食性を低下させることなく、分散強化によって強度を向上させるための元素である。このため、ろう付け相当加熱前および後の積層板としての必要な強度を確保するためには、Mnを0.5質量%以上含有させる。
 一方、Mnの含有量が多過ぎると、塑性変形時のクラック発生の起点となったり、粗大なAl-Fe-Mn-Si系晶出物の数密度が増大したりしてしまうことにより、積層板の成形性が低下し、部品形状への組付け等の加工時に積層板が割れてしまう虞がある。このため、Mnの含有量は1.8質量%以下とする。
 したがって、Mnの含有量範囲は0.5~1.8質量%の範囲とする。 
(Si:0.4~1.5質量%)
 Siは、マトリックスに固溶して、心材(熱交換器用部材)に必要な強度をもたらす。
 ただ、Siは、Al-Mn-Si系分散粒子に消費される分もあるので、固溶Si量を確保する意味からもSiを0.4質量%以上含有させる。また、Siは、特に前記Al-Mn-Si系分散粒子を形成することでも、心材の強度を高める効果もある。ここで、Siの含有量が0.4質量%未満では、前記効果が十分に得られない。一方、Siの含有量が多過ぎると、心材の融点を低下させると共に、低融点相の増加に起因してろう付け時に心材の溶融が生じてしまうため、Siの含有量は1.5質量%以下とする。
 したがって、Siの含有量範囲は0.4~1.5質量%の範囲とする。 
(Cu:0.05~1.2質量%) 
 Cuは、固溶状態にてアルミニウム合金板中に存在し、心材の強度を向上させる元素であり、また、ろう材側の耐食性も向上させる。
 しかし、Cu含有量が多過ぎると、ろう付け相当加熱後の冷却時に粗大なCu系化合物が結晶粒界に析出して粒界腐食が起こりやすくなり、ろう付け相当加熱後の積層板としての耐食性が低下する。また、心材の融点を低下させるため、ろう付け時に心材の溶融が生じてしまう。このため、Cuの含有量は1.2質量%以下とする。また、ろう付け相当加熱前および後の積層板としての必要な強度を確保するためには、Cuを0.05質量%以上含有させる必要がある。
 したがって、Cuの含有量範囲は0.05~1.2質量%の範囲とする。 
(Fe:0質量%超、1.0質量%以下)
 Feは、不純物としてスクラップをアルミニウム合金溶解原料として使用する限り、心材に必然的に含まれる。Feには、Siと金属間化合物を形成して心材の強度を高めるとともに、心材のろう付け性を高める効果もある。しかし、その含有量が多すぎると、心材の自己耐食性が著しく低下する。また、粗大な化合物を形成し、積層板の成形性が低下し、部品形状への組付け等の加工時に積層板が割れてしまう虞がある。
 したがって、Feの含有量範囲は0質量%超、1.0質量%以下とする。
 Fe含有量の好ましい下限値は0.01質量%、より好ましくは0.05質量%である。また、好ましい上限値は0.8質量%、より好ましくは0.5質量%である。
(Ti:0質量%超、0.3質量%以下)
 Tiは、アルミニウム合金板中で微細な金属間化合物を形成し、心材の耐食性を向上させる働きを有する。しかし、Tiの含有量が多過ぎると、粗大な化合物を形成するため、積層板の成形性が低下し、部品形状への組付け等の加工時に積層板が割れてしまう虞がある。
 したがって、Tiの含有量範囲は、0質量%超、0.3質量%以下とする。 
 なお、Tiの添加によって、心材中に層状に析出し、孔食が深さ方向へ進行することを抑制するとともに、Tiの添加により心材電位を貴に移行させることができる。また、Tiはアルミニウム合金において拡散速度が小さく、ろう付け時の移動も少ないため、Tiを添加することは、心材とろう材、または心材と犠牲材の電位差を維持して、電気化学的に心材を防食する効果を奏する。また、Tiは心材中に層状に析出するために、結晶粒界移動のピン止め効果を発揮し、結晶粒の板厚方向の成長を抑制し、圧延面内の成長を促進することで、層状の結晶粒形態を形成させ、疲労特性および耐エロージョン性向上に有効に働く。このため、ろう付け相当加熱前および後の積層板としての必要な耐食性、疲労特性および耐エロージョン性を確保するために、0.03%以上含有させることが好ましい。Ti含有量の好ましい上限値は0.2質量%、より好ましくは0.1質量%である。
 なお、前記Feと前記Tiについては、前記含有範囲において少なくとも1種を含有させることにより、積層板のろう付け性、耐食性、疲労特性および耐エロージョン性を向上させることができる。
(Cr:0.02~0.4質量%、Zr:0.02~0.4質量%)
 Cr、Zrは、円相当直径が100nm以下のサブミクロンレベルの大きさの析出物(金属間化合物)をアルミニウム合金板中に分布させるための元素であり、これらのうちの少なくとも1種を含有させる。このうちでも、特にZrが、微細分散粒子をアルミニウム合金板中に分布させる効果が最も大きい。Cr、Zrが各規定下限量未満では、微細分散粒子を充分分布させることができずに、分散強化による強度向上効果が得られない。また、これらの添加元素による析出物は、均熱及び熱間圧延時に析出し、圧延方向に層状に分布する形態となる。したがって、Tiと同様に、結晶粒界をピン止めする効果によって、結晶粒の板厚方向の成長を抑制し、圧延面内の成長を促進することで、層状の結晶粒形態を形成させ、疲労特性及びエロージョン性向上に有効に働く。その効果を得るためには、いずれの元素も各規定下限量以上の添加が必要である。
 一方、Cr、Zrが各規定上限量を超えて多すぎると、粗大な化合物を形成し、積層板の成形性が低下し、部品形状への組付け等の加工時に積層板が割れてしまう虞がある。
 したがって、Cr、Zrを含有させる場合、Crは0.02~0.4質量%、Zrは0.02~0.4質量%の各範囲とするのが好ましい。
