WO2015146984A1 - 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法 - Google Patents

導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法 Download PDF

Info

Publication number
WO2015146984A1
WO2015146984A1 PCT/JP2015/058929 JP2015058929W WO2015146984A1 WO 2015146984 A1 WO2015146984 A1 WO 2015146984A1 JP 2015058929 W JP2015058929 W JP 2015058929W WO 2015146984 A1 WO2015146984 A1 WO 2015146984A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
porous body
conductive porous
fibrous
conductive material
Prior art date
Application number
PCT/JP2015/058929
Other languages
English (en)
French (fr)
Inventor
達規 伊藤
隆 多羅尾
佳織 針谷
Original Assignee
日本バイリーン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バイリーン株式会社 filed Critical 日本バイリーン株式会社
Priority to JP2016510386A priority Critical patent/JPWO2015146984A1/ja
Priority to EP15768419.2A priority patent/EP3125255A4/en
Priority to US15/129,336 priority patent/US20170110735A1/en
Priority to KR1020167029624A priority patent/KR20160139002A/ko
Priority to CN201580016584.4A priority patent/CN106133968A/zh
Publication of WO2015146984A1 publication Critical patent/WO2015146984A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/10Physical properties porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a conductive porous body, a polymer electrolyte fuel cell, and a method for producing a conductive porous body.
  • a conductive porous body is used as a base material for a gas diffusion electrode for a fuel cell, as an electrode for an electric double layer capacitor, or as an electrode for a lithium ion secondary battery by utilizing its conductivity and porosity.
  • the use of is being considered.
  • Patent Document 1 discloses a non-woven fabric made of carbon fiber having a specific surface area of 1 to 50 m 2 / g. It was not possible to demonstrate the performance. For example, when used as an electrode of an electric double layer capacitor, the capacitance cannot be increased.
  • Patent Document 2 JP-T-2010-530929 discloses a polymer-CNT fiber precursor formed by extruding a polymer-CNT dope obtained by bringing carbon nanotubes (CNT) into contact with an acrylonitrile-containing polymer. -Disclosed is a method of making carbon fibers having the steps of drawing, stabilizing and carbonizing a CNT fiber precursor.
  • the carbon fiber produced by such a method is weak against pressure, it has been difficult to apply to various uses.
  • a membrane-electrode assembly is generally produced by hot pressing, but is damaged by the pressure of hot pressing. Therefore, it was difficult to actually apply.
  • the present invention has been made under such circumstances, and has a specific surface area that is wide and is not easily damaged by pressure, and is applicable to various applications, such as a conductive porous body, a polymer electrolyte fuel cell, and a conductive porous body.
  • An object is to provide a manufacturing method.
  • the present invention [1] A conductive porous body in which fibrous materials having a first conductive material and a second conductive material connecting between the first conductive materials are aggregated, and the conductive porous body has a specific surface area of 100 m 2. / G or more, and the maintenance ratio of the thickness after 2 MPa pressurization is 60% or more, a conductive porous body, [2]
  • the first conductive material is made of at least one selected from the group consisting of fullerene, carbon nanotube, carbon nanohorn, graphite, vapor-grown carbon fiber, carbon black, metal, and metal oxide.
  • a fibrous material in which the first conductive material is connected by the second conductive material and the specific surface area is 100 m 2 / g or more and the thickness maintenance ratio after pressurizing 2 MPa is 60% or more gathered.
  • the present invention relates to a method for producing a conductive porous material, wherein the conductive porous material is used.
  • the conductive porous body of [1] has a large surface area of 100 m 2 / g or more, sufficient performance can be exhibited in various applications. Moreover, since the thickness maintenance rate after pressurizing 2 MPa is 60% or more, and the thickness can be maintained without being damaged by pressure, the porosity of the conductive porous body can be fully utilized. . Furthermore, since it is a conductive porous body in which fibrous materials having the first conductive material and the second conductive material that connects the first conductive materials are gathered, it is excellent in conductivity.
  • the conductive porous body of [2] is composed of a first conductive material excellent in conductivity, such as fullerene, carbon nanotube, carbon nanohorn, graphite, vapor-grown carbon fiber, carbon black, metal, metal oxide, It is a conductive porous body having excellent conductivity.
  • the conductive porous body of [3] is a second conductive material obtained by carbonizing an organic material, it has excellent adhesion to the first conductive material and is excellent in conductivity.
  • the conductive porous body of [4] has a large porosity of 70% or more, the voids of the conductive porous body can be used effectively.
  • the conductive porous body of [5] is used as an electrode base material, it can exhibit excellent electrode performance.
  • an electric double layer capacitor having a large capacitance can be obtained.
  • the polymer electrolyte fuel cell of [6] includes the conductive porous body as a gas diffusion electrode base material, and can maintain the thickness and has a wide specific surface area. Are better.
  • the method for producing a conductive porous body according to [7] can produce a conductive porous body having a large surface area and not damaged by pressure, and having excellent conductivity.
  • FIG. 2 is an electron micrograph (500 times) of the conductive porous sheet of Example 1.
  • FIG. 2 is an electron micrograph (2000 times) of the conductive porous sheet of Example 1.
  • FIG. 2 is an electron micrograph (500 times) of a conductive porous sheet of Comparative Example 1.
  • FIG. 4 is an electron micrograph (2000 times) of the conductive porous sheet of Comparative Example 1.
  • FIG. 4 is an electron micrograph (500 times) of the conductive porous sheet of Example 2.
  • FIG. 2 is an electron micrograph (2000 times) of the conductive porous sheet of Example 2.
  • FIG. 4 is an electron micrograph (500 times) of a conductive porous sheet of Comparative Example 2.
  • FIG. 4 is an electron micrograph (2000 times) of a conductive porous sheet of Comparative Example 2.
  • FIG. 4 is an electron micrograph (2000 times) of a conductive porous sheet of Comparative Example 2.
  • FIG. 2 is an electron micrograph (2000 times) of a conductive porous sheet of Comparative Example
  • 4 is an electron micrograph (300 times) of a conductive porous sheet of Comparative Example 3.
  • 4 is an electron micrograph (2000 times) of the conductive porous sheet of Comparative Example 3.
  • 6 is an electron micrograph (500 times) of a conductive porous sheet of Comparative Example 4.
  • 7 is an electron micrograph (2000 times) of the conductive porous sheet of Comparative Example 4.
  • 6 is a photograph of a precursor fiber-cured porous sheet of Comparative Example 5. It is a photograph after carbonization of the precursor fiber hardening porous sheet of comparative example 5.
  • 6 is a photograph of a precursor fiber-cured porous sheet of Comparative Example 6. It is a photograph after carbonization of the precursor fiber hardening porous sheet of comparative example 6.
  • FIG. 4 is an electron micrograph (500 times) of the conductive porous sheet of Example 3.
  • FIG. 4 is an electron micrograph (2000 times) of the conductive porous sheet of Example 3.
  • FIG. 4 is an electron micrograph (500 times) of the conductive porous sheet of Example 4.
  • FIG. 4 is an electron micrograph (2000 times) of the conductive porous sheet of Example 4.
  • FIG. 6 is an electron micrograph (500 times) of the conductive porous sheet of Example 5.
  • FIG. 6 is an electron micrograph (2000 times) of the conductive porous sheet of Example 5.
  • FIG. It is an electron micrograph (500 times) of the electroconductive porous sheet of Example 6.
  • It is an electron micrograph (5000 times) of the electroconductive porous sheet of Example 6.
  • It is an electron micrograph (500 times) of the conductive porous sheet of Example 7.
  • the conductive porous body of the present invention is a collection of fibrous materials having a first conductive material and a second conductive material that connects the first conductive materials, and the first conductive materials are the second ones. Since they are connected by a conductive material, they are excellent in conductivity.
  • the “first conductive material” means a conductive material having a certain shape
  • the “second conductive material” means an amorphous conductive material.
  • the first conductive material is more conductive than the second conductive material.
  • the first conductive material used in the present invention is preferably made of a material having excellent conductivity.
  • a material having excellent conductivity For example, fullerene, carbon nanotube, carbon nanohorn, graphite, vapor grown carbon fiber, carbon black, metal, and metal oxide It is preferable that it consists of 1 type chosen from the group which consists of, or 2 or more types.
  • carbon nanotubes are suitable because they are excellent in electrical conductivity, and can be easily aligned in the longitudinal direction of the fibrous material in the fibrous material, and can be a fibrous material excellent in electrical conductivity. is there.
  • the second conductive material is carbonized, such as when the organic material is carbonized, the shrinkage of the precursor fiber before carbonization can be suppressed when carbonized. Therefore, carbon nanotubes are preferable.
  • a suitable carbon nanotube may be a single-walled carbon nanotube, a multi-walled carbon nanotube, or a coiled one.
  • the size of the first conductive material is not particularly limited, but when the first conductive material has a particle shape, the average particle size of the first conductive material is 5 nm so that a fibrous material can be easily formed. It is preferably from ⁇ 50 ⁇ m, more preferably from 50 nm to 25 ⁇ m, and even more preferably from 100 nm to 10 ⁇ m.
  • the “average particle size” basically represents the number average particle size of particles (first conductive material) obtained from a particle size distribution meter by a dynamic light scattering method.
  • a dynamic light scattering method such as particles (first conductive material) that has formed a state called an aggregate or structure is difficult, take an electron micrograph of the first conductive material, The arithmetic average value of the diameters of 50 particles (first conductive material) shown in the micrograph is defined as the average particle size.
  • the diameter of a circle having the same area as the area of the particle (first conductive material) on the photograph It is regarded as the diameter of (first conductive material).
  • the fiber diameter is preferably 10 nm to 5000 nm, more preferably 10 nm to 1000 nm, still more preferably 10 nm to 500 nm, and more preferably 10 nm to 500 nm. More preferably, it is 250 nm.
  • the aspect ratio is preferably 1000 or less, and more preferably 500 or less so that the fiber length can be easily dispersed in the spinning solution and the fibrous material.
  • metal examples include gold, platinum, titanium, nickel, aluminum, silver, zinc, iron, copper, manganese, cobalt, and stainless steel, and examples of the metal oxide include these. Mention may be made of metal oxides. These metals or metal oxides can be in the form of particles, fibers, or nanowires.
  • the fibrous material constituting the conductive porous body of the present invention is excellent in conductivity because the first conductive materials as described above are connected by the second conductive material.
  • the conductivity is excellent.
  • the second conductive material is not particularly limited as long as it can connect the first conductive materials to each other.
  • the second conductive material has excellent adhesion with the first conductive material and has excellent conductivity.
  • the organic material is carbonized.
  • the fibrous organic material in a state where the first conductive material is dispersed in the organic material is carbonized, the first conductive materials are in close contact with each other by the second conductive material. An excellent fibrous material can be obtained.
  • Such an organic material is not particularly limited as long as it has excellent adhesion to the first conductive material.
  • thermosetting resin when included as an organic material, the shrinkage of the fibrous material can be suppressed during the carbonization process, the rigidity of the fibrous material can be increased, and the conductive porous body that is not easily crushed by pressure and
  • the second conductive material obtained by carbonizing a phenol resin or an epoxy resin is particularly preferable because it is excellent in conductivity.
  • a resin other than the thermosetting resin for example, a thermoplastic resin.
  • the fibrous material of the present invention has the first conductive material and the second conductive material as described above.
  • the first conductive material may be in a state of no gap between the first conductive materials, but the first conductive materials are partially separated by the second conductive material so that the specific surface area is wide and the voids in the fibrous material can be used. It is preferable that the fibrous material itself is in a porous state, which is connected and has a gap between the first conductive materials.
  • the first conductive material may be present in any manner in the fibrous material, but it is preferable that it is present throughout the fibrous material including the inside because it is excellent in conductivity.
  • the first conductive material is present throughout the fibrous material, and the fibrous material whose end protrudes from the surface of the fibrous material is, for example, a carbonizable organic material and a long material such as a fibrous material or a tube shape. It can be manufactured by spinning a spinning solution containing a first conductive material having a scale shape and carbonizing a carbonizable organic material.
  • the mass ratio of the first conductive material and the second conductive material in such a fibrous material is not particularly limited, but is preferably 10 to 90:90 to 10, more preferably 20 to 90:80 to 10 is more preferable, 30 to 90:70 to 10 is more preferable, 40 to 90:60 to 10 is still more preferable, and 40 to 80:60 to 20 is still more preferable. It is more preferably 40 to 70:60 to 30, and further preferably 50 to 70:50 to 30. If the first conductive material is less than 10%, the conductivity of the conductive porous body tends to be insufficient. On the other hand, if it exceeds 90%, the second conductive material connecting the first conductive materials is small, and the conductive material is conductive. This is because the conductive porous body is inferior in conductivity and tends to be crushed by pressure.
  • the average fiber diameter in such a fibrous material is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.1 ⁇ m to 30 ⁇ m, and more preferably 0.1 ⁇ m to 20 ⁇ m. Is more preferably 0.3 ⁇ m to 15 ⁇ m, further preferably 0.5 ⁇ m to 10 ⁇ m, and further preferably 0.5 ⁇ m to 5 ⁇ m. This is because when the average fiber diameter exceeds 50 ⁇ m, there are few contact points between the fibrous materials in the conductive porous body, and the mechanical strength and conductivity of the conductive porous body tend to be insufficient. On the other hand, when the thickness is less than 0.1 ⁇ m, the first conductive material tends to be difficult to be contained in the fibrous material.
  • This “average fiber” means an arithmetic average value of fiber diameters at 40 points, and “fiber diameter” is a width perpendicular to the length direction of the fibrous material observed in a microscopic photograph of the planar surface of the fibrous material. Yes, when the end portion of the first conductive material protrudes from the fibrous material, it means the width of the fibrous material excluding the protruding portion.
  • specific surface area of the fibrous material as the specific surface area of the conductive porous body is easily are those large 100 m 2 / g or more specific surface area, specific surface area greater than 100 m 2 / g It is preferable to have.
  • the specific surface area in the present invention is a value measured by the BET method, and can be measured using, for example, an automatic specific surface area / pore distribution measuring device (BELSORP mini; Nippon Bell Co., Ltd.) and nitrogen gas as an adsorbed gas. .
  • BELSORP mini automatic specific surface area / pore distribution measuring device
  • nitrogen gas as an adsorbed gas.
  • the fibrous material is a continuous fibrous material so as to have excellent conductivity.
  • a continuous fibrous material is obtained by, for example, spinning an organic material after spinning a spinning solution containing a first conductive material and an organic material to be a second conductive material by an electrostatic spinning method or a spunbond method. Carbonized to produce a second conductive material.
  • the “fibrous material” in the present invention is a material extending linearly by connecting the first conductive materials with the second conductive material. For example, an electron microscope of about 500 to 2000 times It can be confirmed by a photograph.
  • the conductive porous material of the present invention is a collection of fibrous materials as described above, and is a porous material having voids between the fibrous materials.
  • the form of the conductive porous body is not particularly limited.
  • the conductive porous body may be a two-dimensional form such as a thread or sheet; a columnar body such as a cylinder, a prism, or a triangular prism; a cone such as a cone or a pyramid; It can also be a three-dimensional form such as a frustum such as a truncated cone or a truncated pyramid;
  • it since it is excellent in versatility when it is a sheet form, it is a suitable form.
  • the conductive porous body is a collection of fibrous materials, but the fibrous materials may or may not be bonded to each other, but bonding is more conductive and stable. It is suitable because of its excellent properties. For example, it is preferable to couple
  • the fibrous materials may be woven or knitted regularly gathered, but are preferably in a so-called nonwoven state in which the fibrous materials are gathered randomly so that the voids between the fibrous materials are finer. More preferably, it consists only of a state. Even in the nonwoven fabric state, if the fibrous material is oriented in a certain direction to some extent, the conductivity in the orientation direction is high.
