WO2015151284A1 - 波長選択性を有する光学素子及びこれを用いた灯具装置 - Google Patents

波長選択性を有する光学素子及びこれを用いた灯具装置 Download PDF

Info

Publication number
WO2015151284A1
WO2015151284A1 PCT/JP2014/060008 JP2014060008W WO2015151284A1 WO 2015151284 A1 WO2015151284 A1 WO 2015151284A1 JP 2014060008 W JP2014060008 W JP 2014060008W WO 2015151284 A1 WO2015151284 A1 WO 2015151284A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical element
grating
diffraction grating
wavelength
Prior art date
Application number
PCT/JP2014/060008
Other languages
English (en)
French (fr)
Inventor
平田 浩二
島野 健
啓之 梶川
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2014/060008 priority Critical patent/WO2015151284A1/ja
Priority to JP2016511295A priority patent/JP6316940B2/ja
Publication of WO2015151284A1 publication Critical patent/WO2015151284A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29323Coupling to or out of the diffractive element through the lateral surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only

Definitions

  • the present invention relates to an optical element having wavelength selectivity and a lamp device using the optical element.
  • Patent Document 1 discloses an optical element that gives wavelength selectivity to outgoing light by continuously changing the thickness of a multilayer film laminated on a light guide plate.
  • Patent Document 3 describes an optical device that propagates image information by forming a reflective volume hologram on a light guide plate.
  • JP-A-6-234602 Japanese Patent Laid-Open No. 2002-72010 JP 2008-20770 A
  • Patent Document 1 a part of the light source light is absorbed by the exterior part including the pigment, so that the light use efficiency is lowered.
  • Patent Document 2 At least two kinds of low refractive index materials and high refractive index materials different from the substrate material are required, and there is a problem that the cost of the process of forming by changing the film thickness is high.
  • Patent Document 3 there is a problem that the reflection type volume hologram has an angle selectivity, and the wavelength selectivity cannot be maintained for a wide range of incident angles equal to or greater than the critical angle.
  • an optical element having wavelength selectivity includes a transparent substrate that propagates light, and diffraction gratings formed on the upper and lower surfaces of the transparent substrate, and receives white light from the end surface of the transparent substrate.
  • light having a specific wavelength is emitted from the diffraction grating on the upper surface or the lower surface.
  • the optical element having wavelength selectivity has a configuration in which the exit surface of the lens is convex, and a blazed diffraction grating that emits light of a specific wavelength is formed on the exit surface.
  • the lamp device of the present invention includes a light source, a lens unit that collects light emitted from the light source, and a light guide disposed on an outer periphery of the lens unit, and an inner peripheral surface of the light guide In this configuration, a diffraction grating that selectively emits light of a specific wavelength is formed.
  • an optical element that can be applied to a light source having a wide emission angle distribution, has no light absorption loss, and has a wavelength selectivity with a single material at a low cost. Further, by using this optical element, a lamp device with a simple structure and high light utilization efficiency can be realized.
  • Example 2 (type B diffraction grating), a light ray diagram of diffracted light when blue light is incident. The figure which shows the efficiency of each diffracted light radiate
  • Example 2 (type B diffraction grating), a ray diagram of diffracted light when red light is incident. The figure which shows the efficiency of each diffracted light radiate
  • Example 3 The figure which shows the efficiency of each diffracted light reflected on a board
  • the figure which shows the wavelength dependence of the output efficiency and propagation efficiency in Example 2 (type B diffraction grating).
  • Example 3 type R diffraction grating
  • Example 3 type R diffraction grating
  • the figure shows the efficiency of each diffracted light emitted from the upper surface of the substrate when blue light is incident.
  • FIG. 6 shows a configuration of a diffractive lens of Example 4.
  • the figure which shows the lens data of the 1st example which makes the number of ring zones 659.
  • the figure which shows the lens data of the 2nd example which makes the number of ring zones 220.
  • Sectional drawing which shows the structure of the lamp device of Example 5.
  • FIG. 1 is a cross-sectional view showing the configuration of the light guide plate of this embodiment and how light is guided.
  • the light guide plate includes a transparent light guide plate substrate 101 and a diffusion plate 120, and a light source 102 such as a white LED is disposed on an end surface of the light guide plate substrate 101.
  • the light guide plate has a long shape extending in the light guide direction, but in FIG. 1, the light guide plate is divided into three regions 104, 105, and 106 in the longitudinal direction using broken lines.
  • the end surface of the light guide plate substrate 101 is obliquely cut out, and is an incident surface on which the white light 103 from the light source 102 enters.
  • the incident direction of the light beam having the highest intensity among the incident light is set to be a predetermined incident angle ⁇ 0 (a value intermediate between the critical angle of total reflection in the substrate 101 and 90 °).
  • Blaze diffraction gratings are formed on the upper and lower surfaces of the light guide plate substrate 101, and light having a specific wavelength is emitted from the blazed diffraction grating on the upper surface while propagating through the substrate 101. .
  • the shape of the blazed diffraction grating that is, the grating depth and the grating pitch are different depending on the grating regions 104, 105, and 106 in the propagation direction of the substrate 101. Accordingly, light of different wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 can be emitted from the respective grating regions 104, 105, and 106.
  • the light emitted from the light guide plate substrate 101 is set so that the diffraction efficiency of transmitting the upper surface at a specific wavelength is larger than that of other wavelengths due to the wavelength dependence of the diffraction angle of the blazed diffraction grating.
  • the outgoing angle of the outgoing light is an outgoing angle with a large grazing of the substrate surface.
  • a diffusion plate 120 for diffusing the emitted light is disposed on the emission surface with an air gap interposed therebetween.
  • the supporting member 121 is disposed so as not to hinder the emission of light.
  • an inclined surface is provided on the lower surface in a direction orthogonal to the traveling direction of light so that incident light rays are totally reflected and propagated.
  • a metal reflection film 122 may be coated on the lower surface.
  • the blazed diffraction grating 107 on the upper surface and the blazed diffraction grating 108 on the lower surface are parallel to each other in the inclination directions of the grating surfaces, and the grating pitch and the grating depth are equal.
  • the grating surfaces of the upper surface blazed diffraction grating 109 and the lower surface blazed diffraction grating 110 are parallel to each other, and the grating pitch and the grating depth are equal.
  • the lattice region 106 the lattice region 106.
  • the blazed diffraction grating 107 on the upper surface is inclined in the direction in which the incident angle of the incident light is increased, whereas the blazed surface on the lower surface of the grating region 104 is inclined.
  • the grating surface of the diffraction grating 108 is inclined in the direction in which the incident angle of incident light decreases. The same applies to the lattice regions 105 and 106.
  • the blazed diffraction grating By making the shape of the blazed diffraction grating up and down the same in one grating region, even if the diffraction angle by the lower surface blazed diffraction gratings 108, 110, 112 changes to ⁇ 1, ⁇ 2, ⁇ 3, the opposed upper surface blazed diffraction grating 107 , 109, 111 are diffracted in the reverse direction. As a result, the incident angle returns to the original incident angle ⁇ 0, and basically diffracted light can be stably propagated through the light guide plate substrate 101.
  • a blazed diffraction grating can obtain diffracted light with a diffraction efficiency of 100% in principle at an incident angle and wavelength satisfying the diffraction conditions if the reflectivity of the interface is 100% due to total reflection or the like. . Under such conditions, light can propagate with 100% efficiency through the light guide plate substrate 101 facing the blaze diffraction grating.
  • the blazed diffraction grating is not formed on the entire surface of the light guide plate substrate 101 but discretely formed in a plurality of regions along the propagation direction. This is because the intensity of the emitted light is made uniform regardless of the propagation distance.
  • regions hereinafter referred to as sub-lattice regions
  • grating grooves blazed diffraction gratings 107 and 108 are formed are provided intermittently, and flat regions 117 and 118 in which no grating grooves are formed are arranged therebetween.
