WO2015151571A1 - 有機性排水の生物処理方法及び装置 - Google Patents

有機性排水の生物処理方法及び装置 Download PDF

Info

Publication number
WO2015151571A1
WO2015151571A1 PCT/JP2015/052695 JP2015052695W WO2015151571A1 WO 2015151571 A1 WO2015151571 A1 WO 2015151571A1 JP 2015052695 W JP2015052695 W JP 2015052695W WO 2015151571 A1 WO2015151571 A1 WO 2015151571A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological treatment
water
tank
treatment tank
upward
Prior art date
Application number
PCT/JP2015/052695
Other languages
English (en)
French (fr)
Inventor
繁樹 藤島
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201580015795.6A priority Critical patent/CN106132881B/zh
Publication of WO2015151571A1 publication Critical patent/WO2015151571A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/102Permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/104Granular carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1226Particular type of activated sludge processes comprising an absorbent material suspended in the mixed liquor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a biological treatment method and apparatus for organic wastewater that can be widely used for the treatment of organic wastewater such as domestic wastewater, sewage, food factories, pulp factories, semiconductor production wastewater, and liquid crystal production wastewater.
  • the activated sludge method used when biologically treating organic wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance.
  • the BOD volumetric load in the activated sludge method is generally about 0.5 to 0.8 kg / m 3 / d, a large site area is required.
  • 20 to 40% of the decomposed BOD is converted into bacterial cells, that is, sludge, a large amount of excess sludge treatment is also a problem.
  • the activated sludge method includes a membrane activated sludge method that uses a membrane separator for solid-liquid separation of sludge and treated water, and a sedimentation basin type activated sludge method that uses a sedimentation basin.
  • the membrane activated sludge method has the disadvantage that it costs membrane installation, replacement and maintenance.
  • the sedimentation basin type activated sludge method has a disadvantage that the installation area becomes large.
  • Patent Document 1 organic wastewater is first treated with bacteria in a first treatment tank, and organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregating bacterial cells, and then in a second treatment tank. It is described that excess sludge can be reduced by predatory removal of the sticking protozoa. In this method, high-load operation is possible, and the treatment efficiency of the activated sludge method is also improved.
  • Patent Document 2 describes a countermeasure against deterioration in processing performance due to fluctuations in the quality of raw water, which is a problem in the processing method of Patent Document 1.
  • the method includes “adding a microbial preparation or seed sludge to the first treatment tank when the quality of the first treated water deteriorates”.
  • Patent Document 3 flocs that are preyed by ultrasonic treatment or mechanical agitation when protozoa or metazoans prey on bacteria, yeast, actinomycetes, algae, molds, wastewater treatment primary sludge or surplus sludge. A method to make the flock size smaller than the animal's mouth is proposed.
  • Patent Document 4 There is a method described in Patent Document 4 as a biological treatment method of organic wastewater by a multi-stage treatment of fluidized bed and activated sludge process.
  • the latter activated sludge method is operated at a low load of BOD sludge load 0.1 kg-BOD / kg-MLSS / d, so that the sludge can be self-oxidized and the amount of sludge extraction can be greatly reduced.
  • Patent Document 5 a partition is provided on the drain outlet side of the biological treatment tank by the activated sludge method to form an upward flow path, and the biologically treated water is flowed upward in the flow path at LV1 to 20 m / h.
  • an organic wastewater biological treatment tank is described in which the sludge settled in the flow path is returned to the biological treatment tank, and the supernatant water rising in the flow path is discharged to the outside of the tank.
  • sludge return by sedimentation basin There are two methods for maintaining sludge in the biological treatment tank: sludge return by sedimentation basin and separation of treated water by membrane.
  • the sludge return by the sedimentation basin type has the disadvantage that the installation area becomes large.
  • the return of sludge by membranes has the disadvantage of requiring membrane installation costs, replacement and maintenance costs.
  • the activated sludge method using the above-mentioned micro-animal predatory action is actually used for organic wastewater treatment, and depending on the target wastewater, the treatment efficiency can be improved and the amount of generated sludge can be reduced.
  • the sludge reduction effect is not stable at present.
  • an upward flow channel is provided on the drain outlet side, and upward circulation water is supplied at LV1 to 20 m / h, so that sludge and minute animals are stably maintained in the biological treatment tank. It becomes possible to do.
  • the present invention can stably maintain sludge and micro-animals in biological treatment of organic wastewater to which the activated sludge method is applied, and can greatly reduce the amount of generated sludge, and can operate at high load. It is an object of the present invention to provide a biological treatment method and apparatus for organic wastewater by an activated sludge method, which can improve the treatment efficiency by water and stabilize the quality of treated water.
  • the biological treatment method for organic wastewater according to the first invention is a biological treatment method for organic wastewater in which organic wastewater is biologically treated in a biological treatment tank, and sludge in biologically treated water is separated into solid and liquid in the biological treatment tank.
  • a partition plate is provided on the drain outlet side of the biological treatment tank to partition the inside of the biological treatment tank into a biological treatment chamber and an upward flow channel on the drain outlet side, and the biological treatment from the biological treatment chamber
  • water is circulated upward in the upward flow channel at LV 0.5 to 5 m / h, and the supernatant water is discharged out of the tank from the drain outlet at the top of the upward flow channel.
  • the upper and lower portions both form a circulation flow path communicating with the biological treatment chamber, and a part of the biological treatment water in the biological treatment chamber is supplied to the circulation flow.
  • the upward circulation water is characterized in that the upward circulating water is LV larger than the LV in the upward flow passage.
  • the biological treatment method for organic wastewater of the second invention is a method for biological treatment of organic wastewater in a biological treatment tank provided in multiple stages, in the first stage biological treatment tank, by decomposition of organic matter by dispersal bacteria.
  • a biological treatment method for organic wastewater that produces first biological treated water with increased dispersal bacteria and produces final biological treated water in the last biological treatment tank, wherein sludge in the final biological treated water is
  • a partition plate is provided on the drainage outlet side of the biological treatment tank, and the inside of the biological treatment tank is divided into a biological treatment chamber and an upward flow channel on the drainage outlet side, Biologically treated water from the biological treatment chamber is circulated upward into the upward flow channel at LV 0.5 to 5 m / h, and the supernatant water is discharged from the drain outlet at the top of the upward flow channel.
  • a partition plate is provided in the biological treatment chamber along the partition plate.
  • an upper portion and a lower portion both form a circulation flow path communicating with the biological treatment chamber, and a part of the biological treatment water in the biological treatment chamber is transferred to the circulation flow passage at an LV larger than the LV in the upward flow passage. It is characterized by water flowing upward at
  • An organic wastewater biological treatment apparatus is an organic wastewater biological treatment apparatus for biologically treating organic wastewater in a biological treatment tank, and sludge in biologically treated water is solid-liquid separated in the biological treatment tank.
  • a partition plate is provided on the drain outlet side of the biological treatment tank to partition the inside of the biological treatment tank into a biological treatment chamber and an upward flow channel on the drain outlet side, and the biological treatment from the biological treatment chamber
  • the biological treatment chamber along the partition plate
  • the upper and lower portions both form a circulation flow path communicating with the biological treatment chamber, and a part of the biological treatment water in the biological treatment chamber is transferred to the circulation flow path. It is characterized in that a water flow means for flowing upward water is provided at an LV larger than the LV.
  • a biological treatment apparatus for organic wastewater is an apparatus for biologically treating organic wastewater in a biological treatment tank provided in multiple stages.