  • the conductive porous body of the present invention is a collection of the fibrous materials as described above, but since the specific surface area is as large as 100 m 2 / g or more, sufficient performance can be exhibited in various applications. For example, when the conductive porous body of the present invention is used as an electrode base material for an electric double layer capacitor, an electric double layer capacitor having a large capacitance can be obtained. The larger the specific surface area, the more various performances can be exhibited. Therefore, the specific surface area is preferably 100 m 2 / g to 3000 m 2 / g, more preferably 150 m 2 / g to 2500 m 2 / g.
  • it is 200 m 2 / g to 2000 m 2 / g, more preferably 200 m 2 / g to 1000 m 2 / g, still more preferably 200 m 2 / g to 800 m 2 / g, More preferably, it is 200 m 2 / g to 600 m 2 / g. This is because when the specific surface area exceeds 3000 m 2 / g, the density of the fibrous material is extremely reduced, and the strength and conductivity of the conductive porous body tend to be reduced.
  • the conductive porous body of the present invention has a thickness maintenance ratio of 60% or more after being pressurized at 2 MPa, and can maintain the thickness without being damaged by pressure.
  • a thickness maintenance ratio of 60% or more after being pressurized at 2 MPa, and can maintain the thickness without being damaged by pressure.
  • the thickness maintenance ratio is preferably 60% to 100%, and preferably 70% to 100%. Is more preferable, 80% to 100% is more preferable, and 85% to 100% is still more preferable. This is because when the thickness maintenance ratio exceeds 100%, the conductive porous body is damaged by the pressure and the thickness is increased, and as a result, the strength of the conductive porous body tends to decrease and the contact resistance increases. .
  • Ta is the thickness when a conductive porous body is sandwiched between stainless steel plates and pressed in the laminating direction at a pressure of 2 MPa for 30 seconds, and the pressure is removed.
  • the “thickness” in the present invention refers to a value measured using a thickness gauge (manufactured by Mitutoyo Corporation: Code No. 547-401: measuring force 3.5 N or less).
  • the conductive porous body of the present invention preferably has a porosity of 70% or more so that the voids can be used effectively.
  • a fuel cell having excellent drainage and gas diffusibility and high power generation performance can be produced.
  • the porosity P (unit:%) is a value obtained from the following formula.
  • P 100- (Fr1 + Fr2 + .. + Frn)
  • Frn indicates the filling rate (unit:%) of the component n constituting the conductive porous body, and is a value obtained from the following formula.
  • M is the mass per unit of the conductive porous body (unit: g / cm 2 )
  • T is the thickness (cm) of the conductive porous body
  • Prn is the component n in the conductive porous body (for example, the first n SGn means the specific gravity (unit: g / cm 3 ) of the component n, respectively, and the existing mass ratio of the conductive material and the second conductive material.
  • Conductive porous body of the present invention as excellent conductivity, electrical resistance is preferably at 150m ⁇ ⁇ cm 2 or less, more preferably at 100 m [Omega ⁇ cm 2 or less, is 50 m [Omega ⁇ cm 2 or less further more preferably from, further preferably at 25m ⁇ ⁇ cm 2 or less, and even more preferably 15m ⁇ ⁇ cm 2 or less.
  • the conductive porous material of the present invention is a collection of fibrous materials as described above, but the fibrous material preferably occupies 10 mass% or more of the conductive porous material, and is 50 mass% or more. More preferably, it is more preferably 70% by mass or more, still more preferably 90% by mass or more, and most preferably only a fibrous material.
  • the material other than the fibrous material is not particularly limited.
  • Conductive materials Recycled fibers such as rayon, polynosic, cupra, semi-synthetic fibers such as acetate fibers, nylon fibers, vinylon fibers, fluorine fibers, polyvinyl chloride fibers, polyester fibers, acrylic fibers, polyethylene fibers, polyolefin fibers or polyurethane
  • Synthetic fibers such as fibers, inorganic fibers such as glass fibers and ceramic fibers, plant fibers such as cotton and hemp, animal fibers such as wool and silk
  • activated carbon powder for example, steam activated carbon, alkali-treated activated carbon, acid-treated activated carbon, etc.
  • Non-conductive materials such as iron oxide, copper oxide, nickel oxide, cobalt oxide, zinc oxide, titanium-containing oxides, zeolite, catalyst-supporting ceramics, silica, etc.), ion-exchange resin powder, plant seeds; be able to.
  • the conductive porous material of the present invention is a collection of fibrous materials as described above, but it may be a single layer in which only one type of fibrous material is gathered, or different fibrous materials may be mixed. It may be a single layer or a structure in which these layers are laminated in two or more layers.
  • “Different fibrous materials” means the first conductive material or the second conductive material having different compositions, forms, sizes, densities, strengths, etc., fibrous materials having different densities, 1
  • the presence state of the conductive material is different, the mass ratio of the first conductive material and the second conductive material in the fibrous material is different, the fiber diameter of the fibrous material is different, the length of the fibrous material is different, It means that one or more of these are different, such as the porosity of the fibrous material is different, the aggregate state of the fibrous material is different, and the specific surface area of the fibrous material is different.
  • the basis weight and thickness of the conductive porous body of the present invention are not particularly limited, but are preferably 0.5 to 500 g / m 2 from the viewpoint of conductivity, handleability and productivity, and 1 to 400 g. / M 2 is more preferable, 10 to 300 g / m 2 is still more preferable, and 10 to 200 g / m 2 is still more preferable.
  • the thickness is not particularly limited, but is preferably 1 to 2000 ⁇ m, more preferably 3 to 1000 ⁇ m, still more preferably 5 to 500 ⁇ m, and further preferably 10 to 300 ⁇ m.
  • the “weight per unit area” in the present invention refers to a value obtained by measuring the mass of a sample cut into a 10 cm square and converting it to a mass of 1 m 2 .
  • the conductive porous body of the present invention has a large surface area and can maintain the thickness, it can be suitably used as an electrode substrate.
  • a secondary battery or capacitor having a large capacity can be obtained.
  • it can maintain a space
  • the conductive porous body of the present invention when the conductive porous body of the present invention is provided as the base material for the gas diffusion electrode of the polymer electrolyte fuel cell, the conductive porous body of the present invention is porous. If nothing is filled in the gap, the gas diffusion electrode substrate is excellent in drainage in the thickness direction and in the surface direction, and is excellent in the diffusibility of the supplied gas.
  • the voids between the fibrous materials of the gas diffusion electrode base material contain fluororesin and / or carbon, liquid water is likely to be extruded due to the inclusion of the former fluororesin.
  • the conductivity can be increased, and the conductivity can be increased by containing the latter carbon.
  • fluororesin examples include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), perfluoroalkoxy fluororesin (PFA), and tetrafluoride.
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PVF polyvinyl fluoride
  • PFA perfluoroalkoxy fluororesin
  • Ethylene / hexafluoropropylene copolymer FEP
  • Ethylene / hexafluoropropylene copolymer Ethylene / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene examples thereof include a copolymer (THV) and a copolymer of various monomers constituting the resin.
  • examples of carbon include carbon fiber, fullerene, carbon nanotube, carbon nanohorn, graphite, vapor grown carbon fiber, and carbon black.
  • the polymer electrolyte fuel cell of the present invention can be exactly the same as a conventional polymer electrolyte fuel cell except that the above-mentioned conductive porous body is provided as a base material for a gas diffusion electrode. That is, it has a structure in which a plurality of cell units in which a joined body of a gas diffusion electrode having a catalyst supported on the surface of a gas diffusion electrode substrate and a solid polymer membrane are sandwiched between a pair of bipolar plates are stacked.
  • the conductive porous body of the present invention as described above, for example, after spinning a spinning solution containing the first conductive material and the carbonizable organic material to form a precursor fiber porous body in which precursor fibers are aggregated,
  • the second conductive material is carbonized by carbonizing the carbonizable organic material, and the second conductive material has a specific surface area of 100 m 2 / g or more and a thickness maintenance ratio of 60% or more after pressing at 2 MPa. It can be set as the electroconductive porous body which the fibrous material connected with the electroconductive material gathered.
  • a first conductive material and a carbonizable organic material are prepared.
  • the first conductive material the above-mentioned ones can be used.
  • the fibers themselves are excellent in conductivity, and are easily oriented in the length direction of the fibrous material in the fibrous material, and are excellent in conductivity. It is preferable to use carbon nanotubes because the product can be produced.
  • the above-mentioned carbonizable organic materials can also be used, and if a thermosetting resin is used, the rigidity of the fibrous material can be increased, and it is easy to produce a conductive porous body that is not easily crushed by pressure.
  • Phenol resins and epoxy resins are suitable because they are carbonized and become a second conductive material having excellent conductivity.
  • a spinning solution can be prepared only from the first conductive material and the carbonizable organic material.
  • the spinning solution is inferior in spinnability and difficult to fiberize, the fibrous material itself is made porous, or conductive.
  • carbonizable organic materials having different carbonization processes or carbonization rates are used, the fibrous material itself becomes porous, and the specific surface area of the conductive porous body tends to increase. It is preferable to prepare.
  • the spinnability is improved, and at the stage of carbonization, a relatively large amount of the carbonizable organic material having a low carbonization rate disappears, thereby causing a fibrous material.
  • the porous body itself becomes porous, and the specific surface area of the conductive porous body tends to be high.
  • the spinnability is improved and the chemical change mechanism (optimum temperature, time, decomposition, etc.) in the carbonization process is different, such as shrinkage rate and fluidity. It is considered that when the difference occurs, the fibrous material itself becomes porous and the specific surface area of the conductive porous body tends to increase. Therefore, it is preferable to prepare carbonizable organic materials having different carbonization processes or carbonization rates.
  • thermosetting resin having a high carbonization rate particularly, a phenol resin or an epoxy resin
  • thermoplastic resin having a low carbonization rate for example, a fluororesin
  • the spinnability is improved, and at the stage of carbonization, most of the thermoplastic resin having a low carbonization rate disappears, so that the fibrous material itself becomes porous and the specific surface area of the conductive porous body tends to increase. It is preferable to prepare such carbonizable organic materials having different carbonization rates.
  • fluororesin examples include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), perfluoroalkoxy fluororesin (PFA), and tetrafluoride.
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PVF polyvinyl fluoride
  • PFA perfluoroalkoxy fluororesin
  • Ethylene / hexafluoropropylene copolymer FEP
  • Ethylene / hexafluoropropylene copolymer Ethylene / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene examples thereof include a copolymer (THV) and a copolymer of various monomers constituting the resin.
  • thermosetting resin particularly, phenol resin or epoxy resin
  • thermoplastic resin for example, polyacrylonitrile resin
  • thermosetting resin particularly, a phenol resin or an epoxy resin
  • thermoplastic resin having a melting point as the carbonizable organic material
  • the spinnability is improved and the carbonization property is improved.
  • the thermoplastic resin flows, the fibrous material itself becomes porous, and the specific surface area of the conductive porous body is likely to increase. Therefore, such carbonizable organic materials having different carbonization processes are prepared. It is also preferable.
  • silicone such as polydimethylsiloxane, metal alkoxides (silicon, aluminum, titanium, zirconium, boron, tin
  • a polymer can be prepared by mixing a polymer obtained by polymerizing a known inorganic compound such as an inorganic polymer obtained by polymerizing methoxide such as zinc, ethoxide, propoxide, butoxide). May be prepared.
  • a spinning solution containing such a first conductive material, a carbonizable organic material, preferably a carbonizable organic material having a different carbonization rate or carbonization process is prepared.
  • the solvent constituting the spinning solution may be any solvent in which the first conductive material is uniformly dispersed and the carbonizable organic material (preferably carbonizable organic materials having different carbonization rates or carbonization processes) can be dissolved.
  • Examples include 2-pyrrolidone, acetonitrile, formic acid, toluene, benzene, cyclohexane, cyclohexanone, carbon tetrachloride, methylene chloride, chloroform, trichloroethane, ethylene carbonate, diethyl carbonate, propylene carbonate, water, and the like. Or in combination can be used.
  • a poor solvent can be added and used as long as there is no problem in spinnability.
  • the solid content concentration in the spinning solution is not particularly limited, but is preferably 1 to 50 mass%, and more preferably 5 to 30 mass%. This is because when the content is less than 1 mass%, the productivity is extremely lowered, and when the content exceeds 50 mass%, the spinning tends to become unstable.
  • the solid content of the first conductive material in the spinning solution and the solid content of the carbonizable organic material are the first conductive material and the second conductive material in the fibrous material.
  • the mass ratio of the solid content of the first conductive material and the solid content of the carbonizable organic material in the spinning solution is 10 to 90:90 to 10 as a result. It is preferably 20 to 90:80 to 10, more preferably 30 to 90:70 to 10, and still more preferably 40 to 90:60 to 10.
  • the fibrous material itself can be made porous as described above, and the specific surface area of the conductive porous body can be increased.
  • the first conductive material and the solid content of the organic material having a low carbonization rate or the organic material having a relatively large shrinkage rate and fluidity are relatively the same as the solid content of the organic material having a high carbonization rate or the shrinkage rate and fluidity.
  • the mass ratio of the solid content of the organic material is preferably 10 to 90:85 to 5:85 to 5, more preferably 20 to 80:60 to 10:60 to 10.
  • this spinning solution is spun to form a precursor fiber porous body in which precursor fibers are aggregated.
  • the spinning method is not particularly limited.
  • an electrostatic spinning method as disclosed in Japanese Patent Application Laid-Open No. 2009-287138, the gas is made parallel to the spinning solution discharged from the liquid discharging unit.
  • Examples thereof include a method in which a fiber is discharged by applying a shearing force in a straight line to the spinning solution.
  • a precursor fiber having a small fiber diameter can be spun and a thin precursor fiber porous body can be formed. Therefore, a conductive porous body excellent in conductivity can be manufactured.
  • the electrospinning method is suitable because a precursor fiber having a continuous fiber length can be spun and, as a result, a conductive porous body made of a fibrous material having a continuous fiber length can be obtained.
  • a precursor fiber in which the precursor fibers are aggregated by directly collecting the spun precursor fibers with a collector A porous body can be formed.
  • a three-dimensional thing is used as a collection body, it can be set as the precursor fiber porous body which has a three-dimensional structure.
  • the carbonizable organic material includes a thermosetting resin, but when the carbonizable organic material includes a thermosetting resin, after forming the precursor fiber porous body, It is preferable to carry out the heat treatment at a temperature at which the thermosetting resin is thermoset so that the thermosetting resin is cured.
  • the conditions such as the heat treatment temperature and time are not particularly limited because they vary depending on the thermosetting resin.
  • the solvent of the spinning solution a solvent that does not easily evaporate at the time of spinning, and after forming the precursor fiber porous body, removing the solvent by solvent substitution tends to cause the precursor fibers to be in a plasticized bond, resulting in It is easy to produce a highly conductive porous body, the precursor fiber porous body is dense, the contact resistance is likely to be low, and furthermore, a microporous is formed to produce a conductive porous body with a large specific surface area. It is suitable because it is easy to do.
  • the solvent that hardly volatilizes during spinning include N-methyl-2-pyrrolidone, 2-pyrrolidone, dimethylacetamide, propylene carbonate, and dimethyl sulfoxide.
  • the precursor fibers in order to impart or improve the bonding strength between the precursor fibers, it is conceivable to bond the precursor fibers with a binder.
  • the binder fills the gap between the precursor fibers, or the binder is a precursor.
  • the periphery of the contact portion between the fibers may be covered, and the voids of the conductive porous body may not be fully utilized.
  • a conductive porous body is used as a base material for a gas diffusion electrode, the permeability of gas or liquid water tends to decrease.
  • it is preferable to bond them by plasticizing the carbonizable organic material with a solvent, fusing the carbonizable organic material with heat, or adhering with pressure.
