WO2015146674A1 - Optical film, and window film employing same - Google Patents

Optical film, and window film employing same Download PDF

Info

Publication number
WO2015146674A1
WO2015146674A1 PCT/JP2015/057703 JP2015057703W WO2015146674A1 WO 2015146674 A1 WO2015146674 A1 WO 2015146674A1 JP 2015057703 W JP2015057703 W JP 2015057703W WO 2015146674 A1 WO2015146674 A1 WO 2015146674A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
group
mass
film
Prior art date
Application number
PCT/JP2015/057703
Other languages
French (fr)
Japanese (ja)
Inventor
仁 安達
博和 小山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015146674A1 publication Critical patent/WO2015146674A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to an optical film and a window film using the same. More specifically, the present invention relates to an optical film excellent in curl recovery and tear strength, and a window film excellent in water sticking workability and finished quality using the optical film.
  • a polyethylene terephthalate (PET) film is generally used as a support for optical films such as window films.
  • the product form is often wound into a roll with a narrow diameter.
  • a wound mold is attached (also referred to as a curl), and it returns to a wound state even if it is spread in a sheet form. For this reason, an optical film with a curl is stuck on a window, and handling properties when processing the product into an object are extremely deteriorated. In particular, in the work of attaching a window film to a window, this curl greatly reduced the handleability.
  • a cellulose triacetate (TAC) film used as a cellulose-based support for example, as a support for a photographic photosensitive material, recovers its curl by water treatment such as development.
  • the film is immersed in a developing solution, whereas when the window film is attached with water, water is sprayed by spraying or the like, and the behavior at that time is not well understood. Furthermore, it has been found that when a cellulosic support is applied to a window film support, troubles in which the squeegee catches and the film tears when water is applied.
  • Patent Document 2 a technique for improving mechanical properties by mixing a cellulose derivative advantageous for carbon offset and a high molecular weight aliphatic polyester for the purpose of use in an electric / electronic housing is disclosed (see Patent Document 2).
  • Patent Document 2 describes that a cellulose derivative is imparted with thermoplasticity and impact resistance, but it does not completely describe the improvement of the problem during water pasting due to winding when storing a window film. There is no suggestion.
  • the present invention has been made in view of the above problems and situations, and a solution to that problem is to provide an optical film excellent in curl recovery and tear strength. Another object of the present invention is to provide a window film excellent in water pasting workability and finished quality using the same.
  • the present inventor has incorporated an optical film with a polyester or polyalkylene oxide that is highly compatible with a cellulose derivative, thereby providing a tear strength.
  • a support containing a cellulose derivative which has been greatly improved, and has led to the present invention.
  • An optical film having at least an optical functional layer and an adhesive layer on a film-like support, wherein the support contains 30% by mass or more of a cellulose derivative, and a curl recovery rate is 20% or more, An optical film that is adjusted to have a strength of 150 mN or more.
  • optical film according to item 1 wherein the support contains an aliphatic polyester or a polyalkylene oxide as a second polymer component in addition to the cellulose derivative.
  • R 1 to R 6 each represents a hydrogen atom or a substituent.
  • I represents an integer of 0 to 2.
  • j represents an integer of 0 to 10.
  • k represents an integer of 3 to 10.
  • A, b, and c represent constituent ratios (molar fractions), and the sum of a, b, and c is 1.) 8).
  • the optical functional layer has a high refractive index layer containing a first water-soluble binder resin and first metal oxide particles, and a low refractive index containing a second water-soluble binder resin and second metal oxide particles.
  • the optical film according to item 8 wherein the optical film is a layer that selectively reflects light of a specific wavelength in which rate layers are alternately laminated.
  • a window film comprising the optical film according to any one of items 1 to 9.
  • the above-described means of the present invention can provide an optical film excellent in curl recovery and tear strength.
  • the window film used under sunlight exposure needs to have light transmission, UV resistance, heat resistance, scratch resistance, workability, and curl recovery. However, no transparent film satisfying such performance has been reported so far.
  • the polymer (resin) used is a non-aromatic polymer (UV resistance), has a rigid main chain structure (heat resistance), and the film is moderate It is considered necessary to have excellent flexibility and toughness (toughness) (scratch resistance, workability).
  • resins with a rigid main chain structure are difficult to remove once the curl is attached, and there are many polymers (resins) with low flexibility and low toughness, and it is difficult to satisfy all these performances.
  • the first function is to suppress decomposition by ultraviolet rays and to impart heat resistance by having a rigid main chain structure that does not contain an aromatic group as a polymer component.
  • Another function is to impart flexibility and toughness to the polymer.
  • Yet another function is to impart curl recovery to the polymer.
  • the stabilization energy when interacting between different polymers needs to be larger than the stabilization energy when interacting with each other.
  • a cellulose derivative that is a natural polymer-modified polymer as a rigid main chain structure that does not contain an aromatic group, and a high molecular weight aliphatic polyester or polyethylene oxide that has a soft segment and can interact with the natural polymer.
  • High compatibility makes it possible to greatly improve the toughness and flexibility of cellulose derivative-containing films, satisfying UV resistance, heat resistance, transparency, scratch resistance, workability and curl recovery.
  • a support could be obtained. Therefore, using this support, it is possible to realize a support having both good curl recovery properties of conventional cellulose derivative films and high strength comparable to PET films, and an optical film suitable as a window film can be obtained. It is inferred that
  • the optical film of the present invention is an optical film having at least an optical functional layer and an adhesive layer on a film-like support, and the support contains 30% by mass or more of a cellulose derivative, and a curl recovery rate Is 20% or more, and the tear strength is adjusted to be 150 mN or more.
  • This feature is a technical feature common to the inventions according to claims 1 to 10.
  • the support is made of an aliphatic polyester or polyalkylene oxide in addition to the cellulose derivative (also referred to as the first polymer component). It is preferable to contain as a component. Further, the support preferably contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 4000 to 500,000 with respect to the cellulose derivative. It is preferable that the support contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 30,000 to 400,000 with respect to the cellulose derivative because high toughness can be imparted to the support. Furthermore, the cellulose derivative is preferably a cellulose ester.
  • the acetyl group substitution degree X of the cellulose ester and the total substitution degree Y of propionyl group and butyryl group preferably satisfy the above formulas (I) and (II). Thereby, a high toughness can be imparted to the support.
  • the second polymer component is preferably an aliphatic polyester having a structure represented by the general formula (1).
  • the optical functional layer has a layer that selectively transmits or shields light of a specific wavelength, it can be preferably applied because it is easily damaged by stick-slip-like unevenness or squeeze work when water is applied.
  • the optical functional layer has a high refractive index layer containing the first water-soluble binder resin and the first metal oxide particles, and the second water-soluble binder resin and the second metal oxide.
  • permeability is high, it is excellent in heat-shielding performance, and the window film more excellent in curl recovery property can be provided.
  • the optical film of the present invention can be suitably provided for a window film.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the optical film of the present invention is an optical film having at least an optical functional layer and an adhesive layer on a film-like support, and the support contains 30% by mass or more of a cellulose derivative, and a curl recovery rate Is 20% or more, and the tear strength is adjusted to be 150 mN or more.
  • the support according to the present invention includes, in addition to the cellulose derivative, a polyester or polyalkylene oxide having a weight average molecular weight in the range of 4,000 to 500,000 as the second polymer component. On the other hand, it contains 5 mass% or more.
  • an optical film having a sufficient strength as a window film can be provided by taking advantage of the excellent characteristics of the cellulose derivative as a support.
  • FIG. 1A to 1G are examples of the layer structure of the optical film of the present invention.
  • FIG. 1A includes an optical functional layer 3, an adhesive layer 2 and a separator 1 on one side of a support 4 according to the present invention, and a hard coat layer 7 on the opposite side of the support.
  • This optical film can be used as a window film by peeling off the separator 1 and attaching the adhesive layer 2 to a window glass.
  • FIG. 1B is an example in which the optical functional layer 3 is provided on the opposite side of the support 4, and an additional support 6 is provided via the adhesive layer 5.
  • FIG. 1C is an example of a configuration in which the support 4 according to the present invention is used instead of the additional support in the example shown in FIG. 1B and the optical functional layer 3 is sandwiched between the supports 6 according to the present invention.
  • FIG. 1D is an example in which the support 4 and the additional support 6 according to the present invention are replaced with the example shown in FIG. 1B.
  • 1E to 1G are examples in which the support 4 or the additional support 6 according to the present invention is further used with respect to FIG. 1A.
  • the optical functional layer and the adhesive layer may be provided on one side of the support, or may be separately provided on the opposite side of the support via the support.
  • the optical film of the present invention is an optical film having at least an optical functional layer and an adhesive layer on a film-like support, and the support contains 30% by mass or more of a cellulose derivative, and a curl recovery rate Is 20% or more, and the tear strength is adjusted to be 150 mN or more.
  • the support according to the present invention is adjusted so as to contain 30% by mass or more of a cellulose derivative, a curl recovery rate of 20% or more, and a tear strength of 150 mN or more.
  • the support preferably contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 4000 to 500,000 with respect to the cellulose derivative.
  • the content of the cellulose derivative in the support is from 50 to 90% by mass, more preferably from 50 to 70% by mass.
  • the content of the second polymer component in the support is preferably 5% by mass or more based on the cellulose derivative. Preferably, it is within the range of 10 to 50% by mass.
  • the interaction of the polymer components can be preferably exerted.
  • the thickness of the support is preferably in the range of 20 to 200 ⁇ m, more preferably in the range of 25 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. If the thickness is 20 ⁇ m or more, wrinkles and the like are less likely to occur during handling, and there is sufficient strength against squeeze when water is applied, and there is no occurrence of unevenness after water application. Moreover, if thickness is 200 micrometers or less, it is excellent in transparency and curl recovery property, and water sticking workability
  • additional supports can be provided as shown in FIGS. 1B, 1D, 1E and 1G.
  • the additional support is not particularly limited as long as the effects of the present invention are not impaired.
  • the thickness of the additional support is preferably in the range of 5 to 200.
  • a composite support with reduced curling of the PET film can be obtained.
  • the curl recovery rate is a scale indicating the curl recovery property of an optical film wound in a roll and having a curl, and can be determined as follows.
  • the support was cut into a strip having a width of 35 mm (direction perpendicular to the transport direction during manufacture: TD direction) and a length of 120 mm (transport direction during manufacture: MD direction), and the temperature was 23 ° C. and the relative humidity was 55%. After being left for 1 day, it is wound around a core having a diameter of 50 mm.
  • the curl degree is represented by 1 / r, r represents the radius of curvature of the curled support, and the unit is m.
  • Curb recovery rate (curl degree before spraying-curl degree after spraying) / curl degree before spraying x 100 (%)
  • the curl recovery rate of the support according to the present invention is 20% or more, more preferably 50% or more.
  • the tear strength defined in the present invention can be determined by the following method.
  • the support according to the present invention is manufactured by Toyo Seiki Seisakusho Co., Ltd. It is calculated
  • the tear strength is measured under a constant temperature and humidity condition (in the present invention, a temperature of 23 ° C. and a relative humidity of 55%).
  • the tear length and thickness of the sample are the same conditions, and the average value in the direction orthogonal to the transport direction (TD direction) and the transport direction (MD direction) is determined as the tear strength. Say it.
  • the tear strength of the support according to the present invention is 150 mN or more, more preferably 190 mN or more, and most preferably 230 mN or more.
  • the upper limit of the tear strength is not particularly limited. However, if the strength is too strong, the cutting property of the support is deteriorated, and therefore it is preferably 3000 mN or less.
  • the optical film of the present invention is an optical film having at least an optical functional layer and an adhesive layer on a film-like support, and the support contains 30% by mass or more of a cellulose derivative.
  • Examples of the cellulose derivative according to the present invention include cellulose ester and cellulose ether.
  • the cellulose derivative at least part of the hydrogen atoms of the 2-position, 3-position, and 6-position hydroxy groups of the ⁇ -glucose ring contained in cellulose is substituted with at least one of an aliphatic acyl group and an alkyl group. Is.
  • the cellulose derivative is preferably a cellulose ester.
  • Specific examples of the cellulose ester include triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate, and cellulose tripropionate.
  • the substituent that can be substituted for the first polymer component in the present invention is preferably a non-aromatic group from the viewpoint of durability when exposed to sunlight.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • alkyl group methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group)
  • Cycloalkyl group cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.
  • cyano group hydroxy group, nitro group, carboxy group, alkoxy group (methoxy group, ethoxy group, isopropoxy group, tert- Butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.
  • acyl group
  • the total acyl group substitution degree of the cellulose ester is preferably from 1.5 to 3.0, more preferably from 2.5 to 2.95, from the viewpoint of transparency.
  • the method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • acetyl group substitution degree X of cellulose ester and the total substitution degree Y of propionyl group and butyryl group satisfy the following formulas (I) and (II).
  • the cellulose ester contained in the optical film of the present invention may contain a plurality of cellulose esters having different degrees of substitution in order to obtain desired properties. For example, when two types of cellulose esters having different substitution degrees are included, the mixing ratio thereof can be in the range of 10:90 to 90:10 by mass ratio.
  • the number average molecular weight of the cellulose ester is preferably in the range of 6 ⁇ 10 4 to 3 ⁇ 10 5 and preferably in the range of 7 ⁇ 10 4 to 2 ⁇ 10 5 because the mechanical strength of the resulting film is high. It is more preferable.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the cellulose ester can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the second polymer component in the present invention is compatible by a plurality of interactions with the first polymer component, preferably has a weight average molecular weight of 4000 to 500,000 and has a soft segment.
  • the term “compatible” refers to being mixed and transparent at the molecular level.
  • the interaction in the present invention include a hydrogen bond, a dipole-dipole interaction, an intermolecular force, and a CH- ⁇ interaction.
  • Such a site capable of interaction is called an interaction point, and the interaction point may be included in the main chain, may be included in the side chain, and is included in the soft segment described later. It may be.
  • the second polymer component having a high molecular weight has many interaction points per main chain, and a plurality of interactions with the first polymer component.
  • the number of possible states increases exponentially and entropy increases, so the free energy of the cast increases negatively, so the first polymer component and the second polymer component interact.
  • a high degree of compatibility is possible.
  • Whether the first polymer component and the second polymer component are compatible can be determined by, for example, the glass transition temperature Tg.
  • the two polymers when the two polymers have different glass transition temperatures, when the two polymers are simply mixed, there are two or more glass transition temperatures of the mixture because there is a glass transition temperature for each polymer. When they are compatible, the glass transition temperature specific to each polymer disappears, and becomes one glass transition temperature, which is the glass transition temperature of the compatible polymer.
  • the glass transition temperature referred to here is a differential scanning calorimeter (for example, DSC-7 manufactured by Perkin Elmer, differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc.), and the rate of temperature increase is 20 It is measured at ° C./min and is defined as the midpoint glass transition temperature (Tmg) obtained according to JIS K7121 (1987).
  • DSC-7 differential scanning calorimeter
  • DSC220 differential scanning calorimeter 220 manufactured by Seiko Instruments Inc.
  • the soft segment in the present invention refers to a linking group capable of imparting stretchability and rotation to the main chain, and is not particularly limited as long as it has a structure satisfying them. Specifically, —O— , A moiety containing a bond such as —COO—, OCOO—, and —S—.
  • the weight average molecular weight of the second polymer component is in the range of 4,000 to 500,000, preferably in the range of 30,000 to 400,000, and particularly preferably in the range of 50,000 to 300,000.
  • the molecular weight of the second polymer component is within the range of 4,000 to 500,000, the stabilization energy when interacting with the first polymer component is greater than the self-cohesion force of the second polymer component, and transparency , Elongation at break and tear strength are improved.
  • polyalkylene oxide and polyester are preferable, aliphatic polyester and polyalkylene oxide are more preferable, and aliphatic polyester is particularly preferable.
  • the polyalkylene oxide that can be used as the second polymer component in the present invention is not particularly limited, and examples thereof include those containing ethylene oxide as one component, such as polyethylene oxide that is an ethylene oxide homopolymer; ethylene oxide and other Examples include copolymers with alkylene oxides.
  • Examples of the other alkylene oxides include propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane, epichlorohydrin, epibromohydrin, trifluoromethylethylene oxide, cyclohexene oxide, styrene oxide, methyl glycidyl ether, and allyl.
  • Examples include glycidyl ether, phenyl glycidyl ether, glycidol, glycidyl acrylate, butadiene monooxide, and butadiene dioxide. Of these, polyethylene oxide and polypropylene oxide are preferable, and polyethylene oxide is more preferable.
  • the aliphatic polyester that can be used as the second polymer component in the present invention will be described.
  • the aliphatic polyester referred to in the present invention is preferably an aliphatic polyester having a weight average molecular weight of 4000 or more.
  • the aliphatic polyester in the present invention is preferably a polyester obtained by a condensation reaction of an aliphatic polyhydric alcohol and an aliphatic polybasic acid, or an aliphatic polyester obtained by ring-opening polymerization of a cyclic ester.
  • R 1 to R 6 each represent a hydrogen atom or a substituent, and the substituent is a substituent that may be substituted on the second polymer component described later. Since the general formula (1) in the present invention contains a large number of linking groups such as —CO— and —O— which are soft segments, the substituents of R 1 to R 6 do not impair the intended effect of the present invention. May introduce any substituent.
  • i represents an integer of 0 to 2
  • j represents an integer of 0 to 10
  • k represents an integer of 3 to 10.
  • i is preferably 0 to 1, and more preferably 1.
  • J in the general formula (1) is preferably 0 to 5, more preferably 1 to 4, and particularly preferably 3.
  • k is preferably 3 to 8, more preferably 3 to 5, and particularly preferably 3.
  • the group represented by R 1 to R 6 in the general formula (1) is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom.
  • A, b, and c represent constituent ratios (molar fractions), and the sum of a, b, and c is 1.
  • Particularly preferred is 45 to 0.55 / 0.15 to 0.25.
  • Examples of the aliphatic polyester represented by the general formula (1) in the present invention include polyethylene adipate, polyethylene succinate, polybutylene adipate, polybutylene succinate, polybutylene succinate adipate, and the like. Polyethylene succinate, polybutylene succinate, and polybutylene succinate adipate are preferable.
  • Examples of the aliphatic polybasic acid used in the condensation reaction of an aliphatic polyhydric alcohol and an aliphatic polybasic acid (or an ester thereof) include succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, Examples include suberic acid, sebacic acid, azelaic acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, undecanedioic acid, dodecanedioic acid, and anhydrides thereof, or esters thereof.
  • Examples of the aliphatic polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 3-methyl-1,5-pentanediol, 1,3-propanediol, and 1,4-butanediol. 1,9-nonanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexanedimethanol, polytetramethylene glycol 1,4-cyclohexanedimethanol, and the like It is done.
  • polyoxyalkylene glycol as a part of the aliphatic polyhydric alcohol, and examples thereof include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, and copolymers thereof.
  • the aliphatic polyester can be used alone or in combination of two or more.
  • any of D-form, L-form, and racemate may be used, and the form may be any of solid, liquid, or aqueous solution.
  • the aliphatic polyhydric alcohol is ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl- At least one selected from 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, polytetramethylene glycol 1,4-cyclohexanedimethanol, and the aliphatic polybase At least one fat selected from succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, and anhydrides thereof Be a polybasic acid Preferred.
  • the aliphatic polyhydric alcohol is at least one selected from diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and More preferably, the aliphatic polybasic acid is at least one aliphatic polybasic acid selected from succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, and anhydrides thereof. preferable.
  • the total amount of the aliphatic polybasic acid (or its ester) component and the aliphatic polyhydric alcohol component may be initially mixed and reacted, or added in portions as the reaction proceeds. No problem.
  • the polycondensation reaction can be carried out by a common transesterification method or esterification method, or a combination of both. If necessary, the degree of polymerization can be increased by increasing or decreasing the pressure in the reaction vessel.
  • Examples of the cyclic ester used in the method for ring-opening polymerization of a cyclic ester include ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, and ⁇ -caprolactone. Of these, ⁇ -caprolactone is particularly preferred.
  • the ring-opening polymerization can be carried out by a method such as polymerization in a solvent or bulk polymerization using a known ring-opening polymerization catalyst.
  • a vertical reactor a batch reactor, a horizontal reactor, a twin screw extruder or the like is used, and the reaction is preferably carried out in bulk or in solution.
  • Metals such as antimony, cadmium, manganese, iron, zirconium, vanadium, iridium, lanthanum, selenium, and organic metal compounds thereof, salts of organic acids, metal alkoxides, metal oxides, etc. It can also be used in combination with a promoter such as an acid.
  • These catalysts can be used singly or in combination of two or more, and the addition amount is preferably 0.1 mol or less, more preferably 0.8 mol or less, still more preferably with respect to 100 mol of all dicarboxylic acids. Is 0.6 mol or less.
  • the molecular weight can be increased using a chain extender.
  • chain extender include bifunctional or higher functional isocyanate compounds, epoxy compounds, aziridine compounds, oxazoline compounds, and polyvalent metal compounds, polyfunctional acid anhydrides, phosphate esters, phosphites, and the like. Or you may combine 2 or more types.
  • the elastic modulus of the aliphatic polyester in the present invention is preferably 0.01 GPa or more and 1 GPa or less, and more preferably 0.1 GPa or more and 0.5 GPa or less.
  • the aliphatic polyester in the present invention preferably has a weight average molecular weight of 4000 or more.
  • the weight average molecular weight is a weight average molecular weight measured by gel permeation chromatography (GPC). More specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight is obtained using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
  • GPC gel permeation chromatography
  • HLC-8220 GPC manufactured by Tosoh Corporation
  • the weight average molecular weight of the aliphatic polyester is 4000 or more, there is no fear of bleeding out, and the aliphatic polyester does not act as a plasticizer for the resin to be mixed, and the rigidity and heat resistance of the resin are not significantly impaired.
  • the substituent that can be substituted for the second polymer component in the present invention is not particularly limited, and examples thereof include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (methyl group, ethyl group, n -Propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group etc.), alkenyl group (vinyl group, Allyl group), cycloalkenyl group (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (ethynyl group, propargyl group, etc.), aryl group (phenyl group, p-
  • the second polymer component in the present invention is preferably composed of a non-aromatic component in the same manner as the first polymer component. However, unlike the first polymer component, it may have an aromatic group and a heteroaromatic group. This is because the first polymer component imparts heat resistance and UV resistance as a film, and the second component imparts flexibility and toughness, so the second polymer component is slightly destroyed by ultraviolet rays. This is because even if it is done, the film performance is not greatly affected.
  • the first polymer component and the second polymer component may be crosslinked by a covalent bond or may not be crosslinked. Further, the first polymer components and the second polymer components may be cross-linked by a covalent bond, or may not be cross-linked. (Additive) In the optical film of the present invention, various additives can be added to the support so long as the intended function is not deteriorated.
  • sugar ester From the viewpoint of improving the plasticity of the highly transparent film having durability against sunlight in the present invention, a sugar ester can be further contained.
  • the sugar ester may be a compound having 1 to 12 furanose structures or pyranose structures, in which all or part of the hydroxy groups in the compound are esterified.
  • sugar esters include sucrose esters represented by the following general formula (FA).
  • R 1 to R 8 in formula (FA) each independently represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group.
  • R 1 to R 8 may be the same as or different from each other.
  • the substituted or unsubstituted alkylcarbonyl group is preferably a substituted or unsubstituted alkylcarbonyl group having 2 or more carbon atoms.
  • Examples of the substituted or unsubstituted alkylcarbonyl group include a methylcarbonyl group (acetyl group).
  • the substituted or unsubstituted arylcarbonyl group is preferably a substituted or unsubstituted arylcarbonyl group having 7 or more carbon atoms.
  • the arylcarbonyl group include a phenylcarbonyl group.
  • the substituent that the aryl group has include an alkyl group such as a methyl group, an alkoxyl group such as a methoxy group, and the like.
  • the average substitution degree of the acyl group of the sucrose ester is preferably in the range of 3.0 to 7.5. When the average substitution degree of the acyl group is within this range, sufficient compatibility is easily obtained. In particular, when cellulose ester is used as the first polymer component, the compatibility becomes high.
  • sucrose ester represented by the general formula (FA) include the following exemplified compounds (FA-1) to (FA-24).
  • the following table shows R 1 to R 8 in the general formula (FA) of the exemplary compounds (FA-1) to (FA-24) and the average substitution degree of the acyl group.
  • sugar esters examples include compounds described in JP-A Nos. 62-42996 and 10-237084.
  • the content of the sugar ester is preferably 0.5 to 35.0% by mass, and preferably 5.0 to 30.0% by mass with respect to the total amount of the first polymer component and the second polymer component. Is more preferable.
  • plasticizers include polyester plasticizers, polyhydric alcohol ester plasticizers, polycarboxylic acid ester plasticizers (including phthalate ester plasticizers), glycolate plasticizers, ester plasticizers ( Citrate ester plasticizers, fatty acid ester plasticizers, phosphate ester plasticizers, trimellitic ester plasticizers, etc.). Of these, polyester plasticizers and phosphate ester plasticizers are preferred. These may be used alone or in combination of two or more.
  • the support according to the present invention may contain particles within a range not impairing transparency.
  • particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate.
  • the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together.
  • additives may be added in addition to the above particles as necessary.
  • additives include plasticizers other than sugar esters, stabilizers, lubricants, crosslinking agents, anti-blocking agents, antioxidants, dyes, pigments, ultraviolet absorbers, and the like.
  • ⁇ Method for producing support containing cellulose derivative ⁇ As a method for producing a support containing the cellulose derivative according to the present invention (hereinafter also simply referred to as a support), the usual inflation method, T-die method, calendar method, cutting method, casting method, emulsion method
  • the production method such as hot press method can be used, but from the viewpoint of suppression of coloring, suppression of foreign matter defects, suppression of optical defects such as die line, etc., the film forming methods are solution casting film forming method and melt casting film forming method.
  • the solution casting film forming method is preferable from the viewpoint of obtaining a uniform and smooth surface.
  • the production of the support according to the present invention includes a step of preparing a dope by dissolving at least a cellulose derivative, or a cellulose derivative and a second polymer component, and if necessary, an additive or the like in a solvent, and filtering the prepared dope.
  • the support according to the present invention preferably contains a cellulose derivative in the range of 60 to 95% by mass in the solid content.
  • Dissolution process In a dissolution vessel, dissolve the cellulose derivative, or the cellulose derivative and the second polymer component, and if necessary, the additives and the like in an organic solvent mainly composed of a good solvent for the cellulose derivative. This is a step of forming a dope, or a step of mixing the second polymer component and, if necessary, a compound solution such as an additive into the cellulose derivative solution to form a dope which is a main solution.
  • the organic solvent useful for forming the dope dissolves the cellulose derivative, or the cellulose derivative and the second polymer component, and other additives at the same time. Anything can be used without limitation.
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • methylene chloride, methyl acetate, ethyl acetate, and acetone can be preferably used as the main solvent. Particularly preferably
  • the dope preferably contains a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass.
  • the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy.
  • the proportion of alcohol is small, dissolution of cellulose derivatives and other compounds in non-chlorine organic solvent systems
  • a method of forming a film using a dope having an alcohol concentration in the range of 0.5 to 15.0% by mass from the viewpoint of improving the flatness of the obtained support. Can be applied.
  • a dope composition in which a cellulose derivative and other compounds are dissolved in a total amount of 15 to 45% by mass in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. It is preferable that it is a thing.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Methanol and ethanol are preferred because of the stability, boiling point of these inner dopes, and good drying properties.
  • JP-A-9-95544 For dissolving the cellulose derivative, the second polymer component or other compound, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544 Various dissolution methods such as a method of performing a cooling dissolution method as described in JP-A-9-95557 or JP-A-9-95538, a method of performing at a high pressure described in JP-A-11-21379 However, a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is preferable.
  • the concentration of the cellulose derivative in the dope is preferably in the range of 10 to 40% by mass.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m.
  • the surface temperature of the metal support in the casting step is set in the range of ⁇ 50 ° C. to below the temperature at which the solvent boils and does not foam, more preferably in the range of ⁇ 30 to 0 ° C. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably within a range of 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position.
  • the peeled web is sent to the next step as a film-like support.
  • the temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like.
  • the amount of solvent is determined.
  • the residual solvent amount of the web is defined by the following formula (Z).
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the drying step can be divided into a preliminary drying step and a main drying step.
  • the web obtained by peeling from the metal support is dried.
  • the web may be dried while being conveyed by a large number of rollers arranged above and below, or may be dried while being conveyed while fixing both ends of the web with clips like a tenter dryer. .
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roller, microwave, or the like, but it is preferably performed with hot air in terms of simplicity.
  • the drying temperature in the web drying process is preferably a glass transition point of the film of ⁇ 5 ° C. or less, and it is effective to perform a heat treatment at a temperature of 100 ° C. or more for 10 minutes or more and 60 minutes or less. Drying is performed at a drying temperature in the range of 100 to 200 ° C, more preferably in the range of 110 to 160 ° C.
  • the support according to the present invention can control the orientation of molecules in the film by stretching, and the planarity is improved.
  • the support according to the present invention is preferably stretched in at least one of the casting direction (MD direction) and the width direction (TD direction), and is manufactured by stretching in the width direction by at least a tenter stretching device. Is preferred.
  • the stretching operation may be performed in multiple stages.
  • simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
  • stretching steps are possible: -Stretch in the casting direction-> Stretch in the width direction-> Stretch in the casting direction-> Stretch in the casting direction-Stretch in the width direction-> Stretch in the width direction-> Stretch in the casting direction-> Stretch in the casting direction
  • Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the residual solvent amount at the start of stretching is preferably in the range of 2 to 10% by mass.
  • the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small and is preferable from the viewpoint of flatness, and if it is within 10% by mass, the unevenness of the surface is reduced and the flatness is improved.
  • the support according to the present invention is preferably stretched in a temperature range of (Tg + 15) to (Tg + 50) ° C. when the glass transition temperature is Tg.
  • Tg glass transition temperature
  • the stretching temperature is preferably in the range of (Tg + 20) to (Tg + 40) ° C.
  • the glass transition temperature Tg referred to here is a midpoint glass transition temperature (Tmg) measured according to JIS K 7121 (1987) using a commercially available differential scanning calorimeter with a temperature rising rate of 20 ° C./min. ).
  • Tmg midpoint glass transition temperature
  • a specific method for measuring the glass transition temperature Tg of the support can be measured using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K 7121 (1987).
  • the support according to the present invention preferably stretches the web at least 1.1 times in the TD direction.
  • the range of stretching is preferably 1.1 to 1.5 times the original width, and more preferably 1.2 to 1.4 times. If it is in the said range, the movement of the molecule
  • the entire drying process or a part of the process as disclosed in Japanese Patent Application Laid-Open No. 62-46625 can be performed while holding the width ends of the web with clips or pins in the width direction.
  • a drying method (referred to as a tenter method), among them, a tenter method using clips and a pin tenter method using pins are preferably used.
  • Winding step This is a step of winding the support after the amount of residual solvent in the web is 2% by mass or less, and good dimensional stability is achieved by setting the amount of residual solvent to 0.4% by mass or less.
  • a support containing a cellulose derivative can be obtained.
  • a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
  • the support according to the present invention is preferably long and, specifically, preferably has a length of about 100 to 10,000 m, and is wound up in a roll shape.
  • the width of the support is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • the visible light transmittance measured by JIS R 3106 is preferably 60% or more, more preferably 70% or more, and further preferably 80%. That's it.
  • the haze is preferably less than 1%, and more preferably less than 0.5%. By setting the haze to less than 1%, there is an advantage that the transparency of the film becomes higher and it becomes easier to use as a film for optical applications.
  • the support according to the present invention preferably has an equilibrium water content of 4% or less at 25 ° C. and a relative humidity of 60%, more preferably 3% or less.
  • the equilibrium moisture content By setting the equilibrium moisture content to 4% or less, the dimensions are less likely to change even if the temperature and humidity change.
  • the optical functional layer according to the present invention is not particularly limited as long as it has a function of controlling optical characteristics.
  • a layer for controlling reflectance and transmittance, a microlens, a microprism, a scattering layer, and the like a layer that changes the direction of light or condenses light can be used.
  • a layer that selectively transmits or shields light having a specific wavelength can be preferably used.
  • a layer that selectively transmits or blocks light of a specific wavelength a layer that absorbs a specific wavelength by a dye or pigment, a layer that provides a metal thin film to reflect infrared light, a low refractive index layer, and a high refractive index
  • the layer include layers that are alternately stacked and reflect only light having a wavelength corresponding to the film thickness (an optical reflection layer using a multilayer film).
  • a high refractive index layer including the first water-soluble binder resin and the first metal oxide particles, and a low refractive index layer including the second water-soluble binder resin and the second metal oxide particles are alternately arranged. It is preferably applicable to a layer that selectively reflects light of a specific wavelength laminated on the substrate. In this method, the lower the interfacial mixing between the low refractive index layer and the high refractive index layer, the higher the interface reflection and the higher the reflectance. However, when a cellulose derivative is used as a support, the cellulose derivative is used as the solvent for coating.
  • the solvent can evaporate not only from the upper surface (air side) of the coating layer but also from the support side, the coating layer is quickly solidified, and there is less interfacial mixing between the low refractive index layer and the high refractive index layer. Therefore, it is preferable to apply the cellulose derivative to the support because high reflectance is obtained.
  • the support according to the present invention is used. It is highly preferred to apply.
  • the optical reflective layer by multilayer film expresses the function of reflecting and blocking sunlight rays, for example, infrared components, and is composed of a plurality of refractive index layers having different refractive indexes. . Specifically, a high refractive index layer and a low refractive index layer are laminated.
  • the optical reflection layer used in the present invention may have any structure including at least one laminate (unit) composed of a high refractive index layer and a low refractive index layer. It is preferable to have a configuration in which two or more of the above laminates composed of refractive index layers are laminated.
  • the uppermost layer and the lowermost layer of the optical reflection layer may be either a high refractive index layer or a low refractive index layer, but it is preferable that both the uppermost layer and the lowermost layer are low refractive index layers.
  • the uppermost layer is a low refractive index layer, the coating property is improved, and when the lowermost layer is a low refractive index layer, it is preferable from the viewpoint of improving adhesion.
  • an arbitrary refractive index layer of the optical reflection layer is a high refractive index layer or a low refractive index layer is determined by comparing the refractive index with an adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer). It is judged to be a rate layer.) On the other hand, if the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer).
  • the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer. Depending on the relationship, it can be a high refractive index layer or a low refractive index layer.
  • high refractive index layer component there are two components constituting the high refractive index layer
  • low refractive index layer component components constituting the low refractive index layer
  • a layer is formed that is mixed at the interface of two layers and includes a high refractive index layer component and a low refractive index layer component.
  • a set of portions where the high refractive index layer component is 50% by mass or more is defined as a high refractive index layer
  • a set of portions where the low refractive index layer component exceeds 50% by mass is defined as a low refractive index layer.
  • the concentration profile of the metal oxide particles in the layer thickness direction in these laminated films is measured, and the composition By this, it can be determined whether the mixed layer that can be formed is a high refractive index layer or a low refractive index layer.
  • the concentration profile of the metal oxide particles in the laminated film is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer, etching from the surface to the depth direction, with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio.
  • the metal oxide particles are not contained in the low refractive index component or the high refractive index component and are formed only from the water-soluble resin, similarly, in the concentration profile of the water-soluble resin, for example, It was confirmed that the mixed region was present by measuring the carbon concentration in the layer thickness direction, and further, its composition was measured by EDX (energy dispersive X-ray spectroscopy), and was etched by sputtering.
  • EDX energy dispersive X-ray spectroscopy
  • the XPS surface analyzer is not particularly limited, and any model can be used, but ESCALAB-200R manufactured by VG Scientific Fix Co. was used. Mg can be used for the X-ray anode, and measurement can be performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
  • the difference in refractive index between the adjacent low refractive index layer and high refractive index layer is 0.1 or more.
  • it is 0.3 or more, more preferably 0.35 or more, and particularly preferably more than 0.4.
  • the difference is preferably within the preferred range.
  • the refractive index layer constituting the uppermost layer or the lowermost layer of the optical reflection layer may have a configuration outside the above preferred range.
  • the number of refractive index layers of the optical reflection layer (units of high refractive index layer and low refractive index layer) is preferably 100 layers or less, that is, 50 units or less, and 40 layers (20 units). ) Or less, more preferably 20 layers (10 units) or less.
  • n is the refractive index
  • d is the physical film thickness of the layer
  • n ⁇ d is the optical film thickness.
  • the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
  • the optical reflection layer used in the present invention can be made into an ultraviolet reflection film, a visible light reflection film, or a near-infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set in the ultraviolet region, it becomes an ultraviolet reflecting film, if it is set in the visible light region, it becomes a visible light reflecting film, and if it is set in the near infrared region, it becomes a near infrared reflecting film.
  • a near infrared reflection film may be used.
  • the high refractive index layer contains the first water-soluble binder resin and the first metal oxide particles, and may contain a curing agent, other binder resin, a surfactant, and various additives as necessary. Good.
  • the refractive index of the high refractive index layer according to the present invention is preferably 1.80 to 2.50, more preferably 1.90 to 2.20.
  • the first water-soluble binder resin according to the present invention has a G2 glass filter (maximum pores of 40 to 50 ⁇ m) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble binder resin is most dissolved.
  • the mass of the insoluble matter that is filtered off when filtered in ()) is within 50 mass% of the added water-soluble binder resin.
  • the weight average molecular weight of the first water-soluble binder resin according to the present invention is preferably in the range of 1,000 to 200,000. Further, it is more preferably within the range of 3000 to 40000.
  • the weight average molecular weight referred to in the present invention can be measured by a known method, for example, static light scattering, gel permeation chromatography (GPC), time-of-flight mass spectrometry (TOF-MASS), etc. In the present invention, it is measured by a gel permeation chromatography method which is a generally known method.
  • GPC gel permeation chromatography
  • TOF-MASS time-of-flight mass spectrometry
  • the content of the first water-soluble binder resin in the high refractive index layer is preferably within the range of 5 to 50% by mass with respect to the solid content of 100% by mass of the high refractive index layer. It is more preferable to be within the range.
  • the first water-soluble binder resin applied to the high refractive index layer is preferably polyvinyl alcohol.
  • the water-soluble binder resin which exists in the low-refractive-index layer mentioned later is also polyvinyl alcohol. Therefore, in the following, polyvinyl alcohol contained in the high refractive index layer and the low refractive index layer will be described together.
  • the high refractive index layer and the low refractive index layer preferably contain two or more types of polyvinyl alcohol having different saponification degrees.
  • polyvinyl alcohol as a water-soluble binder resin used in the high refractive index layer is polyvinyl alcohol (A)
  • polyvinyl alcohol as a water-soluble binder resin used in the low refractive index layer is polyvinyl alcohol (B). That's it.
  • each refractive index layer contains a plurality of polyvinyl alcohols having different saponification degrees and polymerization degrees
  • the polyvinyl alcohol having the highest content in each refractive index layer is changed to polyvinyl alcohol (A ) And polyvinyl alcohol (B) in the low refractive index layer.
  • the “degree of saponification” is the ratio of hydroxy groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxy groups in polyvinyl alcohol.
  • the degree of polymerization is calculated assuming that the polyvinyl alcohol having a saponification degree difference of 3 mol% or less is the same polyvinyl alcohol. .
  • a low polymerization degree polyvinyl alcohol having a polymerization degree of 1000 or less is a different polyvinyl alcohol (even if there is a polyvinyl alcohol having a saponification degree difference of 3 mol% or less, it is not regarded as the same polyvinyl alcohol).
  • polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively.
  • These three polyvinyl alcohols are the same polyvinyl alcohol, and these three mixtures are polyvinyl alcohol (A) or (B).
  • the above-mentioned “polyvinyl alcohol having a saponification degree difference of 3 mol% or less” suffices to be within 3 mol% when attention is paid to any polyvinyl alcohol.
  • polyvinyl alcohol having a saponification degree different by 3 mol% or more is contained in the same layer, it is regarded as a mixture of different polyvinyl alcohols, and the polymerization degree and the saponification degree are calculated for each.
  • PVA203 5% by mass
  • PVA117 25% by mass
  • PVA217 10% by mass
  • PVA220 10% by mass
  • PVA224 10% by mass
  • PVA235 20% by mass
  • PVA245 20% by mass
  • most contained A large amount of PVA (polyvinyl alcohol) is a mixture of PVA 217 to 245 (the difference in the degree of saponification of PVA 217 to 245 is within 3 mol%, and thus is the same polyvinyl alcohol), and this mixture is polyvinyl alcohol (A) or ( B).
  • the difference in the absolute value of the saponification degree between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably 3 mol% or more, and more preferably 5 mol% or more. If it is such a range, since the interlayer mixing state of a high refractive index layer and a low refractive index layer will become a preferable level, it is preferable. Moreover, although the difference of the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is so preferable that it is separated, it is 20 mol% or less from the viewpoint of the solubility to water of polyvinyl alcohol. It is preferable.
  • the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is preferably 75 mol% or more from the viewpoint of solubility in water. Furthermore, the intermixed state of the high refractive index layer and the low refractive index layer is that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 90 mol% or more and the other is 90 mol% or less. Is preferable for achieving a preferable level. It is more preferable that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 95 mol% or more and the other is 90 mol% or less. In addition, although the upper limit of the saponification degree of polyvinyl alcohol is not specifically limited, Usually, it is less than 100 mol% and is about 99.9 mol% or less.
  • the polymerization degree of the two types of polyvinyl alcohols having different saponification degrees is preferably 1000 or more, particularly preferably those having a polymerization degree in the range of 1500 to 5000, more preferably in the range of 2000 to 5000. Those are more preferably used. This is because when the polymerization degree of polyvinyl alcohol is 1000 or more, there is no cracking of the coating film, and when it is 5000 or less, the coating solution is stabilized. In the present specification, “the coating solution is stable” means that the coating solution is stable over time.
  • the degree of polymerization of at least one of polyvinyl alcohol (A) and polyvinyl alcohol (B) is in the range of 2000 to 5000, it is preferable because cracks in the coating film are reduced and the reflectance at a specific wavelength is improved. It is preferable that both the polyvinyl alcohol (A) and the polyvinyl alcohol (B) are 2000 to 5000, since the above effects can be exhibited more remarkably.
  • Polymerization degree P in the present specification refers to a viscosity average degree of polymerization, measured according to JIS K 6726 (1994), and measured in water at 30 ° C. after completely re-saponifying and purifying PVA. From the intrinsic viscosity [ ⁇ ] (dl / g) obtained, it is obtained by the following equation (1).
  • the polyvinyl alcohol (B) contained in the low refractive index layer preferably has a saponification degree in the range of 75 to 90 mol% and a polymerization degree in the range of 2000 to 5000.
  • polyvinyl alcohol having such characteristics is contained in the low refractive index layer, it is preferable in that interfacial mixing is further suppressed. This is considered to be because there are few cracks of a coating film and set property improves.
  • the polyvinyl alcohol (A) and (B) used in the present invention may be a synthetic product or a commercially available product.
  • Examples of commercially available products used as the polyvinyl alcohol (A) and (B) include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA -203, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04 , JF-05, JP-03, JP-04JP-05, JP-45 (above, manufactured by Nihon Vinegar Pover Co., Ltd.) and the like.
  • modified polyvinyl alcohol partially modified May be included.
  • modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonionic-modified polyvinyl alcohol, and vinyl alcohol polymers.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-2595.
  • Polyvinyl alcohol etc. are mentioned.
  • vinyl alcohol polymers examples include EXEVAL (registered trademark, manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (registered trademark, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
  • Two or more kinds of modified polyvinyl alcohol can be used in combination, such as the degree of polymerization and the type of modification.
  • the content of the modified polyvinyl alcohol is not particularly limited, but is preferably in the range of 1 to 30% by mass with respect to the total mass (solid content) of each refractive index. If it is in such a range, the said effect will be exhibited more.
  • the polyvinyl alcohol (A) having a low saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a high saponification degree is used for the low refractive index layer
  • the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass
  • the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. Is more preferable.
  • the polyvinyl alcohol (A) having a high saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a low saponification degree is used for the low refractive index layer
  • the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass
  • the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. More preferred.
  • the content is 40% by mass or more, interlayer mixing is suppressed, and the effect of less disturbance of the interface appears remarkably. On the other hand, if content is 100 mass% or less, stability of a coating liquid will improve.
  • the first water-soluble binder resin other than polyvinyl alcohol in the high refractive index layer, is not limited as long as the high refractive index layer containing the first metal oxide particles can form a coating film. But it can be used without restriction.
  • the second water-soluble binder resin other than the polyvinyl alcohol (B) the low refractive index layer containing the second metal oxide particles is coated as described above. Any device can be used without limitation as long as it can be formed. However, in view of environmental problems and flexibility of the coating film, water-soluble polymers (particularly gelatin, thickening polysaccharides, polymers having reactive functional groups) are preferable. These water-soluble polymers may be used alone or in combination of two or more.
  • the content of other binder resin used together with polyvinyl alcohol preferably used as the water-soluble binder resin is in the range of 5 to 50% by mass with respect to 100% by mass of the solid content of the high refractive index layer. It can also be used within.
  • the binder resin is preferably composed of a water-soluble polymer. That is, in the present invention, a water-soluble polymer other than polyvinyl alcohol and modified polyvinyl alcohol may be used as the binder resin in addition to the polyvinyl alcohol and modified polyvinyl alcohol as long as the effect is not impaired.
  • the water-soluble polymer is when it is filtered through a G2 glass filter (maximum pores 40-50 ⁇ m) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble polymer is most soluble.
  • the mass of the insoluble matter separated by filtration is within 50% by mass of the added water-soluble polymer.
  • gelatin, celluloses, thickening polysaccharides, or polymers having reactive functional groups are particularly preferable. These water-soluble polymers may be used alone or in combination of two or more.
  • the first metal oxide particles applicable to the high refractive index layer are preferably metal oxide particles having a refractive index of 2.0 or more and 3.0 or less. More specifically, for example, titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, second oxide oxide. Examples include iron, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. In addition, composite oxide particles composed of a plurality of metals, core / shell particles whose metal structure changes into a core / shell shape, and the like can also be used.
  • the high refractive index layer includes metal oxide fine particles having a high refractive index such as titanium and zirconium, that is, fine particles of titanium oxide or fine particles of zirconia oxide. It is preferable to contain at least one of them.
  • titanium oxide is more preferable from the viewpoint of the stability of the coating liquid for forming the high refractive index layer.
  • the rutile type tetragonal type
  • the weather resistance of the high refractive index layer and adjacent layers is higher, and the refractive index is higher. Is more preferable.
  • core / shell particles are used as the first metal oxide particles in the high refractive index layer, due to the interaction between the silicon-containing hydrated oxide of the shell layer and the first water-soluble binder resin, From the effect of suppressing interlayer mixing between the high refractive index layer and the adjacent layer, core / shell particles in which titanium oxide particles are coated with a silicon-containing hydrated oxide are more preferable.
  • the aqueous solution containing titanium oxide particles used in the core of the core / shell particles used in the present invention has a pH measured in the range of 1.0 to 3.0 at 25 ° C., and the titanium particles have a positive zeta potential. It is preferable to use a water-based titanium oxide sol having a surface that is made hydrophobic and dispersible in an organic solvent.
  • the content of the first metal oxide particles according to the present invention is in the range of 15 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer, the refractive index difference from the low refractive index layer Is preferable from the viewpoint of imparting. Further, it is more preferably in the range of 20 to 77% by mass, and further preferably in the range of 30 to 75% by mass.
  • content in case metal oxide particles other than the said core-shell particle are contained in a high refractive index layer will not be specifically limited if it is a range which can have the effect of this invention.
  • the volume average particle size of the first metal oxide particles applied to the high refractive index layer is preferably 30 nm or less, more preferably in the range of 1 to 30 nm, and more preferably in the range of 5 to 15 nm. More preferably, it is in the range.
  • a volume average particle size in the range of 1 to 30 nm is preferable from the viewpoint of low visible light transmittance and low haze.
  • the first metal oxide particles according to the present invention are preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula (2) is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably in the range of 0.1 to 20%.
  • titanium oxide particles surface-treated with a silicon-containing hydrated oxide is preferably used.
  • the titanium particles may be referred to as “core / shell particles” or “Si-coated TiO 2 ”.
  • the titanium oxide particles are coated with a silicon-containing hydrated oxide, and the average particle diameter which is preferably a core portion is in the range of 1 to 30 nm, more preferably the average
  • the surface of the titanium oxide particles having a particle size in the range of 4 to 30 nm has a coating amount of silicon-containing hydrated oxide in the range of 3 to 30% by mass as SiO 2 with respect to the titanium oxide as the core. In this way, a shell made of a silicon-containing hydrated oxide is coated.
  • the interaction between the silicon-containing hydrated oxide of the shell layer and the first water-soluble binder resin causes the high refractive index layer and the low refractive index layer to The effect of suppressing the intermixing between the layers and the effect of preventing the deterioration of the binder and choking due to the photocatalytic activity of titanium oxide when titanium oxide is used as the core are exhibited.
  • the core / shell particles preferably have a silicon-containing hydrated oxide coating amount in the range of 3 to 30% by mass as SiO 2 with respect to titanium oxide as the core, more preferably 3 It is in the range of ⁇ 10% by mass, more preferably in the range of 3 to 8% by mass. If the coating amount is 30% by mass or less, a high refractive index layer can be made to have a high refractive index, and if the coating amount is 3% by mass or more, core / shell particle particles can be stably formed. can do.
  • the average particle diameter of the core / shell particles is preferably in the range of 1 to 30 nm, more preferably in the range of 5 to 20 nm, and still more preferably in the range of 5 to 15 nm.
  • optical properties such as near infrared reflectance, transparency, and haze can be further improved.
  • the average particle diameter as used in the field of this invention means a primary average particle diameter, and can be measured from the electron micrograph by a transmission electron microscope (TEM) etc. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc.
  • TEM transmission electron microscope
  • the average particle diameter of primary particles is the particle itself or the particles appearing on the cross section or surface of the refractive index layer is observed with an electron microscope, and the particle diameter of 1000 arbitrary particles is measured. It is obtained as its simple average value (number average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • JP-A-10-158015 JP-A-2000-053421, JP-A-2000-063119.
  • the silicon-containing hydrated oxide applied to the core / shell particles may be either a hydrate of an inorganic silicon compound, a hydrolyzate or a condensate of an organosilicon compound.
  • silanol A compound having a group is preferable.
  • the high refractive index layer according to the present invention may contain other metal oxide particles in addition to the core / shell particles.
  • various ionic dispersants and protective agents can be used so that the core and shell particles described above do not aggregate in a chargeable manner.
  • metal oxide particles that can be used in addition to the core / shell particles include titanium dioxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, lead titanate, red lead, and yellow lead.
  • Zinc yellow Zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, tin oxide and the like.
  • the core / shell particles used in the present invention may be those in which the entire surface of the titanium oxide particles that are the core is coated with a silicon-containing hydrated oxide, or part of the surface of the titanium oxide particles that are the core. It may be coated with a silicon hydrated oxide.
  • a curing agent can also be used to cure the first water-soluble binder resin applied to the high refractive index layer.
  • the curing agent that can be used together with the first water-soluble binder resin is not particularly limited as long as it causes a curing reaction with the water-soluble binder resin.
  • boric acid and its salt are preferable as the curing agent.
  • known ones can be used, and in general, a compound having a group capable of reacting with polyvinyl alcohol or a compound that promotes the reaction between different groups possessed by polyvinyl alcohol. Select and use.
  • the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
  • epoxy curing agents diglycidyl ethyl
  • Boric acid and its salts refer to oxygen acids and their salts having a boron atom as a central atom, specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid and octabored acid. Examples include acids and their salts.
  • Boric acid having a boron atom and a salt thereof as a curing agent may be used alone or in a mixture of two or more. Particularly preferred is a mixed aqueous solution of boric acid and borax.
  • aqueous solutions of boric acid and borax can be added only in relatively dilute aqueous solutions, respectively, but by mixing them both can be made into a concentrated aqueous solution and the coating solution can be concentrated. Further, there is an advantage that the pH of the aqueous solution to be added can be controlled relatively freely.
  • boric acid and its salt or borax it is more preferable to use boric acid and its salt or borax in order to obtain the effects of the present invention.
  • boric acid and its salt, or borax metal oxide particles and water-soluble binder resin polyvinyl alcohol OH groups and hydrogen bond network are more easily formed, as a result, high refractive index layer and It is considered that interlayer mixing with the low refractive index layer is suppressed, and preferable near-infrared blocking characteristics are achieved.
  • a set coating process is used in which a multilayer coating of a high refractive index layer and a low refractive index layer is applied with a wet coater, the film surface temperature of the coating film is once cooled to about 15 ° C., and then the film surface is dried. In this case, the effect can be expressed more preferably.
  • the content of the curing agent in the high refractive index layer is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
  • the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol, more preferably 100 to 600 mg per 1 g of polyvinyl alcohol.
  • the low refractive index layer according to the present invention includes a second water-soluble binder resin and second metal oxide particles, and further includes a curing agent, a surface coating component, a particle surface protective agent, a binder resin, a surfactant, Various additives may be included.
  • the refractive index of the low refractive index layer according to the present invention is preferably in the range of 1.10 to 1.60, more preferably 1.30 to 1.50.
  • Polyvinyl alcohol is preferably used as the second water-soluble binder resin applied to the low refractive index layer according to the present invention. Furthermore, it is more preferable that polyvinyl alcohol (B) different from the saponification degree of polyvinyl alcohol (A) present in the high refractive index layer is used in the low refractive index layer according to the present invention.
  • polyvinyl alcohol (A) and polyvinyl alcohol (B), such as a preferable weight average molecular weight of 2nd water-soluble binder resin here is demonstrated by the water-soluble binder resin of the said high refractive index layer. The description is omitted here.
  • the content of the second water-soluble binder resin in the low refractive index layer is preferably in the range of 20 to 99.9% by mass with respect to 100% by mass of the solid content of the low refractive index layer, and 25 to 80 More preferably, it is in the range of mass%.
  • any method can be used as long as the low refractive index layer containing the second metal oxide particles can form a coating film. Anything can be used without limitation.
  • water-soluble polymers particularly gelatin, thickening polysaccharides, polymers having reactive functional groups
  • These water-soluble polymers may be used alone or in combination of two or more.
  • the content of the other binder resin used together with polyvinyl alcohol preferably used as the second water-soluble binder resin is 0 to 10 mass with respect to 100 mass% of the solid content of the low refractive index layer. % Can also be used.
  • the low refractive index layer according to the present invention may contain water-soluble polymers such as celluloses, thickening polysaccharides and polymers having reactive functional groups. These water-soluble polymers such as celluloses, thickening polysaccharides and polymers having reactive functional groups are the same as the water-soluble polymers described in the high refractive index layer described above. Is omitted.
  • silica As the second metal oxide particles applied to the low refractive index layer according to the present invention, silica (silicon dioxide) is preferably used, and specific examples thereof include synthetic amorphous silica and colloidal silica. Of these, acidic colloidal silica sol is more preferably used, and colloidal silica sol dispersed in an organic solvent is more preferably used. Further, in order to further reduce the refractive index, hollow fine particles having pores inside the particles can be used as the second metal oxide particles applied to the low refractive index layer, particularly silica (silicon dioxide). The hollow fine particles are preferred.
  • the second metal oxide particles (preferably silicon dioxide) applied to the low refractive index layer preferably have an average particle size in the range of 3 to 100 nm.
  • the average particle size of primary particles of silicon dioxide dispersed in a primary particle state is more preferably in the range of 3 to 50 nm, and in the range of 3 to 40 nm. Is more preferably 3 to 20 nm, and most preferably 4 to 10 nm.
  • grains it is preferable from a viewpoint with few hazes and excellent visible light transmittance
  • the average particle size of the metal oxide particles applied to the low refractive index layer is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1000 arbitrary particles.
  • the simple average value (number average) is obtained.
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • colloidal silica may be a synthetic product or a commercially available product.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • Hollow particles can also be used as the second metal oxide particles applied to the low refractive index layer.
  • the average particle pore diameter is preferably within the range of 3 to 70 nm, more preferably within the range of 5 to 50 nm, and even more preferably within the range of 5 to 45 nm.
  • the average particle pore diameter of the hollow particles is the average value of the inner diameters of the hollow particles.
  • the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation. Is obtained.
  • the average particle hole diameter means the smallest distance among the distances between the outer edges of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse, between two parallel lines.
  • the second metal oxide particles according to the present invention may be surface-coated with a surface coating component.
  • a surface coating component such as polyaluminum chloride. It becomes difficult to aggregate with the first metal oxide particles.
  • the content of the second metal oxide particles in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is more preferably 45 to 65% by mass.
  • the low refractive index layer according to the present invention may further include a curing agent.
  • a curing agent there is no particular limitation as long as it causes a curing reaction with the second water-soluble binder resin contained in the low refractive index layer.
  • the curing agent when polyvinyl alcohol is used as the second water-soluble binder resin applied to the low refractive index layer is preferably at least one of boric acid and a salt thereof, or borax. In addition to boric acid and its salts, known ones can be used.
  • the content of the curing agent in the low refractive index layer is preferably in the range of 1 to 10% by mass and preferably in the range of 2 to 6% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is more preferable.
  • the total amount of the curing agent used is preferably in the range of 1 to 600 mg per gram of polyvinyl alcohol, and in the range of 100 to 600 mg per gram of polyvinyl alcohol. More preferred.
  • additives for each refractive index layer In the high refractive index layer and the low refractive index layer according to the present invention, various additives can be used as necessary.
  • the content of the additive in the high refractive index layer is preferably 0 to 20% by mass with respect to 100% by mass of the solid content of the high refractive index layer. Examples of such additives are described below.
  • At least one of the high refractive index layer and the low refractive index layer may further contain a surfactant.
  • a surfactant any of zwitterionic, cationic, anionic, and nonionic types can be used. More preferably, a betaine zwitterionic surfactant, a quaternary ammonium salt cationic surfactant, a dialkylsulfosuccinate anionic surfactant, an acetylene glycol nonionic surfactant, or a fluorine cationic interface Activators are preferred.
  • the addition amount of the surfactant used in the present invention is 0.005 to 0.30 mass% when the total mass of the coating liquid for high refractive index layer or the coating liquid for low refractive index layer is 100 mass%. It is preferably within the range, and more preferably within the range of 0.01 to 0.10% by mass.
  • the high refractive index layer or the low refractive index layer may contain an amino acid having an isoelectric point of 6.5 or less.
  • an amino acid By including an amino acid, the dispersibility of the metal oxide particles in the high refractive index layer or the low refractive index layer can be improved.
  • an amino acid is a compound having an amino group and a carboxy group in the same molecule, and may be any type of amino acid such as ⁇ -, ⁇ -, and ⁇ -.
  • Some amino acids have optical isomers, but in the present invention, there is no difference in effect due to optical isomers, and any isomer can be used alone or in racemic form.
  • preferred amino acids include aspartic acid, glutamic acid, glycine, serine, and the like, with glycine and serine being particularly preferred.
  • the isoelectric point of an amino acid refers to this pH value because an amino acid balances the positive and negative charges in the molecule at a specific pH and the overall charge is zero.
  • the isoelectric point of each amino acid can be determined by isoelectric focusing at a low ionic strength.
  • the high refractive index layer or the low refractive index layer according to the present invention may further contain an emulsion resin.
  • an emulsion resin By including the emulsion resin, the flexibility of the film is increased and the workability such as sticking to glass is improved.
  • the emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 ⁇ m, for example, are dispersed in an emulsion state in an aqueous medium.
  • the oil-soluble monomer has a hydroxy group. It can be obtained by emulsion polymerization using a polymer dispersant. There is no fundamental difference in the polymer component of the resulting emulsion resin depending on the type of dispersant used.
  • dispersant used in the polymerization of the emulsion examples include polyoxyethylene nonylphenyl ether in addition to low molecular weight dispersants such as alkylsulfonate, alkylbenzenesulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt.
  • Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone.
  • emulsion polymerization is performed using a polymer dispersant having hydroxy groups
  • the presence of hydroxy groups is estimated on at least the surface of fine particles
  • emulsion resins polymerized using other dispersants are the chemical and physical properties of emulsions. The nature is different.
  • the polymer dispersant containing a hydroxy group is a polymer dispersant having a weight average molecular weight of 10,000 or more and having a hydroxy group substituted on the side chain or terminal, such as sodium polyacrylate and polyacrylamide.
  • examples of such an acrylic polymer include 2-ethylhexyl acrylate copolymerized and polyethers such as polyethylene glycol and polypropylene glycol.
  • At least one of the high refractive index layer and the low refractive index layer may further contain a lithium compound.
  • the coating liquid for the high refractive index layer or the coating liquid for the low refractive index layer containing the lithium compound becomes easier to control the viscosity, and as a result, the production stability when adding the optical film of the present invention to glass is further improved. .
  • the lithium compound applicable to the present invention is not particularly limited.
  • lithium lithium hypochlorite, lithium oxide, lithium carbide, lithium nitride, lithium niobate, lithium sulfide, lithium borate, LiBF 4 , LiClO 4 , LiPF 4 , LiCF 3 SO 3 and the like.
  • These lithium compounds can be used alone or in combination of two or more.
  • lithium hydroxide is preferable from the viewpoint of sufficiently exerting the effects of the present invention.
  • the amount of the lithium compound added is preferably in the range of 0.005 to 0.05 g, more preferably 0.01 to 0.03 g, per 1 g of the metal oxide particles present in the refractive index layer.
  • additives Various additives applicable to the high refractive index layer and the low refractive index layer according to the present invention are listed below.
  • ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, and JP-A-57-87989.
  • JP-A-60-127785 JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc.
  • nonionic surfactants JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-219266.
  • Optical brighteners sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, etc.
  • Lubricants such as tylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, thickeners, lubricants, infrared absorption Examples include various known additives such as agents, dyes, and pigments.
  • the method for forming an optical reflective layer (also referred to as an optical reflective layer group) using a multilayer film used in the present invention is preferably formed by applying a wet coating method, and further, on the support according to the present invention, High refractive index layer coating solution containing first water-soluble binder resin and first metal oxide particles, and low refractive index layer coating solution containing second water soluble binder resin and second metal oxide particles And a production method including a step of wet coating.
  • the wet coating method is not particularly limited.
  • a sequential multilayer application method or a simultaneous multilayer application method may be used as a method of applying a plurality of layers in a multilayer manner.
  • the solvent applicable for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether and propylene.
  • examples include ethers such as glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more.
  • the solvent of the coating solution is particularly preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate.
  • the concentration of the water-soluble binder resin in the coating solution for the high refractive index layer is preferably in the range of 1 to 10% by mass.
  • concentration of the metal oxide particles in the coating solution for the high refractive index layer is preferably in the range of 1 to 50% by mass.
  • the concentration of the water-soluble binder resin in the coating solution for the low refractive index layer is preferably in the range of 1 to 10% by mass.
  • the concentration of the metal oxide particles in the coating solution for the low refractive index layer is preferably in the range of 1 to 50% by mass.
  • the method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited.
  • a water-soluble binder resin, metal oxide particles, and other additives added as necessary The method of adding and stirring and mixing is mentioned.
  • the order of addition of the water-soluble binder resin, the metal oxide particles, and other additives used as necessary is not particularly limited, and each component may be added and mixed sequentially while stirring. However, they may be added and mixed at once. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
  • a high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing core / shell particles.
  • the core / shell particles are added to the coating solution for the high refractive index layer as a sol having a pH measured in the range of 5.0 to 7.5 at 25 ° C. and a negative zeta potential of the particles. It is preferable to prepare it.
  • the viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide hopper coating method is preferably within the range of 5 to 150 mPa ⁇ s. -Within the range of s is more preferable.
  • the viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide curtain coating method is preferably within the range of 5 to 1200 mPa ⁇ s. A range of 25 to 500 mPa ⁇ s is more preferable.
  • the viscosity at 15 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is preferably 100 mPa ⁇ s or more, more preferably in the range of 100 to 30000 mPa ⁇ s, and in the range of 3000 to 30000 mPa ⁇ s.
  • the inside is more preferable, and the inside of the range of 10,000 to 30,000 mPa ⁇ s is particularly preferable.
  • the coating and drying method is not particularly limited, but the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 ° C. or higher, and the high refractive index layer coating solution and the low refractive index are coated on the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C.
  • the set means a step of increasing the viscosity of the coating composition and reducing the fluidity of substances in each layer and in each layer by means such as applying cold air to the coating to lower the temperature.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from application of cold air to completion of setting is preferably within 5 minutes, preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is too short, there are places where mixing of the components in the layer becomes insufficient. On the other hand, if the set time is too long, the interlayer diffusion of the metal oxide particles proceeds, and the difference in refractive index between the high refractive index layer and the low refractive index layer is insufficient. In addition, if the high elasticity of the heat ray blocking film unit between the high refractive index layer and the low refractive index layer occurs quickly, the setting step may not be provided.
  • the set time is adjusted by adjusting the concentration of the water-soluble binder resin and the metal oxide particles, and adding other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. Can be adjusted.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. Further, the time during which the coating film is exposed to the cold air is preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • FIG. 2 is an example of an optical film of the present invention having an optical reflective layer of a multilayer film, and is a schematic cross-sectional view showing a configuration provided with a reflective layer unit having an optical reflective layer group on one surface side of a support. .
  • the optical film 10 of the present invention has a reflective layer unit U.
  • the reflective layer unit U includes, as an example, a high refractive index optical reflective layer containing a first water-soluble binder resin and first metal oxide particles, and a second water-soluble binder on the support 11.
  • the optical reflective layer group ML is formed by alternately laminating a resin and a low refractive index optical reflective layer containing second metal oxide particles.
  • the optical reflection layer group ML is composed of n layers of optical reflection layers T 1 to T n . For example, T 1 , T 3 , T 5 , (omitted), T n ⁇ 2 , and T n have a refractive index of 1.
  • T n-1 are in the range of refractive index of 1.80 to 2.50.
  • An example of a configuration having a high refractive index layer is given.
  • the refractive index as used in the field of this invention is the value measured in the environment of 25 degreeC.
  • a hard coat layer for improving scratch resistance on the outermost layer of the reflective layer unit, and a support is provided on the surface of the support on which the reflective layer unit is not provided. It is also preferable to provide an adhesive layer to be bonded to another substrate.
  • FIG. 3 is a schematic cross-sectional view showing another configuration of the optical film of the present invention having an optical reflective layer of a multilayer film, in which a reflective layer unit having an optical reflective layer group is provided on both sides of a support.
  • optical functional layer that absorbs a specific wavelength with a dye or pigment
  • An infrared absorbing layer will be described as an example of an optical functional layer that absorbs a specific wavelength with a dye or pigment.
  • the material contained in the infrared absorbing layer is not particularly limited, and examples thereof include an ultraviolet curable resin that is a binder component, a photopolymerization initiator, and an infrared absorber. It is preferable that the binder component contained in the infrared absorption layer is cured.
  • the curing means that the reaction proceeds and cures by active energy rays such as ultraviolet rays or heat.
  • UV curable resins are superior to other resins in hardness and smoothness, and are also advantageous from the viewpoint of dispersibility of ITO, ATO and heat conductive metal oxides.
  • the ultraviolet curable resin can be used without particular limitation as long as it forms a transparent layer by curing, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, and allyl ester resins. More preferred is an acrylic resin from the viewpoint of hardness, smoothness and transparency.
  • the acrylic resin is a reactive silica particle having a photosensitive group having photopolymerization reactivity introduced on its surface as described in International Publication No. 2008/035669 (In the following, it is preferable to simply include “reactive silica particles”.
  • the photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group.
  • the ultraviolet curable resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an organic compound having a polymerizable unsaturated group. There may be.
  • a polymerizable unsaturated group-modified hydrolyzable silane reacts with a silica particle that forms a silyloxy group and is chemically bonded to the silica particle by a hydrolysis reaction of the hydrolyzable silyl group.
  • the average particle diameter of the reactive silica particles is preferably 0.001 to 0.1 ⁇ m. By setting the average particle diameter in such a range, transparency, smoothness, and hardness can be satisfied in a well-balanced manner.
  • the acrylic resin preferably contains fluorine from the viewpoint of adjusting the refractive index. That is, the infrared absorption layer preferably contains fluorine.
  • examples of such an acrylic resin include an acrylic resin containing a structural unit derived from a fluorine-containing vinyl monomer.
  • fluorine-containing vinyl monomer examples include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.), (meth) acrylic acid moieties or fully fluorinated alkyl ester derivatives (for example, biscoat 6FM (product) Name, manufactured by Osaka Organic Chemical Industry Co., Ltd.) and R-2020 (trade name, manufactured by Daikin Industries, Ltd.)), and fully or partially fluorinated vinyl ethers.
  • fluoroolefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.
  • acrylic acid moieties or fully fluorinated alkyl ester derivatives for example, biscoat 6FM (product) Name, manufactured by Osaka Organic Chemical Industry Co., Ltd.) and R-2020 (trade name, manufactured by Daikin Industries, Ltd.)
  • photopolymerization initiator known ones can be used, and they can be used alone or in combination of two or more.
  • Inorganic infrared absorbers that can be contained in the infrared absorbing layer include tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and antimony from the viewpoints of visible light transmittance, infrared absorptivity, suitability for dispersion in resins, and the like.
  • ITO tin-doped indium oxide
  • ATO antimony-doped tin oxide
  • Zinc acid, lanthanum hexaboride (LaB 6 ), cesium-containing tungsten oxide (Cs 0.33 WO 3 ) and the like are preferable. These may be used alone or in combination of two or more.
  • the average particle size of the inorganic infrared absorber is preferably 5 to 100 nm, more preferably 10 to 50 nm.
  • the thickness is less than 5 nm, the dispersibility in the resin and the infrared absorptivity are reduced. On the other hand, if it is larger than 100 nm, the visible light transmittance is lowered.
  • the average particle size is measured by taking an image with a transmission electron microscope, randomly extracting, for example, 50 particles, measuring the particle size, and averaging the results. Moreover, when the shape of particle
  • the content of the inorganic infrared absorber in the infrared absorbing layer is preferably 1 to 80% by mass, and more preferably 5 to 50% by mass with respect to the total mass of the infrared absorbing layer. If the content is 1% or more, a sufficient infrared absorption effect appears, and if it is 80% or less, a sufficient amount of visible light can be transmitted.
  • Organic infrared absorbing materials include polymethine, phthalocyanine, naphthalocyanine, metal complex, aminium, imonium, diimonium, anthraquinone, dithiol metal complex, naphthoquinone, indolephenol, azo And triallylmethane compounds.
  • metal complex compounds aminium compounds (aminium derivatives), phthalocyanine compounds (phthalocyanine derivatives), naphthalocyanine compounds (naphthalocyanine derivatives), diimonium compounds (diimonium derivatives), squalium compounds (squarium derivatives), and the like. Used.
  • the infrared absorption layer may contain other infrared absorbers such as metal oxides other than those described above, organic infrared absorbers, metal complexes, and the like within the scope of the effects of the present invention.
  • specific examples of such other infrared absorbers include, for example, diimonium compounds, aluminum compounds, phthalocyanine compounds, organometallic complexes, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds. And triphenylmethane compounds.
  • the thickness of the infrared absorbing layer is preferably in the range of 0.1 to 50 ⁇ m, more preferably in the range of 1 to 20 ⁇ m. If it is 0.1 ⁇ m or more, the infrared absorption ability tends to be improved, while if it is 50 ⁇ m or less, the crack resistance of the coating film is improved.
  • the method for forming the infrared absorbing layer is not particularly limited.
  • the optical reflective layer used in the present invention adopts a method of reflecting infrared light by providing a metal thin film.
  • the metal thin film is preferably composed of a metal layer or a metal layer and at least one of a metal oxide layer and a metal nitride layer.
  • the metal layer containing a metal exhibits an infrared reflecting function, and although not essential, the visible light transmittance can be increased by using at least one of a metal oxide layer and a metal nitride layer. .
  • the metal layer used in the present invention preferably contains silver having excellent infrared reflection performance as a main component, and contains at least either gold or palladium in a total amount of 2 to 5% by mass as gold atoms and palladium atoms. If the content of these metals is within the above range, the effect of suppressing corrosion and cracking of silver due to sulfuration is exhibited, and it is advantageous from the viewpoint of the balance between the cost and the improvement effect. Further, gold and palladium are not preferable because they absorb a large amount of visible light as compared with silver, and the visible light transmission performance as a laminated film decreases as the amount added increases.
  • the metal layer may be a single silver alloy layer to which gold and palladium are added in the above-described ratio, or a multilayer structure in which two or more silver alloys having different gold and palladium ratios are stacked.
  • the total thickness of the metal layer is not particularly limited, but is preferably selected in the range of 5 to 20 nm in consideration of necessary infrared reflection performance and visible light transmission performance. If the thickness is thin, the transparency is excellent, but the infrared reflection performance is degraded. On the other hand, if it is too thick, the transparency is lowered, the amount of metal used is increased, and this is not preferable economically.
  • the metal composition of the metal layer described above can be quantified using a known analysis method such as ICP emission, XPS, or XRF.
  • ICP emission analysis because the composition of each metal can be accurately analyzed even when a protective layer such as a hard coat layer is provided on the metal layer.
  • the optical reflective layer used in the present invention at least one of a metal oxide layer or a metal nitride layer is laminated on the above-described metal layer, or the metal layer is at least a metal oxide layer or a metal nitride layer.
  • the structure which sandwiched by either may be sufficient.
  • the refractive index of silver alone is as low as 0.3 or less, interface reflection occurs between other layers, and the visible light transmission performance is deteriorated, whereas the metal oxide having a refractive index of about 1.5 to 3
  • these substances include metal oxides such as titanium oxide, zinc oxide, and tin-doped indium oxide (ITO), and metal nitrides such as silicon nitride, which can be appropriately selected and used.
  • the thickness of the layer is preferably 10 to 100 nm, more preferably 30 to 60 nm. When the thickness is small, the visible light transmission performance is not significantly improved.
  • metal oxides can be formed together with the metal layer using a known technique such as a vacuum deposition method, a sputtering method, or an ion plating method.
  • the pressure-sensitive adhesive layer is a layer for allowing the optical film of the present invention to adhere to other substrates.
  • the optical film of this invention is a layer for making it adhere to a window glass.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is selected from rubber-based, acrylic-based, silicon-based, urethane-based pressure-sensitive adhesives. Acrylic and silicon-based materials are preferable because they do not yellow over time, and acrylic-based materials are most preferable in that a general-purpose release sheet can be used.
  • the thickness of the adhesive layer is preferably in the range of 5 ⁇ m to 30 ⁇ m. If it is 5 ⁇ m or more, the adhesiveness is stable, and if it is 30 ⁇ m or less, the adhesive does not protrude from the side of the film and is easy to handle.
  • the type of separator (release sheet) to be attached to the adhesive layer it is possible to use a substrate such as polyester, polyethylene, polypropylene, paper, etc., which is coated with silicon, polyalkylene, or fluororesin.
  • a polyester film coated with silicon is particularly preferred.
  • the thickness of the separator is preferably in the range of 10 to 100 ⁇ m, more preferably 20 to 60 ⁇ m. A thickness of 10 ⁇ m or more is preferable because wrinkles in the film do not occur due to heat during coating and drying. Moreover, if it is 100 micrometers or less, it is preferable from a viewpoint of economical efficiency.
  • the adhesive layer is not particularly limited as long as it has a function of improving the adhesion between the layers. Adhesion or adhesion may be used. Preferably, it is a layer for bonding the acrylic layer and the resin coat layer.
  • the adhesive layer is required to have transparency, adhesion to adhere the layers to each other, moisture and heat resistance and light resistance that do not cause discoloration or peeling at temperature and humidity under the usage environment.
  • the adhesive layer may consist of only one layer or may consist of a plurality of layers.
  • the thickness of the adhesive layer is preferably 1 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
  • the resin is not particularly limited as long as it satisfies the above transparency, adhesion, heat-and-moisture resistance, and light resistance.
  • Polyester resin, urethane resin, acrylic resin, melamine resin Resin, epoxy resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin, polyester resin and melamine resin or polyester resin from the viewpoint of weather resistance
  • a mixed resin of a resin and a urethane-based resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is mixed such that an isocyanate is mixed with an acrylic resin is more preferable.
  • a method for forming the adhesive layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the adhesive layer is a metal oxide
  • it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride.
  • various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride.
  • HC layer As the hard coat material of the hard coat layer (also referred to as HC layer) according to the present invention, an inorganic material typified by polysiloxane, an active energy ray curable resin, or the like can be used. Inorganic materials require moisture curing (room temperature to warming), and it is preferable to use an active energy ray-curable resin in the present invention from the viewpoint of curing temperature, curing time, and cost.
  • the active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams.
  • the active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active ray such as an ultraviolet ray or an electron beam. It is formed.
  • an active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin curable by ultraviolet irradiation is preferable.
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
  • UV curable acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in products obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It is easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • a mixture of 100 parts Unidic 17-806 (Dainippon Ink Co., Ltd.) and 1 part Coronate L (Nihon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used.
  • An ultraviolet curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxy group at the end of the polyester (see, for example, JP Sho 59-151112).
  • the ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
  • a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
  • ultraviolet curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipenta. Examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
  • the optical film of the present invention has a conductive layer, an antistatic layer, a gas barrier layer, an antifouling layer, a deodorizing layer, a droplet layer, a slippery layer, and abrasion resistance for the purpose of adding further functions on the support.
  • a layer, an electromagnetic wave shielding layer, an ultraviolet absorption layer, a printing layer, a fluorescent light emitting layer, a hologram layer, a release layer, and the like may be provided.
  • the optical film of the present invention is an optical film excellent in curl recovery and tear strength.
  • Conventional cellulose ester films are difficult to use because of insufficient strength, or PET films are strongly used. Is suitable for applications in which it is difficult to use, and can be suitably used for window films.
  • it can also be used suitably because the winding process can be easily removed by spraying, and the laminating process becomes easy.
  • PET Support Preparation of Support 1 (PET Support; Comparative Example)> Pellets of commercially available polyethylene terephthalate (PET, intrinsic viscosity 0.65) were vacuum-dried at 150 ° C. for 8 hours, melt-extruded in layers from a T die at 280 ° C. using an extruder, and electrostatically applied onto a cooling drum. The laminated unstretched sheet having a three-layer structure was obtained by closely adhering to the substrate while cooling and solidifying. This unstretched sheet was stretched 3.5 times in the longitudinal direction at 90 ° C. using a roll type longitudinal stretching machine.
  • PET polyethylene terephthalate
  • the obtained uniaxially stretched film was stretched by 50% of the total transverse stretching ratio in the first stretching zone 100 ° C. using a tenter-type transverse stretching machine, and further in the second stretching zone 120 ° C., the total transverse stretching ratio 3.6. It extended
  • heat treatment was performed at 100 ° C. for 2 seconds, and further heat setting was performed at the first heat setting zone 170 ° C. for 5 seconds, and heat setting was performed at the second heat setting zone 210 ° C. for 15 seconds.
  • the substrate 1 (biaxially stretched laminated polyester (PET: polyethylene terephthalate)) having a thickness of 50 ⁇ m was produced by gradually cooling to room temperature over 30 seconds while performing a 5% relaxation treatment in the lateral direction.
  • PET polyethylene terephthalate
  • polyester A and polyester B each was vacuum-dried at 150 ° C. for 8 hours, melt-extruded at 280 ° C. using three extruders, joined in layers in a T-die, and placed on a cooling drum It was made to adhere, applying static electricity, and solidified by cooling to obtain a laminated unstretched sheet having a three-layer structure.
  • polyester A was both outer layers and polyester B was an intermediate layer, and the extrusion amount of each extruder was adjusted so that the thickness ratio of each layer was 1: 2: 1.
  • This unstretched sheet was stretched 3.5 times in the longitudinal direction at 90 ° C. using a roll type longitudinal stretching machine.
  • the obtained uniaxially stretched film was stretched by 50% of the total transverse stretching ratio in the first stretching zone 100 ° C. using a tenter-type transverse stretching machine, and further in the second stretching zone 120 ° C., the total transverse stretching ratio 3.6. It extended
  • heat treatment was performed at 100 ° C. for 2 seconds, and further heat setting was performed at the first heat setting zone 170 ° C. for 5 seconds, and heat setting was performed at the second heat setting zone 210 ° C. for 15 seconds.
  • the substrate 2 (biaxially stretched laminated modified PET support) having a thickness of 120 ⁇ m (the thickness of each layer is 12.5 ⁇ m / 25 ⁇ m / 12.5 ⁇ m) is gradually cooled to room temperature over a period of 5% while being subjected to 5% relaxation treatment in the lateral direction.
  • Body (abbreviated as modified PET in Table 1)).
  • Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by mass Ethanol 89 parts by mass Among the components of the following fine particle addition liquid, methylene chloride was charged into the dissolution tank, and the prepared fine particle dispersion was slowly added in the following addition amount with sufficient stirring. Subsequently, after being dispersed with an attritor so that the particle size of the secondary particles of the fine particles becomes a predetermined size, the fine particles are filtered through Finemet NF (manufactured by Nippon Seisen Co., Ltd.) to obtain a fine particle additive solution. .
  • Finemet NF manufactured by Nippon Seisen Co., Ltd.
  • Fine particle additive Methylene chloride 99 parts by mass Fine particle dispersion 5 parts by mass Among the main dope components below, methylene chloride and ethanol were charged into a pressurized dissolution tank. Next, cellulose triacetate, tinuvin 928, and the prepared fine particle additive solution were added with stirring, and heated and stirred to completely dissolve. The obtained solution was used as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. The main dope was prepared by filtration using 244.
  • the cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and stretched in the TD direction (film width direction) 1.15 times and MD direction (film length direction) with a tenter.
  • the residual solvent amount at the start of drying was 20%. Then, after drying for 15 minutes while transporting the inside of a drying device at 120 ° C.
  • the support according to the present invention was produced in the same manner as the production of the support 3 except that 30 parts by mass of polymethyl methacrylate (PMMA, Mw; 100,000) was added to the dope composition as the second polymer component. Body 4 was produced.
  • PMMA polymethyl methacrylate
  • the support 5 according to the present invention was prepared in the same manner as the production of the support 3, except that 30 parts by mass of polyethylene glycol (PEG, Mw; 3000) was added to the dope composition as the second polymer component. Was made.
  • PEG polyethylene glycol
  • the supports 6 to 39 were produced by changing the addition amount of the cellulose component (first polymer component) and the second polymer component as shown in Table 1.
  • DAC, CAP1, and CAP2 described in the first polymer component column in the table represent the following cellulose esters, respectively, and DAC, CAP1, and CAP2 are used instead of TAC when preparing the support. Each support was prepared.
  • CAP1 cellulose acetate having an acetyl group substitution degree of 1.68, a propionyl group substitution degree of 0.9, and a total acyl group substitution degree of 2.58 Propionate (weight average molecular weight 200000)
  • CAP2 cellulose acetate propionate (product name CAP482-20, manufactured by Eastman Chemical Co., Ltd., acetyl group substitution degree 0.2, propionyl group substitution degree 2.56, total acyl group substitution degree 2.76, Mn: 70000, Mw : 220,000)
  • PBS and PBSA in the table represent aliphatic polyesters synthesized as follows.
  • the support is cut into a strip of 35 mm (TD direction at the time of manufacture) ⁇ 120 mm (MD direction at the time of manufacture) and left to stand for 1 day at a temperature of 23 ° C. and a relative humidity of 55%. Wrap this.
  • the curl degree is represented by 1 / r, r represents the radius of curvature of the curled support, and the unit is m.
  • Curb recovery rate (curl degree before spraying-curl degree after spraying) / curl degree before spraying x 100 (%) (Tear strength)
  • JIS K 7128-2 JIS K 7128-2 (1998), it was measured by the Elmendorf tearing method using the light load tear tester manufactured by Toyo Seiki Seisakusho Co., Ltd. under the following conditions.
  • a sample was cut out of 63 mm ⁇ 75 mm, and left for 1 day under conditions of a temperature of 23 ° C. and a relative humidity of 55%, and then measured under the same conditions.
  • the sample measures the tear load (mN) of a total of 10 sheets in the direction orthogonal to the transport direction (TD direction) and the transport direction (MD direction), and averages the values (converted as the same tear length and thickness). ) As the tear strength.
  • the supports 4 to 13, 15 to 22, 24 to 34, 36 to 39 according to the present invention the first polymer component
  • a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. was used as a differential scanning calorimeter, and the temperature was increased at a rate of 20 ° C./minute. According to JIS K7121 (1987). Accordingly, the midpoint glass transition temperature (Tmg) was determined.
  • ⁇ Undercoat coating solution 1 Copolymer latex liquid (solid content 30%) of butyl acrylate 30% by mass, t-butyl acrylate 20% by mass, styrene 25% by mass, 2-hydroxyethyl acrylate 25% by mass 50 g Compound (UL-1) 0.2g Hexamethylene-1,6-bis (ethyleneurea) 0.05g Finish with water 1000ml ⁇ Undercoat coating solution 2> 10g gelatin Compound (UL-1) 0.4g Silica particles (average particle size 3 ⁇ m) 0.1g Hardener (UL-2) 1g Finish with water 1000ml
  • subbing processes 2 were applied to the supports 3 to 39, respectively.
  • the undercoat layer coating solution 3 is applied with an extrusion coater to 15 ml / m 2 , passes through a 50 ° C. no-air zone (1 second), and then dried at 120 ° C. for 30 seconds. A support was obtained.
  • ⁇ Undercoat layer coating solution 3> 10g deionized gelatin 30 ml of pure water Acetic acid 20g The following crosslinking agent 0.2 mol / g gelatin The following nonionic fluorine-containing surfactant 0.2 g The undercoat layer coating solution 3 was made up to 1000 ml with an organic solvent of methanol / acetone 2/8.
  • surfactant The structure of the used crosslinking agent and nonionic fluorine-containing surfactant (abbreviated as surfactant) is shown below.
  • ⁇ Preparation of deionized gelatin> Ocein from which lime was removed by performing lime treatment, water washing and neutralization treatment was extracted in hot water at 55 to 60 ° C. to obtain ossein gelatin.
  • the obtained ossein gelatin aqueous solution was subjected to both ion exchanges in a mixed bed of anion exchange resin (Diaion PA-31G) and cation exchange resin (Diaion PK-218).
  • the obtained colloidal silica dispersion L1 was heated to 45 ° C., and 4.0% by mass of polyvinyl alcohol (B) as a polyvinyl alcohol (manufactured by Nippon Vinyl Bipo-Poval Co., Ltd., JP-45: polymerization) 4500, saponification degree 86.5 to 89.5 mol%) and 760 parts of an aqueous solution were sequentially added with stirring. Thereafter, 40 parts of a 1% by weight betaine surfactant (manufactured by Kawaken Fine Chemical Co., Ltd., Sofazoline (registered trademark) LSB-R) aqueous solution was added to prepare a coating solution L1 for a low refractive index layer.
  • B polyvinyl alcohol
  • betaine surfactant manufactured by Kawaken Fine Chemical Co., Ltd., Sofazoline (registered trademark) LSB-R
  • the raw material titanium oxide hydrate is obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
  • the base-treated titanium compound was suspended in pure water so that the concentration when converted to TiO 2 was 20 g / L. Therein, it was added with TiO 2 amount to stirring 0.4 mole% citric acid. After that, when the temperature of the mixed sol solution reaches 95 ° C., concentrated hydrochloric acid is added so that the hydrochloric acid concentration becomes 30 g / L. The mixture is stirred for 3 hours while maintaining the liquid temperature at 95 ° C. A liquid was prepared.
  • the pH and zeta potential of the obtained titanium oxide sol solution were measured, the pH was 1.4 and the zeta potential was +40 mV. Moreover, when the particle size was measured with a Zetasizer Nano manufactured by Malvern, the monodispersity was 16%.
  • titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain titanium oxide powder fine particles.
  • the powder fine particles were subjected to X-ray diffraction measurement using JDX-3530 type manufactured by JEOL Datum Co., Ltd. and confirmed to be rutile titanium oxide fine particles.
  • the volume average particle diameter of the fine particles was 10 nm.
  • a 20.0 mass% titanium oxide sol aqueous dispersion containing rutile-type titanium oxide fine particles having a volume average particle diameter of 10 nm was added to 4 kg of pure water to obtain a sol solution serving as core particles.
  • Preparation of coating liquid H1 for high refractive index layer 28.9 parts of a sol solution containing core / shell particles as the first metal oxide particles having a solid content concentration of 20.0% by mass obtained above, and 10.5 parts of a 1.92% by mass citric acid aqueous solution. And 2.0 parts of an aqueous solution of 10% by weight polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-103: polymerization degree 300, saponification degree 98.5 mol%) and 9.0 parts of a 3% by weight aqueous boric acid solution. By mixing, a core-shell particle dispersion H1 was prepared.
  • HC layer ⁇ Formation of hard coat layer (HC layer)> Beam set 577 (Arakawa Chemical Industries, Ltd.) was used as an ultraviolet curable resin, and methyl ethyl ketone was added as a solvent. Furthermore, 0.08% by mass of a fluorosurfactant (trade name: Footage (registered trademark) 650A, manufactured by Neos Co., Ltd.) was added, and the total solid content was adjusted to 40 parts by mass. A coating layer coating solution A was prepared.
  • a fluorosurfactant trade name: Footage (registered trademark) 650A, manufactured by Neos Co., Ltd.
  • the above-prepared coating liquid A for hard coat layer is applied with a gravure coater under the condition that the dry layer thickness is 5 ⁇ m, and the drying section temperature is 90 ° C. After drying for 1 minute, the hard coat layer was cured by using an ultraviolet lamp to cure the hard coat layer with an illuminance of the irradiated part of 100 mW / cm 2 and an irradiation amount of 0.5 J / cm 2 .
  • the adhesive layer coating solution 1 prepared above was applied to a separator (NS-23MA: manufactured by Nakamoto Pax Co., Ltd.) so that the layer thickness after drying was 10 ⁇ m, and dried at 80 ° C. The infrared reflection layer surface and the adhesive layer surface were bonded together.
  • optical film 40 was prepared in the same manner as in the optical film 22 except that the infrared reflective layer was changed to the following silver (Ag) thin film infrared reflective layer.
  • Water sticking workability was evaluated using the following indices.
  • X The film peeled frequently and the workability was very bad.
  • The edge part was lifted up by three or more during the first squeegee work, but the work could be performed without any problems.
  • The edge part lifted up 1 or 2 during the first squeegee work, but the work could be done without any problems.
  • Worked without problems with no lifting of edges (film unevenness) The squeegee unevenness was evaluated according to the following evaluation criteria.
  • Clearly obvious squeegee unevenness is observed with 3 or more ⁇ ; Clearly obvious squeegee unevenness is seen with 1 or 2 ⁇ ⁇ : Squeegee unevenness is not known unless good ⁇ ; Squeegee unevenness is seen Cannot (film tears) ⁇ : Fatal film tear occurs when one or more sheets ⁇ ⁇ : Extremely weak tear occurs at 5 or more edges ⁇ : Extremely weak tear occurs at 2 to 4 edges ⁇ ⁇ : Edge Extremely weak tearing occurs on one sheet ⁇ : No film tearing Table 1 shows the outline of the above evaluation results and the sample configuration.
  • the optical films 4 to 13, 15 to 22, 24 to 34, and 36 to 40 of the present invention have excellent water workability and finished quality compared to the comparative optical films 1 to 3, 14, 23, and 35. It can be seen that (there is little film unevenness and film tearing).
  • the optical film of the present invention is an optical film excellent in curl recovery and tear strength.
  • Conventional cellulose ester films are difficult to use because of insufficient strength, or PET films are strongly used. Is suitable for applications in which it is difficult to use, and can be suitably used for window films.
  • it can also be used suitably because the winding process can be easily removed by spraying, and the laminating process becomes easy.
  • optical film 11 support ML, MLa, MLb optical reflecting layer group T 1 ⁇ T n, Ta 1 ⁇ Ta n , Tb 1 to Tb n Optical reflection layer U Reflection layer unit

Abstract

 A purpose of the present invention is to provide an optical film having exceptional recovery from curling, and tear strength. Another purpose is to provide a window film employing the same, having exceptional ease of wet pasting, and quality of finish. This optical film has at least an optically functional layer and an adhesive layer which are provided on a film-shaped support, wherein the optical film is characterized in that the support contains 30 mass% or more of a cellulose derivative, and is adjusted to a curling recovery rate of 20% or greater, and tear strength of 150 mN or greater.