  • the organic wastewater is decomposed by dispersal bacteria.
  • a biological treatment apparatus for organic wastewater that generates first biological treated water with increased dispersal bacteria and produces final biological treated water in the last biological treatment tank, wherein sludge in the final biological treated water is removed from the final biological treated water.
  • a partition plate is provided on the drainage outlet side of the biological treatment tank, and the inside of the biological treatment tank is divided into a biological treatment chamber and an upward flow channel on the drainage outlet side,
  • the biological treatment water from the biological treatment chamber flows upward into the upward flow channel, and the supernatant water is discharged out of the tank from the drain outlet at the top of the upward flow channel.
  • the LV of the upward flow in the circulation channel is 1.5 to 200 times the LV of the upward flow channel.
  • an upward flow channel is provided in the biological treatment tank, and biological treatment water is flowed upward in the upward flow channel at a high LV (0.5 to 5 m / h).
  • Good sludge is settled and separated in the upward flow channel.
  • LV 0.5 to 5 m / h
  • concentration in a biological treatment apparatus high. Since the sludge concentration in the treated water is low, a solid-liquid separation device for separating sludge can be omitted in some cases. Even if a solid-liquid separation device is provided, it may be smaller and less expensive than the conventional one. It becomes possible.
  • a circulation channel is provided by a partition plate in front of the outlet-side upward flow channel, and the biological treatment liquid in the tank is placed in this circulation channel more than the LV of the outlet-side upward flow channel. Pass water in the upward flow of high LV. Thereby, the outflow of the bubble to the exit side and the outflow of the sludge accompanying it can be prevented.
  • the raw water flow and the water flow stop are repeatedly performed, and by setting a water flow stop period of 1/20 to 1/1, particularly 1/20 to 1/2 of the water flow time,
  • the sludge collected in the outlet side upward flow channel can be returned to the biological treatment section in the tank, and the treatment becomes more stable.
  • Sedimentation property is excessively improved, and the sludge that has settled in the lower part of the upward flow channel may be withdrawn periodically.
  • the extracted sludge may be returned to the upstream side in the biological treatment tank.
  • biological treatment tanks are provided in multiple stages, the biological treatment tank in the previous stage is a dispersion bacteria tank that converts organic matter into dispersal bacteria, and the last biological treatment tank has an adhesive property that prey on the dispersal bacteria.
  • An oscillating carrier is provided as a scaffold for filtered predatory microanimals. In this treatment, not only the rocking carrier but also sludge with good sedimentation can be used as a scaffold for micro animals, and the microorganism concentration can be kept high.
  • the sedimentation property of sludge may be improved by adding a flocculant to the biological treatment tank.
  • FIG. 1 to 3 are system diagrams showing an embodiment of a biological treatment method and apparatus for organic wastewater according to the present invention.
  • 1 is a first biological treatment tank
  • 2 is a second biological treatment tank
  • 11 and 21 are air diffusers
  • 12 is a fluidized bed carrier
  • 16 is a carrier separation screen
  • 22 is a rocking bed carrier.
  • reference numeral 23 denotes a partition plate provided in the second biological treatment tank 2
  • reference numeral 24 denotes an ascending channel. In the ascending channel 24, sludge is solid-liquid separated.
  • a partition plate 26 is installed in the biological treatment chamber along the partition plate 23, and a circulation channel 27 is formed between the partition plate 26 and the partition plate 23.
  • the circulation channel 27 is provided with means for forming an upward flow (in this embodiment, an air diffuser nozzle 28).
  • members having the same function are denoted by the same reference numerals.
  • raw water organic wastewater
  • a BOD volumetric load of 1 kg / m 3 / d or more, for example 1 to 20 kg / m 3 / d is introduced into the first biological treatment tank 1 and aerated through the air diffuser 11.
  • Dispersible bacteria non-aggregating bacteria
  • the pH of the first biological treatment tank 1 is preferably 6 to 8.5.
  • the pH is 8 It can be ⁇ 9.
  • the water flow to the 1st biological treatment tank 1 shall be a transient type.
  • the BOD volumetric load of the first biological treatment tank 1 is 1 kg / m 3 / d or more, for example 1 to 20 kg / m 3 / d
  • HRT raw water residence time
  • HRT raw water residence time
  • treated water in which dispersible bacteria are dominant can be obtained.
  • waste water with a low BOD concentration can be treated with a high load by shortening the HRT.
  • the shape of the fluidized bed carrier 12 is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, a thread shape, and a plate shape, and the size (diameter) is about 0.1 to 10 mm.
  • the material of the carrier 12 is arbitrary, such as a natural material, an inorganic material, or a polymer material, and a gel material may be used.
  • the carrier is not limited to a fluidized bed carrier, and may be a fixed bed carrier or a rocking carrier. When a fixed bed carrier or a rocking carrier is used, the separation screen 16 is not necessary.
  • the filling rate of the carrier added to the first biological treatment tank 1 is 10% or less, for example 1 to 10% in the case of a fluidized bed carrier, and 5% or less, for example, in the case of a fixed bed carrier or a rocking carrier.
  • the dissolved oxygen (DO) concentration in the first biological treatment tank 1 may be 1 mg / L or less, preferably 0.5 mg / L or less to suppress the growth of filamentous bacteria.
  • Treated water from the first biological treatment tank 1 (first biological treated water) is introduced into the second biological treatment tank 2 at the subsequent stage, aerated, and oxidative decomposition of remaining organic components, self-degradation of dispersible bacteria and Reduce excess sludge through predation of micro-animals.
  • a partition plate 23 is provided so as to surround the outlet portion, and a partition plate 26 is provided along the partition plate 23,
  • the inside of the biological treatment tank 2 is partitioned into a biological treatment chamber 29, a circulation channel 27, and an upward flow channel 24.
  • the upper end of the partition plate 23 protrudes from the water surface of the second biological treatment tank 2.
  • the lower end of the partition plate 23 is located 2 m or more from the water surface of the second biological treatment tank 2, particularly 3 to 4 m below.
  • a rising flow path 24 is formed between the partition plate 23 and the tank wall. The sludge settles while the sludge mixed water in the second biological treatment tank 2 rises in this ascending flow path.
  • the LV of the upward flow in the upward flow path 24 is 0.5 to 5 m / h, preferably 1 to 2.5 m / h, more preferably 1.5 to 2.5 m / h.
  • the second biological treatment tank 2 is provided with an excess sludge extraction pipe 25.
  • the connecting position of the excess sludge take-out pipe 25 is not particularly limited, but it is installed so as to be connected below the upward flow passage 24 or the circulation flow passage 27 so as to draw out the excessively settled sludge. May be.
  • a part of the treated water in the second biological treatment tank 2 is circulated above the upstream flow passage 24 or upstream from the treated water pipe to prevent LV fluctuation at the time of fluctuation of the raw water flow rate. May be.
  • a circulation channel 27 is formed between the partition plate 23 and the partition plate 26.
  • the upper end of the partition plate 26 is lower than the water surface of the second biological treatment tank 2, and the lower end is higher than the bottom surface of the second biological treatment tank 2.
  • a diffuser nozzle 28 is provided in the circulation flow path 27.
  • an upward flow of LV 1.5 to 200 times, preferably 2 to 150 times the LV of the upward flow passage 24 is formed in the circulation flow passage 27, and the outlet Outflow of bubbles to the side, that is, the upward flow passage 24 and sludge outflow associated therewith are prevented.
  • mechanical agitation by a propeller may be employed in addition to aeration.
  • a diffuser tube 21 is provided in the biological treatment chamber 29 as a means for aeration of the biological treatment chamber 29.
  • the air diffuser 21 can be omitted, but both the DO in the biological treatment chamber 29 and the LV of the circulation channel 27 are appropriately used.
  • the means for aeration of the biological treatment chamber 29 and the upward flow generating means of the circulation flow path 27 are provided individually.
  • the swing bed carrier 22 is installed in the biological treatment chamber 29 to increase the amount of micro-animal retained in the tank.
  • the sheet size is preferably 100 to 400 cm in the depth direction of the tank, 5 to 200 cm in the horizontal direction of the tank, and 0.5 to 5 cm in thickness.
  • a carrier of this size has an apparent surface area that is large enough for a microanimal to lay eggs and grow.
