WO2015146770A1 - ハイブリッド車両及びハイブリッド車両の制御方法 - Google Patents

ハイブリッド車両及びハイブリッド車両の制御方法 Download PDF

Info

Publication number
WO2015146770A1
WO2015146770A1 PCT/JP2015/058211 JP2015058211W WO2015146770A1 WO 2015146770 A1 WO2015146770 A1 WO 2015146770A1 JP 2015058211 W JP2015058211 W JP 2015058211W WO 2015146770 A1 WO2015146770 A1 WO 2015146770A1
Authority
WO
WIPO (PCT)
Prior art keywords
high altitude
motor generator
internal combustion
travel
combustion engine
Prior art date
Application number
PCT/JP2015/058211
Other languages
English (en)
French (fr)
Inventor
治雄 鈴木
洋紀 瀬戸
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2015146770A1 publication Critical patent/WO2015146770A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/40Altitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a hybrid vehicle including an internal combustion engine and a motor generator, which can be assisted by the motor generator, and a hybrid vehicle control method.
  • a hybrid vehicle that includes an internal combustion engine and a motor generator and can be assisted by the motor generator
  • the engine runs alone using only the internal combustion engine as a power source
  • the motor runs independently using only the motor generator as a power source
  • the internal combustion engine There are travel modes such as an assist travel that travels using both the motor and the motor generator as a power source, and a motor regenerative travel that generates electric power by the motor generator using the regenerative energy of the braking force of the hybrid vehicle.
  • an internal combustion engine adopts a high altitude mode in which a lower output limit is provided for the load required for the internal combustion engine due to the problem of turbochargers. Yes.
  • the turbo-supercharger increases the pressure ratio before and after the compressor (supercharging pressure / atmospheric pressure), which makes it easier for surges to occur in the compressor and to secure the intake air amount. It becomes necessary to increase the rotation speed of the turbocharger, and the rotation speed tends to exceed the limit point. Also, if the combustion temperature is high, the rate of thermal expansion increases, and the work of the turbine increases, resulting in rotation. The operating condition of the turbocharger becomes severe, such as increasing the number and easily exceeding the limit point, and there arises a problem that the constituent devices are easily damaged.
  • the high altitude output restriction is provided for the operation of the internal combustion engine in the high altitude traveling state.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a hybrid vehicle that includes an internal combustion engine and a motor generator and that can be assisted by the motor generator.
  • a hybrid vehicle and a hybrid vehicle control method capable of making the maximum allowable output for a high altitude as a hybrid system larger than the high altitude limit output of an internal combustion engine so as to generate a driving force as large as possible with respect to the required driving force. There is to do.
  • a hybrid vehicle of the present invention includes an internal combustion engine and a motor generator, and in the hybrid vehicle that can be assisted by the motor generator, a control device that controls the hybrid vehicle includes: In addition to the high altitude limit output of the internal combustion engine, the high altitude travel determining means for determining whether or not the high altitude travel state is entered. It is configured to perform high altitude traveling control in which the maximum allowable output of the motor generator is the maximum allowable output for high altitude for vehicle traveling.
  • the maximum allowable output for highland is not the highland limit output of the internal combustion engine, but a value obtained by adding the maximum allowable output that can be assisted by the motor generator to the highland limit output of the internal combustion engine. Therefore, it becomes possible to cope with a larger output required for vehicle travel.
  • the maximum allowable output that can be assisted by the motor generator varies depending on the state of charge of the battery and the amount that can be discharged, and therefore varies according to the state of the battery.
  • the power source of the motor generator When the charge amount securing control for securing the charge amount of the battery to be performed is performed until it is determined that the highland travel determination means is in the highland travel state, the following effects can be obtained.
  • the motor generator at the second time and thereafter is controlled by the charge amount securing control until the second time point at which the internal combustion engine has entered the high altitude traveling state from the first time point determined to be within the first period. It is possible to ensure the amount of power for assisting by charging without being consumed or by charging at any time. Further, after the second time point, the driving force of the internal combustion engine can be added by the amount of assistance from the motor generator, so that the output in the hybrid system can be set larger than the high altitude limit output of the internal combustion engine. .
  • the charge amount securing control is a discharge suppression control that suppresses discharge of a battery that is a power source of the motor generator, or a load amount generated in the internal combustion engine is greater than a preset load amount.
  • the charge amount securing control is configured to include at least one of the light load charge control for charging the battery by generating power by the motor generator during a small light load operation, the following effects can be obtained.
  • assisting the motor / generator with battery discharge, discharge suppression control to stop the use of power equipment powered by the battery, or the internal combustion engine is electrically operated at light load operation.
  • the light load charge control is performed in which the power is generated by the motor generator and the battery is charged when there is room to generate power by the generator, the charge amount of the battery can be easily secured.
  • the high altitude travel determination means determines whether the internal combustion engine is in a high altitude travel state based on time-series data of atmospheric pressure, and the internal combustion engine is the first vehicle.
  • a hybrid vehicle control method of the present invention includes an internal combustion engine and a motor generator, and the hybrid engine control method can be assisted by the motor generator. If it is determined whether or not the vehicle is in a high altitude traveling state, in addition to the high altitude limited output of the internal combustion engine, the maximum allowable output of the motor generator is set for vehicle traveling. This is a method characterized by performing highland travel control with a maximum allowable output for highland. According to this method, the same effect as the above hybrid vehicle can be obtained.
  • the maximum allowable output for high altitudes is not the high altitude limit output of the internal combustion engine, but the maximum allowable output that can be assisted by the motor generator is added to the high altitude limit output of the internal combustion engine. Therefore, even in high altitude driving conditions, the maximum allowable output for high altitudes as a hybrid system must be made larger than the high altitude limited output of the internal combustion engine and required for larger vehicle driving It becomes possible to cope with the driving force.
