WO2015148974A2 - Engineered light-activated anion channel proteins and methods of use thereof - Google Patents

Engineered light-activated anion channel proteins and methods of use thereof Download PDF

Info

Publication number
WO2015148974A2
WO2015148974A2 PCT/US2015/023087 US2015023087W WO2015148974A2 WO 2015148974 A2 WO2015148974 A2 WO 2015148974A2 US 2015023087 W US2015023087 W US 2015023087W WO 2015148974 A2 WO2015148974 A2 WO 2015148974A2
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
residue
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2015/023087
Other languages
English (en)
French (fr)
Other versions
WO2015148974A3 (en
Inventor
Karl A. DEISSEROTH
Soo Yeun Lee
Charu RAMAKRISHNAN
Andre Berndt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
Original Assignee
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/126,859 priority Critical patent/US10052383B2/en
Priority to ES15770114T priority patent/ES2725951T3/es
Priority to AU2015237265A priority patent/AU2015237265A1/en
Priority to CN201580028022.1A priority patent/CN106459138A/zh
Priority to EP19156461.6A priority patent/EP3581580A1/en
Priority to JP2016559160A priority patent/JP2017511129A/ja
Priority to EP15770114.5A priority patent/EP3122761B1/en
Priority to CA2943367A priority patent/CA2943367A1/en
Application filed by Leland Stanford Junior University filed Critical Leland Stanford Junior University
Publication of WO2015148974A2 publication Critical patent/WO2015148974A2/en
Publication of WO2015148974A3 publication Critical patent/WO2015148974A3/en
Anticipated expiration legal-status Critical
Priority to US16/057,639 priority patent/US10478499B2/en
Priority to US16/600,076 priority patent/US20200030446A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0042Photocleavage of drugs in vivo, e.g. cleavage of photolabile linkers in vivo by UV radiation for releasing the pharmacologically-active agent from the administered agent; photothrombosis or photoocclusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0622Optical stimulation for exciting neural tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif

Definitions

  • the polypeptide comprises an amino acid sequence that is at least 75%, at least 80%>, at least 85%, at least 90%, at least 95%, at least 98%), or at least 99% identical, or is 100% identical, identical to the amino acid sequence provided in SEQ ID NO:56 and comprises 1, 2, 3, 4, 5, 6, 7, 8, or 9 amino acid substitutions selected from T99S, E130S, E141S, E163S, V157K, H174R, A286N, P282K and/or N298Q, relative to the amino acid sequence of ReaChR (SEQ ID NO:81).
  • the first 51 N-terminal amino acid residues are replaced by the following amino acids residues:
  • light-activated protein means a protein that undergoes a
  • an effective dosage of a drug, compound, or pharmaceutical composition is an amount sufficient to accomplish prophylactic or therapeutic treatment either directly or indirectly.
  • an effective dosage of a drag, compound, or pharmaceutical composition may or may not be achieved in conjunction with another drug, compound, or pharmaceutical composition.
  • an "effective dosage" may be considered in the context of administering one or more therapeutic agents, and a single agent may be considered to be given in an effective amount if, in conjunction with one or more other agents, a desirable result may be or is achieved.
  • a subject light-activated anion channel polypeptide comprises an amino acid sequence having at least 58%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO: l ; and comprises V156K, H173R, V281K, and N297Q substitutions relative to the amino acid sequence of C1C2 (SEQ ID NO: 78).
  • This polypeptide is referred to herein as ClC2_4x.
  • KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)
  • FCYENEV (SEQ ID NO: 84)
  • a subject light-activated anion channel polypeptide comprises an amino acid sequence having at least 60%>, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%o, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO:95; and comprises 98S, 122N, 129Q, 140S, 156R, 162S, 281R, 285N, 297Q and 312S, and comprises 195N, where the amino acid numbering is as set forth in SEQ ID NO: 95.
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% amino acid sequence identity to the amino acid sequence set forth SEQ ID NO: 100; and comprises 98S, 122N, 129Q, 140S, 156R, 162S, 281R, 285N, 297Q and 312S; and comprises 167S, where the amino acid numbering is as set forth in SEQ ID NO: 100.
  • a subject engineered light- activated anion channel polypeptide comprises the amino acid sequence provided in SEQ ID NO: 100.
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth SEQ ID NO:105; and comprises 98S, 122N, 129Q, 140S, 156R, 162S, 281R, 285N, 297Q and 312S; comprises 167S; and comprises 195C, where the amino acid numbering is as set forth in SEQ ID NO: 105.
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO: 109; and comprises 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 of: 59S, 83N, 90Q, 101 S, 117R, 123S, 242R, 246N, 258Q and 273S; and comprises 128S, where the amino acid numbering is as set forth in SEQ ID NO: 109.
  • a subject anion channel polypeptide comprises a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)).
  • a subject anion channel polypeptide comprises an ER export signal (e.g., FCYENEV (SEQ ID NO:84)).
  • a subject anion channel polypeptide comprises both a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)) and an ER export signal (e.g., FCYENEV (SEQ ID NO:84)).
  • amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO: l 15; and comprises 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 of: 59S, 83N, 90Q, 101 S, 117R, 123S, 242R, 246N, 258Q and 273S; and comprises 128S and 156N, where the amino acid numbering is as set forth in SEQ ID NO: l 15.
  • amino acid sequence identity to the amino acid sequence set forth SEQ ID NO:41; and comprises 1, 2, 3, 4, 5, 6, 7, 8, or 9 of: S98, S129, S140, S162, K156, R173, N285, K281, and Q297; comprises A195; and comprises T167, where the amino acid numbering is as set forth in SEQ ID NO:41.
  • a subject engineered light-activated anion channel polypeptide [00135] In some embodiments, a subject engineered light-activated anion channel polypeptide
  • a subject anion channel polypeptide comprises a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)).
  • a subject anion channel polypeptide comprises an ER export signal (e.g., FCYENEV (SEQ ID NO:84)).
  • a subject anion channel polypeptide comprises both a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)) and an ER export signal (e.g., FCYENEV (SEQ ID NO:84)).
  • amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO:49; and comprises 1, 2, 3, 4, 5, 6, 7, 8, or 9 of: S59, S90, SlOl, S123, K117, R134, N246, K242, and Q258; and comprises S128, where the amino acid numbering is as set forth in SEQ ID NO:49.
  • KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)
  • FCYENEV (SEQ ID NO: 84)
  • amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO:51; and comprises 1, 2, 3, 4, 5, 6, 7, 8, or 9 of: S59, S90, SlOl, S123, K117, R134, N246, K242, and Q258; and comprises T128 and N156, where the amino acid numbering is as set forth in SEQ ID NO:51.
  • KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)
  • FCYENEV (SEQ ID NO: 84)