  • a carrier of this size has an apparent surface area that is large enough for a microanimal to lay eggs and grow.
  • the material is preferably a foamed synthetic resin, particularly a flexible polyurethane foam. Since the carrier made of this material has flexibility, the biofilm is easily peeled off without inhibiting water flow.
  • the hole diameter is preferably 0.05 to 10 mm.
  • the hole having this hole diameter has a size that allows sludge to easily adhere and peel off.
  • the number of foam cells is preferably 5 to 125 cells / 25 mm.
  • the carrier having this number of cells is liable to adhere sludge and easily peel off.
  • the conditions for the foamed cells of the porous carrier are preferably those in which the distribution of the foamed cells is uniform. If there are too many foamed cells or the cell diameter is too large, the mechanical strength of the porous carrier will be reduced, so as described above, as the number of cells / 25 mm (number of cells existing in a 25 mm length range),
  • the upper limit is preferably about 125 pieces / 25 mm. Conversely, if the number of foamed cells is too small or the cell diameter is too small, the function as a porous carrier cannot be obtained sufficiently.
  • the lower limit of / 25 mm is preferably about 5/25 mm.
  • a photo of the porous carrier taken with a scanning electron microscope was used to measure the number of foamed cells intersecting the straight line 25 mm in the length direction at a plurality of locations. The average value of the results can be calculated and obtained.
  • the second biological treatment tank 2 may be filled with a fluidized bed carrier that can be separated by the upward flow channel 24 in addition to the rocking bed carrier.
  • the filling rate of the carrier is excessively high, mixing in the tank, sludge decay, etc. may occur.
  • the filling rate is preferably 0.5 to 30%, more preferably about 1 to 20%.
  • the preferred installation form of the swing bed carrier is as follows.
  • the [apparent surface area of the rocking bed carrier] / [volume of the biological treatment tank] is 1 to 50 [m ⁇ 1 ]. It is preferable to increase the amount of carrier in accordance with the load increase.
  • the apparent surface area is the surface area of the outer surface that does not consider the internal surface area of the porous body. For example, in the case of a rectangular parallelepiped, the total surface area of six surfaces (length ⁇ width ⁇ 2 + length ⁇ thickness ⁇ 2 + thickness ⁇ width ⁇ 2) Out.
  • the filling rate of the swing bed carrier should be 1 to 20% of the total volume of the biological treatment tank (including the biological treatment tank in the return line) after the biological treatment tank with micro animals. preferable. It is preferable to increase the amount of carrier in accordance with the load increase.
  • a strip-shaped sheet (longitudinal direction ⁇ short direction ⁇ thickness direction) is installed in the tank as the swinging bed carrier so that the longitudinal direction of the swinging bed carrier is the depth direction of the tank (vertically downward). It is preferable.
  • the direction of the rocking floor carrier in the short direction is not particularly limited, and can be installed in the tank so as to be substantially perpendicular to the direction of water flow from the inflow side to the outflow side to the outflow side, for example.
  • the pH of the second biological treatment tank 2 may be 7.0 or less.
  • the second biological treatment tank 2 not only the filtration predation type micro-animal that prey on the dispersed cells but also the aggregate predation type micro-animal that can prey on the floc sludge grows. Since the latter prey on flocs while swimming, if priority is given, sludge is eaten and becomes sludge in which fine floc pieces are scattered (sludge with poor sedimentation). This floc piece causes clogging of the membrane particularly in the membrane activated sludge method in which membrane separation is performed at a later stage. Therefore, in order to thin out the aggregate predatory microanimals, it is desirable to control the SRT to be constant within a range of 60 days or less, preferably 45 days or less.
  • SRT is preferably 15 days or more.
  • the first biological treatment tank 1 it is necessary to decompose most of the organic matter, that is, 70% or more of the wastewater BOD, desirably 80% or more, and convert it into microbial cells.
  • the organic substances When the organic substances are completely decomposed, flocs are not formed in the second biological treatment tank 2, and there is not enough nutrients for the growth of micro-animals. Only sludge with poor compaction (sludge with poor sedimentation) is excellent. It becomes an occupied biological treatment tank. Therefore, as shown in FIG.
  • the MLSS at this time includes MLSS for the carrier adhering.
  • a flocculant may be added temporarily to improve the sedimentation property.
  • a flocculant it is desirable to add one or both of an inorganic flocculant and an organic flocculant to the last biological treatment tank.
  • an inorganic flocculant not only iron-based and aluminum-based ones, but also slag, silica, calcium and the like used for usual waste water treatment can be used.
  • the organic flocculant in addition to the anionic polymer and the cationic polymer, those used for ordinary waste water treatment can be used, and among them, the cationic polymer flocculant is preferable.
  • the settling property may be maintained by increasing the frequency of adding the flocculant, and the LV is set low within 0.5 to 5 m / h. You may maintain sludge.
  • the separated water settled and separated at LV 0.5 to 5 m / h as in the present invention is subjected to any of solid separation and membrane separation, coagulation sedimentation, and pressurized flotation in order to obtain a higher quality of treated water. Also good.
  • the amount of the flocculant added can be reduced when performing coagulation sedimentation or pressure levitation.
  • the sedimentation separated water from the second biological treatment tank 2 is agglomerated in a coagulation tank, and then precipitated in a solid-liquid separation tank (sedimentation tank) to be separated into treated water and sedimented sludge.
  • the flocculant may be added directly to the second biological treatment tank without providing the flocculent solid-liquid separation tank to improve the quality of the treated water.
  • the addition amount of the cationic polymer flocculant to the second biological treatment tank is preferably about 0.5 to 20 mg / L, more preferably 1 to 10 mg / L.
  • an oxygen-free tank 30 may be provided, and the second biological treatment tank sludge may be circulated therein to suppress the growth of aggregate predation type micro animals.
  • the HRT of the anoxic tank 30 is set to 30 min or more, and in order to consume DO, a part of the raw water or a part or the whole amount of the first biological tank treated water may be passed.
  • the supply of raw water and the supply stop may be repeated.
  • the relationship between the raw water supply time T F and the raw water supply stop time T S is preferably such that T S / T F is 1/20 to 1/1, particularly 1/20 to 1/2.
  • TF is preferably about 1 to 12 hours.
  • the biological treatment tank may be provided in three or more stages by providing a third biological treatment tank after the first biological treatment tank 1 and the second biological treatment tank 2.
  • each tank may be provided independently, or each tank may be formed by partitioning one tank with a partition plate.
  • the biological treatment tank 2 having the partition plate 26 and the partition plate 23 may be installed alone to perform wastewater treatment.
  • FIG. 4 shows an example, and raw water is directly supplied to the biological treatment tank 2 and processed.
  • Example 1 (flow: FIG. 1)]
  • the following treatment was performed on raw water (food production wastewater) using a first biological treatment tank 1 (no sludge return) having a capacity of 88 L and a second biological treatment tank 2 having a capacity of 150 L.
  • the DO of the first biological treatment tank 1 was 0.5 mg / L
  • a fluidized bed carrier 12 having a filling rate of 5% and 5 mm square is added to the first biological treatment tank 1, and a plate-like polyurethane foam (length 100 cm ⁇ width 30 cm ⁇ thickness 1 cm / 1) is added to the second biological treatment tank 2.
  • the rocking bed carrier 22 made of a sheet was installed.
  • the CODcr volumetric load on the first biological treatment tank is 8.6 kg-CODcr / m 3 / d, HRT 3.5 h
  • the LV of the upward flow in the circulation flow path 27 was set to 10 m / h.
  • the upward flow LV in the upward flow channel 24 is 5 m / h.
  • the SS of the treated water was 30 mg / L
  • Example 1 The treatment was performed under the same conditions as in Example 1 except that the partition plate 26, the circulation channel 27, and the diffuser nozzle 28 were not provided.
  • the SS of the treated water was usually 30 mg / L, but sludge accumulation and floating occurred regularly in the outlet channel, and the SS of the treated water rose to 100 mg / L at that time.
  • Example 2 In Example 1, it processed on the same conditions except having added 5 mg / L of cationic polymer flocculants (Kurita Industrial Co., Ltd. Kuri farm PC728) to the 2nd biological treatment tank 2.
  • FIG. 1 Lita Industrial Co., Ltd. Kuri farm PC728
  • the SS of the treated water was 20 mg / L