  • the high altitude travel control before performing the high altitude travel control, if it is configured to perform the charge amount securing control that secures the charge amount of the battery serving as the power source of the motor generator, it is possible to predict and determine when the internal combustion engine enters the high altitude travel state. Because it is possible to store a sufficient amount of power in the battery by performing charge amount securing control before the high altitude travel control, store it in the battery after shifting to the high altitude travel control assisted by the motor generator as necessary. It is possible to assist the motor generator with a sufficient amount of electric power, and this assist makes it possible to sufficiently output an output larger than the highland limit output of the internal combustion engine as a hybrid system.
  • FIG. 1 is a diagram schematically illustrating a configuration of a hybrid vehicle according to an embodiment of the present invention, and is a diagram illustrating an assist state by a motor generator.
  • FIG. 2 is a diagram illustrating an example of a control flow of the hybrid vehicle control method according to the embodiment of the present invention.
  • a hybrid vehicle (HEV) 1 of this embodiment includes an engine (internal combustion engine) 10, a motor generator (running motor / generator) 20, and a transmission 30.
  • the vehicle is a vehicle that transmits the power of the motor generator 20 to the wheels 34 via the transmission 30, and the vehicle can use both the engine 10 and the motor generator 20 as a power source for traveling.
  • the parallel hybrid vehicle shown in FIG. 1 will be described as an example.
  • the parallel hybrid vehicle is not necessarily required, and the driving force generated by the internal combustion engine 10 is assisted (assisted) by the motor generator 20. Any hybrid vehicle having such a function can be used.
  • the power of the engine 10 is supplied from a torque converter 13 connected to the engine 10, a connected engine running clutch 14, a transmission 30 and a propeller shaft 31 to a differential device (differential gear) 32. And further transmitted to the wheel 34 via the axle 33.
  • the motive power of the motor generator 20 is generated when the electric power charged (accumulated) in the battery 22 is supplied to the motor generator 20 via the inverter 21, and this motive power is generated by the connected motor running clutch.
  • the transmission 30, and the propeller shaft 31 are transmitted to the differential device 32, and further transmitted to the wheels 34 via the axle 33.
  • one or both of the power of the engine 10 and the power of the motor generator 20 is transmitted to the wheels 34 via the transmission 30, and the hybrid vehicle 1 travels.
  • transmission and disconnection of the power of the engine 10 to the wheels 34 are performed by switching the connection and disconnection of the engine travel clutch 14, and by switching and connection of the motor travel clutch 23,
  • the power of the motor generator 20 is transmitted to and cut off from the wheels 34, but it is sufficient that the power of the engine 10 or the power of the motor generator 20 can be properly switched between transmission and interruption.
  • the travel clutch 23 may not be provided.
  • a compressor 12 a of the turbocharger 12 is provided in the intake passage 15 of the engine 10
  • a turbine 12 b of the turbocharger 12 is provided in the exhaust passage 11 of the engine 10.
  • a hybrid system 2 including the engine 10, the motor generator 20, and the transmission 30, and a control device 40 for controlling the hybrid vehicle 1 are provided.
  • the control device 40 controls the engine 10 in general.
  • the overall control of the hybrid vehicle 1 including the overall control of the motor generator 20 by the inverter 21, the overall control of the hybrid system 2 including the connection / disconnection control of the engine travel clutch 14 and the connection / disconnection control of the motor travel clutch 23. And so on.
  • control device 40 that controls the hybrid vehicle 1 on which the hybrid system 2 is mounted is configured to include a high altitude traveling determination means 41.
  • the first period t1 is set to about 10 to 15 minutes, for example.
  • ⁇ Pa Pa (n ⁇ 1) ⁇ using the immediately preceding time series data Pa (n ⁇ 1).
  • the time (timing) tx when the atmospheric pressure Pa falls below the high altitude determination atmospheric pressure Pac can be easily calculated.
  • the high altitude determination atmospheric pressure Pac is set to an atmospheric pressure between 800 hPa (about 0.8 atm) and 900 hPa (about 0.9 atm), for example.
  • the engine 10 is configured to determine whether to enter a high altitude traveling state.
  • the amount of intake air varies depending on the atmospheric temperature Ta, the operating status of the turbocharger varies, and the output limited by the engine 10 varies. Therefore, this atmospheric temperature Ta data should be taken into account.
  • the first period t1 is lengthened.
  • the atmospheric temperature Ta is high, the air density becomes relatively small and the intake air amount (weight conversion) decreases, and the output limit of the engine 10 is accelerated, so the first period t1 is lengthened.
  • the atmospheric temperature Ta is low, the air density is relatively increased, the intake air amount is increased, and the output limit of the engine 10 is delayed. Therefore, the first period t1 is shortened.
  • the control device 40 adds the high altitude limit output Qemax of the engine 10 to the motor generator 20.
  • the high altitude limit output Qemax of the engine 10 is a value set in advance as an upper limit value at which the turbocharger can be safely used in a high altitude traveling state based on the atmospheric pressure Pa and the atmospheric temperature Ta. It is set lower than the output. Further, the maximum allowable output Qmmax that can be assisted by the motor generator 20 varies depending on the state of charge of the battery 22 and the dischargeable amount, and therefore corresponds to the battery temperature that is closely related to the state of charge of the battery 22 and the dischargeable amount. Is set.
  • This high altitude traveling control is performed after the second time point tb.
  • the required driving force Qt required for vehicle traveling is equal to or lower than the high altitude limit output Qemax, the motor traveling clutch 23 of the engine 10 is disengaged and the required driving is performed.
  • the required driving force Qt required for vehicle travel is greater than the high altitude limit output Qemax, the required driving force Qt does not exceed the high altitude maximum allowable output Qhmax, If it exceeds, the required driving force Qt is reset to the maximum allowable output Qhmax for the high altitude, and the engine 10 generates the high altitude limit output Qemax, while the difference ⁇ Qtm between the required driving force Qt and the high altitude limited output Qemax is This is generated by the motor generator 20 with the motor running clutch 23 in the connected state. That is, the driving force Qm corresponding to the difference ⁇ Qtm is generated to assist. As a result, a driving force (Qemax + Qm) larger than the high altitude limit output Qemax of the engine 10 can be generated by the assisting driving force Qm by the motor generator 20 to correspond to the required driving force Qt.