Description

光学フィルム及びそれを用いたウインドウフィルムOptical film and window film using the same
 本発明は光学フィルム及びそれを用いたウインドウフィルムに関する。より詳しくは巻癖回復性と引裂強さに優れた光学フィルム、及びそれを用いた水貼り作業性と仕上がり品質に優れたウインドウフィルムに関する。 The present invention relates to an optical film and a window film using the same. More specifically, the present invention relates to an optical film excellent in curl recovery and tear strength, and a window film excellent in water sticking workability and finished quality using the optical film.
 ウインドウフィルムなどの光学フィルムの支持体は一般的にポリエチレンテレフタレート(PET)フィルムが用いられている。その製品形態は細い径にロール状に巻かれていることが多い。PETフィルムは、長時間巻いた状態に保存されると巻いた型がついてしまい(巻癖がつくともいう。)、シート状に広げても巻いた状態にもどってしまう。そのため、巻癖がついた光学フィルムは窓に貼るなど、その製品を対象物に加工する際の取り扱い性が非常に悪くなってしまう。特に、ウインドウフィルムを窓に貼る作業において、この巻癖は取り扱い性を大きく低下させた。 A polyethylene terephthalate (PET) film is generally used as a support for optical films such as window films. The product form is often wound into a roll with a narrow diameter. When the PET film is stored in a state of being wound for a long time, a wound mold is attached (also referred to as a curl), and it returns to a wound state even if it is spread in a sheet form. For this reason, an optical film with a curl is stuck on a window, and handling properties when processing the product into an object are extremely deteriorated. In particular, in the work of attaching a window film to a window, this curl greatly reduced the handleability.
 ウインドウフィルムを窓に貼る際は、霧吹き等でウインドウフィルムを濡らし、水の表面張力を利用して窓に仮固定し、スクレーパーでスクイーズして気泡を抜く。その後、乾燥させることで窓に貼りつけられている(水貼りともいう。)。この際、PETフィルムに巻癖がついていると水で仮固定できなくなり、テープで仮止めしようとしても水のためにテープの接着力が落ちるために、うまく固定できないという問題があった。あるいは、はがれないようにするためにスクレーパーで気泡を抜く際に強い力でこするために傷が入りやすくなったり、また、癖がついたフィルムをスクイーズするとスティックスリップが起こりやすくなり、乾燥後のフィルムにステッィクスリップ状のムラが見えたりするなどの問題があった。 When applying the window film to the window, wet the window film with a spray bottle, temporarily fix it on the window using the surface tension of water, and squeeze it with a scraper to remove air bubbles. Then, it is affixed on the window by drying (it is also called water sticking). At this time, if the PET film has a curl, it cannot be temporarily fixed with water, and even if it is temporarily fixed with a tape, the adhesive strength of the tape is reduced due to water, so that there is a problem that it cannot be fixed well. Or, when removing air bubbles with a scraper to prevent peeling, scratches are likely to occur due to rubbing with strong force, and stick slip is likely to occur when squeezing a film with wrinkles. There were problems such as stick-slip-like unevenness on the film.
 一方で、セルロース系の支持体として、例えば写真感光材料の支持体として使われているセルローストリアセテート(TAC)フィルムは、現像などの水の処理で巻癖が回復することが知られている。 On the other hand, it is known that a cellulose triacetate (TAC) film used as a cellulose-based support, for example, as a support for a photographic photosensitive material, recovers its curl by water treatment such as development.
 しかしながら、写真材料の現像処理ではフィルムが現像液に浸漬されるのに対し、ウインドウフィルムの水貼りの場合は霧吹き等で水を吹き付けられ、その際の挙動については良くわかっていなかった。さらに、セルロース系支持体をウインドウフィルムの支持体に適用すると、水貼りの際、スキージがひっかかってフィルムが裂けるトラブルが起こりやすいことがわかってきた。 However, in the development processing of photographic materials, the film is immersed in a developing solution, whereas when the window film is attached with water, water is sprayed by spraying or the like, and the behavior at that time is not well understood. Furthermore, it has been found that when a cellulosic support is applied to a window film support, troubles in which the squeegee catches and the film tears when water is applied.
 写真感光材料の分野では、ポリエステルに吸水成分を共重合した支持体を用いて巻癖回復性を付与することは知られている(特許文献1参照。)。しかしながら、写真感光材料の現像処理は、40℃前後の処理液にフィルムが浸漬されるのに対して、ウインドウフィルムの水貼りの場合は室温の水が吹き付けられるだけであり、これでは十分な巻癖回復性は得られなかった。 In the field of photographic light-sensitive materials, it is known to provide curl recovery using a support obtained by copolymerizing polyester with a water-absorbing component (see Patent Document 1). However, in the development processing of the photographic photosensitive material, the film is immersed in a processing solution at around 40 ° C., whereas when the window film is attached with water, only room temperature water is sprayed.癖 Recoverability was not obtained.
 一方、電気・電子筐体への使用を目的としてカーボンオフセットに有利なセルロース誘導体と高分子量の脂肪族ポリエステルを混合して機械物性を向上する技術が開示されている(特許文献2参照。)。しかし、特許文献2には、セルロース誘導体に熱可塑性と耐衝撃性を付与することは記載されているが、ウインドウフィルムの保存時の巻癖による水貼り加工時の問題の改善については、全く記載されていないし示唆もない。 On the other hand, a technique for improving mechanical properties by mixing a cellulose derivative advantageous for carbon offset and a high molecular weight aliphatic polyester for the purpose of use in an electric / electronic housing is disclosed (see Patent Document 2). However, Patent Document 2 describes that a cellulose derivative is imparted with thermoplasticity and impact resistance, but it does not completely describe the improvement of the problem during water pasting due to winding when storing a window film. There is no suggestion.
特開2001-290243号公報JP 2001-290243 A 特開2011-148976号公報JP2011-148976A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、巻癖回復性と引裂強さに優れた光学フィルムを提供することである。また、それを用いた水貼り作業性と仕上がり品質に優れたウインドウフィルムを提供することである。 The present invention has been made in view of the above problems and situations, and a solution to that problem is to provide an optical film excellent in curl recovery and tear strength. Another object of the present invention is to provide a window film excellent in water pasting workability and finished quality using the same.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、セルロース誘導体と高度に相溶する高分子のポリエステル又はポリアルキレンオキシドを光学フィルムに含有させることにより、引裂強さが大幅に向上したセルロース誘導体を含有する支持体を見いだし本発明に至った。 As a result of studying the cause of the above-mentioned problems in order to solve the above-mentioned problems, the present inventor has incorporated an optical film with a polyester or polyalkylene oxide that is highly compatible with a cellulose derivative, thereby providing a tear strength. Has found a support containing a cellulose derivative which has been greatly improved, and has led to the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.フィルム状の支持体上に少なくとも光学機能層と接着層とを有する光学フィルムであって、前記支持体が、セルロース誘導体を30質量%以上含有し、かつ巻癖回復率が20%以上で、引裂強さが150mN以上となるように調整されていることを特徴とする光学フィルム。 1. An optical film having at least an optical functional layer and an adhesive layer on a film-like support, wherein the support contains 30% by mass or more of a cellulose derivative, and a curl recovery rate is 20% or more, An optical film that is adjusted to have a strength of 150 mN or more.
 2.前記支持体が、前記セルロース誘導体に加えて、脂肪族ポリエステル又はポリアルキレンオキシドを第2のポリマー成分として含有することを特徴とする第1項に記載の光学フィルム。 2. The optical film according to item 1, wherein the support contains an aliphatic polyester or a polyalkylene oxide as a second polymer component in addition to the cellulose derivative.
 3.前記支持体が、重量平均分子量が4000~500000の範囲内である前記第2のポリマー成分を前記セルロース誘導体に対して5質量%以上含有することを特徴とする第2項に記載の光学フィルム。 3. 3. The optical film according to claim 2, wherein the support contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 4000 to 500,000 with respect to the cellulose derivative.
 4.前記支持体が、重量平均分子量が30000~400000の範囲内である前記第2のポリマー成分を前記セルロース誘導体に対して5質量%以上含有することを特徴とする第2項に記載の光学フィルム。 4. 3. The optical film according to claim 2, wherein the support contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 30,000 to 400,000 based on the cellulose derivative.
 5.前記セルロース誘導体が、セルロースエステルであることを特徴とする第1項から第4項までのいずれか一項に記載の光学フィルム。 5. The optical film according to any one of Items 1 to 4, wherein the cellulose derivative is a cellulose ester.
 6.前記セルロースエステルのアセチル基置換度Xと、プロピオニル基及びブチリル基の合計置換度Yとが、下記式(I)及び式(II)を満たすことを特徴とする第5項に記載の光学フィルム。 6. 6. The optical film according to item 5, wherein the acetyl group substitution degree X of the cellulose ester and the total substitution degree Y of propionyl group and butyryl group satisfy the following formulas (I) and (II).
 式(I) : 2.5≦X+Y≦2.95
 式(II) : 0.0≦Y≦1.5
 7.前記第2のポリマー成分が、下記一般式(1)で表される構造を有する脂肪族ポリエステルであることを特徴とする第2項から第6項までのいずれか一項に記載の光学フィルム。
Formula (I): 2.5 ≦ X + Y ≦ 2.95
Formula (II): 0.0 ≦ Y ≦ 1.5
7). The optical film according to any one of Items 2 to 6, wherein the second polymer component is an aliphatic polyester having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、R~Rは、それぞれ、水素原子又は置換基を表す。iは0~2の整数を表す。jは0~10の整数を表す。kは3~10の整数を表す。a、b及びcは構成割合(モル分率)を表し、a、b及びcの総和が1である。)
 8.前記光学機能層が、特定の波長の光を選択的に透過あるいは遮蔽することを特徴とする第1項から第7項までのいずれか一項に記載の光学フィルム。
(Wherein R 1 to R 6 each represents a hydrogen atom or a substituent. I represents an integer of 0 to 2. j represents an integer of 0 to 10. k represents an integer of 3 to 10.) A, b, and c represent constituent ratios (molar fractions), and the sum of a, b, and c is 1.)
8). The optical film according to any one of Items 1 to 7, wherein the optical functional layer selectively transmits or blocks light having a specific wavelength.
 9.前記光学機能層が、第1の水溶性バインダー樹脂と第1の金属酸化物粒子とを含む高屈折率層、及び第2の水溶性バインダー樹脂と第2の金属酸化物粒子とを含む低屈折率層を交互に積層した特定の波長の光を選択的に反射する層であることを特徴とする第8項に記載の光学フィルム。 9. The optical functional layer has a high refractive index layer containing a first water-soluble binder resin and first metal oxide particles, and a low refractive index containing a second water-soluble binder resin and second metal oxide particles. 9. The optical film according to item 8, wherein the optical film is a layer that selectively reflects light of a specific wavelength in which rate layers are alternately laminated.
 10.第1項から第9項までのいずれか一項に記載の光学フィルムを用いたことを特徴とするウインドウフィルム。 10. A window film comprising the optical film according to any one of items 1 to 9.
 本発明の上記手段により、巻癖回復性と引裂強さに優れた光学フィルムを提供することができる。また、それを用いた水貼り作業性と仕上がり品質(ムラが少なく裂けにくい)に優れたウインドウフィルムを提供することができる。 The above-described means of the present invention can provide an optical film excellent in curl recovery and tear strength. In addition, it is possible to provide a window film excellent in water pasting workability and finished quality (small unevenness and difficult to tear) using the same.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のような経緯を踏まえて推察している。 Although the expression mechanism or action mechanism of the effect of the present invention is not clear, it is presumed based on the following circumstances.
 太陽光曝露下で使用されるウインドウフィルムには光透過性、耐UV性、耐熱性、耐傷性、加工性、巻癖回復性を持たせる必要がある。しかしこのような性能を満足する透明フィルムは今まで報告されていなかった。 The window film used under sunlight exposure needs to have light transmission, UV resistance, heat resistance, scratch resistance, workability, and curl recovery. However, no transparent film satisfying such performance has been reported so far.
 上記性能を満足するためには、透明であること、使用するポリマー(樹脂)が非芳香族ポリマーであること(耐UV性)、剛直な主鎖構造を有すること(耐熱性)、フィルムが適度な柔軟性と靭性(じん性)を有すること(耐傷性、加工性)が必要であると考えられる。しかし、一般的に剛直な主鎖構造を有する樹脂は、巻癖が一旦付くととれにくく、更に柔軟性が低く、靭性も低いポリマー(樹脂)が多く、これらの性能をすべて満足させることは困難であった。 In order to satisfy the above performance, it is transparent, the polymer (resin) used is a non-aromatic polymer (UV resistance), has a rigid main chain structure (heat resistance), and the film is moderate It is considered necessary to have excellent flexibility and toughness (toughness) (scratch resistance, workability). However, in general, resins with a rigid main chain structure are difficult to remove once the curl is attached, and there are many polymers (resins) with low flexibility and low toughness, and it is difficult to satisfy all these performances. Met.
 本発明において我々は求められる機能を分離、融合することで解決できると考えた。つまり、一つ目の機能としては、芳香族基を含まない剛直な主鎖構造をポリマー成分として有することで紫外線による分解が抑制され、かつ耐熱性を付与することである。もう一つの機能はそのポリマーに柔軟性と靭性を付与することである。さらに、もう一つの機能はそのポリマーに巻癖回復性を付与することである。これら3つの機能をポリマー主鎖構造、側鎖構造、別々のポリマーに持たせ、それらを高度に相溶することで耐UV性、耐熱性、透明性、耐傷性、加工性及び巻癖回復性が向上できると考えた。 In the present invention, we thought that it could be solved by separating and fusing the required functions. That is, the first function is to suppress decomposition by ultraviolet rays and to impart heat resistance by having a rigid main chain structure that does not contain an aromatic group as a polymer component. Another function is to impart flexibility and toughness to the polymer. Yet another function is to impart curl recovery to the polymer. By providing these three functions to the polymer main chain structure, side chain structure, and separate polymers, and highly compatible with them, UV resistance, heat resistance, transparency, scratch resistance, workability, and curl recovery Thought that could improve.
 巻癖回復性を付与するためには、ポリマーの側鎖構造などに適度な親水性を持たせることで、吸水により剛直なポリマー主鎖についた巻癖をほぐす効果がでるものと考えている。 In order to impart curl recovery properties, it is considered that the effect of loosening the curl attached to the rigid polymer main chain by water absorption can be obtained by giving the polymer side chain structure an appropriate hydrophilicity.
 ポリマーに柔軟性と靭性を付与するためには、分子鎖自身が柔軟な構造を持つことに加えて破壊の原因となるポリマー(樹脂)鎖間のひずみを少なくする必要がある。これらを両立するためは高分子量のポリマーを用い、かつそれらを高度に相溶することで異種高分子鎖同士の絡み合いを多くすることができ、その結果高分子鎖間のひずみを小さくできるという思想に至った。ここで2種のポリマーを高度に相溶させて絡み合いを多くすることが大きな課題となる。 In order to impart flexibility and toughness to the polymer, it is necessary to reduce the strain between the polymer (resin) chains that cause breakage in addition to the molecular chain itself having a flexible structure. In order to achieve both of these, the idea is that high molecular weight polymers are used and their high compatibility makes it possible to increase the entanglement between different polymer chains, resulting in a reduction in strain between the polymer chains. It came to. Here, it becomes a big subject to make two types of polymers highly compatible and to increase entanglement.
 異種ポリマーを高度に相溶するためには、各ポリマー種同士が相互作用した際の安定化エネルギーよりも異種ポリマー間で相互作用した際の安定化エネルギーが大きくなる必要がある。 In order to make the different polymers highly compatible, the stabilization energy when interacting between different polymers needs to be larger than the stabilization energy when interacting with each other.
 そこで、安定化エネルギーの調整手段として分子量と相互作用点数の関係に着目した。一般的に高分子量化するにつれてポリマー鎖当たりの分子間力は増大するため同種のポリマー同士の相互作用が強くなり、異種ポリマーと相溶することが困難となる。 Therefore, we focused on the relationship between the molecular weight and the number of interaction points as a means of adjusting the stabilization energy. In general, as the molecular weight increases, the intermolecular force per polymer chain increases, so that the interaction between the same type of polymers becomes stronger and it becomes difficult to be compatible with different types of polymers.
 しかし、逆に考えれば高分子量のポリマーを異種ポリマー間で相互作用させることができれば大きな安定化が得られることになる。 However, conversely, if a high molecular weight polymer can be allowed to interact between different types of polymers, great stabilization can be obtained.
 そこで、我々は分子鎖にソフトセグメントを導入して相互作用に柔軟性を持たせて異種ポリマーとの相互作用点数を多くすることで熱力学的な安定化(エントロピーの効果)により異種ポリマー同士の安定化が得られ、高度に相溶すると考え検討した。 Therefore, we introduce soft segments into the molecular chain to make the interaction flexible and increase the number of points of interaction with different polymers, thereby improving the thermodynamic stability (entropy effect) between different polymers. Stabilization was obtained and considered to be highly compatible.
 具体的には、芳香族基を含まない剛直な主鎖構造として天然高分子変性ポリマーであるセルロース誘導体と、ソフトセグメントを持ち、天然高分子と相互作用できる高分子量の脂肪族ポリエステルやポリエチレンオキシドを高度に相溶することで、セルロース誘導体含有フィルムの靭性と柔軟性を大幅に向上することが可能になり、耐UV性、耐熱性、透明性、耐傷性、加工性及び巻癖回復性を満たす支持体を得ることができた。このため、この支持体を用いて従来セルロース誘導体フィルムの良好な巻癖回復性と、PETフィルムに匹敵する高い強度を兼ね備えた支持体が実現でき、ウインドウフィルムとして好適な光学フィルムを得ることができたと推察される。 Specifically, a cellulose derivative that is a natural polymer-modified polymer as a rigid main chain structure that does not contain an aromatic group, and a high molecular weight aliphatic polyester or polyethylene oxide that has a soft segment and can interact with the natural polymer. High compatibility makes it possible to greatly improve the toughness and flexibility of cellulose derivative-containing films, satisfying UV resistance, heat resistance, transparency, scratch resistance, workability and curl recovery. A support could be obtained. Therefore, using this support, it is possible to realize a support having both good curl recovery properties of conventional cellulose derivative films and high strength comparable to PET films, and an optical film suitable as a window film can be obtained. It is inferred that
本発明の光学フィルムの層構成の一例An example of the layer structure of the optical film of the present invention 本発明の光学フィルムの層構成の一例An example of the layer structure of the optical film of the present invention 本発明の光学フィルムの層構成の一例An example of the layer structure of the optical film of the present invention 本発明の光学フィルムの層構成の一例An example of the layer structure of the optical film of the present invention 本発明の光学フィルムの層構成の一例An example of the layer structure of the optical film of the present invention 本発明の光学フィルムの層構成の一例An example of the layer structure of the optical film of the present invention 本発明の光学フィルムの層構成の一例An example of the layer structure of the optical film of the present invention 多層膜による光学反射層を有する本発明の光学フィルムの一例An example of the optical film of the present invention having an optical reflective layer of a multilayer film 多層膜による光学反射層を有する本発明の光学フィルムの別の構成Another configuration of the optical film of the present invention having an optical reflective layer by a multilayer film
 本発明の光学フィルムは、フィルム状の支持体上に少なくとも光学機能層と粘着層とを有する光学フィルムであって、前記支持体が、セルロース誘導体を30質量%以上含有し、かつ巻癖回復率が20%以上で、引裂強さが150mN以上となるように調整されていることを特徴とする。この特徴は、請求項1から請求項10までの請求項に係る発明に共通する技術的特徴である。 The optical film of the present invention is an optical film having at least an optical functional layer and an adhesive layer on a film-like support, and the support contains 30% by mass or more of a cellulose derivative, and a curl recovery rate Is 20% or more, and the tear strength is adjusted to be 150 mN or more. This feature is a technical feature common to the inventions according to claims 1 to 10.
 本発明の実施態様としては、本発明の効果発現の観点から、支持体が、前記セルロース誘導体(第1のポリマー成分ともいう。)に加えて、脂肪族ポリエステル又はポリアルキレンオキシドを第2のポリマー成分として含有することが好ましい。また、支持体が、重量平均分子量が4000~500000の範囲内である前記第2のポリマー成分を前記セルロース誘導体に対して5質量%以上含有することが好ましい。支持体が、重量平均分子量が30000~400000の範囲内である前記第2のポリマー成分を前記セルロース誘導体に対して5質量%以上含有することが、支持体により高い靱性を付与できることから好ましい。さらに、セルロース誘導体が、セルロースエステルであることが好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, the support is made of an aliphatic polyester or polyalkylene oxide in addition to the cellulose derivative (also referred to as the first polymer component). It is preferable to contain as a component. Further, the support preferably contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 4000 to 500,000 with respect to the cellulose derivative. It is preferable that the support contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 30,000 to 400,000 with respect to the cellulose derivative because high toughness can be imparted to the support. Furthermore, the cellulose derivative is preferably a cellulose ester.
 また、本発明においては、セルロースエステルのアセチル基置換度Xと、プロピオニル基及びブチリル基の合計置換度Yとが、前記式(I)及び式(II)を満たすことが好ましい。これにより、支持体により高い靱性を付与できる。 In the present invention, the acetyl group substitution degree X of the cellulose ester and the total substitution degree Y of propionyl group and butyryl group preferably satisfy the above formulas (I) and (II). Thereby, a high toughness can be imparted to the support.
 靱性と柔軟の性両立の観点から、第2のポリマー成分が、前記一般式(1)で表される構造を有する脂肪族ポリエステルであることが好ましい。また、光学機能層が、特定の波長の光を選択的に透過あるいは遮蔽する層を有する場合、水貼りの際、スティックスリップ状のムラやスクイーズ作業のダメージを受けやすいことから好ましく適用できる。 From the viewpoint of achieving both toughness and flexibility, the second polymer component is preferably an aliphatic polyester having a structure represented by the general formula (1). Further, when the optical functional layer has a layer that selectively transmits or shields light of a specific wavelength, it can be preferably applied because it is easily damaged by stick-slip-like unevenness or squeeze work when water is applied.
 さらに、本発明においては、光学機能層が、第1の水溶性バインダー樹脂と第1の金属酸化物粒子とを含む高屈折率層、及び第2の水溶性バインダー樹脂と第2の金属酸化物粒子とを含む低屈折率層を交互に積層した特定の波長の光を選択的に反射する層であることが好ましい。これにより、可視光線透過率が高く、遮熱性能に優れ、巻癖回復性のより優れたウインドウフィルムを提供できる。 Further, in the present invention, the optical functional layer has a high refractive index layer containing the first water-soluble binder resin and the first metal oxide particles, and the second water-soluble binder resin and the second metal oxide. A layer that selectively reflects light of a specific wavelength, in which low refractive index layers containing particles are alternately stacked, is preferable. Thereby, the visible light transmittance | permeability is high, it is excellent in heat-shielding performance, and the window film more excellent in curl recovery property can be provided.
 本発明の光学フィルムは、ウインドウフィルムに好適に具備され得る。 The optical film of the present invention can be suitably provided for a window film.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪本発明の光学フィルムの概要≫
 本発明の光学フィルムは、フィルム状の支持体上に少なくとも光学機能層と粘着層とを有する光学フィルムであって、前記支持体が、セルロース誘導体を30質量%以上含有し、かつ巻癖回復率が20%以上で、引裂強さが150mN以上となるように調整されていることを特徴とする。本発明においては好ましい態様として、本発明に係る支持体が、セルロース誘導体に加えて、重量平均分子量が4000~500000の範囲内であるポリエステル又はポリアルキレンオキシドを第2のポリマー成分として前記セルロース誘導体に対して5質量%以上含有することである。
<< Outline of Optical Film of the Present Invention >>
The optical film of the present invention is an optical film having at least an optical functional layer and an adhesive layer on a film-like support, and the support contains 30% by mass or more of a cellulose derivative, and a curl recovery rate Is 20% or more, and the tear strength is adjusted to be 150 mN or more. In a preferred embodiment of the present invention, the support according to the present invention includes, in addition to the cellulose derivative, a polyester or polyalkylene oxide having a weight average molecular weight in the range of 4,000 to 500,000 as the second polymer component. On the other hand, it contains 5 mass% or more.
 かかる構成によって支持体としてセルロース誘導体の優れた特長を活かし、かつウインドウフィルムとしての十分な強度を備えた光学フィルムを提供することができる。 With such a configuration, an optical film having a sufficient strength as a window film can be provided by taking advantage of the excellent characteristics of the cellulose derivative as a support.
 図1A~1Gは本発明の光学フィルムの層構成の一例である。図1Aは本発明に係る支持体4の片側に光学機能層3と粘着層2及びセパレーター1を備え、支持体の反対側にはハードコート層7を備えている。この光学フィルムは、セパレーター1を剥がして粘着層2を窓ガラスに張り付けることでウインドウフィルムとして用いることができる。 1A to 1G are examples of the layer structure of the optical film of the present invention. FIG. 1A includes an optical functional layer 3, an adhesive layer 2 and a separator 1 on one side of a support 4 according to the present invention, and a hard coat layer 7 on the opposite side of the support. This optical film can be used as a window film by peeling off the separator 1 and attaching the adhesive layer 2 to a window glass.
 図1Bは、光学機能層3を支持体4の反対側に備えた例であり、さらに接着層5を介して追加の支持体6を設けた例である。図1Cは、図1Bで示した例に対して追加の支持体の代わりに本発明に係る支持体4を用い、光学機能層3を本発明に係る支持体6で挟んだ構成の例である。図1Dは、図1Bで示した例に対して本発明に係る支持体4と追加の支持体6を入れ替えた例である。図1E~1Gは、図1Aに対して、本発明に係る支持体4又は追加の支持体6をさらに用いた例である。 FIG. 1B is an example in which the optical functional layer 3 is provided on the opposite side of the support 4, and an additional support 6 is provided via the adhesive layer 5. FIG. 1C is an example of a configuration in which the support 4 according to the present invention is used instead of the additional support in the example shown in FIG. 1B and the optical functional layer 3 is sandwiched between the supports 6 according to the present invention. . FIG. 1D is an example in which the support 4 and the additional support 6 according to the present invention are replaced with the example shown in FIG. 1B. 1E to 1G are examples in which the support 4 or the additional support 6 according to the present invention is further used with respect to FIG. 1A.
 以上のように、光学機能層と粘着層は支持体の片側にともに設けられていてもよく、又は支持体を介して支持体の反対側に別々に設けられていてもよい。 As described above, the optical functional layer and the adhesive layer may be provided on one side of the support, or may be separately provided on the opposite side of the support via the support.
 ≪本発明の光学フィルムの構成要素≫
 本発明の光学フィルムは、フィルム状の支持体上に少なくとも光学機能層と粘着層とを有する光学フィルムであって、前記支持体が、セルロース誘導体を30質量%以上含有し、かつ巻癖回復率が20%以上で、引裂強さが150mN以上となるように調整されていることを特徴とする。
<< Constituent Elements of Optical Film of the Present Invention >>
The optical film of the present invention is an optical film having at least an optical functional layer and an adhesive layer on a film-like support, and the support contains 30% by mass or more of a cellulose derivative, and a curl recovery rate Is 20% or more, and the tear strength is adjusted to be 150 mN or more.
 <支持体>
 本発明に係る支持体は、セルロース誘導体を30質量%以上含有し、かつ巻癖回復率が20%以上で、引裂強さが150mN以上となるように調整されている。
<Support>
The support according to the present invention is adjusted so as to contain 30% by mass or more of a cellulose derivative, a curl recovery rate of 20% or more, and a tear strength of 150 mN or more.
 このような特性を得るためには、前記セルロース誘導体に加えて、脂肪族ポリエステル又はポリアルキレンオキシドを第2のポリマー成分として含有することが好ましい。また、支持体が、重量平均分子量が4000~500000の範囲内である前記第2のポリマー成分を前記セルロース誘導体に対して5質量%以上含有することが好ましい。 In order to obtain such characteristics, it is preferable to contain an aliphatic polyester or polyalkylene oxide as the second polymer component in addition to the cellulose derivative. Further, the support preferably contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 4000 to 500,000 with respect to the cellulose derivative.
 支持体中のセルロース誘導体の含有量が30質量%より低い場合には、第2のポリマー成分との相互作用が弱くなり、また、セルロース誘導体の優れた特徴である透湿性を利用した水貼り作業性や、水貼り後のウインドウフィルムのムラの発生の観点から好ましくない。好ましくは、セルロース誘導体の支持体中の含有量は、50~90質量%であり、より好ましくは50~70質量%の範囲内である。また第2のポリマー成分の支持体中の含有量は、前記セルロース誘導体に対して5質量%以上含有することが好ましい。好ましくは10~50質量%の範囲内である。 When the content of the cellulose derivative in the support is lower than 30% by mass, the interaction with the second polymer component becomes weak, and the water sticking operation utilizing moisture permeability, which is an excellent feature of the cellulose derivative From the viewpoint of the property and the occurrence of unevenness of the window film after water application. Preferably, the content of the cellulose derivative in the support is from 50 to 90% by mass, more preferably from 50 to 70% by mass. The content of the second polymer component in the support is preferably 5% by mass or more based on the cellulose derivative. Preferably, it is within the range of 10 to 50% by mass.
 第1のポリマー成分と第2のポリマー成分をこのような含有比率とすることで、ポリマー成分の相互作用を好ましく発揮させることができる。 By setting the content ratio of the first polymer component and the second polymer component in this manner, the interaction of the polymer components can be preferably exerted.
 支持体の厚さは20~200μmの範囲内であることが好ましく、より好ましくは25~100μmの範囲内であり、更に好ましくは35~70μmでの範囲内である。20μm以上の厚さであれば、取扱い中にシワ等が発生しにくくなり水貼り時のスクイーズに対して十分な強度があり、水貼り後のムラの発生がない。また、厚さが、200μm以下であれば、透明性や巻癖回復性に優れ、かつ水貼り作業性が向上する。 The thickness of the support is preferably in the range of 20 to 200 μm, more preferably in the range of 25 to 100 μm, and still more preferably in the range of 35 to 70 μm. If the thickness is 20 μm or more, wrinkles and the like are less likely to occur during handling, and there is sufficient strength against squeeze when water is applied, and there is no occurrence of unevenness after water application. Moreover, if thickness is 200 micrometers or less, it is excellent in transparency and curl recovery property, and water sticking workability | operativity improves.
 本発明においては、図1B、1D、1E及び1Gで示したように、追加の支持体を設けることができる。追加の支持体は、本発明の効果を損なわなければ、特に制限はない。この場合、追加の支持体の厚さは5~200の範囲内であることが好ましい。例えば、追加の支持体として、25μm程度の厚さのPETフィルムを用いることで、PETフィルムの巻癖を軽減した複合支持体とすることができる。 In the present invention, additional supports can be provided as shown in FIGS. 1B, 1D, 1E and 1G. The additional support is not particularly limited as long as the effects of the present invention are not impaired. In this case, the thickness of the additional support is preferably in the range of 5 to 200. For example, by using a PET film having a thickness of about 25 μm as an additional support, a composite support with reduced curling of the PET film can be obtained.
 (巻癖回復率)
 巻癖回復率とは、ロール状に巻かれ、巻癖のついた光学フィルムの巻癖回復性を示す尺度であり、以下のようにして求めることができる。
(Round recovery rate)
The curl recovery rate is a scale indicating the curl recovery property of an optical film wound in a roll and having a curl, and can be determined as follows.
 支持体を幅35mm(製造時の搬送方向と直交する方向:TD方向)×長さ120mm(製造時の搬送方向:MD方向)の帯状に切断し、温度23℃、相対湿度55%の条件下で1日放置した後に直径が50mmであるコアにこれを巻き付ける。 The support was cut into a strip having a width of 35 mm (direction perpendicular to the transport direction during manufacture: TD direction) and a length of 120 mm (transport direction during manufacture: MD direction), and the temperature was 23 ° C. and the relative humidity was 55%. After being left for 1 day, it is wound around a core having a diameter of 50 mm.
 その後、温度55℃、相対湿度20%の条件下で24時間熱処理を行う。熱処理後、温度23℃、相対湿度55%の条件下で30分かけて放冷した後にコアから解放し、1分経過後に支持体の巻癖カール度を測定する。カール度は1/rで表し、rはカールした支持体の曲率半径を表し、単位はmである。 Then, heat treatment is performed for 24 hours under conditions of a temperature of 55 ° C. and a relative humidity of 20%. After the heat treatment, it is allowed to cool for 30 minutes under conditions of a temperature of 23 ° C. and a relative humidity of 55%, and then released from the core, and after 1 minute, the curl curl degree of the support is measured. The curl degree is represented by 1 / r, r represents the radius of curvature of the curled support, and the unit is m.
 さらに、支持体のカールした内側から霧吹きで水を吹きかけ、5分後のカール度を測定し、巻癖回復率を下記の式で定義する。 Furthermore, water is sprayed from the inside of the support curled with a spray, the curl degree after 5 minutes is measured, and the curl recovery rate is defined by the following formula.
 巻癖回復率=(吹きかけ前のカール度-吹きかけ後のカール度)/吹きかけ前のカール度×100(%)
 本発明に係る支持体の巻癖回復率は20%以上であり、より好ましくは50%以上である。
Curb recovery rate = (curl degree before spraying-curl degree after spraying) / curl degree before spraying x 100 (%)
The curl recovery rate of the support according to the present invention is 20% or more, more preferably 50% or more.
 (引裂強さ)
 本発明で規定する引裂強さは、下記の方法により求めることができる。
(Tear strength)
The tear strength defined in the present invention can be determined by the following method.
 本発明に係る支持体を、JIS K 7128-2:1998(プラスチック-フィルム及びシートの引裂強さ試験方法-第2部:エルメンドルフ引裂法)に準拠して、(株)東洋精機製作所製の軽荷重引裂試験機により、エルメンドルフ引裂法により、搬送方向と直交する方向(TD方向)又は搬送方向(MD方向)での支持体の引き裂き荷重を測定することによって求められる。引裂強さの測定は、一定の温度・湿度条件下(本発明では、温度23℃、相対湿度55%の条件下)で行う。 In accordance with JIS K 7128-2: 1998 (Plastics—Tear Strength Test Method for Films and Sheets—Part 2: Elmendorf Tear Method), the support according to the present invention is manufactured by Toyo Seiki Seisakusho Co., Ltd. It is calculated | required by measuring the tear load of the support body in the direction (TD direction) orthogonal to a conveyance direction or a conveyance direction (MD direction) with an Elmendorf tear method with a load tear tester. The tear strength is measured under a constant temperature and humidity condition (in the present invention, a temperature of 23 ° C. and a relative humidity of 55%).
 本発明においては、特に断りがない限り、試料の引裂長さ及び厚さを、それぞれ同一の条件で、搬送方向と直交する方向(TD方向)及び搬送方向(MD方向)の平均値を引裂強さとした。 In the present invention, unless otherwise specified, the tear length and thickness of the sample are the same conditions, and the average value in the direction orthogonal to the transport direction (TD direction) and the transport direction (MD direction) is determined as the tear strength. Say it.
 本発明に係る支持体の引裂強さは150mN以上であり、より好ましくは190mN以上であり、最も好ましくは230mN以上である。引裂強さの上限は特にはないが、強すぎると支持体の切断性が悪くなることから、好ましくは3000mN以下である。 The tear strength of the support according to the present invention is 150 mN or more, more preferably 190 mN or more, and most preferably 230 mN or more. The upper limit of the tear strength is not particularly limited. However, if the strength is too strong, the cutting property of the support is deteriorated, and therefore it is preferably 3000 mN or less.
 <セルロース誘導体>
 本発明の光学フィルムは、フィルム状の支持体上に少なくとも光学機能層と粘着層とを有する光学フィルムであって、前記支持体が、セルロース誘導体を30質量%以上含有している。
<Cellulose derivative>
The optical film of the present invention is an optical film having at least an optical functional layer and an adhesive layer on a film-like support, and the support contains 30% by mass or more of a cellulose derivative.
 本発明に係るセルロース誘導体としては、セルロースエステル又はセルロースエーテル等が挙げられる。前記セルロース誘導体は、セルロースに含まれるβ-グルコース環の2位、3位、及び6位のヒドロキシ基の水素原子の少なくとも一部が、脂肪族アシル基又はアルキル基の少なくともいずれかで置換されたものである。 Examples of the cellulose derivative according to the present invention include cellulose ester and cellulose ether. In the cellulose derivative, at least part of the hydrogen atoms of the 2-position, 3-position, and 6-position hydroxy groups of the β-glucose ring contained in cellulose is substituted with at least one of an aliphatic acyl group and an alkyl group. Is.
 セルロース誘導体が、セルロースエステルであることが好ましい。セルロースエステルとしては、具体的には、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルローストリプロピオネート等が挙げられる。 The cellulose derivative is preferably a cellulose ester. Specific examples of the cellulose ester include triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate, and cellulose tripropionate.
 本発明における第1のポリマー成分に置換できる置換基としては、非芳香族基であることが太陽光に曝露されたときの耐久性の観点から好ましい。例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アシル基(アセチル基、ピバロイル基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基等)、アルキルスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基等)、スルホ基、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)などが含まれる。これらの基は、さらに同様の基で置換されていてもよい。 The substituent that can be substituted for the first polymer component in the present invention is preferably a non-aromatic group from the viewpoint of durability when exposed to sunlight. For example, halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group) ), Cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group (methoxy group, ethoxy group, isopropoxy group, tert- Butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.), acyl group (acetyl group, pivaloyl group, etc.), acyloxy group (formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, etc.), amino group (Amino group, methylamino group, dimethylamino group, etc.), acyl Mino group (formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, etc.), alkylsulfonylamino group (methylsulfonylamino group, butylsulfonylamino group, etc.), mercapto group, alkylthio group (methylthio group, ethylthio group, n -Hexadecylthio group, etc.), sulfamoyl group (N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, etc.), sulfo Groups, carbamoyl groups (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group, etc.) and the like. These groups may be further substituted with the same group.
 セルロースエステルの総アシル基置換度は、透明性の観点から、1.5以上3.0以下であることが好ましく、2.5以上2.95以下であることがより好ましい。アシル基の置換度の測定方法はASTM-D817-96に準じて測定することができる。 The total acyl group substitution degree of the cellulose ester is preferably from 1.5 to 3.0, more preferably from 2.5 to 2.95, from the viewpoint of transparency. The method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
 セルロースエステルのアセチル基置換度Xと、プロピオニル基及びブチリル基の合計置換度Yとが、下記式(I)及び式(II)を満たすことが好ましい。 It is preferable that the acetyl group substitution degree X of cellulose ester and the total substitution degree Y of propionyl group and butyryl group satisfy the following formulas (I) and (II).
 式(I) : 2.5≦X+Y≦2.95
 式(II) : 0≦Y≦1.5
 本発明の光学フィルムに含まれるセルロースエステルは、所望の特性を得るために、置換度の異なる複数のセルロースエステルを含んでもよい。例えば置換度の異なるセルロースエステルを2種類含む場合、それらの混合比は、質量比で10:90~90:10の範囲としうる。
Formula (I): 2.5 ≦ X + Y ≦ 2.95
Formula (II): 0 ≦ Y ≦ 1.5
The cellulose ester contained in the optical film of the present invention may contain a plurality of cellulose esters having different degrees of substitution in order to obtain desired properties. For example, when two types of cellulose esters having different substitution degrees are included, the mixing ratio thereof can be in the range of 10:90 to 90:10 by mass ratio.
 セルロースエステルの数平均分子量は、得られるフィルムの機械的強度が高いことから、6×10~3×10の範囲であることが好ましく、7×10~2×10の範囲であることがより好ましい。 The number average molecular weight of the cellulose ester is preferably in the range of 6 × 10 4 to 3 × 10 5 and preferably in the range of 7 × 10 4 to 2 × 10 5 because the mechanical strength of the resulting film is high. It is more preferable.
 セルロースエステルの重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されうる。測定条件の一例を以下に示すが、これに限らず、同等の測定方法を用いることも可能である。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the cellulose ester can be measured by gel permeation chromatography (GPC). An example of the measurement conditions is shown below, but not limited to this, an equivalent measurement method can also be used.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用する。)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~1000000の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (3 Showa Denko Co., Ltd. connected and used)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 500 to 1,000,000 13 calibration curves are used. Thirteen samples are used at approximately equal intervals.
 (第2のポリマー成分)
 本発明における第2のポリマー成分は第1のポリマー成分と複数相互作用することにより相溶し、重量平均分子量が4000~500000であり、ソフトセグメントを有することが好ましい。
(Second polymer component)
The second polymer component in the present invention is compatible by a plurality of interactions with the first polymer component, preferably has a weight average molecular weight of 4000 to 500,000 and has a soft segment.
 本発明における相溶とは分子レベルで混ざり合い、透明であることをいう。本発明における相互作用とは、水素結合、双極子-双極子相互作用、分子間力、CH-π相互作用などが挙げられる。これらのような相互作用をしうる部位を相互作用点といい、相互作用点は主鎖中に含まれていてもよく、側鎖中に含まれていてもよく、後述するソフトセグメントに含まれていてもよい。 In the present invention, the term “compatible” refers to being mixed and transparent at the molecular level. Examples of the interaction in the present invention include a hydrogen bond, a dipole-dipole interaction, an intermolecular force, and a CH-π interaction. Such a site capable of interaction is called an interaction point, and the interaction point may be included in the main chain, may be included in the side chain, and is included in the soft segment described later. It may be.
 本発明においては、高分子量の第2のポリマー成分が主鎖1本当たりの相互作用点を多く持ち、第1のポリマー成分と複数相互作用することが重要である。複数相互作用できることにより、とりうる状態数が指数関数的に増大してエントロピーが大きくなることでギプスの自由エネルギーが負に大きくなるため、第1のポリマー成分と第2のポリマー成分が相互作用する系が大きく安定化された結果、高度に相溶することが可能となる。 In the present invention, it is important that the second polymer component having a high molecular weight has many interaction points per main chain, and a plurality of interactions with the first polymer component. By allowing multiple interactions, the number of possible states increases exponentially and entropy increases, so the free energy of the cast increases negatively, so the first polymer component and the second polymer component interact. As a result of the great stabilization of the system, a high degree of compatibility is possible.
 第1のポリマー成分と第2のポリマー成分とが相溶しているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。 Whether the first polymer component and the second polymer component are compatible can be determined by, for example, the glass transition temperature Tg.
 例えば、両者のポリマーのガラス転移温度が異なる場合、両者のポリマーを単に混合したときは、それぞれのポリマーのガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者のポリマーが相溶したときは、それぞれのポリマー固有のガラス転移温度が消失し、一つのガラス転移温度となって相溶したポリマーのガラス転移温度となる。 For example, when the two polymers have different glass transition temperatures, when the two polymers are simply mixed, there are two or more glass transition temperatures of the mixture because there is a glass transition temperature for each polymer. When they are compatible, the glass transition temperature specific to each polymer disappears, and becomes one glass transition temperature, which is the glass transition temperature of the compatible polymer.
 なお、ここでいうガラス転移温度とは、示差走査熱量測定器(例えば、Perkin Elmer社製DSC-7型、セイコーインスツル(株)製の示差走査熱量計DSC220)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)にしたがい求めた中間点ガラス転移温度(Tmg)とする。 The glass transition temperature referred to here is a differential scanning calorimeter (for example, DSC-7 manufactured by Perkin Elmer, differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc.), and the rate of temperature increase is 20 It is measured at ° C./min and is defined as the midpoint glass transition temperature (Tmg) obtained according to JIS K7121 (1987).
 本発明におけるソフトセグメントとは、主鎖に伸縮性、回転性を付与できる連結基のことを言い、それらを満たす構造であれば特に制限はないが、具体的には主鎖中に-O-、-COO-、OCOO-、-S-のような結合を含む部位のことを言う。 The soft segment in the present invention refers to a linking group capable of imparting stretchability and rotation to the main chain, and is not particularly limited as long as it has a structure satisfying them. Specifically, —O— , A moiety containing a bond such as —COO—, OCOO—, and —S—.
 また、第2のポリマー成分の重量平均分子量は、4000~500000の範囲内であり、好ましくは、30000~400000の範囲内であり、50000~300000の範囲内であることが特に好ましい。 The weight average molecular weight of the second polymer component is in the range of 4,000 to 500,000, preferably in the range of 30,000 to 400,000, and particularly preferably in the range of 50,000 to 300,000.
 第2のポリマー成分の分子量が4000~500000の範囲内であれば、第1のポリマー成分と相互作用した際の安定化エネルギーが、第2のポリマー成分の自己凝集力よりも大きくなり、透明性、破断伸度、及び引裂強さが向上する。 If the molecular weight of the second polymer component is within the range of 4,000 to 500,000, the stabilization energy when interacting with the first polymer component is greater than the self-cohesion force of the second polymer component, and transparency , Elongation at break and tear strength are improved.
 本発明における第2のポリマー成分として、好ましくはポリアルキレンオキシド、ポリエステルであり、脂肪族ポリエステルとポリアルキレンオキシドがさらに好ましく、脂肪族ポリエステルが特に好ましい。 As the second polymer component in the present invention, polyalkylene oxide and polyester are preferable, aliphatic polyester and polyalkylene oxide are more preferable, and aliphatic polyester is particularly preferable.
 本発明における第2のポリマー成分として使用できるポリアルキレンオキシドとしては特に制限はないが、例えば、エチレンオキシドを1成分として含むものを挙げることができ、エチレンオキシド単独重合体であるポリエチレンオキシド;エチレンオキシドと他のアルキレンオキシドとの共重合体等が挙げられる。前記他のアルキレンオキシドとしては、例えば、プロピレンオキシド、1,2-エポキシブタン、2,3-エポキシブタン、エピクロルヒドリン、エピブロムヒドリン、トリフルオロメチルエチレンオキシド、シクロヘキセンオキシド、スチレンオキシド、メチルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、グリシドール、グリシジルアクリレート、ブタジエンモノオキシド、ブタジエンジオキシド等が挙げられる。中でも好ましくはポリエチレンオキシド、ポリプロピレンオキシドが好ましく、ポリエチレンオキシドがさらに好ましい。 The polyalkylene oxide that can be used as the second polymer component in the present invention is not particularly limited, and examples thereof include those containing ethylene oxide as one component, such as polyethylene oxide that is an ethylene oxide homopolymer; ethylene oxide and other Examples include copolymers with alkylene oxides. Examples of the other alkylene oxides include propylene oxide, 1,2-epoxybutane, 2,3-epoxybutane, epichlorohydrin, epibromohydrin, trifluoromethylethylene oxide, cyclohexene oxide, styrene oxide, methyl glycidyl ether, and allyl. Examples include glycidyl ether, phenyl glycidyl ether, glycidol, glycidyl acrylate, butadiene monooxide, and butadiene dioxide. Of these, polyethylene oxide and polypropylene oxide are preferable, and polyethylene oxide is more preferable.
 本発明における第2のポリマー成分として使用できる脂肪族ポリエステルについて説明する。 The aliphatic polyester that can be used as the second polymer component in the present invention will be described.
 本発明でいう脂肪族ポリエステルは、重量平均分子量が4000以上の脂肪族ポリエステルであることが好ましい。 The aliphatic polyester referred to in the present invention is preferably an aliphatic polyester having a weight average molecular weight of 4000 or more.
 本発明における脂肪族ポリエステルは、脂肪族多価アルコールと脂肪族多塩基酸との縮合反応により得られるポリエステル、又は環状エステルの開環重合により得られる脂肪族ポリエステルであることが好ましい。 The aliphatic polyester in the present invention is preferably a polyester obtained by a condensation reaction of an aliphatic polyhydric alcohol and an aliphatic polybasic acid, or an aliphatic polyester obtained by ring-opening polymerization of a cyclic ester.
 更に好ましくは下記一般式(1)で表される構造を有する脂肪族ポリエステルである。 More preferably, it is an aliphatic polyester having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(1)におけるR~Rは、それぞれ、水素原子又は置換基を表し、置換基は後述する第2のポリマー成分に置換してもよい置換基である。本発明における一般式(1)にはソフトセグメントである-CO-や-O-の連結基が多数入っているためR~Rの置換基は本発明が目的とする効果を損なわない限りはどのような置換基を導入してもよい。 In the general formula (1), R 1 to R 6 each represent a hydrogen atom or a substituent, and the substituent is a substituent that may be substituted on the second polymer component described later. Since the general formula (1) in the present invention contains a large number of linking groups such as —CO— and —O— which are soft segments, the substituents of R 1 to R 6 do not impair the intended effect of the present invention. May introduce any substituent.
 前記一般式(1)におけるiは0~2の整数を表し、jは0~10の整数を表し、kは3~10の整数を表す。
前記一般式(1)におけるiは0~1が好ましく、1がさらに好ましい。
前記一般式(1)におけるjは0~5が好ましく、1~4が好ましく3が特に好ましい。前記一般式(1)におけるkは3~8が好ましく、3~5がさらに好ましく、3が特に好ましい。
In the general formula (1), i represents an integer of 0 to 2, j represents an integer of 0 to 10, and k represents an integer of 3 to 10.
In the general formula (1), i is preferably 0 to 1, and more preferably 1.
J in the general formula (1) is preferably 0 to 5, more preferably 1 to 4, and particularly preferably 3. In the general formula (1), k is preferably 3 to 8, more preferably 3 to 5, and particularly preferably 3.
 前記一般式(1)におけるR~Rで表される基は、水素原子、アルキル基が好ましく、水素原子、メチル基、エチル基がさらに好ましく、水素原子が特に好ましい。 The group represented by R 1 to R 6 in the general formula (1) is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom.