Abstract

 活性汚泥法を適用した有機性排水の生物処理において、汚泥および微小動物を安定して維持することができ、また、発生汚泥量を大幅に減量化することができると共に、高負荷運転による処理効率の向上と、処理水質の安定化を図る。第二生物処理槽2内に区画板26と仕切板23とにより循環流路27及び上向流流路24が設けられている。生物処理室29内の生物処理水は循環流路27に上向流流路24よりも高LVで上向流通水される。上向流流路24を0.5~5m/hで上昇して、固液分離された処理水が槽2から取り出される。

Description

有機性排水の生物処理方法及び装置
 本発明は、生活排水、下水、食品工場、パルプ工場、半導体製造排水、液晶製造排水といった有機性排水の処理に広く利用することができる有機性排水の生物処理方法及び装置に関する。
 有機性排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は一般に0.5~0.8kg/m/d程度であるため、広い敷地面積が必要となる。また、分解したBODの20~40%が菌体、即ち汚泥へと変換されるため、大量の余剰汚泥処理も問題となる。活性汚泥法には、汚泥と処理水との固液分離に膜分離装置を利用する膜式活性汚泥法と、沈殿池を用いる沈殿池型の活性汚泥法とがある。膜式活性汚泥法には膜の設置費、交換・維持費がかかるという短所がある。沈殿池型活性汚泥法には設置面積が大きくなるという短所がある。
 有機性排水の高負荷処理に関しては、担体を添加した流動床法が知られている。この方法を用いた場合、3kg/m/d以上のBOD容積負荷で運転することが可能となる。しかしながら、この方法では発生汚泥量は分解したBODの30~50%程度で、通常の活性汚泥法より高くなることが欠点となっている。
 特許文献1には、有機性排水をまず、第一処理槽で細菌により処理し、排水に含まれる有機物を酸化分解して非凝集性の細菌の菌体に変換した後、第二処理槽で固着性原生動物に捕食除去させることで余剰汚泥の減量化が可能になることが記載されている。この方法では高負荷運転が可能となり、活性汚泥法の処理効率も向上するとされている。
 このように細菌の高位に位置する原生動物や後生動物の捕食を利用した廃水処理方法は、多数考案されている。例えば、特許文献2には、特許文献1の処理方法で問題となる原水の水質変動による処理性能悪化の対策が記載されている。具体的な方法としては、「被処理水のBOD変動を平均濃度の中央値から50%以内に調整する」、「第一処理槽内および第一処理水の水質を経時的に測定する」、「第一処理水の水質悪化時には微生物製剤または種汚泥を第一処理槽に添加する」等の方法をあげている。
 特許文献3では、細菌、酵母、放線菌、藻類、カビ類や廃水処理の初沈汚泥や余剰汚泥を原生動物や後生動物に捕食させる際に超音波処理または機械攪拌により、捕食されるフロックのフロックサイズを動物の口より小さくさせる方法を提案している。
 流動床と活性汚泥法の多段処理による有機性排水の生物処理方法としては、特許文献4に記載のものがある。この方法では、後段の活性汚泥法をBOD汚泥負荷0.1kg-BOD/kg-MLSS/dの低負荷で運転することで、汚泥を自己酸化させ、汚泥引き抜き量を大幅に低減できるとしている。
 特許文献5には、活性汚泥法による生物処理槽の排水出口側に仕切りを設けて上向流の流路を形成し、生物処理水を該流路にLV1~20m/hで上向流通水し、該流路で沈降した汚泥を生物処理槽に戻し、該流路を上昇した上澄水を槽外に排出する有機性排水の生物処理槽が記載されている。
特開昭55-20649号公報 特開2000-210692号公報 特開昭55-20649号公報 特許第3410699号公報 WO2013/103124A1
 生物処理槽内に汚泥を維持する方法として沈殿池による汚泥返送、膜による処理水分離がある。沈殿池型による汚泥返送には設置面積が大きくなるという短所がある。また、膜による汚泥返送には膜の設置費、交換・維持費がかかるという短所がある。
 上記の微小動物の捕食作用を利用した活性汚泥法は、実際に有機性廃水処理に用いられており、対象とする排水によっては処理効率の向上、発生汚泥量の減量化は可能である。しかしながら、この汚泥減量効果は安定しないのが現状である。
 活性汚泥法による生物処理槽に流動床担体を添加することにより、汚泥や微小動物の安定した維持は可能となるが、分離スクリーンが必要になったり、担体による酸素溶解効率の低下する等の課題がある。
 特許文献5の生物処理槽によると、排水出口側に上向流流路を設け、LV1~20m/hで上向流通水することにより、生物処理槽内に汚泥や微小動物を安定して維持することが可能となる。
 しかしながら、上向流流路に気泡が混入した場合などには、上向流流路における汚泥の分離効率が低下し、汚泥が流出したり、生物処理槽内の汚泥濃度が低下するおそれがある。
 本発明は、活性汚泥法を適用した有機性排水の生物処理において汚泥および微小動物を安定して維持することができ、また、発生汚泥量を大幅に減量化することができると共に、高負荷運転による処理効率の向上と、処理水質の安定化を図ることができる活性汚泥法による有機性排水の生物処理方法及び装置を提供することを課題とする。
 第1発明の有機性排水の生物処理方法は、有機性排水を生物処理槽で生物処理する有機性排水の生物処理方法であって、生物処理水中の汚泥を該生物処理槽内で固液分離するために、生物処理槽の排水出口側に仕切板を設けて該生物処理槽内を生物処理室と該排水出口側の上向流流路とに区画し、該生物処理室からの生物処理水を該上向流流路にLV0.5~5m/hで上向流通水し、該上向流流路の上部の排水出口から上澄水を槽外に排出する生物処理方法において、該仕切板に沿って該生物処理室内に区画板を設けることにより、上部及び下部がいずれも該生物処理室に連通した循環流路を形成し、生物処理室内の生物処理水の一部を該循環流路に前記上向流流路におけるLVよりも大きいLVにて上向流通水することを特徴とする。
 第2発明の有機性排水の生物処理方法は、有機性排水を多段に設けられた生物処理槽で生物処理する方法であって、第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、最後段の生物処理槽において、最終生物処理水を生成させる有機性排水の生物処理方法であって、最終生物処理水中の汚泥を最後段の生物処理槽内で固液分離するために、生物処理槽の排水出口側に仕切板を設けて該生物処理槽内を生物処理室と該排水出口側の上向流流路とに区画し、該生物処理室からの生物処理水を該上向流流路にLV0.5~5m/hで上向流通水し、該上向流流路の上部の排水出口から上澄水を槽外に排出する生物処理方法において、該仕切板に沿って該生物処理室内に区画板を設けることにより、上部及び下部がいずれも該生物処理室に連通した循環流路を形成し、生物処理室内の生物処理水の一部を該循環流路に前記上向流流路におけるLVよりも大きいLVにて上向流通水することを特徴とする。
 第3発明の有機性排水の生物処理装置は、有機性排水を生物処理槽で生物処理する有機性排水の生物処理装置であって、生物処理水中の汚泥を該生物処理槽内で固液分離するために、生物処理槽の排水出口側に仕切板を設けて該生物処理槽内を生物処理室と該排水出口側の上向流流路とに区画し、該生物処理室からの生物処理水を該上向流流路に上向流通水し、該上向流流路の上部の排水出口から上澄水を槽外に排出する生物処理装置において、該仕切板に沿って該生物処理室内に区画板を設けることにより、上部及び下部がいずれも該生物処理室に連通した循環流路を形成し、生物処理室内の生物処理水の一部を該循環流路に前記上向流流路におけるLVよりも大きいLVにて上向流通水する通水手段を設けたことを特徴とする。
 第4発明の有機性排水の生物処理装置は、有機性排水を多段に設けられた生物処理槽で生物処理する装置であって、第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、最後段の生物処理槽において、最終生物処理水を生成させる有機性排水の生物処理装置であって、最終生物処理水中の汚泥を最後段の生物処理槽内で固液分離するために、生物処理槽の排水出口側に仕切板を設けて該生物処理槽内を生物処理室と該排水出口側の上向流流路とに区画し、該生物処理室からの生物処理水を該上向流流路に上向流通水し、該上向流流路の上部の排水出口から上澄水を槽外に排出する生物処理装置において、該仕切板に沿って該生物処理室内に区画板を設けることにより、上部及び下部がいずれも該生物処理室に連通した循環流路を形成し、生物処理室内の生物処理水の一部を該循環流路に前記上向流流路におけるLVよりも大きいLVにて上向流通水する通水手段を設けたことを特徴とする。
 第1~第4発明において、前記循環流路における上向流のLVを前記上向流流路のLVの1.5~200倍とすることが好ましい。
 本発明では、生物処理槽内に上向流流路を設け、該上向流流路に生物処理水を高LV(0.5~5m/h)で上向流通水するので、沈降性の良い汚泥が該上向流流路で沈降分離される。これにより、沈降性の良い汚泥を選択的に槽内に保持するとともに、沈降性の悪い汚泥のみを排出することができる。このため、生物処理装置内の汚泥濃度を高く保持することが可能となる。処理水中の汚泥濃度は低いため、場合によっては汚泥を分離するための固液分離装置を省略でき、固液分離装置を設けたとしても、従来のものよりも小型で安価なものとすることが可能となる。