  • the maximum allowable output for high altitude Qhmax allowed by the hybrid system 2 is added to the high altitude limited output Qemax of the engine 10 instead of the high altitude limited output Qemax of the engine 10, and the maximum allowable output Qmmax that can be assisted by the motor generator 20 is added. Therefore, it is possible to cope with a larger output required for vehicle travel.
  • the control device 40 determines the charge amount of the battery 22 serving as the power source of the motor generator 20. The charge amount securing control to be secured is performed until it is determined that the highland travel determination means 41 is in the highland travel state.
  • the charging amount securing control is performed until the second time point tb until the second time point tb determined that the engine 10 enters the high altitude traveling state from the first time point ta determined to enter the first period t1.
  • the amount of power for assisting the motor generator thereafter can be secured without being consumed or by being charged at any time.
  • the driving force of the engine 10 can be added by the amount of assistance from the motor generator 20, so that the maximum allowable output Qhmax for the high altitude in the hybrid system 2 is set to the high altitude limited output of the engine 10. It can be set larger than Qemax.
  • the discharge suppression control for suppressing the discharge of the battery 22 serving as the power source of the motor generator 20 or the load amount Qea generated in the engine 10 is lighter than the preset load amount Qec. At least one of light load charging control for generating power by the motor generator 20 to charge the battery 22 during load operation is performed.
  • the motor running clutch 23 is disengaged, the motor generator 20 assists and the motor alone running, which accompanies the discharge of the battery 22, is stopped, and at the same time, the battery 22 is used as a power source. Stop using other power devices such as air conditioners. Thereby, it is possible to secure the amount of power for assisting by the motor generator 20 after the second time point tb without consuming it.
  • the motor generator 20 generates power when the engine 10 has a light load operation with a margin.
  • the battery 22 is charged. Whether or not the operation is light load is determined by whether or not the load amount Qea generated in the engine 10 is smaller than a preset load amount Qec. Thereby, the charge amount of the battery 22 can be easily ensured.
  • the control flow of FIG. 2 is called from the advanced control flow when the operation of the hybrid vehicle 1 is started, and is performed in parallel with the control of the operation of the normal hybrid vehicle 1. When stopped, it is shown as a control flow that returns to an advanced control flow by interruption and ends with an advanced control flow.
  • step S11 When the control flow of FIG. 2 is started, it is determined in step S11 whether or not the engine 10 enters a high altitude traveling state within a preset first period t1. In this determination, when the engine 10 does not enter the high altitude traveling state within the first period t1 (NO), the normal hybrid vehicle 1 is controlled by another control flow, and a preset control time ⁇ ti has elapsed. Then, the process returns to step S11.
  • step S11 determines whether or not the engine 10 enters the high altitude traveling state within the first period t1 (YES). If it is determined in step S11 that the engine 10 enters the high altitude traveling state within the first period t1 (YES), the process goes to step S12. In step S12, it is determined whether or not the engine 10 is in a high altitude traveling state.
  • step S12 If it is determined in step S12 that the engine 10 is not in the high altitude traveling state (NO), the process goes to step S13, and the charge amount securing control for securing the charge amount of the battery 22 serving as the power source of the motor generator 20 is performed. Is given priority over the control of the normal hybrid vehicle 1, and after a preset control time ⁇ ti has elapsed, the process returns to step S11.
  • discharge suppression control for suppressing discharge of the battery 22 serving as the power source of the motor generator 20, or light load operation in which the load amount Qea generated in the engine 10 is smaller than the preset load amount Qec.
  • at least one of the light load charging control for generating the electric power by the motor generator 20 and charging the battery 22 is performed.
  • step S12 determines whether the engine 10 is in the high altitude traveling state (YES)
  • step S14 the maximum allowable output Qmmax of the motor generator 20 is set in addition to the high altitude limit output Qemax of the engine 10.
  • the high altitude traveling control for the high altitude maximum allowable output Qhmax for vehicle traveling is performed with priority over the control of the normal hybrid vehicle 1, and after a preset control time ⁇ ti has elapsed, the process returns to step S11. .
  • Step S11 to Step S13 or Step S14 are repeatedly performed, and when the operation of the hybrid vehicle 1 is stopped, the interruption is returned to return to the advanced control flow, and with the end of the advanced control flow, The control flow in FIG. 2 is also terminated.
  • High altitude traveling control can be performed in which the maximum allowable output Qmmax of the motor generator 20 is set to the maximum allowable output Qhmax for high altitude for vehicle traveling in addition to the output Qemax.
  • the hybrid vehicle 1 and the hybrid vehicle control method it is determined that the hybrid vehicle 1 that includes the engine 10 and the motor generator 20 and can be assisted by the motor generator 20 is in a high altitude traveling state.
  • the maximum allowable output for high altitude Qhmax is not the high altitude limit output Qemax of the engine 10 but the maximum allowable output Qmmax that can be assisted by the motor generator 20 in the high altitude limit output Qemax of the engine 10 in the high altitude traveling control. Since the added value is used, it becomes possible to cope with a larger output (required driving force) Qt required for vehicle travel, and the maximum allowable output Qhmax for the highland as the hybrid system 2 is set to the engine 10 even in the highland travel state. Larger than the high altitude limit output Qemax of It made to accommodate the required driving force Qt to be.
  • Hybrid vehicle HEV
  • Hybrid system 10
  • engine internal combustion engine
  • Turbo type supercharger 12a
  • Compressor 12b
  • Torque converter 14 Clutch for engine travel 15
  • Intake passage 20
  • Motor generator (motor / generator for travel)
  • Inverter 22
  • Battery 23
  • Motor running clutch 30
  • Transmission Propeller shaft
  • Differential (differential gear) 33
  • Axle 34
  • Control device 41 High altitude traveling determination means
  • Atmospheric pressure at control Pa n-1) Time-series data immediately before atmospheric pressure
  • Pac Atmospheric pressure Qea for high altitude determination
  • Load amount Qec generated in engine Preset load amount (threshold for determination of light load operation)
  • Qemax High altitude limit output
  • Qhmax Maximum altitude allowable output
  • Qm for vehicle traveling
  • Driving power Qmmax of motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 ハイブリッド車両1を制御する制御装置40が、内燃機関10が高地走行状態に入っているか否かを判定する高地走行判定手段41を備え、この高地走行判定手段41が高地走行状態に入っていると判定した場合には、内燃機関10の高地制限出力Qemaxに加えて電動発電機20の最大許容出力Qmmaxを、車両走行のための高地用最大許容出力Qhmaxとする。これにより、内燃機関10と電動発電機20を備え、電動発電機20でアシスト可能なハイブリッド車両1において、高地走行状態においても、車両走行で要求される必要駆動力を確保すべく、ハイブリッドシステム2としての高地用最大許容出力を内燃機関10の高地制限出力よりも大きくする。