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 58%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO:52; and comprises S59, S90, SlOl, S123, Kl 17, R134, N246, K242, and Q258; and comprises A128 and A156, where the amino acid numbering is as set forth in SEQ ID NO:52.
  • KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)
  • FCYENEV (SEQ ID NO: 84)
  • a subject anion channel polypeptide comprises a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)). In any one of these embodiments, a subject anion channel polypeptide comprises an ER export signal (e.g., FCYENEV (SEQ ID NO:84)). In any one of these embodiments, a subject anion channel polypeptide comprises both a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)). In any one of these embodiments, a subject anion channel polypeptide comprises an ER export signal (e.g., FCYENEV (SEQ ID NO:84)). In any one of these embodiments, a subject anion channel polypeptide comprises both a membrane trafficking signal (e.g.,
  • a subject engineered light-activated anion channel polypeptide is based on the amino acid sequence of the protein C1V1 (SEQ ID NO:80), wherein the amino acid sequence has been modified by replacing the first 50 N-terminal amino acids of C1V1 with amino acids 1-11 from the protein ChR2 (MDYGGALSAVG) (SEQ ID NO:82).
  • a subject engineered light-activated anion channel polypeptide is based on the amino acid sequence of the protein C1V1, wherein the cysteine amino acid residue at position 167 has been replaced by a serine residue.
  • a subject engineered light- activated anion channel polypeptide comprises an amino acid sequence having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth SEQ ID NO:133; and comprises 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 of: 98S, 122N, 129Q, 140S, 156R, 162S, 281R, 285N, 297Q, and 312S; and comprises 167S, where the amino acid numbering is as set forth in SEQ ID NO: 133.
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 60%>, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth SEQ ID NO:136; and comprises 98S, 122N, 129Q, 140S, 156R, 162S, 281R, 285N, 297Q, and 312S; comprises 167A; and comprises 195C, where the amino acid numbering is as set forth in SEQ ID NO: 136.
  • amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO:144; and comprises 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 of: 59S, 83N, 90Q, 101S, 117R, 123S, 242R, 246N, 258Q and 273S; and comprises 128T and 156N, where the amino acid numbering is as set forth in SEQ ID NO:144.
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO: 146; and comprises 59S, 83N, 90Q, 101 S, 117R, 123S, 242R, 246N, 258Q and 273S; and comprises 128A and 156N, where the amino acid numbering is as set forth in SEQ ID NO: 146.
  • a subject anion channel polypeptide comprises a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)).
  • a subject anion channel polypeptide comprises an ER export signal (e.g., FCYENEV (SEQ ID NO:84)).
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 58%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO:73; and comprises S59, S90, SlOl, S123, Kl 17, R134, N246, K242, and Q258; and comprises T128 and N156, where the amino acid numbering is as set forth in SEQ ID NO: 73.
  • the amino acid sequence of the ReaChR protein has been modified by introducing one or more of the following mutations into the amino acid sequence: T99S, E123N, E130Q, E141 S, V157R, E163S, P282R, A286N, N298Q and/or E313S.
  • a subject engineered light-activated anion channel polypeptide comprises the amino acid sequence of the protein ReaChR with all 10 of the above-listed amino acid substitutions, such that the amino acid sequence of the polypeptide is provided in SEQ ID NO: 149.
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 60%>, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth SEQ ID NO: 155; and comprises 99S, 123N, 130Q, 141 S, 157R, 163S, 282R, 286N, 298Q and 313S; and comprises 168S, where the amino acid numbering is as set forth in SEQ ID NO: 155.
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 60%>, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, amino acid sequence identity to the amino acid sequence set forth in SEQ ID NO: 168; and comprises 59S, 83N, 90Q, 101 S, 117R, 123S, 242R, 246N, 258Q and 273S; and comprises 128A and 156N, where the amino acid numbering is as set forth in SEQ ID NO: 168.
  • a subject engineered light-activated anion channel polypeptide is based on the amino acid sequence of the protein ChR2, wherein the cysteine amino acid residue at position 128 has been replaced by an alanine residue.
  • a subject engineered light-activated anion channel polypeptide comprises an amino acid sequence having at least 58%), at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%), at least 98%), at least 99%, or 100%), amino acid sequence identity to the amino acid sequence set forth SEQ ID NO:26; and comprises 1, 2, 3, 4, 5, 6, 7, 8, or 9 of: S59, S90, S101, S123, Kl 17, R134, K242, N246 and Q258; and comprises A128, where the amino acid numbering is as set forth in SEQ ID NO:26.
  • a subject anion channel polypeptide comprises both a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)) and an ER export signal (e.g., FCYENEV (SEQ ID NO:84)).
  • a membrane trafficking signal e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)