 この上向流流路に汚泥が溜まったり、生物処理槽の曝気による気泡が上向流流路に混入すると、汚泥の固液分離不良や処理水質の悪化を引き起こすおそれがある。そこで、本発明では、出口側上向流流路の手前に区画板によって循環流路を設け、この循環流路に、槽内の生物処理液を、出口側上向流流路のLVよりも高LVの上向流にて通水する。これにより、出口側への気泡の流出およびそれに伴う汚泥の流出を防止することができる。
 本発明の一態様では、原水の通水と通水停止を繰り返し行い、通水時間の1/20から1/1、特に1/20から1/2の通水停止期間を設定することにより、出口側上向流流路に溜まった汚泥を槽内の生物処理部に戻すことが出来、処理がより安定する。
 沈降性が過剰に向上し、上向流流路下部で沈殿した汚泥は定期的に引き抜いても良い。引き抜いた汚泥は、当該生物処理槽内の上流側に返送しても良い。
 本発明の一態様では、生物処理槽を多段に設け、前段の生物処理槽を、有機物を分散菌に変換する分散菌槽とし、最後段の生物処理槽に、分散菌を捕食する固着性の濾過捕食型微小動物の足場として揺動性担体を設ける。この処理においては、揺動性担体だけでなく沈降性の良い汚泥も微小動物の足場として利用し、微生物濃度を高く維持することができる。
 揺動床担体をシート状の発泡プラスチックとすることで、より沈降性の良い汚泥を生成させ、槽内に保持することができる。
 生物処理槽に凝集剤を添加することで汚泥の沈降性を改善しても良い。
本発明の有機性排水の生物処理方法及び装置の実施の形態を示すブロック図である。 本発明の有機性排水の生物処理方法及び装置の実施の形態を示すブロック図である。 本発明の有機性排水の生物処理方法及び装置の実施の形態を示すブロック図である。 本発明の有機性排水の生物処理方法及び装置の実施の形態を示すブロック図である。
 以下に図面を参照して本発明の有機性排水の生物処理方法及び装置の実施の形態を詳細に説明する。図1~3は本発明の有機性排水の生物処理方法及び装置の実施の形態を示す系統図である。
 図1~3において、1は第一生物処理槽、2は第二生物処理槽、11,21は散気管、12は流動床担体、16は担体分離用スクリーン、22は揺動床担体である。図1~3において、23は第二生物処理槽2に設けられた仕切板、24は上昇流路であり、この上昇流路24において汚泥が固液分離される。第二生物処理槽2にあっては、仕切板23に沿って生物処理室内に区画板26が設置され、区画板26と仕切板23との間に循環流路27が形成されている。この循環流路27に、上向流を形成するための手段(この実施の形態では、散気ノズル28)が設けられている。なお、図1~3において同一機能を奏する部材には同一符号を付してある。
 図1の態様では、BOD容積負荷1kg/m/d以上例えば1~20kg/m/dの原水(有機性排水)を第一生物処理槽1に導入し、散気管11で曝気し、分散性細菌(非凝集性細菌)により、有機成分(溶解性BOD)の70%以上、望ましくは80%以上、さらに望ましくは85%以上を酸化分解する。この第一生物処理槽1のpHは好ましくは6~8.5とする。ただし、食品製造排水など原水中に油分を多く含む場合や、半導体製造排水や液晶製造排水など原水中に有機性の溶媒や洗浄剤を多く含む場合には分解速度を高くするため、pHは8~9としても良い。
 第一生物処理槽1への通水は、一過式とする。第一生物処理槽1のBOD容積負荷を1kg/m/d以上、例えば1~20kg/m/d、HRT(原水滞留時間)を24h以下、好ましくは8h以下、例えば0.5~8hとすることにより、分散性細菌が優占化した処理水を得ることができる。また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができる。
 第一生物処理槽1には、後段の生物処理槽からの汚泥の一部を返送したり、第一生物処理槽1を二槽以上の多段構成としたり、担体12を添加したりすることにより、BOD容積負荷5kg/m/d以上の高負荷処理も可能となる。
 流動床担体12の形状は、球状、ペレット状、中空筒状、糸状、板状等の任意であり、大きさ(径)は0.1~10mm程度である。担体12の材料は、天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。担体は、流動床担体に限定されるものではなく、固定床担体、揺動性担体のいずれでも良い。固定床担体、揺動性担体を用いた場合には、分離スクリーン16は不要となる。
 第一生物処理槽1に添加する担体の充填率が高い場合、分散菌は生成せず、細菌は担体に付着するか、糸状性細菌が増殖する。そこで、第一生物処理槽1に添加する担体の充填率を、流動床担体の場合は10%以下、例えば1~10%とし、固定床担体、揺動性担体の場合は5%以下、例えば0.5~5%とすることで、濃度変動に影響されず、捕食しやすい分散菌の生成が可能になる。
 第一生物処理槽1の溶存酸素(DO)濃度を1mg/L以下、好ましくは0.5mg/L以下として、糸状性細菌の増殖を抑制しても良い。
 第一生物処理槽1の処理水(第一生物処理水)を、後段の第二生物処理槽2に導入し、曝気し、残存している有機成分の酸化分解、分散性細菌の自己分解及び微小動物の捕食による余剰汚泥の減量化を行う。
 最終段の生物処理槽(この実施の形態では第二生物処理槽2)には、その出口部を囲むように仕切板23が設けられ、この仕切板23に沿って区画板26が設けられ、生物処理槽2内が生物処理室29と、循環流路27と、上向流流路24とに区画されている。この仕切板23の上端は第二生物処理槽2の水面から突出している。仕切板23の下端は第二生物処理槽2の水面から2m以上、特に3~4m下方に位置している。この仕切板23と槽壁との間が上昇流路24となっている。第二生物処理槽2内の汚泥混合水がこの上昇流路を上昇する間に汚泥が沈降する。本発明では、この上向流路24における上昇流のLVを0.5~5m/h好ましくは1~2.5m/h、さらに好ましくは1.5~2.5m/hとする。第二生物処理槽2には余剰汚泥の取出管25が設けられている。
 余剰汚泥の取出管25の接続位置は特に限定されるものではないが、上向流流路24または循環流流路27の下方に接続するように設置し、過剰に沈殿した汚泥を引き抜くようにしても良い。
 第二生物処理槽2の処理水の一部を、上向流流路24の上方あるいは、処理水配管から、上流側に循環させるようにして、原水流量変動時のLV変動を防止するようにしても良い。
 仕切板23と区画板26との間に循環流路27を形成している。区画板26の上端は第二生物処理槽2の水面よりも低く、下端は第二生物処理槽2の底面よりも高い。これにより、循環流路27の上部及び下部が生物処理室29に連通している。循環流路27内に散気ノズル28が設けられている。
 散気ノズル28から散気することにより、この循環流路27に上向流流路24のLVの1.5~200倍、望ましくは2~150倍のLVの上向流を形成し、出口側すなわち上向流流路24への気泡の流出およびそれに伴う汚泥の流出を防止する。循環流路27に上向流を発生させる方法は曝気のほか、プロペラによる機械攪拌等を採用してもよい。
 生物処理室29には生物処理室29を曝気するための手段として散気管21が設けられている。循環流路27の上向流を発生させる手段として曝気を用いた場合には、散気管21は省略可能であるが、生物処理室29内のDOおよび循環流路27のLVの両者を適切に維持するために、生物処理室29を曝気するための手段と、循環流路27の上向流発生手段とはそれぞれ個別に設けることが好ましい。
 第二生物処理槽2では、細菌に比べ増殖速度の遅い微小動物の働きと細菌の自己分解を利用するため、微小動物と細菌が系内に留まるような運転条件及び処理装置を用いる必要がある。そこで、この実施の形態では、第二生物処理槽2には、揺動床担体22を生物処理室29に設置して微小動物の槽内保持量を高めている。
 揺動床担体22としては、次の条件を満たす軟質シート状物が好ましい。
(1)シート寸法は、槽の深さ方向の長さ100~400cm×槽の水平方向の奥行5~200cm×厚み0.5~5cmが好ましい。この寸法の担体は、微小動物が産卵・生育しやすい程度に広い見かけ表面積を有する。
(2)見かけ表面積500cm以上の面を少なくとも2面有することが好ましい。この寸法の担体は、微小動物が産卵・生育しやすい程度に広い見かけ表面積を有する。
(3)素材は発泡合成樹脂特に軟質ポリウレタンフォームが好ましい。この素材よりなる担体は、たわみ性を有するため通水を阻害せず生物膜が剥がれやすい。
(4)孔径が0.05~10mmであることが好ましい。この孔径を有する孔は、汚泥が付着しやすく剥がれやすい大きさである。
(5)発泡セルのセル数が5~125個/25mmであることが好ましい。このセル数を有する担体は、汚泥が付着しやすく剥がれやすい。
 第二生物処理槽2にこのような薄い板状ないし短冊状の軽量ポリウレタンフォームのような多孔質のシート状揺動床担体を設置すると、揺動床担体が、十分な弾力性を有し、槽内の水の流れの中でたわむことにより、薄くても十分な機械的強度を持ち、破損することがない。また、たわむことで槽内の通水を阻害することなく均一に混合され、担体の多孔質構造内にも均等に汚泥含有液が通水されるようになる。