(Zn:0質量%超、1.0質量%以下)
 Znは、析出強化によって、心材の強度を高める効果がある。ただし、Znは母相の電位を卑にして優先的に腐食する作用があるため、心材へのZnの含有量が多いと、優先腐食層として設けられた犠牲材と心材の電位差が小さくなり、耐食性が劣化する。
 したがって、Znを含有させる場合、Znの含有範囲は0質量%超、1.0質量%以下とするのが好ましい。
 Zn含有量の好ましい下限値は0.01質量%、より好ましくは0.05質量%である。また、好ましい上限値は0.8質量%、より好ましくは0.5質量%である。
(Mg:0質量%超、1.0質量%以下)
 Mgは、心材の強度を高める効果もあるが、その含有量が多いと、ろう材へのMgの拡散の影響が強くなるために、フッ化物系フラックスを用いるノコロックろう付け法などにおいて、ろう付け時にろう材表面に塗布されるフッ化物系フラックスと当該Mgが反応し、ろう付け性が著しく低下する。
 したがって、Mgを含有させる場合、Mgの含有量範囲は、0質量%超、1.0質量%以下とするのが好ましい。
 なお、Mgによってろう付け性が低下するような熱交換器向けの積層板には、Mgの含有量は0.8質量%以下に規制することが好ましい。
 Mg含有量の好ましい下限値は0.05質量%、より好ましくは0.1質量%である。
(残部がAlおよび不可避的不純物)
 心材の成分は前記の他に残部がAlおよび不可避的不純物からなる。なお、不可避的不純物としては、例えば、前記した選択的に添加するCr、Zr、Zn、Mgの他、V、B等が挙げられる。
(分散粒子の数密度)
 ろう付け相当加熱前の積層板の心材は、粒径0.01~0.5μmの分散粒子の数密度が20~80個/μmである。
 後述するろう付け相当加熱後の積層板(熱交換器用部材の段階)の心材について規定した組織とするためには、ろう付け相当加熱前の積層板(素材の段階)の心材において、前記した分散粒子の数密度の規定を満たすことが必要である。
 ろう付け相当加熱時には、その昇温過程において、蓄積されたひずみが消滅するが、その過程において、不連続再結晶或いは連続再結晶が発生し、新たな結晶粒組織が形成される。その際、元々添加されているMn元素や、付加的に添加する遷移元素によって形成される微細な分散粒子が圧延方向に層状に形成されるため、板厚方向の結晶粒の成長は抑制され、圧延方向や幅方向の再結晶粒の成長を促進する。標記サイズ範囲の分散粒子は、粒界のピン止め効果が強く、その数密度が大きいほど、圧延方向に層状に分布する傾向が強くなり、板厚方向への結晶粒の成長を抑制する効果が顕著になる。その結果、圧延方向或いは圧延幅方向への再結晶粒の成長が促進され、圧延面の結晶粒の粗大化及びアスペクト比の増大をもたらし、疲労寿命の増大に寄与する。標記サイズ範囲の分散粒子の数密度が下限未満の場合は、板厚方向への結晶粒の成長を抑制する効果が得られず、結晶粒は板厚方向にも成長しやすくなり、所望のアスペクト比が得られず、疲労寿命が低下する。標記サイズ範囲の分散粒子が上限を超えると、ろう付け相当加熱後においてもこれらの分散粒子は、ろう付け相当加熱前の状態に近い状態で残存するため、疲労破壊時のクラックの伝搬を担う分散粒子の平均数密度が増大し、この挙動を助長することとなることから、疲労破壊の伝搬が支配的な場合の疲労寿命が短くなる。
 なお、上記効果を確実なものとするためには、粒径0.01~0.5μmの分散粒子の数密度が30~70個/μmであることが好ましい。
 ここで、本発明における分散粒子とは、Si、Cu、Mn、Tiなどの合金元素あるいはFe、Mgなどの含有される元素同士の金属間化合物や、これら元素とAlとの金属間化合物であって、形成元素(組成)にはよらず、組織観察によって、上記大きさから識別できる金属間化合物の総称である。
<犠牲材およびろう材>
 犠牲材(犠牲防食材、犠材、内張材、皮材)およびろう材(ろう付け材)については、特に限定されない。
 犠牲材としては、例えば、従来から汎用されているAl-Zn組成のJIS7072などの7000系アルミニウム合金等、Znを含む公知の犠牲材アルミニウム合金が使用できる。
 ろう材としては、例えば、従来から汎用されているAl-Si組成のJIS4043、4045、4047などの4000系のAl-Si系合金ろう材など公知のろう材アルミニウム合金が使用できる。
 次に、実施形態に係るろう付け相当加熱後のアルミニウム合金積層板について説明する。
 ここで、本発明におけるろう付け相当の加熱とは、積層板を熱交換器用部材(チューブ材)にする際に通常行われるろう付けを模擬した加熱であり、詳細には、10%の予ひずみ付与後に、600℃の温度に3分間加熱、保持した後、平均冷却速度100℃/分で冷却する加熱処理のことである。
<ろう付け相当の加熱後の心材>
 積層板にろう付け相当の加熱を行った場合、心材の化学成分の組成は変化しない。
 ただし、ろう付け相当加熱時には、その昇温過程において、蓄積されたひずみが消滅するが、その過程において、不連続再結晶或いは連続再結晶が発生し、新たな結晶粒組織が形成される。その際、もともと添加されているMn元素や、付加的に添加される遷移元素によって形成される分散粒子が、再結晶時の平均結晶粒径や、平均アスペクト比、小傾角粒界の割合に影響し、粒径0.01~0.5μmの分散粒子の数密度を20~80個/μmに制御することで、心材の平均結晶粒径、平均アスペクト比、小傾角粒界の割合が以下の所望の範囲に制御される。
(平均結晶粒径)
 ろう付け相当加熱後の積層板の心材について、圧延方向の縦断面(圧延方向に沿って切断した板の断面)における圧延方向の平均結晶粒径は、50μm以上である。