  • the interval (the width of the flat region) is gradually narrowed in the direction in which light propagates.
  • the number of gratings in the rightmost sub-grating region (blazed diffraction gratings 109 ′ and 110 ′) in the figure is increased, but this is because the interval between the sub-grating regions (the width of the flat region) becomes zero. Is. Since the light emitted from the light guide plate is emitted from the sub-grating region (blazed diffraction grating) at a constant rate, if the grating is formed on the entire surface, the intensity of the emitted light is reduced at a position where the propagation distance is long. Therefore, the intensity of the emitted light can be made uniform regardless of the propagation distance by discretely arranging the sub-lattice regions and changing the intervals (gradually narrowing).
  • the intensity of the emitted light can be made uniform by gradually increasing the area of the sub-lattice region. That is, the interval between the sub-lattice regions (the width of the flat region) may be constant, and the number of lattices in the sub-lattice region may be gradually increased according to the propagation distance.
  • a predetermined number of continuous lattices severe tens of lattices is necessary, and it should not be less than this in any region.
  • each of the grating regions 104, 105, and 106 light having different wavelength components is emitted from the upper surface, so that the diffraction conditions are changed by changing the shapes of the blazed diffraction grating (grating pitch and grating depth).
  • the grating region 104 mainly emits light in the vicinity of the wavelength ⁇ 1.
  • the light beam 113 incident on the next grating region 105 is dominated by the remaining light beams having the wavelengths ⁇ 2 and ⁇ 3.
  • light of wavelength ⁇ 2 is mainly emitted.
  • the light beam 114 incident on the next grating region 106 is dominated by the remaining light of wavelength ⁇ 3, and the grating region 106 mainly emits light of wavelength ⁇ 3.
  • the boundary positions of the sub-grid region and the flat region on the upper surface and the lower surface are shifted by a predetermined amount so that the diffracted light traveling from the sub-grid region on the lower surface is incident on the corresponding sub-lattice region on the upper surface again. is doing. In this way, all light rays traveling from the lower surface sub-grid region to the upper surface are incident on the upper surface sub-grid region, and the reflection angle from the upper surface returns to the original incident angle ⁇ 0, and the light guide plate substrate 101 has Can be stably propagated.
  • a light guide plate that emits light of a desired wavelength can be provided by forming diffraction gratings having a predetermined shape on the upper and lower surfaces of the transparent substrate. Since the light guide plate of this embodiment uses a transparent substrate, there is no light absorption loss, and it can be realized with a single material at low cost.
  • Example 2 as a specific example of Example 1, a light guide plate that selectively emits light having a blue wavelength will be described.
  • the light guide plate of Example 2 in order to selectively emit light having a blue wavelength, an opposed blazed diffraction grating having a medium refractive index of 1.5, a grating pitch of 2.4 ⁇ m, and a grating depth of 0.32 ⁇ m is used. Yes.
  • the shape of the diffraction grating is referred to as “type B”.
  • FIG. 2 is a ray diagram of diffracted light when blue light is incident on a type B diffraction grating.
  • the incident light is blue light having a wavelength of 0.45 ⁇ m, and the incident angle ⁇ 0 is 50 °.
  • the second to diffracted light from the second order diffracted light can be emitted from the upper surface of the substrate, and the first and lower order diffracted light cannot be emitted and are totally reflected.
  • the ⁇ 1st-order diffracted light component is incident on the lower surface of the substrate again at the same incident angle of 50 ° as the original incident light. That is, this component becomes stable propagation light.
  • the intensity (efficiency) of each diffracted light will be compared.
  • FIG. 3A is a diagram showing the efficiency of each diffracted light emitted from the upper surface of the substrate.
  • the second order diffracted light is emitted with an efficiency of about 45%, but the other order lights have a low efficiency (nearly zero).
  • FIG. 3B is a diagram showing the efficiency of each diffracted light reflected on the upper surface of the substrate. First-order diffracted light is reflected into the substrate with an efficiency of 40%, and then second-order diffracted light is reflected with an efficiency of about 10%.
  • FIG. 3C is a diagram showing the propagation efficiency of the specified order light.
  • the intensity of the original incident light is 1, the efficiency of each order light generated as a result of the first-order diffracted light reflected on the upper surface being diffracted on the upper surface is obtained. From this, it can be seen that the ⁇ 1st order diffracted light component has an efficiency of about 20%, and this propagates stably.
  • the emission efficiency from the upper surface is high (about 45%) with respect to the incidence of blue light, and conversely the propagation efficiency in the substrate is low (about 20%).
  • FIG. 4 is a ray diagram of diffracted light when red light is incident on the same type B diffraction grating as FIG.
  • the incident light is red light with a wavelength of 0.65 ⁇ m, and the incident angle ⁇ 0 is the same 50 °. From the second-order diffracted light to the seventh-order diffracted light can be emitted from the upper surface of the substrate, and in this case, the first-order diffracted light and the like cannot be emitted and are totally reflected.
  • FIG. 5A is a diagram showing the efficiency of each diffracted light emitted from the upper surface of the substrate.
  • the second-order diffracted light has the largest amount of light, but its efficiency is about 9%, which is considerably smaller than that of the blue light (about 45%).
  • FIG. 5B is a diagram showing the efficiency of each diffracted light reflected on the upper surface of the substrate. First-order diffracted light is reflected into the substrate with an efficiency of about 80%.
  • FIG. 5C is a diagram showing the propagation efficiency of the specified order light.
  • the efficiency of each order light generated as a result of the first-order diffracted light reflected on the upper surface being diffracted on the upper surface is obtained. From this, it can be seen that the ⁇ 1st order diffracted light is diffracted with an efficiency of about 80% and propagates at the same incident angle as the incident light.
  • FIG. 6 is a diagram showing the wavelength dependence of the emission efficiency and propagation efficiency in a type B diffraction grating.
  • the wavelength of incident light is changed from 0.4 to 0.7 ⁇ m, and the incident angle ⁇ 0 is averaged in the range of 45 ° to 75 °.
  • the blue light (wavelength near 0.45 ⁇ m) has higher emission efficiency than the red light (wavelength near 0.65 ⁇ m), and conversely, the propagation efficiency is low.
  • FIG. 7A is a diagram showing a light emission intensity distribution with respect to a propagation distance, and shows a case where diffraction grating regions are continuously formed for comparison (before area compensation). It is assumed that the substrate is 3 mm thick and type B diffraction gratings are continuously formed on the upper and lower surfaces of the substrate. The logarithm of the light emission intensity per unit length with respect to the propagation distance, assuming that light is emitted uniformly from the amount of light emitted per propagation length.
  • blue light (wavelength: 0.45 ⁇ m) has a high emission intensity at a propagation distance of 0 (the vertical axis is a logarithmic display, the difference on the drawing appears small), the intensity rapidly decreases with the propagation distance. Even at other wavelengths, the emission intensity rapidly decreases with the propagation distance.
  • FIG. 7B is a diagram showing the area ratio of the diffraction grating region for making the emission intensity uniform.
  • the ratio of the area of the diffraction grating region at each propagation distance is changed and set so that the emission intensity shown in FIG. 7A is uniform with respect to the propagation distance.
  • FIG. 7C is a diagram showing the emission intensity distribution after area compensation.
  • the area ratio of the diffraction grating region shown in FIG. 7B is set to compensate the emission intensity distribution.
  • the vertical axis represents linear coordinates.
  • the emission intensity of blue light (wavelength 0.45 ⁇ m) is larger than other wavelengths in the range up to a propagation distance of 50 mm.
  • FIG. 7D is a diagram showing an emission spectrum for each propagation distance.
  • Blue light (wavelength 0.45 ⁇ m) is dominant in the section where the propagation distance is short (distance 0 to 30 mm), and red light (wavelength 0.65 ⁇ m) becomes dominant when the propagation distance is long (distance 80 to 100 mm).
  • red light (wavelength 0.65 ⁇ m) becomes dominant when the propagation distance is long (distance 80 to 100 mm).