 多孔質担体の発泡セルの条件としては、発泡セルの分布が均一なものが好ましい。発泡セルが多すぎたり、セル径が大きすぎたりすると、多孔質担体の機械的強度が小さくなるため、上記の通り、セル数/25mm(25mmの長さの範囲に存在するセル数)として、上限値が125個/25mm程度であることが好ましい。逆に、発泡セルが少な過ぎたり、セル径が小さすぎたりすると、多孔質担体としての機能を十分に得ることができないことから、多孔質担体の機能を十分に発揮させるために、このセル数/25mmの下限値は5個/25mm程度であることが好ましい。なお、このセル数/25mmについては、走査型電子顕微鏡により撮影した多孔質担体の写真を用い、長さ方向の直線25mmに対して交差する発泡セル数を計測する作業を複数箇所について行い、計測結果の平均値を算出して求めることができる。
 第二生物処理槽2には、揺動床担体のほかにさらに上向流流路24で分離可能な流動床担体を充填してもよい。
 第二生物処理槽2では、微小動物を維持するための多量の足場が必要となるが、過度に担体の充填率が多いと槽内の混合不足、汚泥の腐敗などが起こるため、添加する担体の充填率は、0.5~30%、特に1~20%程度とすることが望ましい。
 揺動床担体の好ましい設置形態は次の通りである。
(i)揺動床担体を設置する生物処理槽において、〔揺動床担体の見かけ表面積〕/〔生物処理槽容積〕が1~50[m-1]である。負荷増加に合わせて担体量を増加させることが好ましい。
 見かけ表面積は多孔質の内部の表面積を考慮しない外面の表面積であり、例えば直方体であれば6面の表面積の合計(長さ×幅×2+長さ×厚さ×2+厚さ×幅×2)でる。
(ii)揺動床担体の充填率は、微小動物による生物処理槽以降の生物処理槽(返送ラインに生物処理槽がある場合はそれも含む)の総容積の1~20%であることが好ましい。負荷増加に合わせて担体量を増加させることが好ましい。
(iii)揺動床担体として短冊状シート(長手方向×短手方向×厚み方向)を、揺動床担体の長手方向が槽の深さ方向(鉛直下向き)となるように槽内に設置することが好ましい。この揺動床担体の短手方向の向きは特に限定されず、例えば、槽への流入側から流出側への通水方向と略垂直となるように槽内に設置することができる。
(iv)第二生物処理槽の容量が担体の寸法に対し大きい場合には、担体の上下面に留め具を取り付けたものを複数枚用意し、これを第二生物処理槽の深さ方向および/又は幅方向に所定の枚数を並列させ、SUS等の材質よりなる枠材に担体を取り付けた留め具を固定してユニット化することが好ましい。更に、この担体ユニットを必要に応じて第二生物処理槽内の水の流れ方向に複数枚設けるようにすることが好ましい。
 微小動物による捕食を促進させるため、第二生物処理槽2のpHを7.0以下としても良い。
 第二生物処理槽2では、分散状態の菌体を捕食する濾過捕食型微小動物だけでなく、フロック化した汚泥を捕食できる凝集体捕食型微小動物も増殖する。後者は遊泳しながらフロックを捕食するため、優先化した場合、汚泥は食い荒らされ、微細化したフロック片が散在する汚泥(沈降性の悪い汚泥)となる。このフロック片により、特に後段で膜分離を行う膜式活性汚泥法では膜の目詰まりが発生する。そこで、凝集体捕食型微小動物を間引くため、SRTを60日以下望ましくは45日以下の範囲内で一定に制御することが望ましい。ただし15日未満では不必要に頻繁すぎて凝集体捕食型微小動物だけでなく濾過捕食型微小動物の数が減少しすぎるのでSRTは15日以上とするのが好ましい。
 第一生物処理槽1では有機物の大部分、すなわち排水BODの70%以上、望ましくは80%以上を分解し、菌体へと変換しておく必要があるが、第一生物処理槽1で溶解性有機物を完全に分解した場合、第二生物処理槽2ではフロックが形成されず、また、微小動物増殖のための栄養も不足し、圧密性の低い汚泥(沈降性の悪い汚泥)のみが優占化した生物処理槽となる。そこで、図2の通り、原水の一部をバイパスして第二生物処理槽2に供給し、第二生物処理槽2への溶解性BODによる汚泥負荷が0.025kg-BOD/kg-MLSS/d以上となるように運転してもよい。この時のMLSSには担体付着分のMLSSも含む。
 生物処理槽内の汚泥の沈降性が悪化した際は、凝集剤を一時的に添加し、沈降性を改善しても良い。凝集剤として、無機凝集剤と有機凝集剤のいずれかまたは両方を最後段の生物処理槽に添加することが望ましい。無機凝集剤は鉄系、アルミ系だけでなく、スラグ、シリカ、カルシウム等、通常の排水処理に使用されているものを使用できる。同様に有機凝集剤も、アニオン系ポリマー、カチオン系ポリマー以外にも通常の排水処理に使用されているものを使用できるが、中でもカチオン系高分子凝集剤が好適である。
 揺動性担体が設置できない場合や設置量が制限される場合は、凝集剤の添加頻度を増やすことで沈降性を維持しても良いし、LVを0.5~5m/h内で低く設定することで汚泥を維持しても良い。
 本発明のようにLV0.5~5m/hで沈降分離した分離水に対して、より高度な処理水水質を得るために固液分離として膜分離、凝集沈殿、加圧浮上のいずれを行ってもよい。なお、凝集沈殿や加圧浮上を行うときは、凝集剤の添加量を低減することができる。第二生物処理槽2からの沈降分離水を凝集槽で凝集処理し、次いで固液分離槽(沈殿槽)で沈殿処理して処理水と沈降汚泥とに分離する。凝集固液分離槽を設けず、凝集剤を直接第二生物処理槽に添加し処理水質を向上させても良い。その際、沈降性がよければ、カチオン系ポリマーの添加だけでよい。第二生物処理槽へのカチオン系高分子凝集剤の添加量は0.5~20mg/L程度が好ましく、さらに1~10mg/Lがより好ましい。
 図3のよう無酸素槽30を設け、そこに第二生物処理槽汚泥を循環させることで、凝集体捕食型微小動物の増殖を抑制させても良い。この場合、無酸素槽30のHRTは30min以上とし、DOを消費させるため、原水の一部や第一生物槽処理水の一部または全量を通水しても良い。
 本発明では、原水の供給と供給停止とを繰り返すようにしてもよい。この場合は、原水の供給時間Tと原水の供給停止時間Tとの関係は、T/Tが1/20~1/1、特に1/20~1/2となる程度が好ましい。Tは1~12h程度が好ましい。
 図1~3は、本発明の実施の形態の一例を示すものであり、本発明は何ら図示のものに限定されない。例えば、第一生物処理槽1、第二生物処理槽2の後段に第三生物処理槽を設けるなどして、生物処理槽を3段以上に設けてもよい。また、各槽は独立して設けられてもよく、1つのタンク内を仕切板で区画して各槽を形成してもよい。
 本発明では、区画板26及び仕切板23を有した生物処理槽2を単独で設置して排水処理を行ってもよい。図4は、その一例を示すものであり、原水が直接的に生物処理槽2に供給され、処理される。
 以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
[実施例1(フロー:図1)]
 図1において、容量が88Lの第一生物処理槽1(汚泥返送なし)と容量が150Lの第二生物処理槽2を用い、原水(食品製造排水)について下記の処理を実施した。第一生物処理槽1のDOは0.5mg/Lとし、第二生物処理槽2はDO=2~3mg/Lで運転した。
 第一生物処理槽1には充填率5%で5mm角の流動床担体12を添加し、第二生物処理槽2には板状のポリウレタンフォーム(長さ100cm×幅30cm×厚さ1cm/1枚)よりなる揺動床担体22を設置した。原水CODcrは1250mg/L(BOD=800mg/L)、第一生物処理槽に対するCODcr容積負荷は8.6kg-CODcr/m/d、HRT3.5h、全体でのCODcr容積負荷2kg-CODcr/m/d、HRT9.5hの条件で運転した。
 散気ノズル28から散気することにより、循環流路27での上向流のLVを10m/hとした。上向流流路24での上向流LVは5m/hである。
 その結果、処理水のSSは30mg/Lであり、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.15kg-SS/kg-CODcrとなった。
[比較例1]
 区画板26、循環流路27及び散気ノズル28を設けないこと以外は実施例1と同一条件にて処理を行った。
 その結果、処理水のSSは通常30mg/Lであるが、定期的に出口流路で汚泥の堆積浮上が発生し、その際の処理水のSSは100mg/Lまで上昇した。SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.18kg-SS/kg-CODcrとなった。
[実施例2]
 実施例1において、第二生物処理槽2にカチオン系高分子凝集剤(栗田工業株式会社クリファームPC728)を5mg/L添加したこと以外は同一条件にて処理を行った。
 その結果、処理水のSSは15mg/Lであり、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.12kg-SS/kg-CODcrとなった。
[実施例3]
 実施例1において、原水をT=2h供給し、原水供給をT=100min停止する供給・停止を繰り返し行うようにしたこと以外は同一条件にて処理を行った。
 その結果、処理水のSSは20mg/Lであり、SRT=30dで第二生物処理槽から引き抜いた余剰汚泥分と合わせた汚泥転換率は0.13kg-SS/kg-CODcrとなった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年3月31日付で出願された日本特許出願2014-071668に基づいており、その全体が引用により援用される。
 1 第一生物処理槽
 2 第二生物処理槽
 12 流動床担体
 23 仕切板
 24 上向流流路
 26 区画板
 27 循環流路
 28 散気ノズル
 29 生物処理室
 30 無酸素槽