 ろう付け相当加熱後の段階(熱交換器用部材としての段階)において、圧延方向の平均結晶粒径が50μm以上となることで、耐エロージョン性の向上という効果を確保することができる。一方、圧延方向の平均結晶粒径が50μm未満では、耐エロージョン性が低下する。なお、圧延方向の平均結晶粒径は、80μm以上が好ましく、150μm以上がさらに好ましい。
(平均アスペクト比)
 ろう付け相当加熱後の積層板の心材について、結晶粒の平均アスペクト比(圧延方向の平均結晶粒径/板厚方向の平均結晶粒径)は、3.0以上である。
 平均アスペクト比が3.0以上となることで、圧延方向の結晶粒サイズに対する板厚方向の結晶粒サイズが小さくなり(板厚方向の結晶粒の個数が増大し)、疲労破壊時のクラック進展の抵抗となり、疲労寿命(疲労特性)が向上する。一方、平均アスペクト比が3.0未満では、疲労破壊時のクラック進展の抵抗が十分に得られず、疲労寿命が低下する。なお、平均アスペクト比は、4.0以上が好ましい。
(小傾角粒界の割合)
 ろう付け相当加熱後の積層板の心材について、傾角5~15°の小傾角粒界の割合は、10.0%以下である。 
 結晶粒界中の小傾角粒界の割合が10.0%以下となることで、疲労破壊時のクラック進展の抵抗となる結晶粒界の効果が十分に発揮され、疲労寿命が向上する。一方、小傾角粒界の割合が10.0%を超えると、疲労破壊時のクラック進展の抵抗が十分に得られず、疲労寿命が低下する。なお、小傾角粒界の割合は、8.0%以下が好ましい。
 次に、実施形態に係るアルミニウム合金積層板の製造方法について説明する。
≪アルミニウム合金積層板の製造方法≫
 まず、アルミニウム合金積層板の材料である心材、犠牲材、およびろう材を製造する。
 この心材、犠牲材、およびろう材の製造方法は特に限定されない。例えば、前記した組成の心材用アルミニウム合金を所定の鋳造温度で鋳造した後、得られた鋳塊を所望の厚さに面削し、均質化熱処理することで、心材を製造することができる。また、所定の組成の犠牲材用アルミニウム合金、およびろう材用アルミニウム合金を所定の鋳造温度で鋳造した後、得られた鋳塊を所望の厚さに面削し、均質化熱処理する。
 その後、心材の一側面に犠牲材を重ね、他側面にろう材を重ね、クラッドさせて板材とする。そして、当該板材に対し、熱間圧延、中間焼鈍を施しながら、冷間圧延を行い積層板を製造する。
<製造条件について> 
 ろう付け相当加熱前の心材の分散粒子形態、ろう付け相当加熱後の結晶粒形態を適切に制御するためには、均熱工程を精緻に制御する必要がある。
 具体的には、均熱時の高温域の固溶量の増大と、微細な析出物の数密度を制御し、かつ粗大な析出物の形成を抑制するために、昇温時の高温域の平均昇温速度を所定の範囲に制御する。詳細には、400℃以上の温度域は20℃/hr以上200℃/hr以下の平均昇温速度で昇温する。昇温過程の400℃未満の温度域で形成される微細な析出物は、その後の昇温過程で、固溶が促進されるが、原子の拡散速度も速く、その結果析出物が粗大化しやすい400℃以上の温度域において、この昇温速度範囲で昇温することにより、微細析出物の粗大化・残存を抑制しながら、固溶が促進され、固溶量を増大するとともに、ろう付け前の積層板の段階での、所望のサイズの範囲の析出物の数密度が狙いの範囲となる。
 また、400℃以上の温度域において、200℃/hrを超える平均昇温速度は非常に電力を消費するため、工業的には現実的でない。また、20℃/hr未満の平均昇温速度では、昇温速度の低下により、400℃未満で形成された多数の微細析出物が粗大化しやすくなり、400℃以上の高温域での固溶時に粗大析出物が残存しやすくなる結果、所望のサイズの範囲の析出物の数密度が狙いの範囲よりも低下する。より好ましくは、400℃以上の温度域は30℃/hr以上200℃/hr以下の平均昇温速度で昇温する方が好ましい。
 さらに、均熱の到達温度を450℃以上にすることで、粗大なMgSiやAl-Mg-Cu-Si系化合物などを固溶させ、マトリックス中の固溶量を増大させる。通常、マトリックス中の固溶量が多いほど、後の熱間圧延工程中に起こる再結晶の際に、特定の再結晶方位(例えば純アルミなどで顕著に発達するCube方位)の発達を抑制し、結晶方位分布の相対的なランダム化の方向に働く。その結果、冷間圧延工程後であってろう付け相当加熱前の積層板の段階での、心材における特定の集合組織の発達を抑制することによって、その後のろう付け相当加熱工程での特定の結晶方位の発達を抑制する。その結果、ろう付け相当加熱後の心材(採取試料)の小傾角粒界の割合が狙いの範囲に低下する。
 均熱温度の到達温度が450℃未満であると、マトリックス中の固溶量が低下し、熱間圧延工程での方位ランダム化効果が低下し、最終的にろう付け相当加熱後の心材(採取試料)の小傾角粒界の割合が狙いの範囲よりも大きくなる。
 さらに好ましくは、均熱の到達温度は480℃以上である。
 なお、ろう付け相当加熱後の結晶粒のアスペクト比の観点からは、均熱温度の到達温度が450℃以上であれば、もともと添加されているMn元素や、付加的に添加される遷移元素によって形成される微細な分散粒子が圧延方向に層状に形成されるため、板厚方向の結晶粒の成長は抑制されることから、所定の均熱温度の範囲であれば、所定のアスペクト比の結晶粒がろう付け相当加熱工程後に形成されるが、均熱の到達温度が550℃以上では、析出物の粗大化が起こり、析出物の数密度が低下し、標記アスペクト比は所定の範囲に入るものの、アスペクト比が小さくなる。従って、ろう付け相当加熱後の結晶粒のアスペクト比の観点からは、好ましくは550℃未満である。
 また、熱間圧延後に冷間圧延、焼鈍等を施すが、その調質はH1n工程(冷間圧延の間に中間焼鈍を実施し、最後は冷延上がり)、H2n工程(冷間圧延の間には中間焼鈍を施さず、冷間圧延後に最終焼鈍を実施)いずれでも良い。