  • the present embodiment it is possible to provide a light guide plate that selectively emits light having a blue wavelength, and to make the light emission intensity distribution with respect to the propagation distance uniform.
  • Example 3 as a specific example of Example 1, a light guide plate that selectively emits light having a red wavelength will be described.
  • an opposing blazed diffraction grating having a medium refractive index of 1.5, a grating pitch of 2.4 ⁇ m, and a grating depth of 0.21 ⁇ m is used.
  • the shape of the diffraction grating is referred to as “type R”.
  • type R the shape of the diffraction grating
  • red light (wavelength 0.65 ⁇ m) is incident at an incident angle of 50 °
  • the ray diagram is the same as FIG. 4 having the same grating pitch and wavelength.
  • FIG. 8A is a diagram showing the efficiency of each diffracted light emitted from the upper surface of the substrate when red light is incident. First-order diffracted light is emitted from the upper surface with an efficiency of 40% or more.
  • FIG. 8B is a diagram showing the efficiency of each diffracted light reflected from the upper surface of the substrate.
  • the 0th order light and the 1st order diffracted light are reflected into the substrate with an efficiency of about 25% to 20%.
  • FIG. 8C is a diagram showing the propagation efficiency of the specified order light.
  • the efficiency of each order light produced as a result of the first-order diffracted light reflected from the upper surface being diffracted by the upper surface is shown.
  • the ⁇ 1st order diffracted light component has an efficiency of about 20%, and becomes propagation light at the same incident angle as the incident light.
  • the 0th-order light also has the same amount of light, and when combined, the light propagating at the original incident angle is estimated to be about 40%.
  • the emission efficiency from the upper surface and the propagation efficiency in the substrate are approximately the same (about 40%) with respect to the incidence of red light.
  • FIG. 9A is a diagram showing the efficiency of each diffracted light emitted from the upper surface of the substrate when blue light is incident. Although the 2nd to 11th order diffracted light is emitted from the top surface, the efficiency is 3% or less (the total of each order light is about 8%), which is considerably smaller than the case of the red light (40% or more). Become. .
  • FIG. 9B is a diagram showing the efficiency of each diffracted light reflected from the upper surface of the substrate. First-order diffracted light is reflected into the substrate with an efficiency of 80% or more.
  • FIG. 9C is a diagram showing the propagation efficiency of the specified order light.
  • the efficiency of each order light generated as a result of the first-order diffracted light reflected on the upper surface being diffracted on the upper surface is obtained. From this, it can be seen that the ⁇ 1st order diffracted light is diffracted with an efficiency of about 80% and propagates at the same incident angle as the incident light.
  • FIG. 10 is a diagram showing the wavelength dependence of the emission efficiency and propagation efficiency in a type A diffraction grating.
  • the wavelength of incident light is changed from 0.4 to 0.7 ⁇ m, and the incident angle ⁇ 0 is averaged in the range of 45 ° to 75 °.
  • red light near wavelength 0.65 ⁇ m
  • blue light near wavelength 0.45 ⁇ m
  • FIG. 11A is a diagram showing a light emission intensity distribution with respect to a propagation distance, and shows a case where diffraction grating regions are continuously formed for comparison (before area compensation). It is assumed that the substrate is 3 mm thick and type R diffraction gratings are continuously formed on the upper and lower surfaces of the substrate. Although red light (wavelength 0.65 ⁇ m) has a high emission intensity at a propagation distance of 0 (the vertical axis is a logarithmic display, the difference on the drawing appears small), the intensity rapidly decreases with the propagation distance.
  • FIG. 11B is a diagram showing the area ratio of the diffraction grating region for making the emission intensity uniform.
  • the ratio of the area of the diffraction grating region at each propagation distance is changed and set so that the light emission intensity shown in FIG. 11A is uniform with respect to the propagation distance.
  • FIG. 11C is a diagram showing the emission intensity distribution after area compensation.
  • the area ratio of the diffraction grating region shown in FIG. 11B is set to compensate the emission intensity distribution.
  • the emission intensity of red light (wavelength 0.65 ⁇ m) is larger than other wavelengths in the range up to a propagation distance of 80 mm.
  • FIG. 11D is a diagram showing an emission spectrum for each propagation distance.
  • red light is dominant
  • blue light becomes dominant.
  • FIG. 12 is a diagram showing a configuration of the diffractive lens of the present example.
  • A is a cross-sectional shape of a conventional lens 200 ′ for comparison
  • (b) is a cross-sectional shape of the lens 200 of the present embodiment
  • (c) is an enlarged view of a lens exit surface.
  • a blazed diffraction grating 203 is formed on the exit surface 202 of the lens. A refracting action is imparted to the lens by the diffractive action of the blaze diffraction grating, and the lens is made thinner without changing the overall shape of the exit surface 202.
  • the incident surface of the lens can be a meniscus shape that is a concave surface 201 instead of the conventional flat surface 201 ′ shape, and the lens thickness t at the center of the optical axis is changed from 22.7 mm to 15.44 mm. Reduced to -32% thinner.
  • the shape of the exit surface is not changed, it is suitable for an application to be used without changing the appearance of the lens, such as a headlight for an automobile.
  • the light distribution characteristics of the diffractive lens 200 are the same as those of the conventional lens 200 ′ because higher-order components of the diffracted light are averaged.
  • lens data of the diffractive lens By using higher-order diffracted light in the diffractive lens, it is possible to change the diffraction grating shape for realizing the same thin shape, that is, the relationship between the grating pitch (ring zone width) and the grating depth (ring zone depth) it can.
  • A is basic lens data
  • (b) is the size of the ring width p at each radial position
  • (c) is the actual annular zone shape near the center of the lens. It can be seen that the diffraction grating (ring zone) is formed while maintaining the base shape of the emission surface.
  • A is basic lens data
  • (b) is the size of the ring width p at each radial position
  • (c) is the actual annular zone shape near the center of the lens.
  • the lens can be significantly thinned, and the lens molding time can be shortened and the cost can be reduced.
  • Example 5 a lamp device using the optical element (light guide plate) having wavelength selectivity of Examples 1 to 3 will be described.
  • FIG. 15 is a cross-sectional view showing the configuration of the lamp device of this embodiment.
  • the lamp device includes a light source 300, a lens unit 301, a light guide 302, and a reflector 303.
  • the lens part 301 has a convex exit surface, and the light guide 302 is arranged in a ring shape on the outer periphery of the lens part 301.
  • a blazed diffraction grating 304 is formed on the inner peripheral surface of the light guide 302. As described in the first to third embodiments, the blazed diffraction grating 304 selectively emits light having a specific wavelength according to the diffraction conditions.
  • the light source light emitted from the light source 300 and reflected by the reflector 303 is condensed by the lens unit 301.
  • the light that has passed through the central portion of the lens portion 301 is emitted as the main illumination light 310 as it is.
  • light that has passed through the periphery of the lens unit 301 enters the blazed diffraction grating 304, and part of the diffracted light propagates through the light guide 302 and exits forward as ring-shaped sub-illumination light 311.
  • the light source 300 is white light
  • the main illumination light 310 is white light
  • the ring-shaped sub illumination light 310 can be illumination light having a specific wavelength determined by the diffraction grating shape.
  • the sub illumination light 310 of different colors for example, red and yellow
  • the sub illumination light 310 is generated by the diffraction action, there is no absorption loss in the light guide plate 302 and the light transmission efficiency is excellent.
  • the present embodiment it is possible to realize a lamp device having a simple structure that can efficiently emit illumination light of a plurality of types of colors while using one light source.
  • 101 a light guide plate substrate
  • 102 light source
  • 103, 113, 114 incident light
  • 104, 105, 106 lattice region
  • 107-112 Blaze diffraction grating (sub-grating region), 117, 118: flat region
  • 120 diffusion plate
  • 121 a support member
  • 122 Metal reflective film
  • 200 diffractive lens
  • 201 incident surface
  • 202 emission surface
  • 203 Blaze diffraction grating
  • 201 incident surface
  • 300 Light source
  • 302 Light guide
  • 304 Blaze diffraction grating 310, 311: Illumination light.

