WO2015146834A1 - Co2回収装置及びco2回収方法 - Google Patents

Co2回収装置及びco2回収方法 Download PDF

Info

Publication number
WO2015146834A1
WO2015146834A1 PCT/JP2015/058498 JP2015058498W WO2015146834A1 WO 2015146834 A1 WO2015146834 A1 WO 2015146834A1 JP 2015058498 W JP2015058498 W JP 2015058498W WO 2015146834 A1 WO2015146834 A1 WO 2015146834A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
absorbing solution
reservoir
absorbing
absorbent
Prior art date
Application number
PCT/JP2015/058498
Other languages
English (en)
French (fr)
Inventor
修 宮本
上條 孝
大石 剛司
晋平 川▲崎▼
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/128,056 priority Critical patent/US9993767B2/en
Priority to CA2943180A priority patent/CA2943180C/en
Priority to EP15769414.2A priority patent/EP3108954B1/en
Priority to AU2015235196A priority patent/AU2015235196B2/en
Publication of WO2015146834A1 publication Critical patent/WO2015146834A1/ja
Priority to US15/978,755 priority patent/US10213727B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/12Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • B01D19/001Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid
    • B01D19/0015Degasification of liquids with one or more auxiliary substances by bubbling steam through the liquid in contact columns containing plates, grids or other filling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4283Bottom stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a CO 2 recovery device and a CO 2 recovery method, and relates to a CO 2 recovery device and a CO 2 recovery method for recovering CO 2 in a gas to be treated using a CO 2 absorbent.
  • the liquid level of the CO 2 absorbing liquid is set within a predetermined range using a liquid level gauge. Is controlling.
  • the CO 2 absorption liquid regeneration tower of the conventional CO 2 recovery apparatus in order to send the CO 2 absorption liquid stably, it is necessary to secure a certain amount of CO 2 absorption liquid at the tower bottom.
  • the stored CO 2 absorbent may be thermally degraded.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a CO 2 recovery apparatus and a CO 2 recovery method that can reduce the thermal degradation at the time of reproduction of the CO 2 absorbing solution.
  • CO 2 recovery apparatus of the present invention absorption and CO 2 absorption tower for absorbing the CO 2 to the contained in the gas to be treated by contacting the gas to be treated and the CO 2 absorbing solution in the CO 2 absorbing solution, the CO 2 comprising to the CO 2 absorbing solution regeneration tower by releasing CO 2 to regenerate the CO 2 absorbing solution from the CO 2 absorbing solution by heating the CO 2 absorbing solution with the said CO 2 absorbing solution regeneration tower
  • a liquid level measuring device that is disposed in the second reservoir and measures the liquid level of the CO 2 absorbing liquid that changes between the first reservoir and the second reservoir, and the liquid level the CO between the first reservoir on the basis of the measurement result of the measuring device and the second storage unit
  • the relatively capacity than the first reservoir is provided with a smaller second reservoir, required for sending stably from the CO 2 absorbing solution regeneration tower to the CO 2 absorber
  • the amount of the CO 2 absorbing liquid can be reduced.
  • CO 2 recovery apparatus can reduce the residence time of the CO 2 absorbing solution in the CO 2 absorbing solution regeneration tower, it is possible to reduce the thermal deterioration during regeneration of the CO 2 absorbing liquid.
  • the liquid level height the secured, entrainment can be prevented gas CO 2 absorbing solution regeneration tower with the liquid feed of CO 2 absorbing solution.
  • an inner diameter d2 of the second storage unit is relatively smaller than an inner diameter d1 of the first storage unit.
  • the ratio (d2: d1) of the inner diameter d2 of the second reservoir and the inner diameter d1 of the first reservoir is in the range of 1:10 to 1: 2. Is preferred.
  • the second reservoir is a cylindrical member provided at the bottom of the CO 2 absorbing liquid regeneration tower.
  • the liquid flow rate of the CO 2 absorbent to be fed from the second reservoir to the CO 2 absorption tower is 0.3 m / s or less.
  • the liquid flow rate of CO 2 absorption liquid is an appropriate range, winding can be prevented gas CO 2 absorbing solution regeneration tower with the liquid feed of CO 2 absorbing solution.
  • CO 2 recovery method of the present invention absorption and CO 2 absorption step of absorbing CO 2 to the contained in the gas to be treated by contacting the gas to be treated and the CO 2 absorbing solution in the CO 2 absorbing solution, the CO 2 wherein to the CO 2 absorbing solution regeneration step by releasing CO 2 to regenerate the CO 2 absorbing solution from the CO 2 absorbing solution the CO 2 absorbing solution by heating in a CO 2 absorbing solution regeneration tower, the said CO in 2 absorbing solution regeneration step, a first reservoir portion in which the CO 2 absorbing solution in the CO 2 absorbing solution regeneration tower is temporarily stored, and the second reservoir a relatively smaller capacity than the first storage part the liquid level of the CO 2 absorbing solution which changes measured between, controls the liquid level of the CO 2 absorbing solution with the first reservoir on the basis of the measured liquid level and the second reservoir It is characterized by doing.
  • CO 2 recovery method since relatively capacity than the first reservoir is provided with a smaller second reservoir, required for sending stably from the CO 2 absorbing solution regeneration tower to the CO 2 absorber The amount of the CO 2 absorbing liquid can be reduced.
  • CO 2 recovery method can reduce the residence time of the CO 2 absorbing solution in the CO 2 absorbing solution regeneration tower, it is possible to reduce the thermal deterioration during regeneration of the CO 2 absorbing liquid.
  • the liquid level height the secured, entrainment can be prevented gas CO 2 absorbing solution regeneration tower with the liquid feed of CO 2 absorbing solution.
  • an inner diameter d2 of the second reservoir is relatively smaller than an inner diameter d1 of the first reservoir.
  • the ratio (d2: d1) between the inner diameter d2 of the second reservoir and the inner diameter d1 of the first reservoir is in the range of 1:10 to 1: 2. Is preferred.
  • the second reservoir is preferably a cylindrical member provided at the bottom of the CO 2 absorbent regenerator.
  • the liquid flow rate of the CO 2 absorbing liquid fed from the second reservoir to the CO 2 absorption tower is 0.3 m / s or less.
  • the liquid flow rate of CO 2 absorption liquid is an appropriate range, winding can be prevented gas CO 2 absorbing solution regeneration tower with the liquid feed of CO 2 absorbing solution.
  • FIG. 1 is a schematic view of a CO 2 recovery apparatus according to the first embodiment.
  • FIG. 2 is a schematic enlarged view of the bottom of a general CO 2 absorbent regenerator tower.
  • FIG. 3 is a schematic enlarged view of the bottom of a general CO 2 absorbent regenerator.
  • FIG. 4 is a schematic enlarged view of the bottom of the CO 2 absorbent regeneration tower according to the present embodiment.
  • FIG. 5 is a schematic enlarged view of the tower bottom of the CO 2 absorbent regeneration tower according to the present embodiment.
  • FIG. 6 is a diagram showing another configuration example of the CO 2 absorbent regenerator according to the present embodiment.
  • FIG. 7A is an explanatory diagram of the distributor according to the present embodiment.
  • FIG. 7B is an explanatory diagram of the distributor according to the present embodiment.
  • the present inventors have found that in the conventional CO 2 recovery apparatus, CO 2 depending on the residence time of the CO 2 absorbing solution in the CO 2 absorbing solution regeneration tower which heats the CO 2 absorbing solution reproducing the CO 2 absorbing solution We focused on the thermal degradation of the absorbent. And the present inventors provide a CO 2 absorption tower by providing the 2nd storage part with a capacity
  • FIG. 1 is a schematic view of a CO 2 recovery apparatus according to an embodiment of the present invention.
  • this CO 2 recovery apparatus 1 absorbs CO 2 in an exhaust gas (treated gas) 11A containing CO 2 discharged from industrial equipment such as a boiler and a gas turbine, and has a high concentration. It is a device that recovers as CO 2 gas.
  • the CO 2 recovery apparatus 1 includes a cooling tower 12 that cools an exhaust gas 11A containing CO 2 discharged from an industrial facility such as a boiler or a gas turbine, and a cooled exhaust gas 11A that is provided at the rear stage of the cooling tower 12 and is cooled.
  • a CO 2 absorption liquid 13 is circulated between a CO 2 absorption tower 14 and a CO 2 absorption liquid regeneration tower 15.
  • CO 2 absorbing solution 13 (lean solution) is supplied to the CO 2 absorbing solution regeneration tower 15 as it absorbs CO 2 in the CO 2 absorber 14 the CO 2 absorbing liquid 13 (rich solution), also, the CO 2 absorbing liquid 13 (rich solution) is supplied to the CO 2 absorber 14 as the CO 2 absorbing liquid 13 is almost all CO 2 is removed reproduced (lean solution) in the CO 2 absorbing solution regeneration tower 15.
  • the cooling tower 12 has a cooling unit 121 that cools the exhaust gas 11A.
  • a circulation line L 1 is provided between the bottom of the cooling tower 12 and the top of the cooling unit 121.