 なお、ろう付け相当加熱前の積層板の製造過程、特に熱間圧延後において、複数の焼鈍工程として、熱間圧延後の荒鈍、冷間圧延の間の中間焼鈍、冷間圧延後の仕上げ焼鈍等が入るが、焼鈍回数が多いほど、心材マトリックス中の固溶量が低下してしまう。但し、中間焼鈍、仕上げ焼鈍はろう付け相当加熱後の結晶粒径の形態を制御する上で必要であることから、H1n、H2n工程による調質を行う場合は省略が難しい。従って、焼鈍工程をできるだけ減らすためにも、荒鈍は省略することが好ましい。
≪熱交換器用部材≫
 実施形態に係るアルミニウム合金積層板を熱交換器用部材とするには、この積層板を、成形ロールなどにより幅方向に曲折して、管内面側に皮材が配置されるように偏平管状に形成した後、これを電縫溶接等により、偏平管状に形成することでチューブ材を製造することができる。
 このような偏平管状のチューブ材(積層部材)は、コルゲート加工を行った放熱フィンや、ヘッダなどの他の部材と、ブレージングにより一体に、ラジエータなどの熱交換器として作製される(組み立てられる)。チューブ材(積層部材)と放熱フィンとが一体化された部分を熱交換器のコアとも言う。この際、ろう材の固相線温度以上である、585~620℃、好ましくは590~600℃の高温に加熱してろう付け処理される。このブレージング工法としては、フラックスブレージング法、非腐食性のフラックスを用いたノコロックブレージング法等が汎用される。
 次に、前記した分散粒子の数密度、平均結晶粒径、平均アスペクト比、小傾角粒界の割合の各測定条件を説明する。
≪各測定条件≫
<分散粒子の数密度の測定条件>
 心材の板厚中心部から試料を採取し、試料表面を0.05~0.1mm機械研磨した後、電解エッチングしてTEM観察用試料に仕上げ、50000倍のFE-TEM(透過型電子顕微鏡)を用いて分散粒子を観察し、分散粒子の粒径と数密度を測定する。
 分散粒子の単位体積あたりの数密度は、TEM観察視野面積に対する、分散粒子の数密度を、公知のコンタミネーション・スポット法により、TEM観察試料の膜厚tを測定、算出して単位体積あたりの数密度に換算したものである。
 この心材の板厚中心部におけるFE-TEMによる組織観察は、板厚中心部1箇所につき、観察視野の合計面積が4μm以上となるように行い、これを板の幅方向(圧延垂直方向)に適当に距離を置いた10箇所で観察する。これらをそれぞれ画像解析し、各箇所において、粒径が0.01~0.5μmの範囲の析出物の単位体積あたりの数密度を求め、それらを平均することにより単位体積あたりの数密度(平均数密度)を算出した。
 ここで、本発明における分散粒子の粒径とは、重心直径であり、分散粒子1個当たりの分散粒子の等価な円径に換算した場合の大きさ(円径:円相当直径)である。
<平均結晶粒径の測定条件>
 ろう付け相当加熱後の結晶粒径は、心材の圧延方向の縦断面(圧延方向に沿って切断した板の断面)における圧延方向の結晶粒径である。
 そして、ろう付け相当加熱後の心材の結晶粒径アスペクト比は、心材の板厚中心部の圧延面における圧延方向の結晶粒径と、心材の圧延方向の縦断面における板厚方向の結晶粒径との比として算出している。
 詳細には、心材の板厚方向中心部の圧延面における圧延方向の結晶粒径は、ろう付け相当加熱後の心材(採取試料)の板厚方向中心部の圧延面を、機械研磨、電解研磨によって調整した後に、50倍の光学顕微鏡を用いて、個々の結晶粒径として切片長さを測定する切断法(ラインインターセプト法)で測定する。これを任意の10箇所で測定し、平均結晶粒径を算出する。この際、1測定ライン長さは0.5mm以上とし、1視野当たり測定ラインを各3本として、1測定箇所当たり5視野を観察する。そして、測定ライン毎に順次測定した平均結晶粒径を、1視野当たり(測定ライン3本)、5視野当たり/1測定箇所、10測定箇所当たりで順次平均化して、本発明で言う、平均結晶粒径とする。
 また、心材の圧延方向の縦断面における板厚方向の結晶粒径は、ろう付け相当加熱後の積層板の心材(採取試料)の圧延方向の縦断面を、機械研磨、電解研磨によって調整した後に、50倍の光学顕微鏡を用いて観察する。この際、前記板厚方向に直線を引き、この直線上に位置する個々の結晶粒の切片長さを、個々の結晶粒径として測定する切断法(ラインインターセプト法)で測定する。これを任意の10箇所で測定し、平均結晶粒径を算出する。この際、1測定ライン長さは0.1mm以上とし、1視野当たり測定ラインを各5本として、1測定箇所当たり、5視野を観察する。そして、測定ライン毎に順次測定した平均結晶粒径を、1視野当たり(測定ライン5本)、5視野当たり/1測定箇所、10測定箇所あたりで順次平均化して、板厚方向の平均結晶粒径とする。
 なお、上述した、圧延方向の平均結晶粒径と、板厚方向の平均結晶粒径の比を取ることで、本発明で言う、平均アスペクト比とする。
<小傾角粒界の測定条件>
 本発明における小傾角粒界の割合の測定は、走査電子顕微鏡SEM(Scanning Electron Microscope)或いは電界放射型走査電子顕微鏡FE-SEM(Field Emission Scanning Electron Microscope)による、後方散乱電子回折像EBSD(Electron BackScatter Diffraction pattern)を用いた結晶方位解析方法により測定する。
 具体的には、ろう付け相当加熱後の積層板における心材(採取試料)の板厚方向中心部の圧延面を、機械研磨およびバフ研磨を行った後、電解研磨して表面を調整する。