Abstract

 波長選択性を有する光学素子として、導光体は、光を伝搬する透明基板101と、透明基板の上面および下面に形成された回折格子107,108と、を備え、透明基板の端面から白色光を入射し、回折格子107から特定波長の光を出射する。あるいは回折レンズ200において、レンズの出射面が凸状であって、出射面に特定波長の光を出射するブレーズ回折格子203を形成した。さらに灯具装置では、光源300と、光源から出射した光を集光するレンズ部301と、レンズ部の外周に配設した導光体302と、を備え、導光体の内周面には、特定波長の光を選択的に出射する回折格子304を形成した。

Description

波長選択性を有する光学素子及びこれを用いた灯具装置
 本発明は、波長選択性を有する光学素子及びこれを用いた灯具装置に関する。
 光源から特定色の光を得る場合、従来技術では、白色光源からの出射光を顔料を含む外装部品で一旦遮光し、必要な波長の光を選択的に透過させる構成が用いられる(例えば、特許文献1参照)。また、波長選択性を有する光学素子に関する技術として、特許文献2には、導光板に積層された多層膜の膜厚を連続的に変化させることで、出射光に波長選択性を与える光学素子が記載されている。さらに特許文献3には、反射型体積ホログラムを導光板に形成して像情報を伝搬する光学装置が記載されている。
特開平6-234602号公報 特開2002-72010号公報 特開2008-20770号公報
 特許文献1の構成では、光源光の一部は顔料を含む外装部品で吸収されるので、光利用効率が低下する。
 特許文献2では、基板材料と異なる少なくとも2種類の低屈折率材料と高屈折率材料が必要であり、膜厚を可変させて成形するプロセスのコストがかかる課題がある。
 特許文献3では、反射型体積ホログラムには角度選択性があり、臨界角以上の広い範囲の入射角度に対して波長選択性を保つことはできないという課題がある。
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。その一例を挙げるならば、波長選択性を有する光学素子は、光を伝搬する透明基板と、透明基板の上面および下面に形成された回折格子と、を備え、透明基板の端面から白色光を入射し、上面または下面の回折格子から特定波長の光を出射する構成とした。あるいは、波長選択性を有する光学素子は、レンズの出射面が凸状であって、出射面に特定波長の光を出射するブレーズ回折格子を形成した構成である。
 また、本発明の灯具装置は、光源と、光源から出射した光を集光するレンズ部と、レンズ部の外周に配設した導光体と、を備え、導光体の内周面には、特定波長の光を選択的に出射する回折格子を形成した構成である。
 本発明によれば、広い発光角度分布を持つ光源に対して適用でき、光の吸収ロスがなく、単一材料で低コストの波長選択性を有する光学素子が得られる。また、この光学素子を用いることで、簡単な構造で光利用効率の高い灯具装置が実現できる。
実施例1の導光板の構成と光が導光する様子を示す断面図。 実施例2(タイプBの回折格子)において、青色光を入射させた場合の回折光の光線図。 基板上面から出射する各回折光の効率を示す図。 基板上面で反射する各回折光の効率を示す図。 指定次数光の伝搬効率を示す図。 実施例2(タイプBの回折格子)において、赤色光を入射させた場合の回折光の光線図。 基板上面から出射する各回折光の効率を示す図。 基板上面で反射する各回折光の効率を示す図。 指定次数光の伝搬効率を示す図。 実施例2(タイプBの回折格子)における、出射効率と伝搬効率の波長依存性を示す図。 伝搬距離に対する発光強度分布を示す図(面積補償前)。 発光強度を均一化するための回折格子領域の面積比率を示す図。 伝搬距離に対する発光強度分布を示す図(面積補償後)。 伝搬距離ごとの発光スペクトルを示した図。 実施例3(タイプRの回折格子)において、赤色光を入射した場合、基板上面から出射する各回折光の効率を示す図。 基板上面で反射する各回折光の効率を示す図。 指定次数光の伝搬効率を示す図。 実施例3(タイプRの回折格子)において、青色光を入射した場合、基板上面から出射する各回折光の効率を示す図。 基板上面で反射する各回折光の効率を示す図。 指定次数光の伝搬効率を示す図。 実施例3(タイプRの回折格子)における、出射効率と伝搬効率の波長依存性を示す図。 伝搬距離に対する発光強度分布を示す図(面積補償前)。 発光強度を均一化するための回折格子領域の面積比率を示す図。 伝搬距離に対する発光強度分布を示す図(面積補償後)。 伝搬距離ごとの発光スペクトルを示した図。 実施例4の回折レンズの構成を示す図。 輪帯数=659本とする第1例のレンズデータを示す図。 輪帯数=220本とする第2例のレンズデータを示す図。 実施例5の灯具装置の構成を示す断面図。
 以下、本発明による実施例を図面を用いて説明する。
 実施例1では、光学素子として導光板を例に基本的な構成を説明する。
  図1は、本実施例の導光板の構成と光が導光する様子を示す断面図である。導光板は、透明な導光板基板101と拡散板120で構成され、導光板基板101の端面には、白色LED等の光源102が配置されている。導光板は導光方向に延びた長尺形状であるが、図1では破断線を用いて、長手方向に3つの領域104,105,106に分割して示している。
 導光板基板101の端面は斜めに切り欠いてあり、光源102からの白色光103が入射する入射面である。入射光のうち最も強度が大きい光線の入射方向は、所定の入射角θ0(基板101内の全反射の臨界角と90°の中間の値)となるように設定する。導光板基板101の上面と下面にはブレーズ回折格子(鋸歯状溝)を形成してあり、入射光は基板101内を伝搬しながら、上面のブレーズ回折格子から特定波長の光が外部へ出射する。ブレーズ回折格子の形状、すなわち格子深さや格子ピッチは、基板101の伝搬方向の格子領域104、105、106によって異なる形状としている。これにより各格子領域104、105、106から、異なる波長λ1、λ2、λ3の光を出射することができる。