  • an ER export signal e.g., FCYENEV (SEQ ID NO:84)
  • amino acid sequence identity to the amino acid sequence set forth SEQ ID NO:33; and comprises 1, 2, 3, 4, 5, 6, 7, 8, or 9 of: S59, S90, S101, S123, K117, R134, K242, N246 and Q258; comprises Nl 56; and comprises S128, where the amino acid numbering is as set forth in SEQ ID NO:33.
  • a subject anion channel polypeptide comprises both a membrane trafficking signal (e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)) and an ER export signal (e.g., FCYENEV (SEQ ID NO:84)).
  • a membrane trafficking signal e.g., KSRITSEGEYIPLDQIDINV (SEQ ID NO:83)
  • an ER export signal e.g., FCYENEV (SEQ ID NO:84)
  • a portion of a polynucleotide encoding a subject protein is operably linked to a promoter sequence.
  • Any suitable promoter that functions in a target cell can be used for expression of the subject polynucleotides.
  • a promoter sequence can be a promoter that is specific to a particular target cell type or to a particular tissue type, such as a particular neuron or a pan-neuronal promoter.
  • Initiation control regions of promoters which are useful to drive expression of polynucleotides in a specific animal cell, are numerous and familiar to those skilled in the art. Virtually any promoter capable of driving expression of the subject polynucleotides can be used.
  • the replication-defective recombinant AAVs according to the present disclosure can be prepared by co-transfecting a plasmid containing the nucleic acid sequence of interest flanked by two AAV inverted terminal repeat (ITR) regions, and a plasmid carrying the AAV encapsidation genes (rep and cap genes), into a cell line that is infected with a human helper virus (for example an adenovirus).
  • ITR inverted terminal repeat
  • rep and cap genes AAV encapsidation genes
  • Another major viral transduction system utilizes lentivirus including the following potential expression vectors: pLenti-CamKII-iChR-XFP, pLenti-Efl a-iChR-XFP, pLenti-mThyl -iChR-XFP, pLenti-hThyl-iChR-XFP, pLenti-hSyn-iChR-XFP, pLenti-VGAT-iChR-XFP, pLenti-Hcrt-iChRXFP.
  • Herpes simplex virus HSV
  • HSV Herpes simplex virus
  • Suitable Shigella strains include, but are not limited to, Shigella flexneri, Shigella sonnei, and Shigella disenteriae.
  • the laboratory strain is one that is non-pathogenic.
  • suitable bacteria include, but are not limited to, Bacillus subtilis, Pseudomonas pudita, Pseudomonas aeruginosa, Pseudomonas mevalonii, Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodospirillum rubrum, Rhodococcus sp., and the like.
  • the host cell is Escherichia coli.
  • the light-generating device may comprise a light emitting diode
  • a light generating device may generate blue light having a wavelength ranging from about 475 nm to about 500 nm.
  • a light generating device may generate green light having a wavelength ranging from about 500 nm to about 560 nm.
  • a light generating device may generate yellow light having a wavelength ranging from about 560 nm to about 590 nm.
  • a light generating device may generate orange light having a wavelength ranging from about 590 nm to about 620 nm.
  • a light generating device may generate red light having a wavelength ranging from about 620 nm to about 650 nm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Neurosurgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
PCT/US2015/023087 2014-03-28 2015-03-27 Engineered light-activated anion channel proteins and methods of use thereof Ceased WO2015148974A2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP15770114.5A EP3122761B1 (en) 2014-03-28 2015-03-27 Engineered light-activated anion channel proteins and methods of use thereof
AU2015237265A AU2015237265A1 (en) 2014-03-28 2015-03-27 Engineered light-activated anion channel proteins and methods of use thereof
CN201580028022.1A CN106459138A (zh) 2014-03-28 2015-03-27 工程化的光激活阴离子通道蛋白及其使用方法
EP19156461.6A EP3581580A1 (en) 2014-03-28 2015-03-27 Engineered light-activated anion channel proteins and methods of use thereof
JP2016559160A JP2017511129A (ja) 2014-03-28 2015-03-27 遺伝子操作された光活性化アニオンチャネルタンパク質及びその使用方法
US15/126,859 US10052383B2 (en) 2014-03-28 2015-03-27 Engineered light-activated anion channel proteins and methods of use thereof
ES15770114T ES2725951T3 (es) 2014-03-28 2015-03-27 Proteínas de canales aniónicos activadas por la luz modificadas por ingeniería genética y métodos de uso de las mismas
CA2943367A CA2943367A1 (en) 2014-03-28 2015-03-27 Engineered light-activated anion channel proteins and methods of use thereof
US16/057,639 US10478499B2 (en) 2014-03-28 2018-08-07 Engineered light-activated anion channel proteins and methods of use thereof
US16/600,076 US20200030446A1 (en) 2014-03-28 2019-10-11 Engineered light-activated anion channel proteins and methods of use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461972182P 2014-03-28 2014-03-28
US61/972,182 2014-03-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/126,859 A-371-Of-International US10052383B2 (en) 2014-03-28 2015-03-27 Engineered light-activated anion channel proteins and methods of use thereof
US16/057,639 Division US10478499B2 (en) 2014-03-28 2018-08-07 Engineered light-activated anion channel proteins and methods of use thereof