Claims (10)

  1.  有機性排水を生物処理槽で生物処理する有機性排水の生物処理方法であって、
     生物処理水中の汚泥を該生物処理槽内で固液分離するために、生物処理槽の排水出口側に仕切板を設けて該生物処理槽内を生物処理室と該排水出口側の上向流流路とに区画し、該生物処理室からの生物処理水を該上向流流路にLV0.5~5m/hで上向流通水し、該上向流流路の上部の排水出口から上澄水を槽外に排出する生物処理方法において、
     該仕切板に沿って該生物処理室内に区画板を設けることにより、上部及び下部がいずれも該生物処理室に連通した循環流路を形成し、生物処理室内の生物処理水の一部を該循環流路に前記上向流流路におけるLVよりも大きいLVにて上向流通水することを特徴とする有機性排水の生物処理方法。
  2.  有機性排水を多段に設けられた生物処理槽で生物処理する方法であって、
     第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、
     最後段の生物処理槽において、最終生物処理水を生成させる有機性排水の生物処理方法であって、
     最終生物処理水中の汚泥を最後段の生物処理槽内で固液分離するために、生物処理槽の排水出口側に仕切板を設けて該生物処理槽内を生物処理室と該排水出口側の上向流流路とに区画し、該生物処理室からの生物処理水を該上向流流路にLV0.5~5m/hで上向流通水し、該上向流流路の上部の排水出口から上澄水を槽外に排出する生物処理方法において、
     該仕切板に沿って該生物処理室内に区画板を設けることにより、上部及び下部がいずれも該生物処理室に連通した循環流路を形成し、生物処理室内の生物処理水の一部を該循環流路に前記上向流流路におけるLVよりも大きいLVにて上向流通水することを特徴とする有機性排水の生物処理方法。
  3.  請求項2において、最後段の生物処理槽において、揺動床の生物膜処理を行って最終生物処理水を生成させることを特徴とする有機性排水の生物処理方法。
  4.  請求項3において、揺動床担体が、シート状の発泡プラスチックであることを特徴とする有機性排水の生物処理方法。
  5.  請求項1ないし4のいずれか1項において、原水の通水と通水停止とを繰り返す方法であって、通水停止時間を通水時間の1/20~1/1とすることを特徴とする有機性排水の生物処理方法。
  6.  請求項1ないし5のいずれか1項において、前記循環流路において曝気を行うことにより、該循環流路に上向流を形成することを特徴とする有機性排水の生物処理方法。
  7.  請求項1ないし6のいずれか1項において、前記循環流路における上向流のLVを前記上向流流路のLVの1.5~200倍とすることを特徴とする有機性排水の生物処理方法。
  8.  請求項1ないし7のいずれか1項において、生物処理槽にカチオン系高分子凝集剤を添加することを特徴とする有機性排水の生物処理方法。
  9.  有機性排水を生物処理槽で生物処理する有機性排水の生物処理装置であって、
     生物処理水中の汚泥を該生物処理槽内で固液分離するために、生物処理槽の排水出口側に仕切板を設けて該生物処理槽内を生物処理室と該排水出口側の上向流流路とに区画し、該生物処理室からの生物処理水を該上向流流路に上向流通水し、該上向流流路の上部の排水出口から上澄水を槽外に排出する生物処理装置において、
     該仕切板に沿って該生物処理室内に区画板を設けることにより、上部及び下部がいずれも該生物処理室に連通した循環流路を形成し、生物処理室内の生物処理水の一部を該循環流路に前記上向流流路におけるLVよりも大きいLVにて上向流通水する通水手段を設けたことを特徴とする有機性排水の生物処理装置。
  10.  有機性排水を多段に設けられた生物処理槽で生物処理する装置であって、
     第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、
     最後段の生物処理槽において、最終生物処理水を生成させる有機性排水の生物処理装置であって、
     最終生物処理水中の汚泥を最後段の生物処理槽内で固液分離するために、生物処理槽の排水出口側に仕切板を設けて該生物処理槽内を生物処理室と該排水出口側の上向流流路とに区画し、該生物処理室からの生物処理水を該上向流流路に上向流通水し、該上向流流路の上部の排水出口から上澄水を槽外に排出する生物処理装置において、
     該仕切板に沿って該生物処理室内に区画板を設けることにより、上部及び下部がいずれも該生物処理室に連通した循環流路を形成し、生物処理室内の生物処理水の一部を該循環流路に前記上向流流路におけるLVよりも大きいLVにて上向流通水する通水手段を設けたことを特徴とする有機性排水の生物処理装置。
PCT/JP2015/052695 2014-03-31 2015-01-30 有機性排水の生物処理方法及び装置 WO2015151571A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580015795.6A CN106132881B (zh) 2014-03-31 2015-01-30 有机性排水的生物处理方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014071668A JP5786998B1 (ja) 2014-03-31 2014-03-31 有機性排水の生物処理方法及び装置
JP2014-071668 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151571A1 true WO2015151571A1 (ja) 2015-10-08