 a、b及びcは構成割合(モル分率)を表し、a、b及びcの総和は1である。透明性、破断伸度、引裂強さの観点から好ましい構成割合としては、a/b/c=0.10~0.5/0.30~0.60/0.00~0.40が好ましく、a/b/c=0.25~0.40/0.35~0.60/0.05~0.30がさらに好ましく、a/b/c=0.20~0.35/0.45~0.55/0.15~0.25が特に好ましい。ジアルコール成分が0.5に近づくほど高分子量のポリマーが得られることに加えて、a>cであると相互作用のバランスが優れ、透明性が向上する。特にセルロースエステルと組み合わせた際には透明性、破断伸度、引裂強さが向上する。 A, b, and c represent constituent ratios (molar fractions), and the sum of a, b, and c is 1. A preferable constituent ratio from the viewpoints of transparency, elongation at break and tear strength is preferably a / b / c = 0.10 to 0.5 / 0.30 to 0.60 / 0.00 to 0.40. A / b / c = 0.25 to 0.40 / 0.35 to 0.60 / 0.05 to 0.30 is more preferable, and a / b / c = 0.20 to 0.35 / 0. Particularly preferred is 45 to 0.55 / 0.15 to 0.25. In addition to obtaining a polymer having a high molecular weight as the dialcohol component approaches 0.5, when a> c, the balance of interaction is excellent and the transparency is improved. In particular, when combined with cellulose ester, transparency, elongation at break and tear strength are improved.
 本発明における一般式(1)で表される脂肪族ポリエステルとしては、例えば、ポリエチレンアジペート、ポリエチレンサクシネート、ポリブチレンアジペート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペートなどが挙げられる。好ましくはポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペートである。 Examples of the aliphatic polyester represented by the general formula (1) in the present invention include polyethylene adipate, polyethylene succinate, polybutylene adipate, polybutylene succinate, polybutylene succinate adipate, and the like. Polyethylene succinate, polybutylene succinate, and polybutylene succinate adipate are preferable.
 脂肪族多価アルコールと脂肪族多塩基酸(あるいはそのエステル)との縮合反応で用いられる脂肪族多塩基酸としては、例えばコハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、アゼライン酸、デカンジカルボン酸、シクロヘキサンジカルボン酸、ウンデカン二酸、ドデカン二酸、及びこれらの無水物、あるいはこれらのエステル等が挙げられる。脂肪族多価アルコールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、3-メチル-1,5-ペンタンジオール、1,3-プロパンジオール、1,4ーブタンジオール、1,9-ノナンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、ポリテトラメチレングリコール1,4-シクロヘキサンジメタノール、及び等が挙げられる。また、脂肪族多価アルコールの一部としてポリオキシアルキレングリコールを使用することも可能であり、例えばポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール及びこれらの共重合体が例示される。 Examples of the aliphatic polybasic acid used in the condensation reaction of an aliphatic polyhydric alcohol and an aliphatic polybasic acid (or an ester thereof) include succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, Examples include suberic acid, sebacic acid, azelaic acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, undecanedioic acid, dodecanedioic acid, and anhydrides thereof, or esters thereof. Examples of the aliphatic polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 3-methyl-1,5-pentanediol, 1,3-propanediol, and 1,4-butanediol. 1,9-nonanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexanedimethanol, polytetramethylene glycol 1,4-cyclohexanedimethanol, and the like It is done. Moreover, it is also possible to use polyoxyalkylene glycol as a part of the aliphatic polyhydric alcohol, and examples thereof include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, and copolymers thereof. .
 脂肪族ポリエステルは、単独ないし2種以上を用いることができる。また、これらに光学異性体が存在する場合には、D体、L体、又はラセミ体のいずれでもよく、形態としては固体、液体、又は水溶液のいずれであってもよい。 The aliphatic polyester can be used alone or in combination of two or more. In addition, when optical isomers exist in these, any of D-form, L-form, and racemate may be used, and the form may be any of solid, liquid, or aqueous solution.
 これらのうちで、前記脂肪族多価アルコールが、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール、ポリテトラメチレングリコール1,4-シクロヘキサンジメタノール、から選ばれる少なくとも一種であり、前記脂肪族多塩基酸が、コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、及びこれらの無水物から選ばれる少なくとも一種の脂肪族多塩基酸であることが好ましい。 Among these, the aliphatic polyhydric alcohol is ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl- At least one selected from 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, polytetramethylene glycol 1,4-cyclohexanedimethanol, and the aliphatic polybase At least one fat selected from succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, and anhydrides thereof Be a polybasic acid Preferred.
 また、前記脂肪族多価アルコールが、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、及びから選ばれる少なくとも一種であり、前記脂肪族多塩基酸が、コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、及びこれらの無水物から選ばれる少なくとも一種の脂肪族多塩基酸であることがより好ましい。 The aliphatic polyhydric alcohol is at least one selected from diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and More preferably, the aliphatic polybasic acid is at least one aliphatic polybasic acid selected from succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, and anhydrides thereof. preferable.
 脂肪族ポリエステルの製造に際しては脂肪族多塩基酸(あるいはそのエステル)成分及び脂肪族多価アルコール成分の全量を初期混合し反応させてもよく、又は反応の進行にともなって分割して添加してもさしつかえない。重縮合反応としては通常のエステル交換法又はエステル化法更には両方の併用によっても可能であり、また必要により反応容器内を加圧又は減圧にすることにより重合度を上げることができる。 In the production of the aliphatic polyester, the total amount of the aliphatic polybasic acid (or its ester) component and the aliphatic polyhydric alcohol component may be initially mixed and reacted, or added in portions as the reaction proceeds. No problem. The polycondensation reaction can be carried out by a common transesterification method or esterification method, or a combination of both. If necessary, the degree of polymerization can be increased by increasing or decreasing the pressure in the reaction vessel.
 環状エステルを開環重合する方法で用いられる環状エステルとしては、例えばβ-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、ε-カプロラクトン、などが挙げられる。これらのうち、ε-カプロラクトンが特に好ましい。開環重合は公知の開環重合触媒を用い、溶媒中での重合や塊状重合等の方法により行うことができる。 Examples of the cyclic ester used in the method for ring-opening polymerization of a cyclic ester include β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, and ε-caprolactone. Of these, ε-caprolactone is particularly preferred. The ring-opening polymerization can be carried out by a method such as polymerization in a solvent or bulk polymerization using a known ring-opening polymerization catalyst.
 縮合反応、及び重合反応はいずれも縦型反応器、回分式反応器、横型反応器、二軸押出し機などが用いられ、バルク状、あるいは溶液中での反応が実施されることが好ましい。 For the condensation reaction and the polymerization reaction, a vertical reactor, a batch reactor, a horizontal reactor, a twin screw extruder or the like is used, and the reaction is preferably carried out in bulk or in solution.
 縮合反応、及び重合反応におけるエステル化触媒、開環重合触媒及び脱グリコール触媒としてはリチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウム、バリウム、ストロンチウム、亜鉛、アルミニウム、チタン、コバルト、ゲルマニウム、錫、鉛、アンチモン、カドミウム、マンガン、鉄、ジルコニウム、バナジウム、イリジウム、ランタン、セレンなどの金属、及びこれらの有機金属化合物、有機酸の塩、金属アルコキシド、金属酸化物などが挙げられ、必要に応じてリン酸等の助触媒と併用することも可能である。これらの触媒は、1種単独で又は2種以上組み合わせて用いることができ、添加量は全ジカルボン酸100モルに対して0.1モル以下が好ましく、より好ましくは0.8モル以下、更に好ましくは0.6モル以下である。 Lithium, sodium, potassium, cesium, magnesium, calcium, barium, strontium, zinc, aluminum, titanium, cobalt, germanium, tin, lead as esterification catalysts, ring-opening polymerization catalysts, and deglycolization catalysts in condensation reactions and polymerization reactions Metals such as antimony, cadmium, manganese, iron, zirconium, vanadium, iridium, lanthanum, selenium, and organic metal compounds thereof, salts of organic acids, metal alkoxides, metal oxides, etc. It can also be used in combination with a promoter such as an acid. These catalysts can be used singly or in combination of two or more, and the addition amount is preferably 0.1 mol or less, more preferably 0.8 mol or less, still more preferably with respect to 100 mol of all dicarboxylic acids. Is 0.6 mol or less.
 更に必要に応じて鎖延長剤を用いて高分子量化することもできる。鎖延長剤としては、2官能以上のイソシアネート化合物、エポキシ化合物、アジリジン化合物、オキサゾリン化合物、及び多価金属化合物、多官能酸無水物、リン酸エステル、亜リン酸エステル等が挙げられ、1種、又は2種以上を組み合わせてもよい。 Further, if necessary, the molecular weight can be increased using a chain extender. Examples of the chain extender include bifunctional or higher functional isocyanate compounds, epoxy compounds, aziridine compounds, oxazoline compounds, and polyvalent metal compounds, polyfunctional acid anhydrides, phosphate esters, phosphites, and the like. Or you may combine 2 or more types.
 本発明における脂肪族ポリエステルの弾性率は、0.01GPa以上1GPa以下であることが好ましく、0.1GPa以上0.5GPa以下であることがより好ましい。 The elastic modulus of the aliphatic polyester in the present invention is preferably 0.01 GPa or more and 1 GPa or less, and more preferably 0.1 GPa or more and 0.5 GPa or less.
 本発明における脂肪族ポリエステルは重量平均分子量が4000以上であることが好ましい。ここで、重量平均分子量はゲル・パーミエーション・クロマトグラフィー(GPC)により測定された重量平均分子量である。より詳細には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求められる。GPC装置は、HLC-8220GPC(東ソー社製)を使用できる。 The aliphatic polyester in the present invention preferably has a weight average molecular weight of 4000 or more. Here, the weight average molecular weight is a weight average molecular weight measured by gel permeation chromatography (GPC). More specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight is obtained using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) can be used.
 脂肪族ポリエステルは重量平均分子量が4000以上の場合、ブリードアウトの懸念がなく、また、混合する樹脂に対して可塑剤として作用せず、樹脂の剛性と耐熱性を著しく損なうことがない。 When the weight average molecular weight of the aliphatic polyester is 4000 or more, there is no fear of bleeding out, and the aliphatic polyester does not act as a plasticizer for the resin to be mixed, and the rigidity and heat resistance of the resin are not significantly impaired.
 本発明における脂肪族ポリエステルは市販品を用いてもよく、ポリブチレンサクシネートとして、ビオノーレ1001(Mn=70000)、ビオノーレ1050MD(Mw:100000)、(昭和電工(株)社製)、GSPla AD92W(Mn=40000)(三菱化学(株)社製)、ポリブチレンサクシネートアジペートとしてビオノーレ#3001(Mn=34000)ビオノーレ3001MD(Mw:200000)(昭和電工(株)社製)、ポリカプロラクトンとしてPH7(Mn=45000)、(ダイセル(株)社製)などが挙げられる。 As the aliphatic polyester in the present invention, commercially available products may be used. As polybutylene succinate, Bionore 1001 (Mn = 70000), Bionore 1050MD (Mw: 100,000), (manufactured by Showa Denko KK), GSPla AD92W ( Mn = 40000) (Mitsubishi Chemical Corporation), Bionole # 3001 (Mn = 34000) Bionore 3001MD (Mw: 200000) (Showa Denko Co., Ltd.) as polybutylene succinate adipate, PH7 (Polycaprolactone) Mn = 45000), (manufactured by Daicel Corporation), and the like.
 本発明における第2のポリマー成分に置換できる置換基としては特に制限はないが、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p-トリル基、ナフチル基等)、ヘテロアリール基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシル基(アセチル基、ピバロイルベンゾイル基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)などが含まれる。これらの基は、さらに同様の基で置換されていてもよい。 The substituent that can be substituted for the second polymer component in the present invention is not particularly limited, and examples thereof include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (methyl group, ethyl group, n -Propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group etc.), alkenyl group (vinyl group, Allyl group), cycloalkenyl group (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (ethynyl group, propargyl group, etc.), aryl group (phenyl group, p-tolyl group, Naphthyl group, etc.), heteroaryl group (2-pyrrole group, 2-furyl group, 2-thienyl group, pyrrole group, Midazolyl group, oxazolyl group, thiazolyl group, benzoimidazolyl group, benzoxazolyl group, 2-benzothiazolyl group, pyrazolinone group, pyridyl group, pyridinone group, 2-pyrimidinyl group), cyano group, hydroxy group, nitro group, carboxy group , Alkoxy groups (methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.), aryloxy groups (phenoxy group, 2-methylphenoxy group, 4-tert- Butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc., acyl group (acetyl group, pivaloylbenzoyl group, etc.), acyloxy group (formyloxy group, acetyloxy group, pivaloyloxy group, stearoyl group) Oxy group, benzoy Oxy group, p-methoxyphenylcarbonyloxy group, etc.), amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenylamino group etc.), acylamino group (formylamino group, Acetylamino group, pivaloylamino group, lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (methylsulfonylamino group, butylsulfonylamino group, phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group) , P-methylphenylsulfonylamino group, etc.), mercapto group, alkylthio group (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group) ), Sulfamoyl group (N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group) Group, N- (N′phenylcarbamoyl) sulfamoyl group, etc.), sulfo group, carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group and the like. These groups may be further substituted with the same group.
 本発明における第2のポリマー成分は第1のポリマー成分と同様に非芳香族成分で構成されることが好ましい。ただし、第1のポリマー成分とは異なり、芳香族基及び複素芳香族基を有してもよい。これは第1のポリマー成分がフィルムとしての耐熱性、耐UV性を付与しており、第2の成分は柔軟性及び靭性を付与するものであるため、紫外線により第2のポリマー成分が若干破壊されたとしてもフィルム性能に大きな影響を与えないためである。 The second polymer component in the present invention is preferably composed of a non-aromatic component in the same manner as the first polymer component. However, unlike the first polymer component, it may have an aromatic group and a heteroaromatic group. This is because the first polymer component imparts heat resistance and UV resistance as a film, and the second component imparts flexibility and toughness, so the second polymer component is slightly destroyed by ultraviolet rays. This is because even if it is done, the film performance is not greatly affected.
 本発明における第1のポリマー成分と第2のポリマー成分とは共有結合で架橋していても架橋していなくてもよい。また、第1のポリマー成分同士、第2のポリマー成分同士もそれぞれ共有結合で架橋していてもよく、架橋していなくてもよい。
(添加剤)
 本発明における光学フィルムには目的とする機能を低下させない程度であれば各種添加材を支持体に添加することができる。
In the present invention, the first polymer component and the second polymer component may be crosslinked by a covalent bond or may not be crosslinked. Further, the first polymer components and the second polymer components may be cross-linked by a covalent bond, or may not be cross-linked.
(Additive)
In the optical film of the present invention, various additives can be added to the support so long as the intended function is not deteriorated.
 (糖エステル)
 本発明における太陽光に耐久性を有する高透明フィルムの可塑性を向上させる観点から、糖エステルをさらに含有することができる。
(Sugar ester)
From the viewpoint of improving the plasticity of the highly transparent film having durability against sunlight in the present invention, a sugar ester can be further contained.
 糖エステルは、フラノース構造若しくはピラノース構造を1~12個有する化合物であって、該化合物中のヒドロキシ基の全部又は一部がエステル化された化合物でありうる。そのような糖エステルの好ましい例には、下記一般式(FA)で表されるスクロースエステルが含まれる。 The sugar ester may be a compound having 1 to 12 furanose structures or pyranose structures, in which all or part of the hydroxy groups in the compound are esterified. Preferable examples of such sugar esters include sucrose esters represented by the following general formula (FA).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(FA)のR~Rは、それぞれ独立に、水素原子、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を表す。R~Rは、互いに同じであっても、異なってもよい。 R 1 to R 8 in formula (FA) each independently represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group. R 1 to R 8 may be the same as or different from each other.
 置換若しくは無置換のアルキルカルボニル基は、炭素原子数2以上の置換若しくは無置換のアルキルカルボニル基であることが好ましい。置換若しくは無置換のアルキルカルボニル基の例には、メチルカルボニル基(アセチル基)が含まれる。アルキル基が有する置換基の例には、フェニル基等のアリール基が含まれる。 The substituted or unsubstituted alkylcarbonyl group is preferably a substituted or unsubstituted alkylcarbonyl group having 2 or more carbon atoms. Examples of the substituted or unsubstituted alkylcarbonyl group include a methylcarbonyl group (acetyl group). Examples of the substituent that the alkyl group has include an aryl group such as a phenyl group.
 置換若しくは無置換のアリールカルボニル基は、炭素原子数7以上の置換若しくは無置換のアリールカルボニル基であることが好ましい。アリールカルボニル基の例には、フェニルカルボニル基が含まれる。アリール基が有する置換基の例には、メチル基等のアルキル基や、メトキシ基等のアルコキシル基等が含まれる。 The substituted or unsubstituted arylcarbonyl group is preferably a substituted or unsubstituted arylcarbonyl group having 7 or more carbon atoms. Examples of the arylcarbonyl group include a phenylcarbonyl group. Examples of the substituent that the aryl group has include an alkyl group such as a methyl group, an alkoxyl group such as a methoxy group, and the like.
 スクロースエステルのアシル基の平均置換度は、3.0~7.5の範囲内であることが好ましい。アシル基の平均置換度がこの範囲内であると、十分な相溶性が得られやすい。特にセルロースエステルを第1のポリマー成分として用いた際には相溶性が高くなる。 The average substitution degree of the acyl group of the sucrose ester is preferably in the range of 3.0 to 7.5. When the average substitution degree of the acyl group is within this range, sufficient compatibility is easily obtained. In particular, when cellulose ester is used as the first polymer component, the compatibility becomes high.
 一般式(FA)で表されるスクロースエステルの具体例には、下記例示化合物(FA-1)~(FA-24)が含まれる。下記表は、例示化合物(FA-1)~(FA-24)の一般式(FA)におけるR~Rと、アシル基の平均置換度を示している。 Specific examples of the sucrose ester represented by the general formula (FA) include the following exemplified compounds (FA-1) to (FA-24). The following table shows R 1 to R 8 in the general formula (FA) of the exemplary compounds (FA-1) to (FA-24) and the average substitution degree of the acyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 その他の糖エステルの例には、特開昭62-42996号公報及び特開平10-237084号公報に記載の化合物が含まれる。 Examples of other sugar esters include compounds described in JP-A Nos. 62-42996 and 10-237084.
 糖エステルの含有量は、第1のポリマー成分と第2のポリマー成分の総量に対して0.5~35.0質量%であることが好ましく、5.0~30.0質量%であることがより好ましい。 The content of the sugar ester is preferably 0.5 to 35.0% by mass, and preferably 5.0 to 30.0% by mass with respect to the total amount of the first polymer component and the second polymer component. Is more preferable.
 フィルム製造時の組成物の流動性や、フィルムの柔軟性を向上するために、重量平均分子量が4000未満の可塑剤をさらに含有していていもよい。可塑剤の例には、ポリエステル系可塑剤、多価アルコールエステル系可塑剤、多価カルボン酸エステル系可塑剤(フタル酸エステル系可塑剤を含む)、グリコレート系可塑剤、エステル系可塑剤(クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、リン酸エステル系可塑剤、トリメリット酸エステル系可塑剤などを含む)などが含まれる。なかでも、ポリエステル系可塑剤やリン酸エステル系可塑剤が好ましい。これらは、単独で用いても、二種類以上を組み合わせて用いてもよい。 In order to improve the fluidity of the composition during film production and the flexibility of the film, it may further contain a plasticizer having a weight average molecular weight of less than 4000. Examples of plasticizers include polyester plasticizers, polyhydric alcohol ester plasticizers, polycarboxylic acid ester plasticizers (including phthalate ester plasticizers), glycolate plasticizers, ester plasticizers ( Citrate ester plasticizers, fatty acid ester plasticizers, phosphate ester plasticizers, trimellitic ester plasticizers, etc.). Of these, polyester plasticizers and phosphate ester plasticizers are preferred. These may be used alone or in combination of two or more.
 (その他の添加剤)
 本発明に係る支持体は、取り扱いを容易にするために、透明性を損なわない範囲内で粒子を含有させてもよい。本発明で用いる粒子の例としては、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子や、架橋高分子粒子、シュウ酸カルシウム等の有機粒子を挙げることができる。また粒子を添加する方法としては、原料とするポリエステル中に粒子を含有させて添加する方法、押出機に直接添加する方法等を挙げることができ、このうちいずれか一方の方法を採用してもよく、二つの方法を併用してもよい。本発明では必要に応じて上記粒子の他にも添加剤を加えてもよい。このような添加剤としては、例えば、糖エステル以外の可塑剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤、染料、顔料、紫外線吸収剤などが挙げられる。
(Other additives)
In order to facilitate handling, the support according to the present invention may contain particles within a range not impairing transparency. Examples of particles used in the present invention include inorganic particles such as calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and crosslinked polymers. Examples thereof include organic particles such as particles and calcium oxalate. Examples of the method of adding particles include a method of adding particles in a polyester as a raw material, a method of adding directly to an extruder, and the like. Well, you may use two methods together. In the present invention, additives may be added in addition to the above particles as necessary. Examples of such additives include plasticizers other than sugar esters, stabilizers, lubricants, crosslinking agents, anti-blocking agents, antioxidants, dyes, pigments, ultraviolet absorbers, and the like.
 ≪セルロース誘導体を含有する支持体の製造方法≫
 本発明に係るセルロース誘導体を含有する支持体(以下、簡単に支持体ともいう。)の製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から製膜方法は、溶液流延製膜法と溶融流延製膜法が選択でき、特に溶液流延製膜法であることが、均一で平滑な表面を得ることができる観点から好ましい。
≪Method for producing support containing cellulose derivative≫
As a method for producing a support containing the cellulose derivative according to the present invention (hereinafter also simply referred to as a support), the usual inflation method, T-die method, calendar method, cutting method, casting method, emulsion method The production method such as hot press method can be used, but from the viewpoint of suppression of coloring, suppression of foreign matter defects, suppression of optical defects such as die line, etc., the film forming methods are solution casting film forming method and melt casting film forming method. In particular, the solution casting film forming method is preferable from the viewpoint of obtaining a uniform and smooth surface.
 以下、本発明に係る支持体を溶液流延製膜法で製造する製造例について説明する。 Hereinafter, production examples for producing the support according to the present invention by the solution casting film forming method will be described.
 本発明に係る支持体の製造は、少なくともセルロース誘導体、又はセルロース誘導体及び第2のポリマー成分、さらに必要であれば添加剤等を溶媒に溶解させてドープを調製し、濾過する工程、調製したドープをベルト状若しくはドラム状の金属支持体上に流延しウェブを形成する工程、形成したウェブを金属支持体から剥離してフィルム状の支持体とする工程、前記支持体を延伸、乾燥する工程、及び乾燥させた支持体を冷却後ロール状に巻き取る工程により行われる。本発明に係る支持体は固形分中に好ましくはセルロース誘導体を60~95質量%の範囲で含有するものであることが好ましい。 The production of the support according to the present invention includes a step of preparing a dope by dissolving at least a cellulose derivative, or a cellulose derivative and a second polymer component, and if necessary, an additive or the like in a solvent, and filtering the prepared dope. The step of casting the substrate on a belt-like or drum-like metal support to form a web, the step of peeling the formed web from the metal support to form a film-like support, and the step of stretching and drying the support And a step of winding the dried support into a roll after cooling. The support according to the present invention preferably contains a cellulose derivative in the range of 60 to 95% by mass in the solid content.
 以下、各工程について説明する。 Hereinafter, each process will be described.
 (1)溶解工程
 セルロース誘導体に対する良溶媒を主とする有機溶媒に、溶解釜中で当該セルロース誘導体、又はセルロース誘導体及び第2のポリマー成分、さらに必要であれば添加剤等を撹拌しながら溶解しドープを形成する工程、あるいは当該セルロース誘導体溶液に、前記第2のポリマー成分、さらに必要であれば添加剤等の化合物溶液を混合して主溶解液であるドープを形成する工程である。
(1) Dissolution process In a dissolution vessel, dissolve the cellulose derivative, or the cellulose derivative and the second polymer component, and if necessary, the additives and the like in an organic solvent mainly composed of a good solvent for the cellulose derivative. This is a step of forming a dope, or a step of mixing the second polymer component and, if necessary, a compound solution such as an additive into the cellulose derivative solution to form a dope which is a main solution.
 本発明に係る支持体を溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロース誘導体、又はセルロース誘導体及び第2のポリマー成分、さらにその他の添加剤等を同時に溶解するものであれば制限なく用いることができる。 When the support according to the present invention is produced by the solution casting method, the organic solvent useful for forming the dope dissolves the cellulose derivative, or the cellulose derivative and the second polymer component, and other additives at the same time. Anything can be used without limitation.
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、例えば主たる溶媒として、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用することができ、塩化メチレン又は酢酸エチルであることが特に好ましい。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. For example, methylene chloride, methyl acetate, ethyl acetate, and acetone can be preferably used as the main solvent. Particularly preferably ethyl acetate.
 ドープには、上記有機溶媒の他に、1~40質量%の範囲の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ないときは非塩素系有機溶媒系でのセルロース誘導体及びその他の化合物の溶解を促進する役割もある。本発明に係る支持体の製膜においては、得られる支持体の平面性を高める点から、アルコール濃度が0.5~15.0質量%の範囲内にあるドープを用いて製膜する方法を適用することができる。 In addition to the above organic solvent, the dope preferably contains a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass. When the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy. When the proportion of alcohol is small, dissolution of cellulose derivatives and other compounds in non-chlorine organic solvent systems There is also a role to promote. In the film formation of the support according to the present invention, a method of forming a film using a dope having an alcohol concentration in the range of 0.5 to 15.0% by mass from the viewpoint of improving the flatness of the obtained support. Can be applied.
 特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、セルロース誘導体及びその他の化合物を、計15~45質量%の範囲で溶解させたドープ組成物であることが好ましい。 In particular, a dope composition in which a cellulose derivative and other compounds are dissolved in a total amount of 15 to 45% by mass in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. It is preferable that it is a thing.
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からメタノール及びエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Methanol and ethanol are preferred because of the stability, boiling point of these inner dopes, and good drying properties.
 セルロース誘導体、第2のポリマー成分又はその他の化合物の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For dissolving the cellulose derivative, the second polymer component or other compound, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544 Various dissolution methods such as a method of performing a cooling dissolution method as described in JP-A-9-95557 or JP-A-9-95538, a method of performing at a high pressure described in JP-A-11-21379 However, a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is preferable.
 ドープ中のセルロース誘導体の濃度は、10~40質量%の範囲であることが好ましい。溶解中又は後のドープに化合物を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。 The concentration of the cellulose derivative in the dope is preferably in the range of 10 to 40% by mass. After the compound is added to the dope during or after dissolution and dissolved and dispersed, it is filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
 (2)流延工程
 (2-1)ドープの流延
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属支持体、例えば、ステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
(2) Casting step (2-1) Dope casting An endless metal support that feeds the dope to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and transfers it infinitely, for example, This is a step of casting a dope from a pressure die slit to a casting position on a metal support such as a stainless steel belt or a rotating metal drum.
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.5~3mの範囲、さらに好ましくは2~2.8mの範囲とすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下、さらに好ましくは-30~0℃の範囲に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0~100℃で適宜決定され、5~30℃の範囲が更に好ましい。あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 The metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support. The cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m. The surface temperature of the metal support in the casting step is set in the range of −50 ° C. to below the temperature at which the solvent boils and does not foam, more preferably in the range of −30 to 0 ° C. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate. A preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably within a range of 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When using hot air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, use hot air above the boiling point of the solvent, and use air at a temperature higher than the target temperature while preventing foaming. . In particular, it is preferable to perform drying efficiently by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層してもよい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
 (3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブという。)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
(3) Solvent evaporation step The web (the dope is cast on the casting support and the formed dope film is referred to as a web) is heated on the casting support to evaporate the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are a method of blowing air from the web side, a method of transferring heat from the back side of the support, a method of transferring heat from the front and back by radiant heat, etc. Is preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒以内で当該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.
 (4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブはフィルム状支持体として次工程に送られる。
(4) Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next step as a film-like support.
 金属支持体上の剥離位置における温度は好ましくは10~40℃の範囲であり、さらに好ましくは11~30℃の範囲である。 The temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. When peeling at a higher residual solvent amount, if the web is too soft, the flatness at the time of peeling is impaired, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
 ウェブの残留溶媒量は下記式(Z)で定義される。 The residual solvent amount of the web is defined by the following formula (Z).
 式(Z)
   残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Formula (Z)
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 (5)乾燥及び延伸工程
 乾燥工程は予備乾燥工程、本乾燥工程に分けて行うこともできる。
(5) Drying and stretching step The drying step can be divided into a preliminary drying step and a main drying step.
 〈予備乾燥工程〉
 金属支持体から剥離して得られたウェブを乾燥させる。ウェブの乾燥は、ウェブを、上下に配置した多数のローラーにより搬送しながら乾燥させてもよいし、テンター乾燥機のようにウェブの両端部をクリップで固定して搬送しながら乾燥させてもよい。
<Preliminary drying process>
The web obtained by peeling from the metal support is dried. The web may be dried while being conveyed by a large number of rollers arranged above and below, or may be dried while being conveyed while fixing both ends of the web with clips like a tenter dryer. .
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。 The means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roller, microwave, or the like, but it is preferably performed with hot air in terms of simplicity.
 ウェブの乾燥工程における乾燥温度は好ましくはフィルムのガラス転移点-5℃以下であって、100℃以上の温度で10分以上60分以下の熱処理を行うことが効果的である。乾燥温度は100~200℃の範囲内、更に好ましくは110~160℃の範囲内で乾燥が行われる。 The drying temperature in the web drying process is preferably a glass transition point of the film of −5 ° C. or less, and it is effective to perform a heat treatment at a temperature of 100 ° C. or more for 10 minutes or more and 60 minutes or less. Drying is performed at a drying temperature in the range of 100 to 200 ° C, more preferably in the range of 110 to 160 ° C.
 〈延伸工程〉
 本発明に係る支持体は、延伸処理することでフィルム内の分子の配向を制御することができ、平面性が向上する。
<Extension process>
The support according to the present invention can control the orientation of molecules in the film by stretching, and the planarity is improved.
 本発明に係る支持体は、流延方向(MD方向)又は幅手方向(TD方向)の少なくともいずれかに延伸することが好ましく、少なくともテンター延伸装置によって、幅手方向に延伸して製造することが好ましい。 The support according to the present invention is preferably stretched in at least one of the casting direction (MD direction) and the width direction (TD direction), and is manufactured by stretching in the width direction by at least a tenter stretching device. Is preferred.
  延伸操作は多段階に分割して実施してもよい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。 The stretching operation may be performed in multiple stages. When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise. In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
 すなわち、例えば、次のような延伸ステップも可能である:
 ・流延方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
 ・幅手方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。延伸開始時の残留溶媒量は2~10質量%の範囲内であることが好ましい。
Thus, for example, the following stretching steps are possible:
-Stretch in the casting direction-> Stretch in the width direction-> Stretch in the casting direction-> Stretch in the casting direction-Stretch in the width direction-> Stretch in the width direction-> Stretch in the casting direction-> Stretch in the casting direction Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension. The residual solvent amount at the start of stretching is preferably in the range of 2 to 10% by mass.
 当該残留溶媒量は、2質量%以上であれば、膜厚偏差が小さくなり、平面性の観点から好ましく、10質量%以内であれば、表面の凹凸が減り、平面性が向上し好ましい。 If the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small and is preferable from the viewpoint of flatness, and if it is within 10% by mass, the unevenness of the surface is reduced and the flatness is improved.
 本発明に係る支持体は、ガラス転移温度をTgとしたときに、(Tg+15)~(Tg+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、破断の発生を抑制し、平面性、フィルム自身の着色性に優れた支持体が得られる。延伸温度は、(Tg+20)~(Tg+40)℃の範囲で行うことが好ましい。 The support according to the present invention is preferably stretched in a temperature range of (Tg + 15) to (Tg + 50) ° C. when the glass transition temperature is Tg. When it extends | stretches in the said temperature range, generation | occurrence | production of a fracture | rupture will be suppressed and the support body excellent in planarity and the coloring property of the film itself will be obtained. The stretching temperature is preferably in the range of (Tg + 20) to (Tg + 40) ° C.
 なお、ここでいうガラス転移温度Tgとは、市販の示差走査熱量測定器を用いて、昇温速度20℃/分で測定し、JIS K 7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。具体的な支持体のガラス転移温度Tgの測定方法は、JIS K 7121(1987)に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定することができる。 The glass transition temperature Tg referred to here is a midpoint glass transition temperature (Tmg) measured according to JIS K 7121 (1987) using a commercially available differential scanning calorimeter with a temperature rising rate of 20 ° C./min. ). A specific method for measuring the glass transition temperature Tg of the support can be measured using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K 7121 (1987).
 本発明に係る支持体は、ウェブを少なくともTD方向に1.1倍以上延伸することが好ましい。延伸の範囲は、元幅に対して1.1~1.5倍であることが好ましく、1.2~1.4倍であることがより好ましい。上記範囲内であれば、フィルム中の分子の移動が大きく、フィルムを薄膜化でき、平面性を向上することができる。 The support according to the present invention preferably stretches the web at least 1.1 times in the TD direction. The range of stretching is preferably 1.1 to 1.5 times the original width, and more preferably 1.2 to 1.4 times. If it is in the said range, the movement of the molecule | numerator in a film is large, a film can be thinned, and planarity can be improved.
 TD方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全工程あるいは一部の工程を幅方向にクリップ又はピンでウェブの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる)、中でも、クリップを用いるテンター方式、ピンを用いるピンテンター方式が好ましく用いられる。 In order to stretch in the TD direction, for example, the entire drying process or a part of the process as disclosed in Japanese Patent Application Laid-Open No. 62-46625 can be performed while holding the width ends of the web with clips or pins in the width direction. A drying method (referred to as a tenter method), among them, a tenter method using clips and a pin tenter method using pins are preferably used.
 (6)巻取り工程
 ウェブ中の残留溶媒量が2質量%以下となってから支持体を巻取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なセルロース誘導体を含有する支持体を得ることができる。
(6) Winding step This is a step of winding the support after the amount of residual solvent in the web is 2% by mass or less, and good dimensional stability is achieved by setting the amount of residual solvent to 0.4% by mass or less. A support containing a cellulose derivative can be obtained.
 巻取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
 <支持体の物性>
 本発明に係る支持体は、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、当該支持体の幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
<Physical properties of support>
The support according to the present invention is preferably long and, specifically, preferably has a length of about 100 to 10,000 m, and is wound up in a roll shape. The width of the support is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
 本発明に係る支持体の光学特性として、JIS R 3106(1998)で測定される可視光透過率としては、好ましくは60%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上である。 As the optical characteristics of the support according to the present invention, the visible light transmittance measured by JIS R 3106 (1998) is preferably 60% or more, more preferably 70% or more, and further preferably 80%. That's it.
 ヘイズは、1%未満であることが好ましく、0.5%未満であることがより好ましい。ヘイズを1%未満とすることにより、フィルムの透明性がより高くなり、光学用途のフィルムとしてより用いやすくなるという利点がある。 The haze is preferably less than 1%, and more preferably less than 0.5%. By setting the haze to less than 1%, there is an advantage that the transparency of the film becomes higher and it becomes easier to use as a film for optical applications.
 本発明に係る支持体は、25℃、相対湿度60%における平衡含水率が4%以下であることが好ましく、3%以下であることがより好ましい。平衡含水率を4%以下とすることにより、温湿度が変化しても、寸法がより変化しにくい。 The support according to the present invention preferably has an equilibrium water content of 4% or less at 25 ° C. and a relative humidity of 60%, more preferably 3% or less. By setting the equilibrium moisture content to 4% or less, the dimensions are less likely to change even if the temperature and humidity change.
 <光学機能層>
 本発明に係る光学機能層は、光学的な特性を制御する機能を有する層であれば、特に限定されないが、例えば、反射率や透過率を制御する層、マイクロレンズやマイクロプリズム、散乱層など光の方向を変える、あるいは集光する層、などをあげることができるが、中でも、特定の波長の光を選択的に透過あるいは遮蔽する層として好ましく用いることができる。
<Optical function layer>
The optical functional layer according to the present invention is not particularly limited as long as it has a function of controlling optical characteristics. For example, a layer for controlling reflectance and transmittance, a microlens, a microprism, a scattering layer, and the like. A layer that changes the direction of light or condenses light can be used. Among them, a layer that selectively transmits or shields light having a specific wavelength can be preferably used.
 特定の波長の光を選択的に透過あるいは遮蔽する層としては、染料や顔料によって特定の波長を吸収する層、金属薄膜を設けて赤外光を反射する層、低屈折率層と高屈折率層とを交互に積層してその膜厚に応じた波長の光のみを反射する層(多層膜による光学反射層)などを挙げることができる。 As a layer that selectively transmits or blocks light of a specific wavelength, a layer that absorbs a specific wavelength by a dye or pigment, a layer that provides a metal thin film to reflect infrared light, a low refractive index layer, and a high refractive index Examples of the layer include layers that are alternately stacked and reflect only light having a wavelength corresponding to the film thickness (an optical reflection layer using a multilayer film).
 特に、第1の水溶性バインダー樹脂と第1の金属酸化物粒子とを含む高屈折率層、及び第2の水溶性バインダー樹脂と第2の金属酸化物粒子とを含む低屈折率層を交互に積層した特定の波長の光を選択的に反射する層に好ましく適用できる。この方法においては、低屈折率層と高屈折率層の界面混合が少ないほど界面反射が増加してより高い反射率が得られるが、セルロース誘導体を支持体とすると塗布時の溶媒をセルロース誘導体が吸収するため、また、塗布層の上面(空気側)だけでなく、支持体側からも溶媒が揮発できるために、塗布層がすばやく固化され、低屈折率層と高屈折率層の界面混合が少なくなり、高い反射率が得られることからセルロース誘導体を支持体に適用することが好ましく、一方で、層構成が複雑で、保存時の劣化の影響が出やすいことから、本発明に係る支持体を適用することは非常に好ましい。 Particularly, a high refractive index layer including the first water-soluble binder resin and the first metal oxide particles, and a low refractive index layer including the second water-soluble binder resin and the second metal oxide particles are alternately arranged. It is preferably applicable to a layer that selectively reflects light of a specific wavelength laminated on the substrate. In this method, the lower the interfacial mixing between the low refractive index layer and the high refractive index layer, the higher the interface reflection and the higher the reflectance. However, when a cellulose derivative is used as a support, the cellulose derivative is used as the solvent for coating. Because the solvent can evaporate not only from the upper surface (air side) of the coating layer but also from the support side, the coating layer is quickly solidified, and there is less interfacial mixing between the low refractive index layer and the high refractive index layer. Therefore, it is preferable to apply the cellulose derivative to the support because high reflectance is obtained. On the other hand, since the layer structure is complicated and the effect of deterioration during storage tends to occur, the support according to the present invention is used. It is highly preferred to apply.
 (1)多層膜による光学反射層
 多層膜による光学反射層は、太陽光線、例えば赤外線成分を反射して遮断する機能を発現するもので、屈折率の異なる複数の屈折率層で構成されている。具体的には、高屈折率層及び低屈折率層を積層して構成される。本発明に用いられる光学反射層は、高屈折率層と低屈折率層とから構成される積層体(ユニット)を少なくとも一つ含む構成を有するものであればよいが、高屈折率層及び低屈折率層とから構成される上記積層体が二つ以上複数で積層された構成を有することが好ましい。この場合、光学反射層の最上層及び最下層は高屈折率層及び低屈折率層のいずれであってもよいが、最上層及び最下層の両者が低屈折率層であることが好ましい。最上層が低屈折率層であると塗布性が良くなり、最下層が低屈折率層であると密着性が良くなる観点から好ましい。
(1) Optical reflective layer by multilayer film The optical reflective layer by multilayer film expresses the function of reflecting and blocking sunlight rays, for example, infrared components, and is composed of a plurality of refractive index layers having different refractive indexes. . Specifically, a high refractive index layer and a low refractive index layer are laminated. The optical reflection layer used in the present invention may have any structure including at least one laminate (unit) composed of a high refractive index layer and a low refractive index layer. It is preferable to have a configuration in which two or more of the above laminates composed of refractive index layers are laminated. In this case, the uppermost layer and the lowermost layer of the optical reflection layer may be either a high refractive index layer or a low refractive index layer, but it is preferable that both the uppermost layer and the lowermost layer are low refractive index layers. When the uppermost layer is a low refractive index layer, the coating property is improved, and when the lowermost layer is a low refractive index layer, it is preferable from the viewpoint of improving adhesion.
 ここで、光学反射層の任意の屈折率層が高屈折率層であるか低屈折率層であるかは、隣接する屈折率層との屈折率の対比によって判断される。具体的には、ある屈折率層を基準層としたとき、当該基準層に隣接する屈折率層が基準層より屈折率が低ければ、基準層は高屈折率層である(隣接層は低屈折率層である。)と判断される。一方、基準層より隣接層の屈折率が高ければ、基準層は低屈折率層である(隣接層は高屈折率層である。)と判断される。したがって、屈折率層が高屈折率層であるか低屈折率層であるかは、隣接層が有する屈折率との関係で定まる相対的なものであり、ある屈折率層は、隣接層との関係によって高屈折率層にも低屈折率層にもなりうる。 Here, whether an arbitrary refractive index layer of the optical reflection layer is a high refractive index layer or a low refractive index layer is determined by comparing the refractive index with an adjacent refractive index layer. Specifically, when a refractive index layer is used as a reference layer, if the refractive index layer adjacent to the reference layer has a lower refractive index than the reference layer, the reference layer is a high refractive index layer (the adjacent layer is a low refractive index layer). It is judged to be a rate layer.) On the other hand, if the refractive index of the adjacent layer is higher than that of the reference layer, it is determined that the reference layer is a low refractive index layer (the adjacent layer is a high refractive index layer). Therefore, whether the refractive index layer is a high refractive index layer or a low refractive index layer is a relative one determined by the relationship with the refractive index of the adjacent layer. Depending on the relationship, it can be a high refractive index layer or a low refractive index layer.
 ここで、高屈折率層を構成する成分(以下、「高屈折率層成分」とも称する。)と低屈折率層を構成する成分(以下、「低屈折率層成分」とも称する。)が二つの層の界面で混合され、高屈折率層成分と低屈折率層成分とを含む層(混合層)が形成される場合がある。この場合、混合層において、高屈折率層成分が50質量%以上である部位の集合を高屈折率層とし、低屈折率層成分が50質量%を超える部位の集合を低屈折率層とする。具体的には、例えば、低屈折率層及び高屈折率層がそれぞれ異なる金属酸化物粒子を含む場合、これらの積層膜における層厚方向での金属酸化物粒子の濃度プロファイルを測定し、その組成によって、形成されうる混合層が、高屈折率層であるか低屈折率層であるかを決定することができる。積層膜の金属酸化物粒子の濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行い、XPS表面分析装置を用いて、最表面を0nmとして、0.5nm/minの速度でスパッタし、原子組成比を測定することで観測することができる。また、低屈折率成分又は高屈折率成分に金属酸化物粒子が含有されておらず、水溶性樹脂のみから形成されている場合においても、同様にして、水溶性樹脂の濃度プロファイルにて、例えば、層厚方向での炭素濃度を測定することにより混合領域が存在していることを確認し、さらにその組成をEDX(エネルギー分散型X線分光法)より測定することで、スパッタでエッチングされた各層が、高屈折率層又は低屈折率層とみなすことができる。 Here, there are two components constituting the high refractive index layer (hereinafter also referred to as “high refractive index layer component”) and components constituting the low refractive index layer (hereinafter also referred to as “low refractive index layer component”). In some cases, a layer (mixed layer) is formed that is mixed at the interface of two layers and includes a high refractive index layer component and a low refractive index layer component. In this case, in the mixed layer, a set of portions where the high refractive index layer component is 50% by mass or more is defined as a high refractive index layer, and a set of portions where the low refractive index layer component exceeds 50% by mass is defined as a low refractive index layer. . Specifically, for example, when the low refractive index layer and the high refractive index layer contain different metal oxide particles, the concentration profile of the metal oxide particles in the layer thickness direction in these laminated films is measured, and the composition By this, it can be determined whether the mixed layer that can be formed is a high refractive index layer or a low refractive index layer. The concentration profile of the metal oxide particles in the laminated film is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer, etching from the surface to the depth direction, with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio. Further, even when the metal oxide particles are not contained in the low refractive index component or the high refractive index component and are formed only from the water-soluble resin, similarly, in the concentration profile of the water-soluble resin, for example, It was confirmed that the mixed region was present by measuring the carbon concentration in the layer thickness direction, and further, its composition was measured by EDX (energy dispersive X-ray spectroscopy), and was etched by sputtering. Each layer can be regarded as a high refractive index layer or a low refractive index layer.