Publications (2)

Publication Number Publication Date
WO2015148974A2 true WO2015148974A2 (en) 2015-10-01
WO2015148974A3 WO2015148974A3 (en) 2015-12-23

Family

ID=54196574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/023087 Ceased WO2015148974A2 (en) 2014-03-28 2015-03-27 Engineered light-activated anion channel proteins and methods of use thereof

Country Status (8)

Country Link
US (3) US10052383B2 (enExample)
EP (2) EP3122761B1 (enExample)
JP (1) JP2017511129A (enExample)
CN (1) CN106459138A (enExample)
AU (1) AU2015237265A1 (enExample)
CA (1) CA2943367A1 (enExample)
ES (1) ES2725951T3 (enExample)
WO (1) WO2015148974A2 (enExample)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017048808A1 (en) * 2015-09-15 2017-03-23 The Board Of Trustees Of The Leland Stanford Junior University Light-responsive polypeptides and methods of use thereof
CN108192896A (zh) * 2018-02-10 2018-06-22 中国烟草总公司郑州烟草研究院 一个烟草慢阴离子通道蛋白NtSLAH1及其应用
US10350430B2 (en) 2008-04-23 2019-07-16 The Board Of Trustees Of The Leland Stanford Junior University System comprising a nucleotide sequence encoding a volvox carteri light-activated ion channel protein (VCHR1)
US10369378B2 (en) 2007-01-10 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10371776B2 (en) 2010-11-22 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10422803B2 (en) 2005-07-22 2019-09-24 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10426970B2 (en) 2007-10-31 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10451608B2 (en) 2005-07-22 2019-10-22 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US10538560B2 (en) 2011-12-16 2020-01-21 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US10569099B2 (en) 2005-07-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US10583309B2 (en) 2008-07-08 2020-03-10 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US10589123B2 (en) 2007-03-01 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US10711242B2 (en) 2008-06-17 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for controlling cellular development
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture
EP3854876A4 (en) * 2018-09-20 2022-11-30 National University Corporation, Iwate University MODIFIED CHANNEL RHODOPSIN
US11684284B2 (en) 2015-07-21 2023-06-27 The Board Of Trustees Of The Leland Stanford Junior University Carbon fiber optrodes for magnetic resonance imaging compatible optogenetics
US11921271B2 (en) 2020-05-22 2024-03-05 The Board Of Trustees Of The Leland Stanford Junior Univeristy Multifocal macroscope for large field of view imaging of dynamic specimens