  • the circulation line L 1 a heat exchanger 122 for cooling the cooling water W 1
  • a circulation pump 123 is provided for circulating the cooling water W 1 in the circulation line L within 1.
  • the cooling unit 121 by countercurrent contact between the exhaust gas 11A and the cooling water W 1, the exhaust gas 11A is cooled.
  • the heat exchanger 122 cools the cooling water W 1 which is heated by heat exchange with the exhaust gas 11A.
  • the circulation pump 123 supplies the cooling water W 1 flowing down to the bottom of the cooling tower 12 via the heat exchanger 122 to the top of the cooling unit 121.
  • the CO 2 absorption tower 14 is provided on the lower side of the CO 2 absorption tower 14, and is provided on the CO 2 absorption section 141 to which the exhaust gas 11 A cooled by the cooling tower 12 is supplied, and on the upper side of the CO 2 absorption tower 14.
  • a water washing unit 142 The bottom of the washing section 142, the liquid reservoir 144 for storing the cleaning water W 2 for cleaning the exhaust gas 11B which CO 2 has been removed is provided. Between the liquid storage portion 144 and the upper portion of the washing section 142, the circulating circulating the supplied washing water W 2 including the CO 2 absorbing solution 13 recovered by the liquid reservoir 144 from the top side of the washing unit 142 line L 2 is provided.
  • This circulation line L 2 a heat exchanger 21 for cooling the wash water W 2, circulating cleaning water W 2 including the CO 2 absorbing solution recovered in the liquid reservoir 144 through the heat exchanger 21 line L
  • a circulation pump 22 that circulates in 2 is provided.
  • the circulation line L 2 is provided with an extraction line L 3 for extracting a part of the cleaning water W 2 (cleaning water W 3 ) and supplying it to the CO 2 absorber 141.
  • the extraction line L 3 is provided with an adjustment valve 23 that adjusts the supply amount of the cleaning water W 3 supplied to the CO 2 absorbent 13 (lean solution).
  • the exhaust gas 11B from which CO 2 has been removed rises via the chimney tray 145. Then, the exhaust gas 11B is a flue gas 11C to the CO 2 absorbing liquid 13 to be entrained in the exhaust gas 11B and the gas-liquid contact with washing water W 2 supplied from the top side is recovered by circulating the washing water-washing section 142.
  • the exhaust gas 11 ⁇ / b > C is captured by the mist eliminator 146, and is discharged from the top 14 a of the CO 2 absorption tower 14 to the outside.
  • the CO 2 absorption liquid 13 (rich solution) that has absorbed CO 2 by the CO 2 absorption tower 14 is the CO 2 absorption liquid.
  • a rich solution supply pipe 50 for supplying to the upper side of the regeneration tower 15 is provided.
  • a rich / lean solution heat exchanger 52 that heats the CO 2 absorbing solution 13 (rich solution) that has absorbed the CO 2 absorbing solution 13 (lean solution) from which CO 2 has been removed by heating with steam. .
  • CO 2 absorbing solution regeneration tower 15 is provided at the center portion of the CO 2 absorbing solution regeneration tower 15, a body portion (first capacitance section) 151 for CO 2 absorbing liquid 13 that CO 2 absorption is supplied, the main body portion 151
  • the mirror surface portion 152 of the lower tower bottom portion 15 b and the boot portion (second capacity portion) 153 provided at the bottom portion of the mirror surface portion 152 are provided.
  • the boot portion 153 is provided downward from the bottom of the mirror surface portion 152.
  • the boot portion 153, the liquid level meter for measuring the liquid level of the CO 2 absorbing solution regeneration tower 15 from the CO 2 absorber 14 to supply CO 2 absorbing solution 13 (liquid level measuring device) 101 is provided.
  • the liquid level measured by the liquid level meter 101 is transmitted to the control device 102.
  • a circulation line L 4 for circulating the CO 2 absorbent 13 flowing down to the bottom of the tower is provided at the bottom of the boot portion 153 of the CO 2 absorbent regeneration tower 15.
  • the circulation line L 4 is provided with a regenerative heater 31 that heats the CO 2 absorbent 13 with saturated steam S.
  • This gas discharge line L 5 represents a capacitor 42 which condenses the moisture in the CO 2 gas 41, and the separation drum 43 to separate the CO 2 gas 41 and condensed water W 5 is provided.
  • the CO 2 gas 44 from which the condensed water W 5 has been separated is discharged to the outside from the upper part of the separation drum 43.
  • the condensed water line L 6 is provided with a condensed water circulation pump 45 that supplies the condensed water W 5 separated by the separation drum 43 to the upper part of the CO 2 absorbent regeneration tower 15.
  • a lean solution supply pipe 53 is provided to be supplied to the upper part of the CO 2 absorber 141.
  • the lean solution supply pipe 53 is a rich / lean for heating the CO 2 absorbing solution 13 (rich solution) that has absorbed CO 2 by the CO 2 absorbing solution 13 (lean solution) from which CO 2 has been removed by heating with steam.
  • a cooling unit 55 is provided for cooling.
  • the lean solution pump 54 can control the supply amount of the CO 2 absorbent 13 (lean solution) by the control device 102.
  • FIGS. 2 and 3 are schematic enlarged views of the bottom 15b of a general CO 2 absorbent regenerator 15 and FIGS. 4 and 5 show the CO 2 absorbent regenerator 15 according to the present embodiment. It is a typical enlarged view of the tower bottom part 15b. 2 to 5, for convenience of explanation, devices such as a reboiler are omitted.
  • a general CO 2 absorbent regenerator 15 includes a cylindrical main body 151 having a predetermined inner diameter d1, and a curved mirror surface 152 provided at the lower portion of the main body 151. Is provided. A chimney tray 154 provided with a plurality of through holes is provided on the upper portion of the main body 151. The steam 13S generated by heating the CO 2 absorbent 13 stored at the bottom of the CO 2 absorbent regeneration tower 15 through the chimney tray 154 is configured to rise. At the bottom of the mirror surface portion 152, the liquid feed tube 156 for feeding toward a CO 2 absorbing solution 13 in the CO 2 absorber 14 is provided.
  • a liquid feeding pipe 158 for feeding the gas-liquid mixed CO 2 absorbent 13 that has been partially vaporized by being fed into the CO 2 absorbent regeneration tower 15 is provided.
  • a dispersion device 159 for dispersing the gas-liquid mixed CO 2 absorbent 13 in the CO 2 absorbent regenerator 15 is connected to the liquid feeding pipe 158.
  • the disperser 159 is a substantially cylindrical member having a notch 159a provided at the center, and disperses the CO 2 absorbent 13 mixed with gas and liquid from the notch 159a downward.
  • the CO 2 absorbent 13 is temporarily stored in a predetermined range R1 from the bottom of the mirror surface 152 of the main body 151. CO 2 absorbing liquid 13 to be stored in this range, the CO 2 absorbing liquid that must be reserved for stably from the CO 2 absorbing solution regeneration tower 15 to the CO 2 absorption tower 14 to feed the CO 2 absorbing solution 13 13.
  • the main body 151 is provided with a liquid level meter 101 for measuring the liquid level of the CO 2 absorbent 13 stored in the predetermined range R1.
  • the liquid level measured by the liquid level gauge 101 is transmitted by the control device 102.
  • the control device 102 adjusts the liquid feed amount of the lean solution pump 54 that feeds the CO 2 absorbent regeneration tower 15 to the CO 2 absorber 14 according to the liquid level measured by the level gauge 101.
  • the level gauge 101 is installed at a predetermined height H from the upper end portion 152a of the mirror portion 152 in the general CO 2 absorbing liquid regeneration tower 15.
  • the absorption liquid regeneration tower 15 can stably stabilize the CO 2 absorption tower 14. while maintaining the liquid volume CO 2 absorbing liquid 13 necessary for sending the CO 2 absorbing solution 13, at the same time, since the distance to the liquid supply pipe 156 is kept from the control liquid level, the liquid feed pipe 156 It is also possible to prevent gas entrainment.
  • the control device 102 removes the CO 2 absorbing solution 13 from the lean solution pump 54. Stop feeding.
  • the liquid level gauge 101 is thus installed and the liquid level in the predetermined range R2 is controlled, the CO 2 absorbent 13 is dispersed by the disperser 13 and supplied into the CO 2 absorbent regenerator 15. Entrainment of the generated foam can be prevented.
  • the CO 2 absorbent regenerator 15 includes a cylindrical main body 151 (first reservoir) having a predetermined inner diameter d1 and a lower portion of the main body 151.
  • a mirror surface portion 152 having a curved surface portion provided on the bottom surface and a boot portion (second storage portion) 153 as a cylindrical member are provided on the bottom portion of the mirror surface portion 152 downward from the bottom portion of the mirror surface portion 152.
  • a liquid feeding tube 156 is provided at the bottom of the mirror surface portion 153 a of the boot portion 153.
  • the CO 2 absorbent 13 is temporarily stored in the main body 151, the mirror surface 152, and the boot 153.
  • the boot portion 153 has an inner diameter d2 that is relatively small with respect to the inner diameter d1 of the main body portion 151.