 XPS表面分析装置としては、特に限定なく、いかなる機種も使用することができるが、VGサイエンティフィックス社製ESCALAB-200Rを用いた。X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定することができる。 The XPS surface analyzer is not particularly limited, and any model can be used, but ESCALAB-200R manufactured by VG Scientific Fix Co. was used. Mg can be used for the X-ray anode, and measurement can be performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
 一般に、光学反射層においては、低屈折率層と高屈折率層との屈折率の差を大きく設計することが、少ない層数で、例えば赤外線反射率を高くすることができるという観点から好ましい。本形態では、低屈折率層及び高屈折率層から構成される積層体(ユニット)の少なくとも一つにおいて、隣接する低屈折率層と高屈折率層との屈折率差が0.1以上であることが好ましく、0.3以上であることがより好ましく、0.35以上であることがさらに好ましく、0.4超であることが特に好ましい。光学反射層が高屈折率層及び低屈折率層の積層体(ユニット)を2以上の複数有する場合には、全ての積層体(ユニット)における高屈折率層と低屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、この場合でも光学反射層の最上層や最下層を構成する屈折率層に関しては、上記好適な範囲外の構成であってもよい。 In general, in the optical reflection layer, it is preferable to design a large difference in refractive index between the low refractive index layer and the high refractive index layer from the viewpoint of increasing the infrared reflectance, for example, with a small number of layers. In this embodiment, in at least one of the laminates (units) composed of the low refractive index layer and the high refractive index layer, the difference in refractive index between the adjacent low refractive index layer and high refractive index layer is 0.1 or more. Preferably, it is 0.3 or more, more preferably 0.35 or more, and particularly preferably more than 0.4. In the case where the optical reflection layer has two or more laminates (units) of a high refractive index layer and a low refractive index layer, the refractive indexes of the high refractive index layer and the low refractive index layer in all the laminates (units). The difference is preferably within the preferred range. However, even in this case, the refractive index layer constituting the uppermost layer or the lowermost layer of the optical reflection layer may have a configuration outside the above preferred range.
 光学反射層の屈折率層の層数(高屈折率層及び低屈折率層のユニット)としては、上記の観点から、100層以下、すなわち50ユニット以下であることが好ましく、40層(20ユニット)以下であることがより好ましく、20層(10ユニット)以下であることがさらに好ましい。 From the above viewpoint, the number of refractive index layers of the optical reflection layer (units of high refractive index layer and low refractive index layer) is preferably 100 layers or less, that is, 50 units or less, and 40 layers (20 units). ) Or less, more preferably 20 layers (10 units) or less.
 上記隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/2、で表される関係にすると位相差により反射光を強めあうよう制御でき、反射率を上げることができる。ここで、nは屈折率、dは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御できる。この関係を利用して、各層の屈折率と膜厚を制御して、可視光や、近赤外光の反射を制御する。 Since the reflection at the interface between adjacent layers depends on the refractive index ratio between the layers, the higher the refractive index ratio, the higher the reflectance. In addition, when viewed as a single layer film, the optical path difference between the reflected light on the surface of the layer and the reflected light on the bottom of the layer is controlled so that the reflected light is intensified by the phase difference if the relationship expressed by n · d = wavelength / 2 The reflectance can be increased. Here, n is the refractive index, d is the physical film thickness of the layer, and n · d is the optical film thickness. By utilizing this optical path difference, reflection can be controlled. Using this relationship, the refractive index and film thickness of each layer are controlled to control the reflection of visible light and near infrared light.
 すなわち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率を高めることができる。 That is, the reflectance in a specific wavelength region can be increased by the refractive index of each layer, the film thickness of each layer, and the way of stacking each layer.
 本発明に用いられる光学反射層は反射率を高める特定波長領域を変えることにより、紫外線反射フィルム、可視光反射フィルム、近赤外線反射フィルムとすることができる。すなわち、反射率を高める特定波長領域を紫外線領域に設定すれば紫外線反射フィルムとなり、可視光領域に設定すれば可視光反射フィルムとなり、近赤外領域に設定すれば近赤外線反射フィルムとなる。 The optical reflection layer used in the present invention can be made into an ultraviolet reflection film, a visible light reflection film, or a near-infrared reflection film by changing a specific wavelength region for increasing the reflectance. That is, if the specific wavelength region for increasing the reflectance is set in the ultraviolet region, it becomes an ultraviolet reflecting film, if it is set in the visible light region, it becomes a visible light reflecting film, and if it is set in the near infrared region, it becomes a near infrared reflecting film.
 本発明に用いられる光学反射層を具備する光学フィルムを遮熱フィルムに用いる場合は、近赤外線反射フィルムとすればよい。高分子フィルムに互いに屈折率が異なる膜を積層させた多層膜を形成し、JIS R 3106(1998)で示される可視光領域の透過率が50%以上で、かつ、波長900~1400nmの領域に反射率40%を超える領域を有するように光学膜厚とユニットを設計することが好ましい。 When an optical film having an optical reflection layer used in the present invention is used as a heat shielding film, a near infrared reflection film may be used. A multilayer film in which films having different refractive indexes are laminated on a polymer film is formed, and the transmittance in the visible light region shown in JIS R 3106 (1998) is 50% or more and the wavelength is in the range of 900 to 1400 nm. It is preferable to design the optical film thickness and unit so as to have a region where the reflectance exceeds 40%.
 〈屈折率層:高屈折率層及び低屈折率層〉
 〔高屈折率層〕
 高屈折率層は、第1の水溶性バインダー樹脂及び第1の金属酸化物粒子を含有し、必要に応じて、硬化剤、その他のバインダー樹脂、界面活性剤、及び各種添加剤等を含んでもよい。
<Refractive index layer: high refractive index layer and low refractive index layer>
(High refractive index layer)
The high refractive index layer contains the first water-soluble binder resin and the first metal oxide particles, and may contain a curing agent, other binder resin, a surfactant, and various additives as necessary. Good.
 本発明に係る高屈折率層の屈折率は、好ましくは1.80~2.50であり、より好ましくは1.90~2.20である。 The refractive index of the high refractive index layer according to the present invention is preferably 1.80 to 2.50, more preferably 1.90 to 2.20.
 (第1の水溶性バインダー樹脂)
 本発明に係る第1の水溶性バインダー樹脂は、該水溶性バインダー樹脂が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルタ(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性バインダー樹脂の50質量%以内であるものをいう。
(First water-soluble binder resin)
The first water-soluble binder resin according to the present invention has a G2 glass filter (maximum pores of 40 to 50 μm) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble binder resin is most dissolved. The mass of the insoluble matter that is filtered off when filtered in ()) is within 50 mass% of the added water-soluble binder resin.
 本発明に係る第1の水溶性バインダー樹脂の重量平均分子量は、1000~200000の範囲内であることが好ましい。更には、3000~40000の範囲内がより好ましい。 The weight average molecular weight of the first water-soluble binder resin according to the present invention is preferably in the range of 1,000 to 200,000. Further, it is more preferably within the range of 3000 to 40000.
 本発明でいう重量平均分子量は、公知の方法によって測定することができ、例えば、静的光散乱、ゲルパーミエーションクロマトグラフィー法(GPC)、飛行時間型質量分析法(TOF-MASS)などによって測定することができ、本発明では一般的な公知の方法であるゲルパーミエーションクロマトグラフィー法によって測定する。 The weight average molecular weight referred to in the present invention can be measured by a known method, for example, static light scattering, gel permeation chromatography (GPC), time-of-flight mass spectrometry (TOF-MASS), etc. In the present invention, it is measured by a gel permeation chromatography method which is a generally known method.
 高屈折率層における第1の水溶性バインダー樹脂の含有量は、高屈折率層の固形分100質量%に対して、5~50質量%の範囲内であることが好ましく、10~40質量%の範囲内であることがより好ましい。 The content of the first water-soluble binder resin in the high refractive index layer is preferably within the range of 5 to 50% by mass with respect to the solid content of 100% by mass of the high refractive index layer. It is more preferable to be within the range.
 高屈折率層に適用する第1の水溶性バインダー樹脂としては、ポリビニルアルコールであることが好ましい。また、後述する低屈折率層に存在する水溶性バインダー樹脂も、ポリビニルアルコールであることが好ましい。従って、以下においては、高屈折率層及び低屈折率層に含まれるポリビニルアルコールを併せて説明する。 The first water-soluble binder resin applied to the high refractive index layer is preferably polyvinyl alcohol. Moreover, it is preferable that the water-soluble binder resin which exists in the low-refractive-index layer mentioned later is also polyvinyl alcohol. Therefore, in the following, polyvinyl alcohol contained in the high refractive index layer and the low refractive index layer will be described together.
 〈ポリビニルアルコール〉
 本発明において、高屈折率層と低屈折率層とは、ケン化度の異なる2種以上のポリビニルアルコールを含むことが好ましい。ここで、区別するために、高屈折率層で用いる水溶性バインダー樹脂としてのポリビニルアルコールをポリビニルアルコール(A)とし、低屈折率層で用いる水溶性バインダー樹脂としてのポリビニルアルコールをポリビニルアルコール(B)という。なお、各屈折率層が、ケン化度や重合度が異なる複数のポリビニルアルコールを含む場合には、各屈折率層中で最も含有量の高いポリビニルアルコールをそれぞれ高屈折率層におけるポリビニルアルコール(A)、及び低屈折率層におけるポリビニルアルコール(B)と称する。
<Polyvinyl alcohol>
In the present invention, the high refractive index layer and the low refractive index layer preferably contain two or more types of polyvinyl alcohol having different saponification degrees. Here, in order to distinguish, polyvinyl alcohol as a water-soluble binder resin used in the high refractive index layer is polyvinyl alcohol (A), and polyvinyl alcohol as a water-soluble binder resin used in the low refractive index layer is polyvinyl alcohol (B). That's it. In addition, when each refractive index layer contains a plurality of polyvinyl alcohols having different saponification degrees and polymerization degrees, the polyvinyl alcohol having the highest content in each refractive index layer is changed to polyvinyl alcohol (A ) And polyvinyl alcohol (B) in the low refractive index layer.
 本発明でいう「ケン化度」とは、ポリビニルアルコール中のアセチルオキシ基(原料の酢酸ビニル由来のもの)とヒドロキシ基との合計数に対するヒドロキシ基の割合のことである。 In the present invention, the “degree of saponification” is the ratio of hydroxy groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxy groups in polyvinyl alcohol.
 また、ここでいう「屈折率層中で最も含有量の高いポリビニルアルコール」という際には、ケン化度の差が3mol%以内のポリビニルアルコールは同一のポリビニルアルコールであるとし、重合度を算出する。ただし、重合度1000以下の低重合度ポリビニルアルコールは、異なるポリビニルアルコールとする(仮にケン化度の差が3mol%以内のポリビニルアルコールがあったとしても同一のポリビニルアルコールとはしない)。具体的には、ケン化度が90mol%、ケン化度が91mol%、ケン化度が93mol%のポリビニルアルコールが同一層内にそれぞれ10質量%、40質量%、50質量%含まれる場合には、これら三つのポリビニルアルコールは同一のポリビニルアルコールとし、これら三つの混合物をポリビニルアルコール(A)又は(B)とする。また、上記「ケン化度の差が3mol%以内のポリビニルアルコール」とは、いずれかのポリビニルアルコールに着目した場合に3mol%以内であれば足り、例えば、90mol%、91mol%、92mol%、94mol%のポリビニルアルコールを含む場合には、91mol%のポリビニルアルコールに着目した場合に、いずれのポリビニルアルコールのケン化度の差も3mol%以内なので、同一のポリビニルアルコールとなる。 In addition, when referring to “polyvinyl alcohol having the highest content in the refractive index layer” herein, the degree of polymerization is calculated assuming that the polyvinyl alcohol having a saponification degree difference of 3 mol% or less is the same polyvinyl alcohol. . However, a low polymerization degree polyvinyl alcohol having a polymerization degree of 1000 or less is a different polyvinyl alcohol (even if there is a polyvinyl alcohol having a saponification degree difference of 3 mol% or less, it is not regarded as the same polyvinyl alcohol). Specifically, when polyvinyl alcohol having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% is contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, respectively. These three polyvinyl alcohols are the same polyvinyl alcohol, and these three mixtures are polyvinyl alcohol (A) or (B). In addition, the above-mentioned “polyvinyl alcohol having a saponification degree difference of 3 mol% or less” suffices to be within 3 mol% when attention is paid to any polyvinyl alcohol. For example, 90 mol%, 91 mol%, 92 mol%, 94 mol % Of polyvinyl alcohol, when paying attention to 91 mol% of polyvinyl alcohol, the difference in saponification degree of any polyvinyl alcohol is within 3 mol%, so that the same polyvinyl alcohol is obtained.
 同一層内にケン化度が3mol%以上異なるポリビニルアルコールが含まれる場合、異なるポリビニルアルコールの混合物とみなし、それぞれに重合度とケン化度を算出する。例えば、PVA203:5質量%、PVA117:25質量%、PVA217:10質量%、PVA220:10質量%、PVA224:10質量%、PVA235:20質量%、PVA245:20質量%が含まれる場合、最も含有量の多いPVA(ポリビニルアルコール)は、PVA217~245の混合物であり(PVA217~245のケン化度の差は3mol%以内なので同一のポリビニルアルコールである)、この混合物がポリビニルアルコール(A)又は(B)となる。そうして、PVA217~245の混合物(ポリビニルアルコール(A)又は(B))において、重合度が、(1700×0.1+2000×0.1+2400×0.1+3500×0.2+4500×0.7)/0.7=3200であり、ケン化度は、88mol%となる。 When polyvinyl alcohol having a saponification degree different by 3 mol% or more is contained in the same layer, it is regarded as a mixture of different polyvinyl alcohols, and the polymerization degree and the saponification degree are calculated for each. For example, PVA203: 5% by mass, PVA117: 25% by mass, PVA217: 10% by mass, PVA220: 10% by mass, PVA224: 10% by mass, PVA235: 20% by mass, PVA245: 20% by mass, most contained A large amount of PVA (polyvinyl alcohol) is a mixture of PVA 217 to 245 (the difference in the degree of saponification of PVA 217 to 245 is within 3 mol%, and thus is the same polyvinyl alcohol), and this mixture is polyvinyl alcohol (A) or ( B). Thus, in a mixture of PVA 217 to 245 (polyvinyl alcohol (A) or (B)), the degree of polymerization was (1700 × 0.1 + 2000 × 0.1 + 2400 × 0.1 + 3500 × 0.2 + 4500 × 0.7) / 0.7 = 3200, and the degree of saponification is 88 mol%.
 ポリビニルアルコール(A)とポリビニルアルコール(B)とのケン化度の絶対値の差は、3mol%以上であることが好ましく、5mol%以上であることがより好ましい。このような範囲であれば、高屈折率層と低屈折率層との層間混合状態が好ましいレベルになるため好ましい。また、ポリビニルアルコール(A)とポリビニルアルコール(B)とのケン化度の差は、離れていれば離れているほど好ましいが、ポリビニルアルコールの水への溶解性の観点から、20mol%以下であることが好ましい。 The difference in the absolute value of the saponification degree between the polyvinyl alcohol (A) and the polyvinyl alcohol (B) is preferably 3 mol% or more, and more preferably 5 mol% or more. If it is such a range, since the interlayer mixing state of a high refractive index layer and a low refractive index layer will become a preferable level, it is preferable. Moreover, although the difference of the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is so preferable that it is separated, it is 20 mol% or less from the viewpoint of the solubility to water of polyvinyl alcohol. It is preferable.
 また、ポリビニルアルコール(A)及びポリビニルアルコール(B)のケン化度は、水への溶解性の観点で、75mol%以上であることが好ましい。さらに、ポリビニルアルコール(A)及びポリビニルアルコール(B)のうち一方がケン化度90mol%以上であり、他方が90mol%以下であることが、高屈折率層と低屈折率層との層間混合状態を好ましいレベルにするために好ましい。ポリビニルアルコール(A)及びポリビニルアルコール(B)のうち一方が、ケン化度95mol%以上であり、他方が90mol%以下であることがより好ましい。なお、ポリビニルアルコールのケン化度の上限は特に限定されるものではないが、通常100mol%未満であり、99.9mol%以下程度である。 In addition, the saponification degree of polyvinyl alcohol (A) and polyvinyl alcohol (B) is preferably 75 mol% or more from the viewpoint of solubility in water. Furthermore, the intermixed state of the high refractive index layer and the low refractive index layer is that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 90 mol% or more and the other is 90 mol% or less. Is preferable for achieving a preferable level. It is more preferable that one of the polyvinyl alcohol (A) and the polyvinyl alcohol (B) has a saponification degree of 95 mol% or more and the other is 90 mol% or less. In addition, although the upper limit of the saponification degree of polyvinyl alcohol is not specifically limited, Usually, it is less than 100 mol% and is about 99.9 mol% or less.
 また、ケン化度の異なる2種のポリビニルアルコールの重合度は、1000以上のものが好ましく用いられ、特に、重合度が1500~5000の範囲内のものがより好ましく、2000~5000の範囲内のものがさらに好ましく用いられる。ポリビニルアルコールの重合度が、1000以上であると塗布膜のひび割れがなく、5000以下であると塗布液が安定するからである。なお、本明細書において、「塗布液が安定する」とは、塗布液が経時的に安定することを意味する。ポリビニルアルコール(A)及びポリビニルアルコール(B)の少なくとも一方の重合度が2000~5000の範囲内であると、塗膜のひび割れが減少し、特定の波長の反射率が向上するため好ましい。ポリビニルアルコール(A)及びポリビニルアルコール(B)の双方が、2000~5000であると上記効果はより顕著に発揮できるため好ましい。 In addition, the polymerization degree of the two types of polyvinyl alcohols having different saponification degrees is preferably 1000 or more, particularly preferably those having a polymerization degree in the range of 1500 to 5000, more preferably in the range of 2000 to 5000. Those are more preferably used. This is because when the polymerization degree of polyvinyl alcohol is 1000 or more, there is no cracking of the coating film, and when it is 5000 or less, the coating solution is stabilized. In the present specification, “the coating solution is stable” means that the coating solution is stable over time. When the degree of polymerization of at least one of polyvinyl alcohol (A) and polyvinyl alcohol (B) is in the range of 2000 to 5000, it is preferable because cracks in the coating film are reduced and the reflectance at a specific wavelength is improved. It is preferable that both the polyvinyl alcohol (A) and the polyvinyl alcohol (B) are 2000 to 5000, since the above effects can be exhibited more remarkably.
 本明細書でいう「重合度P」とは、粘度平均重合度を指し、JIS K 6726(1994)に準じて測定され、PVAを完全に再ケン化し、精製した後、30℃の水中で測定した極限粘度[η](dl/g)から、下式(1)により求められるものである。 “Polymerization degree P” in the present specification refers to a viscosity average degree of polymerization, measured according to JIS K 6726 (1994), and measured in water at 30 ° C. after completely re-saponifying and purifying PVA. From the intrinsic viscosity [η] (dl / g) obtained, it is obtained by the following equation (1).
 式(1)
   P=(〔η〕×10/8.29)(1/0.62)
 低屈折率層に含まれるポリビニルアルコール(B)は、ケン化度が75~90mol%の範囲内で、かつ重合度が2000~5000の範囲内であることが好ましい。このような特性を備えたポリビニルアルコールを低屈折率層に含有させると、界面混合がより抑制される点で好ましい。これは塗膜のひび割れが少なく、かつセット性が向上するためであると考えられる。
Formula (1)
P = ([η] × 10 3 /8.29) (1 / 0.62)
The polyvinyl alcohol (B) contained in the low refractive index layer preferably has a saponification degree in the range of 75 to 90 mol% and a polymerization degree in the range of 2000 to 5000. When polyvinyl alcohol having such characteristics is contained in the low refractive index layer, it is preferable in that interfacial mixing is further suppressed. This is considered to be because there are few cracks of a coating film and set property improves.
 本発明で用いられるポリビニルアルコール(A)及び(B)は、合成品を用いてもよいし市販品を用いてもよい。ポリビニルアルコール(A)及び(B)として用いられる市販品の例としては、例えば、PVA-102、PVA-103、PVA-105、PVA-110、PVA-117、PVA-120、PVA-124、PVA-203、PVA-205、PVA-210、PVA-217、PVA-220、PVA-224、PVA-235(以上、株式会社クラレ製)、JC-25、JC-33、JF-03、JF-04、JF-05、JP-03、JP-04JP-05、JP-45(以上、日本酢ビ・ポバール株式会社製)等が挙げられる。 The polyvinyl alcohol (A) and (B) used in the present invention may be a synthetic product or a commercially available product. Examples of commercially available products used as the polyvinyl alcohol (A) and (B) include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA -203, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04 , JF-05, JP-03, JP-04JP-05, JP-45 (above, manufactured by Nihon Vinegar Pover Co., Ltd.) and the like.
 本発明に係る第1の水溶性バインダー樹脂は、本発明の効果を損なわない限りでは、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、一部が変性された変性ポリビニルアルコールを含んでもよい。このような変性ポリビニルアルコールを含むと、膜の密着性や耐水性、柔軟性が改良される場合がある。このような変性ポリビニルアルコールとしては、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、ノニオン変性ポリビニルアルコール、ビニルアルコール系ポリマーが挙げられる。 As long as the first water-soluble binder resin according to the present invention does not impair the effects of the present invention, in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate, modified polyvinyl alcohol partially modified May be included. When such a modified polyvinyl alcohol is included, the adhesion, water resistance, and flexibility of the film may be improved. Examples of such modified polyvinyl alcohol include cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, nonionic-modified polyvinyl alcohol, and vinyl alcohol polymers.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖又は側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383. It is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10モル%、好ましくは0.2~5モル%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxyethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報及び同63-307979号公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and a modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキシド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体、シラノール基を有するシラノール変性ポリビニルアルコール、アセトアセチル基やカルボニル基、カルボキシ基などの反応性基を有する反応性基変性ポリビニルアルコール等が挙げられる。 Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-2595. Block copolymer of vinyl compound having hydrophobic group and vinyl alcohol, silanol-modified polyvinyl alcohol having silanol group, reactive group modification having reactive group such as acetoacetyl group, carbonyl group and carboxy group Polyvinyl alcohol etc. are mentioned.
 また、ビニルアルコール系ポリマーとして、エクセバール(登録商標、株式会社クラレ製)やニチゴGポリマー(登録商標、日本合成化学工業株式会社製)などが挙げられる。 Also, examples of vinyl alcohol polymers include EXEVAL (registered trademark, manufactured by Kuraray Co., Ltd.) and Nichigo G polymer (registered trademark, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 変性ポリビニルアルコールは、重合度や変性の種類違いなど2種類以上を併用することができる。 Two or more kinds of modified polyvinyl alcohol can be used in combination, such as the degree of polymerization and the type of modification.
 変性ポリビニルアルコールの含有量は、特に限定されるものではないが、各屈折率の全質量(固形分)に対し、好ましくは1~30質量%の範囲内である。このような範囲内であれば、上記効果がより発揮される。 The content of the modified polyvinyl alcohol is not particularly limited, but is preferably in the range of 1 to 30% by mass with respect to the total mass (solid content) of each refractive index. If it is in such a range, the said effect will be exhibited more.
 本発明においては、屈折率の異なる層間ではケン化度の異なる2種のポリビニルアルコールがそれぞれ用いられることが好ましい。 In the present invention, it is preferable to use two types of polyvinyl alcohols having different saponification levels between layers having different refractive indexes.
 例えば、高屈折率層に低ケン化度のポリビニルアルコール(A)を用い、低屈折率層に高ケン化度のポリビニルアルコール(B)を用いる場合には、高屈折率層中のポリビニルアルコール(A)が層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましく、低屈折率層中のポリビニルアルコール(B)が低屈折率層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましい。また、高屈折率層に高ケン化度のポリビニルアルコール(A)を用い、低屈折率層に低ケン化度のポリビニルアルコール(B)を用いる場合には、高屈折率層中のポリビニルアルコール(A)が層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量%以下がより好ましく、低屈折率層中のポリビニルアルコール(B)が低屈折率層中の全ポリビニルアルコール類の全質量に対し、40質量%以上100質量%以下の範囲で含有されることが好ましく、60質量%以上95質量以下がより好ましい。含有量が40質量%以上であると、層間混合が抑制され、界面の乱れが小さくなるという効果が顕著に現れる。一方、含有量が100質量%以下であれば、塗布液の安定性が向上する。 For example, when polyvinyl alcohol (A) having a low saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a high saponification degree is used for the low refractive index layer, the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass, and the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. Is more preferable. When polyvinyl alcohol (A) having a high saponification degree is used for the high refractive index layer and polyvinyl alcohol (B) having a low saponification degree is used for the low refractive index layer, the polyvinyl alcohol ( A) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all polyvinyl alcohols in the layer, more preferably 60% by mass to 95% by mass, and the low refractive index layer The polyvinyl alcohol (B) is preferably contained in the range of 40% by mass to 100% by mass with respect to the total mass of all the polyvinyl alcohols in the low refractive index layer, and 60% by mass to 95% by mass. More preferred. When the content is 40% by mass or more, interlayer mixing is suppressed, and the effect of less disturbance of the interface appears remarkably. On the other hand, if content is 100 mass% or less, stability of a coating liquid will improve.
 (その他のバインダー樹脂)
 本発明において、高屈折率層では、ポリビニルアルコール以外の第1の水溶性バインダー樹脂としては、第1の金属酸化物粒子を含有した高屈折率層が塗膜を形成することができれば、いかなるものでも制限なく使用可能である。また、後述する低屈折率層においても、ポリビニルアルコール(B)以外の第2の水溶性バインダー樹脂としては、前記と同様に、第2の金属酸化物粒子を含有した低屈折率層が塗膜を形成することができれば、どのようなものでも制限なく使用可能である。ただし、環境の問題や塗膜の柔軟性を考慮すると、水溶性高分子(特にゼラチン、増粘多糖類、反応性官能基を有するポリマー)が好ましい。これらの水溶性高分子は単独で用いても構わないし、2種類以上を混合して用いても構わない。
(Other binder resins)
In the present invention, in the high refractive index layer, the first water-soluble binder resin other than polyvinyl alcohol is not limited as long as the high refractive index layer containing the first metal oxide particles can form a coating film. But it can be used without restriction. Moreover, also in the low refractive index layer described later, as the second water-soluble binder resin other than the polyvinyl alcohol (B), the low refractive index layer containing the second metal oxide particles is coated as described above. Any device can be used without limitation as long as it can be formed. However, in view of environmental problems and flexibility of the coating film, water-soluble polymers (particularly gelatin, thickening polysaccharides, polymers having reactive functional groups) are preferable. These water-soluble polymers may be used alone or in combination of two or more.
 高屈折率層において、水溶性バインダー樹脂として好ましく用いられるポリビニルアルコールとともに、併用する他のバインダー樹脂の含有量は、高屈折率層の固形分100質量%に対して、5~50質量%の範囲内で用いることもできる。 In the high refractive index layer, the content of other binder resin used together with polyvinyl alcohol preferably used as the water-soluble binder resin is in the range of 5 to 50% by mass with respect to 100% by mass of the solid content of the high refractive index layer. It can also be used within.
 本発明においては、有機溶媒を用いる必要がなく、環境保全上好ましいことから、バインダー樹脂は水溶性高分子から構成されることが好ましい。すなわち、本発明ではその効果を損なわない限りにおいて、上記ポリビニルアルコール及び変性ポリビニルアルコールに加えて、ポリビニルアルコール及び変性ポリビニルアルコール以外の水溶性高分子をバインダー樹脂として用いてもよい。前記水溶性高分子とは、該水溶性高分子が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルター(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性高分子の50質量%以内であるものをいう。そのような水溶性高分子の中でも特にゼラチン、セルロース類、増粘多糖類、又は反応性官能基を有するポリマーが好ましい。これらの水溶性高分子は単独で用いても構わないし、2種類以上を混合して用いても構わない。 In the present invention, it is not necessary to use an organic solvent and it is preferable from the viewpoint of environmental conservation. Therefore, the binder resin is preferably composed of a water-soluble polymer. That is, in the present invention, a water-soluble polymer other than polyvinyl alcohol and modified polyvinyl alcohol may be used as the binder resin in addition to the polyvinyl alcohol and modified polyvinyl alcohol as long as the effect is not impaired. The water-soluble polymer is when it is filtered through a G2 glass filter (maximum pores 40-50 μm) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble polymer is most soluble. The mass of the insoluble matter separated by filtration is within 50% by mass of the added water-soluble polymer. Among such water-soluble polymers, gelatin, celluloses, thickening polysaccharides, or polymers having reactive functional groups are particularly preferable. These water-soluble polymers may be used alone or in combination of two or more.
 (第1の金属酸化物粒子)
 本発明において、高屈折率層に適用可能な第1の金属酸化物粒子としては、屈折率が2.0以上、3.0以下である金属酸化物粒子が好ましい。さらに具体的には、例えば、酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第2鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。また複数の金属で構成された複合酸化物粒子やコア・シェル状に金属構成が変化するコア・シェル粒子等を用いることもできる。
(First metal oxide particles)
In the present invention, the first metal oxide particles applicable to the high refractive index layer are preferably metal oxide particles having a refractive index of 2.0 or more and 3.0 or less. More specifically, for example, titanium oxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, lead titanate, red lead, yellow lead, zinc yellow, chromium oxide, second oxide oxide. Examples include iron, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide. In addition, composite oxide particles composed of a plurality of metals, core / shell particles whose metal structure changes into a core / shell shape, and the like can also be used.
 透明でより屈折率の高い高屈折率層を形成するために、高屈折率層には、チタン、ジルコニウム等の高屈折率を有する金属の酸化物微粒子、すなわち、酸化チタン微粒子又は酸化ジルコニア微粒子の少なくともいずれかを含有させることが好ましい。これらの中でも、高屈折率層を形成するための塗布液の安定性の観点から、酸化チタンがより好ましい。また、酸化チタンの中でも、特にアナターゼ型よりルチル型(正方晶形)の方が、触媒活性が低いために、高屈折率層や隣接した層の耐候性が高くなり、さらに屈折率が高くなることからより好ましい。 In order to form a transparent and higher refractive index layer having a higher refractive index, the high refractive index layer includes metal oxide fine particles having a high refractive index such as titanium and zirconium, that is, fine particles of titanium oxide or fine particles of zirconia oxide. It is preferable to contain at least one of them. Among these, titanium oxide is more preferable from the viewpoint of the stability of the coating liquid for forming the high refractive index layer. Among titanium oxides, the rutile type (tetragonal type) has a lower catalytic activity than the anatase type, and the weather resistance of the high refractive index layer and adjacent layers is higher, and the refractive index is higher. Is more preferable.
 また、高屈折率層に、第1の金属酸化物粒子としてコア・シェル粒子を用いた場合では、シェル層の含ケイ素の水和酸化物と第1の水溶性バインダー樹脂との相互作用により、高屈折率層と隣接層の層間混合が抑制される効果から、酸化チタン粒子が含ケイ素の水和酸化物で被覆されたコア・シェル粒子がさらに好ましい。 In the case where the core / shell particles are used as the first metal oxide particles in the high refractive index layer, due to the interaction between the silicon-containing hydrated oxide of the shell layer and the first water-soluble binder resin, From the effect of suppressing interlayer mixing between the high refractive index layer and the adjacent layer, core / shell particles in which titanium oxide particles are coated with a silicon-containing hydrated oxide are more preferable.
 本発明に用いられるコア・シェル粒子のコアに用いられる酸化チタン粒子を含む水溶液は、25℃で測定したpHが1.0~3.0の範囲内であり、かつチタン粒子のゼータ電位が正である水系の酸化チタンゾルの表面を、疎水化して有機溶剤に分散可能な状態にしたものを用いることが好ましい。 The aqueous solution containing titanium oxide particles used in the core of the core / shell particles used in the present invention has a pH measured in the range of 1.0 to 3.0 at 25 ° C., and the titanium particles have a positive zeta potential. It is preferable to use a water-based titanium oxide sol having a surface that is made hydrophobic and dispersible in an organic solvent.
 本発明に係る第1の金属酸化物粒子の含有量が高屈折率層の固形分100質量%に対して、15~80質量%の範囲内であると、低屈折率層との屈折率差を付与するという観点で好ましい。さらに、20~77質量%の範囲内であることがより好ましく、30~75質量%の範囲内であることがさらに好ましい。なお、当該コア・シェル粒子以外の金属酸化物粒子が、高屈折率層に含有される場合の含有量は、本発明の効果を奏することができる範囲であれば特に限定されるものではない。 When the content of the first metal oxide particles according to the present invention is in the range of 15 to 80% by mass with respect to 100% by mass of the solid content of the high refractive index layer, the refractive index difference from the low refractive index layer Is preferable from the viewpoint of imparting. Further, it is more preferably in the range of 20 to 77% by mass, and further preferably in the range of 30 to 75% by mass. In addition, content in case metal oxide particles other than the said core-shell particle are contained in a high refractive index layer will not be specifically limited if it is a range which can have the effect of this invention.
 本発明においては、高屈折率層に適用する第1の金属酸化物粒子の体積平均粒径は、30nm以下であることが好ましく、1~30nmの範囲内であることがより好ましく、5~15nmの範囲内であるのがさらに好ましい。体積平均粒径が1~30nmの範囲内であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 In the present invention, the volume average particle size of the first metal oxide particles applied to the high refractive index layer is preferably 30 nm or less, more preferably in the range of 1 to 30 nm, and more preferably in the range of 5 to 15 nm. More preferably, it is in the range. A volume average particle size in the range of 1 to 30 nm is preferable from the viewpoint of low visible light transmittance and low haze.
 なお、本発明に係る第1の金属酸化物粒子の体積平均粒径とは、粒子そのものをレーザー回折散乱法、動的光散乱法、あるいは電子顕微鏡を用いて観察する方法や、屈折率層の断面や表面に現れた粒子像を電子顕微鏡で観察する方法により、1000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する粒子状の金属酸化物の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径である。 The volume average particle size of the first metal oxide particles according to the present invention refers to a method of observing the particles themselves using a laser diffraction scattering method, a dynamic light scattering method, or an electron microscope, Measure the particle size of 1000 arbitrary particles by the method of observing the image of the particles appearing on the cross section and the surface with an electron microscope, and each particle having a particle size of d1, d2,. n1, n2... ni... nk number of particulate metal oxides, and the volume average particle diameter mv = {Σ (vi · di), where v is the volume per particle. } / {Σ (vi)} is the average particle size weighted by the volume.
 さらに、本発明に係る第1の金属酸化物粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式(2)で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1~20%の範囲内である。 Furthermore, the first metal oxide particles according to the present invention are preferably monodispersed. The monodispersion here means that the monodispersity obtained by the following formula (2) is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably in the range of 0.1 to 20%.
 式(2)
   単分散度=(粒径の標準偏差)/(粒径の平均値)×100(%)
 〈コア・シェル粒子〉
 本発明に係る高屈折率層に適用する第1の金属酸化物粒子としては、「含ケイ素の水和酸化物で表面処理された酸化チタン粒子」を用いることが好ましく、このような形態の酸化チタン粒子を「コア・シェル粒子」、あるいは「Si被覆TiO」と称する場合もある。
Formula (2)
Monodispersity = (standard deviation of particle size) / (average value of particle size) × 100 (%)
<Core shell particle>
As the first metal oxide particles applied to the high refractive index layer according to the present invention, “titanium oxide particles surface-treated with a silicon-containing hydrated oxide” is preferably used. The titanium particles may be referred to as “core / shell particles” or “Si-coated TiO 2 ”.
 本発明に用いられるコア・シェル粒子は、酸化チタン粒子が含ケイ素の水和酸化物で被覆されており、好ましくはコアの部分である平均粒径が1~30nmの範囲内、より好ましくは平均粒径が4~30nmの範囲内にある酸化チタン粒子の表面を、コアとなる酸化チタンに対して、含ケイ素の水和酸化物の被覆量がSiOとして3~30質量%の範囲内となるように含ケイ素の水和酸化物からなるシェルが被覆した構造である。 In the core / shell particles used in the present invention, the titanium oxide particles are coated with a silicon-containing hydrated oxide, and the average particle diameter which is preferably a core portion is in the range of 1 to 30 nm, more preferably the average The surface of the titanium oxide particles having a particle size in the range of 4 to 30 nm has a coating amount of silicon-containing hydrated oxide in the range of 3 to 30% by mass as SiO 2 with respect to the titanium oxide as the core. In this way, a shell made of a silicon-containing hydrated oxide is coated.
 すなわち、本発明では、コア・シェル粒子を含有させることで、シェル層の含ケイ素の水和酸化物と第1の水溶性バインダー樹脂との相互作用により、高屈折率層と低屈折率層との層間混合が抑制される効果、及びコアとして酸化チタンを用いる場合の酸化チタンの光触媒活性によるバインダーの劣化やチョーキングなどの問題を防げるという効果を奏する。 That is, in the present invention, by including the core-shell particles, the interaction between the silicon-containing hydrated oxide of the shell layer and the first water-soluble binder resin causes the high refractive index layer and the low refractive index layer to The effect of suppressing the intermixing between the layers and the effect of preventing the deterioration of the binder and choking due to the photocatalytic activity of titanium oxide when titanium oxide is used as the core are exhibited.
 本発明において、コア・シェル粒子は、コアとなる酸化チタンに対して、含ケイ素の水和酸化物の被覆量がSiOとして3~30質量%の範囲内であること好ましく、より好ましくは3~10質量%の範囲内であり、さらに好ましくは3~8質量%の範囲内である。被覆量が30質量%以下であれば、高屈折率層の高屈折率化を達成することができ、また、被覆量が3質量%以上であれば、コア・シェル粒子の粒子を安定に形成することができる。 In the present invention, the core / shell particles preferably have a silicon-containing hydrated oxide coating amount in the range of 3 to 30% by mass as SiO 2 with respect to titanium oxide as the core, more preferably 3 It is in the range of ˜10% by mass, more preferably in the range of 3 to 8% by mass. If the coating amount is 30% by mass or less, a high refractive index layer can be made to have a high refractive index, and if the coating amount is 3% by mass or more, core / shell particle particles can be stably formed. can do.
 さらに、本発明において、コア・シェル粒子の平均粒径は、好ましくは1~30nmの範囲内であり、より好ましくは5~20nmの範囲内であり、さらに好ましくは5~15nmの範囲内である。コア・シェル粒子の平均粒径が1~30nmの範囲内であれば、近赤外線反射率や、透明性、ヘイズといった光学特性がより向上させることができる。 Furthermore, in the present invention, the average particle diameter of the core / shell particles is preferably in the range of 1 to 30 nm, more preferably in the range of 5 to 20 nm, and still more preferably in the range of 5 to 15 nm. . When the average particle diameter of the core / shell particles is in the range of 1 to 30 nm, optical properties such as near infrared reflectance, transparency, and haze can be further improved.
 なお、本発明でいう平均粒径とは、一次平均粒径をいい、透過型電子顕微鏡(TEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。 In addition, the average particle diameter as used in the field of this invention means a primary average particle diameter, and can be measured from the electron micrograph by a transmission electron microscope (TEM) etc. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc.
 また、電子顕微鏡から求める場合、一次粒子の平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 In addition, when obtaining from an electron microscope, the average particle diameter of primary particles is the particle itself or the particles appearing on the cross section or surface of the refractive index layer is observed with an electron microscope, and the particle diameter of 1000 arbitrary particles is measured. It is obtained as its simple average value (number average). Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 本発明に適用可能なコア・シェル粒子の製造方法は、公知の方法を採用することができ、例えば、特開平10-158015号公報、特開2000-053421号公報、特開2000-063119号公報、特開2000-204301号公報、特許第4550753号公報などを参照することができる。 As a method for producing core / shell particles applicable to the present invention, a known method can be employed. For example, JP-A-10-158015, JP-A-2000-053421, JP-A-2000-063119. Reference can be made to JP-A-2000-204301, JP-A-4550753, and the like.
 本発明において、コア・シェル粒子に適用する含ケイ素の水和酸化物とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物又は縮合物のいずれでもよく、本発明においては、シラノール基を有する化合物であることが好ましい。 In the present invention, the silicon-containing hydrated oxide applied to the core / shell particles may be either a hydrate of an inorganic silicon compound, a hydrolyzate or a condensate of an organosilicon compound. In the present invention, silanol A compound having a group is preferable.
 本発明に係る高屈折率層には、コア・シェル粒子以外にも、その他の金属酸化物粒子が含まれていてもよい。その他の金属酸化物粒子を併用する場合には、上記説明したコア・シェル粒子が電荷的に凝集しないよう、各種のイオン性分散剤や保護剤を用いることができる。コア・シェル粒子以外に用いることのできる金属酸化物粒子は、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第2鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。 The high refractive index layer according to the present invention may contain other metal oxide particles in addition to the core / shell particles. When other metal oxide particles are used in combination, various ionic dispersants and protective agents can be used so that the core and shell particles described above do not aggregate in a chargeable manner. Examples of metal oxide particles that can be used in addition to the core / shell particles include titanium dioxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, lead titanate, red lead, and yellow lead. Zinc yellow, chromium oxide, ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, tin oxide and the like.
 本発明に用いられるコア・シェル粒子は、コアである酸化チタン粒子の表面全体を含ケイ素の水和酸化物で被覆したものでもよく、また、コアである酸化チタン粒子の表面の一部を含ケイ素の水和酸化物で被覆したものでもよい。 The core / shell particles used in the present invention may be those in which the entire surface of the titanium oxide particles that are the core is coated with a silicon-containing hydrated oxide, or part of the surface of the titanium oxide particles that are the core. It may be coated with a silicon hydrated oxide.
 (硬化剤)
 本発明においては、高屈折率層に適用する第1の水溶性バインダー樹脂を硬化させるため、硬化剤を使用することもできる。第1の水溶性バインダー樹脂と共に用いることができる硬化剤としては、当該水溶性バインダー樹脂と硬化反応を起こすものであれば特に制限はない。例えば、第1の水溶性バインダー樹脂として、ポリビニルアルコールを用いる場合では、硬化剤として、ホウ酸及びその塩が好ましい。ホウ酸及びその塩以外にも公知のものが使用でき、一般的には、ポリビニルアルコールと反応し得る基を有する化合物あるいはポリビニルアルコールが有する異なる基同士の反応を促進するような化合物であり、適宜選択して用いられる。硬化剤の具体例としては、例えば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明ばん等が挙げられる。
(Curing agent)
In the present invention, a curing agent can also be used to cure the first water-soluble binder resin applied to the high refractive index layer. The curing agent that can be used together with the first water-soluble binder resin is not particularly limited as long as it causes a curing reaction with the water-soluble binder resin. For example, when polyvinyl alcohol is used as the first water-soluble binder resin, boric acid and its salt are preferable as the curing agent. In addition to boric acid and its salts, known ones can be used, and in general, a compound having a group capable of reacting with polyvinyl alcohol or a compound that promotes the reaction between different groups possessed by polyvinyl alcohol. Select and use. Specific examples of the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
 ホウ酸及びその塩とは、ホウ素原子を中心原子とする酸素酸及びその塩のことをいい、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸及び八ホウ酸及びそれらの塩が挙げられる。 Boric acid and its salts refer to oxygen acids and their salts having a boron atom as a central atom, specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid and octabored acid. Examples include acids and their salts.
 硬化剤としてのホウ素原子を有するホウ酸及びその塩は、単独の水溶液でも、また、2種以上を混合して使用してもよい。特に好ましいのはホウ酸とホウ砂の混合水溶液である。 Boric acid having a boron atom and a salt thereof as a curing agent may be used alone or in a mixture of two or more. Particularly preferred is a mixed aqueous solution of boric acid and borax.
 ホウ酸とホウ砂の水溶液は、それぞれ比較的希薄水溶液でしか添加することができないが両者を混合することで濃厚な水溶液にすることができ、塗布液を濃縮化することができる。また、添加する水溶液のpHを比較的自由にコントロールすることができる利点がある。 The aqueous solutions of boric acid and borax can be added only in relatively dilute aqueous solutions, respectively, but by mixing them both can be made into a concentrated aqueous solution and the coating solution can be concentrated. Further, there is an advantage that the pH of the aqueous solution to be added can be controlled relatively freely.
 本発明では、ホウ酸及びその塩、又はホウ砂を用いることが本発明の効果を得るためにはより好ましい。ホウ酸及びその塩、又はホウ砂を用いた場合には、金属酸化物粒子と水溶性バインダー樹脂であるポリビニルアルコールのOH基と水素結合ネットワークがより形成しやすく、その結果として高屈折率層と低屈折率層との層間混合が抑制され、好ましい近赤外遮断特性が達成されると考えられる。特に、高屈折率層及び低屈折率層の多層重層を湿式コーターで塗布後、一旦塗膜の膜面温度を15℃程度に冷やした後、膜面を乾燥させるセット系塗布プロセスを用いた場合には、より好ましく効果を発現することができる。 In the present invention, it is more preferable to use boric acid and its salt or borax in order to obtain the effects of the present invention. When boric acid and its salt, or borax are used, metal oxide particles and water-soluble binder resin polyvinyl alcohol OH groups and hydrogen bond network are more easily formed, as a result, high refractive index layer and It is considered that interlayer mixing with the low refractive index layer is suppressed, and preferable near-infrared blocking characteristics are achieved. Especially when a set coating process is used in which a multilayer coating of a high refractive index layer and a low refractive index layer is applied with a wet coater, the film surface temperature of the coating film is once cooled to about 15 ° C., and then the film surface is dried. In this case, the effect can be expressed more preferably.
 高屈折率層における硬化剤の含有量は、高屈折率層の固形分100質量%に対して、1~10質量%であることが好ましく、2~6質量%であることがより好ましい。 The content of the curing agent in the high refractive index layer is preferably 1 to 10% by mass and more preferably 2 to 6% by mass with respect to 100% by mass of the solid content of the high refractive index layer.
 特に、第1の水溶性バインダー樹脂としてポリビニルアルコールを使用する場合の上記硬化剤の総使用量は、ポリビニルアルコール1g当たり1~600mgが好ましく、ポリビニルアルコール1g当たり100~600mgがより好ましい。 In particular, when polyvinyl alcohol is used as the first water-soluble binder resin, the total amount of the curing agent used is preferably 1 to 600 mg per 1 g of polyvinyl alcohol, more preferably 100 to 600 mg per 1 g of polyvinyl alcohol.
 〔低屈折率層〕
 本発明に係る低屈折率層は、第2の水溶性バインダー樹脂及び第2の金属酸化物粒子を含み、更は、硬化剤、表面被覆成分、粒子表面保護剤、バインダー樹脂、界面活性剤、各種添加剤等を含んでもよい。
(Low refractive index layer)
The low refractive index layer according to the present invention includes a second water-soluble binder resin and second metal oxide particles, and further includes a curing agent, a surface coating component, a particle surface protective agent, a binder resin, a surfactant, Various additives may be included.
 本発明に係る低屈折率層の屈折率は、好ましくは1.10~1.60の範囲内であり、より好ましくは1.30~1.50である。 The refractive index of the low refractive index layer according to the present invention is preferably in the range of 1.10 to 1.60, more preferably 1.30 to 1.50.
 (第2の水溶性バインダー樹脂)
 本発明に係る低屈折率層に適用する第2の水溶性バインダー樹脂として、ポリビニルアルコールが好ましく用いられる。さらに、前記高屈折率層に存在するポリビニルアルコール(A)のケン化度とは異なるポリビニルアルコール(B)が、本発明に係る低屈折率層に用いられることがより好ましい。なお、ここでの第2の水溶性バインダー樹脂の好ましい重量平均分子量等、ポリビニルアルコール(A)及びポリビニルアルコール(B)についての説明は、上記高屈折率層の水溶性バインダー樹脂にて説明されており、ここでは説明を省略する。
(Second water-soluble binder resin)
Polyvinyl alcohol is preferably used as the second water-soluble binder resin applied to the low refractive index layer according to the present invention. Furthermore, it is more preferable that polyvinyl alcohol (B) different from the saponification degree of polyvinyl alcohol (A) present in the high refractive index layer is used in the low refractive index layer according to the present invention. In addition, description about polyvinyl alcohol (A) and polyvinyl alcohol (B), such as a preferable weight average molecular weight of 2nd water-soluble binder resin here, is demonstrated by the water-soluble binder resin of the said high refractive index layer. The description is omitted here.
 低屈折率層における第2の水溶性バインダー樹脂の含有量は、低屈折率層の固形分100質量%に対して、20~99.9質量%の範囲内であることが好ましく、25~80質量%の範囲内であることがより好ましい。 The content of the second water-soluble binder resin in the low refractive index layer is preferably in the range of 20 to 99.9% by mass with respect to 100% by mass of the solid content of the low refractive index layer, and 25 to 80 More preferably, it is in the range of mass%.