  • This “precursor fiber” means a fiber in a state in which the carbonizable organic material is not carbonized.
  • the second conductive material is formed, and the second conductive material is interposed between the first conductive materials. Since it is a fibrous material connected by a conductive material, it is expressed as a precursor fiber in the sense of a fiber that is the basis of the fibrous material.
  • a fiber web is formed and bonded by a known dry method or wet method, and the precursor fiber porous body It is also possible to make a precursor fiber porous body by using a continuous precursor fiber and weaving or knitting by a conventional method.
  • the fibrous material is preferably continuous, and the precursor fiber porous body preferably has a non-woven structure. Therefore, the precursor fiber porous body is obtained by directly collecting the continuous precursor fibers. Preferably formed.
  • the specific surface area is 100 m 2 / g or more as the second conductive material
  • the thickness retention rate after pressurizing 2 MPa is A conductive porous body in which fibrous materials in which the first conductive materials are connected by the second conductive material is aggregated by 60% or more is manufactured.
  • the maximum temperature is 800 in an inert gas atmosphere such as nitrogen, helium, and argon. It can be carried out by heating at ⁇ 3000 ° C.
  • the rate of temperature rise is preferably 5 to 100 ° C./min, more preferably 5 to 50 ° C./min.
  • the holding time at the maximum temperature is preferably within 3 hours, more preferably 0.5 to 2 hours.
  • the conductive porous body of the present invention has a large specific surface area of 100 m 2 / g or more, but such a conductive porous body contains organic materials having different carbonization rates or carbonization processes in the spinning solution.
  • After spinning the precursor fiber by extracting or disappearing the organic material having a low carbonization rate from the precursor fiber, using a solvent that does not easily volatilize during spinning as the solvent of the spinning solution, after forming the precursor fiber porous body, By removing the solvent by solvent substitution and / or when carbonizing, it is easy to produce by utilizing the shrinkage or fluidity of organic materials having different carbonization processes in the precursor fiber.
  • the conductive porous body of the present invention has a thickness retention rate of 60% or more after pressurizing at 2 MPa, and such a conductive porous body is thermosetting as a carbonizable organic material.
  • thermosetting resin By using a resin and carbonizing after curing the thermosetting resin, shrinkage during carbonization is suppressed, and carbonization is easy to manufacture while maintaining the form of the precursor fiber porous body.
  • the conductive porous body of the present invention preferably has a large porosity of 70% or more, and such a conductive porous body having a high porosity is a fibrous material having a fiber diameter of 0.1 ⁇ m to 50 ⁇ m.
  • a conductive porous body in which the porosity is easily satisfied and the precursor fiber which is the element of the fibrous material having the fiber diameter is disclosed in the electrospinning method or Japanese Patent Application Laid-Open No. 2009-287138. It is easy to manufacture by such a method or a spunbond method.
  • the binder fills the gap between the precursor fibers or covers the periphery of the contact portion between the precursor fibers, and the porosity is lowered, so the binder is used. Without joining the precursor fibers with the carbonizable organic material constituting the precursor fibers, the porosity is easily satisfied.
  • the conductive porous body of the present invention can impart or improve physical properties suitable for each application by various post-processing.
  • the conductive porous body of the present invention when used as a base material for a gas diffusion electrode of a polymer electrolyte fuel cell, in order to increase the water repellency of the conductive porous body and to enhance drainage and gas diffusibility, The conductive porous body is immersed in a fluorine-based dispersion such as a tetrafluoroethylene dispersion to give a fluororesin, and then sintered at a temperature of 300 to 350 ° C.
  • a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer (THV, low carbonizable organic material) is added to N-methyl-2-pyrrolidone (NMP) and dissolved using a rocking mill to a concentration of 10 mass%.
  • carbon nanotubes (CNT) synthesized by a CVD method as a first conductive material [trade name: VGCF-H (manufactured by Showa Denko KK), fiber diameter: 150 nm, aspect ratio: 40, multi-walled carbon nanotubes] was mixed with the above solution and stirred, and further diluted with NMP to disperse the carbon nanotubes to obtain a dispersion solution.
  • a highly carbonizable organic material having a cresol novolac epoxy resin as a main component and a novolac type phenol resin as a curing agent is added to the dispersion solution, and the solid content mass ratio of CNT: THV: EP is 40:30: 30, a first spinning solution having a solid content concentration of 16 mass% was prepared.
  • the second spinning solution was prepared in the same manner as the first spinning solution except that carbon black (CB, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Black granular product) was used instead of carbon nanotube (CNT).
  • CB carbon black
  • CNT carbon nanotube
  • carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Black granular product) is mixed with the above solution, stirred, and further diluted by adding DMF to disperse the carbon black.
  • CNT carbon nanotubes synthesized by CVD method (trade name: VGCFH (manufactured by Showa Denko KK), fiber diameter: 150 nm) are mixed with the above solution, stirred, and further diluted with DMF.
  • the CNT was dispersed to prepare a fourth spinning solution having a solid content mass ratio of CNT: PAN of 1:99 and a solid content concentration of 15 mass%.
  • a fifth spinning solution was prepared in the same manner as the fourth spinning solution except that the solid content mass ratio of CNT: PAN was set to 5:95.
  • Example 1 The first spinning solution was spun by the electrostatic spinning method under the following conditions, and the continuous precursor fibers were directly accumulated on the stainless drum as the counter electrode to form a nonwoven fabric precursor fiber porous sheet.
  • Electrode Metal nozzle (inner diameter: 0.33 mm) and stainless steel drum Discharge amount: 2 g / hour Distance between nozzle tip and stainless steel drum: 10 cm Applied voltage: 10 kV Temperature / humidity: 25 ° C / 35% RH
  • the precursor fiber porous sheet is immersed in a water bath to perform solvent replacement. Subsequently, after removing moisture with a hot air dryer set at a temperature of 60 ° C., the hot fiber dryer set at a temperature of 150 ° C. for 1 hour.
  • the epoxy resin which is a highly carbonizable organic material was cured by heat treatment to obtain a precursor fiber cured porous sheet.
  • the precursor fiber-cured porous sheet was subjected to a carbonization firing treatment (temperature increase rate: 10 ° C./min) for 1 hour at a temperature of 800 ° C. in an argon gas atmosphere using a tubular furnace. While carbonizing, most of THV was lost, and a single-layer conductive porous sheet having a nonwoven fabric structure (weight per unit: 60 g / m 2 , thickness: 230 ⁇ m, porosity: 86%) was produced.
  • a carbonization firing treatment temperature increase rate: 10 ° C./min
  • the CNTs are dispersed throughout the interior including the inside, and these CNTs are partially joined by EP carbides and THV carbides.
  • the fibrous materials were also bonded with carbides of EP and THV, and the fibrous materials were in a state where the ends of the CNTs protruded from the surface, and the CNTs were oriented in the length direction of the fibrous materials.
  • the physical properties of the conductive porous sheet were as shown in Table 1.
  • Example 1 The precursor fiber cured porous sheet having a non-carbonized structure and having a non-carbonized structure in Example 1 was used as a conductive porous sheet (weight per unit: 87 g / m 2 , thickness: 240 ⁇ m, porosity: 77%).
  • the fibrous material was in a state where the end of the CNT protruded from the surface, and the CNT was oriented in the length direction of the fibrous material.
  • the physical properties of the conductive porous sheet were as shown in Table 1.
  • Example 2 A single-layered conductive porous sheet having a nonwoven fabric structure (weight per unit: 67 g / m 2 , thickness: 193 ⁇ m, porosity: 81%) was produced in the same manner as in Example 1 except that the second spinning solution was used. did.
  • the physical properties of the conductive porous sheet were as shown in Table 1.
  • Example 2 The non-carbonized single layer precursor fiber cured porous sheet having a non-carbonized structure of Example 2 was used as a conductive porous sheet (weight: 110 g / m 2 , thickness: 220 ⁇ m, porosity: 70%).
  • the physical properties of the conductive porous sheet were as shown in Table 1.
  • Carbon paper [TGP-H-060, manufactured by Toray Industries, Ltd., basis weight: 84 g / m 2 , thickness: 190 ⁇ m, porosity: 75%] was used as the conductive porous sheet. As shown in FIGS. 9 and 10, in this conductive porous sheet, carbon fibers were bonded with a binder resin. The physical properties of the conductive porous sheet were as shown in Table 1.
  • Example 4 A single-layered conductive porous sheet having a nonwoven fabric structure (weight per unit: 33 g / m 2 , thickness: 190 ⁇ m, porosity: 90%) was produced in the same manner as in Example 1 except that the third spinning solution was used. did.
  • CB is dispersed throughout the interior including the inside, and a porous continuous fibrous material in which these CBs are bonded (average fiber diameter: 0.00). Only 8 ⁇ m and specific surface area: 25 g / m 2 ) were assembled at random, and the fibrous materials were bonded together by CBs.
  • the physical properties of the conductive porous sheet were as shown in Table 1.
  • Example 5 After obtaining the precursor fiber cured porous sheet in the same manner as in Example 1 except that the fourth spinning solution was used, the precursor fiber cured porous sheet was carbonized and fragmented due to shrinkage, and the sheet form could not be maintained. (FIGS. 13 and 14).
  • the conductive porous body of the present invention has a large surface area, is not easily damaged by pressure, and has excellent conductivity.
  • carbon nanotubes (CNT) synthesized by a CVD method as a first conductive material [trade name: VGCF-H (manufactured by Showa Denko KK), fiber diameter: 150 nm, aspect ratio: 40, multi-walled carbon nanotubes] was mixed with the solution and stirred, and further diluted with DMF to disperse the carbon nanotubes to obtain a dispersion solution.
  • a highly carbonizable organic material having a cresol novolac epoxy resin as a main component and a novolac type phenol resin as a curing agent is added to the dispersion solution, and the solid content mass ratio of CNT: THV: EP is 40:30: 30, a sixth spinning solution having a solid content of 20 mass% was prepared.
  • a seventh spinning solution was prepared in the same manner as the sixth spinning solution except that the solid content mass ratio of CNT: THV: EP was 25:45:30 and the solid content concentration was 18 mass%.
  • a ninth spinning solution was prepared in the same manner as the sixth spinning solution, except that the solid content mass ratio of CNT: THV: EP was 10:60:30.
  • Example 3 The sixth spinning solution was spun by the electrospinning method under the following conditions, and the continuous precursor fibers were directly accumulated on a stainless drum as a counter electrode to form a nonwoven fabric precursor fiber porous sheet.
  • Electrode Metal nozzle (inner diameter: 0.33 mm) and stainless steel drum Discharge amount: 4 g / hour Distance between nozzle tip and stainless steel drum: 14 cm Applied voltage: 10 kV Temperature / humidity: 25 ° C / 30% RH
  • the precursor fiber-cured porous sheet was subjected to a carbonization firing treatment (temperature increase rate: 10 ° C./min) for 1 hour at a temperature of 800 ° C. in an argon gas atmosphere using a tubular furnace. While carbonizing, most of the THV disappeared, and a single-layered conductive porous sheet having a nonwoven fabric structure (weight per unit: 114 g / m 2 , thickness: 220 ⁇ m, porosity: 73%) was produced.
  • a carbonization firing treatment temperature increase rate: 10 ° C./min
  • the CNTs are dispersed throughout the interior including the inside, and the CNTs are partially connected by EP carbides and THV carbides.
  • the fibrous materials were also bonded with carbides of EP and THV, and the fibrous materials were in a state where the ends of the CNTs protruded from the surface, and the CNTs were oriented in the length direction of the fibrous materials.
  • the physical properties of the conductive porous sheet are as shown in Table 2.
  • Example 4 Except that the temperature / humidity was changed to 25 ° C./40% RH in the same manner as in Example 3, a single-layer conductive porous sheet having a nonwoven fabric structure (weight per unit: 80 g / m 2 , thickness: 220 ⁇ m, porosity) : 81%).
  • the fibrous materials were also bonded with carbides of EP and THV, and the fibrous materials were in a state where the ends of the CNTs protruded from the surface, and the CNTs were oriented in the length direction of the fibrous materials.
  • the physical properties of the conductive porous sheet are as shown in Table 2.
  • Example 5 Except for changing the temperature / humidity to 25 ° C./50% RH, in the same manner as in Example 3, a single-layer conductive porous sheet having a nonwoven fabric structure (weight per unit: 55 g / m 2 , thickness: 220 ⁇ m, porosity) : 87%).
  • a single-layer conductive porous sheet having a nonwoven fabric structure (weight per unit: 55 g / m 2 , thickness: 220 ⁇ m, porosity) : 87%).
  • CNTs are dispersed throughout the interior including the inside, and these CNTs are partially joined by EP carbides and THV carbides.
  • Example 6 The seventh spinning solution was spun by the electrospinning method under the following conditions, and the continuous precursor fibers were directly accumulated on a stainless drum as a counter electrode to form a nonwoven fabric precursor fiber porous sheet.
  • Electrode Metal nozzle (inner diameter: 0.33 mm) and stainless steel drum Discharge amount: 4 g / hour Distance between nozzle tip and stainless steel drum: 14 cm Applied voltage: 12 kV Temperature / Humidity: 25 ° C / 25% RH
  • the precursor fiber-cured porous sheet was subjected to a carbonization firing treatment (temperature increase rate: 10 ° C./min) for 1 hour at a temperature of 800 ° C. in an argon gas atmosphere using a tubular furnace. While carbonizing, most of the THV disappeared to produce a single-layer conductive porous sheet having a nonwoven fabric structure (weight: 50 g / m 2 , thickness: 200 ⁇ m, porosity: 87%).
  • the CNTs are dispersed throughout the entire interior including the inside, and the CNTs are partially connected by EP carbides and THV carbides to form a porous structure.
  • the fibrous materials were also bonded with carbides of EP and THV, and the fibrous materials were in a state where the ends of the CNTs protruded from the surface, and the CNTs were oriented in the length direction of the fibrous materials.
  • the physical properties of the conductive porous sheet are as shown in Table 2.
  • Example 7 Except that the temperature / humidity was changed to 25 ° C./50% RH in the same manner as in Example 6, a single-layer conductive porous sheet having a nonwoven fabric structure (weight per unit: 40 g / m 2 , thickness: 200 ⁇ m, porosity) : 89%).
  • the CNTs are dispersed throughout the interior including the inside, and these CNTs are partially joined by EP carbides and THV carbides to form a porous structure.
  • Example 8 The eighth spinning solution was spun by the electrospinning method under the following conditions, and the continuous precursor fibers were directly accumulated on a stainless drum as a counter electrode to form a nonwoven fabric precursor fiber porous sheet.
  • Electrode Metal nozzle (inner diameter: 0.33 mm) and stainless steel drum Discharge amount: 4 g / hour Distance between nozzle tip and stainless steel drum: 14 cm Applied voltage: 9 kV Temperature / humidity: 25 ° C / 35% RH
  • the precursor fiber-cured porous sheet was subjected to a carbonization firing treatment (temperature increase rate: 10 ° C./min) for 1 hour at a temperature of 800 ° C. in an argon gas atmosphere using a tubular furnace. While carbonizing, most of the THV was lost, and a single-layered conductive porous sheet having a nonwoven fabric structure (basis weight: 100 g / m 2 , thickness: 210 ⁇ m, porosity: 76%) was produced.
  • the CNTs are dispersed throughout the interior including the inside, and these CNTs are partially joined by EP carbides and THV carbides to form a porous structure.
  • the fibrous materials were also bonded with carbides of EP and THV, and the fibrous materials were in a state where the ends of the CNTs protruded from the surface, and the CNTs were oriented in the length direction of the fibrous materials.
  • the physical properties of the conductive porous sheet are as shown in Table 2.
  • Electrode Metal nozzle (inner diameter: 0.33 mm) and stainless steel drum Discharge amount: 4 g / hour Distance between nozzle tip and stainless steel drum: 14 cm Applied voltage: 10 kV Temperature / humidity: 25 ° C / 35% RH
  • the epoxy resin which is a highly carbonizable organic material, was cured by heat treatment for 1 hour with a hot air dryer set at a temperature of 150 ° C. to obtain a precursor fiber cured porous sheet (FIG. 29).
  • the precursor fiber-cured porous sheet was subjected to carbonization baking treatment (temperature increase rate: 10 ° C./min) for 1 hour at a temperature of 800 ° C. in an argon gas atmosphere using a tubular furnace.
  • the sheet form could not be maintained (FIG. 30).
  • the conductive porous body of the present invention has a large surface area, is not easily damaged by pressure, and has excellent conductivity, it can be used as a gas diffusion electrode substrate for fuel cells, as an electrode of an electric double layer capacitor, or It is useful as an electrode of a lithium ion secondary battery.
  • this invention was demonstrated along the specific aspect, the deformation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Inorganic Fibers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 本発明の課題は、比表面積が広く、しかも圧力によって破損しにくい、各種用途に適用できる導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法を提供することにある。 本発明の導電性多孔体は、第1導電性材料と第1導電性材料間を繋ぐ第2導電性材料とを有する繊維状物が集合した導電性多孔体であり、前記導電性多孔体は比表面積が100m/g以上、かつ2MPa加圧後における厚さの維持率が60%以上である。このような導電性多孔体は、第1導電性材料と炭化可能有機材料とを含む紡糸液を紡糸して、前駆繊維が集合した前駆繊維多孔体を形成した後、前記炭化可能有機材料を炭化して第2導電性材料として製造することができる。