  • the ratio (d2: d1) between the inner diameter d1 of the main body 151 and the inner diameter d2 of the boot portion 153 is, for example, 1: 5.
  • the main body 151 temporarily stores the CO 2 absorbent 13 so as to have a predetermined height R1 from the bottom of the boot portion 153.
  • the level gauge 101 is installed at a predetermined height H from the upper end 153b of the mirror part 153a at the lower end of the boot part 153, and measures the liquid level of the CO 2 absorbent 13 in the boot part 153.
  • the liquid level in the boot unit 153 measured by the liquid level meter 101 is transmitted by the control device 102.
  • the control device 102 controls the CO 2 absorbent 13 to be fed from the bottom 15b of the CO 2 absorbent regeneration tower 15 by the lean solution pump 54 in accordance with the liquid level in the boot part 153 measured by the liquid level gauge 101. Adjust the liquid volume.
  • the boot portion 153 having a relatively smaller capacity than the main body portion 151 is provided at the lower portion of the mirror surface portion 152, so that the general CO 2 absorption shown in FIG. compared with liquid regeneration tower 15, it can be reduced liquid amount of the CO 2 absorbing solution regeneration tower 15 stable in the CO 2 absorber 14 it is necessary to ensure for feeding in CO 2 absorbing liquid 13 Become.
  • the dead space of the CO 2 absorbing liquid 13 that occurs at the bottom of the CO 2 absorbing solution regeneration tower 15 can be reduced to a range of R5, heat the CO 2 absorbing liquid 13 It becomes possible to prevent deterioration.
  • the boot portion 153 having a relatively smaller capacity than the main body 151 is provided, so that the lower portion of the CO 2 absorbent regeneration tower 15 is provided. Since a sufficient distance between the liquid level of the CO 2 absorbent 13 stored in the tank and the liquid feeding pipe 156 can be secured, it is possible to prevent entrainment of gas in the CO 2 absorbent regeneration tower 15.
  • the ratio (d2: d1) between the inner diameter d2 of the boot portion 153 and the inner diameter d1 of the main body portion 151 is in the range of 1:10 to 1: 2. Is preferred. With this configuration, as described above, the CO 2 absorbent 13 required for controlling the liquid level of the CO 2 absorbent 13 can be efficiently reduced, and the liquid level of the CO 2 absorbent 13 can be easily controlled. .
  • the ratio (d2: d1) between the inner diameter d2 of the boot portion 153 and the inner diameter d1 of the main body portion 151 is more preferably 1: 8 to 1: 3, and more preferably 1: 5, from the viewpoint of further improving the above-described effects. preferable.
  • the liquid flow rate of the CO 2 absorbent 13 that is sent from the boot portion 153 to the CO 2 absorber 14 is preferably 0.3 m / s or less.
  • liquid CO 2 absorbing solution regeneration tower 15 to the main body portion 151 from the relatively inner diameter d2 of the boot portion 153 provided with a small CO 2 absorbing liquid 13 of the liquid level CO 2 absorbing solution 13 required to control the even when reducing the amount, it is possible to prevent the entrainment of gas in the CO 2 absorbing solution regeneration tower 15 to the CO 2 absorbing solution 13 fed from the boot 153.
  • the liquid flow rate of the CO 2 absorbent 13 fed from the boot portion 153 to the CO 2 absorber 14 is more preferably 0.25 m / s or less, and still more preferably 0.20 m / s or less.
  • FIG. 6 is a diagram illustrating another configuration example of the CO 2 absorbent regenerator 15 according to the present embodiment.
  • a tip 160 forms a curved surface 160 a (see FIGS. 7A and 7B) along the peripheral surface of the main body 151 near the upper wall surface of the main body 151, and openings 160 b are formed on both sides.
  • a disperser 160 is provided.
  • the disperser 160 disperses the gas-liquid mixed CO 2 absorbent 13 supplied from the liquid feeding pipe 158 to both sides along the peripheral surface of the main body 151 from the opening 160b (see FIG. 7A).
  • the CO 2 absorbing liquid 13 so flows down along the peripheral surface of the main body portion 151, the bottom of the CO 2 absorbing solution 13 and the CO 2 absorbing solution regeneration tower 15 flowing down the CO 2 absorbing solution regeneration tower 15 and CO 2 absorbing solution 13 reservoir was it becomes possible to prevent the occurrence of bubbles upon contact, can be prevented further entrainment of bubbles into the liquid feed pipe 156.
  • the present invention is not limited to this configuration.
  • the CO 2 absorbing liquid 13 supplied from the liquid feeding pipe 158 is dispersed along the curved surface 160a at the tip of the disperser 160 and provided on both sides. Dispersed along the curved surfaces on both sides from the opening 160b.
  • another disperser 161 may be provided on the opposing surface of the disperser 160 provided in the main body 151.
  • the disperser 161 includes a curved surface 161a along the peripheral surface of the main body 151, and openings 161b provided on both sides.
  • the disperser 160 connected to one liquid supply pipe 158a and the disperser 161 connected to the other liquid supply pipe 158b are each CO 2. Since the absorbing liquid 13 is dispersed, the CO 2 absorbing liquid 13 can be efficiently dispersed.
  • Exhaust gas 11A containing CO 2 discharged from industrial facilities such as boilers and gas turbines are cooled by cooling water W 1 and countercurrent contact is introduced into the cooling tower 12.
  • the cooled exhaust gas 11A is introduced into the CO 2 absorption tower 14 through the flue 16, and the flow rate of the exhaust gas 11A introduced into the CO 2 absorption tower 14 is measured.
  • Exhaust gas 11A which is introduced into the CO 2 absorber 14 is a CO 2 absorbing section 141 are contacted CO 2 absorbing solution 13 and the counter stream comprising alkanolamine, CO 2 in the flue gas 11A is absorbed in the CO 2 absorbing solution 13
  • the exhaust gas 11B from which CO 2 has been removed is obtained.
  • the exhaust gas 11B from which the CO 2 has been removed rises via the chimney tray 145 and comes into gas-liquid contact with the cleaning water W 2 supplied from the top side of the water washing unit 142, and the CO 2 absorbing solution 13 accompanying the exhaust gas 11B.
  • the exhaust gas 11C recovered by the circulation cleaning is obtained.
  • the exhaust gas 11 ⁇ / b > C is captured by the mist eliminator 146, and is discharged from the top 14 a of the CO 2 absorption tower 14 to the outside.
  • CO 2 absorption tower 14 CO 2 absorbing liquid 13 that has absorbed CO 2 in (rich solution) through a rich-solution supply pipe 50 in a rich-lean solution heat exchanger 52 with the CO 2 absorbing solution 13 (lean solution)
  • the rich solvent pump 51 supplies the CO 2 absorbent regeneration tower 15 to the upper part.
  • the CO 2 absorbent 13 supplied to the CO 2 absorbent regenerating tower 15 is removed to CO 2 and becomes a semi-lean solution while flowing down to the bottom of the tower via the CO 2 absorbent supply section 151.
  • This semi-lean solution is circulated through the circulation line L 4 and heated by the saturated steam S in the regenerative heater 31 to become the CO 2 absorbent 13 (lean solution).
  • the CO 2 absorbent 13 (lean solution) at the bottom 15b of the CO 2 absorbent regeneration tower 15 is exchanged with the CO 2 absorbent 13 (rich solution) by the rich / lean solution heat exchanger 52 via the lean solution supply pipe 53.
  • the lean solution pump 54 supplies the upper part of the CO 2 absorber 141 of the CO 2 absorber 14.
  • the control device 102 controls the liquid level so as to be within a predetermined range R4 between the upper portion 153c of the boot portion 153 and the main body 151 according to the liquid level measured by the flow meter 101.
  • control device 102 is in the entire range R4 based on the relational expression between the liquid amount and the liquid level set in each of the range R41 of the main body 151, the range R42 of the mirror surface 152, and the range R3 of the boot portion. Control is performed so that the liquid amount and the liquid level are in a proportional relationship. Thereby, stable liquid level control becomes possible.
  • the control unit 102 from the viewpoint of preventing entrainment of liquid delivery time of the gas in the CO 2 absorbing solution 13, it is preferable that the CO 2 absorbing liquid 13 in the boot portion 153 than 0.3 m / s.
  • CO 2 recovering apparatus 1 can reduce the residence time of the CO 2 absorbing solution 13 in the CO 2 absorbing solution regeneration tower 15, it is possible to reduce the thermal deterioration at the time of reproduction of the CO 2 absorbing solution 13 .
  • the boot portion 153 having a relatively smaller capacity than the main body portion 151 is provided below the main body portion 151, so that a high liquid level is ensured.
  • the boot portion 153 may be a member having a relatively smaller capacity than the main body portion 151, and may be a polygonal columnar member such as a triangular prism or a quadrangular prism, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 CO吸収液の再生時の熱劣化を低減できるCO回収装置及びCO回収方法を提供すること。本発明のCO回収装置1は、排ガス11Aに含まれるCOをCO吸収液13に吸収させるCO吸収塔14と、COを吸収したCO吸収液13を加熱して再生するCO吸収液再生塔15と、を具備し、CO吸収液再生塔15は、CO吸収液13が一時的に貯留される本体部151と、本体部151の鏡面部152から下方に向けて設けられ、本体部151より相対的に容量が小さいブーツ部153と、ブーツ部153に配設され、本体部151とブーツ部153との間で変化するCO吸収液13の液面レベルを測定する液面計101と、液面計101の測定結果に基づいて本体部151とブーツ部153との間でCO吸収液13の液面レベルを制御する制御装置102と、を有する。