 本発明に係る低屈折率層において適用が可能な、ポリビニルアルコール以外の水溶性バインダー樹脂としては、第2の金属酸化物粒子を含有した低屈折率層が塗膜を形成することができればどのようなものでも制限なく使用可能である。ただし、環境の問題や塗膜の柔軟性を考慮すると、水溶性高分子(特にゼラチン、増粘多糖類、反応性官能基を有するポリマー)が好ましい。これらの水溶性高分子は単独で用いても構わないし、2種類以上を混合して用いても構わない。 As a water-soluble binder resin other than polyvinyl alcohol, which can be applied in the low refractive index layer according to the present invention, any method can be used as long as the low refractive index layer containing the second metal oxide particles can form a coating film. Anything can be used without limitation. However, in view of environmental problems and flexibility of the coating film, water-soluble polymers (particularly gelatin, thickening polysaccharides, polymers having reactive functional groups) are preferable. These water-soluble polymers may be used alone or in combination of two or more.
 低屈折率層において、第2の水溶性バインダー樹脂として好ましく用いられるポリビニルアルコールとともに、併用する他のバインダー樹脂の含有量は、低屈折率層の固形分100質量%に対して、0~10質量%の範囲内で用いることもできる。 In the low refractive index layer, the content of the other binder resin used together with polyvinyl alcohol preferably used as the second water-soluble binder resin is 0 to 10 mass with respect to 100 mass% of the solid content of the low refractive index layer. % Can also be used.
 本発明に係る低屈折率層において、セルロース類、増粘多糖類及び反応性官能基を有するポリマー類等の水溶性高分子を含有することもできる。これらセルロース類、増粘多糖類及び反応性官能基を有するポリマー類等の水溶性高分子は、上述した高屈折率層で説明した水溶性高分子と同様のものが用いられるため、ここでは説明を省略する。 The low refractive index layer according to the present invention may contain water-soluble polymers such as celluloses, thickening polysaccharides and polymers having reactive functional groups. These water-soluble polymers such as celluloses, thickening polysaccharides and polymers having reactive functional groups are the same as the water-soluble polymers described in the high refractive index layer described above. Is omitted.
 (第2の金属酸化物粒子)
 本発明に係る低屈折率層に適用する第2の金属酸化物粒子としては、シリカ(二酸化ケイ素)を用いることが好ましく、具体的な例として合成非晶質シリカ、コロイダルシリカ等が挙げられる。これらのうち、酸性のコロイダルシリカゾルを用いることがより好ましく、有機溶媒に分散させたコロイダルシリカゾルを用いることがさらに好ましい。また、屈折率をより低減させるためには、低屈折率層に適用する第2の金属酸化物粒子として、粒子の内部に空孔を有する中空微粒子を用いることができ、特にシリカ(二酸化ケイ素)の中空微粒子が好ましい。
(Second metal oxide particles)
As the second metal oxide particles applied to the low refractive index layer according to the present invention, silica (silicon dioxide) is preferably used, and specific examples thereof include synthetic amorphous silica and colloidal silica. Of these, acidic colloidal silica sol is more preferably used, and colloidal silica sol dispersed in an organic solvent is more preferably used. Further, in order to further reduce the refractive index, hollow fine particles having pores inside the particles can be used as the second metal oxide particles applied to the low refractive index layer, particularly silica (silicon dioxide). The hollow fine particles are preferred.
 低屈折率層に適用する第2の金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径が3~100nmの範囲内であることが好ましい。一次粒子の状態で分散された二酸化ケイ素の一次粒子の平均粒径(塗布前の分散液状態での粒径)は、3~50nmの範囲内であることがより好ましく、3~40nmの範囲内であることがさらに好ましく、3~20nmであることが特に好ましく、4~10nmの範囲内であることが最も好ましい。また、二次粒子の平均粒径としては、30nm以下であることが、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The second metal oxide particles (preferably silicon dioxide) applied to the low refractive index layer preferably have an average particle size in the range of 3 to 100 nm. The average particle size of primary particles of silicon dioxide dispersed in a primary particle state (particle size in a dispersion state before coating) is more preferably in the range of 3 to 50 nm, and in the range of 3 to 40 nm. Is more preferably 3 to 20 nm, and most preferably 4 to 10 nm. Moreover, as an average particle diameter of secondary particle | grains, it is preferable from a viewpoint with few hazes and excellent visible light transmittance | permeability that it is 30 nm or less.
 低屈折率層に適用する金属酸化物粒子の平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 The average particle size of the metal oxide particles applied to the low refractive index layer is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope and measuring the particle size of 1000 arbitrary particles. The simple average value (number average) is obtained. Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 本発明で用いられるコロイダルシリカは、ケイ酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、及び国際公開第94/26530号などに記載されているものである。 The colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091 JP, 60-219083, JP 60-218904, JP 61-20792, JP 61-188183, JP 63-17807, JP 4-207 No. 93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 Described in Japanese Patent Laid-Open No. 7-179029, Japanese Patent Laid-Open No. 7-137431, and International Publication No. 94/26530. Than is.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、Mg又はBa等で処理された物であってもよい。 Such colloidal silica may be a synthetic product or a commercially available product. The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 低屈折率層に適用する第2の金属酸化物粒子として、中空粒子を用いることもできる。中空粒子を用いる場合には、平均粒子空孔径が、3~70nmの範囲内であるのが好ましく、5~50nmの範囲内がより好ましく、5~45nmの範囲内がさらに好ましい。なお、中空粒子の平均粒子空孔径とは、中空粒子の内径の平均値である。本発明において、中空粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形又は実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、平均粒子空孔径としては、円形、楕円形又は実質的に円形若しくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 Hollow particles can also be used as the second metal oxide particles applied to the low refractive index layer. When hollow particles are used, the average particle pore diameter is preferably within the range of 3 to 70 nm, more preferably within the range of 5 to 50 nm, and even more preferably within the range of 5 to 45 nm. The average particle pore diameter of the hollow particles is the average value of the inner diameters of the hollow particles. In the present invention, when the average particle pore diameter of the hollow particles is in the above range, the refractive index of the low refractive index layer is sufficiently lowered. The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation. Is obtained. The average particle hole diameter means the smallest distance among the distances between the outer edges of the hole diameter that can be observed as a circle, an ellipse, or a substantially circle or ellipse, between two parallel lines.
 本発明に係る第2の金属酸化物粒子は、表面被覆成分により表面コーティングされていてもよい。特に、本発明に係る第1の金属酸化物粒子としてコア・シェル状ではない金属酸化物粒子を用いる際に、第2の金属酸化物粒子の表面をポリ塩化アルミニウムなどの表面被覆成分によりコーティングすると、第1の金属酸化物粒子と凝集しにくくなる。 The second metal oxide particles according to the present invention may be surface-coated with a surface coating component. In particular, when using metal oxide particles that are not core / shell as the first metal oxide particles according to the present invention, the surface of the second metal oxide particles is coated with a surface coating component such as polyaluminum chloride. It becomes difficult to aggregate with the first metal oxide particles.
 低屈折率層における第2の金属酸化物粒子の含有量は、低屈折率層の固形分100質量%に対して、0.1~70質量%であることが好ましく、30~70質量%であることがより好ましく、45~65質量%であることがさらに好ましい。 The content of the second metal oxide particles in the low refractive index layer is preferably 0.1 to 70% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferably, it is more preferably 45 to 65% by mass.
 (硬化剤)
 本発明に係る低屈折率層において、前記高屈折率層と同様に、硬化剤をさらに含むことができる。低屈折率層に含まれる第2の水溶性バインダー樹脂と硬化反応を起こすものであれば、特に制限されない。特に、低屈折率層に適用する第2の水溶性バインダー樹脂としてポリビニルアルコールを用いた場合の硬化剤としては、ホウ酸及びその塩、又はホウ砂の少なくともいずれかが好ましい。また、ホウ酸及びその塩以外にも公知のものが使用できる。
(Curing agent)
Similarly to the high refractive index layer, the low refractive index layer according to the present invention may further include a curing agent. There is no particular limitation as long as it causes a curing reaction with the second water-soluble binder resin contained in the low refractive index layer. In particular, the curing agent when polyvinyl alcohol is used as the second water-soluble binder resin applied to the low refractive index layer is preferably at least one of boric acid and a salt thereof, or borax. In addition to boric acid and its salts, known ones can be used.
 低屈折率層における硬化剤の含有量は、低屈折率層の固形分100質量%に対して、1~10質量%の範囲内であることが好ましく、2~6質量%の範囲内であることがより好ましい。 The content of the curing agent in the low refractive index layer is preferably in the range of 1 to 10% by mass and preferably in the range of 2 to 6% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is more preferable.
 特に、第2の水溶性バインダー樹脂としてポリビニルアルコールを使用する場合の上記硬化剤の総使用量は、ポリビニルアルコール1g当たり1~600mgの範囲内が好ましく、ポリビニルアルコール1g当たり100~600mgの範囲内がより好ましい。 In particular, when polyvinyl alcohol is used as the second water-soluble binder resin, the total amount of the curing agent used is preferably in the range of 1 to 600 mg per gram of polyvinyl alcohol, and in the range of 100 to 600 mg per gram of polyvinyl alcohol. More preferred.
 また、硬化剤の具体例などは、上述した高屈折率層と同様であるため、ここでは説明を省略する。 Further, specific examples of the curing agent are the same as those of the above-described high refractive index layer, and thus the description thereof is omitted here.
 〔各屈折率層のその他の添加剤〕
 本発明に係る高屈折率層及び低屈折率層には、必要に応じて各種の添加剤を用いることができる。また、高屈折率層における添加剤の含有量は、高屈折率層の固形分100質量%に対して、0~20質量%であることが好ましい。当該添加剤の例を以下に記載する。
[Other additives for each refractive index layer]
In the high refractive index layer and the low refractive index layer according to the present invention, various additives can be used as necessary. The content of the additive in the high refractive index layer is preferably 0 to 20% by mass with respect to 100% by mass of the solid content of the high refractive index layer. Examples of such additives are described below.
 (界面活性剤)
 本発明においては、高屈折率層及び低屈折率層の少なくとも1層が、さらに界面活性剤を含有してもよい。界面活性剤としては、両性イオン系、カチオン系、アニオン系、ノニオン系のいずれの種類も使用することができる。より好ましくは、ベタイン系両性イオン性界面活性剤、4級アンモニウム塩系カチオン性界面活性剤、ジアルキルスルホコハク酸塩系アニオン性界面活性剤、アセチレングリコール系ノニオン性界面活性剤、又はフッ素系カチオン性界面活性剤が好ましい。
(Surfactant)
In the present invention, at least one of the high refractive index layer and the low refractive index layer may further contain a surfactant. As the surfactant, any of zwitterionic, cationic, anionic, and nonionic types can be used. More preferably, a betaine zwitterionic surfactant, a quaternary ammonium salt cationic surfactant, a dialkylsulfosuccinate anionic surfactant, an acetylene glycol nonionic surfactant, or a fluorine cationic interface Activators are preferred.
 本発明に用いられる界面活性剤の添加量としては、高屈折率層用塗布液又は低屈折率層用塗布液の全質量を100質量%としたとき、0.005~0.30質量%の範囲内であることが好ましく、0.01~0.10質量%の範囲内であることがより好ましい。 The addition amount of the surfactant used in the present invention is 0.005 to 0.30 mass% when the total mass of the coating liquid for high refractive index layer or the coating liquid for low refractive index layer is 100 mass%. It is preferably within the range, and more preferably within the range of 0.01 to 0.10% by mass.
 (アミノ酸)
 本発明において、高屈折率層又は低屈折率層は、等電点が6.5以下のアミノ酸を含有していてもよい。アミノ酸を含むことにより、高屈折率層又は低屈折率層中の金属酸化物粒子の分散性が向上しうる。
(amino acid)
In the present invention, the high refractive index layer or the low refractive index layer may contain an amino acid having an isoelectric point of 6.5 or less. By including an amino acid, the dispersibility of the metal oxide particles in the high refractive index layer or the low refractive index layer can be improved.
 ここで、アミノ酸とは、同一分子内にアミノ基とカルボキシ基とを有する化合物であり、α-、β-、γ-などいずれのタイプのアミノ酸でもよい。アミノ酸には光学異性体が存在するものもあるが、本発明においては光学異性体による効果の差はなく、いずれの異性体も単独であるいはラセミ体でも使用することができる。 Here, an amino acid is a compound having an amino group and a carboxy group in the same molecule, and may be any type of amino acid such as α-, β-, and γ-. Some amino acids have optical isomers, but in the present invention, there is no difference in effect due to optical isomers, and any isomer can be used alone or in racemic form.
 アミノ酸の詳しい解説は、化学大辞典1縮刷版(共立出版;昭和35年発行)268頁~270頁の記載を参照することができる。 For a detailed explanation of amino acids, refer to the description on pages 268 to 270 of the 1st edition of the Chemistry Dictionary (Kyoritsu Shuppan; published in 1960).
 具体的に好ましいアミノ酸として、アスパラギン酸、グルタミン酸、グリシン、セリン、等を挙げることができ、特にグリシン、セリンが好ましい。 Specific examples of preferred amino acids include aspartic acid, glutamic acid, glycine, serine, and the like, with glycine and serine being particularly preferred.
 アミノ酸の等電点とは、アミノ酸は特定のpHにおいて分子内の正・負電荷が釣り合い、全体としての電荷が0となるので、このpH値をいう。各アミノ酸の等電点については、低イオン強度での等電点電気泳動で求めることができる。 The isoelectric point of an amino acid refers to this pH value because an amino acid balances the positive and negative charges in the molecule at a specific pH and the overall charge is zero. The isoelectric point of each amino acid can be determined by isoelectric focusing at a low ionic strength.
 (エマルジョン樹脂)
 本発明に係る高屈折率層又は低屈折率層は、エマルジョン樹脂をさらに含有していてもよい。エマルジョン樹脂を含むことにより、膜の柔軟性が高くなりガラスへの貼りつけ等の加工性がよくなる。
(Emulsion resin)
The high refractive index layer or the low refractive index layer according to the present invention may further contain an emulsion resin. By including the emulsion resin, the flexibility of the film is increased and the workability such as sticking to glass is improved.
 エマルジョン樹脂とは、水系媒体中に微細な、例えば、平均粒径が0.01~2.0μm程度の樹脂粒子がエマルジョン状態で分散されている樹脂で、油溶性のモノマーを、ヒドロキシ基を有する高分子分散剤を用いてエマルジョン重合して得られる。用いる分散剤の種類によって、得られるエマルジョン樹脂のポリマー成分に基本的な違いは見られない。エマルジョンの重合時に使用される分散剤としては、例えば、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドンのような高分子分散剤が挙げられる。ヒドロキシ基を有する高分子分散剤を用いて乳化重合すると、微細な微粒子の少なくとも表面にヒドロキシ基の存在が推定され、他の分散剤を用いて重合したエマルジョン樹脂とはエマルジョンの化学的、物理的性質が異なる。 The emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 μm, for example, are dispersed in an emulsion state in an aqueous medium. The oil-soluble monomer has a hydroxy group. It can be obtained by emulsion polymerization using a polymer dispersant. There is no fundamental difference in the polymer component of the resulting emulsion resin depending on the type of dispersant used. Examples of the dispersant used in the polymerization of the emulsion include polyoxyethylene nonylphenyl ether in addition to low molecular weight dispersants such as alkylsulfonate, alkylbenzenesulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt. , Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone. When emulsion polymerization is performed using a polymer dispersant having hydroxy groups, the presence of hydroxy groups is estimated on at least the surface of fine particles, and emulsion resins polymerized using other dispersants are the chemical and physical properties of emulsions. The nature is different.
 ヒドロキシ基を含む高分子分散剤とは、重量平均分子量が10000以上の高分子の分散剤で、側鎖又は末端にヒドロキシ基が置換されたものであり、例えばポリアクリル酸ソーダ、ポリアクリルアミドのようなアクリル系の高分子で2-エチルヘキシルアクリレートが共重合されたもの、ポリエチレングリコールやポリプロピレングリコールのようなポリエーテルなどが挙げられる。 The polymer dispersant containing a hydroxy group is a polymer dispersant having a weight average molecular weight of 10,000 or more and having a hydroxy group substituted on the side chain or terminal, such as sodium polyacrylate and polyacrylamide. Examples of such an acrylic polymer include 2-ethylhexyl acrylate copolymerized and polyethers such as polyethylene glycol and polypropylene glycol.
 (リチウム化合物)
 本発明においては、高屈折率層及び低屈折率層の少なくとも1層が、さらにリチウム化合物を含有してもよい。該リチウム化合物を含む高屈折率層用塗布液又は低屈折率層用塗布液は粘度の制御がより容易となり、その結果、ガラスに本発明の光学フィルムを加える際の製造安定性がより向上する。
(Lithium compound)
In the present invention, at least one of the high refractive index layer and the low refractive index layer may further contain a lithium compound. The coating liquid for the high refractive index layer or the coating liquid for the low refractive index layer containing the lithium compound becomes easier to control the viscosity, and as a result, the production stability when adding the optical film of the present invention to glass is further improved. .
 本発明に適用可能なリチウム化合物としては、特に制限はなく、例えば、炭酸リチウム、硫酸リチウム、硝酸リチウム、酢酸リチウム、オロト酸リチウム、クエン酸リチウム、モリブデン酸リチウム、塩化リチウム、水素化リチウム、水酸化リチウム、臭化リチウム、フッ化リチウム、ヨウ化リチウム、ステアリン酸リチウム、リン酸リチウム、ヘキサフルオロリン酸リチウム、水素化アルミニウムリチウム、水素化トリエチルホウ酸リチウム、水素化トリエトキシアルミニウムリチウム、タンタル酸リチウム、次亜塩素酸リチウム、酸化リチウム、炭化リチウム、窒化リチウム、ニオブ酸リチウム、硫化リチウム、ホウ酸リチウム、LiBF、LiClO、LiPF、LiCFSO等が挙げられる。これらリチウム化合物は、単独でも又は2種以上組み合わせても用いることができる。 The lithium compound applicable to the present invention is not particularly limited. For example, lithium carbonate, lithium sulfate, lithium nitrate, lithium acetate, lithium orotate, lithium citrate, lithium molybdate, lithium chloride, lithium hydride, water Lithium oxide, lithium bromide, lithium fluoride, lithium iodide, lithium stearate, lithium phosphate, lithium hexafluorophosphate, lithium aluminum hydride, lithium hydride triethylborate, lithium triethoxyaluminum hydride, tantalate Examples thereof include lithium, lithium hypochlorite, lithium oxide, lithium carbide, lithium nitride, lithium niobate, lithium sulfide, lithium borate, LiBF 4 , LiClO 4 , LiPF 4 , LiCF 3 SO 3 and the like. These lithium compounds can be used alone or in combination of two or more.
 これらの中でも、水酸化リチウムが本願発明の効果を十分に発揮できる観点から好ましい。 Among these, lithium hydroxide is preferable from the viewpoint of sufficiently exerting the effects of the present invention.
 リチウム化合物の添加量は、屈折率層中に存在する金属酸化物粒子1g当たり、0.005~0.05gの範囲が好ましく、より好ましくは0.01~0.03gである。 The amount of the lithium compound added is preferably in the range of 0.005 to 0.05 g, more preferably 0.01 to 0.03 g, per 1 g of the metal oxide particles present in the refractive index layer.
 (その他の添加剤)
 本発明に係る高屈折率層及び低屈折率層に適用可能な各種の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、及び特開昭62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、及び特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、及び特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などが挙げられる。
(Other additives)
Various additives applicable to the high refractive index layer and the low refractive index layer according to the present invention are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, and JP-A-62-261476, JP-A-57-74192, and JP-A-57-87989. , JP-A-60-127785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Or nonionic surfactants, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-242871, and JP-A-4-219266. Optical brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, etc. Lubricants such as tylene glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, thickeners, lubricants, infrared absorption Examples include various known additives such as agents, dyes, and pigments.
 〔多層膜による光学反射層の形成方法〕
 本発明に用いられる多層膜による光学反射層(光学反射層群ともいう。)の形成方法は、湿式塗布方式を適用して形成することが好ましく、更には、本発明に係る支持体上に、第1の水溶性バインダー樹脂及び第1の金属酸化物粒子を含む高屈折率層用塗布液と、第2の水溶性バインダー樹脂及び第2の金属酸化物粒子を含む低屈折率層用塗布液と、を湿式塗布する工程を含む製造方法が好ましい。
[Method of forming optical reflection layer by multilayer film]
The method for forming an optical reflective layer (also referred to as an optical reflective layer group) using a multilayer film used in the present invention is preferably formed by applying a wet coating method, and further, on the support according to the present invention, High refractive index layer coating solution containing first water-soluble binder resin and first metal oxide particles, and low refractive index layer coating solution containing second water soluble binder resin and second metal oxide particles And a production method including a step of wet coating.
 湿式塗布方法は、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。また、複数の層を重層塗布する方式としては、逐次重層塗布方式でもよいし、同時重層塗布方式でもよい。 The wet coating method is not particularly limited. For example, roll coating method, rod bar coating method, air knife coating method, spray coating method, slide curtain coating method, US Pat. No. 2,761,419, US Pat. No. 2,761791 And a slide hopper coating method, an extrusion coating method and the like described in a book. In addition, as a method of applying a plurality of layers in a multilayer manner, a sequential multilayer application method or a simultaneous multilayer application method may be used.
 以下、本発明に用いられる好ましい製造方法(塗布方法)であるスライドホッパー塗布法による同時重層塗布について詳細に説明する。 Hereinafter, the simultaneous multilayer coating by the slide hopper coating method, which is a preferred manufacturing method (coating method) used in the present invention, will be described in detail.
 (溶媒)
 高屈折率層用塗布液及び低屈折率層用塗布液を調製するために適用可能な溶媒は、特に制限されないが、水、有機溶媒、又はその混合溶媒が好ましい。
(solvent)
The solvent applicable for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
 有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でも又は2種以上混合して用いてもよい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether and propylene. Examples include ethers such as glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more.
 環境面、操作の簡便性などから、塗布液の溶媒としては、特に水、又は水とメタノール、エタノール、若しくは酢酸エチルとの混合溶媒が好ましい。 From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is particularly preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate.
 (塗布液の濃度)
 高屈折率層用塗布液中の水溶性バインダー樹脂の濃度は、1~10質量%の範囲内であることが好ましい。また、高屈折率層用塗布液中の金属酸化物粒子の濃度は、1~50質量%の範囲内であることが好ましい。
(Concentration of coating solution)
The concentration of the water-soluble binder resin in the coating solution for the high refractive index layer is preferably in the range of 1 to 10% by mass. The concentration of the metal oxide particles in the coating solution for the high refractive index layer is preferably in the range of 1 to 50% by mass.
 低屈折率層用塗布液中の水溶性バインダー樹脂の濃度は、1~10質量%の範囲内であることが好ましい。また、低屈折率層用塗布液中の金属酸化物粒子の濃度は、1~50質量%の範囲内であることが好ましい。 The concentration of the water-soluble binder resin in the coating solution for the low refractive index layer is preferably in the range of 1 to 10% by mass. The concentration of the metal oxide particles in the coating solution for the low refractive index layer is preferably in the range of 1 to 50% by mass.
 (塗布液の調製方法)
 高屈折率層用塗布液及び低屈折率層用塗布液の調製方法は、特に制限されず、例えば、水溶性バインダー樹脂、金属酸化物粒子、及び必要に応じて添加されるその他の添加剤を添加し、撹拌混合する方法が挙げられる。この際、水溶性バインダー樹脂、金属酸化物粒子、及び必要に応じて用いられるその他の添加剤の添加順も特に制限されず、撹拌しながら各成分を順次添加し混合してもよいし、撹拌しながら一度に添加し混合してもよい。必要に応じて、さらに溶媒を用いて、適当な粘度に調製される。
(Method for preparing coating solution)
The method for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited. For example, a water-soluble binder resin, metal oxide particles, and other additives added as necessary. The method of adding and stirring and mixing is mentioned. At this time, the order of addition of the water-soluble binder resin, the metal oxide particles, and other additives used as necessary is not particularly limited, and each component may be added and mixed sequentially while stirring. However, they may be added and mixed at once. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
 本発明においては、コア・シェル粒子を添加、分散して調製した水系の高屈折率層塗布液を用いて、高屈折率層を形成することが好ましい。このとき、前記コア・シェル粒子としては、25℃で測定したpHが5.0~7.5の範囲内で、かつ粒子のゼータ電位が負であるゾルとして、高屈折率層塗布液に添加して調製することが好ましい。 In the present invention, it is preferable to form a high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing core / shell particles. At this time, the core / shell particles are added to the coating solution for the high refractive index layer as a sol having a pH measured in the range of 5.0 to 7.5 at 25 ° C. and a negative zeta potential of the particles. It is preferable to prepare it.
 (塗布液の粘度)
 スライドホッパー塗布法により同時重層塗布を行う際の高屈折率層用塗布液及び低屈折率層用塗布液の40~45℃における粘度は、5~150mPa・sの範囲内が好ましく、10~100mPa・sの範囲内がより好ましい。また、スライド型カーテン塗布法により同時重層塗布を行う際の高屈折率層用塗布液及び低屈折率層用塗布液の40~45℃における粘度は、5~1200mPa・sの範囲内が好ましく、25~500mPa・s内の範囲内がより好ましい。
(Viscosity of coating solution)
The viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide hopper coating method is preferably within the range of 5 to 150 mPa · s. -Within the range of s is more preferable. The viscosity at 40 to 45 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer when performing simultaneous multilayer coating by the slide curtain coating method is preferably within the range of 5 to 1200 mPa · s. A range of 25 to 500 mPa · s is more preferable.
 また、高屈折率層用塗布液及び低屈折率層用塗布液の15℃における粘度は、100mPa・s以上が好ましく、100~30000mPa・sの範囲内がより好ましく、3000~30000mPa・sの範囲内がさらに好ましく、10000~30000mPa・sの範囲内が特に好ましい。 The viscosity at 15 ° C. of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is preferably 100 mPa · s or more, more preferably in the range of 100 to 30000 mPa · s, and in the range of 3000 to 30000 mPa · s. The inside is more preferable, and the inside of the range of 10,000 to 30,000 mPa · s is particularly preferable.
 (塗布及び乾燥方法)
 塗布及び乾燥方法は、特に制限されないが、高屈折率層用塗布液及び低屈折率層用塗布液を30℃以上に加温して、基材上に高屈折率層用塗布液及び低屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃に一旦冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。
(Coating and drying method)
The coating and drying method is not particularly limited, but the high refractive index layer coating solution and the low refractive index layer coating solution are heated to 30 ° C. or higher, and the high refractive index layer coating solution and the low refractive index are coated on the substrate. After the simultaneous application of the rate layer coating solution, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C. and then dried at 10 ° C. or higher. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 高屈折率層用塗布液及び低屈折率層用塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚さとなるように塗布すればよい。 What is necessary is just to apply | coat so that the coating thickness of the coating liquid for high refractive index layers and the coating liquid for low refractive index layers may become the preferable thickness at the time of drying as shown above.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め各層間及び各層内の物質の流動性を低下させる工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means a step of increasing the viscosity of the coating composition and reducing the fluidity of substances in each layer and in each layer by means such as applying cold air to the coating to lower the temperature. To do. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 塗布した後、冷風を当ててからセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることが好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。セット時間が短すぎると、層中の成分の混合が不十分となるところがある。一方、セット時間が長すぎると、金属酸化物粒子の層間拡散が進み、高屈折率層と低屈折率層との屈折率差が不十分となるところがある。なお、高屈折率層と低屈折率層との間の熱線遮断フィルムユニットの高弾性化が素早く起こるのであれば、セットさせる工程は設けなくてもよい。 After application, the time (setting time) from application of cold air to completion of setting is preferably within 5 minutes, preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. If the set time is too short, there are places where mixing of the components in the layer becomes insufficient. On the other hand, if the set time is too long, the interlayer diffusion of the metal oxide particles proceeds, and the difference in refractive index between the high refractive index layer and the low refractive index layer is insufficient. In addition, if the high elasticity of the heat ray blocking film unit between the high refractive index layer and the low refractive index layer occurs quickly, the setting step may not be provided.
 セット時間の調整は、水溶性バインダー樹脂の濃度や金属酸化物粒子の濃度を調整し、ゼラチン、ペクチン、寒天、カラギーナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加することにより調整することができる。 The set time is adjusted by adjusting the concentration of the water-soluble binder resin and the metal oxide particles, and adding other components such as various known gelling agents such as gelatin, pectin, agar, carrageenan and gellan gum. Can be adjusted.
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、10~120秒であることが好ましい。 The temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. Further, the time during which the coating film is exposed to the cold air is preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 図2は、多層膜による光学反射層を有する本発明の光学フィルムの一例であり、支持体の一方の面側に光学反射層群を有する反射層ユニットを備えた構成を示す概略断面図である。 FIG. 2 is an example of an optical film of the present invention having an optical reflective layer of a multilayer film, and is a schematic cross-sectional view showing a configuration provided with a reflective layer unit having an optical reflective layer group on one surface side of a support. .
 図2において、本発明の光学フィルム10は、反射層ユニットUを有する。さらに、反射層ユニットUは、支持体11上に、一例として、第1の水溶性バインダー樹脂と第1の金属酸化物粒子を含有する高屈折率の光学反射層と、第2の水溶性バインダー樹脂と第2の金属酸化物粒子を含有する低屈折率の光学反射層とを交互に積層した光学反射層群MLを有している。光学反射層群MLは、光学反射層T~Tのn層で構成され、例えば、T、T、T、(中略)、Tn-2、Tを屈折率が1.10~1.60の範囲内にある低屈折率層で構成し、T、T、T、(中略)、Tn-1を屈折率が1.80~2.50の範囲内にある高屈折率層とする構成が一例として挙げられる。本発明でいう屈折率とは、25℃の環境下で測定した値である。 In FIG. 2, the optical film 10 of the present invention has a reflective layer unit U. Further, the reflective layer unit U includes, as an example, a high refractive index optical reflective layer containing a first water-soluble binder resin and first metal oxide particles, and a second water-soluble binder on the support 11. The optical reflective layer group ML is formed by alternately laminating a resin and a low refractive index optical reflective layer containing second metal oxide particles. The optical reflection layer group ML is composed of n layers of optical reflection layers T 1 to T n . For example, T 1 , T 3 , T 5 , (omitted), T n−2 , and T n have a refractive index of 1. It is composed of a low refractive index layer in the range of 10 to 1.60, and T 2 , T 4 , T 6 , (omitted), and T n-1 are in the range of refractive index of 1.80 to 2.50. An example of a configuration having a high refractive index layer is given. The refractive index as used in the field of this invention is the value measured in the environment of 25 degreeC.
 また、図示していないが、反射層ユニットの最外層上には、耐傷性を向上するためのハードコート層を設けることが好ましく、支持体の反射層ユニットを設けていない面には支持体を他の基材に貼合する粘着層を設けることも好ましい。 Although not shown, it is preferable to provide a hard coat layer for improving scratch resistance on the outermost layer of the reflective layer unit, and a support is provided on the surface of the support on which the reflective layer unit is not provided. It is also preferable to provide an adhesive layer to be bonded to another substrate.
 図3は、多層膜による光学反射層を有する本発明の光学フィルムの別の構成で、支持体の両面に、光学反射層群を有する反射層ユニットを設けた構成を示す概略断面図である。 FIG. 3 is a schematic cross-sectional view showing another configuration of the optical film of the present invention having an optical reflective layer of a multilayer film, in which a reflective layer unit having an optical reflective layer group is provided on both sides of a support.
 (2)染料や顔料によって特定の波長を吸収する光学機能層
 染料や顔料によって特定の波長を吸収する光学機能層として、赤外線吸収層を例にして説明する。
(2) Optical functional layer that absorbs a specific wavelength with a dye or pigment An infrared absorbing layer will be described as an example of an optical functional layer that absorbs a specific wavelength with a dye or pigment.
 赤外線吸収層に含まれる材料としては、特に制限されないが、例えば、バインダー成分である紫外線硬化樹脂、光重合開始剤、赤外線吸収剤などが挙げられる。赤外線吸収層は、含まれるバインダー成分が硬化していることが好ましい。ここで、硬化とは、紫外線などの活性エネルギー線や熱などにより反応が進み硬化することを指す。 The material contained in the infrared absorbing layer is not particularly limited, and examples thereof include an ultraviolet curable resin that is a binder component, a photopolymerization initiator, and an infrared absorber. It is preferable that the binder component contained in the infrared absorption layer is cured. Here, the curing means that the reaction proceeds and cures by active energy rays such as ultraviolet rays or heat.
 紫外線硬化樹脂は、他の樹脂よりも硬度や平滑性に優れ、さらにはITO、ATOや熱伝導性の金属酸化物の分散性の観点からも有利である。紫外線硬化樹脂としては、硬化によって透明な層を形成する物であれば特に制限なく使用でき、例えば、シリコーン樹脂、エポキシ樹脂、ビニルエステル樹脂、アクリル樹脂、アリルエステル樹脂等が挙げられる。より好ましくは、硬度、平滑性、透明性の観点からアクリル樹脂である。 UV curable resins are superior to other resins in hardness and smoothness, and are also advantageous from the viewpoint of dispersibility of ITO, ATO and heat conductive metal oxides. The ultraviolet curable resin can be used without particular limitation as long as it forms a transparent layer by curing, and examples thereof include silicone resins, epoxy resins, vinyl ester resins, acrylic resins, and allyl ester resins. More preferred is an acrylic resin from the viewpoint of hardness, smoothness and transparency.
 前記アクリル樹脂は、硬度、平滑性、透明性の観点から、国際公開2008/035669号に記載されているような、表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むことが好ましい。ここで、光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基などを挙げることができる。また、紫外線硬化樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する有機化合物を含むものであってもよい。また重合性不飽和基修飾加水分解性シランが、加水分解性シリル基の加水分解反応によって、シリカ粒子との間に、シリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。ここで、反応性シリカ粒子の平均粒子径は、0.001~0.1μmであることが好ましい。平均粒子径をこのような範囲にすることにより、透明性、平滑性、硬度をバランスよく満たすことができる。 From the viewpoint of hardness, smoothness, and transparency, the acrylic resin is a reactive silica particle having a photosensitive group having photopolymerization reactivity introduced on its surface as described in International Publication No. 2008/035669 ( In the following, it is preferable to simply include “reactive silica particles”. Here, examples of the photopolymerizable photosensitive group include a polymerizable unsaturated group represented by a (meth) acryloyloxy group. The ultraviolet curable resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an organic compound having a polymerizable unsaturated group. There may be. In addition, a polymerizable unsaturated group-modified hydrolyzable silane reacts with a silica particle that forms a silyloxy group and is chemically bonded to the silica particle by a hydrolysis reaction of the hydrolyzable silyl group. Can be used as conductive silica particles. Here, the average particle diameter of the reactive silica particles is preferably 0.001 to 0.1 μm. By setting the average particle diameter in such a range, transparency, smoothness, and hardness can be satisfied in a well-balanced manner.
 また、前記アクリル樹脂は、屈折率を調整するという観点から、フッ素を含むことが好ましい。すなわち、赤外線吸収層はフッ素を含むことが好ましい。このようなアクリル樹脂としては、含フッ素ビニルモノマーに由来する構成単位を含むアクリル樹脂が挙げられる。含フッ素ビニルモノマーとしては、フルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(商品名、大阪有機化学工業株式会社製)やR-2020(商品名、ダイキン工業株式会社製)等)、完全又は部分フッ素化ビニルエーテル類等が挙げられる。 The acrylic resin preferably contains fluorine from the viewpoint of adjusting the refractive index. That is, the infrared absorption layer preferably contains fluorine. Examples of such an acrylic resin include an acrylic resin containing a structural unit derived from a fluorine-containing vinyl monomer. Examples of the fluorine-containing vinyl monomer include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, etc.), (meth) acrylic acid moieties or fully fluorinated alkyl ester derivatives (for example, biscoat 6FM (product) Name, manufactured by Osaka Organic Chemical Industry Co., Ltd.) and R-2020 (trade name, manufactured by Daikin Industries, Ltd.)), and fully or partially fluorinated vinyl ethers.
 光重合開始剤としては、公知のものを使用することができ、単独でも又は2種以上の組み合わせでも使用することができる。 As the photopolymerization initiator, known ones can be used, and they can be used alone or in combination of two or more.
 赤外線吸収層に含まれうる無機赤外線吸収剤としては、可視光線透過率、赤外線吸収性、樹脂中への分散適性等の観点から、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、アンチモン酸亜鉛、6ホウ化ランタン(LaB)、セシウム含有酸化タングステン(Cs0.33WO)等が好ましい。これらは単独でも又は2種以上組み合わせても用いることができる。無機赤外線吸収剤の平均粒径は、5~100nmが好ましく、10~50nmがより好ましい。5nm未満であると樹脂中の分散性や、赤外線吸収性が低下するところがある。一方、100nmより大きいと、可視光線透過率が低下するところがある。なお、平均粒径の測定は、透過型電子顕微鏡により撮像し、無作為に、例えば50個の粒子を抽出して該粒径を測定し、これを平均したものである。また、粒子の形状が球形でない場合には、長径を測定して算出したものと定義する。 Inorganic infrared absorbers that can be contained in the infrared absorbing layer include tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), and antimony from the viewpoints of visible light transmittance, infrared absorptivity, suitability for dispersion in resins, and the like. Zinc acid, lanthanum hexaboride (LaB 6 ), cesium-containing tungsten oxide (Cs 0.33 WO 3 ) and the like are preferable. These may be used alone or in combination of two or more. The average particle size of the inorganic infrared absorber is preferably 5 to 100 nm, more preferably 10 to 50 nm. If the thickness is less than 5 nm, the dispersibility in the resin and the infrared absorptivity are reduced. On the other hand, if it is larger than 100 nm, the visible light transmittance is lowered. The average particle size is measured by taking an image with a transmission electron microscope, randomly extracting, for example, 50 particles, measuring the particle size, and averaging the results. Moreover, when the shape of particle | grains is not spherical, it defines as what was calculated by measuring a major axis.
 前記無機赤外線吸収剤の赤外線吸収層における含有量は、赤外線吸収層の全質量に対して1~80質量%であることが好ましく、5~50質量%であることがより好ましい。含有量が1%以上であれば、十分な赤外線吸収効果が現れ、80%以下であれば、十分な量の可視光線を透過できる。 The content of the inorganic infrared absorber in the infrared absorbing layer is preferably 1 to 80% by mass, and more preferably 5 to 50% by mass with respect to the total mass of the infrared absorbing layer. If the content is 1% or more, a sufficient infrared absorption effect appears, and if it is 80% or less, a sufficient amount of visible light can be transmitted.
 また、有機物の赤外線吸収材料としては、ポリメチン系、フタロシアニン系、ナフタロシアニン系、金属錯体系、アミニウム系、イモニウム系、ジイモニウム系、アンスラキノン系、ジチオール金属錯体系、ナフトキノン系、インドールフェノール系、アゾ系、トリアリルメタン系の化合物などが挙げられる。金属錯体系化合物、アミニウム系化合物(アミニウム誘導体)、フタロシアニン系化合物(フタロシアニン誘導体)、ナフタロシアニン系化合物(ナフタロシアニン誘導体)、ジイモニウム系化合物(ジイモニウム誘導体)、スクワリウム系化合物(スクワリウム誘導体)等が特に好ましく用いられる。 Organic infrared absorbing materials include polymethine, phthalocyanine, naphthalocyanine, metal complex, aminium, imonium, diimonium, anthraquinone, dithiol metal complex, naphthoquinone, indolephenol, azo And triallylmethane compounds. Particularly preferred are metal complex compounds, aminium compounds (aminium derivatives), phthalocyanine compounds (phthalocyanine derivatives), naphthalocyanine compounds (naphthalocyanine derivatives), diimonium compounds (diimonium derivatives), squalium compounds (squarium derivatives), and the like. Used.
 赤外線吸収層においては、本発明の効果を奏する範囲内で、上記以外の金属酸化物や、有機系赤外線吸収剤、金属錯体等の他の赤外線吸収剤を含んでもよい。このような他の赤外線吸収剤の具体例としては、例えば、ジイモニウム系化合物、アルミニウム系化合物、フタロシアニン系化合物、有機金属錯体、シアニン系化合物、アゾ化合物、ポリメチン系化合物、キノン系化合物、ジフェニルメタン系化合物、トリフェニルメタン系化合物等が挙げられる。 The infrared absorption layer may contain other infrared absorbers such as metal oxides other than those described above, organic infrared absorbers, metal complexes, and the like within the scope of the effects of the present invention. Specific examples of such other infrared absorbers include, for example, diimonium compounds, aluminum compounds, phthalocyanine compounds, organometallic complexes, cyanine compounds, azo compounds, polymethine compounds, quinone compounds, diphenylmethane compounds. And triphenylmethane compounds.
 赤外線吸収層の厚さは0.1~50μmの範囲が好ましく、1~20μmの範囲がより好ましい。0.1μm以上であれば赤外線吸収能力が向上する傾向にあり、一方、50μm以下であれば塗膜の耐クラック性が向上する。 The thickness of the infrared absorbing layer is preferably in the range of 0.1 to 50 μm, more preferably in the range of 1 to 20 μm. If it is 0.1 μm or more, the infrared absorption ability tends to be improved, while if it is 50 μm or less, the crack resistance of the coating film is improved.
 該赤外線吸収層の形成方法は特に制限されず、例えば、上記各成分を含む赤外線吸収層用塗布液を調製した後、ワイヤーバー等を用いて塗布液を塗布し、乾燥することにより形成する方法等が挙げられる。 The method for forming the infrared absorbing layer is not particularly limited. For example, a method of forming the infrared absorbing layer coating liquid containing the above-described components, applying the coating liquid using a wire bar or the like, and drying the coating liquid. Etc.
 (3)金属薄膜を設けて赤外光を反射する光学機能層
 次に、本発明に用いられる光学反射層は、金属薄膜を設けて赤外光を反射する方法を採用することも好ましい。
(3) Optical Functional Layer that Reflects Infrared Light by Providing a Metal Thin Film Next, it is also preferable that the optical reflective layer used in the present invention adopts a method of reflecting infrared light by providing a metal thin film.
 当該金属薄膜は、金属層、又は金属層と金属酸化物層若しくは金属窒化物層の少なくともいずれかとからなることが好ましい。金属を含有する金属層で赤外線反射機能を発現し、さらに、必須ではないが、金属酸化物層又は金属窒化物層の少なくともいずれかを併用することにより、可視光透過率を上昇させることができる。 The metal thin film is preferably composed of a metal layer or a metal layer and at least one of a metal oxide layer and a metal nitride layer. The metal layer containing a metal exhibits an infrared reflecting function, and although not essential, the visible light transmittance can be increased by using at least one of a metal oxide layer and a metal nitride layer. .
 本発明で用いる金属層については、赤外線反射性能に優れる銀を主成分とし、少なくとも金又はパラジウムの少なくともいずれかを、金原子及びパラジウム原子の合計として2~5質量%含むことが好ましい。これら金属の含有量が上記範囲内であれば、硫化による銀の腐食、亀裂を抑制する効果を発現し、かつコストと当該改善効果のバランスの観点で有利である。さらに、金、パラジウムは、銀と比較して可視光の吸収が大きく、添加量が上がるに従い積層フィルムとしての可視光透過性能が低下するため好ましくない。金とパラジウムの比率については、金のみ、あるいはパラジウムのみを添加しても良いし、2~5質量%の範囲でこれらを併用しても良い。金属層は上述した比率で金、パラジウムを添加した銀合金1層でも良いし、金、パラジウムの比率が異なる銀合金を2層以上積層した多層構成としても良い。金属層の総厚さについては、特に制限はないが、必要とする赤外線反射性能と可視光透過性能を考慮し、5~20nmの範囲で適宜選択することが好ましい。厚さが薄いと透明性に優れるが、赤外線反射性能が低下してしまう。逆に厚すぎると透明性が低下し、金属の使用量が増加し経済的にも好ましくない。 The metal layer used in the present invention preferably contains silver having excellent infrared reflection performance as a main component, and contains at least either gold or palladium in a total amount of 2 to 5% by mass as gold atoms and palladium atoms. If the content of these metals is within the above range, the effect of suppressing corrosion and cracking of silver due to sulfuration is exhibited, and it is advantageous from the viewpoint of the balance between the cost and the improvement effect. Further, gold and palladium are not preferable because they absorb a large amount of visible light as compared with silver, and the visible light transmission performance as a laminated film decreases as the amount added increases. As for the ratio of gold to palladium, only gold or palladium may be added, or these may be used in the range of 2 to 5% by mass. The metal layer may be a single silver alloy layer to which gold and palladium are added in the above-described ratio, or a multilayer structure in which two or more silver alloys having different gold and palladium ratios are stacked. The total thickness of the metal layer is not particularly limited, but is preferably selected in the range of 5 to 20 nm in consideration of necessary infrared reflection performance and visible light transmission performance. If the thickness is thin, the transparency is excellent, but the infrared reflection performance is degraded. On the other hand, if it is too thick, the transparency is lowered, the amount of metal used is increased, and this is not preferable economically.
 上述した金属層の金属組成は、ICP発光、XPS、XRFなど既知の分析方法を用いて定量することができる。例えば、ICP発光分析を用いれば、金属層の上にハードコート層などの保護層を設けた場合においても、各金属の組成を正確に分析することができ好ましい。 The metal composition of the metal layer described above can be quantified using a known analysis method such as ICP emission, XPS, or XRF. For example, it is preferable to use ICP emission analysis because the composition of each metal can be accurately analyzed even when a protective layer such as a hard coat layer is provided on the metal layer.
 本発明に用いられる光学反射層には、上述した金属層の上に金属酸化物層又は金属窒化物層の少なくともいずれかを積層したり、金属層を金属酸化物層又は金属窒化物層の少なくともいずれかでサンドイッチした構成であっても良い。本構成を採用することで、銀を含む金属層とハードコート層、若しくは、銀を含む金属層と基材の界面反射を抑制することができ、可視光透過率を向上させることが可能となる。つまり、銀単体の屈折率が0.3以下と低く、他の層との間で界面反射がおこり、可視光透過性能が低下するのに対し、屈折率が1.5~3程度の金属酸化物、金属窒化物を積層した構成とすることにより、可視光線の界面反射を低減することができるためである。これら物質としては、例えば、酸化チタン、酸化亜鉛、スズドープ酸化インジウム(ITO)などの金属酸化物、窒化ケイ素などの金属窒化物を挙げることができ、適宜選択して用いることができる。層の厚さについては、10~100nmであることが好ましく、さらに好ましくは30~60nmである。厚さが薄い場合、可視光透過性能の大幅な向上は見られない。逆に厚く積層しても可視光透過性能の更なる向上は得られないばかりか、経済的に劣り好ましくない。これら金属酸化物(あるいは金属窒化物)については、金属層と併せて、真空蒸着法、スパッタリング法、イオンプレーティング法など公知の技術を用い形成することができる。 In the optical reflective layer used in the present invention, at least one of a metal oxide layer or a metal nitride layer is laminated on the above-described metal layer, or the metal layer is at least a metal oxide layer or a metal nitride layer. The structure which sandwiched by either may be sufficient. By adopting this configuration, it is possible to suppress interface reflection between the metal layer containing silver and the hard coat layer, or the metal layer containing silver and the base material, and the visible light transmittance can be improved. . In other words, the refractive index of silver alone is as low as 0.3 or less, interface reflection occurs between other layers, and the visible light transmission performance is deteriorated, whereas the metal oxide having a refractive index of about 1.5 to 3 This is because the interfacial reflection of visible light can be reduced by using a structure in which a material and a metal nitride are laminated. Examples of these substances include metal oxides such as titanium oxide, zinc oxide, and tin-doped indium oxide (ITO), and metal nitrides such as silicon nitride, which can be appropriately selected and used. The thickness of the layer is preferably 10 to 100 nm, more preferably 30 to 60 nm. When the thickness is small, the visible light transmission performance is not significantly improved. On the contrary, even if it is laminated thickly, not only a further improvement in visible light transmission performance is obtained, but it is economically inferior. These metal oxides (or metal nitrides) can be formed together with the metal layer using a known technique such as a vacuum deposition method, a sputtering method, or an ion plating method.
 〈粘着層〉
 粘着層は本発明の光学フィルムと他の基材等に粘着させるための層である。本発明の光学フィルムをウインドウフィルムとして用いる場合には、窓ガラスに粘着させるための層である。
<Adhesive layer>
The pressure-sensitive adhesive layer is a layer for allowing the optical film of the present invention to adhere to other substrates. When using the optical film of this invention as a window film, it is a layer for making it adhere to a window glass.
 粘着層に用いる粘着剤はゴム系、アクリル系、シリコン系、ウレタン系等の粘着剤から選ばれる。経時での黄変がないことでアクリル系、シリコン系が好ましく、汎用離型シートが使用できる点でアクリル系がもっとも好ましい。また粘着層の厚さは5μm~30μmの範囲が好ましい。5μm以上あれば粘着性が安定し、30μm以下の場合粘着剤がフィルムのわきからはみ出すことがなく取扱いやすい。 The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is selected from rubber-based, acrylic-based, silicon-based, urethane-based pressure-sensitive adhesives. Acrylic and silicon-based materials are preferable because they do not yellow over time, and acrylic-based materials are most preferable in that a general-purpose release sheet can be used. The thickness of the adhesive layer is preferably in the range of 5 μm to 30 μm. If it is 5 μm or more, the adhesiveness is stable, and if it is 30 μm or less, the adhesive does not protrude from the side of the film and is easy to handle.