Description

導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法
 この発明は、導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法に関する。
 従来から導電性多孔体はその導電性と多孔性を利用して、燃料電池用のガス拡散電極用基材として、また、電気二重層キャパシタの電極として、或いは、リチウムイオン二次電池の電極としての使用が検討されている。
 例えば、国際公開第2011/089754号(特許文献1)には、比表面積が1~50m/gである炭素繊維製不織布が開示されているが、比表面積が小さいため、各種用途において、十分な性能を発揮できるものではなかった。例えば、電気二重層キャパシタの電極として使用した場合、静電容量を大きくすることができないものであった。
 また、特表2010-530929号公報(特許文献2)には、炭素ナノチューブ(CNT)をアクリロニトリル含有ポリマーと接触させたポリマー-CNTドープを押出して、ポリマー-CNT繊維前駆体を形成し、このポリマー-CNT繊維前駆体を延伸、安定化及び炭化する工程を有する、炭素繊維を作製する方法を開示している。しかしながら、このような方法で作製した炭素繊維は圧力に対して弱いため、各種用途に適用するのが困難であった。例えば、このような炭素繊維からなる不織布を燃料電池用のガス拡散電極用基材として使用する場合、一般的にホットプレスによって、膜-電極接合体を作製するが、ホットプレスの圧力によって破損してしまうため、実際に適用することが困難であった。
国際公開第2011/089754号 特表2010-530929号公報
 本発明はこのような状況下でなされたものであり、比表面積が広く、しかも圧力によって破損しにくい、各種用途に適用できる導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法を提供することを目的とする。
 本発明は、
[1]第1導電性材料と、第1導電性材料間を繋ぐ第2導電性材料とを有する繊維状物が集合した導電性多孔体であり、前記導電性多孔体は比表面積が100m/g以上、かつ2MPa加圧後における厚さの維持率が60%以上であることを特徴とする、導電性多孔体、
[2]第1導電性材料が、フラーレン、カーボンナノチューブ、カーボンナノホーン、グラファイト、気相成長カーボンファイバー、カーボンブラック、金属、及び金属酸化物からなる群の中から選ばれる1種類以上からなることを特徴とする、[1]の導電性多孔体、
[3]第2導電性材料が、有機材料が炭化したものであることを特徴とする、[1]又は[2]の導電性多孔体、
[4]空隙率が70%以上であることを特徴とする、[1]~[3]のいずれかの導電性多孔体、
[5]電極用基材として用いる、[1]~[4]のいずれかの導電性多孔体、
[6][1]~[5]のいずれかの導電性多孔体をガス拡散電極用基材として備えていることを特徴とする、固体高分子形燃料電池、
[7]第1導電性材料と炭化可能有機材料とを含む紡糸液を紡糸して、前駆繊維が集合した前駆繊維多孔体を形成した後、前記炭化可能有機材料を炭化して第2導電性材料として、比表面積が100m/g以上、かつ2MPa加圧後における厚さの維持率が60%以上の、第1導電性材料間を第2導電性材料で繋いだ繊維状物が集合した導電性多孔体とすることを特徴とする、導電性多孔体の製造方法
に関する。
 前記[1]の導電性多孔体は、比表面積が100m/g以上と表面積が広いため、各種用途において、十分な性能を発揮できる。また、2MPa加圧後における厚さの維持率が60%以上と、圧力によって破損することなく、厚さを維持できるものであるため、導電性多孔体の多孔性を十分に利用することができる。更に、第1導電性材料と、第1導電性材料間を繋ぐ第2導電性材料とを有する繊維状物が集合した導電性多孔体であるため、導電性にも優れている。
 前記[2]の導電性多孔体は、フラーレン、カーボンナノチューブ、カーボンナノホーン、グラファイト、気相成長カーボンファイバー、カーボンブラック、金属、金属酸化物など、導電性に優れる第1導電性材料からなるため、導電性に優れる導電性多孔体である。
 前記[3]の導電性多孔体は、有機材料が炭化した第2導電性材料であるため、第1導電性材料との密着性に優れ、導電性に優れている。
 前記[4]の導電性多孔体は、空隙率が70%以上と空隙が多いため、導電性多孔体の空隙を有効に活用することができる。
 前記[5]の導電性多孔体は、電極用基材として用いているため、優れた電極性能を発揮できる。例えば、電気二重層キャパシタの電極として用いた場合、静電容量の大きい電気二重層キャパシタとすることができる。
 前記[6]の固体高分子形燃料電池は、前記導電性多孔体をガス拡散電極用基材として備えており、厚さを維持でき、比表面積が広いため、ガスの供給性及び排水性に優れている。
 前記[7]の導電性多孔体の製造方法は、表面積が広く、しかも圧力によって破損することのない、導電性に優れる導電性多孔体を製造することができる。
実施例1の導電性多孔シートの電子顕微鏡写真(500倍)である。 実施例1の導電性多孔シートの電子顕微鏡写真(2000倍)である。 比較例1の導電性多孔シートの電子顕微鏡写真(500倍)である。 比較例1の導電性多孔シートの電子顕微鏡写真(2000倍)である。 実施例2の導電性多孔シートの電子顕微鏡写真(500倍)である。 実施例2の導電性多孔シートの電子顕微鏡写真(2000倍)である。 比較例2の導電性多孔シートの電子顕微鏡写真(500倍)である。 比較例2の導電性多孔シートの電子顕微鏡写真(2000倍)である。 比較例3の導電性多孔シートの電子顕微鏡写真(300倍)である。 比較例3の導電性多孔シートの電子顕微鏡写真(2000倍)である。 比較例4の導電性多孔シートの電子顕微鏡写真(500倍)である。 比較例4の導電性多孔シートの電子顕微鏡写真(2000倍)である。 比較例5の前駆繊維硬化多孔シートの写真である。 比較例5の前駆繊維硬化多孔シート炭化後の写真である。 比較例6の前駆繊維硬化多孔シートの写真である。 比較例6の前駆繊維硬化多孔シート炭化後の写真である。 実施例3の導電性多孔シートの電子顕微鏡写真(500倍)である。 実施例3の導電性多孔シートの電子顕微鏡写真(2000倍)である。 実施例4の導電性多孔シートの電子顕微鏡写真(500倍)である。 実施例4の導電性多孔シートの電子顕微鏡写真(2000倍)である。 実施例5の導電性多孔シートの電子顕微鏡写真(500倍)である。 実施例5の導電性多孔シートの電子顕微鏡写真(2000倍)である。 実施例6の導電性多孔シートの電子顕微鏡写真(500倍)である。 実施例6の導電性多孔シートの電子顕微鏡写真(5000倍)である。 実施例7の導電性多孔シートの電子顕微鏡写真(500倍)である。 実施例7の導電性多孔シートの電子顕微鏡写真(2000倍)である。 実施例8の導電性多孔シートの電子顕微鏡写真(500倍)である。 実施例8の導電性多孔シートの電子顕微鏡写真(2000倍)である。 比較例7の前駆繊維硬化多孔シートの写真である。 比較例7の前駆繊維硬化多孔シート炭化後の写真である。
 本発明の導電性多孔体は、第1導電性材料と第1導電性材料間を繋ぐ第2導電性材料とを有する繊維状物が集合したものであり、第1導電性材料同士が第2導電性材料によって繋がっているため、導電性に優れている。
 なお、本発明における「第1導電性材料」はある程度、形状の揃った導電性材料を意味し、「第2導電性材料」は不定形の導電性材料を意味する。一般的には、第1導電性材料の方が第2導電性材料よりも導電性に優れている。
 本発明で用いる第1導電性材料は導電性に優れている材料からなるのが好ましく、例えば、フラーレン、カーボンナノチューブ、カーボンナノホーン、グラファイト、気相成長カーボンファイバー、カーボンブラック、金属、及び金属酸化物からなる群の中から選ばれる1種類、又は2種類以上からなるのが好ましい。これらの中でも、カーボンナノチューブはそれ自体が導電性に優れ、しかも繊維状物中において、繊維状物の長さ方向に配向しやすく、導電性に優れる繊維状物であることができるため、好適である。更に、第2導電性材料が、有機材料が炭化したものである場合のように、炭化した場合であっても、炭化する際に、炭化する前の前駆繊維の収縮を抑制することができる点からも、カーボンナノチューブは好適である。なお、好適であるカーボンナノチューブは、単層カーボンナノチューブであっても、多層カーボンナノチューブであっても、コイル状となったものであっても良い。
 この第1導電性材料の大きさは特に限定するものではないが、第1導電性材料が粒子形状の場合、繊維状物を形成しやすいように、第1導電性材料の平均粒径は5nm~50μmであるのが好ましく、50nm~25μmであるのがより好ましく、100nm~10μmであるのが更に好ましい。
 本発明において「平均粒径」とは、基本的に、動的光散乱法による粒度分布計から求めた粒子(第1導電性材料)の数平均粒子径を表すが、例えば、カーボンブラックなどのアグリゲートもしくはストラクチャーと呼ばれる状態を形成した粒子(第1導電性材料)などの、上述の動的光散乱法による測定が難しい場合には、第1導電性材料の電子顕微鏡写真を撮影し、電子顕微鏡写真に写っている50個の粒子(第1導電性材料)の直径の算術平均値を平均粒径とする。この場合、粒子(第1導電性材料)の形状が写真上、非円形である場合には、写真上における、粒子(第1導電性材料)の面積と同じ面積を有する円の直径を、粒子(第1導電性材料)の直径とみなす。
 また、第1導電性材料が繊維形状をしている場合、繊維径は10nm~5000nmであるのが好ましく、10nm~1000nmであるのがより好ましく、10nm~500nmであるのが更に好ましく、10nm~250nmであるのが更に好ましい。なお、繊維長は紡糸液中及び繊維状物中に分散しやすいように、アスペクト比が1000以下であるのが好ましく、500以下であるのがより好ましい。
 なお、金属としては、例えば、金、白金、チタン、ニッケル、アルミ、銀、亜鉛、鉄、銅、マンガン、コバルト、及びステンレスなどの合金類などを挙げることができ、金属酸化物としては、これら金属の酸化物を挙げることができる。これら金属又は金属酸化物は、粒子形状、繊維形状、又はナノワイヤー形状であることができる。
 本発明の導電性多孔体を構成する繊維状物は、上記のような第1導電性材料同士が第2導電性材料によって繋がった状態にあるため、導電性に優れている。特に、第1導電性材料同士が第2導電性材料によって結合した状態にあると、導電性に優れている。この第2導電性材料は第1導電性材料同士を繋ぐことができるものであれば良く、特に限定するものではないが、第1導電性材料との密着性に優れ、導電性に優れているように、有機材料が炭化したものであるのが好ましい。例えば、第1導電性材料を有機材料中に分散させた状態の繊維状物の有機材料を炭化させると、第1導電性材料同士が第2導電性材料によって密着して繋がった、導電性に優れる繊維状物とすることができる。
 このような有機材料としては、第1導電性材料との密着性に優れるものであれば良く、特に限定するものではないが、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、キシレン樹脂、ウレタン樹脂、シリコーン樹脂、熱硬化性ポリイミド樹脂、熱硬化性ポリイミド樹脂、熱硬化性ポリアミド樹脂などの熱硬化性樹脂;ポリスチレン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリ酢酸ビニル樹脂、塩化ビニル樹脂、フッ素樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリエーテル樹脂、ポリビニルアルコール、ポリビニルピロリドン、ピッチ、ポリアミノ酸樹脂、ポリベンゾイミダゾール樹脂などの熱可塑性樹脂;セルロース(多糖類)、タール;又はこれら樹脂のモノマーを成分とする共重合体(例えば、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体など)などその他の樹脂などの、炭化可能な有機材料を挙げることができる。なお、有機材料はこのような1種類のみであっても良いし、2種類以上の有機材料であっても良い。
 これらの中でも、有機材料として熱硬化性樹脂を含んでいると、炭化過程で繊維状物の収縮を抑制できるとともに、繊維状物の剛性を高めることができ、圧力によって潰れにくい導電性多孔体とすることができるため好適であり、特に、フェノール樹脂、エポキシ樹脂を炭化した第2導電性材料は導電性にも優れているため、好適である。なお、有機材料が熱硬化性樹脂のみであると、繊維状物の剛性が不十分になる傾向があるため、熱硬化性樹脂に加えて、熱硬化性樹脂以外の樹脂(例えば、熱可塑性樹脂)を含んでいるのが好ましい。
 本発明の繊維状物は前述のような第1導電性材料と第2導電性材料とを有するものであるが、第1導電性材料間に第2導電性材料が充填された状態で、つまり、第1導電性材料間に空隙のない状態にあっても良いが、比表面積が広く、繊維状物における空隙も利用できるように、第2導電性材料によって第1導電性同士が部分的に繋がっており、第1導電性材料間に空隙のある、繊維状物自体が多孔性の状態にあるのが好ましい。
 また、第1導電性材料は繊維状物において、どのように存在していても良いが、繊維状物の内部を含む全体に存在していると、導電性に優れているため好適である。なお、第1導電性材料が繊維状物の表面から、その端部が突出していると、隣接する繊維状物と接触しやすく、導電性に優れているため好適である。このように第1導電性材料が繊維状物全体に存在し、繊維状物の表面から端部が突出する繊維状物は、例えば、炭化可能な有機材料と、繊維状、チューブ状などの長尺状の第1導電性材料とを含む紡糸液を紡糸し、炭化可能な有機材料を炭化することによって製造できる。
 このような繊維状物における第1導電性材料と第2導電性材料との質量比は特に限定するものではないが、10~90:90~10であるのが好ましく、20~90:80~10であるのがより好ましく、30~90:70~10であるのが更に好ましく、40~90:60~10であるのが更に好ましく、40~80:60~20であるのが更に好ましく、40~70:60~30であるのが更に好ましく、50~70:50~30であるのが更に好ましい。第1導電性材料が10%を下回ると、導電性多孔体の導電性が不足しやすく、一方で、90%を上回ると、第1導電性材料間を繋ぐ第2導電性材料が少なく、導電性多孔体としての導電性に劣り、更に圧力によって潰れやすくなる傾向があるためである。