Description

CO2回収装置及びCO2回収方法
 本発明は、CO回収装置及びCO回収方法に関し、CO吸収液を用いて被処理ガス中のCOを回収するCO回収装置及びCO回収方法に関する。
 従来、火力発電所のボイラなどから排出されるCOを回収するCO回収装置が提案されている(例えば、特許文献1参照)。このCO回収装置においては、排ガスをCO吸収塔に導入して排ガスに含まれるCOにCO吸収液を接触させて吸収させた後、COを吸収したCO吸収液をCO吸収液再生塔に送液して加熱して脱炭酸させて高濃度のCOガスとして回収する。そして、脱炭酸後のCO吸収液をポンプによって供給することにより、CO吸収塔とCO吸収液再生塔との間でCO吸収液を循環させて使用している。
特許第3212524号公報
 ところで、CO吸収液再生塔の塔底部では、CO吸収液をCO吸収塔に送液するポンプのキャビテーションを防ぐために、液面計を用いてCO吸収液の液面レベルを所定範囲に制御している。しかしながら、従来のCO回収装置のCO吸収液再生塔では、CO吸収液を安定して送液するために一定量のCO吸収液を塔底部に確保する必要があり、塔底部に貯留したCO吸収液が熱劣化する場合があった。
 本発明は、このような実情に鑑みてなされたものであり、CO吸収液の再生時の熱劣化を低減できるCO回収装置及びCO回収方法を提供することを目的とする。
 本発明のCO回収装置は、被処理気体とCO吸収液とを接触させて前記被処理気体に含まれるCOを前記CO吸収液に吸収させるCO吸収塔と、COを吸収した前記CO吸収液を加熱して当該CO吸収液からCOを放出させて前記CO吸収液を再生するCO吸収液再生塔と、を具備し、前記CO吸収液再生塔は、前記CO吸収液が一時的に貯留される第1貯留部と、前記第1貯留部の底部から下方に向けて設けられ、前記第1貯留部より相対的に容量が小さい第2貯留部と、前記第2貯留部に配設され、前記第1貯留部と前記第2貯留部との間で変化する前記CO吸収液の液面レベルを測定する液面測定装置と、前記液面測定装置の測定結果に基づいて第1貯留部と前記第2貯留部との間で前記CO吸収液の液面レベルを制御する制御装置と、を有することを特徴とする。
 このCO回収装置によれば、第1貯留部より相対的に容量が小さい第2貯留部を設けるので、CO吸収液再生塔からCO吸収塔へ安定して送液するために必要なCO吸収液の液量を削減することができる。これにより、CO回収装置は、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減でき、CO吸収液の再生時の熱劣化を低減することが可能となる。しかも、CO吸収液の液量を削減した場合であっても、第1貯留部の下方に第1貯留部より相対的に容量が小さい第2貯留部を設けるので、液面レベルの高さを確保でき、CO吸収液の送液に伴うCO吸収液再生塔内のガスの巻き込みを防ぐこともできる。
 本発明のCO回収装置においては、前記第2貯留部の内径d2が、前記第1貯留部の内径d1に対して相対的に小さいことが好ましい。この構成により、CO吸収液再生塔からCO吸収塔へ安定して送液するために必要なCO吸収液の液量を更に削減することが可能になるので、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減でき、CO吸収液の再生時の熱劣化をより一層低減できる。
 本発明のCO回収装置においては、前記第2貯留部の内径d2と前記第1貯留部の内径d1との比率(d2:d1)が、1:10~1:2の範囲内であることが好ましい。この構成により、CO吸収液再生塔からCO吸収塔へ安定して送液するために必要なCO吸収液の液量を更に削減することが可能になるので、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減でき、CO吸収液の再生時の熱劣化をより一層低減できる。
 本発明のCO回収装置においては、前記第2貯留部は、前記CO吸収液再生塔の底部に設けられた円筒状部材であることが好ましい。この構成により、CO吸収液再生塔からCO吸収塔へ安定して送液するために必要なCO吸収液の液量を更に削減することが可能になるので、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減でき、CO吸収液の再生時の熱劣化をより一層低減できる。
 本発明のCO回収装置においては、前記第2貯留部内から前記CO吸収塔に送液する前記CO吸収液の液流速が0.3m/s以下であることが好ましい。この構成により、CO吸収液の液流速が適度な範囲となるので、CO吸収液の送液に伴うCO吸収液再生塔内のガスの巻き込みを防ぐことができる。
 本発明のCO回収方法は、被処理気体とCO吸収液とを接触させて前記被処理気体に含まれるCOを前記CO吸収液に吸収させるCO吸収工程と、COを吸収した前記CO吸収液をCO吸収液再生塔で加熱して当該CO吸収液からCOを放出させて前記CO吸収液を再生するCO吸収液再生工程と、を含み、前記CO吸収液再生工程において、CO吸収液再生塔の前記CO吸収液が一時的に貯留される第1貯留部と、前記第1貯留部より相対的に容量が小さい第2貯留部との間で変化する前記CO吸収液の液面レベルを測定し、測定した液面レベルに基づいて第1貯留部と前記第2貯留部との間で前記CO吸収液の液面レベルを制御することを特徴とする。
 このCO回収方法によれば、第1貯留部より相対的に容量が小さい第2貯留部を設けるので、CO吸収液再生塔からCO吸収塔へ安定して送液するために必要なCO吸収液の液量を削減することができる。これにより、CO回収方法は、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減でき、CO吸収液の再生時の熱劣化を低減することが可能となる。しかも、CO吸収液の液量を削減した場合であっても、第1貯留部の下方に第1貯留部より相対的に容量が小さい第2貯留部を設けるので、液面レベルの高さを確保でき、CO吸収液の送液に伴うCO吸収液再生塔内のガスの巻き込みを防ぐこともできる。
 本発明のCO回収方法においては、前記第2貯留部の内径d2が、前記第1貯留部の内径d1に対して相対的に小さいことが好ましい。この方法により、CO吸収液再生塔からCO吸収塔へ安定して送液するために必要なCO吸収液の液量を更に削減することが可能になるので、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減でき、CO吸収液の再生時の熱劣化をより一層低減できる。
 本発明のCO回収方法においては、前記第2貯留部の内径d2と前記第1貯留部の内径d1との比率(d2:d1)が、1:10~1:2の範囲内であることが好ましい。この方法により、CO吸収液再生塔からCO吸収塔へ安定して送液するために必要なCO吸収液の液量を更に削減することが可能になるので、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減でき、CO吸収液の再生時の熱劣化をより一層低減できる。
 本発明のCO回収方法においては、前記第2貯留部は、前記CO吸収液再生塔の底部に設けられた円筒状部材であることが好ましい。この方法により、CO吸収液再生塔からCO吸収塔へ安定して送液するために必要なCO吸収液の液量を更に削減することが可能になるので、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減でき、CO吸収液の再生時の熱劣化をより一層低減できる。
 本発明のCO回収方法においては、前記第2貯留部内から前記CO吸収塔に送液する前記CO吸収液の液流速が0.3m/s以下であることが好ましい。この方法により、CO吸収液の液流速が適度な範囲となるので、CO吸収液の送液に伴うCO吸収液再生塔内のガスの巻き込みを防ぐことができる。
 本発明によれば、CO吸収液の再生時の熱劣化を低減できるCO回収装置及びCO回収方法を実現できる。