 粘着層に貼り合わせるセパレーター(剥離シート)の種類については、ポリエステル、ポリエチレン、ポリプロピレン、紙等の基材にシリコンコート、ポリアルキレンコート、フッ素樹脂コートしたものが使用できるが、寸法安定性、平滑性、剥離安定性の点からポリエステルフィルムにシリコンコートしたものが特に好ましい。またセパレーターの厚さは10~100μmの範囲が好ましく、更に好ましくは20~60μmである。10μm以上あれば塗布、乾燥時の熱によりフィルムに搬送じわが生じることがないため好ましい。また、100μm以下であれば経済性の観点から好ましい。 As for the type of separator (release sheet) to be attached to the adhesive layer, it is possible to use a substrate such as polyester, polyethylene, polypropylene, paper, etc., which is coated with silicon, polyalkylene, or fluororesin. However, dimensional stability and smoothness can be used. From the viewpoint of peeling stability, a polyester film coated with silicon is particularly preferred. The thickness of the separator is preferably in the range of 10 to 100 μm, more preferably 20 to 60 μm. A thickness of 10 μm or more is preferable because wrinkles in the film do not occur due to heat during coating and drying. Moreover, if it is 100 micrometers or less, it is preferable from a viewpoint of economical efficiency.
 〈接着層〉
 接着層は、層同士の接着性を高める機能があるものであれば特に限定はない。接着であっても粘着であってもよい。好ましくは、アクリル層と樹脂コート層とを接着させる層である。接着層は、透明性や層同士を密着する密着性、使用環境下での温度や湿度において変色や剥離を起こさない耐湿熱性、耐光性が要求される。
<Adhesive layer>
The adhesive layer is not particularly limited as long as it has a function of improving the adhesion between the layers. Adhesion or adhesion may be used. Preferably, it is a layer for bonding the acrylic layer and the resin coat layer. The adhesive layer is required to have transparency, adhesion to adhere the layers to each other, moisture and heat resistance and light resistance that do not cause discoloration or peeling at temperature and humidity under the usage environment.
 接着層は、1層のみからなっていてもよいし、複数層からなっていてもよい。接着層の厚さは、密着性、平滑性、反射材の反射率等の観点から、1~10μmが好ましく、より好ましくは3~8μmである。 The adhesive layer may consist of only one layer or may consist of a plurality of layers. The thickness of the adhesive layer is preferably 1 to 10 μm, more preferably 3 to 8 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
 接着層が樹脂である場合、樹脂として、上記の透明性、密着性、耐湿熱性、耐光性を満足するものであれば特に制限はなく、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独又はこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂又はポリエステル系樹脂とウレタン系樹脂の混合樹脂が好ましく、さらにアクリル系樹脂にイソシアネートを混合させるような、イソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 When the adhesive layer is a resin, the resin is not particularly limited as long as it satisfies the above transparency, adhesion, heat-and-moisture resistance, and light resistance. Polyester resin, urethane resin, acrylic resin, melamine resin Resin, epoxy resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin, polyester resin and melamine resin or polyester resin from the viewpoint of weather resistance A mixed resin of a resin and a urethane-based resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is mixed such that an isocyanate is mixed with an acrylic resin is more preferable. As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 また、接着層が金属酸化物である場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等、各種真空製膜法により製膜することができる。例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 When the adhesive layer is a metal oxide, it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride. For example, there are a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 〈ハードコート層〉
 本発明に係るハードコート層(HC層ともいう。)のハードコート材としては、ポリシロキサンに代表される無機系材料、活性エネルギー線硬化樹脂等を使用することができる。無機系材料は湿気硬化(常温~加温)が必要であり、硬化温度、硬化時間、コストの観点から本発明では活性エネルギー線硬化樹脂を使用することが好ましい。活性エネルギー線樹脂とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が好ましい。
<Hard coat layer>
As the hard coat material of the hard coat layer (also referred to as HC layer) according to the present invention, an inorganic material typified by polysiloxane, an active energy ray curable resin, or the like can be used. Inorganic materials require moisture curing (room temperature to warming), and it is preferable to use an active energy ray-curable resin in the present invention from the viewpoint of curing temperature, curing time, and cost. The active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active ray such as an ultraviolet ray or an electron beam. It is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin curable by ultraviolet irradiation is preferable.
 紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、又はプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。 As the ultraviolet curable resin, for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred. UV curable acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in products obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It is easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
 例えば、特開昭59-151110号に記載の、ユニディック17-806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステル末端のヒドロキシ基やカルボキシ基に2-ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号公報)。紫外線硬化型エポキシアクリレート系樹脂は、エポキシ樹脂の末端のヒドロキシ基にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。紫外線硬化型ポリオールアクリレート系樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。 For example, a mixture of 100 parts Unidic 17-806 (Dainippon Ink Co., Ltd.) and 1 part Coronate L (Nihon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. . An ultraviolet curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxy group at the end of the polyester (see, for example, JP Sho 59-151112). The ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate. Examples of ultraviolet curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipenta. Examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
 〈他の機能層〉
 本発明の光学フィルムは、支持体上に、さらなる機能の付加を目的として、導電性層、帯電防止層、ガスバリア層、防汚層、消臭層、流滴層、易滑層、耐摩耗性層、電磁波シールド層、紫外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層等を設けてもよい。
<Other functional layers>
The optical film of the present invention has a conductive layer, an antistatic layer, a gas barrier layer, an antifouling layer, a deodorizing layer, a droplet layer, a slippery layer, and abrasion resistance for the purpose of adding further functions on the support. A layer, an electromagnetic wave shielding layer, an ultraviolet absorption layer, a printing layer, a fluorescent light emitting layer, a hologram layer, a release layer, and the like may be provided.
 <用途>
 本発明の光学フィルムは、巻癖回復性と引裂強度に優れた光学フィルムであり、従来セルロースエステルフィルムでは、強度が十分でなく使用が困難であった用途、あるいはPETフィルムでは巻癖が強く使用が困難であった用途に適しており、ウインドウフィルムに好適に使用できる。その他、太陽光反射ミラーなどにおいても、同様に霧吹きをかけることで巻癖がとれて、貼り合わせ加工が容易になり、好適に使用することができる。
<Application>
The optical film of the present invention is an optical film excellent in curl recovery and tear strength. Conventional cellulose ester films are difficult to use because of insufficient strength, or PET films are strongly used. Is suitable for applications in which it is difficult to use, and can be suitably used for window films. In addition, in a solar reflective mirror etc., it can also be used suitably because the winding process can be easily removed by spraying, and the laminating process becomes easy.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 <支持体1(PET支持体;比較例)の作製>
 市販のポリエチレンテレフタレート(PET、固有粘度0.65)のペレットを150℃で8時間真空乾燥した後、押出機を用いて280℃でTダイから層状に溶融押出し、冷却ドラム上に静電印加しながら密着させ、冷却固化させ3層構成の積層未延伸シートを得た。この未延伸シートを、ロール式縦延伸機を用いて90℃で縦方向に3.5倍延伸した。
<Preparation of Support 1 (PET Support; Comparative Example)>
Pellets of commercially available polyethylene terephthalate (PET, intrinsic viscosity 0.65) were vacuum-dried at 150 ° C. for 8 hours, melt-extruded in layers from a T die at 280 ° C. using an extruder, and electrostatically applied onto a cooling drum. The laminated unstretched sheet having a three-layer structure was obtained by closely adhering to the substrate while cooling and solidifying. This unstretched sheet was stretched 3.5 times in the longitudinal direction at 90 ° C. using a roll type longitudinal stretching machine.
 得られた1軸延伸フィルムを、テンター式横延伸機を用いて、第1延伸ゾーン100℃で総横延伸倍率の50%延伸し、更に第2延伸ゾーン120℃で総横延伸倍率3.6倍となるように延伸した。次いで100℃で2秒間熱処理し、更に第1熱固定ゾーン170℃で5秒間熱固定し、第2熱固定ゾーン210℃で15秒間熱固定した。次いで横方向に5%弛緩処理しながら室温まで30秒かけて徐冷して厚さ50μmの支持体1(2軸延伸積層ポリエステル(PET:ポリエチレンテレフタレート))を作製した。 The obtained uniaxially stretched film was stretched by 50% of the total transverse stretching ratio in the first stretching zone 100 ° C. using a tenter-type transverse stretching machine, and further in the second stretching zone 120 ° C., the total transverse stretching ratio 3.6. It extended | stretched so that it might become double. Next, heat treatment was performed at 100 ° C. for 2 seconds, and further heat setting was performed at the first heat setting zone 170 ° C. for 5 seconds, and heat setting was performed at the second heat setting zone 210 ° C. for 15 seconds. Subsequently, the substrate 1 (biaxially stretched laminated polyester (PET: polyethylene terephthalate)) having a thickness of 50 μm was produced by gradually cooling to room temperature over 30 seconds while performing a 5% relaxation treatment in the lateral direction.
 <支持体2(積層変性PET支持体;比較例)の作製>
 テレフタル酸ジメチル100質量部、エチレングリコール64質量部に酢酸カルシウム水和物0.1質量部を添加し、常法によりエステル交換を行った。得られた生成物に5-ナトリウムスルホ-ジ(β-ヒドロキシエチル)イソフタル酸のエチレングリコール溶液(濃度35質量%)29質量部(5.2モル%/全酸成分)、ポリエチレングリコール(数平均分子量3000)9.8質量部(7.8質量%/ポリマー)、三酸化アンチモン0.05質量部、リン酸トリメチルエステル0.13質量部を添加した。次いで徐々に昇温、減圧にし、280℃、0.5mmHgで重合を行い、共重合ポリエステルA(固有粘度0.59)を得た。共重合ポリエステルA/PET=25質量部/75質量部の割合になるようにタンブラー型混合機でブレンドし、ポリエステルBを得た。
<Preparation of Support 2 (Laminated Modified PET Support; Comparative Example)>
To 100 parts by mass of dimethyl terephthalate and 64 parts by mass of ethylene glycol, 0.1 part by mass of calcium acetate hydrate was added, and transesterification was performed by a conventional method. To the obtained product, 29 parts by mass (5.2 mol% / total acid component) of ethylene glycol solution (concentration 35% by mass) of 5-sodium sulfo-di (β-hydroxyethyl) isophthalic acid, polyethylene glycol (number average) 9.8 parts by mass (molecular weight 3000) (7.8% by mass / polymer), 0.05 part by mass of antimony trioxide, and 0.13 part by mass of trimethyl phosphate were added. Next, the temperature was gradually raised and the pressure was reduced, and polymerization was carried out at 280 ° C. and 0.5 mmHg to obtain a copolyester A (intrinsic viscosity 0.59). The polyester B was obtained by blending with a tumbler mixer so that the ratio of copolymer polyester A / PET = 25 parts by mass / 75 parts by mass.
 得られたポリエステルAとポリエステルBを用いて、各々150℃で8時間真空乾燥した後、3台の押出機を用いて280℃で溶融押出し、Tダイ内で層状に接合し、冷却ドラム上に静電印加しながら密着させ、冷却固化させ3層構成の積層未延伸シートを得た。 Using the obtained polyester A and polyester B, each was vacuum-dried at 150 ° C. for 8 hours, melt-extruded at 280 ° C. using three extruders, joined in layers in a T-die, and placed on a cooling drum It was made to adhere, applying static electricity, and solidified by cooling to obtain a laminated unstretched sheet having a three-layer structure.
 このときポリエステルAが両外層、ポリエステルBが中間層であり、各層の厚さの比が1:2:1となるように各押出機の押出し量を調整した。この未延伸シートを、ロール式縦延伸機を用いて90℃で縦方向に3.5倍延伸した。 At this time, polyester A was both outer layers and polyester B was an intermediate layer, and the extrusion amount of each extruder was adjusted so that the thickness ratio of each layer was 1: 2: 1. This unstretched sheet was stretched 3.5 times in the longitudinal direction at 90 ° C. using a roll type longitudinal stretching machine.
 得られた1軸延伸フィルムを、テンター式横延伸機を用いて、第1延伸ゾーン100℃で総横延伸倍率の50%延伸し、更に第2延伸ゾーン120℃で総横延伸倍率3.6倍となるように延伸した。次いで100℃で2秒間熱処理し、更に第1熱固定ゾーン170℃で5秒間熱固定し、第2熱固定ゾーン210℃で15秒間熱固定した。次いで横方向に5%弛緩処理しながら室温まで30秒かけて徐冷して厚さ120μm(各層の膜厚12.5μm/25μm/12.5μm)の支持体2(2軸延伸積層変性PET支持体(表1では変性PETと略記した。))を作製した。 The obtained uniaxially stretched film was stretched by 50% of the total transverse stretching ratio in the first stretching zone 100 ° C. using a tenter-type transverse stretching machine, and further in the second stretching zone 120 ° C., the total transverse stretching ratio 3.6. It extended | stretched so that it might become double. Next, heat treatment was performed at 100 ° C. for 2 seconds, and further heat setting was performed at the first heat setting zone 170 ° C. for 5 seconds, and heat setting was performed at the second heat setting zone 210 ° C. for 15 seconds. Next, the substrate 2 (biaxially stretched laminated modified PET support) having a thickness of 120 μm (the thickness of each layer is 12.5 μm / 25 μm / 12.5 μm) is gradually cooled to room temperature over a period of 5% while being subjected to 5% relaxation treatment in the lateral direction. Body (abbreviated as modified PET in Table 1)).
 <支持体3(TAC支持体;比較例)の作製>
 下記成分を、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散させて、微粒子分散液を調製した。
<Preparation of Support 3 (TAC Support; Comparative Example)>
The following components were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to prepare a fine particle dispersion.
 (微粒子分散液)
 微粒子(アエロジル R972V 日本アエロジル(株)製)
                            11質量部
 エタノール                      89質量部
 下記微粒子添加液の成分のうち、メチレンクロライドを溶解タンクに投入し、調製した微粒子分散液を下記の添加量で、十分撹拌しながらゆっくりと添加した。次いで、微粒子の二次粒子の粒径が所定の大きさとなるようにアトライターにて分散させた後、ファインメットNF(日本精線(株)製)で濾過して、微粒子添加液を得た。
(Fine particle dispersion)
Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.)
11 parts by mass Ethanol 89 parts by mass Among the components of the following fine particle addition liquid, methylene chloride was charged into the dissolution tank, and the prepared fine particle dispersion was slowly added in the following addition amount with sufficient stirring. Subsequently, after being dispersed with an attritor so that the particle size of the secondary particles of the fine particles becomes a predetermined size, the fine particles are filtered through Finemet NF (manufactured by Nippon Seisen Co., Ltd.) to obtain a fine particle additive solution. .
 (微粒子添加液)
 メチレンクロライド                  99質量部
 微粒子分散液                      5質量部
 下記主ドープの成分のうち、メチレンクロライドとエタノールを加圧溶解タンクに投入した。次いで、セルローストリアセテート、チヌビン928、及び調製した微粒子添加液を撹拌しながら投入し、加熱、撹拌して完全に溶解させた。得られた溶液を、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープを調製した。
(Fine particle additive)
Methylene chloride 99 parts by mass Fine particle dispersion 5 parts by mass Among the main dope components below, methylene chloride and ethanol were charged into a pressurized dissolution tank. Next, cellulose triacetate, tinuvin 928, and the prepared fine particle additive solution were added with stirring, and heated and stirred to completely dissolve. The obtained solution was used as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. The main dope was prepared by filtration using 244.
 (主ドープの組成)
 メチレンクロライド                 520質量部
 エタノール                      45質量部
 セルローストリアセテート(TAC:リンター綿から合成されたセルローストリアセテート、アセチル基置換度2.88、Mn=150000、Mw=300000)
                           100質量部
 微粒子添加液                      1質量部
 次に、ベルト流延装置を用い、ステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶剤を蒸発させ、ステンレスバンド支持体上から剥離した。セルロースエステルフィルムのウェブを35℃で溶剤を蒸発させ、1.65m幅にスリットし、テンターでTD方向(フィルムの幅手方向)に1.15倍、MD方向(フィルムの長手方向)の延伸倍率は1.01倍で延伸しながら、160℃の乾燥温度で乾燥させた。乾燥を始めたときの残留溶剤量は20%であった。その後、120℃の乾燥装置内を多数のローラーで搬送させながら15分間乾燥させた後、1.33m幅にスリットし、フィルム両端に幅10mm、高さ10μmのナーリング加工を施し、巻芯に巻取り、膜厚50μmの比較となる支持体3を作製した。
(Main dope composition)
Methylene chloride 520 parts by mass Ethanol 45 parts by mass Cellulose triacetate (TAC: cellulose triacetate synthesized from linter cotton, acetyl group substitution degree 2.88, Mn = 150,000, Mw = 300000)
100 parts by mass Particulate additive solution 1 part by mass Next, a belt casting apparatus was used to uniformly cast on a stainless steel band support. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off. The cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and stretched in the TD direction (film width direction) 1.15 times and MD direction (film length direction) with a tenter. Was dried at a drying temperature of 160 ° C. while being stretched by 1.01 times. The residual solvent amount at the start of drying was 20%. Then, after drying for 15 minutes while transporting the inside of a drying device at 120 ° C. with many rollers, slitting to a width of 1.33 m, applying a knurling process with a width of 10 mm and a height of 10 μm on both ends of the film, and winding it on a winding core Then, a support 3 for comparison with a film thickness of 50 μm was produced.
 <支持体4(本発明)の作製>
 支持体3の作製において、ドープ組成物に第2のポリマー成分としてポリメチルメタクリレート(PMMA、Mw;10万)を30質量部添加した以外は支持体3の作製と同様にして本発明となる支持体4を作製した。
<Preparation of Support 4 (Invention)>
In the production of the support 3, the support according to the present invention was produced in the same manner as the production of the support 3 except that 30 parts by mass of polymethyl methacrylate (PMMA, Mw; 100,000) was added to the dope composition as the second polymer component. Body 4 was produced.
 <支持体5(本発明)の作製>
 支持体3の作製において、ドープ組成物に第2のポリマー成分としてポリエチレングリコール(PEG、Mw;3000)を30質量部添加した以外は支持体3の作製と同様にして本発明となる支持体5を作製した。
<Preparation of Support 5 (Invention)>
In the production of the support 3, the support 5 according to the present invention was prepared in the same manner as the production of the support 3, except that 30 parts by mass of polyethylene glycol (PEG, Mw; 3000) was added to the dope composition as the second polymer component. Was made.
 <支持体6~39の作製>
 以下、同様にして、支持体3の作製において、表1のようにセルロース成分(第1のポリマー成分)と第2のポリマー成分と添加量を変更して支持体6~39を作製した。
<Preparation of supports 6 to 39>
Similarly, in the production of the support 3, the supports 6 to 39 were produced by changing the addition amount of the cellulose component (first polymer component) and the second polymer component as shown in Table 1.
 なお、表中の第1のポリマー成分の欄に記載のDAC、CAP1及びCAP2は、それぞれ以下のセルロースエステルを表し、支持体の作製に当たっては、TACの代わりにそれぞれDAC、CAP1及びCAP2を用いて各支持体を作製した。 In addition, DAC, CAP1, and CAP2 described in the first polymer component column in the table represent the following cellulose esters, respectively, and DAC, CAP1, and CAP2 are used instead of TAC when preparing the support. Each support was prepared.
 DAC:アセチル基置換度2.42、Mn=55000、Mw=165000のセルロースジアセテート
 CAP1:アセチル基置換度1.68、プロピオニル基置換度0.9、総アシル基置換度2.58のセルロースアセテートプロピオネート(重量平均分子量200000)
 CAP2:セルロースアセテートプロピオネート(製品名CAP482-20、イーストマンケミカル社製、アセチル基置換度0.2、プロピオニル基置換度2.56、総アシル基置換度2.76、Mn:70000、Mw:220000)
 また、表中のPBS及びPBSAは、それぞれ、以下のようにして合成した脂肪族ポリエステルを表す。
DAC: cellulose diacetate having an acetyl group substitution degree of 2.42, Mn = 55000, Mw = 165000 CAP1: cellulose acetate having an acetyl group substitution degree of 1.68, a propionyl group substitution degree of 0.9, and a total acyl group substitution degree of 2.58 Propionate (weight average molecular weight 200000)
CAP2: cellulose acetate propionate (product name CAP482-20, manufactured by Eastman Chemical Co., Ltd., acetyl group substitution degree 0.2, propionyl group substitution degree 2.56, total acyl group substitution degree 2.76, Mn: 70000, Mw : 220,000)
PBS and PBSA in the table represent aliphatic polyesters synthesized as follows.
 (脂肪族ポリエステル(PBS)の合成)
 コンデンサー付き水分定量受器、温度計、曲管及びSUS製攪拌羽根を付けたガラス製1Lセパラブルフラスコに、琥珀酸354.3g(3.0mol)及び1,4-ブタンジオール270.4g(3.0mol)を入れ、窒素気流下で180℃まで段階的に反応温度を上げた。180℃で生成水がほとんど認められなくなった時点で、1%2-エチルヘキサン酸スズ(II)トルエン溶液1.32g(2-エチルヘキサン酸スズ(II):0.033mmol、和光純薬工業株式会社製)を加え反応を継続した。さらに、200℃まで反応温度を上げ、反応系内を減圧にした。反応物の重量平均分子量が200000になるまで反応を継続し、反応終了時に溶融物をSUS製バットに排出し、PBSを得た。
(Synthesis of aliphatic polyester (PBS))
Into a glass 1 L separable flask equipped with a moisture meter with condenser, thermometer, curved tube and SUS stirring blade, 354.3 g (3.0 mol) of oxalic acid and 270.4 g of 1,4-butanediol (3 0.0 mol), and the reaction temperature was raised stepwise to 180 ° C. under a nitrogen stream. When almost no water was observed at 180 ° C., 1.32 g of 1% 2-ethylhexanoic acid tin (II) toluene solution (tin (2-ethylhexanoic acid tin (II): 0.033 mmol), Wako Pure Chemical Industries Ltd. The reaction was continued. Furthermore, the reaction temperature was raised to 200 ° C., and the pressure in the reaction system was reduced. The reaction was continued until the weight average molecular weight of the reaction product reached 200,000, and at the end of the reaction, the melt was discharged into a SUS bat to obtain PBS.
 (脂肪族ポリエステル(PBSA)の合成)
 コンデンサー付き水分定量受器、温度計、曲管及びSUS製攪拌羽根を付けたガラス製1Lセパラブルフラスコに、琥珀酸236.2g(2.0mol)及びアジピン酸146.1g(1.0mol)、及び1,4-ブタンジオール270.4g(3.0mol)を入れ、窒素気流下で180℃まで段階的に反応温度を上げた。180℃で生成水がほとんど認められなくなった時点で、1%2-エチルヘキサン酸スズ(II)トルエン溶液1.32g(2-エチルヘキサン酸スズ(II):0.033mmol、和光純薬工業株式会社製)を加え反応を継続した。さらに、200℃まで反応温度を上げ、反応系内を減圧にした。反応物の重量平均分子量が200000になるまで反応を継続し、反応終了時に溶融物をSUS製バットに排出し、PBSAを得た。
(Synthesis of aliphatic polyester (PBSA))
In a 1 L separable flask made of glass with a moisture quantification receiver with a condenser, a thermometer, a curved tube and a stirring blade made of SUS, 236.2 g (2.0 mol) of oxalic acid and 146.1 g (1.0 mol) of adipic acid, Then, 270.4 g (3.0 mol) of 1,4-butanediol was added, and the reaction temperature was raised stepwise to 180 ° C. under a nitrogen stream. When almost no water was observed at 180 ° C., 1.32 g of 1% 2-ethylhexanoic acid tin (II) toluene solution (tin (2-ethylhexanoic acid tin (II): 0.033 mmol), Wako Pure Chemical Industries Ltd. The reaction was continued. Furthermore, the reaction temperature was raised to 200 ° C., and the pressure in the reaction system was reduced. The reaction was continued until the weight average molecular weight of the reaction product reached 200,000, and when the reaction was completed, the melt was discharged into a SUS vat to obtain PBSA.
 <支持体の評価>
 上記のようにして作製した支持体1~39について以下のように巻癖回復率と引裂強さを評価した。
<Evaluation of support>
The supports 1 to 39 produced as described above were evaluated for curl recovery rate and tear strength as follows.
 (巻癖回復率)
 支持体を35mm(製造時のTD方向)×120mm(製造時のMD方向)の帯状に切断し、温度23℃、相対湿度55%の条件下で1日放置した後に直径が50mmであるコアにこれを巻き付ける。
(Round recovery rate)
The support is cut into a strip of 35 mm (TD direction at the time of manufacture) × 120 mm (MD direction at the time of manufacture) and left to stand for 1 day at a temperature of 23 ° C. and a relative humidity of 55%. Wrap this.
 その後、温度55℃、相対湿度20%の条件下で24時間熱処理を行う。熱処理後、温度23℃、相対湿度55%の条件下で30分かけて放冷した後にコアから解放し、1分経過後に支持体の巻癖カール度を測定する。カール度は1/rで表し、rはカールした支持体の曲率半径を表し、単位はmである。 Then, heat treatment is performed for 24 hours under conditions of a temperature of 55 ° C. and a relative humidity of 20%. After the heat treatment, it is allowed to cool for 30 minutes under conditions of a temperature of 23 ° C. and a relative humidity of 55%, and then released from the core, and after 1 minute, the curl curl degree of the support is measured. The curl degree is represented by 1 / r, r represents the radius of curvature of the curled support, and the unit is m.
 さらに、支持体のカールした内側から霧吹きで水を吹きかけ、5分後のカール度を測定し、巻癖回復率を下記の式で評価した。
巻癖回復率=(吹きかけ前のカール度-吹きかけ後のカール度)/吹きかけ前のカール度×100(%)
 (引裂強さ)
 JIS K 7128-2(1998)に準拠して、(株)東洋精機製作所製の軽荷重引裂試験機により、エルメンドルフ引裂法により以下の条件で測定した。
Further, water was sprayed from the curled inside of the support with a spray, the curl degree after 5 minutes was measured, and the curl recovery rate was evaluated by the following formula.
Curb recovery rate = (curl degree before spraying-curl degree after spraying) / curl degree before spraying x 100 (%)
(Tear strength)
In accordance with JIS K 7128-2 (1998), it was measured by the Elmendorf tearing method using the light load tear tester manufactured by Toyo Seiki Seisakusho Co., Ltd. under the following conditions.
 サンプルを63mm×75mmの切り出し、温度23℃、相対湿度55%の条件下で1日放置した後に同条件下で測定した。サンプルは搬送方向と直交する方向(TD方向)及び搬送方向(MD方向)それぞれ5枚、合計10枚の引き裂き荷重(mN)を測定し、その平均値(同一の引裂長さ及び厚さとして換算)を引裂強さとして求めた。 A sample was cut out of 63 mm × 75 mm, and left for 1 day under conditions of a temperature of 23 ° C. and a relative humidity of 55%, and then measured under the same conditions. The sample measures the tear load (mN) of a total of 10 sheets in the direction orthogonal to the transport direction (TD direction) and the transport direction (MD direction), and averages the values (converted as the same tear length and thickness). ) As the tear strength.
 (ガラス転移温度)
 第1のポリマー成分と第2のポリマー成分とが相溶しているかどうかを調べるため、本発明に係る支持体4~13、15~22、24~34、36~39、第1のポリマー成分及び第2のポリマー成分のそれぞれに対し、示差走査熱量測定器としてセイコーインスツル(株)製 示差走査熱量計DSC220)を用い、昇温速度20℃/分で測定し、JIS K7121(1987)にしたがい中間点ガラス転移温度(Tmg)を求めた。
(Glass-transition temperature)
In order to examine whether the first polymer component and the second polymer component are compatible, the supports 4 to 13, 15 to 22, 24 to 34, 36 to 39 according to the present invention, the first polymer component For each of the second polymer component and the second polymer component, a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. was used as a differential scanning calorimeter, and the temperature was increased at a rate of 20 ° C./minute. According to JIS K7121 (1987). Accordingly, the midpoint glass transition temperature (Tmg) was determined.
 その結果、本発明に係る支持体4~13、15~22、24~34、36~39では、それぞれのポリマー成分の固有のガラス転移温度が消失し、一つのガラス転移温度となっており、相溶していることを確認した。 As a result, in the supports 4 to 13, 15 to 22, 24 to 34, and 36 to 39 according to the present invention, the inherent glass transition temperature of each polymer component disappears and becomes one glass transition temperature, It was confirmed that they were compatible.
 <光学フィルム1;多層膜赤外線反射フィルムの作製>
 支持体1及び2に対して、それぞれ、以下の下引き加工1を施した。
<Optical film 1; Production of multilayer infrared reflective film>
The following subbing processes 1 were performed on the supports 1 and 2, respectively.
 [下引き加工1]
 支持体の両面に12W・min/mのコロナ放電処理を施し、下引き塗布液1を乾燥膜厚0.4μmになるように塗布し、その上に12W・min/mのコロナ放電処理を施し、下引き塗布液2を乾燥膜厚0.06μmになるように塗布した。各層はそれぞれ塗布後110℃で10秒間乾燥し、引き続いて110℃で2分間熱処理した。
[Underdrawing 1]
A corona discharge treatment of 12 W · min / m 2 is applied to both surfaces of the support, and the undercoat coating solution 1 is applied to a dry film thickness of 0.4 μm, and a corona discharge treatment of 12 W · min / m 2 is applied thereon. The undercoat coating solution 2 was applied to a dry film thickness of 0.06 μm. Each layer was dried at 110 ° C. for 10 seconds after coating and subsequently heat treated at 110 ° C. for 2 minutes.
 〈下引塗布液1〉
ブチルアクリレート30質量%、t-ブチルアクリレート20質量%、スチレン25質量%、2-ヒドロキシエチルアクリレート25質量%の共重合体ラテックス液(固形分30%)                           50g
化合物(UL-1)                   0.2g
ヘキサメチレン-1,6-ビス(エチレン尿素)     0.05g
水で仕上げる                     1000ml
 〈下引塗布液2〉
ゼラチン                         10g
化合物(UL-1)                   0.4g
シリカ粒子(平均粒径3μm)              0.1g
硬膜剤(UL-2)                     1g
水で仕上げる                     1000ml
Figure JPOXMLDOC01-appb-C000008
<Undercoat coating solution 1>
Copolymer latex liquid (solid content 30%) of butyl acrylate 30% by mass, t-butyl acrylate 20% by mass, styrene 25% by mass, 2-hydroxyethyl acrylate 25% by mass 50 g
Compound (UL-1) 0.2g
Hexamethylene-1,6-bis (ethyleneurea) 0.05g
Finish with water 1000ml
<Undercoat coating solution 2>
10g gelatin
Compound (UL-1) 0.4g
Silica particles (average particle size 3μm) 0.1g
Hardener (UL-2) 1g
Finish with water 1000ml
Figure JPOXMLDOC01-appb-C000008
 支持体3から39については、それぞれ、以下の下引き加工2を施した。 The following subbing processes 2 were applied to the supports 3 to 39, respectively.
 [下引き加工2]
 下引層塗布液3をエクストルージョンコータで15ml/mとなるように塗布し、塗布後50℃の無風ゾーン(1秒)を経た後、120℃で30秒乾燥し、下引層塗布済み支持体を得た。
[Underdrawing process 2]
The undercoat layer coating solution 3 is applied with an extrusion coater to 15 ml / m 2 , passes through a 50 ° C. no-air zone (1 second), and then dried at 120 ° C. for 30 seconds. A support was obtained.
 〈下引層塗布液3〉
脱イオン化ゼラチン              10g
純水                     30ml
酢酸                     20g
下記架橋剤                 0.2モル/gゼラチン
下記ノニオン系フッ素含有界面活性剤     0.2g
メタノール/アセトン=2/8の有機溶媒で1000mlにし、下引層塗布液3とした。
<Undercoat layer coating solution 3>
10g deionized gelatin
30 ml of pure water
Acetic acid 20g
The following crosslinking agent 0.2 mol / g gelatin The following nonionic fluorine-containing surfactant 0.2 g
The undercoat layer coating solution 3 was made up to 1000 ml with an organic solvent of methanol / acetone = 2/8.
 用いた架橋剤とノニオン系フッ素含有界面活性剤(界面活性剤と略記)の構造を以下に示す。 The structure of the used crosslinking agent and nonionic fluorine-containing surfactant (abbreviated as surfactant) is shown below.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 〈脱イオン化ゼラチンの作製〉
 石灰処理、水洗、中和処理を行い、石灰を除去したオセインを55~60℃の熱水中で抽出処理を行い、オセインゼラチンを得た。得られたオセインゼラチン水溶液を、アニオン交換樹脂(ダイヤイオンPA-31G)とカチオン交換樹脂(ダイヤイオンPK-218)の混合ベッドで両イオン交換を行った。
<Preparation of deionized gelatin>
Ocein from which lime was removed by performing lime treatment, water washing and neutralization treatment was extracted in hot water at 55 to 60 ° C. to obtain ossein gelatin. The obtained ossein gelatin aqueous solution was subjected to both ion exchanges in a mixed bed of anion exchange resin (Diaion PA-31G) and cation exchange resin (Diaion PK-218).
 <光学フィルム1~39の作製>
 〔赤外線反射層の形成〕
 重層塗布可能なスライドホッパー塗布装置(スライドコーター)を用い、下記低屈折率層用塗布液L1、及び下記高屈折率層用塗布液H1を45℃に保温しながら、45℃に加温した上記の下引層塗布済み支持体1~39のそれぞれに対して、高屈折率層及び低屈折率層のそれぞれの乾燥時の膜厚が130nmになるように、低屈折率層6層、高屈折率層5層を交互に計11層の同時重層塗布を行った。
<Preparation of optical films 1 to 39>
(Formation of infrared reflective layer)
Using the slide hopper coating apparatus (slide coater) capable of multilayer coating, the following low refractive index layer coating liquid L1 and the following high refractive index layer coating liquid H1 were heated to 45 ° C. while being heated to 45 ° C. 6 layers of low refractive index layer, high refractive index so that the thickness of the high refractive index layer and the low refractive index layer when dried is 130 nm for each of the substrates 1 to 39 coated with the undercoat layer. A total of 11 layers were alternately applied to 5 rate layers alternately.
 塗布直後、5℃の冷風を5分間吹き付けてセットさせた。その後、80℃の温風を吹き付けて乾燥させて、11層からなる赤外線反射層を形成した。さらに、赤外線反射層上に下記ハードコート(HC)層を形成し、さらにHC層とは反対側の面発に粘着層を設けて赤外線反射フィルム機能を有する光学フィルム1~39を得た。 Immediately after application, 5 ° C. cold air was blown for 5 minutes to set. Thereafter, warm air of 80 ° C. was blown and dried to form an 11-layer infrared reflection layer. Further, the following hard coat (HC) layer was formed on the infrared reflective layer, and an adhesive layer was provided on the surface opposite to the HC layer to obtain optical films 1 to 39 having an infrared reflective film function.
 〔低屈折率層用塗布液L1の調製〕
 まず、10質量%の第2の金属酸化物粒子としてのコロイダルシリカ(日産化学工業株式会社製、スノーテックス(登録商標)OXS)水溶液680部と、4.0質量%のポリビニルアルコール(株式会社クラレ製、PVA-103:重合度300、ケン化度98.5mol%)水溶液30部と、3.0質量%のホウ酸水溶液150部とを混合し、分散した。純水を加え、全体として1000部のコロイダルシリカ分散液L1を調製した。
[Preparation of coating liquid L1 for low refractive index layer]
First, 680 parts of a colloidal silica (manufactured by Nissan Chemical Industries, Ltd., Snowtex (registered trademark) OXS) aqueous solution as 10% by mass of second metal oxide particles, and 4.0% by mass of polyvinyl alcohol (Kuraray Co., Ltd.). (Manufactured by PVA-103: polymerization degree 300, saponification degree 98.5 mol%) 30 parts of an aqueous solution and 150 parts of a 3.0% by mass boric acid aqueous solution were mixed and dispersed. Pure water was added to prepare 1000 parts of colloidal silica dispersion L1 as a whole.
 次いで、得られたコロイダルシリカ分散液L1を45℃に加熱し、その中に4.0質量%のポリビニルアルコール(B)としてのポリビニルアルコール(日本酢ビ・ポバール株式会社製、JP-45:重合度4500、ケン化度86.5~89.5mol%)水溶液760部とを順次に、撹拌しながら添加した。その後、1質量%のベタイン系界面活性剤(川研ファインケミカル株式会社製、ソフダゾリン(登録商標)LSB-R)水溶液40部を添加し、低屈折率層用塗布液L1を調製した。 Next, the obtained colloidal silica dispersion L1 was heated to 45 ° C., and 4.0% by mass of polyvinyl alcohol (B) as a polyvinyl alcohol (manufactured by Nippon Vinyl Bipo-Poval Co., Ltd., JP-45: polymerization) 4500, saponification degree 86.5 to 89.5 mol%) and 760 parts of an aqueous solution were sequentially added with stirring. Thereafter, 40 parts of a 1% by weight betaine surfactant (manufactured by Kawaken Fine Chemical Co., Ltd., Sofazoline (registered trademark) LSB-R) aqueous solution was added to prepare a coating solution L1 for a low refractive index layer.
 〔高屈折率層用塗布液H1の調製〕
 (コア・シェル粒子のコアとするルチル型酸化チタンの調製)
 水中に、酸化チタン水和物を懸濁させ、TiOに換算した時の濃度が100g/Lになるように、酸化チタンの水性懸濁液を調製した。10L(リットル)の該懸濁液に、30Lの水酸化ナトリウム水溶液(濃度10モル/L)を撹拌しながら加えた後、90℃に加熱し、5時間熟成させた。次いで、塩酸を用いて中和し、濾過後水を用いて洗浄した。
[Preparation of coating liquid H1 for high refractive index layer]
(Preparation of rutile titanium oxide as core of core / shell particles)
An aqueous suspension of titanium oxide was prepared such that the titanium oxide hydrate was suspended in water and the concentration when converted to TiO 2 was 100 g / L. To 10 L (liter) of the suspension, 30 L of an aqueous sodium hydroxide solution (concentration: 10 mol / L) was added with stirring, then heated to 90 ° C. and aged for 5 hours. Next, the mixture was neutralized with hydrochloric acid, washed with water after filtration.
 なお、上記反応(処理)において、原料である酸化チタン水和物は、公知の手法に従い、硫酸チタン水溶液を熱加水分解処理によって得られたものである。 In the above reaction (treatment), the raw material titanium oxide hydrate is obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
 純水中に、上記塩基処理したチタン化合物をTiOに換算した時の濃度が20g/Lになるように、懸濁させた。その中に、TiO量に対し0.4モル%のクエン酸を撹拌しながら加えた。その後、加熱し、混合ゾル液の温度が95℃になるところで、塩酸濃度が30g/Lになるように濃塩酸を加えた、液温を95℃に維持しながら、3時間撹拌させ、酸化チタンゾル液を調製した。 The base-treated titanium compound was suspended in pure water so that the concentration when converted to TiO 2 was 20 g / L. Therein, it was added with TiO 2 amount to stirring 0.4 mole% citric acid. After that, when the temperature of the mixed sol solution reaches 95 ° C., concentrated hydrochloric acid is added so that the hydrochloric acid concentration becomes 30 g / L. The mixture is stirred for 3 hours while maintaining the liquid temperature at 95 ° C. A liquid was prepared.
 上記のように、得られた酸化チタンゾル液のpH及びゼータ電位を測定したところ、pHは1.4であり、ゼータ電位は+40mVであった。また、マルバーン社製ゼータサイザーナノにより粒径測定を行ったところ、単分散度は16%であった。 As described above, when the pH and zeta potential of the obtained titanium oxide sol solution were measured, the pH was 1.4 and the zeta potential was +40 mV. Moreover, when the particle size was measured with a Zetasizer Nano manufactured by Malvern, the monodispersity was 16%.
 さらに、酸化チタンゾル液を105℃で3時間乾燥させ、酸化チタンの粉体微粒子を得た。日本電子データム株式会社製、JDX-3530型を用いて、該粉体微粒子をX線回折測定し、ルチル型の酸化チタン微粒子であることが確認された。また、該微粒子の体積平均粒径は10nmであった。 Further, the titanium oxide sol solution was dried at 105 ° C. for 3 hours to obtain titanium oxide powder fine particles. The powder fine particles were subjected to X-ray diffraction measurement using JDX-3530 type manufactured by JEOL Datum Co., Ltd. and confirmed to be rutile titanium oxide fine particles. The volume average particle diameter of the fine particles was 10 nm.
 そして、純水4kgに、得られた体積平均粒径10nmのルチル型の酸化チタン微粒子を含む20.0質量%の酸化チタンゾル水系分散液を添加して、コア粒子となるゾル液を得た。 Then, a 20.0 mass% titanium oxide sol aqueous dispersion containing rutile-type titanium oxide fine particles having a volume average particle diameter of 10 nm was added to 4 kg of pure water to obtain a sol solution serving as core particles.
 (シェル被覆によるコア・シェル粒子の調製)
 2kgの純水に、10.0質量%の酸化チタンゾル水系分散液0.5kgを加え、90℃に加熱した。次いで、SiOに換算した時の濃度が2.0質量%であるように調製したケイ酸水溶液1.3kgを徐々に添加し、オートクレーブ中、175℃で18時間加熱処理を行い、さらに濃縮して、コア粒子としてはルチル型構造を有する酸化チタンであり、被覆層としてはSiOであるコア・シェル粒子(平均粒径:10nm)のゾル液(固形分濃度20質量%)を得た。
(Preparation of core / shell particles by shell coating)
To 2 kg of pure water, 0.5 kg of 10.0 mass% titanium oxide sol aqueous dispersion was added and heated to 90 ° C. Next, 1.3 kg of an aqueous silicic acid solution prepared so that the concentration when converted to SiO 2 is 2.0% by mass is gradually added, subjected to heat treatment at 175 ° C. for 18 hours in an autoclave, and further concentrated. Thus, a sol solution (solid content concentration of 20% by mass) of core-shell particles (average particle size: 10 nm), which is made of titanium oxide having a rutile structure as the core particles and SiO 2 as the coating layer, was obtained.
 (高屈折率層用塗布液H1の調製)
 上記で得られた固形分濃度20.0質量%の第1の金属酸化物粒子としてのコア・シェル粒子を含むゾル液28.9部と、1.92質量%のクエン酸水溶液10.5部と、10質量%のポリビニルアルコール(株式会社クラレ製、PVA-103:重合度300、ケン化度98.5mol%)水溶液2.0部と、3質量%のホウ酸水溶液9.0部とを混合して、コア・シェル粒子分散液H1を調製した。
(Preparation of coating liquid H1 for high refractive index layer)
28.9 parts of a sol solution containing core / shell particles as the first metal oxide particles having a solid content concentration of 20.0% by mass obtained above, and 10.5 parts of a 1.92% by mass citric acid aqueous solution. And 2.0 parts of an aqueous solution of 10% by weight polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-103: polymerization degree 300, saponification degree 98.5 mol%) and 9.0 parts of a 3% by weight aqueous boric acid solution. By mixing, a core-shell particle dispersion H1 was prepared.
 次いで、コア・シェル分散液H1を撹拌しながら、純水16.3部及び5.0質量%のポリビニルアルコール(A)としてのポリビニルアルコール(株式会社クラレ製、PVA-124:重合度2400、ケン化度98~99mol%)水溶液33.5部を加えた。更に、1質量%のベタイン系界面活性剤(川研ファインケミカル株式会社製、ソフダゾリン(登録商標)LSB-R)水溶液0.5部を添加し、純水を用いて全体として1000部の高屈折率層用塗布液H1を調製した。 Next, while stirring the core / shell dispersion H1, 16.3 parts of pure water and 5.0% by mass of polyvinyl alcohol (A) as polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA-124: polymerization degree 2400, Ken 33.5 parts of an aqueous solution was added. Furthermore, 0.5 part of a 1% by weight betaine surfactant (manufactured by Kawaken Fine Chemical Co., Ltd., sofazoline (registered trademark) LSB-R) aqueous solution was added, and a high refractive index of 1000 parts as a whole using pure water. A layer coating solution H1 was prepared.
 <ハードコート層(HC層)の形成>
 紫外線硬化性樹脂として、ビームセット577(荒川化学工業株式会社製)を用い、溶媒としてメチルエチルケトンを添加した。さらに、フッ素系界面活性剤(商品名:フタージェント(登録商標)650A、株式会社ネオス製)を0.08質量%添加し、全固形分が40質量部、となるように調製して、ハードコート層用塗布液Aを作製した。
<Formation of hard coat layer (HC layer)>
Beam set 577 (Arakawa Chemical Industries, Ltd.) was used as an ultraviolet curable resin, and methyl ethyl ketone was added as a solvent. Furthermore, 0.08% by mass of a fluorosurfactant (trade name: Footage (registered trademark) 650A, manufactured by Neos Co., Ltd.) was added, and the total solid content was adjusted to 40 parts by mass. A coating layer coating solution A was prepared.
 赤外線反射層を設けた面とは逆の面に、上記調製したハードコート層用塗布液Aを、グラビアコーターにて、乾燥層厚が5μmとなる条件で塗工後、乾燥区間温度90℃で1分間乾燥後、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.5J/cmとしてハードコート層を硬化させ、ハードコート層を形成した。 On the surface opposite to the surface provided with the infrared reflective layer, the above-prepared coating liquid A for hard coat layer is applied with a gravure coater under the condition that the dry layer thickness is 5 μm, and the drying section temperature is 90 ° C. After drying for 1 minute, the hard coat layer was cured by using an ultraviolet lamp to cure the hard coat layer with an illuminance of the irradiated part of 100 mW / cm 2 and an irradiation amount of 0.5 J / cm 2 .
 (粘着液の調製)
 メタクリル酸2-エチルヘキシル78質量%、アクリル酸ブチル12質量%、アクリル酸2-ヒドロキシエチル7質量%及びアクリル酸3質量%をトルエン中でラジカル重合することで、固形分濃度33質量%(重量平均分子量55万)のポリマー溶液を得た。この中に、チタンキレート(オルガチックスTC-401:マツモトファインケミカル(株))0.5質量%とUV吸収剤(Tinuvin477(チバガイギ社製))3重量部を添加し、粘着塗布液を作成した。
(Preparation of adhesive liquid)
A radical concentration of 78% by mass of 2-ethylhexyl methacrylate, 12% by mass of butyl acrylate, 7% by mass of 2-hydroxyethyl acrylate and 3% by mass of acrylic acid in toluene gave a solid content concentration of 33% by mass (weight average). A polymer solution having a molecular weight of 550,000) was obtained. To this, 0.5% by mass of titanium chelate (Orgatechs TC-401: Matsumoto Fine Chemical Co., Ltd.) and 3 parts by weight of UV absorber (Tinvin 477 (manufactured by Ciba-Gigi)) were added to prepare an adhesive coating solution.
 ダイコーターを用い、上記で調製した粘着層用塗布液1をセパレータ(NS-23MA:中本パックス社製)に、乾燥後の層厚が10μmとなるように塗布し、80℃で乾燥した後に、上記赤外線反射層面と粘着層面を貼り合わせた。 Using a die coater, the adhesive layer coating solution 1 prepared above was applied to a separator (NS-23MA: manufactured by Nakamoto Pax Co., Ltd.) so that the layer thickness after drying was 10 μm, and dried at 80 ° C. The infrared reflection layer surface and the adhesive layer surface were bonded together.
 <光学フィルム40の作製>
 光学フィルム22において、赤外線反射層を下記銀(Ag)薄膜赤外線反射層に変更した以外は同様にして光学フィルム40を作製した。
<Preparation of optical film 40>
An optical film 40 was prepared in the same manner as in the optical film 22 except that the infrared reflective layer was changed to the following silver (Ag) thin film infrared reflective layer.
 (Ag薄膜赤外線反射層の形成)
 下引層上に銀中に金を2質量%含有するスパッタリングターゲット材を用いて厚さ15nmの赤外線反射層を形成した。
(Formation of Ag thin film infrared reflective layer)
An infrared reflective layer having a thickness of 15 nm was formed on the undercoat layer using a sputtering target material containing 2% by mass of gold in silver.
 <光学フィルムの評価>
 得られた光学フィルム1~40をウインドウフィルムとして用い、水貼り作業性及び仕上がり品質としてスキージのムラ(水貼りの際、スクイーズ時のスティックスリップに起因して生じるムラ)及びフィルムの裂けの評価を行った。
<Evaluation of optical film>
Using the obtained optical films 1 to 40 as window films, evaluation of water squeegee unevenness (non-uniformity caused by stick-slip during squeeze when water is applied) and film tearing as water application workability and finished quality went.
 (水貼り作業性)
 各ウインドウフィルムについて、幅20cm、長さ100cmに断裁したフィルムを10枚準備した。厚さ1.3mmのガラス板(松浪硝子工業社製、「スライドガラス白縁磨」)に水が垂れ始めるまで前面に霧吹きで水を吹き付けた。断裁した光学フィルムのセパレータを剥がし、粘着層側をガラス面に貼り付けた。次に、フィルム面に霧吹きで水を吹き付け、市販のゴム製のフィルム水貼り用スキージでフィルムの中心から上下左右方向に水と泡を抜く。再び水を吹き付けて水を抜く作業を2回繰り返し、計3回の水抜き作業を行った。これを各フィルムについて10枚ずつ作業を行った。
(Water pasting workability)
For each window film, 10 films cut to a width of 20 cm and a length of 100 cm were prepared. Water was sprayed on the front surface until the water began to drip onto a glass plate having a thickness of 1.3 mm (manufactured by Matsunami Glass Industrial Co., Ltd., “Slide Glass White Edge Polish”). The separator of the cut optical film was peeled off, and the adhesive layer side was attached to the glass surface. Next, water is sprayed on the film surface by spraying, and water and bubbles are extracted vertically and horizontally from the center of the film with a commercially available rubber film water sticking squeegee. The operation of spraying water again and draining water was repeated twice, and the water draining operation was performed three times in total. This operation was performed 10 sheets for each film.
 水貼り作業性を以下の指標で評価した。
×;フィルムの剥離が多発し、作業性が非常に悪かった
△;1回目のスキージ作業時にエッジ部が浮き上がることは3枚以上であったが、作業は問題なく行えた。
○△;1回目のスキージ作業時にエッジ部が浮き上がることは1、2枚であったが、作業は問題なく行えた。
○;エッジの浮き上がりなく、問題なく作業できた
 (フィルムのムラ)
 スキージのムラを下記の評価基準で評価した。
×;はっきりと分かるスキージのムラが3枚以上でみられる
△;はっきりと分かるスキージのムラが1、2枚でみられる
○△;スキージのムラはよくないと分からない
○;スキージのムラは見られない
 (フィルムの裂け)
×;致命的なフィルムの裂けが1枚以上で発生
△×;エッジ部に極弱い裂けが5枚以上で発生
△;エッジ部に極弱い裂けが2~4枚で発生
○△;エッジ部に極弱い裂けが1枚で発生
○;フィルムの裂けはなし
 以上の評価結果と試料の構成の概略を表1に示す。
Water sticking workability was evaluated using the following indices.
X: The film peeled frequently and the workability was very bad. Δ: The edge part was lifted up by three or more during the first squeegee work, but the work could be performed without any problems.
◯: The edge part lifted up 1 or 2 during the first squeegee work, but the work could be done without any problems.
○: Worked without problems with no lifting of edges (film unevenness)
The squeegee unevenness was evaluated according to the following evaluation criteria.
×: Clearly obvious squeegee unevenness is observed with 3 or more △; Clearly obvious squeegee unevenness is seen with 1 or 2 ○ △: Squeegee unevenness is not known unless good ○; Squeegee unevenness is seen Cannot (film tears)
×: Fatal film tear occurs when one or more sheets Δ ×: Extremely weak tear occurs at 5 or more edges Δ: Extremely weak tear occurs at 2 to 4 edges ○ △: Edge Extremely weak tearing occurs on one sheet ○: No film tearing Table 1 shows the outline of the above evaluation results and the sample configuration.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1から、本発明の光学フィルム4~13、15~22、24~34及び36~40は、比較の光学フィルム1~3、14、23及び35に比べて水貼り作業性に優れ仕上がり品質(フィルムのムラ及びフィルムの裂けが少ない)が良好であることが分かる。 From Table 1, the optical films 4 to 13, 15 to 22, 24 to 34, and 36 to 40 of the present invention have excellent water workability and finished quality compared to the comparative optical films 1 to 3, 14, 23, and 35. It can be seen that (there is little film unevenness and film tearing).
 本発明の光学フィルムは、巻癖回復性と引裂強度に優れた光学フィルムであり、従来セルロースエステルフィルムでは、強度が十分でなく使用が困難であった用途、あるいはPETフィルムでは巻癖が強く使用が困難であった用途に適しており、ウインドウフィルムに好適に使用できる。その他、太陽光反射ミラーなどにおいても、同様に霧吹きをかけることで巻癖がとれて、貼り合わせ加工が容易になり、好適に使用することができる。 The optical film of the present invention is an optical film excellent in curl recovery and tear strength. Conventional cellulose ester films are difficult to use because of insufficient strength, or PET films are strongly used. Is suitable for applications in which it is difficult to use, and can be suitably used for window films. In addition, in a solar reflective mirror etc., it can also be used suitably because the winding process can be easily removed by spraying, and the laminating process becomes easy.
 1 セパレーター
 2 粘着層
 3 光学機能層
 4 支持体
 5 接着層
 6 追加の支持体
 7 ハードコート層
10 光学フィルム
11 支持体
 ML、MLa、MLb 光学反射層群
 T~T、Ta~Ta、Tb~Tb 光学反射層
 U 反射層ユニット
1 separator 2 adhesive layer 3 optical function layer 4 support 5 adhesive layer 6 additional support 7 hardcoat layer 10 optical film 11 support ML, MLa, MLb optical reflecting layer group T 1 ~ T n, Ta 1 ~ Ta n , Tb 1 to Tb n Optical reflection layer U Reflection layer unit