 導光板基板101から出射する光は、ブレーズ回折格子の回折角の波長依存性により、特定波長における上面を透過する回折効率が他波長よりも大きくなるよう設定する。この場合、基本的に近傍波長における出射光を生じさせない条件であるため、出射光の出射角度は基板面すれすれの大きな出射角度となる。このため観察者が導光板面に正対して出射光を認識できるようにするために、出射面にはエアギャップを挟んで出射光を拡散する拡散板120を配置している。また拡散板120を支持するために、光の出射を妨げない程度に支持部材121を配置している。一方、導光板基板101の下面における透過光による光量損失を減らすために、下面には入射した光線が全反射して伝搬するように光の進行方向に直交する方向に傾斜面が設けられている。他の構成として、下面に金属反射膜122をコーティングしても良い。
 回折格子の形状について詳細に説明する。格子領域104において、上面のブレーズ回折格子107と下面のブレーズ回折格子108は、格子面の傾斜方向は互いに平行であり、格子ピッチと格子深さを等しくしている。同様に格子領域105において、上面のブレーズ回折格子109と下面のブレーズ回折格子110の格子面は互いに平行であり、格子ピッチと格子深さが等しい。格子領域106についても同様である。格子領域104の格子面の傾斜方向は、入射光103から見た場合、上面のブレーズ回折格子107は入射光の入射角が大きくなる方向に格子面が傾斜しているのに対し、下面のブレーズ回折格子108は入射光の入射角が小さくなる方向に格子面が傾斜している。格子領域105,106についても同様である。
 1つの格子領域でブレーズ回折格子の形状を上下同形状とすることにより、下面ブレーズ回折格子108,110,112による回折角度がθ1、θ2、θ3に変化しても、対向する上面ブレーズ回折格子107,109,111により逆向きに回折される。その結果、入射角は元の入射角θ0に戻り、基本的に回折光を安定に導光板基板101の中を伝搬させることができる。
 ブレーズ回折格子は、界面の反射率が全反射などで100%の反射率が得られれば、回折条件を満足する入射角と波長において原理的に100%の回折効率で回折光を得ることができる。そのような条件においては、ブレーズ回折格子が対向した導光板基板101の中を100%の効率で光を伝搬することができる。
 また、ブレーズ回折格子を導光板基板101の全面に形成するのではなく、伝搬方向に沿って複数の領域に離散的に形成している。これは、出射光の強度を伝搬距離に関わらず均一化させるためである。例えば格子領域104において、格子溝(ブレーズ回折格子107,108)を形成した領域(以下、副格子領域)を断続的に設け、その間に格子溝を形成しない平坦領域117,118を配置する。その間隔(平坦領域の幅)は光が伝搬する方向に徐々に狭くしている。格子領域105では、図中最も右側の副格子領域(ブレーズ回折格子109’、110’)の格子数が増えているが、これは副格子領域の間隔(平坦領域の幅)が0になったものである。導光板からの出射光は副格子領域(ブレーズ回折格子)から一定の割合で出射するため、格子が全面に形成されていると伝搬距離が遠い位置では出射光の強度が小さくなってしまう。そこで、副格子領域を離散的に配置しその間隔を変える(徐々に狭くする)ことで、伝搬距離によらず出射光強度を均一化することができる。
 なお、出射光強度の均一化は、副格子領域の面積を徐々に大きくすることでも良い。すなわち、副格子領域の間隔(平坦領域の幅)は一定として副格子領域の格子本数を伝搬距離に応じて徐々に増やすことでもよい。ただし、光の回折効果を得るためには、所定の連続する格子本数(数十本程度)が必要であり、いずれの領域でもこれを下回らないようにすべきである。
 各格子領域104、105、106においては、それぞれ上面から異なる波長成分の光を出射させるため、ブレーズ回折格子の形状(格子ピッチと格子深さ)を互いに異ならせ、回折条件を変えている。例えば光源102からの入射光103が3つの波長成分λ1、λ2、λ3を有するとき、格子領域104では主に波長λ1近傍の光を出射する。その結果、次の格子領域105に入射する光線113は、その残りである波長λ2とλ3の光が支配的となる。格子領域105では、そのうち主に波長λ2の光を出射する。その結果、次の格子領域106に入射する光線114は、その残りである波長λ3の光が支配的となり、格子領域106では主に波長λ3の光を出射する。
 図1では、下面の副格子領域から上面に向かう回折光が、再び上面の対応する副格子領域に入射するように、上面と下面における副格子領域と平坦領域の境界位置を所定量ずらして配置している。このようにすれば、下面の副格子領域から上面に向かう光線は全て上面の副格子領域に入射することになり、上面からの反射角は元の入射角θ0に戻り、導光板基板101の中を安定に伝搬することができる。
 このように本実施例によれば、透明基板の上面および下面に所定形状の回折格子を形成することで、所望の波長の光を出射する導光板を提供することができる。本実施例の導光板は、透明基板を用いているので光の吸収ロスがなく、単一材料で低コストに実現することができる。
 実施例2では、実施例1の具体例として、青色の波長の光を選択的に出射させる導光板について説明する。実施例2の導光板では、青色の波長の光を選択的に出射させるために、媒質屈折率1.5、格子ピッチ2.4μm、格子深さ0.32μmの対向型ブレーズ回折格子を用いている。以下、この回折格子の形状を「タイプB」と呼ぶ。
 図2は、タイプBの回折格子に、青色光を入射させた場合の回折光の光線図である。
入射光は波長0.45μmの青色光で、入射角θ0は50°としている。基板下面で回折された光線の中で、2次回折光から11次回折光までが基板上面から出射でき、1次回折光以下は出射できずに全反射することを示している。上面で反射する1次回折光のうち、その-1次回折光成分が元の入射光と同じ入射角50°で再び基板下面に入射している。すなわち、この成分が安定的な伝搬光となる。以下、各回折光の強度(効率)について比較する。
 図3Aは、基板上面から出射する各回折光の効率を示す図である。上面から出射する回折光(2次~11次)のうち、2次回折光は約45%の効率で出射するが、他の次数光は効率が低くなっている(ほぼ0に近い)。
 図3Bは、基板上面で反射する各回折光の効率を示す図である。1次回折光が40%の効率にて基板内に反射し、次いで2次回折光が約10%の効率で反射している。