Description

ハイブリッド車両及びハイブリッド車両の制御方法
 本発明は、内燃機関と電動発電機を備え、電動発電機でアシスト可能なハイブリッド車両及びハイブリッド車両の制御方法に関する。
 内燃機関と電動発電機を備え、電動発電機でアシスト可能なハイブリッド車両では、内燃機関のみを動力源として走行するエンジン単独走行、電動発電機のみを動力源として力行走行するモータ単独走行、内燃機関と電動発電機の両方を動力源として走行するアシスト走行、ハイブリッド車両の制動力の回生エネルギーを利用して電動発電機で発電するモータ回生走行等の走行形態がある。
 一方、内燃機関においては、高度3000m級以上の高地では、主にターボ式過給機の問題から内燃機関に要求される負荷に対して平地よりも低い出力制限を設けた高地モードを採用している。
 つまり、ターボ式過給機は、大気圧が低くなると、コンプレッサの前後の圧力比(過給圧/大気圧)が高くなってコンプレッサにおけるサージが発生し易くなったり、吸気量を確保するためにターボ式過給機の回転数を増加させる必要が生じたりして回転数が限界点を超え易くなり、また、燃焼温度が高いと熱膨張の割合が高くなりタービンの仕事量が増加して回転数が増加し限界点を超え易くなる等、ターボ式過給機の稼働状況が厳しくなり、構成機器が損傷を受け易くなるという問題が生じる。
 そのため、大気圧を監視して、高地走行状態に入っている場合には、ターボ式過給機の保護のために内燃機関の出力を落とす必要があり、内燃機関の出力を制限している。つまり、内燃機関の高地走行状態での運転に対して高地出力制限を設けている。
 この高地での走行性能に関連して、例えば、日本出願の特開2013-23185号公報に記載のように、高地での走行性能の低下をできる限り抑制可能にするために、大気圧の低下による内燃機関の出力低下を回転電機の反力トルクに反映し、その結果、回転電機の回転数制限およびそれに伴う内燃機関の出力制限が緩和されることにより、高地での走行性能の低下を抑制するように、気圧センサで検出される大気圧の低下に応じて、回転電機(モータ)の駆動を制御する駆動制御装置に与えられるシステム電圧を低下させると共に、内燃機関が出力可能な最大トルクに対する回転電機の反力トルクを算出し、その算出された反力トルクに基づいて回転電機の回転数を制御するハイブリッド車両が提案されている。
 しかしながら、このハイブリッド車両では、高地でのシステム電圧の低下による回転電機の回転数制限が緩和されて、その結果、エンジンの出力制限が緩和されるとしており、高地におけるターボ式過給機の性能面からのエンジン出力制限に関するものではない。
日本出願の特開2013-23185号公報
 本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関と電動発電機を備え、電動発電機でアシスト可能なハイブリッド車両において、高地走行状態においても、車両走行で要求される必要駆動力に対してできるだけ大きな駆動力を発生すべく、ハイブリッドシステムとしての高地用最大許容出力を内燃機関の高地制限出力よりも大きくすることができるハイブリッド車両及びハイブリッド車両の制御方法を提供することにある。
 上記の目的を達成するための本発明のハイブリッド車両は、内燃機関と電動発電機を備え、該電動発電機でアシスト可能なハイブリッド車両において、当該ハイブリッド車両を制御する制御装置が、前記内燃機関が高地走行状態に入っているか否かを判定する高地走行判定手段を備え、該高地走行判定手段が高地走行状態に入っていると判定した場合には、前記内燃機関の高地制限出力に加えて前記電動発電機の最大許容出力を、車両走行のための高地用最大許容出力とする高地走行制御を行うように構成される。
 この構成によれば、高地走行制御で、高地用最大許容出力を、内燃機関の高地制限出力ではなく、この内燃機関の高地制限出力に、電動発電機でアシストできる最大許容出力を加えた値にするので、車両走行で要求される、より大きな出力に対応できるようになる。なお、この電動発電機でアシストできる最大許容出力は、バッテリの充電状態及び放電可能量によって変化するので、バッテリの状態に対応させて変化することになる。
 また、上記のハイブリッド車両において、前記制御装置の前記高地走行判定手段が、予め設定した第1期間内に前記内燃機関が高地走行状態に入ると判定した場合には、前記電動発電機の電力源となるバッテリの充電量を確保する充電量確保制御を、前記高地走行判定手段が高地走行状態に入っていると判定するまで行うように構成されると、次の効果を奏することができる。
 つまり、内燃機関が高地走行状態に、第1期間内に入ると判定した第1時点から入っていると判定した第2時点までの間、充電量確保制御で、第2時点以降における電動発電機によるアシストのための電力量を、消費せずに、若しくは、随時充電することで確保しておくことができる。また、第2時点以降においては電動発電機によるアシスト分だけ、内燃機関の駆動力に上乗せすることができるので、ハイブリッドシステムでの出力を、内燃機関の高地制限出力よりも大きく設定することができる。
 上記のハイブリッド車両において、前記充電量確保制御が、前記電動発電機の電力源となるバッテリの放電を抑制する放電抑制制御、又は、前記内燃機関で発生する負荷量が予め設定した負荷量よりも小さい軽負荷運転のときに前記電動発電機による発電を行ってバッテリを充電する軽負荷時充電制御の少なくとも一方を含んで構成されると、次の効果を奏することができる。
 つまり、バッテリの放電を伴うような、電動発電機のアシスト、モータ単独走行、及び、バッテリを電源とする電力機器の使用を停止する等する放電抑制制御、又は、内燃機関が軽負荷運転で電動発電機による発電を行う余裕があるときに電動発電機による発電を行ってバッテリを充電する軽負荷時充電制御の少なくとも一方で、容易にバッテリの充電量を確保することができる。
 上記のハイブリッド車両において、前記高地走行判定手段は、大気圧の時系列のデータを基にして、前記内燃機関が高地走行状態に入っているか否かを判定するともに、前記内燃機関が前記第1期間内に高地走行に入るか否かを判定するように構成されると、次の効果を奏することができる。