図1は、第1の実施形態に係るCO回収装置の概略図である。 図2は、一般的なCO吸収液再生塔の塔底部の模式的な拡大図である。 図3は、一般的なCO吸収液再生塔の塔底部の模式的な拡大図である。 図4は、本実施の形態に係るCO吸収液再生塔の塔底部の模式的な拡大図である。 図5は、本実施の形態に係るCO吸収液再生塔の塔底部の模式的な拡大図である。 図6は、本実施の形態に係るCO吸収液再生塔の他の構成例を示す図である。 図7Aは、本実施の形態に係る分散器の説明図である。 図7Bは、本実施の形態に係る分散器の説明図である。
 本発明者らは、従来のCO回収装置においては、CO吸収液を加熱してCO吸収液を再生するCO吸収液再生塔内ではCO吸収液の滞留時間に応じてCO吸収液が熱劣化することに着目した。そして、本発明者らは、CO吸収液再生塔の第1貯留部としての塔本体部の下部に塔本体部より相対的に容量が小さい第2貯留部を設けることにより、CO吸収塔に安定して送液するためにCO吸収液再生塔の塔底部に確保する必要があるCO吸収液の液量を削減し、CO吸収液再生塔内におけるCO吸収液の滞留時間を削減してCO吸収液の熱劣化を防ぐことができることを見出し、本発明を完成させるに至った。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、適宜変更して実施可能である。また、以下の各実施の形態に係るCO回収装置の構成は適宜組み合わせて実施可能である。
 図1は、本発明の一実施形態に係るCO回収装置の概略図である。図1に示すように、このCO回収装置1は、ボイラやガスタービンなどの産業設備から排出されたCOを含有する排ガス(被処理気体)11A中のCOを吸収して高濃度のCOガスとして回収する装置である。このCO回収装置1は、ボイラやガスタービンなどの産業設備から排出されたCOを含有する排ガス11Aを冷却する冷却塔12と、この冷却塔12の後段に設けられ、冷却された排ガス11AとCO吸収液13とを接触させて排ガス11A中のCOをCO吸収液13に吸収させて除去するCO吸収塔14と、このCO吸収塔14の後段に設けられ、COを吸収したCO吸収液13からCOを放出させてCO吸収液13を再生するCO吸収液再生塔15とを具備する。
 このCO回収装置1においては、CO吸収液13がCO吸収塔14とCO吸収液再生塔15との間を循環している。CO吸収液13(リーン溶液)は、CO吸収塔14でCOを吸収してCO吸収液13(リッチ溶液)としてCO吸収液再生塔15に供給される、また、CO吸収液13(リッチ溶液)は、CO吸収液再生塔15でほぼ全てのCOが除去され再生されてCO吸収液13(リーン溶液)としてCO吸収塔14に供給される。
 冷却塔12は、排ガス11Aを冷却する冷却部121を有する。この冷却塔12の底部と冷却部121の頂部との間には、循環ラインLが設けられている。この循環ラインLには、冷却水Wを冷却する熱交換器122と、冷却水Wを循環ラインL内で循環させる循環ポンプ123とが設けられている。
 冷却部121では、排ガス11Aと冷却水Wとを向流接触させることにより、排ガス11Aが冷却される。熱交換器122は、排ガス11Aとの間での熱交換により加熱された冷却水Wを冷却する。循環ポンプ123は、熱交換器122を介して冷却塔12の底部に流下した冷却水Wを冷却部121の頂部に供給する。
 CO吸収塔14は、CO吸収塔14の下部側に設けられ、冷却塔12で冷却された排ガス11Aが供給されるCO吸収部141と、CO吸収塔14の上部側に設けられた水洗部142とを備える。水洗部142の底部には、COが除去された排ガス11Bを洗浄する洗浄水Wを貯留する液貯留部144が設けられている。この液貯留部144と水洗部142の上部との間には、液貯留部144で回収されたCO吸収液13を含む洗浄水Wを水洗部142の頂部側から供給して循環させる循環ラインLが設けられている。この循環ラインLには、洗浄水Wを冷却する熱交換器21と、熱交換器21を介して液貯留部144で回収されたCO吸収液を含む洗浄水Wを循環ラインL内で循環させる循環ポンプ22が設けられている。また、循環ラインLには、洗浄水Wの一部(洗浄水W)を抜き出してCO吸収部141に供給する抜き出しラインLが設けられている。この抜き出しラインLには、CO吸収液13(リーン溶液)に供給する洗浄水Wの供給量を調整する調整弁23が設けられている。
 CO吸収部141では、COを含有する排ガス11Aとアルカノールアミンなどを含むCO吸収液13とが対向流接触する。これにより、排ガス11A中のCOは、下記式に示す化学反応によりCO吸収液13に吸収される。この結果、COを含有する排ガス11Aは、CO吸収部141を通過することにより、COが除去された排ガス11Bとなる。
 R-NH+HO+CO→R-NHHCO
 水洗部142では、COが除去された排ガス11Bがチムニートレイ145を介して上昇する。そして、排ガス11Bは、水洗部142の頂部側から供給される洗浄水Wと気液接触して排ガス11Bに同伴するCO吸収液13が循環洗浄により回収された排ガス11Cとなる。この排ガス11Cは、ミストエリミネータ146でガス中のミストが捕捉されてCO吸収塔14の塔頂部14aから外部へ排出される。
 CO吸収塔14の塔底部14bとCO吸収液再生塔15の上部との間には、CO吸収塔14でCOを吸収したCO吸収液13(リッチ溶液)をCO吸収液再生塔15の上部側に供給するリッチ溶液供給管50が設けられている。このリッチ溶液供給管50には、CO吸収塔14でCOを吸収したCO吸収液13(リッチ溶液)をCO吸収液再生塔15に向けて供給するリッチソルベントポンプ51と、COを吸収したCO吸収液13(リッチ溶液)を水蒸気で加熱されてCOが除去されたCO吸収液13(リーン溶液)によって加熱するリッチ・リーン溶液熱交換器52とが設けられている。
 CO吸収液再生塔15は、CO吸収液再生塔15の中央部に設けられ、CO吸収したCO吸収液13が供給される本体部(第1容量部)151と、本体部151の下部の塔底部15bの鏡面部152と、鏡面部152の底部に設けられたブーツ部(第2容量部)153とを備える。ブーツ部153は、鏡面部152の底部から下方に向けて設けられている。ブーツ部153には、CO吸収液再生塔15からCO吸収塔14へ供給するCO吸収液13の液面レベルを測定する液面計(液面測定装置)101が設けられている。液面計101で測定された液面レベルは、制御装置102に伝達される。
 CO吸収液再生塔15のブーツ部153の底部には、塔底部に流下したCO吸収液13を循環する循環ラインLが設けられている。この循環ラインLには、飽和水蒸気SによってCO吸収液13を加熱する再生加熱器31が設けられている。
 CO吸収液再生塔15の塔頂部15aには、水蒸気を伴ったCOガス41を排出するガス排出ラインLが設けられている。このガス排出ラインLには、COガス41中の水分を凝縮するコンデンサ42と、COガス41と凝縮水Wとを分離する分離ドラム43とが設けられている。凝縮水Wが分離されたCOガス44は、分離ドラム43の上部から外部に放出される。分離ドラム43の底部とCO吸収液再生塔15の上部との間には、分離ドラム43にて分離された凝縮水WをCO吸収液再生塔15の上部に供給する凝縮水ラインLが設けられている。凝縮水ラインLには、分離ドラム43にて分離された凝縮水WをCO吸収液再生塔15の上部に供給する凝縮水循環ポンプ45が設けられている。
 また、CO吸収液再生塔15の塔底部とCO吸収塔14のCO吸収部141の上部には、CO吸収液再生塔15の塔底部のCO吸収液13(リーン溶液)をCO吸収部141の上部に供給するリーン溶液供給管53が設けられている。このリーン溶液供給管53には、水蒸気で加熱されてCOが除去されたCO吸収液13(リーン溶液)によってCOを吸収したCO吸収液13(リッチ溶液)を加熱するリッチ・リーン溶液熱交換器52と、CO吸収液再生塔15の塔底部のリーン溶液をCO吸収部141の上部に供給するリーン溶液ポンプ54と、CO吸収液13(リーン溶液)を所定の温度に冷却する冷却部55とが設けられている。このリーン溶液ポンプ54は、制御装置102によってCO吸収液13(リーン溶液)の供給量が制御可能になっている。