 図3Cは、指定次数光の伝搬効率を示す図である。元の入射光の強度を1とするとき、上面で反射する1次回折光が上面で回折される結果、生じる各次数光の効率を求めたものである。これより-1次回折光成分が約20%の効率となり、これが安定に伝搬することが分かる。
 これより、タイプBの回折格子では、青色光の入射に対し、上面からの出射効率が高く得られ(約45%)、逆に基板内の伝搬効率が低い(約20%)ことが分かる。
 上記したのは入射光が青色光の場合であったが、次に、比較のために入射光が赤色光の場合について述べる。
 図4は、図2と同じタイプBの回折格子に、赤色光を入射させた場合の回折光の光線図である。入射光は波長0.65μmの赤色光で、入射角θ0は同じ50°としている。2次回折光から7次回折光までが基板上面から出射でき、この場合も1次回折光以下は出射できずに全反射することを示している。
 図5Aは、基板上面から出射する各回折光の効率を示す図である。2次回折光が最も光量が多いが、その効率は約9%であり、前記青色光の場合(約45%)よりもかなり小さくなる。
 図5Bは、基板上面で反射する各回折光の効率を示す図である。1次回折光が約80%の効率で基板内に反射される。
 図5Cは、指定次数光の伝搬効率を示す図である。上面で反射する1次回折光が上面で回折される結果生じる各次数光の効率を求めたものである。これより、-1次回折光がほぼ80%の効率のままで回折され、入射光と同じ入射角で伝搬されることが分かる。
 これより、タイプBの回折格子では、赤色光を入射した場合は、上面からの出射効率が低く(約9%)、大部分が基板内を伝搬することが分かる。
 図6は、タイプBの回折格子における出射効率と伝搬効率の波長依存性を示す図である。ここでは入射光の波長を0.4~0.7μmで変化させ、入射角θ0は45°~75°の範囲で平均化している。タイプBの回折格子の場合、青色光(波長0.45μm近傍)は赤色光(波長0.65μm近傍)よりも出射効率が高く、逆に伝搬効率が低いことを示している。
 次に、導光板内の伝搬距離に対する出射強度(発光強度)の変化について説明する。
  図7Aは、伝搬距離に対する発光強度分布を示す図で、比較のために回折格子領域が連続的に形成された場合(面積補償前)を示す。基板は厚さ3mmで、タイプBの回折格子が基板の上下面に連続的に形成されているものとする。伝搬長さ当たりの出射光量から均一に光が出射されると仮定した場合の、伝搬距離に対する単位長さ当たりの発光強度を対数で示している。青色光(波長0.45μm)は伝搬距離0では発光強度が大きいものの(縦軸が対数表示のため図面上の差は小さく見える)、伝搬距離とともに強度が急激に低下する。他の波長においても、伝搬距離とともに発光強度が急激に低下している。
 図7Bは、発光強度を均一化するための回折格子領域の面積比率を示す図である。図7Aに示した発光強度が伝搬距離に対して均一化するよう、各伝搬距離における回折格子領域の面積の比率を変化させて設定する。伝搬距離100mmを想定し、光線入射位置(距離=0)では格子領域の面積比率を約10%にして発光強度を抑制し、そこから徐々に比率を大きくして、終端位置では100%に設定している。
 図7Cは、面積補償後の発光強度分布を示す図である。ここでは、図7Bに示す回折格子領域の面積比率を設定し、発光強度分布を補償している。縦軸は線形座標で示す。図7Aの発光強度分布と比較し、伝搬距離に対する変化が緩和されている。そして青色光(波長0.45μm)の発光強度は、伝搬距離50mmまでの範囲で他の波長よりも大きくなっている。
 図7Dは、伝搬距離ごとの発光スペクトルを示した図である。伝搬距離が短い区間(距離0~30mm)では青色光(波長0.45μm)が支配的であり、伝搬距離が長くなると(距離80~100mm)赤色光(波長0.65μm)が支配的になってくる。
 本実施例によれば、青色の波長の光を選択的に出射させる導光板を提供し、さらにその伝搬距離に対する発光強度分布を均一化することができる。
 実施例3では、実施例1の具体例として、赤色の波長の光を選択的に出射させる導光板について説明する。実施例3の導光板では、赤色の波長の光を選択的に出射させるために、媒質屈折率1.5、格子ピッチ2.4μm、格子深さ0.21μmの対向型ブレーズ回折格子を用いている。以下、この回折格子の形状を「タイプR」と呼ぶ。以下、タイプRの回折格子を有する導光板に、赤色光を入射させた場合と、青色光を入射させた場合を比較して説明する。
 まず、赤色光(波長0.65μm)を入射角50°で入射した場合から説明する。その光線図は、格子ピッチと波長が等しい前記図4と同様である。
 図8Aは、赤色光を入射した場合、基板上面から出射する各回折光の効率を示す図である。上面から1次回折光が40%以上の効率で出射する。
 図8Bは、基板上面で反射する各回折光の効率を示す図である。0次光と1次回折光が約25%~20%の効率で基板内に反射される。
 図8Cは、指定次数光の伝搬効率を示す図である。上面で反射される1次回折光が上面で回折される結果生じる各次数光の効率を示したものである。これより、-1次回折光成分が約20%の効率となり、入射光と同じ入射角で伝搬光となる。図8Bでは0次光も同程度の光量であったため、これを合わせると元の入射角で伝搬する光は約40%と推定される。
 これより、タイプRの回折格子では、赤色光の入射に対し、上面からの出射効率と基板内の伝搬効率は同程度(約40%)となることが分かる。
 次に、比較のために青色光(波長0.45μm)を入射角50°で入射した場合を説明する。その光線図は、格子ピッチと波長が等しい前記図2と同様である。
 図9Aは、青色光を入射した場合、基板上面から出射する各回折光の効率を示す図である。上面から2次~11次の回折光が出射するが、効率はいずれも3%以下であり(各次数光の合計でも8%程度)、前記赤色光の場合(40%以上)よりもかなり小さくなる。。
 図9Bは、基板上面で反射する各回折光の効率を示す図である。1次回折光が80%以上の効率で基板内に反射される。
 図9Cは、指定次数光の伝搬効率を示す図である。上面で反射する1次回折光が上面で回折される結果生じる各次数光の効率を求めたものである。これより、-1次回折光がほぼ80%の効率のままで回折され、入射光と同じ入射角で伝搬されることが分かる。
 これより、タイプRの回折格子では、青色光を入射した場合は、上面からの出射効率が低く(約8%)、大部分が基板内を伝搬することが分かる。