 つまり、大気圧で内燃機関が高地走行状態に入っているか否かを容易に判定でき、また、この大気圧の時系列の下降傾向と、判定時点での大気圧とから、このままの車両の走行状態、言い換えれば、車両が走行する道路の傾斜状態が継続するとした場合に、大気圧が、高地判定用大気圧を下回る時期(タイミング)を容易に算定できるので、この下回る時期を予め設定した第1期間と比較することで、容易に、内燃機関が、第1期間内に高地走行状態に入るか否かを判定することができるようになる。
 そして、上記の目的を達成するための本発明のハイブリッド車両の制御方法は、内燃機関と電動発電機を備え、該電動発電機でアシスト可能なハイブリッド車両の制御方法において、前記内燃機関が高地走行状態に入っているか否かを判定し、高地走行状態に入っていると判定した場合には、前記内燃機関の高地制限出力に加えて前記電動発電機の最大許容出力を、車両走行のための高地用最大許容出力とする高地走行制御を行うことを特徴とする方法である。この方法によれば、上記のハイブリッド車両と同様の効果を奏することができる。
 本発明のハイブリッド車両及びハイブリッド車両の制御方法によれば、内燃機関と電動発電機を備え、電動発電機でアシスト可能なハイブリッド車両において、高地走行状態に入っていると判定した場合には、高地走行制御で、高地用最大許容出力を、内燃機関の高地制限出力ではなく、この内燃機関の高地制限出力に、電動発電機でアシストできる最大許容出力を加えた値にするので、車両走行で要求される、より大きな出力に対応できるようになり、高地走行状態においても、ハイブリッドシステムとしての高地用最大許容出力を内燃機関の高地制限出力よりも大きくして、より大きな車両走行で要求される必要駆動力に対応できるようになる。
 更に、高地走行制御を行う前に、電動発電機の電力源となるバッテリの充電量を確保する充電量確保制御を行うように構成すると、内燃機関が高地走行状態に入る時期を予測判定して、高地走行制御の前に充電量確保制御を行ってバッテリに十分な電力を蓄えておくことができるので、必要に応じて電動発電機でアシストする高地走行制御に移行した後には、バッテリに蓄えられた十分な電力量で電動発電機によりアシストすることができ、このアシストにより、内燃機関の高地制限出力より大きな出力を、ハイブリッドシステムとして十分出力することができるようになる。
図1は、本発明に係る実施の形態のハイブリッド車両の構成を模式的に示した図で、電動発電機によるアシスト状態を示す図である。 図2は、本発明に係る実施の形態のハイブリッド車両の制御方法の制御フローの一例を示す図である。
 以下、本発明に係る実施の形態のハイブリッド車両、及びハイブリッド車両の制御方法について、図面を参照しながら説明する。図1に示すように、この実施の形態のハイブリッド車両(HEV)1は、エンジン(内燃機関)10と電動発電機(走行用電動機兼発電機)20と変速機30を備え、エンジン10の動力と電動発電機20の動力を変速機30を介して車輪34に伝達する車両であり、エンジン10と電動発電機20の両方を走行用の動力源とすることができる車両である。
 なお、ここでは、図1のパラレル型ハイブリッド車両を例にして説明するが、必ずしもパラレル型ハイブリッド車両でなくてもよく、電動発電機20で内燃機関10が発生する駆動力をアシスト(補助)することができる機能を有するハイブリッド車両であればよい。
 図1に示すように、このエンジン10の動力は、エンジン10に接続するトルクコンバータ13、接続状態のエンジン走行用クラッチ14と変速機30とプロペラシャフト31を介して差動装置(デファレンシャルギア)32に伝達され、更に、車軸33を介して車輪34に伝達される。
 一方、電動発電機20の動力は、バッテリ22に充電(蓄電)された電力がインバータ21を介して電動発電機20に供給されることで発生し、この動力は、接続状態のモータ走行用クラッチ23と変速機30とプロペラシャフト31を介して差動装置32に伝達され、更に、車軸33を介して車輪34に伝達される。
 これらにより、エンジン10の動力と電動発電機20の動力の一方又は両方が変速機30を介して、車輪34に伝達され、ハイブリッド車両1が走行する。
 この図1の構成では、エンジン走行用クラッチ14の接続及び断絶の切り替えにより、エンジン10の動力の車輪34への伝達と遮断を行い、また、モータ走行用クラッチ23の接続及び断絶の切り替えにより、電動発電機20の動力の車輪34への伝達と遮断を行うが、エンジン10の動力又は電動発電機20の動力の伝達と遮断を適宜切り替えることができればよく、必ずしも、エンジン走行用クラッチ14又はモータ走行用クラッチ23を設けなくてもよい。
 また、このエンジン10の吸気通路15にターボ式過給機12のコンプレッサ12aが設けられ、エンジン10の排気通路11にターボ式過給機12のタービン12bが設けられている。
 そして、エンジン10と電動発電機20と変速機30を備えたハイブリッドシステム2、及び、ハイブリッド車両1の制御を行うための制御装置40が設けられ、この制御装置40により、エンジン10の全般の制御、インバータ21による電動発電機20の全般の制御、エンジン走行用クラッチ14の断接制御とモータ走行用クラッチ23の断接制御を含むハイブリッドシステム2の全般の制御を含むハイブリッド車両1の全般の制御等々を行う。
 また、このハイブリッドシステム2を搭載するハイブリッド車両1を制御する制御装置40は、高地走行判定手段41を備えて構成される。この高地走行判定手段41は、大気圧Paの時系列のデータPa(i)(i=1,2・・・)を基にして、エンジン10が高地走行状態に入っているか否かと、予め設定した第1期間t1内にエンジン10が高地走行状態に入るか否かを判定する。この第1期間t1は、例えば、10分~15分程度に設定される。