 次に、図2から図5を参照してCO回収装置1におけるCO吸収液再生塔15のCO吸収液13の液面レベルの制御について詳細に説明する。図2及び図3は、一般的なCO吸収液再生塔15の塔底部15bの模式的な拡大図であり、図4及び図5は、本実施の形態に係るCO吸収液再生塔15の塔底部15bの模式的な拡大図である。なお、図2から図5においては、説明の便宜上、リボイラーなどの機器を省略して示している。
 図2に示すように、一般的なCO吸収液再生塔15は、所定の内径d1を有する円筒状の本体部151と、この本体部151の下部に設けられた曲面状の鏡面部152とを備える。本体部151の上部には、複数の貫通孔が設けられたチムニートレイ154が設けられている。このチムニートレイ154を介してCO吸収液再生塔15の塔底部に貯留されたCO吸収液13が加熱されて発生した蒸気13Sが上昇するように構成されている。鏡面部152の底部には、CO吸収液13をCO吸収塔14に向けて送液する送液管156が設けられている。
 また、本体部151の上部には、チムニートレイ154の外周縁部に貯留されたCO吸収液13を抜き出してリボイラー(不図示)に送液する送液管157と、リボイラーで加熱(例えば、120℃)されて一部が気化した気液混合のCO吸収液13をCO吸収液再生塔15内に送液する送液管158とが設けられている。この送液管158には、気液混合のCO吸収液13をCO吸収液再生塔15内に分散させる分散器159が接続されている。この分散器159は、中央部に切欠部159aが設けられた略円筒状部材であり、この切欠部159aから下方に向けて気液混合のCO吸収液13を分散させる。
 本体部151の鏡面部152の底から所定範囲R1には、CO吸収液13が一時的に貯留されている。この範囲に貯留されるCO吸収液13は、CO吸収液再生塔15からCO吸収塔14に安定してCO吸収液13を送液するために確保する必要があるCO吸収液13である。また、本体部151には、所定範囲R1に貯留されたCO吸収液13の液面レベルを測定する液面計101が設けられている。この液面計101によって測定された液面レベルは、制御装置102によって伝送される。制御装置102は、液面計101で測定された液面レベルに応じてCO吸収液再生塔15からCO吸収塔14へ送液するリーン溶液ポンプ54の送液量を調整する。
 液面計101は、一般的なCO吸収液再生塔15においては、鏡部152の上端部152aから所定高さHに設置される。これにより、所定範囲R1の上端と液面計101との間の所定範囲R2でCO吸収液13の液量を制御することにより、吸収液再生塔15からCO吸収塔14に安定してCO吸収液13を送液するために必要なCO吸収液13の液量を確保しつつ、同時に、制御液面から送液管156までの距離が保たれるため、送液管156へのガス巻き込みも防ぐことが可能となる。制御装置102は、CO吸収液13の液面レベルが所定範囲R2の下端以下に低下した場合には、リーン溶液ポンプ54のキャビテーションを防ぐために、リーン溶液ポンプ54からのCO吸収液13の送液を停止する。このように液面計101を設置して所定範囲R2の液面レベルを制御することにより、分散器13でCO吸収液13を分散してCO吸収液再生塔15内に供給する際に発生する泡の巻き込みを防ぐことができる。
 ところで、上述したように、一般的なCO吸収液再生塔15においては、CO吸収液再生塔15からCO吸収塔14に安定してCO吸収液13を送液するために、所定範囲R2の下端以下の部分に常に所定量のCO吸収液13を確保する必要がある。このため、鏡部152を含む所定範囲R2の下端以下の部分は、常にCO吸収液13が滞留するデッドスペースとなり、CO吸収液13の熱劣化が増大する場合がある。
 そこで、例えば、図3に示すように、液面計101を鏡面部152に設置し、CO吸収液再生塔15からCO吸収塔14に安定して送液するために必要なCO吸収液13の液量を、鏡面部152の上端部152aとCO吸収液再生塔15の塔底部15bとの間の所定範囲R3に削減することも考えられる。しかしながら、この場合には、塔底部に貯留されたCO吸収液13の液面と送液管156との間の距離が小さくなるので、分散器159で分散して流下するCO吸収液13が塔底部に貯留されたCO吸収液13に接触した際に生じる泡が送液管156に侵入しやすくなる場合がある。また、この場合であっても、CO吸収液13の液量を所定範囲R3の下端以下の部分には依然として所定容量のデッドスペースが生じることとなる。
 そこで、本実施の形態では、図4に示すように、CO吸収液再生塔15に、所定の内径d1を有する円筒状の本体部151(第1貯留部)と、この本体部151の下部に設けられた曲面部を有する鏡面部152と、この鏡面部152の底部に鏡面部152の底部から下方に向けて円筒状部材としてのブーツ部(第2貯留部)153とを設ける。ブーツ部153の鏡面部153aの底部には、送液管156が設けられている。CO吸収液13は、本体部151、鏡面部152及びブーツ部153に一時的に貯留される。ブーツ部153は、本体部151の内径d1に対して相対的小さい内径d2を有している。本体部151の内径d1とブーツ部153の内径d2との比率(d2:d1)は、例えば、1:5である。本体部151には、ブーツ部153の底から所定高さR1となるようにCO吸収液13が一時的に貯留されている。液面計101は、ブーツ部153の下端部の鏡部153aの上端部153bから所定高さHに設置され、ブーツ部153内のCO吸収液13の液面レベルを測定する。この液面計101によって測定されたブーツ部153内の液面レベルは、制御装置102によって伝送される。制御装置102は、液面計101によって測定されるブーツ部153内の液面レベルに応じてリーン溶液ポンプ54によってCO吸収液再生塔15の塔底部15bから送液するCO吸収液13の液量を調整する。
 本実施の形態に係るCO吸収液再生塔15においては、本体部151より相対的による容量が小さいブーツ部153を鏡面部152の下部に設けるので、図2に示した一般的なCO吸収液再生塔15と比較し、CO吸収液再生塔15からCO吸収塔14に安定して送液するために確保する必要があるCO吸収液13の液量を削減することが可能となる。これにより、図5に示すように、CO吸収液再生塔15の下部に生じるCO吸収液13のデッドスペースをR5の範囲まで削減することが可能となるので、CO吸収液13の熱劣化を防ぐことが可能となる。そして、塔底部のCO吸収液13の液量を削減した場合であっても、本体部151より相対的による容量が小さいブーツ部153を設けているので、CO吸収液再生塔15の下部に貯留したCO吸収液13の液面と送液管156との間の距離を十分に確保することができるので、CO吸収液再生塔15内のガスの巻き込みを防ぐことができる。
 本実施の形態に係るCO回収装置1においては、ブーツ部153の内径d2と本体部151の内径d1との比率(d2:d1)が、1:10~1:2の範囲内であることが好ましい。この構成により、上述したように、CO吸収液13の液面レベルの制御に必要なCO吸収液13を効率良く削減できると共に、CO吸収液13の液面レベルの制御が容易となる。ブーツ部153の内径d2と本体部151の内径d1との比率(d2:d1)は、上述した作用効果が一層向上する観点から、1:8~1:3がより好ましく、1:5が更に好ましい。
 また、本実施の形態に係るCO回収装置1においては、ブーツ部153内からCO吸収塔14に送液するCO吸収液13の液流速が0.3m/s以下であることが好ましい。この構成により、CO吸収液再生塔15に本体部151より相対的に内径d2が小さいブーツ部153を設けてCO吸収液13の液面レベルの制御に必要なCO吸収液13の液量を削減した場合であっても、ブーツ部153から送液されるCO吸収液13へのCO吸収液再生塔15内のガスの巻き込みを防ぐことが可能となる。ブーツ部153内からCO吸収塔14に送液するCO吸収液13の液流速としては、0.25m/s以下がより好ましく、0.20m/s以下が更に好ましい。