 図10は、タイプAの回折格子における出射効率と伝搬効率の波長依存性を示す図である。入射光の波長を0.4~0.7μmで変化させ、入射角θ0は45°~75°の範囲で平均化している。タイプAの回折格子の場合、赤色光(波長0.65μm近傍)は青色光(波長0.45μm近傍)よりも出射効率が高く、逆に伝搬効率が低いことを示している。
 次に、導光板内の伝搬距離に対する出射強度(発光強度)の変化について説明する。
  図11Aは、伝搬距離に対する発光強度分布を示す図で、比較のために回折格子領域が連続的に形成された場合(面積補償前)である。基板は厚さ3mmで、タイプRの回折格子が基板の上下面に連続的に形成されているものとする。赤色光(波長0.65μm)は伝搬距離0では発光強度が大きいものの(縦軸が対数表示のため図面上の差は小さく見える)、伝搬距離とともに強度が急激に低下する。
 図11Bは、発光強度を均一化するための回折格子領域の面積比率を示す図である。図11Aに示した発光強度が伝搬距離に対して均一化するよう、各伝搬距離における回折格子領域の面積の比率を変化させて設定する。伝搬距離100mmを想定し、光線入射位置(距離=0)では格子領域の面積比率を約10%にして発光強度を抑制し、そこから徐々に比率を大きくして、終端位置では100%に設定している。
 図11Cは、面積補償後の発光強度分布を示す図である。ここでは、図11Bに示す回折格子領域の面積比率を設定し、発光強度分布を補償している。図11Aの発光強度分布と比較し、伝搬距離に対する変化が緩和されている。そして赤色光(波長0.65μm)の発光強度は、伝搬距離80mmまでの範囲で他の波長よりも大きくなっている。
 図11Dは、伝搬距離ごとの発光スペクトルを示した図である。伝搬距離が短い区間(距離0~60mm)では赤色光が支配的であり、伝搬距離が長くなると(距離90~100mm)青色光が支配的になってくる。
 本実施例によれば、赤色の波長の光を選択的に出射させる導光板を提供し、さらにその伝搬距離に対する発光強度分布を均一化することができる。
 実施例4では、光学素子として回折レンズを例に説明する。
  図12は、本実施例の回折レンズの構成を示す図である。(a)は比較用に従来のレンズ200’の断面形状を、(b)は本実施例のレンズ200の断面形状を、(c)はレンズ出射面の拡大図を示す。本実施例では、レンズの出射面202にブレーズ回折格子203を形成している。ブレーズ回折格子の回折作用によりレンズに屈折作用を付与し、出射面202の全体形状を変えずに、レンズの薄型化を実現している。すなわち、レンズの入射面は、従来の平面201’形状であったものを凹面201であるメニスカス形状とすることができ、光軸中心でのレンズ厚さtは、22.7mmから15.44mmに減少し、-32%の薄肉化を実現した。本実施例では出射面の形状を変えていないので、例えば自動車用ヘッドライトのようにレンズの外観を変えずに使用する用途に好適である。なお、回折レンズ200の配光特性は、回折光の高次成分が平均化されるため、従来レンズ200’と同様である。
 以下、回折レンズのレンズデータについて、具体例を2通り示す。回折レンズでは高次回折光を使用することで、同じ薄型化形状を実現するための回折格子形状、すなわち格子ピッチ(輪帯幅)と格子深さ(輪帯深さ)の関係を変更することができる。
 図13は、輪帯数=659本とする第1例のレンズデータを示す図ある。(a)はレンズ基本データ、(b)は各半径位置での輪体幅pの大きさ、(c)はレンズ中心付近での実輪帯形状を示している。出射面のベース形状を維持しながら回折格子(輪帯)を形成していることが分かる。
 図14は、輪帯数=220本とする第2例のレンズデータを示す図ある。(a)はレンズ基本データ、(b)は各半径位置での輪体幅pの大きさ、(c)はレンズ中心付近での実輪帯形状を示している。図13と比較し輪帯数を少なくしたことにより、輪帯幅と輪帯深さは大きくなっている。
 本実施例によれば、出射面に回折格子を形成したレンズとすることにより、レンズの大幅な薄肉化を実現し、レンズ成形時間の短縮とコスト低減が図れる。
 実施例5では、実施例1~3の波長選択性を有する光学素子(導光板)を用いた灯具装置について説明する。
 図15は、本実施例の灯具装置の構成を示す断面図である。灯具装置は、光源300、レンズ部301、導光体302、リフレクタ303を備えて構成される。レンズ部301は出射面が凸面であり、導光体302はレンズ部301の外周にリング状に配設している。導光体302の内周面には、ブレーズ回折格子304が形成されている。このブレーズ回折格子304は、実施例1~3で述べたように、回折条件に従い特定波長の光を選択的に出射する。
 光源300から出射し、リフレクタ303で反射された光源光は、レンズ部301にて集光される。レンズ部301の中央部を通過した光はそのまま主照明光310として前方へ出射する。一方、レンズ部301の周辺部を通過した光は、ブレーズ回折格子304に入射し、回折光の一部は導光体302内を伝搬してリング状の副照明光311として前方へ出射する。光源300が白色光の場合、主照明光310は白色光となるが、リング状の副照明光310は回折格子形状で決まる特定波長の照明光とすることができる。その際、リング状の回折格子形状を円周方向位置にて異ならせれば、円周位置にて異なる色(例えば赤色と黄色)の副照明光310とすることができる。着色した副照明光310は回折作用により発生したものであるから、導光板302内での吸収ロスがなく、光伝達効率が優れたものとなる。
 本実施例によれば、1つの光源を用いながら複数種類の色の照明光を効率良く出射することのできる、簡単な構造の灯具装置を実現できる。
 101:導光板基板、
 102:光源、
 103,113,114:入射光、
 104,105,106:格子領域、
 107~112:ブレーズ回折格子(副格子領域)、
 117,118:平坦領域、
 120:拡散板、
 121:支持部材、
 122:金属反射膜、
 200:回折レンズ、
 201:入射面、
 202:出射面、
 203:ブレーズ回折格子、
 201:入射面、
 300:光源、
 301:レンズ部、
 302:導光体、
 303:リフレクタ、
 304:ブレーズ回折格子、
 310,311:照明光。