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486253A1 (en) 2010-11-05 2019-05-22 The Board of Trustees of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
JP2021502101A (ja) * 2017-11-10 2021-01-28 ハワード ヒューズ メディカル インスティチュート 修飾されたリガンド依存性イオンチャネルおよび使用の方法
US11858969B2 (en) 2018-09-18 2024-01-02 California Institute Of Technology Engineered light-sensitive proteins
CN111263086A (zh) * 2020-02-10 2020-06-09 江南大学 细胞融合的光电传感器的制作方法及其成像系统的工作方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797368A (en) 1985-03-15 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Adeno-associated virus as eukaryotic expression vector
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
WO1991018088A1 (en) 1990-05-23 1991-11-28 The United States Of America, Represented By The Secretary, United States Department Of Commerce Adeno-associated virus (aav)-based eucaryotic vectors
US5387742A (en) 1990-06-15 1995-02-07 Scios Nova Inc. Transgenic mice displaying the amyloid-forming pathology of alzheimer's disease
US5173414A (en) 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
US5252479A (en) 1991-11-08 1993-10-12 Research Corporation Technologies, Inc. Safe vector for gene therapy
US5985930A (en) 1996-11-21 1999-11-16 Pasinetti; Giulio M. Treatment of neurodegenerative conditions with nimesulide
US6989264B2 (en) 1997-09-05 2006-01-24 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6566118B1 (en) 1997-09-05 2003-05-20 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of released recombinant AAV vectors
WO1999011764A2 (en) 1997-09-05 1999-03-11 Targeted Genetics Corporation Methods for generating high titer helper-free preparations of recombinant aav vectors
US6080849A (en) 1997-09-10 2000-06-27 Vion Pharmaceuticals, Inc. Genetically modified tumor-targeted bacteria with reduced virulence
DE60039766D1 (de) 1999-08-09 2008-09-18 Targeted Genetics Corp Terologen nukleotidsequenz von einem rekombinanten viralen vektor durch ausgestaltung der sequenz in einer art und weise, dass basenpaarungen innerhalb der sequenz entstehen
US7632679B2 (en) 2002-07-16 2009-12-15 The Trustees Of Columbia University In The City Of New York Systems and methods for screening for modulators of neural differentiation
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US20070053996A1 (en) 2005-07-22 2007-03-08 Boyden Edward S Light-activated cation channel and uses thereof
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US10052497B2 (en) 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9238150B2 (en) 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
DK2061891T3 (da) 2006-08-24 2012-07-23 Virovek Inc Ekspression i insektceller af gener med overlappende åbne læserammer, fremgangsmåder og sammensætninger hertil
WO2008086470A1 (en) 2007-01-10 2008-07-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
WO2008101128A1 (en) 2007-02-14 2008-08-21 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
WO2008106694A2 (en) 2007-03-01 2008-09-04 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US8545543B2 (en) 2009-10-08 2013-10-01 Massachusetts Institute Of Technology Methods and apparatus for microstructure lightguides
US10035027B2 (en) 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
JP5544659B2 (ja) 2008-03-24 2014-07-09 国立大学法人東北大学 改変された光受容体チャネル型ロドプシンタンパク質
SG189813A1 (en) 2008-04-23 2013-05-31 Univ Leland Stanford Junior Systems, methods and compositions for optical stimulation of target cells
JP5890176B2 (ja) 2008-05-29 2016-03-22 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー セカンドメッセンジャーを光制御するためのセルライン、システム、および方法
AU2009260029B2 (en) 2008-06-17 2016-03-17 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
EP2303405A4 (en) 2008-06-17 2017-12-27 The Board of Trustees of the Leland Stanford Junior University Apparatus and methods for controlling cellular development
US9101759B2 (en) 2008-07-08 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
NZ602416A (en) * 2008-11-14 2014-08-29 Univ Leland Stanford Junior Optically-based stimulation of target cells and modifications thereto
JP5866332B2 (ja) 2010-03-17 2016-02-17 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 感光性イオンを通過させる分子
CA2817175C (en) 2010-11-05 2019-09-24 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light using lanthanide-doped nanoparticles for use in optogenetic methods
CN106106368A (zh) 2010-11-05 2016-11-16 斯坦福大学托管董事会 光控cns功能障碍
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
CA2816987C (en) 2010-11-05 2018-09-18 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of psychotic states
WO2012061681A1 (en) 2010-11-05 2012-05-10 The Board Of Trustees Of The Leland Stanford Junior University. Control and characterization of memory function
CN103491770B (zh) 2010-11-05 2016-06-08 斯坦福大学托管董事会 稳定阶跃函数视蛋白及其使用方法
EP3486253A1 (en) * 2010-11-05 2019-05-22 The Board of Trustees of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US8957028B2 (en) 2010-11-13 2015-02-17 Massachusetts Institute Of Technology Red-shifted opsin molecules and uses thereof
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
EP3524676A1 (en) 2011-12-16 2019-08-14 The Board of Trustees of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
ES2628006T3 (es) 2012-02-21 2017-08-01 Circuit Therapeutics, Inc. Composiciones para el tratamiento de trastornos neurogénicos del suelo pélvico
US20150040249A1 (en) 2012-03-20 2015-02-05 The Board Of Trustees Of The Leland Stanford Junior University Non-Human Animal Models of Depression and Methods of Use Thereof
JP6580487B2 (ja) 2012-11-21 2019-09-25 サーキット セラピューティクス, インコーポレイテッド 光遺伝学的治療のためのシステムおよび方法
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
WO2014179331A2 (en) 2013-04-29 2014-11-06 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
CA2921221A1 (en) 2013-08-14 2015-02-19 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10627410B2 (en) 2005-07-22 2020-04-21 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10422803B2 (en) 2005-07-22 2019-09-24 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10451608B2 (en) 2005-07-22 2019-10-22 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US10569099B2 (en) 2005-07-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US11007374B2 (en) 2007-01-10 2021-05-18 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10369378B2 (en) 2007-01-10 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10589123B2 (en) 2007-03-01 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US10426970B2 (en) 2007-10-31 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10350430B2 (en) 2008-04-23 2019-07-16 The Board Of Trustees Of The Leland Stanford Junior University System comprising a nucleotide sequence encoding a volvox carteri light-activated ion channel protein (VCHR1)
US10711242B2 (en) 2008-06-17 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for controlling cellular development
US10583309B2 (en) 2008-07-08 2020-03-10 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US10371776B2 (en) 2010-11-22 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10914803B2 (en) 2010-11-22 2021-02-09 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10538560B2 (en) 2011-12-16 2020-01-21 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US11684284B2 (en) 2015-07-21 2023-06-27 The Board Of Trustees Of The Leland Stanford Junior University Carbon fiber optrodes for magnetic resonance imaging compatible optogenetics
WO2017048808A1 (en) * 2015-09-15 2017-03-23 The Board Of Trustees Of The Leland Stanford Junior University Light-responsive polypeptides and methods of use thereof
EP3349851A4 (en) * 2015-09-15 2019-04-24 The Board of Trustees of the Leland Stanford Junior University LIGHT-RESPONSIBLE POLYPEPTIDES AND METHOD OF USE THEREOF
US11801301B2 (en) 2015-09-15 2023-10-31 The Board Of Trustees Of The Leland Stanford Junior University Light-responsive polypeptides and methods of use thereof
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture
CN108192896A (zh) * 2018-02-10 2018-06-22 中国烟草总公司郑州烟草研究院 一个烟草慢阴离子通道蛋白NtSLAH1及其应用
EP3854876A4 (en) * 2018-09-20 2022-11-30 National University Corporation, Iwate University MODIFIED CHANNEL RHODOPSIN
US12325729B2 (en) 2018-09-20 2025-06-10 National University Corporation, Iwate University Modified channel rhodopsin
US11921271B2 (en) 2020-05-22 2024-03-05 The Board Of Trustees Of The Leland Stanford Junior Univeristy Multifocal macroscope for large field of view imaging of dynamic specimens