Claims (10)

  1.  フィルム状の支持体上に少なくとも光学機能層と粘着層とを有する光学フィルムであって、前記支持体が、セルロース誘導体を30質量%以上含有し、かつ巻癖回復率が20%以上で、引裂強さが150mN以上となるように調整されていることを特徴とする光学フィルム。 An optical film having at least an optical functional layer and an adhesive layer on a film-like support, wherein the support contains 30% by mass or more of a cellulose derivative, has a curl recovery rate of 20% or more, and is torn An optical film that is adjusted to have a strength of 150 mN or more.
  2.  前記支持体が、前記セルロース誘導体に加えて、脂肪族ポリエステル又はポリアルキレンオキシドを第2のポリマー成分として含有することを特徴とする請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the support contains an aliphatic polyester or polyalkylene oxide as a second polymer component in addition to the cellulose derivative.
  3.  前記支持体が、重量平均分子量が4000~500000の範囲内である前記第2のポリマー成分を前記セルロース誘導体に対して5質量%以上含有することを特徴とする請求項2に記載の光学フィルム。 3. The optical film according to claim 2, wherein the support contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 4000 to 500,000 with respect to the cellulose derivative.
  4.  前記支持体が、重量平均分子量が30000~400000の範囲内である前記第2のポリマー成分を前記セルロース誘導体に対して5質量%以上含有することを特徴とする請求項2に記載の光学フィルム。 3. The optical film according to claim 2, wherein the support contains 5% by mass or more of the second polymer component having a weight average molecular weight in the range of 30,000 to 400,000 based on the cellulose derivative.
  5.  前記セルロース誘導体が、セルロースエステルであることを特徴とする請求項1から請求項4までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 4, wherein the cellulose derivative is a cellulose ester.
  6.  前記セルロースエステルのアセチル基置換度Xと、プロピオニル基及びブチリル基の合計置換度Yとが、下記式(I)及び式(II)を満たすことを特徴とする請求項5に記載の光学フィルム。
     式(I) : 2.5≦X+Y≦2.95
     式(II) : 0.0≦Y≦1.5
    6. The optical film according to claim 5, wherein the cellulose ester has an acetyl group substitution degree X and a propionyl group and butyryl group substitution degree Y satisfying the following formulas (I) and (II):
    Formula (I): 2.5 ≦ X + Y ≦ 2.95
    Formula (II): 0.0 ≦ Y ≦ 1.5
  7.  前記第2のポリマー成分が、下記一般式(1)で表される構造を有する脂肪族ポリエステルであることを特徴とする請求項2から請求項6までのいずれか一項に記載の光学フィルム。
    Figure JPOXMLDOC01-appb-C000001
     (式中、R~Rは、それぞれ、水素原子又は置換基を表す。iは0~2の整数を表す。jは0~10の整数を表す。kは3~10の整数を表す。a、b及びcは構成割合(モル分率)を表し、a、b及びcの総和が1である。)
    The optical film according to any one of claims 2 to 6, wherein the second polymer component is an aliphatic polyester having a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 to R 6 each represents a hydrogen atom or a substituent. I represents an integer of 0 to 2. j represents an integer of 0 to 10. k represents an integer of 3 to 10.) A, b, and c represent constituent ratios (molar fractions), and the sum of a, b, and c is 1.)
  8.  前記光学機能層が、特定の波長の光を選択的に透過あるいは遮蔽することを特徴とする請求項1から請求項7までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 7, wherein the optical functional layer selectively transmits or shields light having a specific wavelength.
  9.  前記光学機能層が、第1の水溶性バインダー樹脂と第1の金属酸化物粒子とを含む高屈折率層、及び第2の水溶性バインダー樹脂と第2の金属酸化物粒子とを含む低屈折率層を交互に積層した特定の波長の光を選択的に反射する層であることを特徴とする請求項8に記載の光学フィルム。 The optical functional layer has a high refractive index layer containing a first water-soluble binder resin and first metal oxide particles, and a low refractive index containing a second water-soluble binder resin and second metal oxide particles. The optical film according to claim 8, wherein the optical film is a layer that selectively reflects light of a specific wavelength in which rate layers are alternately laminated.
  10.  請求項1から請求項9までのいずれか一項に記載の光学フィルムを用いたことを特徴とするウインドウフィルム。 A window film using the optical film according to any one of claims 1 to 9.
PCT/JP2015/057703 2014-03-26 2015-03-16 Optical film, and window film employing same WO2015146674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014063579A JP2017094488A (en) 2014-03-26 2014-03-26 Optical film, and window film using the same
JP2014-063579 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146674A1 true WO2015146674A1 (en) 2015-10-01