Claims (14)

  1.  光を伝搬する透明基板と、
     該透明基板の上面および下面に形成された回折格子と、を備え、
     前記透明基板の端面から白色光を入射し、前記上面または下面の回折格子から特定波長の光を出射することを特徴とする波長選択性を有する光学素子。
  2.  請求項1に記載の波長選択性を有する光学素子であって、
     前記透明基板の上面および下面に形成する回折格子はブレーズ回折格子であって、上面と下面の対応する格子面の傾斜方向が互いに平行であることを特徴とする波長選択性を有する光学素子。
  3.  請求項1に記載の波長選択性を有する光学素子であって、
     前記透明基板の上面および下面に形成する回折格子はブレーズ回折格子であって、上面と下面のうち、一方は入射光の入射角が大きくなる方向に格子面が傾斜する第1の面であり、他方は入射光の入射角が小さくなる方向に格子面が傾斜する第2の面であることを特徴とする波長選択性を有する光学素子。
  4.  請求項1に記載の波長選択性を有する光学素子であって、
     前記回折格子は、前記透明基板の光の伝搬方向に沿って複数の領域に離散的に形成されていることを特徴とする波長選択性を有する光学素子。
  5.  請求項4に記載の波長選択性を有する光学素子であって、
     前記回折格子が形成される領域の間隔を光の伝搬方向に沿って徐々に狭くしたことを特徴とする波長選択性を有する光学素子。
  6.  請求項4に記載の波長選択性を有する光学素子であって、
     前記回折格子が形成される領域内の格子本数を光の伝搬方向に沿って徐々に増やしたことを特徴とする波長選択性を有する光学素子。
  7.  請求項1に記載の波長選択性を有する光学素子であって、
     前記透明基板の光の伝搬方向に沿って、前記回折格子の格子ピッチまたは格子深さが異なる複数の格子領域を配置し、
     前記各格子領域からそれぞれ異なる波長の光を出射することを特徴とする波長選択性を有する光学素子。
  8.  請求項3に記載の波長選択性を有する光学素子であって、
     前記透明基板の第1の面に近接して出射光を拡散する拡散板を設けたことを特徴とする波長選択性を有する光学素子。
  9.  請求項3に記載の波長選択性を有する光学素子であって、
     前記透明基板の第2の面に金属反射膜を設けたことを特徴とする波長選択性を有する光学素子。
  10.  レンズの出射面が凸状であって、該出射面に特定波長の光を出射するブレーズ回折格子を形成したことを特徴とする波長選択性を有する光学素子。
  11.  請求項10に記載の波長選択性を有する光学素子であって、
     前記ブレーズ回折格子の格子ピッチと格子深さはレンズ半径位置にて異なる値を有することを特徴とする波長選択性を有する光学素子。
  12.  請求項10に記載の波長選択性を有する光学素子であって、
     前記レンズの入射面を凹状とすることを特徴とする波長選択性を有する光学素子。
  13.  光源と、
     前記光源から出射した光を集光するレンズ部と、
     前記レンズ部の外周に配設した導光体と、を備え、
     前記導光体の内周面には、特定波長の光を選択的に出射する回折格子を形成したことを特徴とする灯具装置。
  14.  請求項13に記載の灯具装置であって、
     前記光源は白色光源であり、
     前記レンズ部からは白色光を出射し、
     前記導光体からは特定波長の光を出射することを特徴とする灯具装置。
PCT/JP2014/060008 2014-04-04 2014-04-04 波長選択性を有する光学素子及びこれを用いた灯具装置 WO2015151284A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/060008 WO2015151284A1 (ja) 2014-04-04 2014-04-04 波長選択性を有する光学素子及びこれを用いた灯具装置
JP2016511295A JP6316940B2 (ja) 2014-04-04 2014-04-04 波長選択性を有する光学素子及びこれを用いた灯具装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060008 WO2015151284A1 (ja) 2014-04-04 2014-04-04 波長選択性を有する光学素子及びこれを用いた灯具装置

Publications (1)

Publication Number Publication Date
WO2015151284A1 true WO2015151284A1 (ja) 2015-10-08

Family

ID=54239644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060008 WO2015151284A1 (ja) 2014-04-04 2014-04-04 波長選択性を有する光学素子及びこれを用いた灯具装置

Country Status (2)

Country Link
JP (1) JP6316940B2 (ja)
WO (1) WO2015151284A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037700A1 (ja) * 2016-08-22 2018-03-01 日本碍子株式会社 検知光発生素子および検知光照射方法
JP2019521391A (ja) * 2016-07-06 2019-07-25 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学格子及び光学格子の光学アセンブリ
JP2020038316A (ja) * 2018-09-05 2020-03-12 株式会社日立エルジーデータストレージ 導光板、導光板製造方法及びそれを用いた映像表示装置
EP3511748A4 (en) * 2016-09-29 2020-07-01 Dexerials Corporation OPTICAL BODY, METHOD OF MANUFACTURING OPTICAL BODY, AND LIGHT EMITTING DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182201A (ja) * 2000-12-11 2002-06-26 Shigeto Omori 映像表示装置
JP2005115176A (ja) * 2003-10-09 2005-04-28 Internatl Business Mach Corp <Ibm> 分光素子、回折格子、複合回折格子、カラー表示装置、分波器、および回折格子の製造方法
JP2010040415A (ja) * 2008-08-07 2010-02-18 Sharp Corp バックライトユニットおよび液晶表示装置
JP2011014434A (ja) * 2009-07-03 2011-01-20 Panasonic Corp 発光装置、面光源および液晶ディスプレイ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182201A (ja) * 2000-12-11 2002-06-26 Shigeto Omori 映像表示装置
JP2005115176A (ja) * 2003-10-09 2005-04-28 Internatl Business Mach Corp <Ibm> 分光素子、回折格子、複合回折格子、カラー表示装置、分波器、および回折格子の製造方法
JP2010040415A (ja) * 2008-08-07 2010-02-18 Sharp Corp バックライトユニットおよび液晶表示装置
JP2011014434A (ja) * 2009-07-03 2011-01-20 Panasonic Corp 発光装置、面光源および液晶ディスプレイ装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521391A (ja) * 2016-07-06 2019-07-25 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学格子及び光学格子の光学アセンブリ
JP7199227B2 (ja) 2016-07-06 2023-01-05 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学格子及び光学格子の光学アセンブリ
WO2018037700A1 (ja) * 2016-08-22 2018-03-01 日本碍子株式会社 検知光発生素子および検知光照射方法
EP3511748A4 (en) * 2016-09-29 2020-07-01 Dexerials Corporation OPTICAL BODY, METHOD OF MANUFACTURING OPTICAL BODY, AND LIGHT EMITTING DEVICE
US10883676B2 (en) 2016-09-29 2021-01-05 Dexerials Corporation Optical body having a concave-convex structure, method for manufacturing the optical body, and light emitting device
JP2020038316A (ja) * 2018-09-05 2020-03-12 株式会社日立エルジーデータストレージ 導光板、導光板製造方法及びそれを用いた映像表示装置
JP7157600B2 (ja) 2018-09-05 2022-10-20 株式会社日立エルジーデータストレージ 導光板、導光板製造方法及びそれを用いた映像表示装置

Also Published As

Publication number Publication date
JP6316940B2 (ja) 2018-04-25
JPWO2015151284A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP3747207B2 (ja) ディスプレイ用ライトユニット
CN107430240B (zh) 采用角度选择性反射层的基于单向光栅的背光
CN107209415B (zh) 采用反射岛的单向基于光栅的背光
JP4617040B2 (ja) 光パネル
JP7023269B2 (ja) 複数の光源をもつ非対称転向フィルム
KR20110100656A (ko) 광을 혼합하기 위한 장치
JP6820940B2 (ja) 反射格子島状構造を使用する格子ベースのバックライト
JP2005209654A (ja) バックライトユニット
JP2010040296A (ja) アレイ光源用光学素子及びそれを用いた発光装置
JP6316940B2 (ja) 波長選択性を有する光学素子及びこれを用いた灯具装置
JP5461550B2 (ja) 導光基板およびこれを備えた光学系
JP5412253B2 (ja) 発光装置
JP2006351485A (ja) 照明装置及び表示装置
JP5562177B2 (ja) 発光装置
WO2015151255A1 (ja) 導光板及び導光板を用いた装置
JP2008191612A (ja) 色分解装置
JP6590275B2 (ja) 照明器具
JP4525539B2 (ja) バックライト装置
JP4470622B2 (ja) 光学装置
CN109709723A (zh) 导光板、背光模组和显示面板
JP2009301725A (ja) バックライトユニットおよび液晶表示装置
JP4599979B2 (ja) 照明装置
JP4453516B2 (ja) 照明装置
RU2700182C2 (ru) Трубчатое светоизлучающее устройство
CN112639358A (zh) 反射器和用于形成反射器的起始片材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888057

Country of ref document: EP

Kind code of ref document: A1