 このような繊維状物における平均繊維径は特に限定するものではないが、0.1μm~50μmであるのが好ましく、0.1μm~30μmであるのがより好ましく、0.1μm~20μmであるのが更に好ましく、0.3μm~15μmであるのが更に好ましく、0.5μm~10μmであるのが更に好ましく、0.5μm~5μmであるのが更に好ましい。平均繊維径が50μmを上回ると、導電性多孔体における繊維状物同士の接触点が少なく、導電性多孔体の機械的強度や導電性が不足する傾向があるためである。一方、0.1μmを下回ると、第1導電性材料が繊維状物の内部に含有されにくくなる傾向があるためである。
 この「平均繊維」は、40点における繊維径の算術平均値を意味し、「繊維径」は、繊維状物の平面の顕微鏡写真で観察される繊維状物の長さ方向に直交する幅であり、第1導電性材料の端部が繊維状物から突出している場合には、その突出部を除いた繊維状物の幅を意味する。
 また、繊維状物の比表面積は特に限定するものではないが、導電性多孔体の比表面積が100m/g以上の比表面積の大きいものでありやすいように、100m/gを超える比表面積を有するのが好ましい。
 本発明における比表面積はBET法で測定した値であり、例えば、自動比表面積/細孔分布測定装置(BELSORP mini;日本ベル株式会社)を用い、吸着ガスとして、窒素ガスを使用して測定できる。
 なお、繊維状物は導電性に優れているように、連続した繊維状物であるのが好ましい。このような連続した繊維状物は、例えば、第1導電性材料と第2導電性材料となる有機材料とを含む紡糸液を、静電紡糸法又はスパンボンド法により紡糸した後に、有機材料を炭化し、第2導電性材料とすることにより製造できる。
 なお、本発明における「繊維状物」とは、第1導電性材料間が第2導電性材料によって繋がっていることによって、線状に延びる物であり、例えば、500~2000倍程度の電子顕微鏡写真によって、確認することができる。
 本発明の導電性多孔体は前述のような繊維状物が集合したものであり、繊維状物間に空隙を有する多孔性のものである。導電性多孔体の形態は特に限定するものではないが、例えば、糸状、シート状の二次元的な形態であることも、円柱、角柱、三角柱などの柱状体;円錐、角錐などの錐体;円錐台、角錘台などの錘台体;球、半球などの球体などの三次元的な形態であることもできる。なお、シート状であると汎用性に優れているため、好適な形態である。
 なお、導電性多孔体は繊維状物が集合したものであるが、繊維状物同士は結合していても、結合していなくても良いが、結合している方が、導電性及び形態安定性に優れているため好適である。例えば、繊維状物を構成する第2導電性材料によって結合しているのが好ましい。
 また、繊維状物は織ったり、編んだりした規則正しく集合していても良いが、繊維状物間の空隙がより微細であるように、ランダムに集合した、いわゆる不織布状態にあるのが好ましく、不織布状態のみからなるのがより好ましい。なお、不織布状態であっても、繊維状物がある程度一定方向に配向していると、その配向方向における導電性が高い。
 本発明の導電性多孔体は前述のような繊維状物が集合したものであるが、比表面積が100m/g以上と表面積が広いため、各種用途において、十分な性能を発揮できる。例えば、本発明の導電性多孔体を電気二重層キャパシタの電極用基材として使用した場合には、静電容量の大きい電気二重層キャパシタとすることができる。この比表面積が大きければ大きい程、各種性能を発揮することができるため、比表面積は100m/g~3000m/gであるが好ましく、150m/g~2500m/gであるのがより好ましく、200m/g~2000m/gであるのが更に好ましく、200m/g~1000m/gであるのが更に好ましく、200m/g~800m/gであるのが更に好ましく、200m/g~600m/gであるのが更に好ましい。比表面積が3000m/gを超えると、繊維状物の密度が極端に低下し、導電性多孔体の強度および導電性が低下する傾向があるためである。
 また、本発明の導電性多孔体は2MPa加圧後における厚さの維持率が60%以上の、圧力によって破損することなく、厚さを維持できるものであるため、導電性多孔体の多孔性を十分に利用することができる。例えば、固体高分子形燃料電池の電極基材として使用すると、厚さを維持できるため、ガスの供給性及び排水性に優れている。この厚さの維持率が高ければ高い程、導電性多孔体の空隙を利用することができるため、厚さ維持率は60%~100%であるのが好ましく、70%~100%であるのがより好ましく、80%~100%であるのが更に好ましく、85%~100%であるのが更に好ましい。厚さ維持率が100%を超えると圧力によって導電性多孔体が破損し、厚さが増したと考えられ、結果として導電性多孔体の強度低下や接触抵抗増加などが起こる傾向があるためである。
 この厚さの維持率(Tr)は次の式から算出される値である。
 Tr=(Ta/Tb)×100
 ここで、Taはステンレス板間に導電性多孔体を挟み、積層方向に、圧力2MPaで30秒間加圧し、圧力を取り除いた時における厚さであり、Tbは導電性多孔体の2MPa加圧前における厚さであり、本発明における「厚さ」は、シックネスゲージ((株)ミツトヨ製:コードNo.547-401:測定力3.5N以下)を用いて測定した値をいう。
 更に、本発明の導電性多孔体は空隙を有効に活用できるように、空隙率が70%以上であるのが好ましい。例えば、固体高分子形燃料電池の電極基材として使用すると、排水性およびガス拡散性に優れ、発電性能の高い燃料電池を作製することができる。空隙率が高い方が、より空隙が多く、より有効に空隙を活用できるため、空隙率は70%~99%であるのが好ましく、80%~99%であるのがより好ましい。99%を超えると、導電性多孔体としての形態安定性が極端に低下する傾向があるためである。
 この空隙率P(単位:%)は、次の式から得られる値をいう。
 P=100-(Fr1+Fr2+・・+Frn)
 ここで、Frnは導電性多孔体を構成する成分nの充填率(単位:%)を示し、次の式から得られる値をいう。
 Frn=[M×Prn/(T×SGn)]×100
 ここで、Mは導電性多孔体の単位あたりの質量(単位:g/cm)、Tは導電性多孔体の厚さ(cm)、Prnは導電性多孔体における成分n(例えば、第1導電性材料、第2導電性材料)の存在質量比率、SGnは成分nの比重(単位:g/cm)をそれぞれ意味する。
 本発明の導電性多孔体は導電性に優れているように、電気抵抗は150mΩ・cm以下であるのが好ましく、100mΩ・cm以下であるのがより好ましく、50mΩ・cm以下であるのが更に好ましく、25mΩ・cm以下であるのが更に好ましく、15mΩ・cm以下であるのが更に好ましい。本発明の「電気抵抗」は、5cm角に切断した導電性多孔体(25cm)を両面側からカーボンプレートで挟み、カーボンプレートの積層方向に、2MPaで加圧下、1Aの電流(I)を印加した状態で、電圧(V)を計測する。続いて、抵抗(R=V/I)を算出し、更に、導電性多孔体の面積(25cm)を乗じることによって得られる値である。
 本発明の導電性多孔体は前述のような繊維状物が集合したものであるが、繊維状物は導電性多孔体の10mass%以上を占めているのが好ましく、50mass%以上であるのがより好ましく、70mass%以上であるのが更に好ましく、90mass%以上であるのが更に好ましく、繊維状物のみからなるのが最も好ましい。
 繊維状物以外の材料は特に限定するものではないが、例えば、炭素繊維、フラーレン、カーボンナノチューブ、カーボンナノホーン、グラファイト、気相成長カーボンファイバー、カーボンブラック、金属や金属酸化物の微粒子又は繊維状物の導電性材料;レーヨン、ポリノジック、キュプラなどの再生繊維、アセテート繊維などの半合成繊維、ナイロン繊維、ビニロン繊維、フッ素繊維、ポリ塩化ビニル繊維、ポリエステル繊維、アクリル繊維、ポリエチレン繊維、ポリオレフィン繊維又はポリウレタン繊維などの合成繊維、ガラス繊維、セラミック繊維などの無機繊維、綿、麻などの植物繊維、羊毛、絹などの動物繊維、活性炭粉体(例えば、水蒸気賦活炭、アルカリ処理活性炭、酸処理活性炭など)、無機粒子(例えば、二酸化マンガン、酸化鉄、酸化銅、酸化ニッケル、酸化コバルト、酸化亜鉛、チタン含有酸化物、ゼオライト、触媒担持セラミックス、シリカなど)、イオン交換樹脂粉体、植物の種子などの非導電性材料;を挙げることができる。
 本発明の導電性多孔体は前述のような繊維状物が集合したものであるが、1種類の繊維状物のみが集合した1層のものであっても良いし、異なる繊維状物が混ざって集合した1層のものであっても良いし、これらの層が2層以上に積層した構造を有するものであっても良い。なお、「異なる繊維状物」とは、第1導電性材料又は第2導電性材料の組成、形態、大きさ、密度、強度等が異なる、繊維状物の密度が異なる、繊維状物における第1導電性材料の存在状態が異なる、繊維状物における第1導電性材料と第2導電性材料との質量比が異なる、繊維状物の繊維径が異なる、繊維状物の長さが異なる、繊維状物の空隙率が異なる、繊維状物の集合状態が異なる、繊維状物の比表面積が異なるなど、これらの中の一点以上が異なることをいう。
 本発明の導電性多孔体の目付及び厚さは、特に限定するものではないが、導電性、取り扱い性及び生産性の点から0.5~500g/mであるのが好ましく、1~400g/mであるのがより好ましく、10~300g/mであるのが更に好ましく、10~200g/mであるのが更に好ましい。また、厚さも特に限定するものではないが、1~2000μmであるのが好ましく、3~1000μmであるのがより好ましく、5~500μmであるのが更に好ましく、10~300μmが更に好ましい。
 本発明における「目付」は、10cm角に切断した試料の質量を測定し、1mの大きさの質量に換算した値をいう。
 本発明の導電性多孔体は表面積が広く、厚さを維持できるものであるため、電極用基材として好適に用いることができる。例えば、リチウムイオン二次電池又は電気二重層キャパシタの電極として用いた場合、容量の大きい二次電池又はキャパシタとすることができる。また、固体高分子形燃料電池のガス拡散電極用基材として備えていると、空隙を維持することができるため、ガスの供給性及び排水性に優れ、優れた発電性能を発揮できる。
 このように固体高分子形燃料電池のガス拡散電極用基材として、本発明の導電性多孔体を備えている場合、本発明の導電性多孔体は多孔性であるため、繊維状物間の空隙に何も充填されていなければ、ガス拡散電極用基材の厚さ方向及び面方向への排水性に優れているとともに、供給したガスの拡散性に優れている。
 なお、ガス拡散電極用基材の繊維状物間の空隙に、フッ素樹脂及び/又はカーボンを含んでいると、前者のフッ素樹脂を含有していることによって、液水が押し出されやすいため、排水性を高めることができ、後者のカーボンを含有していることによって、導電性を高めることができる。
 このフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(THV)、及び前記樹脂を構成する各種モノマーの共重合体、などを挙げることができる。
 また、カーボンとしては、例えば、炭素繊維、フラーレン、カーボンナノチューブ、カーボンナノホーン、グラファイト、気相成長カーボンファイバー、カーボンブラックなどを挙げることができる。
 本発明の固体高分子形燃料電池は、前述の導電性多孔体をガス拡散電極用基材として備えていること以外は、従来の固体高分子形燃料電池と全く同様であることができる。つまり、上述のようなガス拡散電極用基材表面に触媒が担持されたガス拡散電極と固体高分子膜との接合体を1対のバイポーラプレートで挟んだセル単位を複数積層した構造からなる。
 前述のような本発明の導電性多孔体は、例えば、第1導電性材料と炭化可能有機材料とを含む紡糸液を紡糸して、前駆繊維が集合した前駆繊維多孔体を形成した後、前記炭化可能有機材料を炭化して第2導電性材料として、比表面積が100m/g以上、かつ2MPa加圧後における厚さの維持率が60%以上の、第1導電性材料間を第2導電性材料で繋いだ繊維状物が集合した導電性多孔体とすることができる。
 まず、第1導電性材料と炭化可能有機材料とを用意する。第1導電性材料としては、前述のものを使用することができ、それ自体が導電性に優れ、しかも繊維状物中において、繊維状物の長さ方向に配向しやすく、導電性に優れる繊維状物を製造できるため、カーボンナノチューブを使用するのが好ましい。
 一方、炭化可能有機材料も前述のものを使用することができ、熱硬化性樹脂を使用すると、繊維状物の剛性を高めることができ、圧力によって潰れにくい導電性多孔体を製造しやすく、特に、フェノール樹脂、エポキシ樹脂は炭化して導電性に優れる第2導電性材料となるため、好適である。
 なお、第1導電性材料と炭化可能有機材料のみから紡糸液を調製することができるが、紡糸性に劣り、繊維化するのが困難な場合や、繊維状物自体の多孔化や、導電性多孔体の比表面積を高めるために、2種類以上の炭化可能有機材料を使用して紡糸液を調製するのが好ましいため、2種類以上の炭化可能有機材料を用意するのが好ましい。特に、炭化過程又は炭化率の異なる炭化可能有機材料を用いると、繊維状物自体が多孔化し、導電性多孔体の比表面積が高くなりやすいため、炭化過程又は炭化率の異なる炭化可能有機材料を用意するのが好ましい。つまり、炭化率が低い炭化可能有機材料を含んでいることによって、紡糸性が改善され、しかも炭化する段階では、炭化率の低い炭化可能有機材料の比較的多くが消失することによって、繊維状物自体が多孔化し、導電性多孔体の比表面積が高くなりやすい。また、炭化過程が異なる炭化可能有機材料を含んでいることによって、紡糸性が改善されるとともに、炭化過程における化学変化機構(最適温度、時間、分解等)が異なり、収縮率や流動性等の差が生じることによって、繊維状物自体が多孔化し、導電性多孔体の比表面積が高くなりやすいと考えられる。そのため、炭化過程又は炭化率の異なる炭化可能有機材料を用意するのが好ましい。
 例えば、炭化可能有機材料として、炭化率の高い熱硬化性樹脂(特に、フェノール樹脂又はエポキシ樹脂)と、炭化率の低い熱可塑性樹脂(例えば、フッ素樹脂)とを使用して紡糸液を調製すると、紡糸性が改善されるとともに、炭化する段階で、炭化率の低い熱可塑性樹脂の大部分が消失することによって、繊維状物自体が多孔化し、導電性多孔体の比表面積が高くなりやすいため、このような炭化率の異なる炭化可能有機材料を用意するのが好ましい。
 このフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(THV)、及び前記樹脂を構成する各種モノマーの共重合体などを挙げることができる。
 また、炭化可能有機材料として、熱硬化性樹脂(特に、フェノール樹脂又はエポキシ樹脂)と、炭化過程の異なる熱可塑性樹脂(例えば、ポリアクリロニトリル樹脂)とを使用して紡糸液を調製すると、紡糸性が改善されるとともに、炭化の際に、収縮率等の差が生じることによって、繊維状物自体が多孔化し、導電性多孔体の比表面積が高くなりやすいと考えられるため、このような炭化過程の異なる炭化可能有機材料を用意するのも好ましい。
 更に、炭化可能有機材料として、熱硬化性樹脂(特に、フェノール樹脂又はエポキシ樹脂)と、融点を有する熱可塑性樹脂とを使用して紡糸液を調製すると、紡糸性が改善されるとともに、炭化の際に、熱可塑性樹脂が流動することによって、繊維状物自体が多孔化し、導電性多孔体の比表面積が高くなりやすいと考えられるため、このような炭化過程の異なる炭化可能有機材料を用意するのも好ましい。
 なお、前述のような炭化率の異なる有機材料又は炭化過程の異なる有機材料に加えて、又は替えて、ポリジメチルシロキサンなどのシリコーンや、金属アルコキシド(ケイ素、アルミニウム、チタン、ジルコニウム、ホウ素、スズ、亜鉛などのメトキシド、エトキシド、プロポキシド、ブトキシドなど)が重合した無機ポリマーなどの、公知の無機系化合物が重合してなるポリマーを混合して紡糸液を調製することもできるため、このようなポリマーを用意しても良い。
 次いで、このような第1導電性材料、炭化可能有機材料、好ましくは炭化率又は炭化過程の異なる炭化可能有機材料も含む紡糸液を調製する。紡糸液を構成する溶媒は、第1導電性材料が均一に分散し、炭化可能有機材料(好ましくは炭化率又は炭化過程の異なる炭化可能有機材料も)が溶解可能な溶媒であれば良く、特に限定するものではないが、例えば、アセトン、メタノール、エタノール、プロパノール、イソプロパノール、テトラヒドロフラン、ジメチルスルホキシド、1,4-ジオキサン、ピリジン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、アセトニトリル、ギ酸、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、四塩化炭素、塩化メチレン、クロロホルム、トリクロロエタン、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、水等を挙げることができ、これらの溶媒を単独で、又は混合して使用することができる。なお、紡糸性に問題がない範囲で、貧溶媒を添加して使用することもできる。
 なお、紡糸液における固形分濃度は特に限定するものではないが、1~50mass%であるのが好ましく、5~30mass%であるのがより好ましい。1mass%を下回ると、生産性が極端に低下し、50mass%を上回ると、紡糸が不安定になる傾向があるためである。
 また、紡糸液における第1導電性材料の固形分量と炭化可能有機材料(2種類以上含む場合には、その総量)の固形分量が、繊維状物における第1導電性材料と第2導電性材料の質量比率に影響を与え、結果として導電性に影響を与えるため、紡糸液における第1導電性材料の固形分量と炭化可能有機材料の固形分量の質量比率は、10~90:90~10であるのが好ましく、20~90:80~10であるのがより好ましく、30~90:70~10であるのが更に好ましく、40~90:60~10であるのが更に好ましい。
 なお、炭化可能有機材料として、炭化率及び/又は炭化過程の異なる有機材料を含んでいる場合、前述の通り、繊維状物自体を多孔化することができ、導電性多孔体の比表面積を大きくしやすいように、第1導電性材料と、炭化率の低い有機材料又は収縮率や流動性が相対的に大きい有機材料の固形分量と、炭化率の高い有機材料又は収縮率や流動性が相対的に小さい有機材料の固形分量の質量比率は、10~90:85~5:85~5であるのが好ましく、20~80:60~10:60~10であるのがより好ましい。
 次いで、この紡糸液を紡糸して、前駆繊維が集合した前駆繊維多孔体を形成する。この紡糸方法は特に限定するものではないが、例えば、静電紡糸法、特開2009-287138号公報に開示されているような、液吐出部から吐出された紡糸液に対してガスを平行に吐出し、紡糸液に1本の直線状に剪断力を作用させて繊維化する方法、を挙げることができる。これらの紡糸方法によれば、繊維径の小さい前駆繊維を紡糸でき、薄い前駆繊維多孔体を形成することができるため、導電性に優れる導電性多孔体を製造することができる。特に、静電紡糸法によれば、連続した繊維長を有する前駆繊維を紡糸でき、結果として、連続した繊維長を有する繊維状物からなる導電性多孔体とすることができるため好適である。
 このような静電紡糸法、特開2009-287138号公報に開示されているような方法によれば、紡糸した前駆繊維を直接、捕集体で捕集することによって、前駆繊維が集合した前駆繊維多孔体を形成することができる。なお、捕集体として立体的なものを使用すれば、三次元構造を有する前駆繊維多孔体とすることができる。
 なお、前述の通り、炭化可能有機材料が熱硬化性樹脂を含んでいるのが好ましいが、炭化可能有機材料が熱硬化性樹脂を含んでいる場合には、前駆繊維多孔体を形成した後に、熱硬化性樹脂が硬化するように、熱硬化性樹脂が熱硬化する温度で、熱処理を実施するのが好ましい。この熱処理温度、時間等の条件は、熱硬化性樹脂によって異なるため、特に限定するものではない。
 また、紡糸液の溶媒として、紡糸時に揮散しにくいものを使用し、前駆繊維多孔体を形成した後に、溶媒置換により溶媒を除去すると、前駆繊維同士が可塑化結合した状態になりやすく、結果として導電性の高い導電性多孔体を製造しやすく、また、前駆繊維多孔体が緻密になり、接触抵抗が低くなりやすく、更に、微孔が形成されて、比表面積の大きい導電性多孔体を製造しやすいため好適である。なお、紡糸時に揮散しにくい溶媒としては、例えば、N-メチル-2-ピロリドン、2-ピロリドン、ジメチルアセトアミド、プロピレンカーボネート、ジメチルスルホキシドなどを挙げることができる。
 更に、前駆繊維同士の結合力を付与又は向上させるために、バインダにより前駆繊維同士を接着することも考えられるが、バインダを使用した場合、バインダが前駆繊維間の空隙を埋めたり、バインダが前駆繊維同士の接触部周辺を覆ってしまい、導電性多孔体の空隙を十分に利用できなくなる場合がある。例えば、導電性多孔体をガス拡散電極用基材として使用する場合、ガス又は液水の透過性が低下する傾向がある。そのため、前駆繊維同士を結合する場合には、溶媒による炭化可能有機材料の可塑化、炭化可能有機材料の熱による融着、圧力による密着等により、結合するのが好ましい。
 この「前駆繊維」とは、炭化可能有機材料が炭化していない状態の繊維を意味し、炭化可能有機材料が炭化することによって第2導電性材料となり、第1導電性材料間を第2導電性材料で繋いだ繊維状物となるため、繊維状物の素となる繊維という意味で、前駆繊維と表現している。
 なお、前駆繊維を連続繊維として巻き取り、次いで前駆繊維を所望繊維長に切断して短繊維とした後、公知の乾式法又は湿式法により繊維ウエブを形成し、結合して、前駆繊維多孔体とすることもできるし、連続した前駆繊維を用いて、常法により織ったり、編んだりして、前駆繊維多孔体とすることもできる。しかしながら、前述の通り、繊維状物は連続しているのが好ましく、また、前駆繊維多孔体は不織布構造であるのが好ましいため、連続した前駆繊維を直接、集積して、前駆繊維多孔体を形成するのが好ましい。
 続いて、前駆繊維多孔体を構成する前駆繊維の炭化可能有機材料を炭化することにより第2導電性材料として、比表面積が100m/g以上、かつ2MPa加圧後における厚さの維持率が60%以上の、第1導電性材料間を第2導電性材料で繋いだ繊維状物が集合した導電性多孔体を製造する。
 この炭化は炭化可能有機材料を第2導電性材料とすることのできる炭化であれば良く、特に限定するものではないが、例えば、窒素、ヘリウム、アルゴン等の不活性気体雰囲気中、最高温度800~3000℃で加熱して行うことができる。なお、昇温速度は5~100℃/分であるのが好ましく、5~50℃/分であるのがより好ましい。また、最高温度での保持時間は、3時間以内であるのが好ましく、0.5~2時間であるのがより好ましい。
 本発明の導電性多孔体は比表面積が100m/g以上の比表面積が広いものであるが、このような導電性多孔体は、紡糸液に炭化率又は炭化過程の異なる有機材料を含ませて前駆繊維を紡糸した後に、前駆繊維から炭化率の低い有機材料を抽出、又は消失させることによって、紡糸液の溶媒として紡糸時に揮散しにくいものを使用し、前駆繊維多孔体を形成した後に、溶媒置換により溶媒を除去することによって、及び/又は、炭化する際に、前駆繊維における炭化過程の異なる有機材料の収縮又は流動性を利用することにより製造しやすい。
 また、本発明の導電性多孔体は2MPa加圧後における厚さの維持率が60%以上の潰れにくいものであるが、このような導電性多孔体は、炭化可能有機材料として、熱硬化性樹脂を使用し、熱硬化性樹脂を硬化させた後に炭化処理をすることによって、炭化処理時の収縮等を抑え、前駆繊維多孔体の形態を維持したまま炭化処理をすることによって製造しやすい。
 更に、本発明の導電性多孔体は空隙率が70%以上と空隙が多いのが好ましいが、このような空隙率の高い導電性多孔体は、繊維径が0.1μm~50μmの繊維状物が集合した導電性多孔体とすれば、前記空隙率を満たしやすく、前記繊維径の繊維状物の素である前駆繊維は、静電紡糸法や、特開2009-287138号公報に開示されているような方法、又はスパンボンド法により製造しやすい。また、前駆繊維同士を結合するために、バインダを使用すると、バインダが前駆繊維間の空隙を埋めたり、前駆繊維同士の接触部周辺を覆ってしまい、空隙率が低くなるため、バインダを使用することなく、前駆繊維を構成する炭化可能有機材料により前駆繊維同士を結合させると、前記空隙率を満たしやすい。
 なお、本発明の導電性多孔体は、各種後加工により、各用途に適合する物性を付与又は向上させることができる。例えば、本発明の導電性多孔体を固体高分子形燃料電池のガス拡散電極用基材として使用する場合、導電性多孔体の撥水性を高め、排水性及びガス拡散性を高めるために、ポリテトラフルオロエチレンディスパージョンなどのフッ素系ディスパージョン中に、導電性多孔体を浸漬して、フッ素樹脂を付与した後、温度300~350℃で焼結することができる。
 以下に、本発明の実施例を記載するが、本発明は以下の実施例に限定されるものではない。
 <第1紡糸液の調製>
 フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合物(THV、低炭化可能有機材料)をN-メチル-2-ピロリドン(NMP)に加え、ロッキングミルを用いて溶解させ、濃度10mass%の溶液を得た。
 次いで、第1導電性材料として、CVD法で合成されたカーボンナノチューブ(CNT)[商品名:VGCF-H(昭和電工(株)製)、繊維径:150nm、アスペクト比:40、多層カーボンナノチューブ]を前記溶液に混合し、撹拌した後、更にNMPを加えて希釈してカーボンナノチューブを分散させ、分散溶液を得た。
 更に、前記分散溶液に、クレゾールノボラックエポキシ樹脂を主剤とし、ノボラック型フェノール樹脂を硬化剤とする高炭化可能有機材料(EP)を加え、CNT:THV:EPの固形分質量比が40:30:30で、固形分濃度が16mass%の第1紡糸液を調製した。
 <第2紡糸液の調製>
 カーボンナノチューブ(CNT)に替えて、カーボンブラック(CB、電気化学工業(株)製、商品名:デンカブラック粒状品)を使用したこと以外は、第1紡糸液と同様に調製して、第2紡糸液を調製した。
 <第3紡糸液の調製>
 フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合物(THV、低炭化可能有機材料)をN,N-ジメチルホルムアミド(DMF)に加え、ロッキングミルを用いて溶解させ、濃度10mass%の溶液を得た。
 次いで、カーボンブラック(CB)(電気化学工業(株)製、商品名:デンカブラック粒状品)を前記溶液に混合し、撹拌した後、更にDMFを加えて希釈してカーボンブラックを分散させ、CB:THVの固形分質量比が40:60で、固形分濃度が10mass%の第3紡糸液を調製した。
 <第4紡糸液の調製>
 ポリアクリロニトリル(PAN、高炭化可能有機材料)をN,N-ジメチルホルムアミド(DMF)に加え、ロッキングミルを用いて溶解させ、濃度20mass%の溶液を得た。
 次いで、CVD法で合成されたカーボンナノチューブ(CNT)[商品名:VGCFH(昭和電工(株)製)、繊維径:150nm]を前記溶液に混合し、撹拌した後、更にDMFを加えて希釈してCNTを分散させ、CNT:PANの固形分質量比が1:99で、固形分濃度が15mass%の第4紡糸液を調製した。
 <第5紡糸液の調製>
 CNT:PANの固形分質量比を5:95としたこと以外は、第4紡糸液と同様に調製して、第5紡糸液を調製した。
 (実施例1)
 前記第1紡糸液を静電紡糸法により次の条件で紡糸して、連続前駆繊維を、対向電極であるステンレスドラム上に、直接、集積して、不織布形態の前駆繊維多孔シートを形成した。
 (静電紡糸条件)
 電極:金属性ノズル(内径:0.33mm)とステンレスドラム
 吐出量:2g/時間
 ノズル先端とステンレスドラムとの距離:10cm
 印加電圧:10kV
 温度/湿度:25℃/35%RH
 次いで、前記前駆繊維多孔シートを水浴に浸漬することにより溶媒置換を行い、続いて、温度60℃に設定した熱風乾燥機で水分を除去した後、温度150℃に設定した熱風乾燥機で1時間熱処理して高炭化可能有機材料であるエポキシ樹脂を硬化させ、前駆繊維硬化多孔シートを得た。
 その後、前駆繊維硬化多孔シートに対して、管状炉を用いる、アルゴンガス雰囲気下、温度800℃で1時間の炭化焼成処理(昇温速度:10℃/分)を実施し、エポキシ樹脂及びTHVを炭化させるとともに、THVの大部分を消失させて、不織布構造を有する一層構造の導電性多孔シート(目付:60g/m、厚さ:230μm、空隙率:86%)を作製した。