Also Published As

Publication number Publication date
CA2943367A1 (en) 2015-10-01
US20200030446A1 (en) 2020-01-30
US20170095556A1 (en) 2017-04-06
JP2017511129A (ja) 2017-04-20
CN106459138A (zh) 2017-02-22
US20180344851A1 (en) 2018-12-06
US10052383B2 (en) 2018-08-21
WO2015148974A3 (en) 2015-12-23
AU2015237265A1 (en) 2016-10-13
US10478499B2 (en) 2019-11-19
ES2725951T3 (es) 2019-09-30
EP3122761A4 (en) 2017-12-06
EP3581580A1 (en) 2019-12-18
EP3122761A2 (en) 2017-02-01
EP3122761B1 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
US10478499B2 (en) Engineered light-activated anion channel proteins and methods of use thereof
US10220092B2 (en) Devices, systems and methods for optogenetic modulation of action potentials in target cells
US9840541B2 (en) Opsin polypeptides and methods of use thereof
US9636380B2 (en) Optogenetic control of inputs to the ventral tegmental area
US20200032291A1 (en) Dopamine receptor type 2 specific promoter and methods of use thereof
WO2017207761A1 (en) Mutant light-inducible ion channel of chrimson

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770114

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15126859

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2943367

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015770114

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770114

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016559160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015237265

Country of ref document: AU

Date of ref document: 20150327

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770114

Country of ref document: EP

Kind code of ref document: A2