 つまり、大気圧センサ(図示しない)で測定した、現時点での大気圧Pa(n)で、エンジン10が高地走行状態に入っているか否かを容易に判定でき、また、この大気圧Paの時系列Pa(i)(i=1,2・・・n)の下降傾向と、判定時点での大気圧Pa(n)とから、このままの車両の走行状態、言い換えれば、ハイブリッド車両1が走行する道路の傾斜状態が継続するとした場合に、大気圧Paが、高地判定用大気圧Pacを下回る時期(タイミング)txを容易に算定できるので、この下回る時期txを予め設定した第1期間t1と比較することで、容易に、エンジン10が、第1期間t1内に高地走行状態に入るか否かを判定することができる。
 例えば、経過時間をtとし、ある時間増分Δt内での大気圧Paの減少分を-ΔPaとすると、直前の時系列データPa(n-1)を用いてΔPa=Pa(n-1)-Pa(n)となり、微分値dPa/dt(=ΔPa/Δt)と、判定時点(i=n)での大気圧Pa(n)とから、このままのエンジン10の運転状態が継続するとした場合に、大気圧Paが、高地判定用大気圧Pacを下回る時期(タイミング)txを容易に算定できる。Pac=Pa(n)-tx×ΔPa/Δtなので、tx=(Pa(n)-Pac)/(ΔPa/Δt)となる。この下回る時期txを予め設定した第1期間t1と比較することで、容易に、エンジン10が第1期間t1内に高地走行状態に入るか否かを判定することができるようになる。
 なお、単に、判定時の大気圧Pa(n)と微分値dPa/dtだけでなく、その前の時系列データを用いて大気圧Pa(i)(i=1,2・・・)の推移を示す曲線を回帰分析などにより求めて、この曲線から大気圧Paが、高地判定用大気圧Pacを下回る時期(タイミング)txを算定することもできる。この場合はより正確に予測できることになり、より精度高い制御が可能となる。この高地判定用大気圧Pacは例えば、800hPa(約0.8気圧)~900hPa(約0.9気圧)の間の大気圧に設定される。
 また、高地走行判定手段41は、大気圧Paの時系列のデータPa(i)(i=1,2・・・)に加えて、大気温度Taのデータを加味して、第1期間t1内エンジン10が高地走行状態に入るか否かを判定するように構成されることが好ましい。これにより、大気温度Taによっても、吸気量が異なり、ターボ式過給機の運転状況が異なってきて、エンジン10で制限される出力が異なってくるため、この大気温度Taのデータを加味することにより、より精度よくエンジン10の出力制限が必要な高地走行状態に入る時期txを推定できるようになる。つまり、大気温度Taが高いと、比較的、空気密度が小さくなり吸気量(重量換算)が減少し、エンジン10の出力制限が早まるので、第1期間t1を長くする。一方、大気温度Taが低いと、比較的、空気密度が大きくなり吸気量が増加し、エンジン10の出力制限が遅くなるので、第1期間t1を短くする。
 そして、制御装置40は、この高地走行判定手段41がハイブリッド車両1及びエンジン10が高地走行状態に入っていると判定した場合には、エンジン10の高地制限出力Qemaxに加えて電動発電機20の最大許容出力Qmmaxを、車両走行のための高地用最大許容出力Qhmax(=Qemax+Qmmax)とする高地走行制御を行うように構成される。
 このエンジン10の高地制限出力Qemaxは、大気圧Paと大気温度Taなどからターボ式過給機を高地走行状態で安全に使用できる上限値として予め設定される値であり、低地で出力可能なエンジン出力より低く設定されている。また、この電動発電機20でアシストできる最大許容出力Qmmaxは、バッテリ22の充電状態及び放電可能量によって変化するので、バッテリ22の充電状態や放電可能量に密接な関係を持つバッテリ温度に対応して設定される。
 この高地走行制御は、第2時点tb以降で行われ、車両走行に必要な要求駆動力Qtが高地制限出力Qemax以下の場合は、エンジン10のモータ走行用クラッチ23を断絶状態にして、要求駆動力Qtをエンジン10で発生し、一方、車両走行に必要な要求駆動力Qtが高地制限出力Qemaxより大きい場合は、要求駆動力Qtが高地用最大許容出力Qhmaxを超えていなければ、そのままとし、超えていれば、要求駆動力Qtを高地用最大許容出力Qhmaxに設定し直して、エンジン10で高地制限出力Qemaxを発生しつつ、要求駆動力Qtと高地制限出力Qemaxの差ΔQtmを、エンジン10のモータ走行用クラッチ23を接続状態にして電動発電機20で発生する。つまり、この差ΔQtm分の駆動力Qmを発生してアシストする。これにより、電動発電機20によるアシスト分の駆動力Qmだけ、エンジン10の高地制限出力Qemaxより大きい駆動力(Qemax+Qm)を発生して、要求駆動力Qtに対応することができる。
 これにより、ハイブリッドシステム2で許容する高地用最大許容出力Qhmaxを、エンジン10の高地制限出力Qemaxではなく、このエンジン10の高地制限出力Qemaxに、電動発電機20でアシストできる最大許容出力Qmmaxを加えた値にするので、車両走行で要求される、より大きな出力に対応できるようになる。
 そして、制御装置40は、この高地走行判定手段41が第1期間t1内にエンジン10が高地走行状態に入ると判定した場合には、電動発電機20の電力源となるバッテリ22の充電量を確保する充電量確保制御を、高地走行判定手段41が高地走行状態に入っていると判定するまで行う。
 これにより、エンジン10が高地走行状態に、第1期間t1内に入ると判定した第1時点taから入っていると判定した第2時点tbまでの間、充電量確保制御で、第2時点tb以降における電動発電機によるアシストのための電力量を、消費せずに、若しくは、随時充電することで確保しておくことができる。また、第2時点tb以降においては電動発電機20によるアシスト分だけ、エンジン10の駆動力に上乗せすることができるので、ハイブリッドシステム2での高地用最大許容出力Qhmaxを、エンジン10の高地制限出力Qemaxよりも大きく設定することができる。
 そして、この充電量確保制御では、電動発電機20の電力源となるバッテリ22の放電を抑制する放電抑制制御、又は、エンジン10で発生する負荷量Qeaが予め設定した負荷量Qecよりも小さい軽負荷運転のときに電動発電機20による発電を行ってバッテリ22を充電する軽負荷時充電制御の少なくとも一方を行う。
 この放電抑制制御では、モータ走行用クラッチ23を断絶状態にして、バッテリ22の放電を伴うような、電動発電機20のアシスト、モータ単独走行を停止し、それと共に、バッテリ22を電源とする、その他の電力機器、例えば、エアコン等の使用を停止する。これにより、第2時点tb以降における電動発電機20によるアシストのための電力量を消費せずに確保しておくことができる。
 一方、軽負荷時充電制御では、エンジン10の出力の一部を使用して電動発電機20で発電してもエンジン10に余裕がある軽負荷運転のときに電動発電機20による発電を行ってバッテリ22を充電する。なお、この軽負荷運転であるか否かは、エンジン10で発生する負荷量Qeaが予め設定した負荷量Qecよりも小さいか否かで判定する。これにより、容易にバッテリ22の充電量を確保することができる。
 次に、本発明の実施の形態のハイブリッド車両の制御方法について、図2の制御フローを参照しながら説明する。この図2の制御フローは、ハイブリッド車両1の運転が開始されると、上級の制御フローから呼ばれて、通常のハイブリッド車両1の運転の制御と並行して実施され、ハイブリッド車両1の運転が停止されると、割り込みによりリターンに行って上級の制御フローに戻り、上級の制御フローと共に終了する制御フローとして示している。
 この図2の制御フローが開始されると、ステップS11で、エンジン10が、予め設定した第1期間t1内に高地走行状態に入るか否かを判定する。この判定で、エンジン10が、第1期間t1内に高地走行状態に入らない場合は(NO)、通常のハイブリッド車両1の制御を他の制御フローで行い、予め設定した制御時間Δtiを経過した後、ステップS11に戻る。
 一方、このステップS11の判定で、エンジン10が、第1期間t1内に高地走行状態に入る場合は(YES)、ステップS12に行く。このステップS12では、エンジン10が、高地走行状態に入っているか否かを判定する。
 このステップS12の判定で、エンジン10が、高地走行状態に入っていない場合は(NO)、ステップS13に行き、電動発電機20の電力源となるバッテリ22の充電量を確保する充電量確保制御を、通常のハイブリッド車両1の制御よりも優先させて行い、予め設定した制御時間Δtiの間を経過した後、ステップS11に戻る。この充電量確保制御では、電動発電機20の電力源となるバッテリ22の放電を抑制する放電抑制制御、又は、エンジン10で発生する負荷量Qeaが予め設定した負荷量Qecよりも小さい軽負荷運転のときに電動発電機20による発電を行ってバッテリ22を充電する軽負荷時充電制御の少なくとも一方を行う。
 一方、ステップS12の判定で、エンジン10が、高地走行状態に入っている場合は(YES)、ステップS14に行き、エンジン10の高地制限出力Qemaxに加えて電動発電機20の最大許容出力Qmmaxを、車両走行のための高地用最大許容出力Qhmaxとする高地走行制御を,通常のハイブリッド車両1の制御よりも優先させて行い、予め設定した制御時間Δtiの間を経過した後、ステップS11に戻る。
 そして、ステップS11からステップS13又はステップS14を繰り返して実施し、ハイブリッド車両1の運転が停止されると、割り込みによりリターンに行き、上級の制御フローに戻って、この上級の制御フローの終了とともに、図2の制御フローも終了する。
 また、図2の制御フローに従った制御によれば、エンジン10が高地走行状態に入っているか否かを判定し、高地走行状態に入っていると判定した場合には、エンジン10の高地制限出力Qemaxに加えて電動発電機20の最大許容出力Qmmaxを、車両走行のための高地用最大許容出力Qhmaxとする高地走行制御を行うことができる。
 従って、上記のハイブリッド車両1及びハイブリッド車両の制御方法によれば、エンジン10と電動発電機20を備え、この電動発電機20でアシスト可能なハイブリッド車両1において、高地走行状態に入っていると判定した場合には、高地走行制御で、高地用最大許容出力Qhmaxを、エンジン10の高地制限出力Qemaxではなく、このエンジン10の高地制限出力Qemaxに、電動発電機20でアシストできる最大許容出力Qmmaxを加えた値にするので、車両走行で要求される、より大きな出力(要求駆動力)Qtに対応できるようになり、高地走行状態においても、ハイブリッドシステム2としての高地用最大許容出力Qhmaxをエンジン10の高地制限出力Qemaxよりも大きくして、より大きな車両走行で要求される必要駆動力Qtに対応できるようになる。
1 ハイブリッド車両(HEV)
2 ハイブリッドシステム
10 エンジン(内燃機関)
11 排気通路
12 ターボ式過給機
12a コンプレッサ
12b タービン
13 トルクコンバータ
14 エンジン走行用クラッチ
15 吸気通路
20 電動発電機(走行用電動機兼発電機)
21 インバータ
22 バッテリ
23 モータ走行用クラッチ
30 変速機
31 プロペラシャフト
32 差動装置(デファレンシャルギア)
33 車軸
34 車輪
40 制御装置
41 高地走行判定手段
G 排気ガス
Pa 大気圧
Pa(i) 大気圧の時系列のデータ(i=1,2・・・)
Pa(n) 制御時の大気圧
Pa(n-1) 大気圧の直前の時系列データ
Pac 高地判定用大気圧
Qea エンジンで発生する負荷量
Qec 予め設定した負荷量(軽負荷運転の判定用閾値)
Qemax エンジンの高地制限出力
Qhmax 車両走行のための高地用最大許容出力
Qm 電動発電機の駆動力
Qmmax 電動発電機の最大許容出力
Qt 車両走行に必要な要求駆動力
t 経過時間
t1 第1期間
ta 第1時点
tb 第2時点
tx 高地走行状態に入る時期(大気圧が高地判定用大気圧を下回る時期)
Ta 大気温度
ΔPa 大気圧Paの減少分の大きさ
ΔQtm 要求駆動力と高地制限出力の差
Δt 時間増分
Δti 制御時間

Claims (5)

  1.  内燃機関と電動発電機を備え、該電動発電機でアシスト可能なハイブリッド車両において、
     当該ハイブリッド車両を制御する制御装置が、
     前記内燃機関が高地走行状態に入っているか否かを判定する高地走行判定手段を備え、
     該高地走行判定手段が高地走行状態に入っていると判定した場合には、前記内燃機関の高地制限出力に加えて前記電動発電機の最大許容出力を、車両走行のための高地用最大許容出力とする高地走行制御を行うように構成されることを特徴とするハイブリッド車両。
  2.  前記制御装置の前記高地走行判定手段が、予め設定した第1期間内に前記内燃機関が高地走行状態に入ると判定した場合には、前記電動発電機の電力源となるバッテリの充電量を確保する充電量確保制御を、前記高地走行判定手段が高地走行状態に入っていると判定するまで行うように構成されることを特徴とする請求項1に記載のハイブリッド車両。
  3.  前記充電量確保制御が、前記電動発電機の電力源となるバッテリの放電を抑制する放電抑制制御、又は、前記内燃機関で発生する負荷量が予め設定した負荷量よりも小さい軽負荷運転のときに前記電動発電機による発電を行ってバッテリを充電する軽負荷時充電制御の少なくとも一方を含むことを特徴とする請求項2に記載のハイブリッド車両。
  4.  前記高地走行判定手段は、大気圧の時系列のデータを基にして、前記内燃機関が高地走行状態に入っているか否かを判定するともに、前記内燃機関が前記第1期間内に高地走行に入るか否かを判定するように構成されることを特徴とする請求項2又は3に記載のハイブリッド車両。
  5.  内燃機関と電動発電機を備え、該電動発電機でアシスト可能なハイブリッド車両の制御方法において、
     前記内燃機関が高地走行状態に入っているか否かを判定し、
     高地走行状態に入っていると判定した場合には、前記内燃機関の高地制限出力に加えて前記電動発電機の最大許容出力を、車両走行のための高地用最大許容出力とする高地走行制御を行うことを特徴とするハイブリッド車両の制御方法。
PCT/JP2015/058211 2014-03-24 2015-03-19 ハイブリッド車両及びハイブリッド車両の制御方法 WO2015146770A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-060192 2014-03-24
JP2014060192A JP6273950B2 (ja) 2014-03-24 2014-03-24 ハイブリッド車両及びハイブリッド車両の制御方法

Publications (1)

Publication Number Publication Date
WO2015146770A1 true WO2015146770A1 (ja) 2015-10-01

Family

ID=54195291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058211 WO2015146770A1 (ja) 2014-03-24 2015-03-19 ハイブリッド車両及びハイブリッド車両の制御方法

Country Status (2)

Country Link
JP (1) JP6273950B2 (ja)
WO (1) WO2015146770A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102672892B1 (ko) * 2019-10-15 2024-06-07 현대자동차 주식회사 전동식 슈퍼차저를 구비한 하이브리드 차량의 제어 장치 및 이를 이용한 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314004A (ja) * 2000-04-28 2001-11-09 Hitachi Ltd ハイブリッド車両
JP2002213247A (ja) * 2001-01-18 2002-07-31 Suzuki Motor Corp 内燃機関の過給圧制御装置
JP2006183523A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2009227073A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2013023185A (ja) * 2011-07-26 2013-02-04 Toyota Motor Corp ハイブリッド車両およびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314004A (ja) * 2000-04-28 2001-11-09 Hitachi Ltd ハイブリッド車両
JP2002213247A (ja) * 2001-01-18 2002-07-31 Suzuki Motor Corp 内燃機関の過給圧制御装置
JP2006183523A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd ハイブリッド車両の駆動力制御装置
JP2009227073A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2013023185A (ja) * 2011-07-26 2013-02-04 Toyota Motor Corp ハイブリッド車両およびその制御方法

Also Published As

Publication number Publication date
JP2015182570A (ja) 2015-10-22
JP6273950B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
US8744712B2 (en) Drive control device for electric vehicle, and electric vehicle
US7019472B2 (en) Vehicle controller that stably supplies power to a battery and method thereof
EP2502773B1 (en) System for supplying propulsion energy from an auxiliary drive and method of making same
JP5733200B2 (ja) ハイブリッド車両の制御装置
JP5022067B2 (ja) ハイブリッド電気車両のアイドリング充電時の発電制御方法
US8721496B2 (en) Transmission control during regenerative braking
KR101526384B1 (ko) 하이브리드 차량의 엔진 클러치 제어장치 및 방법
US9469185B2 (en) Control device for hybrid vehicle
CN104773161A (zh) 混合动力电动车辆
CN105083275A (zh) 车辆电池功率传递限制管理系统和方法
WO2012120702A1 (ja) ハイブリッド車両
KR101490922B1 (ko) 하이브리드 자동차의 배터리 방전 파워 제한시 주행모드 변환 방법 및 시스템
CN103547497A (zh) 混合动力电动车辆控制器和控制混合动力电动车辆的方法
KR101509702B1 (ko) 하이브리드 차량의 변속 제어 방법 및 시스템
JP2015533982A (ja) スーパーチャージャー及び補機を有する車両駆動システム用の制御システム
KR101806179B1 (ko) 하이브리드 차량의 토크 저감 제어 방법
JP6488549B2 (ja) ハイブリッド車両及びハイブリッド車両の制御方法
JP6273950B2 (ja) ハイブリッド車両及びハイブリッド車両の制御方法
JP5450238B2 (ja) 電動車両
JP2012219710A (ja) 車両用エンジン及び排気タービン発電機
KR20180070341A (ko) 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법
JP2006144589A (ja) ハイブリッド車のエンジン制御装置
JP7043908B2 (ja) 発電装置を備えた車両および車両搭載発電装置の発電制御方法
KR102648820B1 (ko) 친환경 자동차 및 그를 위한 변속기 유압 제어 방법
KR20170035559A (ko) 주행 환경에 적응적인 토크를 고려한, HEV 자동차(Hybrid Electric Vehicle)의 가속 요구 토크 제어 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770197

Country of ref document: EP

Kind code of ref document: A1