 測定に用いるSEM及びFE-SEMは、例えば日本電子社製、SIIナノテクノロジー社製、日立ハイテクノロジーズ社製、或いはその他のメーカーの装置のいずれでもよく、また、EBSDとその解析ソフトも、TSL社製の「OIM Analysis」、HKL社製の「Channel 5」、或いはその他のメーカーのいずれの装置、解析ソフトでもよい。
 EBSD測定条件は、SEM或いはFESEMの倍率25倍にて、1000μm×1000μmの測定視野において、測定ステップを4μmとしてEBSD測定を行う。測定によって得られた、EBSDのマップにおいて、まず粒界を決定することが必要である。2次元測定した結晶組織のデータにおいて各測定点の結晶方位を解析し、隣り合う測定点の間の方位差が5°以上となる測定点間の境界を粒界とする。すなわち方位差が5°未満の結晶同士は、実質的に1つの結晶であると見なし、本測定において1つの結晶粒とは5°以上の方位差を有する粒界で囲まれた組織を意味する。そして2次元で測定、解析された組織において、粒界3重点同士を結ぶ境界線(粒界)を、1つの特定の方位差を有する粒界と見なす。標記によって定義される結晶粒界において、全結晶粒界に占める、方位差が5°以上15°以下の結晶粒界(小傾角粒界)の割合を求める。標記測定、解析を行う心材板厚中心部の圧延面において、任意の10箇所で行い、各箇所で求められた、小傾角粒界の割合の平均値を求める。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
<積層板の製造>
 積層板の製造は以下の通りとした。
 表1に示すA~Vの組成の3000系アルミニウム合金組成を溶解、鋳造してアルミニウム合金心材鋳塊を製造した。この心材鋳塊のみを、表2に示すように、均熱温度を種々変えて、合金元素の固溶量を制御した。
 その後、この心材鋳塊の一方の面に、Al-1wt%Zn組成からなるJIS7072アルミニウム合金板を犠牲防食材として、他面にAl-10wt%Si組成からなるJIS4045アルミニウム合金板をろう付け材として、各々クラッドした。
 これらのクラッド板を、熱間圧延、中間焼鈍を施しながら冷間圧延を行い、H14調質材或いはH24調質材の積層板とした。各処理を施すに際して、表2に示すように、各例とも、均熱時の平均昇温速度とともに、均熱温度を種々変えて、合金元素の固溶量を制御し、ろう付け前の積層板を作製した。また、均熱時の保持はいずれも6hr行い、再加熱時の保持は2hr行った。なお、一部の例(比較例No.31)を除いて、熱間圧延後の荒鈍は省略した。また、H14調質工程においては、中間焼鈍条件としてバッチ炉にて400℃×4hrの焼鈍を施した。その時の昇降温速度は40℃/hrで行った。
 表2のうち、実施例No.1~13、比較例No.19~28、30、32の調質工程はH14調質工程であり、実施例No.14~18、比較例No.29、31の調質工程はH24調質工程である。
 各例とも共通して、心材の板厚が0.14mmであり、この心材の各々の面に、それぞれ積層されたろう材、犠牲材ともに、その厚さは20~30μmの範囲であった。
 なお、比較例No.30については、特許文献1に記載された方法により製造された積層板であり、比較例No.31については、特許文献2に記載された方法により製造された積層板であり、比較例No.32については、特許文献3に記載された方法により製造された積層板である。比較例No.31については、再加熱終了から熱延を開始するまでの時間を30分として行い、さらに荒鈍条件として、450℃×3hrの熱処理と、350℃×10hrの熱処理を施した。さらに、冷延後の最終焼鈍は昇温速度を20℃/hrの速度で行った。
Figure JPOXMLDOC01-appb-T000001
<心材の組成>
 積層材を作製後、素材段階(熱交換器に組み立てる前)での心材部分の組織を測定した。さらに、この積層板を熱交換器用部材(チューブ材)にする際のろう付けを模擬して、10%の予ひずみ付与後に、600℃の温度に3分間加熱、保持した後、平均冷却速度100℃/分で冷却する加熱処理を行い、この加熱処理後の積層板の心材部分の組織を測定した。
<心材のその他の測定値>
 心材の分散粒子の数密度、平均結晶粒径、平均アスペクト比、小傾角粒界の割合については、前記した測定条件に基づいて測定した。
<機械的特性>
 ろう付けを模擬した前記加熱処理後の各例について、引張り試験を行い、引張強さ(MPa)を測定した。試験条件は、各積層板から圧延方向に対し平行方向のJISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、引張り試験を行った。引張り試験は、JISZ2241(1980)(金属材料引張り試験方法)に基づき、室温20℃で試験を行った。また、クロスヘッド速度は、5mm/分で、試験片が破断するまで一定の速度で行った。
<耐エロージョン性>
 各例について、エロージョン深さを測定して耐エロージョン性を評価した。ろう付け相当の加熱前の積層板に、市販の非腐食性フラックスを3~5g/m塗布し、酸素濃度が200ppm以下の雰囲気中において600℃で5分以上保持し、ろう付け試験片を作製した。次に、ろう付け相当の加熱を施した積層板の圧延方向の縦断面を、機械研磨、電解エッチングによって前処理した後に、100倍の光学顕微鏡を用いて5視野観察した。その5視野の中で、ろう材の心材への浸入深さ(エロージョン深さ)を測定し、それらの平均値としてエロージョン深さ(μm)を求めた。
<疲労特性>
 疲労寿命(疲労特性)の評価は、公知の片振り型平面曲げ疲労試験機によって、常温にて行った。即ち、上記ろう付け相当加熱後の各積層板から、圧延方向と平行となるように、10mm×60mm×板厚の試験片を切り出して試験片を作製した。この試験片の一端を、片振り平面曲げ疲労試験機の固定側に取り付けた。そして、この試験片の他端を、駆動側のナイフエッジで挟持した。
 曲げ疲労試験は、このナイフエッジの位置を移動させることで、試験片セット長さを変化させつつ、片振り幅一定(上下方向に5mm)となるように、試験片の平面曲げを繰り返し行った。このとき、付加曲げ応力を、破断部の歪量が最大0.009程度となるように試験片セット長さを調節した。このような条件で、各試験片が破断するまでの平面曲げの繰り返し数を求めた。評価は、12000回以上の場合を疲労寿命が非常に良好:◎、10000回以上の場合を疲労寿命が良好:○、10000回未満の場合を疲労寿命が不十分:×とした。
 なお、破断部の歪量については歪ゲージを破断部位に直接貼ることができないため、破断部位から少し離れた2、3箇所の所定の位置に歪ゲージを貼り、各試験片長さ時の歪ゲージの歪値から破断部位の歪量を内挿することにより破断部位の歪量を推計し、これを元に負荷応力、すなわち、試験片セット長さを調節した。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例No.1~18の積層板は、本発明の要件を満たすため、引張強さが、180MPa以上となるとともに、エロージョン深さも40μm以下となり、さらに疲労特性も非常に良好または良好という結果となった。つまり、本発明の要件を満たす積層板は、強度(ろう付け後強度)、耐エロージョン性、疲労特性に優れることがわかった。
 一方、比較例No.19~32の積層板は、本発明の規定するいずれかの要件を満たさないため、良好な評価とならなかった。
 具体的には、比較例No.19の積層板は、均熱時(高温域:400℃以上)の平均昇温速度が遅すぎたため、ろう付け相当加熱前の分散粒子の数密度、ろう付け相当加熱後の平均アスペクト比、小傾角粒界の割合について、本発明が規定する範囲に該当しなかった。その結果、引張強さが180MPa未満となるとともに疲労特性が不十分という結果となった。
 比較例No.20の積層板は、均熱温度が低すぎたため、ろう付け相当加熱前の分散粒子の数密度、ろう付け相当加熱後の平均アスペクト比、小傾角粒界の割合について、本発明が規定する範囲に該当しなかった。その結果、引張強さが180MPa未満となるとともに疲労特性が不十分という結果となった。
 また、比較例No.29の積層板も、均熱温度が低すぎたため、ろう付け相当加熱前の分散粒子の数密度、ろう付け相当加熱後の平均アスペクト比、小傾角粒界の割合について、本発明が規定する範囲に該当しなかった。その結果、引張強さが180MPa未満となるとともに疲労特性が不十分という結果となった。
 比較例No.21~28の積層板は、心材組成が本発明の要件を満たしておらず、ろう付け相当加熱前の分散粒子の数密度、ろう付け相当加熱後の平均結晶粒径、平均アスペクト比、小傾角粒界の割合のうち少なくとも1つについて、本発明が規定する範囲に該当しなかった。その結果、引張強さが180MPa未満となるとともに疲労特性が不十分という結果(およびエロージョン深さが40μmを超える結果)となった。
 比較例No.30の積層板は、前記のとおり、特許文献1に記載された方法により製造した積層板であり、本発明の積層板を製造する条件とは異なり、均熱を行っていない。よって、比較例No.30の積層板は、ろう付け相当加熱前の分散粒子の数密度、ろう付け相当加熱後の平均アスペクト比、小傾角粒界について、本発明が規定する範囲に該当しなかった。その結果、引張強さが180MPa未満となるとともに疲労特性が不十分という結果となった。
 比較例No.31の積層板は、前記のとおり、特許文献2に記載された方法により製造した積層板であり、本発明の積層板を製造する条件とは異なり、荒鈍を所定の条件で行っている。よって、比較例No.31の積層板は、ろう付け相当加熱前の分散粒子の数密度、ろう付け相当加熱後の平均アスペクト比について、本発明が規定する範囲に該当しなかった。その結果、引張強さが180MPa未満となるとともに疲労特性が不十分という結果となった。
 比較例No.32の積層板は、前記のとおり、特許文献3に記載された方法により製造した積層板であり、均熱時の平均昇温速度について記載されていないが、特許文献3と同等の機械的特性を得るには、400℃以上の平均昇温速度が15℃/hrの条件となった。この条件は本発明の条件範囲外であり、比較例No.32の積層板は、ろう付け相当の加熱前の分散粒子の数密度、ろう付け相当の加熱後の平均アスペクト比、小傾角粒界の割合について、本発明が規定する範囲に該当しなかった。その結果、引張強さが180MPa未満となるとともに疲労特性が不十分な結果となった。
 なお、特許文献4には、心材のSi添加量は0.2質量%以下に規制されており、本願の好ましいSi添加量の範囲よりも少ない。従って、Si元素が十分に固溶せず、またろう付け相当の加熱前の分散粒子の数密度、ろう付け相当の加熱後の平均結晶粒径、アスペクト比、小傾角粒界の割合のうち少なくとも1つについて、本発明が規定する範囲に該当しないと思われる。その結果、引張強さ、疲労特性、エロージョン深さのうち少なくとも1つは良好でない結果となると思われる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年3月31日出願の日本特許出願(特願2014-74200)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のアルミニウム合金積層板は、ろう付け後強度、耐エロージョン性及び疲労特性等に優れており、自動車等の熱交換器に有用である。

Claims (4)

  1.  心材の少なくとも一側面に犠牲材をクラッドしたアルミニウム合金積層板であって、 
     前記心材は、Mn:0.5~1.8質量%、Si:0.4~1.5質量%、Cu:0.05~1.2質量%を含有するとともに、Fe:1.0質量%以下、Ti:0.3質量%以下のうち少なくとも1種を含有し、残部がAlおよび不可避的不純物であり、
     前記心材は、粒径0.01~0.5μmの分散粒子の数密度が20~80個/μmであることを特徴とするアルミニウム合金積層板。
  2.  前記心材は、下記(a)~(c)の少なくとも1つをさらに含有することを特徴とする請求項1に記載のアルミニウム合金積層板。
    (a)Cr:0.02~0.4質量%、Zr:0.02~0.4質量%のうち少なくとも1種
    (b)Zn:0質量%超、1.0質量%以下
    (c)Mg:0質量%超、1.0質量%以下
  3.  板厚が0.2mm以下であることを特徴とする請求項1または2に記載のアルミニウム合金積層板。
  4.  前記アルミニウム合金積層板のろう付け相当の加熱後の組織として、 
     前記心材は、板厚中心部の圧延方向の縦断面における圧延方向の平均結晶粒径が50μm以上であり、
     前記心材は、板厚中心部の結晶粒の平均アスペクト比(圧延方向の平均結晶粒径/板厚方向の平均結晶粒径)が3.0以上であり、 
     前記心材は、傾角5~15°の小傾角粒界の割合が10.0%以下であることを特徴とする請求項1または2に記載のアルミニウム合金積層板。
PCT/JP2015/059228 2014-03-31 2015-03-25 アルミニウム合金積層板 WO2015151975A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/129,767 US20170182602A1 (en) 2014-03-31 2015-03-25 Aluminum alloy laminate
CN201580016823.6A CN106164310B (zh) 2014-03-31 2015-03-25 铝合金层叠板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-074200 2014-03-31
JP2014074200A JP6317608B2 (ja) 2014-03-31 2014-03-31 アルミニウム合金積層板

Publications (1)

Publication Number Publication Date
WO2015151975A1 true WO2015151975A1 (ja) 2015-10-08

Family

ID=54240301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059228 WO2015151975A1 (ja) 2014-03-31 2015-03-25 アルミニウム合金積層板

Country Status (4)

Country Link
US (1) US20170182602A1 (ja)
JP (1) JP6317608B2 (ja)
CN (1) CN106164310B (ja)
WO (1) WO2015151975A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603264A (zh) * 2016-03-10 2016-05-25 东北轻合金有限责任公司 一种高频焊管铸锭及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803827B2 (ja) * 2017-12-20 2020-12-23 三菱アルミニウム株式会社 熱交換器用アルミニウム合金材及び熱交換器
JP7226935B2 (ja) * 2018-07-20 2023-02-21 Maアルミニウム株式会社 成形性に優れた熱交換器用フィン材および熱交換器
US20210348859A1 (en) * 2018-12-19 2021-11-11 Carrier Corporation Heat exchanger with aluminum alloy clad tube and method of manufacture
JP7471499B1 (ja) 2023-07-20 2024-04-19 Maアルミニウム株式会社 アルミニウム合金クラッド材

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246117A (ja) * 1995-03-06 1996-09-24 Furukawa Electric Co Ltd:The 高強度アルミニウムブレージングシートとその製造方法
JP2009155709A (ja) * 2007-12-27 2009-07-16 Kobe Steel Ltd 熱交換器用アルミニウム合金クラッド材、および、その製造方法
JP2009191293A (ja) * 2008-02-12 2009-08-27 Kobe Steel Ltd 疲労特性に優れたアルミニウム合金積層板
JP2009249699A (ja) * 2008-04-08 2009-10-29 Furukawa-Sky Aluminum Corp 熱交換器用アルミニウム合金クラッド材用犠牲材の製造方法及び熱交換器用アルミニウム合金クラッド材の製造方法
JP2010209444A (ja) * 2009-03-12 2010-09-24 Furukawa-Sky Aluminum Corp 高耐熱性アルミニウム合金ブレージングシートおよびその製造方法
JP2011241434A (ja) * 2010-05-18 2011-12-01 Kobe Steel Ltd アルミニウム合金ブレージングシート
JP2013023748A (ja) * 2011-07-25 2013-02-04 Furukawa-Sky Aluminum Corp アルミニウム合金ブレージングシートおよびその製造方法
JP2013194243A (ja) * 2012-03-15 2013-09-30 Kobe Steel Ltd アルミニウム合金積層板
JP2013194244A (ja) * 2012-03-15 2013-09-30 Kobe Steel Ltd アルミニウム合金積層板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248924A4 (en) * 2008-02-12 2011-04-20 Kobe Steel Ltd ALUMINUM ALLOY LAMINATE
US8247083B2 (en) * 2010-05-18 2012-08-21 Kobe Steel, Ltd. Aluminium alloy brazing sheet
US8932728B2 (en) * 2012-03-15 2015-01-13 Kobe Steel, Ltd. Aluminum-alloy clad sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246117A (ja) * 1995-03-06 1996-09-24 Furukawa Electric Co Ltd:The 高強度アルミニウムブレージングシートとその製造方法
JP2009155709A (ja) * 2007-12-27 2009-07-16 Kobe Steel Ltd 熱交換器用アルミニウム合金クラッド材、および、その製造方法
JP2009191293A (ja) * 2008-02-12 2009-08-27 Kobe Steel Ltd 疲労特性に優れたアルミニウム合金積層板
JP2009249699A (ja) * 2008-04-08 2009-10-29 Furukawa-Sky Aluminum Corp 熱交換器用アルミニウム合金クラッド材用犠牲材の製造方法及び熱交換器用アルミニウム合金クラッド材の製造方法
JP2010209444A (ja) * 2009-03-12 2010-09-24 Furukawa-Sky Aluminum Corp 高耐熱性アルミニウム合金ブレージングシートおよびその製造方法
JP2011241434A (ja) * 2010-05-18 2011-12-01 Kobe Steel Ltd アルミニウム合金ブレージングシート
JP2013023748A (ja) * 2011-07-25 2013-02-04 Furukawa-Sky Aluminum Corp アルミニウム合金ブレージングシートおよびその製造方法
JP2013194243A (ja) * 2012-03-15 2013-09-30 Kobe Steel Ltd アルミニウム合金積層板
JP2013194244A (ja) * 2012-03-15 2013-09-30 Kobe Steel Ltd アルミニウム合金積層板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603264A (zh) * 2016-03-10 2016-05-25 东北轻合金有限责任公司 一种高频焊管铸锭及其制造方法

Also Published As

Publication number Publication date
JP6317608B2 (ja) 2018-04-25
CN106164310A (zh) 2016-11-23
CN106164310B (zh) 2018-04-27
US20170182602A1 (en) 2017-06-29
JP2015196859A (ja) 2015-11-09

Similar Documents

Publication Publication Date Title
US11408690B2 (en) Method for producing aluminum alloy clad material
JP6452626B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
JP6452627B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
JP5917786B2 (ja) 疲労特性に優れたアルミニウム合金積層板
WO2009101896A1 (ja) アルミニウム合金積層板
JP5913853B2 (ja) アルミニウム合金ブレージングシートおよびその製造方法
JP2008246525A (ja) アルミニウム合金製ブレージングシートおよびその製造方法
JP2004084060A (ja) 熱交換器用アルミニウム合金フィン材および該フィン材を組付けてなる熱交換器
JP6726370B1 (ja) フラックスフリーろう付用アルミニウムブレージングシート
JP6418714B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
JP6317608B2 (ja) アルミニウム合金積層板
JP6219770B2 (ja) アルミニウム合金積層板
JP2009215643A (ja) 疲労特性に優れたアルミニウム合金積層板
JP4220410B2 (ja) 熱交換器用アルミニウム合金クラッド材
EP2791378A1 (en) Aluminium fin alloy and method of making the same
JP5739828B2 (ja) アルミニウム合金積層板
WO2013024732A1 (ja) ろう付け後の強度及び耐食性に優れた熱交換器用アルミニウム合金フィン材
JP4220411B2 (ja) 熱交換器用アルミニウム合金クラッド材
JP4996909B2 (ja) アルミニウム合金ブレージングシートおよびその製造方法
WO2018110320A1 (ja) アルミニウム合金ブレージングシート及びその製造方法
JP5865137B2 (ja) アルミニウム合金積層板
JP2017110266A (ja) ろう付け後の強度に優れたアルミニウム合金製ブレージングシート
JP2018178170A (ja) 耐エロージョン性に優れる薄肉フィン材、耐エロージョン性に優れる薄肉フィン材の製造方法および熱交換器の製造方法
JP2022142944A (ja) ろう付用アルミニウムブレージングシートおよびその製造方法
JP2023098111A (ja) ろう付時の反りを抑制するアルミニウム合金ブレージングシートおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15129767

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15773481

Country of ref document: EP

Kind code of ref document: A1