 なお、上述した実施の形態では、中央部に切欠部159aが設けられた略円筒状部材の分散器159を用いた例について説明したが、分散器はこの構成に限定されない。図6は、本実施の形態に係るCO吸収液再生塔15の他の構成例を示す図である。図6に示す例では、本体部151の上部の壁面近傍に、先端が本体部151の周面に沿った曲面160a(図7A及び図7B参照)をなしており、両側方に開口部160bが設けられた分散器160が設けられている。この分散器160は、送液管158から供給された気液混合のCO吸収液13を開口部160bから本体部151の周面に沿って両側方に分散させる(図7A参照)。これにより、CO吸収液13は、本体部151の周面に沿って流下するので、CO吸収液再生塔15内を流下するCO吸収液13とCO吸収液再生塔15の下部に貯留したCO吸収液13とが接触した際の泡の発生を防ぐことが可能となり、送液管156への泡の巻き込みを一層防止できる。
 なお、図6に示した例では、一つの分散器160を設けた例について説明したが、この構成に限定されない。図7Aに示すように、分散器160を用いる場合には、送液管158から供給されるCO吸収液13が分散器160の先端の曲面160aに沿って分散されて両側方に設けられた開口部160bから両側方の曲面に沿ってそれぞれ分散される。このため、図7Bに示すように、本体部151に設けた分散器160の対向面に別の分散器161を設けてもよい。この分散器161は、分散器160と同様に、本体部151の周面に沿った曲面161aと、両側方に設けられた開口部161bとを有する。このように2つの分散器160、161を対向して配置することにより、一方の送液管158aに接続された分散器160及び他方の送液管158bに接続された分散器161でそれぞれCO吸収液13が分散されるので、効率良くCO吸収液13を分散させることが可能となる。
 次に、本実施の形態に係るCO回収装置1の全体動作について説明する。ボイラやガスタービンなどの産業設備から排出されたCOを含有する排ガス11Aは、冷却塔12に導入されて冷却水Wと向流接触されて冷却される。冷却された排ガス11Aは、煙道16を介してCO吸収塔14に導入されると共に、CO吸収塔14に導入される排ガス11Aの流量が測定される。CO吸収塔14に導入された排ガス11Aは、CO吸収部141でアルカノールアミンなどを含むCO吸収液13と対向流接触され、排ガス11A中のCOがCO吸収液13に吸収されてCOが除去された排ガス11Bとなる。
 COが除去された排ガス11Bは、チムニートレイ145を介して上昇して水洗部142の頂部側から供給される洗浄水Wと気液接触して排ガス11Bに同伴するCO吸収液13を循環洗浄により回収された排ガス11Cとなる。この排ガス11Cは、ミストエリミネータ146でガス中のミストが捕捉されてCO吸収塔14の塔頂部14aから外部へ排出される。
 CO吸収塔14でCOを吸収したCO吸収液13(リッチ溶液)は、リッチ溶液供給管50を介してリッチ・リーン溶液熱交換器52でCO吸収液13(リーン溶液)との間で熱交換された後、リッチソルベントポンプ51によってCO吸収液再生塔15の上部に供給される。CO吸収液再生塔15に供給されたCO吸収液13は、CO吸収液供給部151を介して塔底部に流下する間にCOが除去されてセミリーン溶液となる。このセミリーン溶液は、循環ラインLを循環して再生加熱器31で飽和水蒸気Sによって加熱されてCO吸収液13(リーン溶液)となる。加熱後の飽和水蒸気Sは、水蒸気凝縮水Wとなる。CO吸収液13から除去されたCOガス41は、コンデンサ42によって水分が凝縮された後、分離ドラム43の上部から凝縮水Wが分離されたCOガス44として外部に放出される。
 CO吸収液再生塔15の塔底部15bのCO吸収液13(リーン溶液)は、リーン溶液供給管53を介してリッチ・リーン溶液熱交換器52によってCO吸収液13(リッチ溶液)との間で熱交換された後、リーン溶液ポンプ54によってCO吸収塔14のCO吸収部141の上部に供給される。ここでは、制御装置102が流量計101で測定された液面レベルに応じてブーツ部153の上部153cと本体部151との間の所定範囲R4内となるように液面レベルを制御する。ここでは、制御装置102は、本体部151の範囲R41、鏡面部152の範囲R42及びブーツ部の範囲R3のそれぞれに設定された液量と液面レベルとの関係式に基づいて全範囲R4で液量と液面レベルとが比例関係となるように制御する。これにより、安定した液面制御が可能となる。なお、制御装置102は、CO吸収液13の送液時のガスの巻き込みを防ぐ観点から、ブーツ部153におけるCO吸収液13を0.3m/s以下とすることが好ましい。
 以上説明したように、本実施の形態によれば、CO吸収液再生塔15の塔底部に本体部151より相対的に容量が小さいブーツ部153を設けるので、CO吸収液再生塔15からCO吸収塔14へ安定して送液するために必要なCO吸収液13の液量を削減することができる。これにより、CO回収装置1は、CO吸収液再生塔15内におけるCO吸収液13の滞留時間を削減でき、CO吸収液13の再生時の熱劣化を低減することが可能となる。しかも、CO吸収液13の液量を削減した場合であっても、本体部151の下方に本体部151より相対的に容量が小さいブーツ部153を設けるので、液面レベルの高さを確保でき、CO吸収液13の送液に伴うCO吸収液再生塔15内のガスの巻き込みを防ぐことができる。これらの結果、本実施の形態によれば、CO吸収液再生塔15の塔底部15bにブーツ部153を設けることにより、CO吸収液再生塔15の塔底部15bに貯留されたCO吸収液13の液量を50%削減することが可能となり、CO吸収液再生塔15全体の熱劣化によるアミンの損失量を50%削減することが可能となる。
 なお、上述した実施の形態においては、ブーツ部153を円筒状部材として設けた例ついて説明したが、ブーツ部153の形状は、この構成に限定されない。ブーツ部153としては、本体部151より相対的に容量が小さい部材であればよく、例えば、三角柱、四角柱などの多角柱状の部材であってもよい。
 また、上述した実施の形態においては、ボイラやガスタービンなどの産業設備から排出されたCOを含有する排ガス11AをCO吸収液13で処理する例について説明したが、CO吸収液13で処理する被処理気体としては、COを含有するガスであれば各種ガスに適用可能である。
 1 CO回収装置
 11A,11B,11C 排ガス
 12 冷却塔
 121 冷却部
 122 熱交換器
 123 循環ポンプ
 13 CO吸収液
 13S 蒸気
 14 CO吸収塔
 14a 塔頂部
 14b 塔底部
 141 CO吸収部
 142 水洗部
 144 液貯留部
 145 チムニートレイ
 146 ミストエリミネータ
 15 CO吸収液再生塔
 15a 塔頂部
 151 CO吸収液供給部
 152 鏡面部
 153 ブーツ部
 153a 鏡面部
 153b 底部
 153c 上部
 154 チムニートレイ
 155 スカート部
 156,157,158 送液管
 159,160 分散器
 159a 切欠き部
 160a 曲面
 160b 開口部
 16 煙道
 21 熱交換器
 22 循環ポンプ
 23 調整弁
 24 熱交換器
 31 再生加熱器
 32 調整弁
 33 循環ポンプ
 41,44 COガス
 42 コンデンサ
 43 分離ドラム
 45 凝縮水循環ポンプ
 50 リッチ溶液供給管
 51 リッチソルベントポンプ
 52 リッチ・リーン溶液熱交換器
 53 リーン溶液供給管
 54 リーン溶液ポンプ
 55 冷却部
 101 流量計
 102 制御装置
 103 CO濃度計
 L,L,L 循環ライン
 L 抜き出しライン
 L ガス排出ライン
 L 凝縮水ライン
 S 飽和水蒸気
 W 冷却水
 W,W 洗浄水
 W 水蒸気凝縮水
 W 凝縮水