Family

ID=54207167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052695 WO2015151571A1 (ja) 2014-03-31 2015-01-30 有機性排水の生物処理方法及び装置

Country Status (3)

Country Link
JP (1) JP5786998B1 (ja)
CN (1) CN106132881B (ja)
WO (1) WO2015151571A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366638B2 (ja) * 2016-05-23 2018-08-01 株式会社ダイキアクシス 排水処理装置
JP6934358B2 (ja) * 2017-08-18 2021-09-15 水ing株式会社 有機性排水の処理装置及び処理方法
JP2019048254A (ja) * 2017-09-08 2019-03-28 オルガノ株式会社 有機性排水の処理方法及び処理装置
JP2022549249A (ja) * 2019-11-21 2022-11-24 オルガノ株式会社 生物処理装置、生物処理装置の担体捕捉装置、水処理方法及び生物処理装置の改造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982997A (ja) * 1982-11-05 1984-05-14 Akira Nishigawara 活性汚泥処理方法
JPH0217998A (ja) * 1988-07-04 1990-01-22 Dia Furotsuku Kk 活性汚泥の沈降性改良方法
JPH04305295A (ja) * 1991-04-03 1992-10-28 Denka Consult & Eng Co Ltd 有機性酸性廃水の生物処理方法及び装置
JP2003260479A (ja) * 2002-03-11 2003-09-16 Fuji Clean Kogyo Kk 浄化槽および浄化槽の使用方法
WO2013103124A1 (ja) * 2012-01-06 2013-07-11 栗田工業株式会社 有機性排水の生物処理方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193321B (zh) * 2013-05-03 2015-02-18 哈尔滨工业大学 一种适用于直排水体的污泥自循环分散污水处理装置及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982997A (ja) * 1982-11-05 1984-05-14 Akira Nishigawara 活性汚泥処理方法
JPH0217998A (ja) * 1988-07-04 1990-01-22 Dia Furotsuku Kk 活性汚泥の沈降性改良方法
JPH04305295A (ja) * 1991-04-03 1992-10-28 Denka Consult & Eng Co Ltd 有機性酸性廃水の生物処理方法及び装置
JP2003260479A (ja) * 2002-03-11 2003-09-16 Fuji Clean Kogyo Kk 浄化槽および浄化槽の使用方法
WO2013103124A1 (ja) * 2012-01-06 2013-07-11 栗田工業株式会社 有機性排水の生物処理方法及び装置

Also Published As

Publication number Publication date
JP5786998B1 (ja) 2015-09-30
JP2015192938A (ja) 2015-11-05
CN106132881B (zh) 2018-04-17
CN106132881A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6545717B2 (ja) バイオフィルム材、処理システム、および処理の方法
JP5994253B2 (ja) 有機性排水の生物処理装置及び方法
WO2015151571A1 (ja) 有機性排水の生物処理方法及び装置
CN103402927A (zh) 污水处理工艺、污水处理装置及污水处理用膜生物反应器
JP5874741B2 (ja) 有機性排水の生物処理方法及び装置
WO2013084711A1 (ja) 揺動性担体と、この揺動性担体を用いた有機性排水の生物処理装置及び方法
JP5895663B2 (ja) 有機性排水の生物処理方法
JP5772337B2 (ja) 有機性排水の生物処理方法及び装置
TW201302626A (zh) 有機性廢水之生物處理方法及裝置
TWI557080B (zh) Biological treatment method and device for organic waste water
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
KR100839035B1 (ko) 산기관을 이용한 슬러지 고액분리 부상공정에 의한생물학적 하폐수 처리 장치 및 방법
JP6136699B2 (ja) 有機性排水の生物処理方法
JP6020620B2 (ja) 有機性排水の生物処理方法および装置
JP2011224544A (ja) 有機性排水の生物処理方法および装置
WO2015045094A1 (ja) 有機性排水の生物処理方法
WO2018055793A1 (ja) 有機性排水の生物処理方法
US11643346B2 (en) Device for sewage treatment
WO2017064982A1 (ja) 有機性排水の生物処理方法
WO2011122217A1 (ja) 有機性排水の生物処理方法および装置
JPH08187494A (ja) 浄化槽
JP5850097B2 (ja) 有機性排水の生物処理方法及び生物処理装置
CN220223908U (zh) 一体化中水回用系统
JP2016203077A (ja) 多段型生物処理装置
JP2000279982A (ja) 流動床式排水処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15774055

Country of ref document: EP

Kind code of ref document: A1