 なお、導電性多孔シートは、図1、2に示すように、CNTが内部を含む全体に分散しており、これらCNT間がEP炭化物とTHVの炭化物で部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:3.3μm、CNT:EP炭化物とTHV炭化物の総量の質量比=58:42、比表面積:250m/g)のみがランダムに集合して構成され、繊維状物間もEP及びTHVの炭化物で結合しており、繊維状物はCNTの末端が表面から突出した状態にあり、CNTは繊維状物の長さ方向に配向していた。また、導電性多孔シートの物性は表1に示す通りであった。
 (比較例1)
 実施例1の炭化していない、不織布構造を有する一層構造の前駆繊維硬化多孔シートを導電性多孔シート(目付:87g/m、厚さ:240μm、空隙率:77%)とした。なお、導電性多孔シートは、図3、4に示すように、CNTが内部を含む全体に分散しており、これらCNT間がEPとTHVで部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:3.6μm、CNT:EPとTHVの総量の質量比=40:60、比表面積:2.7m/g)のみランダムに集合して構成され、繊維状物間もEP及びTHVで結合しており、繊維状物はCNTの末端が表面から突出した状態にあり、CNTは繊維状物の長さ方向に配向していた。また、導電性多孔シートの物性は表1に示す通りであった。
 (実施例2)
 第2紡糸液を用いたこと以外は実施例1と同様にして、不織布構造を有する一層構造の導電性多孔シート(目付:67g/m、厚さ:193μm、空隙率:81%)を作製した。なお、導電性多孔シートは、図5、6に示すように、CBが内部を含む全体に分散しており、これらCB間がEP炭化物とTHVの炭化物で部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:2.6μm、CB:EP炭化物とTHV炭化物の総量の質量比=66:34、比表面積:443m/g)のみがランダムに集合して構成され、繊維状物間もEP及びTHVの炭化物で結合していた。また、導電性多孔シートの物性は表1に示す通りであった。
 (比較例2)
 実施例2の炭化していない、不織布構造を有する一層構造の前駆繊維硬化多孔シートを導電性多孔シート(目付:110g/m、厚さ:220μm、空隙率:70%)とした。なお、導電性多孔シートは、図7、8に示すように、CBが内部を含む全体に分散しており、これらCB間がEPとTHVで部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:3.8μm、CB:EPとTHVの総量の質量比=40:60、比表面積=53m/g)のみランダムに集合して構成され、繊維状物間もEP及びTHVで結合していた。また、導電性多孔シートの物性は表1に示す通りであった。
 (比較例3)
 カーボンペーパー[TGP-H-060、東レ社製、目付:84g/m、厚さ:190μm、空隙率:75%]を導電性多孔シートとした。この導電性多孔シートは、図9、10に示すように、カーボン繊維間がバインダ樹脂で結合されていた。また、導電性多孔シートの物性は表1に示す通りであった。
 (比較例4)
 第3紡糸液を用いたこと以外は実施例1と同様にして、不織布構造を有する一層構造の導電性多孔シート(目付:33g/m、厚さ:190μm、空隙率:90%)を作製した。なお、導電性多孔シートは、図11、12に示すように、CBが内部を含む全体に分散しており、これらCB同士が結合した多孔性の連続した繊維状物(平均繊維径:0.8μm、比表面積:25g/m)のみがランダムに集合して構成され、繊維状物間もCB同士で結合していた。また、導電性多孔シートの物性は表1に示す通りであった。
 (比較例5)
 第4紡糸液を用いたこと以外は実施例1と同様にして前駆繊維硬化多孔シートを得た後、前駆繊維硬化多孔シートの炭化を行ったところ、収縮により断片化し、シート形態を維持できなかった(図13、14)。
 (比較例6)
 第5紡糸液を用いたこと以外は実施例1と同様にして前駆繊維硬化多孔シートを得た後、前駆繊維硬化多孔シートの炭化を行ったところ、収縮により断片化し、シート形態を維持できなかった(図15、16)。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の導電性多孔体は表面積が広く、圧力によって破損しにくい、導電性に優れるものであった。
 <第6紡糸液の調製>
 フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロプロピレン共重合物(THV、低炭化可能有機材料)をN,N-ジメチルホルムアミド(DMF)に加え、ロッキングミルを用いて溶解させ、濃度10mass%の溶液を得た。
 次いで、第1導電性材料として、CVD法で合成されたカーボンナノチューブ(CNT)[商品名:VGCF-H(昭和電工(株)製)、繊維径:150nm、アスペクト比:40、多層カーボンナノチューブ]を前記溶液に混合し、撹拌した後、更にDMFを加えて希釈してカーボンナノチューブを分散させ、分散溶液を得た。
 更に、前記分散溶液に、クレゾールノボラックエポキシ樹脂を主剤とし、ノボラック型フェノール樹脂を硬化剤とする高炭化可能有機材料(EP)を加え、CNT:THV:EPの固形分質量比が40:30:30で、固形分濃度が20mass%の第6紡糸液を調製した。
 <第7紡糸液の調製>
 CNT:THV:EPの固形分質量比を25:45:30としたこと、及び固形分濃度を18mass%としたこと以外は、第6紡糸液と同様にして、第7紡糸液を調製した。
 <第8紡糸液の調製>
 CNT:THV:EPの固形分質量比を40:30:30としたこと、溶媒をジメチルスルホキシド(DMSO)としたこと、及び固形分濃度を18mass%としたこと以外は、第6紡糸液と同様にして、第8紡糸液を調製した。
 <第9紡糸液の調製>
 CNT:THV:EPの固形分質量比を10:60:30としたこと以外は、第6紡糸液と同様にして、第9紡糸液を調製した。
 (実施例3)
 前記第6紡糸液を静電紡糸法により次の条件で紡糸して、連続前駆繊維を、対向電極であるステンレスドラム上に、直接、集積して、不織布形態の前駆繊維多孔シートを形成した。
 (静電紡糸条件)
 電極:金属性ノズル(内径:0.33mm)とステンレスドラム
 吐出量:4g/時間
 ノズル先端とステンレスドラムとの距離:14cm
 印加電圧:10kV
 温度/湿度:25℃/30%RH
 次いで、温度150℃に設定した熱風乾燥機で1時間熱処理して高炭化可能有機材料であるエポキシ樹脂を硬化させ、前駆繊維硬化多孔シートを得た。
 その後、前駆繊維硬化多孔シートに対して、管状炉を用いる、アルゴンガス雰囲気下、温度800℃で1時間の炭化焼成処理(昇温速度:10℃/分)を実施し、エポキシ樹脂及びTHVを炭化させるとともに、THVの大部分を消失させて、不織布構造を有する一層構造の導電性多孔シート(目付:114g/m、厚さ:220μm、空隙率:73%)を作製した。
 なお、導電性多孔シートは、図17、18に示すように、CNTが内部を含む全体に分散しており、これらCNT間がEP炭化物とTHVの炭化物で部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:1.1μm、CNT:EP炭化物とTHV炭化物の総量の質量比=52:48、比表面積:377m/g)のみがランダムに集合して構成され、繊維状物間もEP及びTHVの炭化物で結合しており、繊維状物はCNTの末端が表面から突出した状態にあり、CNTは繊維状物の長さ方向に配向していた。また、導電性多孔シートの物性は表2に示す通りであった。
 (実施例4)
 温度/湿度を25℃/40%RHに変えたこと以外は実施例3と同様にして、不織布構造を有する一層構造の導電性多孔シート(目付:80g/m、厚さ:220μm、空隙率:81%)を作製した。なお、導電性多孔シートは、図19、20に示すように、CNTが内部を含む全体に分散しており、これらCNT間がEP炭化物とTHVの炭化物で部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:1.5μm、CNT:EP炭化物とTHV炭化物の総量の質量比=52:48、比表面積:330m/g)のみがランダムに集合して構成され、繊維状物間もEP及びTHVの炭化物で結合しており、繊維状物はCNTの末端が表面から突出した状態にあり、CNTは繊維状物の長さ方向に配向していた。また、導電性多孔シートの物性は表2に示す通りであった。
 (実施例5)
 温度/湿度を25℃/50%RHに変えたこと以外は実施例3と同様にして、不織布構造を有する一層構造の導電性多孔シート(目付:55g/m、厚さ:220μm、空隙率:87%)を作製した。なお、導電性多孔シートは、図21、22に示すように、CNTが内部を含む全体に分散しており、これらCNT間がEP炭化物とTHVの炭化物で部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:1.8μm、CNT:EP炭化物とTHV炭化物の総量の質量比=52:48、比表面積:310m/g)のみがランダムに集合して構成され、繊維状物間もEP及びTHVの炭化物で結合しており、繊維状物はCNTの末端が表面から突出した状態にあり、CNTは繊維状物の長さ方向に配向していた。また、導電性多孔シートの物性は表2に示す通りであった。
 (実施例6)
 前記第7紡糸液を静電紡糸法により次の条件で紡糸して、連続前駆繊維を、対向電極であるステンレスドラム上に、直接、集積して、不織布形態の前駆繊維多孔シートを形成した。
 (静電紡糸条件)
 電極:金属性ノズル(内径:0.33mm)とステンレスドラム
 吐出量:4g/時間
 ノズル先端とステンレスドラムとの距離:14cm
 印加電圧:12kV
 温度/湿度:25℃/25%RH
 次いで、温度150℃に設定した熱風乾燥機で1時間熱処理して高炭化可能有機材料であるエポキシ樹脂を硬化させ、前駆繊維硬化多孔シートを得た。
 その後、前駆繊維硬化多孔シートに対して、管状炉を用いる、アルゴンガス雰囲気下、温度800℃で1時間の炭化焼成処理(昇温速度:10℃/分)を実施し、エポキシ樹脂及びTHVを炭化させるとともに、THVの大部分を消失させて、不織布構造を有する一層構造の導電性多孔シート(目付:50g/m、厚さ:200μm、空隙率:87%)を作製した。
 なお、導電性多孔シートは、図23、24に示すように、CNTが内部を含む全体に分散しており、これらCNT間がEP炭化物とTHVの炭化物で部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:0.8μm、CNT:EP炭化物とTHV炭化物の総量の質量比=34:66、比表面積:388m/g)のみがランダムに集合して構成され、繊維状物間もEP及びTHVの炭化物で結合しており、繊維状物はCNTの末端が表面から突出した状態にあり、CNTは繊維状物の長さ方向に配向していた。また、導電性多孔シートの物性は表2に示す通りであった。
 (実施例7)
 温度/湿度を25℃/50%RHに変えたこと以外は実施例6と同様にして、不織布構造を有する一層構造の導電性多孔シート(目付:40g/m、厚さ:200μm、空隙率:89%)を作製した。なお、導電性多孔シートは、図25、26に示すように、CNTが内部を含む全体に分散しており、これらCNT間がEP炭化物とTHVの炭化物で部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:1.5μm、CNT:EP炭化物とTHV炭化物の総量の質量比=34:66、比表面積:410m/g)のみがランダムに集合して構成され、繊維状物間もEP及びTHVの炭化物で結合しており、繊維状物はCNTの末端が表面から突出した状態にあり、CNTは繊維状物の長さ方向に配向していた。また、導電性多孔シートの物性は表2に示す通りであった。
 (実施例8)
 前記第8紡糸液を静電紡糸法により次の条件で紡糸して、連続前駆繊維を、対向電極であるステンレスドラム上に、直接、集積して、不織布形態の前駆繊維多孔シートを形成した。
 (静電紡糸条件)
 電極:金属性ノズル(内径:0.33mm)とステンレスドラム
 吐出量:4g/時間
 ノズル先端とステンレスドラムとの距離:14cm
 印加電圧:9kV
 温度/湿度:25℃/35%RH
 次いで、温度150℃に設定した熱風乾燥機で1時間熱処理して高炭化可能有機材料であるエポキシ樹脂を硬化させ、前駆繊維硬化多孔シートを得た。
 その後、前駆繊維硬化多孔シートに対して、管状炉を用いる、アルゴンガス雰囲気下、温度800℃で1時間の炭化焼成処理(昇温速度:10℃/分)を実施し、エポキシ樹脂及びTHVを炭化させるとともに、THVの大部分を消失させて、不織布構造を有する一層構造の導電性多孔シート(目付:100g/m、厚さ:210μm、空隙率:76%)を作製した。
 なお、導電性多孔シートは、図27、28に示すように、CNTが内部を含む全体に分散しており、これらCNT間がEP炭化物とTHVの炭化物で部分的に繋がって結合した多孔性の連続した繊維状物(平均繊維径:4.2μm、CNT:EP炭化物とTHV炭化物の総量の質量比=52:48、比表面積:210m/g)のみがランダムに集合して構成され、繊維状物間もEP及びTHVの炭化物で結合しており、繊維状物はCNTの末端が表面から突出した状態にあり、CNTは繊維状物の長さ方向に配向していた。また、導電性多孔シートの物性は表2に示す通りであった。
 (比較例7)
 前記第9紡糸液を静電紡糸法により次の条件で紡糸して、連続前駆繊維を、対向電極であるステンレスドラム上に、直接、集積して、不織布形態の前駆繊維多孔シートを形成した。
 (静電紡糸条件)
 電極:金属性ノズル(内径:0.33mm)とステンレスドラム
 吐出量:4g/時間
 ノズル先端とステンレスドラムとの距離:14cm
 印加電圧:10kV
 温度/湿度:25℃/35%RH
 次いで、温度150℃に設定した熱風乾燥機で1時間熱処理して高炭化可能有機材料であるエポキシ樹脂を硬化させ、前駆繊維硬化多孔シート(図29)を得た。
 その後、前駆繊維硬化多孔シートに対して、管状炉を用いる、アルゴンガス雰囲気下、温度800℃で1時間の炭化焼成処理(昇温速度:10℃/分)を実施したところ、収縮
により断片化し、シート形態を維持できなかった(図30)。
Figure JPOXMLDOC01-appb-T000002
 本発明の導電性多孔体は表面積が広く、圧力によって破損しにくい、導電性に優れるものであるため、燃料電池用のガス拡散電極用基材として、また、電気二重層キャパシタの電極として、或いは、リチウムイオン二次電池の電極として有用である。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。

Claims (7)

  1.  第1導電性材料と、第1導電性材料間を繋ぐ第2導電性材料とを有する繊維状物が集合した導電性多孔体であり、前記導電性多孔体は比表面積が100m/g以上、かつ2MPa加圧後における厚さの維持率が60%以上であることを特徴とする、導電性多孔体。
  2.  第1導電性材料が、フラーレン、カーボンナノチューブ、カーボンナノホーン、グラファイト、気相成長カーボンファイバー、カーボンブラック、金属、及び金属酸化物からなる群の中から選ばれる1種類以上からなることを特徴とする、請求項1記載の導電性多孔体。
  3.  第2導電性材料が、有機材料が炭化したものであることを特徴とする、請求項1又は2に記載の導電性多孔体。
  4.  空隙率が70%以上であることを特徴とする、請求項1~3のいずれか一項に記載の導電性多孔体。
  5.  電極用基材として用いる、請求項1~4のいずれか一項に記載の導電性多孔体。
  6.  請求項1~5のいずれか一項に記載の導電性多孔体をガス拡散電極用基材として備えていることを特徴とする、固体高分子形燃料電池。
  7.  第1導電性材料と炭化可能有機材料とを含む紡糸液を紡糸して、前駆繊維が集合した前駆繊維多孔体を形成した後、前記炭化可能有機材料を炭化して第2導電性材料として、比表面積が100m/g以上、かつ2MPa加圧後における厚さの維持率が60%以上の、第1導電性材料間を第2導電性材料で繋いだ繊維状物が集合した導電性多孔体とすることを特徴とする、導電性多孔体の製造方法。
PCT/JP2015/058929 2014-03-27 2015-03-24 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法 WO2015146984A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016510386A JPWO2015146984A1 (ja) 2014-03-27 2015-03-24 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法
EP15768419.2A EP3125255A4 (en) 2014-03-27 2015-03-24 Electroconductive porous body, solid polymer fuel cell, and method for manufacturing electroconductive porous body
US15/129,336 US20170110735A1 (en) 2014-03-27 2015-03-24 Conductive porous material, polymer electrolyte fuel cell, and method of manufacturing conductive porous material
KR1020167029624A KR20160139002A (ko) 2014-03-27 2015-03-24 도전성 다공체, 고체 고분자형 연료 전지, 및 도전성 다공체의 제조 방법
CN201580016584.4A CN106133968A (zh) 2014-03-27 2015-03-24 导电多孔体、固体高分子型燃料电池及导电多孔体的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064990 2014-03-27
JP2014064990 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146984A1 true WO2015146984A1 (ja) 2015-10-01

Family

ID=54195496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058929 WO2015146984A1 (ja) 2014-03-27 2015-03-24 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法

Country Status (6)

Country Link
US (1) US20170110735A1 (ja)
EP (1) EP3125255A4 (ja)
JP (1) JPWO2015146984A1 (ja)
KR (1) KR20160139002A (ja)
CN (1) CN106133968A (ja)
WO (1) WO2015146984A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2999038A4 (en) * 2013-05-15 2016-10-12 Japan Vilene Co Ltd BASIC MATERIAL FOR GAS DIFFUSION ELECTRODE
JP6013638B1 (ja) * 2016-04-27 2016-10-25 大豊精機株式会社 導電性ナノファイバー
CN106571450A (zh) * 2016-12-23 2017-04-19 中国石油大学(华东) 静电纺丝制备锂离子电池负极用多层柔性聚丙烯腈/沥青碳纤维复合材料的方法
WO2017159351A1 (ja) * 2016-03-16 2017-09-21 日本電気株式会社 繊維状カーボンナノホーン集合体を含んだ平面構造体
JP2019173221A (ja) * 2018-03-28 2019-10-10 大豊精機株式会社 導電性ナノファイバー、燃料電池用部材、及び燃料電池
JP7474121B2 (ja) 2020-06-11 2024-04-24 パナソニックホールディングス株式会社 ガス拡散層、膜電極接合体、燃料電池、及びガス拡散層の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343680B1 (en) * 2015-08-27 2024-09-11 Toray Industries, Inc. Gas diffusion electrode
US10813257B2 (en) * 2016-09-05 2020-10-20 Nec Corporation Electromagnetic wave absorbing material
CN112516977B (zh) * 2020-12-21 2023-05-12 南京环保产业创新中心有限公司 一种磁性树脂的高效脱附系统及方法
CN114221002B (zh) * 2021-12-06 2024-03-15 极永新能源科技(上海)有限公司 一种用于质子交换膜燃料电池的高性能膜电极及其制备方法
CN114575000B (zh) * 2022-02-25 2023-03-24 楚能新能源股份有限公司 一种pvdf作为碳源的多孔导电纤维及其制备方法和应用
US20240052525A1 (en) * 2022-08-12 2024-02-15 City University Of Hong Kong Electrospun Radiative Cooling Textile

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244950A (ja) * 2005-03-07 2006-09-14 Konica Minolta Holdings Inc 燃料電池用電極及び燃料電池
JP2007515364A (ja) * 2003-10-16 2007-06-14 ザ ユニバーシティ オブ アクロン カーボンナノファイバ基板上のカーボンナノチューブ
WO2009069505A1 (ja) * 2007-11-30 2009-06-04 Toyota Jidosha Kabushiki Kaisha 金属微粒子担持カーボンナノファイバーの製造方法
JP2009208061A (ja) * 2008-02-06 2009-09-17 Gunma Univ 炭素触媒及びこの炭素触媒を含むスラリー、炭素触媒の製造方法、ならびに、炭素触媒を用いた燃料電池、蓄電装置及び環境触媒
WO2011070893A1 (ja) * 2009-12-09 2011-06-16 日清紡ホールディングス株式会社 フレキシブル炭素繊維不織布
WO2012026498A1 (ja) * 2010-08-27 2012-03-01 東邦テナックス株式会社 導電シート及びその製造方法
JP2012199225A (ja) * 2011-02-07 2012-10-18 Japan Vilene Co Ltd 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
WO2014010715A1 (ja) * 2012-07-13 2014-01-16 日本バイリーン株式会社 ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池
WO2014014055A1 (ja) * 2012-07-20 2014-01-23 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、及び固体高分子型燃料電池
WO2014185491A1 (ja) * 2013-05-15 2014-11-20 日本バイリーン株式会社 ガス拡散電極用基材
WO2015068745A1 (ja) * 2013-11-06 2015-05-14 日本バイリーン株式会社 ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022509A1 (fr) * 1999-09-22 2001-03-29 Toray Industries, Inc. Feuille conductrice poreuse et procede de fabrication
US20100112322A1 (en) 2007-01-30 2010-05-06 Georgia Tech Research Corporation Carbon fibers and films and methods of making same
KR101045001B1 (ko) * 2008-09-30 2011-06-29 한국과학기술원 녹말을 이용한 탄소나노튜브가 강화된 다공성 탄소섬유의 제조방법 및 전기화학용 전극소재 용도
GB0902312D0 (en) * 2009-02-12 2009-04-01 Johnson Matthey Plc Gas diffusion substrate
KR101422370B1 (ko) 2010-01-21 2014-07-22 고쿠리츠 다이가쿠 호우징 신슈 다이가쿠 탄소 섬유제 부직포, 탄소 섬유, 및 그 제조 방법, 전극, 전지, 및 필터
JP5713003B2 (ja) * 2011-01-21 2015-05-07 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜−電極接合体、固体高分子型燃料電池、前駆体シート、およびフィブリル状繊維
JP5875957B2 (ja) * 2012-08-03 2016-03-02 日本バイリーン株式会社 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515364A (ja) * 2003-10-16 2007-06-14 ザ ユニバーシティ オブ アクロン カーボンナノファイバ基板上のカーボンナノチューブ
JP2006244950A (ja) * 2005-03-07 2006-09-14 Konica Minolta Holdings Inc 燃料電池用電極及び燃料電池
WO2009069505A1 (ja) * 2007-11-30 2009-06-04 Toyota Jidosha Kabushiki Kaisha 金属微粒子担持カーボンナノファイバーの製造方法
JP2009208061A (ja) * 2008-02-06 2009-09-17 Gunma Univ 炭素触媒及びこの炭素触媒を含むスラリー、炭素触媒の製造方法、ならびに、炭素触媒を用いた燃料電池、蓄電装置及び環境触媒
WO2011070893A1 (ja) * 2009-12-09 2011-06-16 日清紡ホールディングス株式会社 フレキシブル炭素繊維不織布
WO2012026498A1 (ja) * 2010-08-27 2012-03-01 東邦テナックス株式会社 導電シート及びその製造方法
JP2012199225A (ja) * 2011-02-07 2012-10-18 Japan Vilene Co Ltd 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
WO2014010715A1 (ja) * 2012-07-13 2014-01-16 日本バイリーン株式会社 ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池
WO2014014055A1 (ja) * 2012-07-20 2014-01-23 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、及び固体高分子型燃料電池
WO2014185491A1 (ja) * 2013-05-15 2014-11-20 日本バイリーン株式会社 ガス拡散電極用基材
WO2015068745A1 (ja) * 2013-11-06 2015-05-14 日本バイリーン株式会社 ガス拡散電極用基材、ガス拡散電極、膜-電極接合体及び固体高分子形燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125255A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2999038A4 (en) * 2013-05-15 2016-10-12 Japan Vilene Co Ltd BASIC MATERIAL FOR GAS DIFFUSION ELECTRODE
US9685663B2 (en) 2013-05-15 2017-06-20 Japan Vilene Company, Ltd. Base material for gas diffusion electrode
WO2017159351A1 (ja) * 2016-03-16 2017-09-21 日本電気株式会社 繊維状カーボンナノホーン集合体を含んだ平面構造体
JPWO2017159351A1 (ja) * 2016-03-16 2019-01-17 日本電気株式会社 繊維状カーボンナノホーン集合体を含んだ平面構造体
US10971734B2 (en) 2016-03-16 2021-04-06 Nec Corporation Planar structural body containing fibrous carbon nanohorn aggregate
JP6013638B1 (ja) * 2016-04-27 2016-10-25 大豊精機株式会社 導電性ナノファイバー
CN106571450A (zh) * 2016-12-23 2017-04-19 中国石油大学(华东) 静电纺丝制备锂离子电池负极用多层柔性聚丙烯腈/沥青碳纤维复合材料的方法
JP2019173221A (ja) * 2018-03-28 2019-10-10 大豊精機株式会社 導電性ナノファイバー、燃料電池用部材、及び燃料電池
JP7245408B2 (ja) 2018-03-28 2023-03-24 大豊精機株式会社 導電性ナノファイバー、製造方法、燃料電池用部材、及び燃料電池
JP7474121B2 (ja) 2020-06-11 2024-04-24 パナソニックホールディングス株式会社 ガス拡散層、膜電極接合体、燃料電池、及びガス拡散層の製造方法

Also Published As

Publication number Publication date
KR20160139002A (ko) 2016-12-06
JPWO2015146984A1 (ja) 2017-04-13
US20170110735A1 (en) 2017-04-20
CN106133968A (zh) 2016-11-16
EP3125255A4 (en) 2017-08-23
EP3125255A1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2015146984A1 (ja) 導電性多孔体、固体高分子形燃料電池、及び導電性多孔体の製造方法
Huang et al. Graphene‐based nanomaterials for flexible and wearable supercapacitors
Meng et al. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment
Zhao et al. Graphene quantum dot reinforced electrospun carbon nanofiber fabrics with high surface area for ultrahigh rate supercapacitors
Liu et al. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations
Abouali et al. Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors
Inagaki et al. Carbon nanofibers prepared via electrospinning
Choudhury et al. Nitrogen-enriched porous carbon nanofiber mat as efficient flexible electrode material for supercapacitors
Yu et al. Microstructure design of carbonaceous fibers: a promising strategy toward high‐performance weaveable/wearable supercapacitors
Deng et al. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers
Mao et al. A review of electrospun carbon fibers as electrode materials for energy storage
US7623340B1 (en) Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
JP7394923B2 (ja) 炭素繊維シ-ト、ガス拡散電極、膜-電極接合体、固体高分子形燃料電池、及び炭素繊維シートの製造方法
US20180248175A1 (en) Mixed allotrope particulate carbon films and carbon fiber mats
Liu et al. Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors
KR100564774B1 (ko) 나노복합체 섬유, 그 제조방법 및 용도
KR101348202B1 (ko) 금속산화물-탄소입자-탄소나노섬유복합체, 상기 복합체 제조방법, 및 상기 복합체를 포함하는 탄소섬유응용제품
Guan et al. Hydrophilicity improvement of graphene fibers for high-performance flexible supercapacitor
JP6691924B2 (ja) 導電性多孔シート、固体高分子形燃料電池、及び導電性多孔シートの製造方法
Song et al. Carbon nanofibers: synthesis and applications
Chen et al. Electrospinning technology for applications in supercapacitors
Lee et al. Electrospun carbon nanofibers as a functional composite platform: A review of highly tunable microstructures and morphologies for versatile applications
KR101118186B1 (ko) 초고용량 커패시터용 전극물질, 이 전극물질을 이용한 초고용량 커패시터 전극 및 그 제조방법
Mao et al. Microwave-assisted oxidation of electrospun turbostratic carbon nanofibers for tailoring energy storage capabilities
Pant et al. Graphene sheets assembled into three-dimensional networks of carbon nanofibers: A nano-engineering approach for binder-free supercapacitor electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510386

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15129336

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015768419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768419

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167029624

Country of ref document: KR

Kind code of ref document: A