Claims (10)

  1.  被処理気体とCO吸収液とを接触させて前記被処理気体に含まれるCOを前記CO吸収液に吸収させるCO吸収塔と、
     COを吸収した前記CO吸収液を加熱して当該CO吸収液からCOを放出させて前記CO吸収液を再生するCO吸収液再生塔と、を具備し、
     前記CO吸収液再生塔は、前記CO吸収液が一時的に貯留される第1貯留部と、前記第1貯留部の底部から下方に向けて設けられ、前記第1貯留部より相対的に容量が小さい第2貯留部と、前記第2貯留部に配設され、前記第1貯留部と前記第2貯留部との間で変化する前記CO吸収液の液面レベルを測定する液面測定装置と、前記液面測定装置の測定結果に基づいて第1貯留部と前記第2貯留部との間で前記CO吸収液の液面レベルを制御する制御装置と、を有することを特徴とする、CO回収装置。
  2.  前記第2貯留部の内径d2が、前記第1貯留部の内径d1に対して相対的に小さい、請求項1に記載のCO回収装置。
  3.  前記第2貯留部の内径d2と前記第1貯留部の内径d1との比率(d2:d1)が、1:10~1:2の範囲内である、請求項1又は請求項2に記載のCO回収装置。
  4.  前記第2貯留部は、前記CO吸収液再生塔の底部に設けられた円筒状部材である、請求項1から請求項3のいずれか1項に記載のCO回収装置。
  5.  前記第2貯留部内から前記CO吸収塔に送液する前記CO吸収液の液流速が0.3m/s以下である、請求項1から請求項4のいずれか1項に記載のCO回収装置。
  6.  被処理気体とCO吸収液とを接触させて前記被処理気体に含まれるCOを前記CO吸収液に吸収させるCO吸収工程と、
     COを吸収した前記CO吸収液をCO吸収液再生塔で加熱して当該CO吸収液からCOを放出させて前記CO吸収液を再生するCO吸収液再生工程と、を含み、
     前記CO吸収液再生工程において、CO吸収液再生塔の前記CO吸収液が一時的に貯留される第1貯留部と、前記第1貯留部より相対的に容量が小さい第2貯留部との間で変化する前記CO吸収液の液面レベルを測定し、測定した液面レベルに基づいて第1貯留部と前記第2貯留部との間で前記CO吸収液の液面レベルを制御することを特徴とする、CO回収方法。
  7.  前記第2貯留部の内径d2が、前記第1貯留部の内径d1に対して相対的に小さい、請求項6に記載のCO回収方法。
  8.  前記第2貯留部の内径d2と前記第1貯留部の内径d1との比率(d2:d1)が、1:10~1:2の範囲内である、請求項6又は請求項7に記載のCO回収方法。
  9.  前記第2貯留部は、前記CO吸収液再生塔の底部に設けられた円筒状部材である、請求項6から請求項8のいずれか1項に記載のCO回収方法。
  10.  前記第2貯留部内から前記CO吸収塔に送液する前記CO吸収液の液流速が0.3m/s以下である、請求項6から請求項9のいずれか1項に記載のCO回収方法。
PCT/JP2015/058498 2014-03-26 2015-03-20 Co2回収装置及びco2回収方法 WO2015146834A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/128,056 US9993767B2 (en) 2014-03-26 2015-03-20 CO2 recovery device and CO2 recovery method
CA2943180A CA2943180C (en) 2014-03-26 2015-03-20 Co2 recovery device and co2 recovery method
EP15769414.2A EP3108954B1 (en) 2014-03-26 2015-03-20 Co2 recovery device and co2 recovery method
AU2015235196A AU2015235196B2 (en) 2014-03-26 2015-03-20 CO2 recovery device and CO2 recovery method
US15/978,755 US10213727B2 (en) 2014-03-26 2018-05-14 CO2 recovery device and CO2 recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-063913 2014-03-26
JP2014063913A JP6361909B2 (ja) 2014-03-26 2014-03-26 Co2回収装置及びco2回収方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/128,056 A-371-Of-International US9993767B2 (en) 2014-03-26 2015-03-20 CO2 recovery device and CO2 recovery method
US15/978,755 Division US10213727B2 (en) 2014-03-26 2018-05-14 CO2 recovery device and CO2 recovery method

Publications (1)

Publication Number Publication Date
WO2015146834A1 true WO2015146834A1 (ja) 2015-10-01

Family

ID=54195352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058498 WO2015146834A1 (ja) 2014-03-26 2015-03-20 Co2回収装置及びco2回収方法

Country Status (6)

Country Link
US (2) US9993767B2 (ja)
EP (1) EP3108954B1 (ja)
JP (1) JP6361909B2 (ja)
AU (1) AU2015235196B2 (ja)
CA (1) CA2943180C (ja)
WO (1) WO2015146834A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6941063B2 (ja) * 2018-01-10 2021-09-29 株式会社東芝 二酸化炭素回収システムおよびその運転方法
JP7394585B2 (ja) * 2019-10-30 2023-12-08 三菱重工業株式会社 二酸化炭素回収システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561923B1 (ja) * 1969-09-09 1981-01-16
JPS6372302A (ja) * 1986-09-12 1988-04-02 Mitsubishi Oil Co Ltd 蒸留塔又は水蒸気ストリツピング塔の突沸防止方法及びその装置
JPH04126514A (ja) * 1990-09-19 1992-04-27 Hitachi Ltd 気体の分離濃縮方法
JPH11137960A (ja) * 1997-11-11 1999-05-25 Kansai Electric Power Co Inc:The 二酸化炭素吸収液の制御方法及びその装置
JP2010201379A (ja) * 2009-03-04 2010-09-16 Toshiba Corp 二酸化炭素回収システム
JP2011240321A (ja) * 2010-04-20 2011-12-01 Babcock Hitachi Kk 二酸化炭素除去装置を有する排ガス処理システム
JP2012110805A (ja) * 2010-11-22 2012-06-14 Ihi Corp 二酸化炭素の回収方法及び回収装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US382322A (en) 1888-05-08 paesons
DE2043190C3 (de) 1969-09-09 1979-02-15 Benson, Field & Epes, Berwyn, Pa. (V.St.A.) Verfahren zur Abtrennung von sauren Gasen aus heißen wasserdampfhaltigen Gasgemischen
JP3212524B2 (ja) 1996-12-16 2001-09-25 関西電力株式会社 排煙脱炭酸設備の制御方法
JP5351816B2 (ja) * 2010-04-08 2013-11-27 三菱重工業株式会社 排ガス中の二酸化炭素回収装置及び方法
NO335542B1 (no) * 2012-12-20 2014-12-29 Aker Engineering & Technology Forbedringer ved absorber for CO2 fangst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561923B1 (ja) * 1969-09-09 1981-01-16
JPS6372302A (ja) * 1986-09-12 1988-04-02 Mitsubishi Oil Co Ltd 蒸留塔又は水蒸気ストリツピング塔の突沸防止方法及びその装置
JPH04126514A (ja) * 1990-09-19 1992-04-27 Hitachi Ltd 気体の分離濃縮方法
JPH11137960A (ja) * 1997-11-11 1999-05-25 Kansai Electric Power Co Inc:The 二酸化炭素吸収液の制御方法及びその装置
JP2010201379A (ja) * 2009-03-04 2010-09-16 Toshiba Corp 二酸化炭素回収システム
JP2011240321A (ja) * 2010-04-20 2011-12-01 Babcock Hitachi Kk 二酸化炭素除去装置を有する排ガス処理システム
JP2012110805A (ja) * 2010-11-22 2012-06-14 Ihi Corp 二酸化炭素の回収方法及び回収装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3108954A4 *

Also Published As

Publication number Publication date
CA2943180C (en) 2018-10-23
EP3108954A1 (en) 2016-12-28
US10213727B2 (en) 2019-02-26
JP2015182065A (ja) 2015-10-22
AU2015235196A8 (en) 2016-10-13
US9993767B2 (en) 2018-06-12
AU2015235196A1 (en) 2016-10-06
JP6361909B2 (ja) 2018-07-25
AU2015235196B2 (en) 2017-09-21
US20180257021A1 (en) 2018-09-13
EP3108954A4 (en) 2017-03-01
CA2943180A1 (en) 2015-10-01
EP3108954B1 (en) 2018-05-16
US20170100693A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6284383B2 (ja) Co2回収装置及びco2回収方法
JP5693295B2 (ja) Co2回収装置およびco2回収装置の運転制御方法
WO2013039041A1 (ja) Co2回収装置およびco2回収方法
US11235277B2 (en) Carbon dioxide capture system and method of operating carbon dioxide capture system
JP6016513B2 (ja) Co2回収装置およびco2回収方法
JP6200338B2 (ja) Co2回収装置及びco2回収方法
JP2023162258A (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
JP2018001086A (ja) 二酸化炭素回収システムおよび排ガス処理方法
WO2013039040A1 (ja) Co2回収装置およびco2回収方法
JP6162051B2 (ja) 気液接触装置及びそれを備えたco2回収装置
JP6361909B2 (ja) Co2回収装置及びco2回収方法
JP6325376B2 (ja) Co2回収装置及びco2回収方法
JP6845744B2 (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
WO2016006415A1 (ja) Co2回収装置及びco2回収方法
KR101550618B1 (ko) 리보일링 장치 및 이를 구비한 재생탑
JP2019131426A (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
JP7524086B2 (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
Miyamoto et al. CO 2 recovery device and CO 2 recovery method
JP2024073211A (ja) 二酸化炭素回収装置及び二酸化炭素回収装置の運転方法
JP2018038979A (ja) 二酸化炭素の分離回収装置、分離回収方法および液体捕捉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2943180

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15128056

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015769414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769414

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015235196

Country of ref document: AU

Date of ref document: 20150320

Kind code of ref document: A