Family

ID=54195197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057703 WO2015146674A1 (en) 2014-03-26 2015-03-16 Optical film, and window film employing same

Country Status (2)

Country Link
JP (1) JP2017094488A (en)
WO (1) WO2015146674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847086A (en) * 2015-12-04 2017-06-13 三星显示有限公司 Flexible display apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6309422B2 (en) * 2014-10-02 2018-04-11 日本カーバイド工業株式会社 Adhesive and adhesive sheet
JP2020154003A (en) * 2017-07-20 2020-09-24 コニカミノルタ株式会社 Light reflection forming body
CN111684004B (en) * 2018-02-13 2023-06-27 伊士曼化工公司 Cellulose esters and polymeric aliphatic polyester compositions and articles
JP7099896B2 (en) * 2018-07-20 2022-07-12 スリーエム イノベイティブ プロパティズ カンパニー Window film
JP7310555B2 (en) * 2019-11-11 2023-07-19 株式会社デンソー power conversion circuit
WO2023047988A1 (en) * 2021-09-27 2023-03-30 富士フイルム株式会社 Cellulose acylate film, food packaging material, agricultural material and film for polarizing plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015911A1 (en) * 2006-07-31 2008-02-07 Konica Minolta Opto, Inc. Polarizing plate protection film, polarizing plate and liquid crystal display
JP2012066513A (en) * 2010-09-24 2012-04-05 Dainippon Printing Co Ltd Optical laminate, front surface plate and image display device
WO2013077252A1 (en) * 2011-11-21 2013-05-30 コニカミノルタ株式会社 Infrared shielding film and infrared shielding body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015911A1 (en) * 2006-07-31 2008-02-07 Konica Minolta Opto, Inc. Polarizing plate protection film, polarizing plate and liquid crystal display
JP2012066513A (en) * 2010-09-24 2012-04-05 Dainippon Printing Co Ltd Optical laminate, front surface plate and image display device
WO2013077252A1 (en) * 2011-11-21 2013-05-30 コニカミノルタ株式会社 Infrared shielding film and infrared shielding body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847086A (en) * 2015-12-04 2017-06-13 三星显示有限公司 Flexible display apparatus
US10586942B2 (en) 2015-12-04 2020-03-10 Samsung Display Co., Ltd. Flexible display apparatus
CN106847086B (en) * 2015-12-04 2020-09-04 三星显示有限公司 Flexible display device
US11522154B2 (en) 2015-12-04 2022-12-06 Samsung Display Co., Ltd. Flexible display apparatus

Also Published As

Publication number Publication date
JP2017094488A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2015146674A1 (en) Optical film, and window film employing same
JP6597598B2 (en) Solar durable high transparency film, solar control film, infrared reflective film and film mirror
EP2980034A1 (en) Laminated glass
JP5994849B2 (en) Laminated glass
WO2016208548A1 (en) Optical film and optical laminate containing same
WO2016017604A1 (en) Optical film and method for manufacturing optical film
WO2013111735A1 (en) Optical film
WO2013114979A1 (en) Polarizing plate, method for manufacturing polarizing plate and liquid crystal display device
WO2012124323A1 (en) Anti-glare film, method for producing anti-glare film, anti-glare anti-reflection film, polarizing plate, and image display device
WO2012164843A1 (en) Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel
WO2015115329A1 (en) Optical film
JP2006072315A (en) Polarization plate with antireflection function, process for producing the same and image display unit utilizing the same
WO2015146676A1 (en) Optical film, infrared reflective film using same and laminated glass
WO2015083479A1 (en) Heat-shielding antifog film and glass laminate
TW200904636A (en) Anti-dazzling film, anti-dazzling anti-refleciton film, polarizing plate using the anti-dazzling film and anti-reflection film, and display device
CN108369356A (en) special-shaped display device
TW200907400A (en) Anti-reflection film, method for production of anti-reflection film, polarizing plate using the anti-reflection film, and display device
CN108351463A (en) Polarizing film, the manufacturing method of polarizing film and liquid crystal display device
JP2005338549A (en) Antireflection film, polarizing plate, and image display device
WO2017104313A1 (en) Optical film
WO2016143853A1 (en) Window film and laminated glass using same
JP2015150851A (en) Method of producing functional film
JP6344069B2 (en) Optical reflective film
JP2016109872A (en) Light shield film
CN107615117B (en) Optical reflective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP