WO2015083479A1 - Heat-shielding antifog film and glass laminate - Google Patents

Heat-shielding antifog film and glass laminate Download PDF

Info

Publication number
WO2015083479A1
WO2015083479A1 PCT/JP2014/079306 JP2014079306W WO2015083479A1 WO 2015083479 A1 WO2015083479 A1 WO 2015083479A1 JP 2014079306 W JP2014079306 W JP 2014079306W WO 2015083479 A1 WO2015083479 A1 WO 2015083479A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
acid
refractive index
layer
heat
Prior art date
Application number
PCT/JP2014/079306
Other languages
French (fr)
Japanese (ja)
Inventor
啓史 別宮
絢子 稲垣
梅田 博紀
矢野 健太郎
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015551434A priority Critical patent/JPWO2015083479A1/en
Publication of WO2015083479A1 publication Critical patent/WO2015083479A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings

Definitions

  • the present invention relates to a heat-shielding and anti-fogging film having a heat-shielding function and an anti-fogging function, and a glass laminate having the same.
  • the light emitted from the sun has a wide spectrum from the ultraviolet region to the infrared light region.
  • Visible light has a wavelength range of 380 to 780 nm ranging from purple to yellow to red light, and occupies about 45% of sunlight.
  • infrared light those close to visible light are called near-infrared rays (wavelength 780 to 2500 nm), and more than that is called mid-infrared rays, accounting for about 50% of sunlight.
  • the intensity of light energy in this region is as small as about one-tenth or less compared with ultraviolet light, but the thermal effect is large, and when absorbed by a substance, it is released as heat, resulting in an increase in temperature. For this reason, it is also called a heat ray, and by blocking these rays, the temperature rise in the room can be suppressed. Further, it is possible to suppress the heat of the winter in the cold region from being dissipated outside.
  • Patent Document 1 discloses an agricultural film having an anti-fogging function and a heat shielding function.
  • Patent Document 1 is used for agriculture and is not suitable for window applications such as automobiles. This is because the visibility of a window of an automobile or the like corresponding to a rapid humidity change is important. Moreover, since it is necessary to stick a film on a window, the ease of construction such as a short construction time is also important.
  • the object of the present invention is to provide a heat-shielding and anti-fogging function that has a heat-shielding function, can be attached to glass in a short time by a material for water sticking, and has an anti-fogging property against a sudden change in humidity.
  • a film Another object of the present invention is to provide a glass laminate in which the heat-shielding anti-fogging film and glass are adhered.
  • the heat-shielding and anti-fogging film of the present invention is a heat-shielding and anti-fogging film having a heat-shielding function and an anti-fogging function, and has a hydrophilic property laminated on one side of the cellulose ester film and the cellulose ester film.
  • the heat-shielding anti-fogging film has a heat-shielding function by providing a heat ray reflective layer, and can be attached to glass in a short time with a water-adhesive adhesive due to the high moisture permeability of the cellulose ester film.
  • a defogging layer that has been subjected to a hydrophilic treatment, it has an defogging property against a sudden change in humidity.
  • the numerical value range includes the values of the lower limit A and the upper limit B.
  • the glass laminate 10 has a water-adhesive layer 12 (water-adhesive adhesive), a heat ray reflective layer 13, a cellulose ester film 14, and, if necessary, on one surface side of the glass 11.
  • the hard coat layer 15 is laminated in this order.
  • the surface on the opposite side to the heat ray reflective layer 13 of the cellulose-ester film 14 is hydrophilized.
  • the surface portion of the cellulose ester film 14 that has been hydrophilized is also referred to as a hydrophilic layer (antifogging layer) 14a, and the non-hydrophilic portion is also referred to as a non-hydrophilic layer 14b.
  • the heat ray reflective layer 13 and the cellulose ester film 14 are collectively referred to as a heat-shielding and anti-fogging film (which may include the water sticking pressure-sensitive adhesive 12 and / or the hard coat layer 15).
  • the glass 11 is assumed to be a window glass of a building or a vehicle, and its thickness is not particularly limited, but is usually 0.1 mm to 5 cm.
  • the adhesive 12 for water sticking is for sticking the heat ray reflective layer 13 to the glass 11.
  • the water sticking pressure-sensitive adhesive 12 may be formed by applying a water-soluble water sticking pressure-sensitive adhesive to the glass 11, or the water sticking pressure-sensitive adhesive on the surface opposite to the cellulose ester film 14 of the heat ray reflective layer 13. You may form by apply
  • a type of adhesive reactive adhesion that reversibly cures and melts by water evaporation and rewetting is applied to the opposite side of the heat ray reflective layer 13 from the cellulose ester film 14.
  • a heat-shielding and anti-fogging film may be prepared by drying, and when applied to a window glass or the like of a building or a vehicle, water may be sprayed on and adhered to the adhesive 12 for water application. Thereby, it can construct simply by using water.
  • the heat ray reflective layer 13 has hydrophilicity that can be attached to the glass 11 by the water sticking pressure-sensitive adhesive 12, and the material and the layer structure are not particularly limited as long as the heat ray transmission of sunlight can be blocked.
  • a layer in which high refractive index layers and low refractive index layers are alternately stacked is used.
  • the high refractive index layer and the low refractive index layer each contain a water-soluble polymer, and are formed on the cellulose ester film 14 by aqueous coating.
  • it is desirable that the cellulose ester film 14 has a moisture permeability that allows moisture to escape quickly during drying after aqueous application.
  • the cellulose ester film 14 it is preferable to use a moisture permeable film having a moisture permeability of 100 g / m 2 ⁇ 24 hr or more at 40 ° C. and 90% RH measured in accordance with JIS Z 0208. Since moisture does not remain in the heat ray reflective layer 13, the change in the film thickness of the heat ray reflective layer 13 is small due to environmental fluctuations (temperature change), and the change in reflectance can be suppressed.
  • the cellulose ester film 14 is a base material that supports the heat ray reflective layer 13 and has heat resistance.
  • the cellulose ester film 14 is an antifogging film whose surface has been subjected to a hydrophilic treatment. It is preferable that the change in haze before and after applying steam to the cellulose ester film 14 is small (for example, within 3%). In this case, it can be said that the deterioration of the anti-fogging function of the cellulose ester film 14 after applying the steam is suppressed.
  • the hydrophilic treatment for imparting antifogging properties can be performed by light irradiation or saponification.
  • the surface of a cellulose-ester film is irradiated with the light which has photon energy of 155 kcal / mol or more, for example.
  • the saponification for example, the surface of the cellulose ester film is subjected to alkali saponification treatment using an aqueous NaOH solution for 60 minutes, and then washed with water and dried.
  • a uniform antifogging property can be imparted to the surface of the cellulose ester film, and sufficient antifogging property can be obtained by a thin hydrophilic layer as compared with the case where the hydrophilic layer is formed by a saponification treatment. Can be granted. Furthermore, since a light irradiation process can be performed with respect to the single side
  • the ester group substituted on the side chain of the glucose ring is easily converted into a hydroxyl group by the above light irradiation on the cellulose ester film, and the hydrophilic layer 14a is reliably formed on the surface of the cellulose ester film 14. This is because the anti-fogging property can be reliably imparted to the cellulose ester film 14. Moreover, since cellulose ester itself has a hygroscopic property, the water vapor
  • the non-hydrophilic layer 6b When the cellulose ester film 14 is immersed in methylene chloride, the non-hydrophilic layer 6b is dissolved, and the hydrophilic layer 6a is not dissolved but remains as a powder. From this, it can be said that the non-hydrophilic layer 6b is a methylene chloride-soluble layer and the hydrophilic layer 6a is a methylene chloride-insoluble layer.
  • the hard coat layer 15 is formed of, for example, an ultraviolet curable acrylate resin.
  • the hard coat layer 15 has a moisture permeability that allows moisture to escape quickly during drying after the application of the water sticking pressure-sensitive adhesive.
  • the hard coat layer 15 is preferably a moisture permeable layer having a moisture permeability of not less than 300 g / m 2 ⁇ 24 hr at 40 ° C. and 90% RH as measured in accordance with JIS Z 0208.
  • the heat-shielding and anti-fogging film since it has a heat-shielding function and an anti-fogging function, it is exposed to sunlight or high humidity in the state of the glass laminate 10 mounted on the window glass of a building or vehicle. Suitable for use in such an environment.
  • the adhesive for water application may be selected from, for example, rubber-based, acrylic-based, silicon-based, and urethane-based pressure-sensitive adhesives, depending on the purpose. Since there is no yellowing over time, acrylic and silicon are preferable, and acrylic is most preferable in that a general-purpose release sheet can be used.
  • the thickness of the adhesive layer for water application is preferably in the range of 5 ⁇ m to 30 ⁇ m. If it is 5 ⁇ m or less, the tackiness is unstable, and if it is 30 ⁇ m or more, the pressure-sensitive adhesive protrudes from the side of the film, resulting in inconvenience in handling.
  • Heat ray reflective layer As the heat ray reflective layer of this embodiment, a layer in which high refractive index layers and low refractive index layers are alternately laminated is used.
  • the refractive index difference between the adjacent high refractive index layer and the low refractive index layer is preferably 0.1 or more, more Preferably it is 0.3 or more, More preferably, it is 0.35 or more, Most preferably, it is 0.4 or more.
  • the refractive index difference between the high refractive index layer and the low refractive index layer in all the units is within the preferable range.
  • the preferred refractive index of the high refractive index layer is 1.80 to 2.50, more preferably 1.90 to 2.20.
  • the preferred refractive index of the low refractive index layer is 1.10 to 1.60, more preferably 1.30 to 1.50.
  • the reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers.
  • the refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance of 90% or more, if the difference in refractive index is less than 0.1, it is necessary to laminate 200 layers or more, which not only decreases productivity but also scattering at the interface of the layers. Becomes larger, the transparency is lowered, and it becomes very difficult to manufacture without failure. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but practically about 1.4 is the limit.
  • the transmittance in the visible light region shown in JIS R3106-1998 is preferably 50% or more, preferably 75% or more, more preferably 85% or more.
  • the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the heat ray reflective layer of the present embodiment may have a configuration including at least one unit composed of a high refractive index layer and a low refractive index layer.
  • the range of the total number of layers is 100 layers or less, that is, 50 units or less, more preferably 40 layers (20 units) or less. More preferably, it is 20 layers (10 units) or less.
  • the thickness per layer of the low refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 350 nm.
  • the thickness per layer of the high refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 350 nm.
  • the high refractive index layer and the low refractive index layer in this embodiment each contain a water-soluble polymer, and are formed on the cellulose ester film by aqueous coating.
  • water-soluble polymers applicable to the high refractive index layer and the low refractive index layer include synthetic polymers, such as polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymers, Acrylic resins such as potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, or acrylic acid-acrylic ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer Styrene acrylic resin such as styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, or styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer , Styrene-sodium styrene s
  • synthetic polymers such as polyvin
  • the weight average molecular weight of the water-soluble polymer is preferably 1,000 or more and 200,000 or less. Furthermore, 3,000 or more and 40,000 or less are more preferable.
  • the polyvinyl alcohol preferably used includes, in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate, modified polyvinyl alcohol such as polyvinyl alcohol having a terminal cation modified or anionic modified polyvinyl alcohol having an anionic group. It is.
  • polyvinyl alcohol obtained by hydrolyzing vinyl acetate those having an average degree of polymerization of 1,000 or more are preferably used, and those having an average degree of polymerization of 1,500 to 5,000 are particularly preferably used.
  • the degree of saponification is preferably 70 to 100%, particularly preferably 80 to 99.5%.
  • Examples of the cation-modified polyvinyl alcohol have primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383.
  • Polyvinyl alcohol which is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, as described in JP-A-61-237681 and JP-A-63-307979, Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795. And a block copolymer of a vinyl compound having a hydrophobic group and vinyl alcohol.
  • Polyvinyl alcohol may use 2 or more types together, such as a polymerization degree and a different kind of modification
  • a curing agent may be used together with the water-soluble polymer.
  • the water-soluble polymer is polyvinyl alcohol, boric acid and its salts and epoxy curing agents are preferred.
  • the content of the water-soluble polymer contained in the high refractive index layer and the low refractive index layer is 50 to 150% by mass with respect to 100% by mass of metal oxide particles (details will be described later) contained in the layer. It is preferably 80 to 120% by mass. If the amount of the water-soluble polymer is too small, the strength of the film may decrease, and if it is too large, the refractive index of the film may decrease.
  • the water-soluble polymers contained in the high refractive index layer and the low refractive index layer may be the same or different from each other, but are preferably the same.
  • Metal oxide particles examples include titanium dioxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, lead titanate, red lead, yellow lead, and zinc. Examples thereof include yellow, chromium oxide, ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
  • the high refractive index layer may contain high refractive index metal oxide fine particles such as titanium and zirconia, that is, fine titanium oxide particles and fine zirconia oxide particles. preferable. In particular, it is preferable to contain rutile (tetragonal) titanium oxide particles having a volume average particle diameter of 100 nm or less.
  • the volume average particle size of the titanium oxide particles or zirconia particles used in this embodiment is preferably 100 nm or less, more preferably 4 to 50 nm, and even more preferably 4 to 40 nm.
  • a volume average particle diameter of 100 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
  • the volume average particle diameter is a volume average particle diameter of primary particles or secondary particles dispersed in a medium, and can be measured by a laser diffraction / scattering method, a dynamic light scattering method, or the like.
  • the average diameter of the particles present in each layer specifically, the particles themselves or the particles appearing on the cross section or surface of the refractive index layer are observed with an electron microscope, and 1,000 arbitrary particles are observed.
  • the group of metal oxide particles each having a particle diameter of d1, d2,..., Dk, and n1, n2,.
  • the volume per unit is vi
  • the titanium oxide particles or zirconia oxide particles used in the present embodiment are preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • Monodispersity (standard deviation of particle size) / (average value of particle size) ⁇ 10
  • the surface of the titanium oxide particles of an aqueous titanium oxide sol having a pH of 1.0 to 3.0 and a positive zeta potential of the titanium particles is hydrophobized to an organic solvent. It is preferable to use a dispersion-dispersible material.
  • Examples of a method for preparing an aqueous titanium oxide sol that can be used in the present embodiment include JP-A 63-17221, JP-A 7-819, JP-A 9-165218, and JP-A 11-43327. Reference can be made to the matters described in JP-A No. 63-17221, JP-A No. 7-819, JP-A No. 9-165218, JP-A No. 11-43327, and the like.
  • the content of the metal oxide particles in the high refractive index layer is preferably 15 to 70% by mass and more preferably 20 to 65% by mass with respect to 100% by mass of the solid content of the high refractive index layer. Preferably, it is 30 to 60% by mass.
  • the metal oxide particles contained in the low refractive index layer are preferably silicon dioxide, and examples thereof include synthetic amorphous silica and colloidal silica.
  • acidic colloidal silica sol is more preferably used, and colloidal silica sol dispersed in an organic solvent is more preferably used.
  • hollow fine particles having pores inside the particles it is particularly preferable to use hollow fine particles having pores inside the particles as metal oxide fine particles, and hollow fine particles of silicon dioxide (silica) are most preferred.
  • the volume average particle size of the metal oxide particles contained in the low refractive index layer is preferably 3 to 100 nm, more preferably 3 to 50 nm, and even more preferably 3 to 30 nm.
  • the volume average particle diameter of the metal oxide fine particles contained in the low refractive index layer is determined by the same method as the measurement of the average particle diameter of the metal oxide particles contained in the high refractive layer.
  • the colloidal silica used in this embodiment is obtained by heating and aging a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer.
  • colloidal silica may be a synthetic product or a commercially available product.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • the hollow fine particles used in this embodiment preferably have an average particle pore size of 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm.
  • the average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles.
  • the refractive index of the low refractive index layer is sufficiently lowered.
  • the average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained.
  • the average particle pore diameter the minimum distance among the distances between the outer edges of the pore diameter that can be observed as a circle, an ellipse, a substantially circle or an ellipse, between two parallel lines Means.
  • the hollow fine particles used in this embodiment preferably have an average outer thickness of 10 nm or less, more preferably 1 to 7 nm, and even more preferably 1 to 5 nm.
  • hole in a hollow microparticle is called outline.
  • a thickness of the outer shell of 10 nm or less is preferable because the haze is small and the light transmittance of the glass laminate is excellent. If the thickness of the outer shell is 1 nm or more, the mechanical strength of the particles is increased and the shape can be maintained in the low refractive index layer, so that formation of pores is facilitated.
  • the average thickness of the outer shell is observed by electron microscope observation, and the average thickness of the outer shell of the pores that can be observed as a circle, ellipse, or substantially circular as an ellipse is randomly observed, and 50 or more of the outer shell of each particle is observed.
  • the average thickness is obtained, and the number average value is obtained.
  • Such hollow fine particles may be a synthetic product or a commercially available product.
  • silicon dioxide for example, an organic silicon compound (for example, alkoxysilane such as tetraethoxysilane) is added to a calcium carbonate aqueous dispersion under alkaline conditions (for example, addition of ammonia). , Stir. Thereafter, the mixture is heated to 50 to 80 ° C. and stirred to obtain a silica-coated calcium carbonate dispersion.
  • the silica-coated calcium carbonate dispersion is decomposed under acidic conditions (for example, acetic acid is added) to decompose calcium carbonate and generate carbon dioxide to elute calcium carbonate.
  • acidic conditions for example, acetic acid is added
  • ultrafiltration is performed on the dispersion until the same amount of distilled water as that added is discharged. By performing the ultrafiltration 1 to 5 times, a dispersion containing silica hollow fine particles can be obtained.
  • the content of the metal oxide particles in the low refractive index layer is preferably 0.1 to 50% by mass, and preferably 0.5 to 45% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferred is 1 to 40% by mass, still more preferred is 5 to 30% by mass.
  • the heat ray reflective layer of this embodiment it is desirable that at least one of the high refractive index layer and the low refractive index layer contains a thermal gelling agent.
  • grains between a high refractive index layer and a low refractive index layer are prevented.
  • a heat ray reflective layer excellent in flexibility, transparency, and infrared shielding property can be produced with high productivity.
  • the “thermal gelling agent” is a substance that has a property of dissolving in water, forming a thickened gel by heating, and forming a sol by cooling.
  • the temperature which a thermogelling agent gelatinizes Preferably it is 40 degreeC or more, More preferably, it is 50 degreeC or more, More preferably, it is 60 degreeC or more.
  • the specific form of the thermal gelling agent used in the present embodiment there is no limitation on the specific form of the thermal gelling agent used in the present embodiment.
  • thermal gelling agent examples include curdlan, methyl cellulose (MC), hydroxyethyl methyl cellulose (HEMC), hydroxypropyl methyl cellulose (HPMC), hydroxyethyl cellulose (HEC), egg white, soybean globulin, and the like.
  • hydroxypropyl methylcellulose may be appropriately selected from those having preferable properties since the viscosity and solubility at the time of dissolution differ depending on the molecular weight and the methoxy group / propyl group content.
  • the thermal gelling agent is usually already in a gelled state. Also in such a case, it is understood that “including a thermal gelling agent”. The same applies to the “low temperature gelling agent” described later.
  • At least one of the high refractive index layer and the low refractive index layer may contain a thermal gelling agent, but at least one layer of the high refractive index layer may contain a thermal gelling agent. preferable. Moreover, it is more preferable that all the high refractive index layers contain a thermal gelling agent. In still another preferred form, at least one of both the high refractive index layer and the low refractive index layer preferably contains a thermal gelling agent, and all the high refractive index layers and all the low refractive index layers are thermal gels. More preferably, an agent is included.
  • the content of the thermal gelling agent contained in each layer is not particularly limited, but when the high refractive index layer contains a thermal gelling agent, the content of the thermal gelling agent in the high refractive index layer is that of the high refractive index layer.
  • the content is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and further preferably 7 to 20% by mass with respect to 100% by mass of the solid content.
  • the content of the thermal gelling agent in the low refractive index layer is 3 to 30% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is preferably 5 to 25% by mass, more preferably 7 to 20% by mass.
  • At least one of the high refractive index layer and the low refractive index layer contains a low temperature gelling agent.
  • the “low temperature gelling agent” is a substance that has the property of dissolving in an aqueous solution, forming a thickened gel upon cooling, and forming a sol upon heating.
  • the temperature which a low temperature gelatinizer gelatinizes Preferably it is 10 degrees C or less, More preferably, it is 15 degrees C or less, More preferably, it is 20 degrees C or less.
  • the specific form of the thermal gelling agent used in this embodiment for example, gelatin, carrageenan, gellan gum, pectin, sodium alginate and the like have been developed as low temperature gelling agents.
  • the low temperature gelling agent when at least one of the high refractive index layer and the low refractive index layer contains a low temperature gelling agent, it is preferable that at least one layer of the high refractive index layer contains a low temperature gelling agent. More preferably, all the high refractive index layers contain a low temperature gelling agent. In still another preferred embodiment, at least one of both the high refractive index layer and the low refractive index layer preferably contains a low temperature gelling agent, and all the high refractive index layers and all the low refractive index layers are low temperature gels. More preferably, an agent is included.
  • the content of the low temperature gelling agent contained in each layer when the low temperature gelling agent is used is not particular restriction on the content of the low temperature gelling agent contained in each layer when the low temperature gelling agent is used, but the low refractive index gelation in the high refractive index layer when the high refractive index layer contains the low temperature gelling agent.
  • the content of the agent is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and 7 to 20% by mass with respect to 100% by mass of the solid content of the high refractive index layer. More preferably.
  • the content of the low temperature gelling agent in the low refractive index layer is 3 to 30% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is preferably 5 to 25% by mass, more preferably 7 to 20% by mass.
  • the high refractive index layer or the low refractive index layer may contain an amino acid having an isoelectric point of 6.5 or less.
  • an amino acid By including an amino acid, the dispersibility of the metal oxide particles in the high refractive index layer or the low refractive index layer can be improved.
  • an amino acid is a compound having an amino group and a carboxyl group in the same molecule, and may be any type of amino acid such as ⁇ -, ⁇ -, and ⁇ -.
  • Some amino acids have optical isomers, but in the present invention, there is no difference in effect due to optical isomers, and any isomer can be used alone or in racemic form.
  • preferred amino acids include aspartic acid, glutamic acid, glycine, serine, and the like, with glycine and serine being particularly preferred.
  • the isoelectric point of an amino acid refers to this pH value because an amino acid balances the positive and negative charges in the molecule at a specific pH and the overall charge is zero.
  • the isoelectric point of each amino acid can be determined by isoelectric focusing at a low ionic strength.
  • the high refractive index layer or the low refractive index layer may further contain an emulsion resin.
  • the emulsion resin By including the emulsion resin, the flexibility of the film is increased and the workability such as sticking to glass is improved.
  • An emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 ⁇ m, for example, are dispersed in an emulsion state in an aqueous medium. Obtained by emulsion polymerization using a molecular dispersant. There is no fundamental difference in the polymer component of the resulting emulsion resin depending on the type of dispersant used.
  • the dispersant used in the polymerization of the emulsion include polyoxyethylene nonylphenyl ether in addition to low molecular weight dispersants such as alkylsulfonate, alkylbenzenesulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt.
  • Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone.
  • emulsion polymerization is performed using a polymer dispersant having a hydroxyl group, the presence of hydroxyl groups is estimated on at least the surface of fine particles, and the emulsion resin polymerized using other dispersants has chemical and physical properties of the emulsion. Different.
  • the polymer dispersant containing a hydroxyl group is a polymer dispersant having a weight average molecular weight of 10,000 or more, and has a hydroxyl group substituted at the side chain or terminal.
  • an acrylic polymer such as sodium polyacrylate or polyacrylamide is used.
  • examples of such polymers include 2-ethylhexyl acrylate copolymer, polyethers such as polyethylene glycol and polypropylene glycol, and polyvinyl alcohol. Polyvinyl alcohol is particularly preferable.
  • Polyvinyl alcohol used as a polymer dispersant is an anion-modified polyvinyl alcohol having an anionic group such as a cation-modified polyvinyl alcohol or a carboxyl group in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate. Further, modified polyvinyl alcohol such as silyl-modified polyvinyl alcohol having a silyl group is also included. Polyvinyl alcohol has a higher effect of suppressing the occurrence of cracks when forming the ink absorbing layer when the average degree of polymerization is higher, but when the average degree of polymerization is within 5000, the viscosity of the emulsion resin is not high, and at the time of production Easy to handle.
  • the average degree of polymerization is preferably 300 to 5000, more preferably 1500 to 5000, and particularly preferably 3000 to 4500.
  • the saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, more preferably 80 to 99.5 mol%.
  • Examples of the resin that is emulsion-polymerized with the above polymer dispersant include homopolymers or copolymers of ethylene monomers such as acrylic acid esters, methacrylic acid esters, vinyl compounds, and styrene compounds, and diene compounds such as butadiene and isoprene.
  • Examples of the polymer include acrylic resins, styrene-butadiene resins, and ethylene-vinyl acetate resins.
  • the high refractive index layer or the low refractive index layer is, for example, an ultraviolet absorber described in JP-A-57-74193, JP-A-57-87988 and JP-A-62-261476, -74192, 57-87989, 60-72785, 61-146591, JP-A-1-95091, 3-3-1376, etc., Various anionic, cationic or nonionic surfactants such as JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771 and JP-A-4-219266
  • the optical brighteners described, pH adjusters such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, Foams, lubricants such as diethylene glycol, preservatives, antistatic agents, may contain various known additives such as a matting agent.
  • the method for forming the heat ray reflective layer includes a coating solution for a high refractive index layer containing a first water-soluble polymer and first metal oxide particles, a second water-soluble polymer and second metal oxide particles.
  • the high refractive index layer coating liquid or the low refractive index layer coating liquid contains a thermal gelling agent, and the coating film of the coating liquid containing the thermal gelling agent is heated to form a thermal gel. It further includes a heating gelation step of gelling the agent.
  • each refractive index layer on the cellulose ester film is not particularly limited, but a high refractive index layer coating solution and a low refractive index layer coating solution are alternately applied and dried to form a laminate. Is preferred. Specific examples include the following: (1) A high refractive index layer coating solution is applied onto a film and dried to form a high refractive index layer, and then a low refractive index layer coating solution is applied and dried.
  • Forming a low refractive index layer and forming a heat ray reflective layer (2) applying a low refractive index layer coating solution on the film and drying to form a low refractive index layer; then applying a high refractive index layer A method of forming a heat-reflective layer by applying a liquid and drying to form a heat-reflective layer; (3) On the film, a high refractive index layer coating liquid and a low refractive index layer coating liquid are alternately layered successively.
  • the method (4) which is a simpler manufacturing process, is preferable.
  • Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791.
  • a slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
  • the solvent for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and diethyl ether. And ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
  • the concentration of the water-soluble polymer in the high refractive index layer coating solution is preferably 1 to 10% by mass.
  • the concentration of the metal oxide particles in the high refractive index layer coating solution is preferably 1 to 50% by mass.
  • the concentration thereof is preferably 0.1 to 3% by mass, more preferably 1 to 2% by mass. If this density
  • the concentration is preferably 0.3 to 10% by mass, more preferably 0.5 to 3% by mass. More preferably, the content is 0.7 to 2% by mass. If the concentration is 0.3% by mass or more, sufficient mixing of the particles can be expected. On the other hand, if the concentration is 10% by mass or less, the uniformity of the coating film can be sufficiently ensured.
  • the concentration of the water-soluble polymer in the low refractive index layer coating solution is preferably 1 to 10% by mass.
  • the concentration of the metal oxide particles in the low refractive index layer coating solution is preferably 1 to 50% by mass.
  • the concentration when the coating liquid for the low refractive index layer contains a thermal gelling agent is preferably 0.1 to 3% by mass. More preferably, it is 1 to 2% by mass.
  • the concentration is preferably 0.3 to 10% by mass, more preferably 0.5 to 3% by mass. More preferably, the content is 0.7 to 2% by mass. If the concentration is 0.3% by mass or more, sufficient mixing of the particles can be expected. On the other hand, if the concentration is 10% by mass or less, the uniformity of the coating film can be sufficiently ensured.
  • the method for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, and includes, for example, a water-soluble polymer, metal oxide particles, a thermal gelling agent and a low temperature gelling agent, and as necessary. Examples include a method of adding other additives to be added and stirring and mixing. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
  • the high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing rutile type titanium oxide having a volume average particle size of 100 nm or less.
  • the rutile type titanium oxide is added to the high refractive index layer coating solution as an aqueous titanium oxide sol having a pH of 1.0 or more and 3.0 or less and a positive zeta potential of the titanium particles. It is preferable to prepare.
  • the viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution in the simultaneous multilayer coating (4) is preferably in the range of 5 to 100 mPa ⁇ s. More preferably, it is in the range of 10 to 50 mPa ⁇ s.
  • the range of 5 to 1200 mPa ⁇ s is preferable, and the range of 25 to 500 mPa ⁇ s is more preferable.
  • the viscosity of the coating solution at 15 ° C. is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, still more preferably 3,000 to 30,000 mPa ⁇ s, and most preferably 10 , 30,000 to 30,000 mPa ⁇ s.
  • the temperature of the coating solution when applying the coating solution is preferably 15 to 40 ° C., more preferably 30 to 40 ° C. And, for example, after performing simultaneous multi-layer coating, if the low-temperature gelling agent is not included, the thermal gelling agent is gelled by heat treatment to thicken the coating solution (heating gelation step), A heat ray reflective layer can be manufactured, suppressing mixing of the particle
  • the temperature is preferably 60 to 150 ° C., and the heating time is preferably 10 to 60 seconds.
  • the drying conditions after the heat gelation step are preferably 50 ° C. or more, and more preferably, the drying conditions are a wet bulb temperature of 50 ° C. to 150 ° C. and a film surface temperature of 50 ° C. to 100 ° C. It is to be performed under the conditions of. Moreover, it is preferable to carry out by the horizontal set system from a viewpoint of the formed coating-film uniformity as a heating system in the heating gelation process immediately after application
  • the low-temperature gelling agent when used in combination, for example, after simultaneous multi-layer coating, the low-temperature gelling agent is gelled by cooling (such as using cold air) to thicken the coating solution (cooling gelation step) ), And then the heat gelling agent is gelled by heat treatment to increase the viscosity of the coating solution (heating gelation step), and if necessary, by heating and drying with warm air or the like, the high refractive index layer and A heat ray reflective layer can be produced while suppressing mixing of particles contained in the low refractive index layer.
  • the temperature during cooling in the cooling gelation step is preferably 1 to 15 ° C., more preferably 10 to 15 ° C.
  • the cooling time is preferably 10 to 60 seconds.
  • the temperature during the heat treatment in the heat gelation step after the cooling gelation step is preferably 10 ° C. or higher, more preferably under conditions of a wet bulb temperature of 5 to 58 ° C. and a film surface temperature of 10 to 80 ° C. Is to do.
  • any heating method such as warm air heating, infrared heating, or microwave heating can be used as the heating method in the heating gelation step for gelling the thermal gelling agent.
  • the cellulose ester film is mainly composed of a cellulose ester resin composition (hereinafter also simply referred to as cellulose ester), and if necessary, a plasticizer, an ultraviolet absorber, fine particles, a dye, a sugar ester compound, an acrylic copolymer, which will be described later. It is a film containing additives such as coalescence.
  • the cellulose ester is a part or all of hydrogen atoms of hydroxyl groups (—OH) at the 2nd, 3rd and 6th positions in the ⁇ -1,4 bonded glucose units constituting cellulose. Refers to a cellulose acylate resin substituted with an acyl group.
  • a phosphoric acid plasticizer is not added to the cellulose ester film. This is to prevent the film from deteriorating due to hydrolysis.
  • the cellulose ester is not particularly limited. Examples thereof include cellulose ester resins substituted with an aliphatic acyl group having 2 to 20 carbon atoms. Among these, those having an acyl group having 2 to 4 carbon atoms are preferable, and an acetyl group, a propionyl group, and a butanoyl group are more preferable. Note that the acyl group in the cellulose ester may be a single species or a combination of a plurality of acyl groups.
  • cellulose esters include cellulose acylate resins such as cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, and cellulose acetate propionate, and more preferably cellulose triacetate, cellulose diacetate, and cellulose ester pro Examples thereof include cellulose acylate resins such as pionate. These cellulose esters may be used singly or in combination of two or more. Among these, acetylcellulose is preferable.
  • the cellulose used as the raw material for the cellulose ester is not particularly limited, and examples thereof include cotton linters, wood pulp (derived from conifers and hardwoods), kenaf and the like. Moreover, the cellulose ester obtained from these can be mixed and used for each arbitrary ratio.
  • the cellulose ester can be produced by a known method. Generally, cellulose is esterified by mixing cellulose as a raw material, a predetermined organic acid (such as acetic acid or propionic acid), an acid anhydride (such as acetic anhydride or propionic anhydride), and a catalyst (such as sulfuric acid). The reaction proceeds until the triester is formed. In the triester, the three hydroxyl groups of the glucose unit are substituted with an acyl group of an organic acid. When two kinds of organic acids are used at the same time, a mixed ester type cellulose ester such as cellulose acetate propionate or cellulose acetate butyrate can be produced.
  • a predetermined organic acid such as acetic acid or propionic acid
  • an acid anhydride such as acetic anhydride or propionic anhydride
  • a catalyst such as sulfuric acid
  • a cellulose ester having a desired degree of acyl substitution can be synthesized by hydrolyzing the cellulose triester. Thereafter, a cellulose ester is finally produced through steps such as filtration, precipitation, washing with water, dehydration, and drying.
  • the cellulose ester can be synthesized with reference to the methods described in JP-A-10-45804, JP-A-2005-281645, JP-A-2003-270442, and the like.
  • Commercially available films include Konica Minolta KC4UAW, KC6UAW, N-TAC KC4KR, FUJIFILM UZ-TAC, TD-80UL, and materials manufactured by Daicel Corporation.
  • L20, L30, L40, and L50, Ca398-3, Ca398-6, Ca398-10, Ca398-30, Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd., and the like can be mentioned.
  • the degree of substitution of the acyl group of the cellulose ester is preferably 2.0 or more from the viewpoint of antifogging properties and production stability in the production process.
  • the substitution degree of the acyl group is preferably 3.0 or less from the viewpoint of durability with time of the film.
  • the degree of substitution of acyl groups refers to the average number of acyl groups per glucose unit, and any one of the hydrogen atoms of hydroxyl groups at the 2nd, 3rd and 6th positions of the 1 glucose unit is an acyl group. Indicates the percentage replaced.
  • the degree of substitution (maximum degree of substitution) is 3.0.
  • the method for measuring the substitution degree of the acyl group can be carried out in accordance with ASTM D-817-91.
  • the weight average molecular weight (Mw) of the cellulose ester is preferably 75,000 or more, more preferably 80,000 or more, from the viewpoint of improving the heat resistance and strength (resistance to tension and tearing) of the film. More preferably, it is 85,000 or more.
  • the weight average molecular weight (Mw) is preferably 300,000 or less, more preferably. Is 200,000 or less, more preferably 150,000 or less.
  • the value of the ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose ester is preferably 2.0 to 3.5.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of these cellulose esters can be measured using gel permeation chromatography (GPC), for example, under the following conditions.
  • the surface of the cellulose ester film is hydrophilized by light irradiation or saponification.
  • light irradiation is performed on one side of the film, while saponification is performed on both sides of the film.
  • oxygen-containing polar groups such as hydroxyl groups.
  • the hydrophilization treatment refers to, for example, a treatment for substituting an acyloxy group in a cellulose ester described later with an oxygen-containing polar group such as a hydroxyl group, a carbonyl group, or a carboxylic acid group. Particularly preferred.
  • a hydrophilic group is introduced into the antifogging layer, resulting in a layer excellent in hydrophilicity and water absorption, and antifogging properties are exhibited.
  • Examples of the light irradiation method include treatment using vacuum ultraviolet rays.
  • a light source excimer UV lamp
  • Ar, Kr, Xe or the like in a nitrogen environment Excimer UV irradiation method
  • a method using a low-pressure mercury lamp excimer UV is irradiated from the viewpoint that it is excellent in hydrophilization in the depth direction of the film, can impart sufficient water absorption to the film surface, and can easily obtain a film with little change in performance over time.
  • the method is preferred.
  • the integrated light amount is preferably adjusted appropriately for each light source. This prevents the film from becoming excessively hydrophilic.
  • each method will be described.
  • Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. It is a similar discharge called a very thin micro discharge.
  • electrodeless electric field discharge is also known as a method for efficiently obtaining excimer UV.
  • the electrodeless field discharge is a discharge due to capacitive coupling, and is also called an RF discharge.
  • the lamp and electrodes and their arrangement may be basically the same as in dielectric barrier discharge, but the high frequency applied between the two electrodes is several MHz.
  • a spatially and temporally uniform discharge can be obtained in this way.
  • the xenon lamp emits UV having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency.
  • the excimer lamp since the excimer lamp has high light generation efficiency, it can be turned on with low power. In addition, the excimer lamp does not emit light having a long wavelength that causes a temperature increase due to light, and irradiates energy of a single wavelength in the ultraviolet region, so that an increase in the surface temperature of the irradiation object can be suppressed. Therefore, it is suitable for irradiation to a resin film that is easily affected by heat.
  • Excimer UV treatment is a treatment method in which light is irradiated with an excimer UV light source in a state where the oxygen concentration is lowered (generally lower than 1%) by nitrogen purging or vacuuming.
  • An excimer irradiation device commercially available from USHIO INC. Or M.D. excimer can be used as appropriate.
  • the integrated light amount is preferably 50 mJ or more and 1000 mJ or less, more preferably 100 mJ or more and 900 mJ or less, and 300 mJ or more and 600 mJ or less. More preferably.
  • a low-pressure mercury lamp having a peak wavelength of 180 nm to 190 nm and a low-pressure mercury lamp having a peak wavelength of 250 nm to 260 nm are used.
  • the method to use is mentioned.
  • the integrated light quantity of the peak wavelength is preferably 1000 mJ to 10,000 mJ, and preferably 3000 mJ to 9000 mJ.
  • a low-pressure mercury lamp can easily provide an antifogging function when irradiated under the atmosphere rather than under nitrogen and under vacuum. Moreover, yellowing of a film can be prevented by cutting a wavelength of 254 nm with a filter.
  • a low-pressure mercury lamp for example, a low-pressure mercury lamp commercially available from USHIO INC. Can be used.
  • a corona discharge treatment or a plasma treatment may be performed.
  • the corona discharge treatment is a treatment performed by applying a high voltage of 1 kV or higher between the electrodes under atmospheric pressure and discharging.
  • oxygen-containing polar groups hydroxyl group, carbonyl group, carboxylic acid group, etc.
  • the corona discharge treatment can be performed using an apparatus commercially available from Kasuga Electric Co., Ltd. or Toyo Electric Co., Ltd.
  • the plasma treatment is a treatment for irradiating the substrate surface with a plasma gas to modify the substrate surface, and examples thereof include glow discharge treatment and flame plasma treatment.
  • JP-A-6-123062, JP-A-11-293011, JP-A-11-005857, etc. can be used.
  • oxygen-containing polar groups hydroxyl group, carbonyl group, carboxylic acid group, etc.
  • the glow discharge treatment a film is placed between opposing electrodes, a plasma-excitable gas is introduced into the apparatus, and a high-frequency voltage is applied between the electrodes, thereby plasma-exciting the gas and causing a glow between the electrodes. It is what discharges. Thereby, the film surface is processed and hydrophilicity is improved.
  • the cellulose ester film 14 includes: (a) a step of forming a cellulose ester by a solution casting method or a melt casting method (film forming step); and (b) a step of hydrophilizing the surface of the film formed. Can be manufactured. In addition, you may manufacture the cellulose-ester film 14 which has anti-fogging property by performing a hydrophilic treatment by the process of said (b) using a commercially available cellulose-ester film.
  • a cellulose ester is formed by a solution casting method or a melt casting method.
  • the film forming method will be described by taking the case of using the solution pouring method as an example, but the melt pouring method can also be carried out with reference to a conventionally known method.
  • the film formation step is preferably (i) a dope preparation step, (ii) a dope casting step, (iii) a drying step 1, (iv) a peeling step, and (v) a stretching step. (Vi) a drying step 2 and (vii) a film winding step.
  • a dope preparation process is a process which prepares dope by dissolving the cellulose ester and the additive mentioned later in a solvent as needed.
  • the concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become.
  • the concentration that achieves both of these is, for example, 10 to 35% by mass, and preferably 15 to 25% by mass.
  • the solvent used at the time of dope preparation may be used alone or in combination of two or more. From the viewpoint of production efficiency, it is preferable to use a solvent (good solvent) that dissolves cellulose ester alone and a solvent (poor solvent) that does not swell or dissolve cellulose ester alone.
  • the good solvent is preferably methylene chloride or methyl acetate.
  • the poor solvent for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • a form in which water is contained in the dope in an amount of 0.01 to 2% by mass is also preferable.
  • a solvent in which the solvent removed from the film by drying in the film forming step is recovered and reused can be used.
  • a general method can be used as a method of dissolving the cellulose ester when preparing the dope described above. Further, by combining heating and pressurization, it is possible to heat above the boiling point at normal pressure.
  • a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is more preferable. It does not specifically limit as a filter medium, A well-known filter medium can be used.
  • the dope casting step is a step of casting (casting) the dope onto an endless metal support.
  • the metal support preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used.
  • the cast width can be 1 to 4 m.
  • the surface temperature of the metal support can be set to ⁇ 50 ° C. or higher and lower than the boiling point of the solvent, preferably 0 to 40 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
  • the drying step 1 is a step of drying the cast dope as a web.
  • the surface temperature of the metal support is the same as in the dope casting process. A higher temperature is preferable because the web can be dried at a higher speed. However, if the temperature is too high, the web may foam or the flatness may deteriorate.
  • peeling process is a process of peeling a web from a metal support body.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass. Alternatively, it is 60 to 130% by mass, and more preferably 20 to 30% by mass or 70 to 120% by mass.
  • the stretching step is a step of stretching the web immediately after peeling from the metal support in at least one direction. By performing the stretching treatment, the orientation of molecules in the film can be controlled.
  • the stretched film may be a biaxially stretched film, but is preferably a uniaxially stretched film. However, the stretching step is not essential, and the cellulose ester film may be an unstretched film.
  • the film may be stretched at a stretching ratio of 1.01 to 1.50 times in the longitudinal direction (MD direction). Stretching in the width direction (TD direction) and the longitudinal direction (MD direction) can be performed sequentially or simultaneously.
  • the amount of residual solvent in the stretched film is preferably 1 to 50% by mass, more preferably 3 to 45% by mass. In the case of such an amount of residual solvent, it is easy to achieve both production efficiency and film transparency.
  • the stretching method is not particularly limited.
  • a stretching method for example, a method is used in which a circumferential speed difference is applied to a plurality of rolls, and the roll circumferential speed difference is used to stretch in the MD direction. Examples include a method of spreading the film in the traveling direction and stretching it in the MD direction, a method of stretching the film in the horizontal direction and stretching in the TD direction, and a method of simultaneously stretching in the MD / TD direction and stretching in both the MD / TD directions.
  • the stretching method may be oblique stretching.
  • Diagonal stretching means crossing the film feeding direction and the winding direction, and transporting one end of the film in the width direction ahead of the other end, thereby causing the film to cross the width direction. This is a method of stretching in an oblique direction.
  • the stretching temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 150 ° C. or higher and 200 ° C. or lower, and further preferably higher than 150 ° C. and 190 ° C. or lower.
  • the film is preferably heat-set after stretching.
  • the heat setting is preferably performed at a temperature higher than the final stretching temperature in the TD direction and within a temperature range of Tg-20 ° C., usually for 0.5 to 300 seconds. At this time, it is preferable to perform heat fixing while sequentially raising the temperature in a range where the temperature difference is 1 to 100 ° C. in the region divided into two or more.
  • Tg (glass transition temperature) of a film is controlled by the kind of material which comprises a film, and the ratio of the material which comprises, and can be calculated
  • Drying step 2 is a step of further drying the stretched film.
  • the film is preferably dried so that the residual solvent amount is 1% by mass or less, more preferably 0.1% by mass or less, and further preferably 0 to 0.01% by mass or less. It is.
  • film winding process is a process of winding up the web after drying (finished cellulose-ester film). When the film is wound, a film having good dimensional stability can be obtained by setting the residual solvent amount to 0.4% by mass or less.
  • (B) Hydrophilization treatment step This is a step of drawing out the formed cellulose ester film and imparting antifogging properties to the film surface by the hydrophilic treatment. Since the details of this process are as described above, the description thereof is omitted.
  • the additive which the cellulose ester film used by this embodiment can contain is demonstrated.
  • the cellulose ester film used in the present embodiment includes, for example, the following (a) plasticizer, (b) ultraviolet absorber, (c) fine particles, (d) dye, ( e) A sugar ester compound and (f) an acrylic copolymer may be included.
  • the cellulose ester film preferably contains a plasticizer for the purpose of improving mechanical strength and water resistance.
  • a plasticizer for the purpose of improving mechanical strength and water resistance.
  • a polyester compound is preferable.
  • polyester compound the polymer (henceforth a "polyester polyol") obtained by the condensation reaction of dicarboxylic acid or these ester-forming derivatives, and glycol (henceforth "polyester polyol”), or the said A polymer in which the terminal hydroxyl group of the polyester polyol is sealed with a monocarboxylic acid (hereinafter referred to as “end-capped polyester”) can be used.
  • the ester-forming derivative is an esterified product of dicarboxylic acid, dicarboxylic acid chloride, or anhydride of dicarboxylic acid.
  • polyester polyol or the end-capped polyester further suppresses peeling and wrinkling of the film over time.
  • the reason why such an effect is obtained is not clear, but the above-mentioned compound is oriented in the surface direction during film formation, and the deformation stress at the time of moisture absorption is dispersed in the thickness direction. It is estimated that wrinkles can be suppressed.
  • polyester compound examples include ester compounds represented by the following general formula (A).
  • B is a hydroxyl group, a benzene monocarboxylic acid residue or an aliphatic monocarboxylic acid residue
  • G is an alkylene glycol residue having 2 to 18 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms or a carbon atom.
  • A is an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 16 carbon atoms
  • n is an integer of 1 or more .
  • a compound in which B is a hydroxyl group corresponds to a polyester polyol
  • a compound in which B is a benzene monocarboxylic acid residue or an aliphatic monocarboxylic acid residue corresponds to an end-capped polyester.
  • the polyester compound represented by the general formula (A) is obtained by the same reaction as a normal polyester plasticizer.
  • an aliphatic monocarboxylic acid having 3 or less carbon atoms is preferable, and examples include acetic acid, propionic acid, and butanoic acid (butyric acid). Each of these can be used as one kind or a mixture of two or more kinds.
  • Examples of the benzene monocarboxylic acid component of the polyester compound represented by the general formula (A) include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal There are propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid, aliphatic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively. In particular, it is preferable to contain benzoic acid or p-toluic acid.
  • alkylene glycol component having 2 to 18 carbon atoms of the polyester compound represented by the general formula (A) examples include ethylene glycol, 1,2-propanediol (1,2-propylene glycol), 1,3-propanediol (1 , 3-propylene glycol), 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 2,3-butane Diol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,4-cyclohexanediol, 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl 2-ethyl
  • ethylene glycol, diethylene glycol, 1,2-propylene glycol, and 2-methyl 1,3-propanediol are preferable, and ethylene glycol, diethylene glycol, and 1,2-propylene glycol are more preferable.
  • an alkylene glycol having 2 to 12 carbon atoms is preferable because of excellent compatibility with the resin constituting the film. More preferred are alkylene glycols having 2 to 6 carbon atoms, and still more preferred are alkylene glycols having 2 to 4 carbon atoms.
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the polyester compound represented by the general formula (A) include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. Glycols can be used as one or a mixture of two or more.
  • Examples of the aryl glycol having 6 to 12 carbon atoms of the polyester compound represented by the general formula (A) include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, cyclohexanediethanol, and 1,4-benzenedimethanol. And these glycols can be used as one kind or a mixture of two or more kinds.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the polyester compound represented by the general formula (A) examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. There are acids and the like, and these are used as one kind or a mixture of two or more kinds, respectively.
  • Examples of the aryl dicarboxylic acid component having 6 to 16 carbon atoms of the polyester compound represented by the general formula (A) include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, There are 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,6-anthracenedicarboxylic acid and the like.
  • the aryl dicarboxylic acid may have a substituent on the aromatic ring. Examples of the substituent include a linear or branched alkyl group having 1 to 6 carbon atoms, an alkoxy group, and an aryl group having 6 to 12 carbon atoms.
  • A is preferably an aryl dicarboxylic acid residue having 10 to 16 carbon atoms.
  • a dicarboxylic acid having an aromatic cyclic structure such as a benzene ring structure, a naphthalene ring structure, or an anthracene ring structure can be used.
  • aryl dicarboxylic acid component examples include orthophthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid. And acid, 1,8-naphthalenedicarboxylic acid, and 2,6-anthracene dicarboxylic acid.
  • 1,4-naphthalenedicarboxylic acid 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, and more preferred is 2 1,3-naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid, particularly preferably 2,6-naphthalenedicarboxylic acid. These can be used alone or in combination of two or more.
  • the polyester polyol preferably has an average carbon number of 10 to 16 in the dicarboxylic acid used as a raw material. If the carbon number average of the dicarboxylic acid is 10 or more, the film has excellent dimensional stability, and if the carbon number average is 16 or less, it has excellent compatibility with the resin constituting the film, and the resulting film is transparent. The property is remarkably excellent.
  • the dicarboxylic acid preferably has an average carbon number of 10 to 14, and more preferably has an average carbon number of 10 to 12.
  • the average carbon number of the dicarboxylic acid of the polyester polyol means the carbon number of the dicarboxylic acid when the polyester polyol is polymerized using a single dicarboxylic acid, but the polyester using two or more kinds of dicarboxylic acids.
  • polymerizing a polyol it means the sum of the products of the carbon number of each dicarboxylic acid and the molar fraction of the dicarboxylic acid.
  • the above-mentioned aryl dicarboxylic acid having 10 to 16 carbon atoms and other dicarboxylic acids can be used in combination.
  • the dicarboxylic acid that can be used in combination is preferably a dicarboxylic acid having 4 to 9 carbon atoms.
  • succinic acid, glutaric acid, adipic acid, maleic acid, orthophthalic acid, isophthalic acid, terephthalic acid, esterified products thereof, acid A chloride and an acid anhydride can be mentioned.
  • dicarboxylic acid in which the polyester polyol has 10 to 16 carbon atoms are shown below, but the present embodiment is not limited thereto.
  • 2,6-naphthalenedicarboxylic acid (2) 2,3-naphthalenedicarboxylic acid (3) 2,6-anthracene dicarboxylic acid (4) 2,6-naphthalenedicarboxylic acid: succinic acid (75:25 to 99: 1 molar ratio) (5)
  • 2,3-naphthalenedicarboxylic acid: terephthalic acid 50:50 to 99: 1 molar ratio
  • (8) 2,6-anthracene dicarboxylic acid succinic acid (50:50 to 99: 1 molar ratio) (9)
  • polyester compound examples include compounds having an octanol-water partition coefficient (logP (B)) of 0 or more and less than 7 from the viewpoint of water solubility and orientation of the compound, in addition to the polyester polyol described above. It is also preferable to use it.
  • logP (B) octanol-water partition coefficient
  • the polyester polyol is a dicarboxylic acid or an ester-forming derivative thereof (a component corresponding to A in the general formula (A)) and a glycol (a component corresponding to G in the general formula (A)).
  • it can be produced by an esterification reaction in a well-known and conventional manner for 10 to 25 hours in the temperature range of 180 to 250 ° C., for example.
  • a solvent such as toluene or xylene may be used, but a method using no solvent or glycol used as a raw material as a solvent is preferable.
  • esterification catalyst for example, tetraisopropyl titanate, tetrabutyl titanate, p-toluenesulfonic acid, dibutyltin oxide and the like can be used.
  • the esterification catalyst is preferably used in an amount of 0.01 to 0.5 parts by mass based on 100 parts by mass of the total amount of dicarboxylic acids or their ester-forming derivatives.
  • the molar ratio in the reaction of the dicarboxylic acid or their ester-forming derivative with the glycol must be such that the terminal group of the polyester is a hydroxyl group, so that the molar ratio is 1 mol of the dicarboxylic acid or their ester-forming derivative.
  • the glycol is 1.1 to 10 moles.
  • the glycol is 1.5 to 7 moles per mole of the dicarboxylic acid or their ester-forming derivatives, and more preferably, the glycol is moles per mole of the dicarboxylic acid or their ester-forming derivatives. 2 to 5 moles.
  • the terminal group of the polyester polyol is a hydroxyl group, but the polyester polyol may contain a carboxy group-terminated compound as a by-product. However, the carboxy group terminal in the polyester polyol lowers the humidity stability, so that the content is preferably low.
  • the acid value is preferably 5.0 mgKOH / g or less, more preferably 1.0 mgKOH / g or less, and still more preferably 0.5 mgKOH / g or less.
  • the “acid value” refers to the number of milligrams of potassium hydroxide necessary to neutralize the acid (carboxy group present in the sample) contained in 1 g of the sample. The acid value can be measured according to JIS K0070: 1992.
  • the polyester polyol preferably has a hydroxy (hydroxyl group) value (OHV) in the range of 35 mg / g to 220 mg / g.
  • the hydroxy (hydroxyl group) value here means the number of milligrams of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when the hydroxyl group contained in 1 g of a sample is acetylated.
  • the hydroxy (hydroxyl group) value is obtained by acetylating a hydroxyl group in a sample with acetic anhydride, titrating acetic acid not used with a potassium hydroxide solution, and obtaining a difference from the initial titration value of acetic anhydride.
  • the hydroxyl content of the polyester polyol is preferably 70% or more.
  • the hydroxyl group content is preferably 70% or more, more preferably 90% or more, and still more preferably 99% or more.
  • a compound having a hydroxyl group content of 50% or less is not included in the polyester polyol because one of the end groups is substituted with a group other than the hydroxyl group.
  • the polyester polyol preferably has a number average molecular weight within a range of 300 to 3,000, and more preferably a number average molecular weight of 350 to 2,000.
  • the degree of dispersion of the molecular weight of the polyester polyol of this embodiment is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. If the degree of dispersion is within the above range, a polyester polyol excellent in compatibility with the resin constituting the film can be easily obtained.
  • the polyester polyol preferably contains 50% or more of a component having a molecular weight of 300 to 1800. By setting the number average molecular weight within the above range, the compatibility can be greatly improved.
  • the end-capped polyester may be such that at least one of the two end groups B is a monocarboxylic acid residue. That is, one of the two end groups B may be a hydroxyl group and the other may be a monocarboxylic acid residue. However, it is preferable that both of the two terminal groups B are monocarboxylic acid residues.
  • the terminal group B the above-mentioned benzene monocarboxylic acid residue and aliphatic monocarboxylic acid residue can be used, and preferably a benzene monocarboxylic acid residue can be used. That is, the terminal group B is preferably an aromatic terminal polyester.
  • the end-capped polyester is composed of glycol (a component corresponding to G in the general formula (A)), a dicarboxylic acid or an ester-forming derivative thereof (a component corresponding to A in the general formula (A)) and a monocarboxylic acid or
  • ester-forming derivatives components corresponding to B in the general formula (A)
  • the ester compound of the present embodiment is a mixture having a distribution in molecular weight and molecular structure at the time of its synthesis.
  • preferred components for the present embodiment for example, phthalic acid residues as A in the general formula (A) and It is preferable to contain at least one polyester compound having an adipic acid residue.
  • the end-capped polyester has a number average molecular weight of preferably 300-1500, more preferably 400-1000.
  • the acid value is 0.5 mg KOH / g or less, the hydroxy (hydroxyl group) value is 25 mg KOH / g or less, more preferably the acid value is 0.3 mg KOH / g or less, and the hydroxy (hydroxyl group) value is 15 mg KOH / g or less.
  • the film of this embodiment preferably contains the polyester compound in an amount of 0.1 to 30% by mass, particularly 0.5 to 10% by mass, based on the entire film (100% by mass).
  • plasticizers materials described in [0102] to [0155] of International Publication No. 10/026832, etc. can be appropriately used.
  • the film of this embodiment can contain an ultraviolet absorber.
  • the ultraviolet absorber is added for the purpose of improving the durability of the film by absorbing ultraviolet rays of 400 nm or less.
  • the ultraviolet absorber is added so that the transmittance at a wavelength of 370 nm is 10% or less, preferably 5% or less, more preferably 2% or less.
  • the ultraviolet absorber is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like. Can be mentioned. Among these, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers are preferably used, and benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers are more preferably used.
  • 5-chloro-2- (3,5-di-sec-butyl-2-hydroxyphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6- (Straight and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone and the like are listed, and commercially available products are Tinuvin 109, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 928 and the like are preferably used.
  • a discotic compound such as a compound having a 1,3,5-triazine ring is also preferably used as the ultraviolet absorber.
  • the cellulose ester solution in the present embodiment preferably contains two or more ultraviolet absorbers.
  • a polymer UV absorber can also be preferably used.
  • a polymer type UV absorber described in JP-A-6-148430 is preferably used.
  • the ultraviolet absorber As a method for adding the ultraviolet absorber, the ultraviolet absorber is dissolved in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane, or a mixed solvent thereof, and then added to the dope.
  • an alcohol such as methanol, ethanol or butanol
  • an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane, or a mixed solvent thereof
  • the method of adding directly into the dope composition can be employed.
  • the amount of the UV absorber used is not uniform depending on the type of UV absorber, usage conditions, etc., but when the dry film thickness is 30 to 200 ⁇ m, it is 0.5 to 10% by mass relative to the film. Is preferable, and 0.6 to 4% by mass is more preferable.
  • the film preferably contains fine particles from the viewpoint of slipperiness and storage stability.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
  • a hydrophobized one is preferable for achieving both slipperiness and haze.
  • silanol groups those in which two or more are substituted with a hydrophobic substituent are preferred, and those in which three or more are substituted are more preferred.
  • the hydrophobic substituent is preferably a methyl group.
  • the average primary particle diameter of silicon dioxide is preferably 20 nm or less, and more preferably 10 nm or less.
  • the average primary particle size of the fine particles is determined by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle size, and using the average value as the primary value.
  • the average particle diameter can be set.
  • fine particles of silicon dioxide for example, those commercially available under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above, manufactured by Nippon Aerosil Co., Ltd.) are used. be able to.
  • polymer fine particles examples include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120 and 240 (manufactured by Toshiba Silicone Co., Ltd.) What is marketed with a brand name can be used.
  • Aerosil 200V, Aerosil R972V, and Aerosil R812 are preferable because they have a large effect of reducing the friction coefficient while keeping the film haze low, and Aerosil R812 is more preferably used.
  • the amount of fine particles added is preferably 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the dynamic friction coefficient of at least one surface is 0.2 to 1.0.
  • (D) Dye A dye can be added to the film for adjusting the color within a range not impairing the effects of the present embodiment.
  • a blue dye may be added to the film in order to suppress the yellowness of the film.
  • Preferred examples of the dye include anthraquinone dyes.
  • sugar ester compound used in the present embodiment examples include glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol. , Lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose.
  • gentiobiose, gentiotriose, gentiotetraose, xylotriose, galactosyl sucrose, and the like are also included.
  • sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
  • the monocarboxylic acid used for esterifying all or part of the hydroxyl groups in the pyranose structure or furanose structure is not particularly limited, and is known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid. An acid or the like can be used. One kind of carboxylic acid may be used, or two or more kinds may be mixed.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples thereof include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and
  • Preferred examples of the alicyclic monocarboxylic acid include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids include, for example, aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof.
  • Oligosaccharide ester compounds can be applied as “compounds having 1 to 12 at least one pyranose structure or furanose structure” described later.
  • the oligosaccharide is produced by allowing an enzyme such as amylase to act on starch, sucrose, etc., and examples of the oligosaccharide applicable to this embodiment include malto-oligosaccharide, isomalt-oligosaccharide, fructo-oligosaccharide, and galactooligosaccharide. And xylooligosaccharides.
  • the said ester compound is a compound which condensed 1 or more and 12 or less of at least 1 sort (s) of the pyranose structure or furanose structure represented with the following general formula (B).
  • R 11 to R 15 and R 21 to R 25 are each an acyl group having 2 to 22 carbon atoms or a hydrogen atom
  • m and n are each an integer of 0 to 12
  • m + n is 1 to 12. Represents an integer.
  • R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom.
  • the benzoyl group may further have a substituent R 26 , and examples of R 26 include an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group. Further, these alkyl groups, alkenyl groups, and phenyl groups are substituted. It may have a group. Oligosaccharides can also be produced in the same manner as ester compounds.
  • sugar ester compounds include compounds represented by general formula (1).
  • R 1 to R 8 represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms.
  • R 1 to R 8 may be the same or different.
  • the film of this embodiment can contain the acrylic polymer whose weight average molecular weight is 500-30000. Above all, the weight obtained by copolymerizing ethylenically unsaturated monomer Xa having no aromatic ring and hydrophilic group in the molecule and ethylenically unsaturated monomer Xb having no aromatic ring and having a hydrophilic group in the molecule. Polymer X having an average molecular weight of 5,000 to 30,000, more preferably, an ethylenically unsaturated monomer Xa having no aromatic ring and a hydrophilic group in the molecule and an ethylenically unsaturated group having no aromatic ring and a hydrophilic group in the molecule.
  • a weight average molecular weight of 500 to 3,000 obtained by polymerizing a polymer X having a weight average molecular weight of 5,000 to 30,000 obtained by copolymerization with a saturated monomer Xb and an ethylenically unsaturated monomer Ya having no aromatic ring.
  • the polymer Y is preferably contained.
  • the acrylic copolymer can be added in the range of 1 to 30 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the hard coat resin forming the hard coat layer is preferably an actinic radiation curable resin from the viewpoint of excellent mechanical film strength (abrasion resistance, pencil hardness). That is, it is a layer mainly composed of a resin that is cured through a crosslinking reaction upon irradiation with active rays (also called active energy rays) such as ultraviolet rays and electron beams.
  • active rays also called active energy rays
  • the actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams.
  • the Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin curable by ultraviolet irradiation is particularly excellent in mechanical film strength (abrasion resistance, pencil hardness). It is preferable from the point.
  • the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable resin.
  • a curable epoxy resin or the like is preferably used, and among them, an ultraviolet curable acrylate resin or an ultraviolet curable urethane acrylate resin is preferable.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • polyfunctional acrylate monomer examples include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • the ultraviolet curable urethane acrylate resin examples include, for example, a polyurethane obtained by reacting an alcohol, a polyol, and / or a hydroxyl group-containing compound such as a hydroxyl group-containing acrylate and an isocyanate or, if necessary, these reactions. It is obtained by esterifying a compound with (meth) acrylic acid. More specifically, it is an addition reaction product of polyisocyanate and an acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule.
  • polyisocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4 ′.
  • a compound having two isocyanate groups bonded to an alicyclic hydrocarbon such as aromatic isocyanate such as diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 1,4-cyclohexane diisocyanate (hereinafter referred to as alicyclic diisocyanate and A compound having two isocyanate groups bonded to an aliphatic hydrocarbon such as trimethylene diisocyanate and hexamethylene diisocyanate (hereinafter referred to as aliphatic diisocyanate).
  • aromatic isocyanate such as diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 1,4-cyclohexane diisocyanate
  • aliphatic diisocyanate A compound having two is
  • Phenylene diisocyanate aromatic diisocyanates such as toluene diisocyanate, and aromatic aliphatic diisocyanates such as xylylene diisocyanate.
  • aromatic diisocyanates can be used alone or in combination of two or more, preferably aliphatic diisocyanates and alicyclic diisocyanates. Of these, isophorone diisocyanate, norbornane diisocyanate, toluene diisocyanate and hexamethylene diisocyanate are preferred.
  • Examples of the acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule include trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth).
  • Examples include polyacrylates of polyvalent hydroxy group-containing compounds such as acrylates, adducts of these polyacrylates and ⁇ -caprolactone, adducts of these polyacrylates and alkylene oxides, and epoxy acrylates. It is done.
  • the acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule can be used alone or in combination of two or more.
  • acrylates having one hydroxy group and one or more (meth) acryloyl groups in one molecule acrylates having one hydroxy group and 3 to 5 (meth) acryloyl groups in one molecule are preferable.
  • examples of such acrylates include pentaerythritol triacrylate and dipentaerythritol pentaacrylate.
  • UV curable urethane acrylate resin examples include: Nippon Synthetic Chemical Industry Co., Ltd., Shikou UV-1700B, UV-6300B, UV-7600B, UV-7630B, UV-7630B, UV-7640B, Kyoeisha Chemical Co., Ltd. Company-made, UA-306H, UA-306T, UA-306I, UA-510H, Shin-Nakamura Chemical Co., Ltd., NK Oligo UA-1100H, NK Oligo UA-53H, NK Oligo UA-33H, NK Oligo UA-15HA Etc.
  • the viscosity of the actinic radiation curable resin can be measured using a B-type viscometer under the condition of 25 ° C. after stirring and mixing the resin with a disper.
  • a monofunctional acrylate may also be used.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate.
  • Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
  • monofunctional acrylate 80: 20 to 98: 2 in terms of the mass ratio of polyfunctional acrylate to monofunctional acrylate.
  • the hard coat layer preferably contains a photopolymerization initiator to accelerate the curing of the actinic radiation curable resin.
  • Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not something.
  • photopolymerization initiators Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
  • the hard coat layer may contain a conductive agent in order to impart antistatic properties.
  • Preferred conductive agents include metal oxide particles or ⁇ -conjugated conductive polymers.
  • An ionic liquid is also preferably used as the conductive compound.
  • the hard coat layer may contain a leveling agent in order to smooth the surface.
  • a leveling agent silicone surfactants, fluorine surfactants, anionic surfactants, fluorine-siloxane graft compounds, fluorine compounds, acrylic copolymers, and the like can be used.
  • silicone surfactant examples include polyether-modified silicone, and the KF series manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • acrylic copolymer examples include commercially available compounds such as BYK-350 and BYK-352 manufactured by BYK Japan.
  • fluorosurfactant examples include MegaFuck RS series and MegaFuck F-444 MegaFuck F-556 manufactured by DIC Corporation.
  • the fluorine-siloxane graft compound refers to a copolymer compound obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone to at least a fluorine-based resin.
  • Such a fluorine-siloxane graft compound can be prepared by a method as described in Examples described later.
  • examples of commercially available products include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Chemical Industry Co., Ltd.
  • a fluorine-type compound Daikin Industries Ltd.
  • OPTOOL DSX, OPTOOL DAC, etc. can be mentioned. These components are preferably added in the range of 0.005 parts by mass or more and 5 parts by mass or less with respect to the solid component in the hard coat composition.
  • the hard coat layer may further contain an ultraviolet absorber.
  • the ultraviolet absorber preferably has a transmittance of 10% or less at a wavelength of 370 nm, more preferably 5% or less, and still more preferably 2% or less.
  • Specific examples of the ultraviolet absorber are not particularly limited. For example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex salts, inorganic powders. Examples include the body.
  • 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6 -(Linear and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, and the like can be used.
  • Commercially available products may be used.
  • TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, and TINUVIN 328 manufactured by BASF Japan Ltd. can be preferably used.
  • Preferably used ultraviolet absorbers are benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers, and particularly preferably benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
  • a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as an ultraviolet absorber.
  • a polymer UV absorber can be preferably used, and a polymer type UV absorber is particularly preferably used.
  • TINUVIN 109 octyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazole-2-) manufactured by BASF Japan Ltd., which is a commercial product, is available.
  • TINUVIN 400 (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -manufactured by BASF Japan Ltd.- Reaction product of 5-hydroxyphenyl and oxirane
  • TINUVIN 460 (2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3-5 Triazine)
  • TINUVIN 405 (2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid ester Reaction products) and the like.
  • the hard coat layer is a component that forms the above-described hard coat layer, diluted with a solvent that swells or partially dissolves the film as a base material, and is applied onto the film by the following method as a hard coat layer composition. It is preferable to provide a hard coat layer by drying and curing.
  • ketones methyl ethyl ketone, acetone, etc.
  • acetate esters methyl acetate, ethyl acetate, butyl acetate, etc.
  • alcohols ethanol, methanol
  • propylene glycol monomethyl ether cyclohexanone, methyl isobutyl ketone, etc.
  • the coating amount of the hard coat layer is suitably in the range of 0.1 to 40 ⁇ m as wet film thickness, and preferably in the range of 0.5 to 30 ⁇ m.
  • the dry film thickness is in the range of an average film thickness of 0.01 to 20 ⁇ m, preferably in the range of 0.5 to 10 ⁇ m. More preferably, it is in the range of 0.5 to 5 ⁇ m.
  • a gravure coater As a method for applying the hard coat layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used.
  • the hard coat layer composition After applying the hard coat layer composition, it may be dried and cured by irradiation with active rays (also referred to as UV curing treatment), and if necessary, heat treatment may be performed after the UV curing treatment.
  • the heat treatment temperature after the UV curing treatment is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher.
  • Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature in the decreasing rate drying section is 90 ° C. or higher and 125 ° C. or lower.
  • the drying process changes from a constant state to a gradually decreasing state when drying starts.
  • the decreasing section is called the decreasing rate drying section.
  • the constant rate drying section the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 .
  • oxygen removal for example, replacement with an inert gas such as nitrogen purge
  • the cured state of the surface can be controlled by adjusting the removal amount of the oxygen concentration.
  • irradiating actinic radiation it is preferably performed while applying tension in the film transport direction, and more preferably while applying tension in the width direction.
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying the tension is not particularly limited, and the tension may be applied in the transport direction on the back roller, or the tension may be applied in the width direction or the biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • both sides or one side of the cellulose ester film are subjected to a hydrophilic treatment by light irradiation or saponification to form an antifogging layer, and any surface is formed when the antifogging layer is formed on both sides.
  • the anti-fogging layer is formed on one side, the heat ray reflecting layer is laminated on the surface opposite to the anti-fogging layer.
  • the adhesive for water sticking is apply
  • the water sticking adhesive may be applied onto the heat ray reflective layer and dried, and when applied to a window glass of a building or a vehicle, water sticking may be applied to the water sticking adhesive.
  • Insulation performance and solar heat shielding performance of glass laminates or thermal barrier / antifogging films are generally JIS R 3209 (multi-layer glass), JIS R 3106 (obtain transmittance, reflectance, emissivity, and solar heat of plate glass) Rate test method) and JIS R 3107 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
  • Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 ⁇ m. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) The solar transmittance, solar reflectance, solar absorption rate, and modified emissivity are calculated according to JIS R 3106 by calculating the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity.
  • the corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107.
  • the heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multilayer glass according to JIS R 3209 using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is determined according to JIS R 3107. (2) The heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance. (3) The solar heat shielding property is calculated by obtaining the solar heat acquisition rate according to JIS R 3106 and subtracting it from 1.
  • Example 1 (Formation of anti-fogging layer)
  • a cellulose ester film (6UA (manufactured by Konica Minolta Co., Ltd.)
  • excimer light was irradiated with excimer light at an intensity of 500 mJ / cm 2 to hydrophilize the surface, thereby producing an antifogging film.
  • the reforming apparatus provided with the excimer light source and the reforming process conditions are as follows.
  • Excimer irradiation device MODEL MECL-M-1-200 manufactured by M.D.Com Wavelength: 172nm Lamp filled gas: Xe ⁇ Reforming treatment conditions> Excimer light intensity: 130 mW / cm 2 (172 nm) Distance between sample and light source: 2mm Oxygen concentration in the irradiation device: 0.3%
  • ⁇ Preparation of titanium oxide particle sol> An aqueous sodium hydroxide solution (concentration 10 mol / L) was added to 10 L (liter) of an aqueous suspension (TiO 2 concentration 100 g / L) in which titanium dioxide hydrate was suspended in water, with stirring, 30 L, 90 The mixture was heated to 0 ° C. and aged for 5 hours, and then neutralized with hydrochloric acid, filtered, and washed with water.
  • titanium dioxide hydrate was obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
  • the base-treated titanium compound was suspended in pure water so as to have a TiO 2 concentration of 20 g / L, and citric acid was added in an amount of 0.4 mol% with respect to the amount of TiO 2 with stirring, and the temperature was raised.
  • citric acid was added in an amount of 0.4 mol% with respect to the amount of TiO 2 with stirring, and the temperature was raised.
  • concentrated hydrochloric acid was added to a hydrochloric acid concentration of 30 g / L, and the mixture was stirred for 3 hours while maintaining the liquid temperature to oxidize the titanium oxide particles to 20% by mass.
  • a titanium particle sol solution was prepared.
  • the pH at 25 ° C. was 1.4, and the zeta potential was +40 mV.
  • the particle size was measured by Zetasizer Nano manufactured by Malvern, the volume average particle size was 35 nm, and the monodispersity was 16%.
  • the titanium oxide particle sol solution was dried at 105 ° C. for 3 hours to obtain a particle powder, and X-ray diffraction measurement was performed using JDX-3530 type manufactured by JEOL Datum Co., Ltd. to obtain rutile type titanium oxide particles. It was confirmed.
  • Titanium oxide particle sol solution prepared above poval aqueous solution (Kuraray Co., Ltd., PVA217 5 wt% solution), thermal gelling agent aqueous solution (Shin-Etsu Chemical Co., Ltd., 60SH-50 2 wt% solution), low temperature gelation
  • An aqueous agent solution 5% by weight pork skin gelatin solution
  • pure water were appropriately blended while maintaining at 45 ° C. to prepare a coating solution for a high refractive index layer.
  • PVA aqueous solution Karl-Etsu Chemical Co., Ltd., 60SH-50 2 wt% solution
  • low temperature gelling agent aqueous solution pig A 5% by weight solution of skin gelatin
  • Example 1 (Formation of glass laminate) And the glass laminated body of Example 1 is obtained by apply
  • coating the adhesive for water sticking The Toagosei Co., Ltd. product, Aron Tack M-300
  • Example 2 In Example 1, both sides of the cellulose ester film (6UA) were hydrophilized by saponification instead of light irradiation to form an antifogging layer. Other than that was carried out similarly to Example 1, and obtained the glass laminated body of Example 2.
  • FIG. 1 In Example 1, both sides of the cellulose ester film (6UA) were hydrophilized by saponification instead of light irradiation to form an antifogging layer.
  • 6UA cellulose ester film
  • ⁇ Saponification conditions> A 2N (2N) aqueous NaOH solution was set at 55 ° C., and the cellulose ester film (6UA) produced in this aqueous solution was immersed for 1 hour, washed with water and dried to produce an antifogging film.
  • Example 3 a hard coat layer composition mainly composed of ATM35-E (polyethoxylated tetramethylolmethane tetraacrylate: manufactured by Shin-Nakamura Chemical Co., Ltd.) was applied to the outer surface of the antifogging layer using an extrusion coater, and the constant rate After drying at a drying zone temperature of 50 ° C. and a reduced rate drying zone temperature of 50 ° C., the irradiance of the irradiated part is 100 mW / cm using an ultraviolet lamp while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less.
  • ATM35-E polyethoxylated tetramethylolmethane tetraacrylate: manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Example 1 a PMMA (polymethyl methacrylate) film having the same thickness was used instead of 6UA. Other than that was carried out similarly to Example 1, and obtained the glass laminated body of the comparative example 1.
  • FIG. 1 a PMMA (polymethyl methacrylate) film having the same thickness was used instead of 6UA.
  • Example 2 a PET (polyethylene terephthalate) film having the same thickness was used instead of 6UA. Other than that was carried out similarly to Example 2, and obtained the glass laminated body of the comparative example 2.
  • FIG. 2 a PET (polyethylene terephthalate) film having the same thickness was used instead of 6UA.
  • Example 3 the glass laminate of Comparative Example 3 was obtained by omitting the antifogging layer.
  • Example 4 In Example 1, mica whose surface was coated with titanium oxide according to Patent Document 1 was laminated on a cellulose ester film (6UA) as a heat ray reflective layer, and an antifogging drop agent was laminated as an antifogging layer according to Patent Document 1. A glass laminate of Comparative Example 4 was obtained.
  • ⁇ Evaluation method> (Transmittance) About the produced glass laminated body, the transmittance
  • a steel wool test was performed on the glass laminates of Examples 1 and 3.
  • the steel wool test uses a load variation type frictional wear test system HHS2000 manufactured by Haydon Co., Ltd., the surface of the antifogging layer for the glass laminate of Example 1, and the surface of the hard coat layer for the glass laminate of Example 3.
  • HHS2000 load variation type frictional wear test system
  • the speed of steel wool was 500 mm / min, and the one-way travel distance of steel wool was 50 mm.
  • Table 1 and Table 2 show the evaluation results of Examples and Comparative Examples.
  • Comparative Example 1 is ⁇
  • Comparative Examples 2 and 4 are ⁇ , and it takes time for the water sticking adhesive to drain, that is, time for construction. Is undesirable.
  • Examples 1 and 2 and Comparative Example 3 are ⁇ , which means that the time until the moisture of the water sticking adhesive is removed is short, that is, it can be applied in a short time. This is because a PMMA film is used in Comparative Example 1, a PET film is used in Comparative Example 2, and a film mainly composed of polyethylene is used in Comparative Example 4, and the moisture content of the adhesive for water application is low because the moisture permeability of these films is low. It is thought that it takes time to escape.
  • Examples 1 and 2 and Comparative Example 3 since the cellulose ester film having a high moisture permeability is used, it is considered that the moisture of the adhesive for water sticking was quickly removed.
  • Comparative Example 1 is x, and it can be said that it is not practical.
  • Example 1 is (double-circle), Example 2, and Comparative Examples 2 and 3 are (circle), and it can be said that there is no problem practically.
  • Example 1 and Comparative Example 3 it is considered that the film surface on which the heat ray reflective layer is laminated is also hydrophilized by saponification, so that it is excellent in coating suitability.
  • Example 1 and Comparative Example 1 since the film surface on which the heat ray reflective layer is laminated is not hydrophilized, it is considered that the coating suitability inherent to each film is reflected.
  • Comparative Examples 1 to 3 are x, and it can be said that the rear visibility is poor under high humidity and is not practical. Further, Comparative Example 4 is ⁇ , and it can be said that rear visibility is likely to deteriorate under high humidity, which is not preferable in practice.
  • Example 1 and 2 is (circle), and it can be said that there is no problem in practical use with good backward visibility under high humidity. This is presumably because the antifogging treatment was not performed in Comparative Example 3, and the PMMA film of Comparative Example 1 and the PET film of Comparative Example 2 were not imparted with antifogging properties by light irradiation or saponification.
  • Comparative Example 4 the antifogging property is imparted by the antifogging drop agent, but it is considered that there is not enough performance to cope with a rapid humidity change.
  • Examples 1 and 2 since the surface of the cellulose ester film is sufficiently hydrophilicized by light irradiation or saponification, it is considered that the cellulose ester film has good antifogging performance.
  • Example 3 having a hard coat layer is less likely to be scratched than Example 1 having no hard coat layer.
  • the moisture permeability did not change so much in Examples 1 and 3, this is because a hard coat resin having a high moisture permeability (300 g / m 2 ⁇ 24 hr or more) is used as the hard coat layer of Example 3. is there.
  • a hard-coat layer does not prevent evaporation of the water
  • the glass laminates of Examples 1 to 3 having no evaluation result have a heat shielding function and can be adhered to the glass in a short time with a water sticking adhesive, and are anti-fogged against sudden humidity changes. It can be said that it has characteristics. Furthermore, the glass laminate of Example 3 also has scratch resistance, and is more effective in usage forms that require scratch resistance, such as vehicle window glass.
  • the heat-shielding and anti-fogging film and glass laminate of the present embodiment described above can be expressed as follows.
  • a heat and anti-fogging film having a heat and anti-fogging function A cellulose ester film; A hydrophilic heat ray reflective layer laminated on one surface of the cellulose ester film; An antifogging film comprising: an antifogging layer formed by hydrophilizing the other surface of the cellulose ester film.
  • a surface of the anti-fogging layer is provided with a hard coat layer containing a hard coat resin having a moisture permeability of 300 g / m 2 ⁇ 24 hr or more at 40 ° C. and 90% RH measured in accordance with JIS Z 0208.
  • the heat shielding and antifogging film as described in 1 or 2 above.
  • the heat-shielding and anti-fogging film of the present invention can be used as a glass laminate by being bonded to a window glass of a building or a vehicle.

Abstract

 A heat-shielding antifog film having heat-shielding and antifog functions, wherein the film is provided with a cellulose ester film (14), a hydrophilic heat ray reflecting layer (13) layered on one surface of the cellulose ester film (14), and an antifog layer (14a) formed by hydrophilizing the other surface of the cellulose ester film (14).

Description

遮熱防曇フィルム及びガラス積層体Thermal barrier / antifogging film and glass laminate
 本発明は、遮熱機能及び防曇機能を有する遮熱防曇フィルムと、それを備えたガラス積層体に関する。 The present invention relates to a heat-shielding and anti-fogging film having a heat-shielding function and an anti-fogging function, and a glass laminate having the same.
 近年、省エネルギー対策への関心が高まり、冷房設備にかかる負荷を減らすなどの観点から、建物や車両の窓ガラスに装着させて、太陽光の熱線の透過を遮断する熱線反射フィルムの要望が高まってきている。 In recent years, interest in energy conservation measures has increased, and from the viewpoint of reducing the load on cooling equipment, there has been an increasing demand for heat ray reflective films that can be attached to window glass of buildings and vehicles to block the transmission of sunlight heat rays. ing.
 太陽から放射される光は、紫外領域から赤外光領域まで幅広いスペクトルを有している。可視光は、紫色から黄色を経て赤色光に至る波長380~780nmまでの範囲であり、太陽光の約45%を占めている。赤外光については、可視光に近いものは近赤外線(波長780~2500nm)と呼ばれ、それ以上を中赤外線と称し、太陽光の約50%を占めている。この領域の光エネルギーは、紫外線と比較するとその強さは約10分の1以下と小さいが、熱的作用は大きく、物質に吸収されると熱として放出され温度上昇をもたらす。このことから熱線とも呼ばれ、これらの光線を遮蔽することにより、室内の温度上昇を抑制することができる。また、寒冷地の冬季の暖房熱を室外に逸散することを抑制することもできる。 The light emitted from the sun has a wide spectrum from the ultraviolet region to the infrared light region. Visible light has a wavelength range of 380 to 780 nm ranging from purple to yellow to red light, and occupies about 45% of sunlight. As for infrared light, those close to visible light are called near-infrared rays (wavelength 780 to 2500 nm), and more than that is called mid-infrared rays, accounting for about 50% of sunlight. The intensity of light energy in this region is as small as about one-tenth or less compared with ultraviolet light, but the thermal effect is large, and when absorbed by a substance, it is released as heat, resulting in an increase in temperature. For this reason, it is also called a heat ray, and by blocking these rays, the temperature rise in the room can be suppressed. Further, it is possible to suppress the heat of the winter in the cold region from being dissipated outside.
 ところで、建物や車両の窓ガラス、冷凍庫のガラス窓、水槽、看板等に用いられるガラスには、降雨や空気中の湿分が結露することにより表面に水滴が付着し、視認性が低下するという問題がある。この対策としては、ガラスの表面に防曇フィルムを貼着することが提案されている。 By the way, the glass used for window glass of buildings and vehicles, glass windows of freezers, water tanks, signboards, etc., water droplets adhere to the surface due to rain or moisture in the air condensing, and visibility is reduced. There's a problem. As a countermeasure, it has been proposed to attach an antifogging film to the surface of glass.
 例えば、特許文献1には、防曇機能と遮熱機能とを備えた農業用フィルムが開示されている。 For example, Patent Document 1 discloses an agricultural film having an anti-fogging function and a heat shielding function.
特開2010-220567号公報JP 2010-220567 A
 しかしながら、特許文献1のフィルムは農業用途であり、自動車等の窓用途には適していない。なぜなら、自動車等の窓は急激な湿度変化に対応した視認性が重要となるからである。また、窓にフィルムを貼着する必要があるため、施工時間が短いことなど施工のし易さも重要となる。 However, the film of Patent Document 1 is used for agriculture and is not suitable for window applications such as automobiles. This is because the visibility of a window of an automobile or the like corresponding to a rapid humidity change is important. Moreover, since it is necessary to stick a film on a window, the ease of construction such as a short construction time is also important.
 本発明の目的は、前記の事情に鑑み、遮熱機能を有し、水貼り用の材料によって短時間でガラスに貼着でき、急激な湿度変化に対して防曇特性を有する遮熱防曇フィルムを提供することにある。また、その遮熱防曇フィルムとガラスとを貼着したガラス積層体を提供することも目的とする。 In view of the above circumstances, the object of the present invention is to provide a heat-shielding and anti-fogging function that has a heat-shielding function, can be attached to glass in a short time by a material for water sticking, and has an anti-fogging property against a sudden change in humidity. To provide a film. Another object of the present invention is to provide a glass laminate in which the heat-shielding anti-fogging film and glass are adhered.
 本発明の上記目的は以下の構成により達成される。すなわち、本発明の遮熱防曇フィルムは、遮熱機能及び防曇機能を有する遮熱防曇フィルムであって、セルロースエステルフィルムと、前記セルロースエステルフィルムの一方の面に積層された親水性の熱線反射層と、前記セルロースエステルフィルムの他方の面が親水化処理されて形成された防曇層と、を備えている。 The above object of the present invention is achieved by the following configuration. That is, the heat-shielding and anti-fogging film of the present invention is a heat-shielding and anti-fogging film having a heat-shielding function and an anti-fogging function, and has a hydrophilic property laminated on one side of the cellulose ester film and the cellulose ester film. A heat ray reflective layer, and an antifogging layer formed by hydrophilizing the other surface of the cellulose ester film.
 上記構成によると、遮熱防曇フィルムは、熱線反射層を備えることにより遮熱機能を有し、セルロースエステルフィルムの透湿度が高いことによって水貼り用粘着剤で短時間でガラスに貼着でき、親水化処理された防曇層を備えることにより急激な湿度変化に対しても防曇特性を有する。 According to the above configuration, the heat-shielding anti-fogging film has a heat-shielding function by providing a heat ray reflective layer, and can be attached to glass in a short time with a water-adhesive adhesive due to the high moisture permeability of the cellulose ester film. By providing a defogging layer that has been subjected to a hydrophilic treatment, it has an defogging property against a sudden change in humidity.
本発明の一実施形態のガラス積層体の構成を示す断面図である。It is sectional drawing which shows the structure of the glass laminated body of one Embodiment of this invention.
 本発明の実施の一形態について、図面に基づいて説明すれば以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。 An embodiment of the present invention will be described below with reference to the drawings. In this specification, when the numerical range is expressed as A to B, the numerical value range includes the values of the lower limit A and the upper limit B.
 〔ガラス積層体の構成〕
 図1に示すように、ガラス積層体10は、ガラス11の一方の面側に、水貼り用粘着層12(水貼り用接着剤)、熱線反射層13、セルロースエステルフィルム14、必要に応じてハードコート層15をこの順で積層して構成されている。そして、セルロースエステルフィルム14の熱線反射層13とは反対側の表面は親水化処理されている。セルロースエステルフィルム14において親水化処理された表面部分を親水化層(防曇層)14aとも称し、親水化されていない部分を非親水化層14bとも称する。また、熱線反射層13及びセルロースエステルフィルム14をまとめて(水貼り用粘着剤12及び/又はハードコート層15を含めることもある)遮熱防曇フィルムとも称する。
[Configuration of glass laminate]
As shown in FIG. 1, the glass laminate 10 has a water-adhesive layer 12 (water-adhesive adhesive), a heat ray reflective layer 13, a cellulose ester film 14, and, if necessary, on one surface side of the glass 11. The hard coat layer 15 is laminated in this order. And the surface on the opposite side to the heat ray reflective layer 13 of the cellulose-ester film 14 is hydrophilized. The surface portion of the cellulose ester film 14 that has been hydrophilized is also referred to as a hydrophilic layer (antifogging layer) 14a, and the non-hydrophilic portion is also referred to as a non-hydrophilic layer 14b. Moreover, the heat ray reflective layer 13 and the cellulose ester film 14 are collectively referred to as a heat-shielding and anti-fogging film (which may include the water sticking pressure-sensitive adhesive 12 and / or the hard coat layer 15).
 ガラス11は、建物や車両の窓ガラス等を想定しており、その厚みは特に制限されないが、通常0.1mm~5cmである。 The glass 11 is assumed to be a window glass of a building or a vehicle, and its thickness is not particularly limited, but is usually 0.1 mm to 5 cm.
 水貼り用粘着剤12は、熱線反射層13をガラス11に貼着するためのものである。水貼り用粘着剤12は、水溶性である水貼り用粘着剤をガラス11に塗布して形成してもよいし、熱線反射層13のセルロースエステルフィルム14とは反対面側に水貼り用粘着剤を塗布して形成してもよい。また、水貼り用粘着剤のうち水分蒸発と再湿によって可逆的に硬化と溶融を起こすタイプ(再活性接着)のものを熱線反射層13のセルロースエステルフィルム14とは反対面側に塗布して乾燥させることで遮熱防曇フィルムを作製しておき、建物や車両の窓ガラス等に施工する際に水貼り用粘着剤12に水を吹き付けて貼着するようにしてもよい。これにより、水を用いるだけで簡単に施工することができる。 The adhesive 12 for water sticking is for sticking the heat ray reflective layer 13 to the glass 11. FIG. The water sticking pressure-sensitive adhesive 12 may be formed by applying a water-soluble water sticking pressure-sensitive adhesive to the glass 11, or the water sticking pressure-sensitive adhesive on the surface opposite to the cellulose ester film 14 of the heat ray reflective layer 13. You may form by apply | coating an agent. In addition, a type of adhesive (reactive adhesion) that reversibly cures and melts by water evaporation and rewetting is applied to the opposite side of the heat ray reflective layer 13 from the cellulose ester film 14. A heat-shielding and anti-fogging film may be prepared by drying, and when applied to a window glass or the like of a building or a vehicle, water may be sprayed on and adhered to the adhesive 12 for water application. Thereby, it can construct simply by using water.
 熱線反射層13は、水貼り用粘着剤12によってガラス11に貼着可能な親水性を有し、かつ太陽光の熱線の透過を遮断できれば、その材料や層構成には特に限定はないが、本実施形態では、高屈折率層と低屈折率層とが交互に積層されたものを用いる。高屈折率層および低屈折率層はそれぞれ水溶性高分子を含んでおり、セルロースエステルフィルム14上に水系塗布によって形成される。ここで、セルロースエステルフィルム14は、水系塗布後の乾燥時に水分を速やかに逃がすことができる程度の透湿度を有することが望ましい。例えば、セルロースエステルフィルム14としては、JIS Z 0208に準拠して測定される40℃、90%RHにおける透湿度が、100g/m2・24hr以上である透湿性フィルムを用いることが好ましい。熱線反射層13中に水分が残留しないことにより、環境変動(温度変化)によっても熱線反射層13の膜厚変化が小さく、反射率変化を抑えることができる。 The heat ray reflective layer 13 has hydrophilicity that can be attached to the glass 11 by the water sticking pressure-sensitive adhesive 12, and the material and the layer structure are not particularly limited as long as the heat ray transmission of sunlight can be blocked. In the present embodiment, a layer in which high refractive index layers and low refractive index layers are alternately stacked is used. The high refractive index layer and the low refractive index layer each contain a water-soluble polymer, and are formed on the cellulose ester film 14 by aqueous coating. Here, it is desirable that the cellulose ester film 14 has a moisture permeability that allows moisture to escape quickly during drying after aqueous application. For example, as the cellulose ester film 14, it is preferable to use a moisture permeable film having a moisture permeability of 100 g / m 2 · 24 hr or more at 40 ° C. and 90% RH measured in accordance with JIS Z 0208. Since moisture does not remain in the heat ray reflective layer 13, the change in the film thickness of the heat ray reflective layer 13 is small due to environmental fluctuations (temperature change), and the change in reflectance can be suppressed.
 セルロースエステルフィルム14は、熱線反射層13を支持する基材であり、耐熱性を有する。また、セルロースエステルフィルム14は、表面が親水化処理された防曇性フィルムである。このセルロースエステルフィルム14に対して蒸気を当てる前後でのヘイズの変化が小さい(例えば3%以内)ことが好ましい。この場合、蒸気を当てた後のセルロースエステルフィルム14の防曇機能の低下が抑えられていると言える。 The cellulose ester film 14 is a base material that supports the heat ray reflective layer 13 and has heat resistance. The cellulose ester film 14 is an antifogging film whose surface has been subjected to a hydrophilic treatment. It is preferable that the change in haze before and after applying steam to the cellulose ester film 14 is small (for example, within 3%). In this case, it can be said that the deterioration of the anti-fogging function of the cellulose ester film 14 after applying the steam is suppressed.
 また、セルロースエステルフィルム14において、蒸気を当てた後の防曇機能の低下が抑えられるので、フィルム表面への水滴の付着を抑え、後方視認性を向上させることができる(表面の水滴によって後方視認性が低下するのを抑えることができる)。 Moreover, in the cellulose ester film 14, since the fall of the anti-fogging function after applying a vapor | steam is suppressed, adhesion of the water droplet to a film surface can be suppressed and back visibility can be improved (rearward visibility by the surface water droplet) Can be reduced).
 防曇性を付与するための親水化処理は光照射又は鹸化によって行うことができる。光照射によって行う場合、例えば155kcal/mol以上の光子エネルギーを持つ光をセルロースエステルフィルムの表面に照射する。一方、鹸化によって行う場合は、例えばセルロースエステルフィルム表面を、NaOH水溶液を用いて60分間アルカリ鹸化処理し、その後、水洗、乾燥させる。 The hydrophilic treatment for imparting antifogging properties can be performed by light irradiation or saponification. When performing by light irradiation, the surface of a cellulose-ester film is irradiated with the light which has photon energy of 155 kcal / mol or more, for example. On the other hand, when the saponification is performed, for example, the surface of the cellulose ester film is subjected to alkali saponification treatment using an aqueous NaOH solution for 60 minutes, and then washed with water and dried.
 光照射処理では、セルロースエステルフィルムの表面に均一な防曇性を付与することができるとともに、鹸化処理によって親水性層を形成する場合と比較して、薄い親水性層により充分な防曇性を付与することができる。さらに、光照射処理は、フィルムの片面に対して行うことができるため、得られるセルロースエステルフィルム14は、貼り付きが生じにくく、長尺状に巻き取ることができる。また、巻き取り時に、貼り付きを防止するための保護フィルムを挟む必要がなくなるため、コストも削減される。 In the light irradiation treatment, a uniform antifogging property can be imparted to the surface of the cellulose ester film, and sufficient antifogging property can be obtained by a thin hydrophilic layer as compared with the case where the hydrophilic layer is formed by a saponification treatment. Can be granted. Furthermore, since a light irradiation process can be performed with respect to the single side | surface of a film, the cellulose-ester film 14 obtained is hard to produce sticking and can be wound up in elongate form. Moreover, since it becomes unnecessary to pinch | protect the protective film for preventing sticking at the time of winding, cost is also reduced.
 セルロースエステルフィルムに対する上記の光照射により、グルコース環の側鎖に置換されたエステル基が水酸基に容易に変換されると推定しており、セルロースエステルフィルム14の表面に親水化層14aを確実に形成できる(セルロースエステルフィルム14に防曇性を確実に付与できる)からである。また、セルロースエステル自体が吸湿性を有するため、環境変化で発生した水蒸気もセルロースエステルフィルム14の内部(非親水化層14b)に取り込むことができ、防曇効果が得られるため好ましい。 It is presumed that the ester group substituted on the side chain of the glucose ring is easily converted into a hydroxyl group by the above light irradiation on the cellulose ester film, and the hydrophilic layer 14a is reliably formed on the surface of the cellulose ester film 14. This is because the anti-fogging property can be reliably imparted to the cellulose ester film 14. Moreover, since cellulose ester itself has a hygroscopic property, the water vapor | steam which generate | occur | produced by the environmental change can also be taken in the inside (non-hydrophilic layer 14b) of the cellulose-ester film 14, and since an anti-fogging effect is acquired, it is preferable.
 なお、セルロースエステルフィルム14をメチレンクロライドに浸漬すると、非親水化層6bは溶解し、親水化層6aは溶解せずに粉状として残る。このことから、非親水化層6bはメチレンクロライド可溶層であり、親水化層6aはメチレンクロライド不溶層であるとも言うことができる。 When the cellulose ester film 14 is immersed in methylene chloride, the non-hydrophilic layer 6b is dissolved, and the hydrophilic layer 6a is not dissolved but remains as a powder. From this, it can be said that the non-hydrophilic layer 6b is a methylene chloride-soluble layer and the hydrophilic layer 6a is a methylene chloride-insoluble layer.
 ハードコート層15は、例えば紫外線硬化型アクリレート系樹脂によって形成される。ここで、ハードコート層15は、水貼り用粘着剤塗布後の乾燥時に水分を速やかに逃がすことができる程度の透湿度を有することが望ましい。例えば、ハードコート層15としては、JIS Z 0208に準拠して測定される40℃、90%RHにおける透湿度が、300g/m2・24hr以上である透湿性層とすることが好ましい。水貼り用粘着剤12中の水分が短時間で蒸発することにより、遮熱防曇フィルムをガラス11に施工する際に短時間で貼着が完了する。 The hard coat layer 15 is formed of, for example, an ultraviolet curable acrylate resin. Here, it is desirable that the hard coat layer 15 has a moisture permeability that allows moisture to escape quickly during drying after the application of the water sticking pressure-sensitive adhesive. For example, the hard coat layer 15 is preferably a moisture permeable layer having a moisture permeability of not less than 300 g / m 2 · 24 hr at 40 ° C. and 90% RH as measured in accordance with JIS Z 0208. When the moisture in the water sticking adhesive 12 evaporates in a short time, the sticking is completed in a short time when the heat shielding and antifogging film is applied to the glass 11.
 上記した遮熱防曇フィルムの構成によれば、遮熱機能及び防曇機能を有するので、建物や車両の窓ガラスに装着されたガラス積層体10の状態で、太陽光や高湿下に晒されるような環境で使用されるのに適している。 According to the configuration of the above-described heat-shielding and anti-fogging film, since it has a heat-shielding function and an anti-fogging function, it is exposed to sunlight or high humidity in the state of the glass laminate 10 mounted on the window glass of a building or vehicle. Suitable for use in such an environment.
 〔各層の詳細について〕
 以下、ガラス積層体10を構成する各層の詳細について説明する。
[Details of each layer]
Hereinafter, the detail of each layer which comprises the glass laminated body 10 is demonstrated.
 (水貼り用粘着剤)
 水貼り用粘着剤としては、目的によって異なるが、例えば、ゴム系、アクリル系、シリコン系、ウレタン系等の粘着剤から選ぶことができる。経時での黄変がないことからアクリル系、シリコン系が好ましく、汎用離型シートが使用できる点でアクリル系がもっとも好ましい。水貼り用粘着層の厚さは5μm~30μmの範囲が好ましい。5μm以下では粘着性が不安定であり、30μm以上では粘着剤がフィルムのわきからはみ出し、取扱い上不都合が生じる。
(Adhesive for water application)
The adhesive for water application may be selected from, for example, rubber-based, acrylic-based, silicon-based, and urethane-based pressure-sensitive adhesives, depending on the purpose. Since there is no yellowing over time, acrylic and silicon are preferable, and acrylic is most preferable in that a general-purpose release sheet can be used. The thickness of the adhesive layer for water application is preferably in the range of 5 μm to 30 μm. If it is 5 μm or less, the tackiness is unstable, and if it is 30 μm or more, the pressure-sensitive adhesive protrudes from the side of the film, resulting in inconvenience in handling.
 (熱線反射層)
 本実施形態の熱線反射層としては、高屈折率層と低屈折率層とが交互に積層されたものを用いる。
(Heat ray reflective layer)
As the heat ray reflective layer of this embodiment, a layer in which high refractive index layers and low refractive index layers are alternately laminated is used.
 一般に、高屈折率層と低屈折率層との屈折率の差を大きく設計することが、少ない層数で赤外反射率を高くすることができるという観点から好ましい。例えば、高屈折率層及び低屈折率層から構成されるユニットの少なくとも1つにおいて、隣接する高屈折率層と低屈折率層との屈折率差が0.1以上であることが好ましく、より好ましくは0.3以上であり、さらに好ましくは0.35以上であり、特に好ましくは0.4以上である。このユニットを複数有する場合には、全てのユニットにおける高屈折率層と低屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。高屈折率層の好ましい屈折率は1.80~2.50であり、より好ましくは1.90~2.20である。また、低屈折率層の好ましい屈折率は1.10~1.60であり、より好ましくは1.30~1.50である。 In general, it is preferable to design a large difference in refractive index between the high refractive index layer and the low refractive index layer from the viewpoint that the infrared reflectance can be increased with a small number of layers. For example, in at least one of the units composed of a high refractive index layer and a low refractive index layer, the refractive index difference between the adjacent high refractive index layer and the low refractive index layer is preferably 0.1 or more, more Preferably it is 0.3 or more, More preferably, it is 0.35 or more, Most preferably, it is 0.4 or more. In the case of having a plurality of these units, it is preferable that the refractive index difference between the high refractive index layer and the low refractive index layer in all the units is within the preferable range. However, regarding the outermost layer and the lowermost layer, a configuration outside the above preferred range may be used. The preferred refractive index of the high refractive index layer is 1.80 to 2.50, more preferably 1.90 to 2.20. The preferred refractive index of the low refractive index layer is 1.10 to 1.60, more preferably 1.30 to 1.50.
 特定波長領域の反射率は、隣接する2層の屈折率差と積層数で決まり、屈折率の差が大きいほど、少ない層数で同じ反射率を得られる。この屈折率差と必要な層数については、市販の光学設計ソフトを用いて計算することができる。例えば、赤外反射率90%以上を得るためには、屈折率差が0.1より小さいと、200層以上の積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下し、また故障なく製造することも非常に困難になる。反射率の向上と層数を少なくするという観点からは、屈折率差に上限はないが、実質的には1.4程度が限界である。 The reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers. The refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance of 90% or more, if the difference in refractive index is less than 0.1, it is necessary to laminate 200 layers or more, which not only decreases productivity but also scattering at the interface of the layers. Becomes larger, the transparency is lowered, and it becomes very difficult to manufacture without failure. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but practically about 1.4 is the limit.
 さらには、本実施形態の熱線反射層の光学特性として、JIS R3106-1998で示される可視光領域の透過率が50%以上、好ましくは75%以上、より好ましくは85%以上であることが好ましく、また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。 Further, as the optical characteristics of the heat ray reflective layer of this embodiment, the transmittance in the visible light region shown in JIS R3106-1998 is preferably 50% or more, preferably 75% or more, more preferably 85% or more. In addition, it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
 本実施形態の熱線反射層は、高屈折率層と低屈折率層とから構成されるユニットを少なくとも1つ含む構成を有するものであればよい。好ましい高屈折率層および低屈折率層の層数としては、上記の観点から、総層数の範囲としては、100層以下、すなわち50ユニット以下であり、より好ましくは40層(20ユニット)以下であり、さらに好ましくは20層(10ユニット)以下である。 The heat ray reflective layer of the present embodiment may have a configuration including at least one unit composed of a high refractive index layer and a low refractive index layer. As the number of layers of the high refractive index layer and the low refractive index layer, from the above viewpoint, the range of the total number of layers is 100 layers or less, that is, 50 units or less, more preferably 40 layers (20 units) or less. More preferably, it is 20 layers (10 units) or less.
 低屈折率層の1層あたりの厚みは、20~800nmであることが好ましく、50~350nmであることがより好ましい。一方、高屈折率層の1層あたりの厚みは、20~800nmであることが好ましく、50~350nmであることがより好ましい。 The thickness per layer of the low refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 350 nm. On the other hand, the thickness per layer of the high refractive index layer is preferably 20 to 800 nm, and more preferably 50 to 350 nm.
 また、本実施形態における高屈折率層および低屈折率層はそれぞれ水溶性高分子を含んでおり、セルロースエステルフィルム上に水系塗布によって形成される。 Further, the high refractive index layer and the low refractive index layer in this embodiment each contain a water-soluble polymer, and are formed on the cellulose ester film by aqueous coating.
 <水溶性高分子>
 高屈折率層および低屈折率層に適用可能な水溶性高分子としては、合成高分子が挙げられ、例えば、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、若しくはアクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、若しくはスチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩が挙げられる。これらの中で、特に好ましい例としては、ポリビニルアルコール、ポリビニルピロリドン類及びそれを含有する共重合体が挙げられる。
<Water-soluble polymer>
Examples of water-soluble polymers applicable to the high refractive index layer and the low refractive index layer include synthetic polymers, such as polyvinyl alcohols, polyvinyl pyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymers, Acrylic resins such as potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic ester copolymer, or acrylic acid-acrylic ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer Styrene acrylic resin such as styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene-acrylic acid copolymer, or styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer , Styrene-sodium styrene sulfonate copolymer, steel Len-2-hydroxyethyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer Vinyl acetate copolymers such as polymers, vinyl naphthalene-maleic acid copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-acrylic acid copolymers, and the like Salt. Among these, particularly preferable examples include polyvinyl alcohol, polyvinyl pyrrolidones, and copolymers containing the same.
 水溶性高分子の重量平均分子量は、1,000以上200,000以下が好ましい。さらには、3,000以上40,000以下がより好ましい。 The weight average molecular weight of the water-soluble polymer is preferably 1,000 or more and 200,000 or less. Furthermore, 3,000 or more and 40,000 or less are more preferable.
 好ましく用いられるポリビニルアルコールには、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、末端をカチオン変性したポリビニルアルコールやアニオン性基を有するアニオン変性ポリビニルアルコール等の変性ポリビニルアルコールも含まれる。 The polyvinyl alcohol preferably used includes, in addition to ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate, modified polyvinyl alcohol such as polyvinyl alcohol having a terminal cation modified or anionic modified polyvinyl alcohol having an anionic group. It is.
 酢酸ビニルを加水分解して得られるポリビニルアルコールとしては、平均重合度が1,000以上のものが好ましく用いられ、特に平均重合度が1,500~5,000のものが好ましく用いられる。また、ケン化度は、70~100%のものが好ましく、80~99.5%のものが特に好ましい。 As the polyvinyl alcohol obtained by hydrolyzing vinyl acetate, those having an average degree of polymerization of 1,000 or more are preferably used, and those having an average degree of polymerization of 1,500 to 5,000 are particularly preferably used. The degree of saponification is preferably 70 to 100%, particularly preferably 80 to 99.5%.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号に記載されているような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol have primary to tertiary amino groups and quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-10383. Polyvinyl alcohol, which is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10モル%、好ましくは0.2~5モル%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer in the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号および同63-307979号に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7-285265号に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, as described in JP-A-61-237681 and JP-A-63-307979, Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体等が挙げられる。ポリビニルアルコールは、重合度や変性の種類違いなど2種以上を併用してもよい。 Nonionic modified polyvinyl alcohols include, for example, polyvinyl alcohol derivatives obtained by adding a polyalkylene oxide group to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795. And a block copolymer of a vinyl compound having a hydrophobic group and vinyl alcohol. Polyvinyl alcohol may use 2 or more types together, such as a polymerization degree and a different kind of modification | denaturation.
 本実施形態においては、水溶性高分子とともに硬化剤を使用してもよい。水溶性高分子がポリビニルアルコールの場合には、ホウ酸およびその塩やエポキシ系硬化剤が好ましい。 In this embodiment, a curing agent may be used together with the water-soluble polymer. When the water-soluble polymer is polyvinyl alcohol, boric acid and its salts and epoxy curing agents are preferred.
 高屈折率層および低屈折率層に含まれる水溶性高分子の含有量は、その層に含まれる金属酸化物粒子(詳細は後述する)100質量%に対して、50~150質量%であることが好ましく、より好ましくは80~120質量%である。水溶性高分子の量が少なすぎると膜の強度が落ちる場合があり、多すぎる場合、膜の屈折率が下がる場合がある。なお、高屈折率層および低屈折率層に含まれる水溶性高分子は、互いに同一であってもよいし、異なっていてもよいが、同一であることが好ましい。 The content of the water-soluble polymer contained in the high refractive index layer and the low refractive index layer is 50 to 150% by mass with respect to 100% by mass of metal oxide particles (details will be described later) contained in the layer. It is preferably 80 to 120% by mass. If the amount of the water-soluble polymer is too small, the strength of the film may decrease, and if it is too large, the refractive index of the film may decrease. The water-soluble polymers contained in the high refractive index layer and the low refractive index layer may be the same or different from each other, but are preferably the same.
 《金属酸化物粒子》
 本実施形態に用いられうる金属酸化物粒子としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズなどが挙げられる。
《Metal oxide particles》
Examples of the metal oxide particles that can be used in this embodiment include titanium dioxide, zirconium oxide, zinc oxide, synthetic amorphous silica, colloidal silica, alumina, colloidal alumina, lead titanate, red lead, yellow lead, and zinc. Examples thereof include yellow, chromium oxide, ferric oxide, iron black, copper oxide, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
 透明でより屈折率の高い高屈折率層を形成するために、高屈折率層は、チタン、ジルコニア等の高屈折率金属酸化物微粒子、すなわち、酸化チタン微粒子、酸化ジルコニア微粒子を含有させることが好ましい。特に、体積平均粒径が100nm以下のルチル型(正方晶形)酸化チタン粒子を含有することが好ましい。 In order to form a transparent high refractive index layer having a higher refractive index, the high refractive index layer may contain high refractive index metal oxide fine particles such as titanium and zirconia, that is, fine titanium oxide particles and fine zirconia oxide particles. preferable. In particular, it is preferable to contain rutile (tetragonal) titanium oxide particles having a volume average particle diameter of 100 nm or less.
 本実施形態で用いられる酸化チタン粒子または酸化ジルコニア粒子の体積平均粒径は、100nm以下であることが好ましく、4~50nmであることがより好ましく、4~40nmであるのがさらに好ましい。体積平均粒径が100nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The volume average particle size of the titanium oxide particles or zirconia particles used in this embodiment is preferably 100 nm or less, more preferably 4 to 50 nm, and even more preferably 4 to 40 nm. A volume average particle diameter of 100 nm or less is preferable from the viewpoint of low haze and excellent visible light transmittance.
 ここでいう体積平均粒径とは、媒体中に分散された一次粒子または二次粒子の体積平均粒径であり、レーザー回折/散乱法、動的光散乱法等により測定できる。 Here, the volume average particle diameter is a volume average particle diameter of primary particles or secondary particles dispersed in a medium, and can be measured by a laser diffraction / scattering method, a dynamic light scattering method, or the like.
 各層に存在する粒子の平均径を測定する場合は、具体的には、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する金属酸化物粒子の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径を算出する。 When measuring the average diameter of the particles present in each layer, specifically, the particles themselves or the particles appearing on the cross section or surface of the refractive index layer are observed with an electron microscope, and 1,000 arbitrary particles are observed. In the group of metal oxide particles, each having a particle diameter of d1, d2,..., Dk, and n1, n2,. When the volume per unit is vi, the average particle diameter weighted by the volume represented by the volume average particle diameter mv = {Σ (vi · di)} / {Σ (vi)} is calculated.
 さらに、本実施形態で用いられる酸化チタン粒子または酸化ジルコニア粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1~20%である。 Furthermore, the titanium oxide particles or zirconia oxide particles used in the present embodiment are preferably monodispersed. The monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
 単分散度=(粒径の標準偏差)/(粒径の平均値)×10 Monodispersity = (standard deviation of particle size) / (average value of particle size) × 10
 本実施形態で用いられる酸化チタン粒子としては、pHが1.0~3.0で、かつチタン粒子のゼータ電位が正である水系の酸化チタンゾルの酸化チタン粒子の表面を、疎水化して有機溶剤に分散可能な状態にしたものを用いることが好ましい。 As the titanium oxide particles used in the present embodiment, the surface of the titanium oxide particles of an aqueous titanium oxide sol having a pH of 1.0 to 3.0 and a positive zeta potential of the titanium particles is hydrophobized to an organic solvent. It is preferable to use a dispersion-dispersible material.
 本実施形態で用いることのできる水系の酸化チタンゾルの調製方法としては、たとえば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報等に記載された事項を参照にすることができる。 Examples of a method for preparing an aqueous titanium oxide sol that can be used in the present embodiment include JP-A 63-17221, JP-A 7-819, JP-A 9-165218, and JP-A 11-43327. Reference can be made to the matters described in JP-A No. 63-17221, JP-A No. 7-819, JP-A No. 9-165218, JP-A No. 11-43327, and the like.
 高屈折率層における金属酸化物粒子の含有量としては、高屈折率層の固形分100質量%に対して、15~70質量%であることが好ましく、20~65質量%であることがより好ましく、30~60質量%であることがさらに好ましい。 The content of the metal oxide particles in the high refractive index layer is preferably 15 to 70% by mass and more preferably 20 to 65% by mass with respect to 100% by mass of the solid content of the high refractive index layer. Preferably, it is 30 to 60% by mass.
 一方、低屈折率層に含まれる金属酸化物粒子としては、二酸化ケイ素が好ましく、合成非晶質シリカ、コロイダルシリカ等が挙げられる。これらのうち、酸性のコロイダルシリカゾルを用いることがより好ましく、有機溶媒に分散させたコロイダルシリカゾルを用いることがさらに好ましい。また、屈折率をより低減させるためには、金属酸化物微粒子として、粒子の内部に空孔を有する中空微粒子を用いることが特に好ましく、二酸化ケイ素(シリカ)の中空微粒子が最も好ましい。 On the other hand, the metal oxide particles contained in the low refractive index layer are preferably silicon dioxide, and examples thereof include synthetic amorphous silica and colloidal silica. Of these, acidic colloidal silica sol is more preferably used, and colloidal silica sol dispersed in an organic solvent is more preferably used. In order to further reduce the refractive index, it is particularly preferable to use hollow fine particles having pores inside the particles as metal oxide fine particles, and hollow fine particles of silicon dioxide (silica) are most preferred.
 低屈折率層に含まれる金属酸化物粒子は、その体積平均粒径が3~100nmであることが好ましく、3~50nmであるのがより好ましく、3~30nmであるのがさらに好ましい。 The volume average particle size of the metal oxide particles contained in the low refractive index layer is preferably 3 to 100 nm, more preferably 3 to 50 nm, and even more preferably 3 to 30 nm.
 低屈折率層に含まれる金属酸化物微粒子の体積平均粒径は、高屈折層に含まれる金属酸化物粒子の平均粒径の測定と同様の方法により求められる。 The volume average particle diameter of the metal oxide fine particles contained in the low refractive index layer is determined by the same method as the measurement of the average particle diameter of the metal oxide particles contained in the high refractive layer.
 本実施形態で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、たとえば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号パンフレットなどに記載されているものである。 The colloidal silica used in this embodiment is obtained by heating and aging a silica sol obtained by metathesis of sodium silicate with an acid or the like or passing through an ion exchange resin layer. For example, JP-A-57-14091 JP, 60-219083, JP 60-218904, JP 61-20792, JP 61-188183, JP 63-17807, JP 4-207 No. 93284, JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 Publications, JP-A-7-179029, JP-A-7-137431, and WO94 / 26530. Are those described.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。 Such colloidal silica may be a synthetic product or a commercially available product.
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理されたものであってもよい。 The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 本実施形態で用いられる中空微粒子は、平均粒子空孔径が、3~70nmであるのが好ましく、5~50nmがより好ましく、5~45nmがさらに好ましい。なお、中空微粒子の平均粒子空孔径とは、中空微粒子の内径の平均値である。本発明において、中空微粒子の平均粒子空孔径は、上記範囲であれば、十分に低屈折率層の屈折率が低屈折率化される。平均粒子空孔径は、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔径を、ランダムに50個以上観察し、各粒子の空孔径を求め、その数平均値を求めることにより得られる。なお、本明細書中、平均粒子空孔径としては、円形、楕円形または実質的に円形もしくは楕円形として観察できる空孔径の外縁を、2本の平行線で挟んだ距離のうち、最小の距離を意味する。 The hollow fine particles used in this embodiment preferably have an average particle pore size of 3 to 70 nm, more preferably 5 to 50 nm, and even more preferably 5 to 45 nm. The average particle pore size of the hollow fine particles is an average value of the inner diameters of the hollow fine particles. In the present invention, when the average particle pore diameter of the hollow fine particles is within the above range, the refractive index of the low refractive index layer is sufficiently lowered. The average particle diameter is 50 or more at random, which can be observed as an ellipse in a circular, elliptical or substantially circular shape by electron microscope observation, and obtains the pore diameter of each particle. Is obtained. In the present specification, as the average particle pore diameter, the minimum distance among the distances between the outer edges of the pore diameter that can be observed as a circle, an ellipse, a substantially circle or an ellipse, between two parallel lines Means.
 本実施形態で用いられる中空微粒子は、外郭の平均厚さは10nm以下であるのが好ましく、1~7nmがより好ましく、1~5nmがさらに好ましい。なお、本明細書中、中空微粒子における空孔の外側部分を外郭と称する。外郭の厚さが10nm以下であれば、ヘイズが少なく、ガラス積層体の光透過率性が優れるため好ましい。外郭の厚さが1nm以上であれば、粒子の機械的強度が増して低屈折率層中でその形状を維持できるため、空孔の形成が容易となる。外郭の平均厚さは、電子顕微鏡観察で、円形、楕円形または実質的に円形は楕円形として観察できる空孔の外郭の平均厚さを、ランダムに50個以上観察し、各粒子の外郭の平均厚さを求め、その数平均値を求めることにより得られる。 The hollow fine particles used in this embodiment preferably have an average outer thickness of 10 nm or less, more preferably 1 to 7 nm, and even more preferably 1 to 5 nm. In addition, in this specification, the outer side part of the void | hole in a hollow microparticle is called outline. A thickness of the outer shell of 10 nm or less is preferable because the haze is small and the light transmittance of the glass laminate is excellent. If the thickness of the outer shell is 1 nm or more, the mechanical strength of the particles is increased and the shape can be maintained in the low refractive index layer, so that formation of pores is facilitated. The average thickness of the outer shell is observed by electron microscope observation, and the average thickness of the outer shell of the pores that can be observed as a circle, ellipse, or substantially circular as an ellipse is randomly observed, and 50 or more of the outer shell of each particle is observed. The average thickness is obtained, and the number average value is obtained.
 このような中空微粒子は、合成品を用いてもよいし、市販品を用いてもよい。ここで、二酸化ケイ素(シリカ)の中空微粒子としては、例えば、アルカリ条件下(例えば、アンモニアを添加)、炭酸カルシウム水分散液に、有機ケイ素化合物(例えば、テトラエトキシシランなどのアルコキシシラン)を加え、撹拌する。その後、50~80℃に加熱して撹拌し、シリカ被覆炭酸カルシウム分散液を得る。該シリカ被覆炭酸カルシウム分散液を、酸性条件下(たとえば、酢酸を添加)で、炭酸カルシウムを分解し、炭酸ガスを発生させて、炭酸カルシウムを溶出する。得られた分散液に蒸留水を添加した後、添加したのと同量の蒸留水が排出されるまで、分散液に限外ろ過を行う。該限外ろ過を1~5回行うことで、シリカ中空微粒子を含有する分散液を得ることができる。 Such hollow fine particles may be a synthetic product or a commercially available product. Here, as hollow fine particles of silicon dioxide (silica), for example, an organic silicon compound (for example, alkoxysilane such as tetraethoxysilane) is added to a calcium carbonate aqueous dispersion under alkaline conditions (for example, addition of ammonia). , Stir. Thereafter, the mixture is heated to 50 to 80 ° C. and stirred to obtain a silica-coated calcium carbonate dispersion. The silica-coated calcium carbonate dispersion is decomposed under acidic conditions (for example, acetic acid is added) to decompose calcium carbonate and generate carbon dioxide to elute calcium carbonate. After adding distilled water to the obtained dispersion, ultrafiltration is performed on the dispersion until the same amount of distilled water as that added is discharged. By performing the ultrafiltration 1 to 5 times, a dispersion containing silica hollow fine particles can be obtained.
 低屈折率層における金属酸化物粒子の含有量は、低屈折率層の固形分100質量%に対して、0.1~50質量%であることが好ましく、0.5~45質量%であることがより好ましく、1~40質量%であることがさらに好ましく、5~30質量%であることが特に好ましい。 The content of the metal oxide particles in the low refractive index layer is preferably 0.1 to 50% by mass, and preferably 0.5 to 45% by mass with respect to 100% by mass of the solid content of the low refractive index layer. More preferred is 1 to 40% by mass, still more preferred is 5 to 30% by mass.
 《熱ゲル化剤》
 本実施形態の熱線反射層は、高屈折率層および低屈折率層の少なくとも1層が熱ゲル化剤を含むことが望ましい。このような構成とすることにより、熱線反射層におけるひび割れ、ムラ、さらに、高屈折率層と低屈折率層との間の粒子の混合が防止される。その結果、柔軟性や透明性、赤外遮蔽性に優れた熱線反射層を高い生産性で製造することができる。
<Thermal gelling agent>
As for the heat ray reflective layer of this embodiment, it is desirable that at least one of the high refractive index layer and the low refractive index layer contains a thermal gelling agent. By setting it as such a structure, the crack in a heat ray reflective layer, the nonuniformity, and also the mixing of the particle | grains between a high refractive index layer and a low refractive index layer are prevented. As a result, a heat ray reflective layer excellent in flexibility, transparency, and infrared shielding property can be produced with high productivity.
 本明細書において、「熱ゲル化剤」とは、水に溶解し、昇温により増粘ゲル化し、冷却によりゾル化する性質を有する物質である。熱ゲル化剤がゲル化する温度について特に制限はないが、好ましくは40℃以上であり、より好ましくは50℃以上であり、さらに好ましくは60℃以上である。上述の定義を満たす限り、本実施形態において用いられる熱ゲル化剤の具体的な形態について制限はない。一例を挙げると、熱ゲル化剤としては、例えば、カードラン、メチルセルロース(MC)、ヒドロキシエチルメチルセルロース(HEMC)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシエチルセルロース(HEC)、卵白、大豆グロブリンなどが挙げられる。この際、ヒドロキシプロピルメチルセルロースは、分子量やメトキシ基・プロピル基の含有量などに応じて溶解時の粘度・溶解性が異なることから、好ましい性質のものを適宜選択して用いればよい。なお、製造されたガラス積層体において、熱ゲル化剤は、通常は既にゲル化した状態にある。このような場合についても、「熱ゲル化剤を含む」と解するものとする。このことは、後述する「低温ゲル化剤」についても同様である。 In the present specification, the “thermal gelling agent” is a substance that has a property of dissolving in water, forming a thickened gel by heating, and forming a sol by cooling. Although there is no restriction | limiting in particular about the temperature which a thermogelling agent gelatinizes, Preferably it is 40 degreeC or more, More preferably, it is 50 degreeC or more, More preferably, it is 60 degreeC or more. As long as the above definition is satisfied, there is no limitation on the specific form of the thermal gelling agent used in the present embodiment. For example, examples of the thermal gelling agent include curdlan, methyl cellulose (MC), hydroxyethyl methyl cellulose (HEMC), hydroxypropyl methyl cellulose (HPMC), hydroxyethyl cellulose (HEC), egg white, soybean globulin, and the like. . At this time, hydroxypropyl methylcellulose may be appropriately selected from those having preferable properties since the viscosity and solubility at the time of dissolution differ depending on the molecular weight and the methoxy group / propyl group content. In the produced glass laminate, the thermal gelling agent is usually already in a gelled state. Also in such a case, it is understood that “including a thermal gelling agent”. The same applies to the “low temperature gelling agent” described later.
 上述したように、本実施形態では高屈折率層および低屈折率層の少なくとも1層が熱ゲル化剤を含めばよいが、高屈折率層の少なくとも1層が熱ゲル化剤を含むことが好ましい。また、すべての高屈折率層が熱ゲル化剤を含むことがより好ましい。さらに他の好ましい形態として、高屈折率層および低屈折率層の双方の少なくとも1層ずつが熱ゲル化剤を含むことが好ましく、すべての高屈折率層およびすべての低屈折率層が熱ゲル化剤を含むことがより好ましい。 As described above, in this embodiment, at least one of the high refractive index layer and the low refractive index layer may contain a thermal gelling agent, but at least one layer of the high refractive index layer may contain a thermal gelling agent. preferable. Moreover, it is more preferable that all the high refractive index layers contain a thermal gelling agent. In still another preferred form, at least one of both the high refractive index layer and the low refractive index layer preferably contains a thermal gelling agent, and all the high refractive index layers and all the low refractive index layers are thermal gels. More preferably, an agent is included.
 各層に含まれる熱ゲル化剤の含有量について特に制限はないが、高屈折率層が熱ゲル化剤を含む場合における高屈折率層における熱ゲル化剤の含有量は、高屈折率層の固形分100質量%に対して、3~30質量%であることが好ましく、5~25質量%であることがより好ましく、7~20質量%であることがさらに好ましい。また、低屈折率層が熱ゲル化剤を含む場合における低屈折率層における熱ゲル化剤の含有量は、低屈折率層の固形分100質量%に対して、3~30質量%であることが好ましく、5~25質量%であることがより好ましく、7~20質量%であることがさらに好ましい。 The content of the thermal gelling agent contained in each layer is not particularly limited, but when the high refractive index layer contains a thermal gelling agent, the content of the thermal gelling agent in the high refractive index layer is that of the high refractive index layer. The content is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and further preferably 7 to 20% by mass with respect to 100% by mass of the solid content. When the low refractive index layer contains a thermal gelling agent, the content of the thermal gelling agent in the low refractive index layer is 3 to 30% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is preferably 5 to 25% by mass, more preferably 7 to 20% by mass.
 《低温ゲル化剤》
 本実施形態のより好ましい形態では、高屈折率層および低屈折率層の少なくとも1層が低温ゲル化剤を含む。このような構成とすることにより、熱ゲル化剤の採用によって発揮される上記の作用効果の発現をより一層確実なものとすることができるという利点がある。
《Low temperature gelling agent》
In a more preferred form of the present embodiment, at least one of the high refractive index layer and the low refractive index layer contains a low temperature gelling agent. By adopting such a configuration, there is an advantage that it is possible to further ensure the expression of the above-described operational effects exhibited by the use of the thermal gelling agent.
 本明細書において、「低温ゲル化剤」とは、水溶液に溶解し、冷却により増粘ゲル化し、昇温によりゾル化する性質を有する物質である。低温ゲル化剤がゲル化する温度について特に制限はないが、好ましくは10℃以下であり、より好ましくは15℃以下であり、さらに好ましくは20℃以下である。かような定義を満たす限り、本形態において用いられる熱ゲル化剤の具体的な形態について制限はない。一例を挙げると、低温ゲル化剤としては、例えば、ゼラチン、カラギーナン、ジェランガム、ペクチン、アルギン酸ナトリウムなどが開発されている。また、他成分を共存させることで冷却による増粘ゲル化を起こすものも多くあり、例えば、ガラクトキシシクログルカンとアルコールとの組み合わせや、ポリビニルアルコール・ホウ酸・シリカの組み合わせなどが好ましく用いられうる。 In the present specification, the “low temperature gelling agent” is a substance that has the property of dissolving in an aqueous solution, forming a thickened gel upon cooling, and forming a sol upon heating. Although there is no restriction | limiting in particular about the temperature which a low temperature gelatinizer gelatinizes, Preferably it is 10 degrees C or less, More preferably, it is 15 degrees C or less, More preferably, it is 20 degrees C or less. As long as such a definition is satisfied, there is no limitation on the specific form of the thermal gelling agent used in this embodiment. For example, gelatin, carrageenan, gellan gum, pectin, sodium alginate and the like have been developed as low temperature gelling agents. In addition, there are many that cause thickening gelation by cooling by coexisting with other components, for example, a combination of galactoxycycloglucan and alcohol, a combination of polyvinyl alcohol, boric acid, silica, etc. can be preferably used. .
 低温ゲル化剤についても、高屈折率層および低屈折率層の少なくとも1層が低温ゲル化剤を含む場合、高屈折率層の少なくとも1層が低温ゲル化剤を含むことが好ましい。また、すべての高屈折率層が低温ゲル化剤を含むことがより好ましい。さらに他の好ましい形態として、高屈折率層および低屈折率層の双方の少なくとも1層ずつが低温ゲル化剤を含むことが好ましく、すべての高屈折率層およびすべての低屈折率層が低温ゲル化剤を含むことがより好ましい。 As for the low temperature gelling agent, when at least one of the high refractive index layer and the low refractive index layer contains a low temperature gelling agent, it is preferable that at least one layer of the high refractive index layer contains a low temperature gelling agent. More preferably, all the high refractive index layers contain a low temperature gelling agent. In still another preferred embodiment, at least one of both the high refractive index layer and the low refractive index layer preferably contains a low temperature gelling agent, and all the high refractive index layers and all the low refractive index layers are low temperature gels. More preferably, an agent is included.
 低温ゲル化剤が用いられる場合における、各層に含まれる低温ゲル化剤の含有量についても特に制限はないが、高屈折率層が低温ゲル化剤を含む場合における高屈折率層における低温ゲル化剤の含有量は、高屈折率層の固形分100質量%に対して、3~30質量%であることが好ましく、5~25質量%であることがより好ましく、7~20質量%であることがさらに好ましい。また、低屈折率層が低温ゲル化剤を含む場合における低屈折率層における低温ゲル化剤の含有量は、低屈折率層の固形分100質量%に対して、3~30質量%であることが好ましく、5~25質量%であることがより好ましく、7~20質量%であることがさらに好ましい。 There is no particular restriction on the content of the low temperature gelling agent contained in each layer when the low temperature gelling agent is used, but the low refractive index gelation in the high refractive index layer when the high refractive index layer contains the low temperature gelling agent. The content of the agent is preferably 3 to 30% by mass, more preferably 5 to 25% by mass, and 7 to 20% by mass with respect to 100% by mass of the solid content of the high refractive index layer. More preferably. When the low refractive index layer contains a low temperature gelling agent, the content of the low temperature gelling agent in the low refractive index layer is 3 to 30% by mass with respect to 100% by mass of the solid content of the low refractive index layer. It is preferably 5 to 25% by mass, more preferably 7 to 20% by mass.
 《その他の添加剤》
 高屈折率層および低屈折率層には、必要に応じて各種添加剤を用いることができる。その一例を以下に記載する。
《Other additives》
Various additives can be used in the high refractive index layer and the low refractive index layer as necessary. One example is described below.
 [等電点が6.5以下のアミノ酸]
 高屈折率層または低屈折率層は、等電点が6.5以下のアミノ酸を含有していてもよい。アミノ酸を含むことにより、高屈折率層または低屈折率層中の金属酸化物粒子の分散性が向上しうる。
[Amino acids with an isoelectric point of 6.5 or less]
The high refractive index layer or the low refractive index layer may contain an amino acid having an isoelectric point of 6.5 or less. By including an amino acid, the dispersibility of the metal oxide particles in the high refractive index layer or the low refractive index layer can be improved.
 ここでアミノ酸とは、同一分子内にアミノ基とカルボキシル基とを有する化合物であり、α-、β-、γ-などいずれのタイプのアミノ酸でもよい。アミノ酸には光学異性体が存在するものもあるが、本発明においては光学異性体による効果の差はなく、いずれの異性体も単独であるいはラセミ体でも使用することができる。 Here, an amino acid is a compound having an amino group and a carboxyl group in the same molecule, and may be any type of amino acid such as α-, β-, and γ-. Some amino acids have optical isomers, but in the present invention, there is no difference in effect due to optical isomers, and any isomer can be used alone or in racemic form.
 アミノ酸の詳しい解説は、化学大辞典1縮刷版(共立出版;昭和35年発行)268頁~270頁の記載を参照することができる。 For a detailed explanation of amino acids, refer to the description on pages 268 to 270 of the 1st edition of the Chemistry Dictionary (Kyoritsu Shuppan; published in 1960).
 具体的に好ましいアミノ酸として、アスパラギン酸、グルタミン酸、グリシン、セリン、等を挙げることができ、特にグリシン、セリンが好ましい。 Specific examples of preferred amino acids include aspartic acid, glutamic acid, glycine, serine, and the like, with glycine and serine being particularly preferred.
 アミノ酸の等電点とは、アミノ酸は特定のpHにおいて分子内の正・負電荷が釣り合い、全体としての電荷が0となるので、このpH値をいう。各アミノ酸の等電点については、低イオン強度での等電点電気泳動で求めることができる。 The isoelectric point of an amino acid refers to this pH value because an amino acid balances the positive and negative charges in the molecule at a specific pH and the overall charge is zero. The isoelectric point of each amino acid can be determined by isoelectric focusing at a low ionic strength.
 [エマルジョン樹脂]
 高屈折率層または低屈折率層は、エマルジョン樹脂をさらに含有していてもよい。エマルジョン樹脂を含むことにより、膜の柔軟性が高くなりガラスへの貼りつけ等の加工性がよくなる。
[Emulsion resin]
The high refractive index layer or the low refractive index layer may further contain an emulsion resin. By including the emulsion resin, the flexibility of the film is increased and the workability such as sticking to glass is improved.
 エマルジョン樹脂とは、水系媒体中に微細な、例えば、平均粒径が0.01~2.0μm程度の樹脂粒子がエマルジョン状態で分散されている樹脂で、油溶性のモノマーを、水酸基を有する高分子分散剤を用いてエマルジョン重合して得られる。用いる分散剤の種類によって、得られるエマルジョン樹脂のポリマー成分に基本的な違いは見られない。エマルジョンの重合時に使用される分散剤としては、例えば、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドンのような高分子分散剤が挙げられる。水酸基を有する高分子分散剤を用いてエマルジョン重合すると、微細な微粒子の少なくとも表面に水酸基の存在が推定され、他の分散剤を用いて重合したエマルジョン樹脂とはエマルジョンの化学的、物理的性質が異なる。 An emulsion resin is a resin in which fine resin particles having an average particle diameter of about 0.01 to 2.0 μm, for example, are dispersed in an emulsion state in an aqueous medium. Obtained by emulsion polymerization using a molecular dispersant. There is no fundamental difference in the polymer component of the resulting emulsion resin depending on the type of dispersant used. Examples of the dispersant used in the polymerization of the emulsion include polyoxyethylene nonylphenyl ether in addition to low molecular weight dispersants such as alkylsulfonate, alkylbenzenesulfonate, diethylamine, ethylenediamine, and quaternary ammonium salt. , Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone. When emulsion polymerization is performed using a polymer dispersant having a hydroxyl group, the presence of hydroxyl groups is estimated on at least the surface of fine particles, and the emulsion resin polymerized using other dispersants has chemical and physical properties of the emulsion. Different.
 水酸基を含む高分子分散剤とは、重量平均分子量が10000以上の高分子の分散剤で、側鎖または末端に水酸基が置換されたものであり、例えばポリアクリル酸ソーダ、ポリアクリルアミドのようなアクリル系の高分子で2-エチルヘキシルアクリレートが共重合されたもの、ポリエチレングリコールやポリプロピレングリコールのようなポリエーテル、ポリビニルアルコールなどが挙げられ、特にポリビニルアルコールが好ましい。 The polymer dispersant containing a hydroxyl group is a polymer dispersant having a weight average molecular weight of 10,000 or more, and has a hydroxyl group substituted at the side chain or terminal. For example, an acrylic polymer such as sodium polyacrylate or polyacrylamide is used. Examples of such polymers include 2-ethylhexyl acrylate copolymer, polyethers such as polyethylene glycol and polypropylene glycol, and polyvinyl alcohol. Polyvinyl alcohol is particularly preferable.
 高分子分散剤として使用されるポリビニルアルコールは、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、カチオン変性したポリビニルアルコールやカルボキシル基のようなアニオン性基を有するアニオン変性ポリビニルアルコール、シリル基を有するシリル変性ポリビニルアルコール等の変性ポリビニルアルコールも含まれる。ポリビニルアルコールは、平均重合度は高い方がインク吸収層を形成する際のクラックの発生を抑制する効果が大きいが、平均重合度が5000以内であると、エマルジョン樹脂の粘度が高くなく、製造時に取り扱いやすい。したがって、平均重合度は300~5000のものが好ましく、1500~5000のものがより好ましく、3000~4500のものが特に好ましい。ポリビニルアルコールのケン化度は70~100モル%のものが好ましく、80~99.5モル%のものがより好ましい。 Polyvinyl alcohol used as a polymer dispersant is an anion-modified polyvinyl alcohol having an anionic group such as a cation-modified polyvinyl alcohol or a carboxyl group in addition to ordinary polyvinyl alcohol obtained by hydrolysis of polyvinyl acetate. Further, modified polyvinyl alcohol such as silyl-modified polyvinyl alcohol having a silyl group is also included. Polyvinyl alcohol has a higher effect of suppressing the occurrence of cracks when forming the ink absorbing layer when the average degree of polymerization is higher, but when the average degree of polymerization is within 5000, the viscosity of the emulsion resin is not high, and at the time of production Easy to handle. Accordingly, the average degree of polymerization is preferably 300 to 5000, more preferably 1500 to 5000, and particularly preferably 3000 to 4500. The saponification degree of polyvinyl alcohol is preferably 70 to 100 mol%, more preferably 80 to 99.5 mol%.
 上記の高分子分散剤で乳化重合される樹脂としては、アクリル酸エステル、メタクリル酸エステル、ビニル系化合物、スチレン系化合物といったエチレン系単量体、ブタジエン、イソプレンといったジエン系化合物の単独重合体または共重合体が挙げられ、例えばアクリル系樹脂、スチレン-ブタジエン系樹脂、エチレン-酢酸ビニル系樹脂等が挙げられる。 Examples of the resin that is emulsion-polymerized with the above polymer dispersant include homopolymers or copolymers of ethylene monomers such as acrylic acid esters, methacrylic acid esters, vinyl compounds, and styrene compounds, and diene compounds such as butadiene and isoprene. Examples of the polymer include acrylic resins, styrene-butadiene resins, and ethylene-vinyl acetate resins.
 [その他の添加剤]
 その他にも、高屈折率層または低屈折率層は、例えば、特開昭57-74193号公報、同57-87988号公報及び同62-261476号公報に記載の紫外線吸収剤、特開昭57-74192号公報、同57-87989号公報、同60-72785号公報、同61-146591号公報、特開平1-95091号公報および同3-13376号公報等に記載されている退色防止剤、アニオン、カチオンまたはノニオンの各種界面活性剤、特開昭59-42993号公報、同59-52689号公報、同62-280069号公報、同61-242871号公報および特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有していてもよい。
[Other additives]
In addition, the high refractive index layer or the low refractive index layer is, for example, an ultraviolet absorber described in JP-A-57-74193, JP-A-57-87988 and JP-A-62-261476, -74192, 57-87989, 60-72785, 61-146591, JP-A-1-95091, 3-3-1376, etc., Various anionic, cationic or nonionic surfactants such as JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771 and JP-A-4-219266 The optical brighteners described, pH adjusters such as sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate, Foams, lubricants such as diethylene glycol, preservatives, antistatic agents, may contain various known additives such as a matting agent.
 〔熱線反射層の形成方法〕
 熱線反射層の形成方法は、第1の水溶性高分子および第1の金属酸化物粒子を含む高屈折率層用塗布液と、第2の水溶性高分子および第2の金属酸化物粒子を含む低屈折率層用塗布液とを塗布する工程(塗布工程)を含む。そして、塗布工程の少なくとも1つにおいて、高屈折率層用塗布液または低屈折率層用塗布液が熱ゲル化剤を含み、熱ゲル化剤を含む塗布液の塗膜を加熱して熱ゲル化剤をゲル化させる加熱ゲル化工程をさらに含む。
[Method for forming heat ray reflective layer]
The method for forming the heat ray reflective layer includes a coating solution for a high refractive index layer containing a first water-soluble polymer and first metal oxide particles, a second water-soluble polymer and second metal oxide particles. A step (application step) of applying a coating solution for a low refractive index layer. In at least one of the coating steps, the high refractive index layer coating liquid or the low refractive index layer coating liquid contains a thermal gelling agent, and the coating film of the coating liquid containing the thermal gelling agent is heated to form a thermal gel. It further includes a heating gelation step of gelling the agent.
 セルロースエステルフィルム上への各屈折率層の形成手法については特に制限されないが、高屈折率層用塗布液および低屈折率層用塗布液とを交互に塗布、乾燥して積層体を形成することが好ましい。具体的には以下の形態が挙げられる;(1)フィルム上に、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成した後、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成し、熱線反射層を形成する方法;(2)フィルム上に、低屈折率層塗布液を塗布し乾燥して低屈折率層を形成した後、高屈折率層塗布液を塗布し乾燥して高屈折率層を形成し、熱線反射層を形成する方法;(3)フィルム上に、高屈折率層塗布液と、低屈折率層塗布液とを交互に逐次重層塗布した後乾燥して、高屈折率層、および低屈折率層を含む熱線反射層を形成する方法;(4)フィルム上に、高屈折率層塗布液と、低屈折率層塗布液とを同時重層塗布し、乾燥して、高屈折率層および低屈折率層を含む熱線反射層を形成する方法;などが挙げられる。なかでも、より簡便な製造プロセスとなる上記(4)の方法が好ましい。 The method for forming each refractive index layer on the cellulose ester film is not particularly limited, but a high refractive index layer coating solution and a low refractive index layer coating solution are alternately applied and dried to form a laminate. Is preferred. Specific examples include the following: (1) A high refractive index layer coating solution is applied onto a film and dried to form a high refractive index layer, and then a low refractive index layer coating solution is applied and dried. Forming a low refractive index layer and forming a heat ray reflective layer; (2) applying a low refractive index layer coating solution on the film and drying to form a low refractive index layer; then applying a high refractive index layer A method of forming a heat-reflective layer by applying a liquid and drying to form a heat-reflective layer; (3) On the film, a high refractive index layer coating liquid and a low refractive index layer coating liquid are alternately layered successively. A method of forming a heat ray reflective layer including a high refractive index layer and a low refractive index layer by coating and drying; (4) a high refractive index layer coating solution and a low refractive index layer coating solution on a film; And a method of forming a heat ray reflective layer including a high refractive index layer and a low refractive index layer by simultaneously applying multiple layers and drying. Among these, the method (4), which is a simpler manufacturing process, is preferable.
 塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 Examples of the coating method include a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, or US Pat. Nos. 2,761,419 and 2,761,791. A slide bead coating method using an hopper, an extrusion coating method, or the like is preferably used.
 高屈折率層塗布液および低屈折率層塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。 The solvent for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
 上記の有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、特に水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒が好ましく、水がより好ましい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and diethyl ether. And ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and more preferably water.
 高屈折率層塗布液中の水溶性高分子の濃度は、1~10質量%であることが好ましい。また、高屈折率層塗布液中の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。さらに、高屈折率層用塗布液が熱ゲル化剤を含む場合のその濃度は、好ましくは0.1~3質量%であり、より好ましくは1~2質量%である。この濃度が0.1質量%以上であれば、後述する加熱ゲル化工程における加熱によるゲル化が十分に進行しうる。一方、この濃度が3質量%以下であれば、加熱ゲル化工程における加熱によるゲル化が不均一になることに伴うムラの発生が抑制されうる。また、高屈折率層用塗布液が低温ゲル化剤を含む場合のその濃度は、好ましくは0.3~10質量%であることが好ましく、0.5~3質量%であることがより好ましく、0.7~2質量%であることがさらに好ましい。この濃度が0.3質量%以上であれば、粒子の十分な混合が期待でき、一方、この濃度が10質量%以下であれば、塗膜の均一性が十分に確保されうる。 The concentration of the water-soluble polymer in the high refractive index layer coating solution is preferably 1 to 10% by mass. The concentration of the metal oxide particles in the high refractive index layer coating solution is preferably 1 to 50% by mass. Further, when the coating solution for high refractive index layer contains a thermal gelling agent, the concentration thereof is preferably 0.1 to 3% by mass, more preferably 1 to 2% by mass. If this density | concentration is 0.1 mass% or more, the gelatinization by the heating in the heating gelation process mentioned later can fully advance. On the other hand, if this concentration is 3% by mass or less, the occurrence of unevenness due to non-uniform gelation by heating in the heating gelation step can be suppressed. Further, when the coating solution for the high refractive index layer contains a low temperature gelling agent, the concentration is preferably 0.3 to 10% by mass, more preferably 0.5 to 3% by mass. More preferably, the content is 0.7 to 2% by mass. If the concentration is 0.3% by mass or more, sufficient mixing of the particles can be expected. On the other hand, if the concentration is 10% by mass or less, the uniformity of the coating film can be sufficiently ensured.
 低屈折率層塗布液中の水溶性高分子の濃度は、1~10質量%であることが好ましい。また、低屈折率層塗布液中の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。さらに、上述した高屈折率層用塗布液の場合と同様の理由から、低屈折率層用塗布液が熱ゲル化剤を含む場合のその濃度は、好ましくは0.1~3質量%であり、より好ましくは1~2質量%である。また、低屈折率層用塗布液が低温ゲル化剤を含む場合のその濃度は、好ましくは0.3~10質量%であることが好ましく、0.5~3質量%であることがより好ましく、0.7~2質量%であることがさらに好ましい。この濃度が0.3質量%以上であれば、粒子の十分な混合が期待でき、一方、この濃度が10質量%以下であれば、塗膜の均一性が十分に確保されうる。 The concentration of the water-soluble polymer in the low refractive index layer coating solution is preferably 1 to 10% by mass. The concentration of the metal oxide particles in the low refractive index layer coating solution is preferably 1 to 50% by mass. Further, for the same reason as in the case of the coating liquid for the high refractive index layer described above, the concentration when the coating liquid for the low refractive index layer contains a thermal gelling agent is preferably 0.1 to 3% by mass. More preferably, it is 1 to 2% by mass. When the low refractive index layer coating solution contains a low-temperature gelling agent, the concentration is preferably 0.3 to 10% by mass, more preferably 0.5 to 3% by mass. More preferably, the content is 0.7 to 2% by mass. If the concentration is 0.3% by mass or more, sufficient mixing of the particles can be expected. On the other hand, if the concentration is 10% by mass or less, the uniformity of the coating film can be sufficiently ensured.
 高屈折率層塗布液および低屈折率層塗布液の調製方法は、特に制限されず、例えば、水溶性高分子、金属酸化物粒子、熱ゲル化剤および低温ゲル化剤、並びに必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。必要に応じて、さらに溶媒を用いて、適当な粘度に調製される。 The method for preparing the high refractive index layer coating solution and the low refractive index layer coating solution is not particularly limited, and includes, for example, a water-soluble polymer, metal oxide particles, a thermal gelling agent and a low temperature gelling agent, and as necessary. Examples include a method of adding other additives to be added and stirring and mixing. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
 本実施形態においては、体積平均粒径が100nm以下のルチル型の酸化チタンを添加、分散して調製した水系の高屈折率層塗布液を用いて、高屈折率層を形成することが好ましい。この際、ルチル型の酸化チタンとしては、pHが1.0以上、3.0以下で、かつチタン粒子のゼータ電位が正である水系の酸化チタンゾルとして、高屈折率層塗布液に添加して調製することが好ましい。 In this embodiment, it is preferable to form the high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing rutile type titanium oxide having a volume average particle size of 100 nm or less. At this time, the rutile type titanium oxide is added to the high refractive index layer coating solution as an aqueous titanium oxide sol having a pH of 1.0 or more and 3.0 or less and a positive zeta potential of the titanium particles. It is preferable to prepare.
 上記(4)の同時重層塗布を行う際の高屈折率層塗布液と低屈折率層塗布液の粘度としては、スライドビード塗布方式を用いる場合には、5~100mPa・sの範囲が好ましく、さらに好ましくは10~50mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、5~1200mPa・sの範囲が好ましく、さらに好ましくは25~500mPa・sの範囲である。 When the slide bead coating method is used, the viscosity of the high refractive index layer coating solution and the low refractive index layer coating solution in the simultaneous multilayer coating (4) is preferably in the range of 5 to 100 mPa · s. More preferably, it is in the range of 10 to 50 mPa · s. When the curtain coating method is used, the range of 5 to 1200 mPa · s is preferable, and the range of 25 to 500 mPa · s is more preferable.
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは3,000~30,000mPa・sであり、最も好ましいのは10,000~30,000mPa・sである。 The viscosity of the coating solution at 15 ° C. is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, still more preferably 3,000 to 30,000 mPa · s, and most preferably 10 , 30,000 to 30,000 mPa · s.
 塗布および乾燥方法としては、任意の手法を用いることができる。塗布液を塗布する際の塗布液の温度は、好ましくは15~40℃であり、より好ましくは30~40℃である。そして、例えば同時重層塗布を行った後、低温ゲル化剤を含まない場合には加熱処理を施すことにより熱ゲル化剤をゲル化させて塗布液を増粘させ(加熱ゲル化工程)、さらに必要に応じて温風等により加熱乾燥することで高屈折率層および低屈折率層に含有されている粒子の混合を抑制しつつ熱線反射層を製造することができる。この際、加熱ゲル化工程における加熱条件について、温度は好ましくは60~150℃であり、加熱時間は好ましくは10~60秒間である。また、加熱ゲル化工程後の乾燥条件については、50℃以上で乾燥することが好ましく、より好ましくは、乾燥条件として、湿球温度50℃~150℃、膜面温度50℃~100℃の範囲の条件で行うことである。また、塗布直後の加熱ゲル化工程における加熱方式としては、形成された塗膜均一性の観点から、水平セット方式で行うことが好ましい。 Any method can be used as a coating and drying method. The temperature of the coating solution when applying the coating solution is preferably 15 to 40 ° C., more preferably 30 to 40 ° C. And, for example, after performing simultaneous multi-layer coating, if the low-temperature gelling agent is not included, the thermal gelling agent is gelled by heat treatment to thicken the coating solution (heating gelation step), A heat ray reflective layer can be manufactured, suppressing mixing of the particle | grains contained in the high refractive index layer and the low refractive index layer by heat-drying with warm air etc. as needed. At this time, with respect to the heating conditions in the heating gelation step, the temperature is preferably 60 to 150 ° C., and the heating time is preferably 10 to 60 seconds. The drying conditions after the heat gelation step are preferably 50 ° C. or more, and more preferably, the drying conditions are a wet bulb temperature of 50 ° C. to 150 ° C. and a film surface temperature of 50 ° C. to 100 ° C. It is to be performed under the conditions of. Moreover, it is preferable to carry out by the horizontal set system from a viewpoint of the formed coating-film uniformity as a heating system in the heating gelation process immediately after application | coating.
 一方、低温ゲル化剤を併用する場合には、例えば同時重層塗布を行った後、冷却(冷風を用いるなど)により低温ゲル化剤をゲル化させて塗布液を増粘させ(冷却ゲル化工程)、次いで加熱処理を施すことにより熱ゲル化剤をゲル化させて塗布液を増粘させ(加熱ゲル化工程)、さらに必要に応じて温風等により加熱乾燥することで高屈折率層および低屈折率層に含有されている粒子の混合を抑制しつつ熱線反射層を製造することができる。この際、冷却ゲル化工程における冷却時の温度は好ましくは1~15℃であり、より好ましくは10~15℃である。また、冷却時間は好ましくは10~60秒間である。なお、冷却ゲル化工程における冷却方式としては、形成された塗膜均一性の観点から、水平セット方式で行うことが好ましい。そして、冷却ゲル化工程後の加熱ゲル化工程における加熱処理時の温度は好ましくは10℃以上であり、より好ましくは湿球温度5~58℃、膜面温度10~80℃の範囲の条件で行うことである。 On the other hand, when a low-temperature gelling agent is used in combination, for example, after simultaneous multi-layer coating, the low-temperature gelling agent is gelled by cooling (such as using cold air) to thicken the coating solution (cooling gelation step) ), And then the heat gelling agent is gelled by heat treatment to increase the viscosity of the coating solution (heating gelation step), and if necessary, by heating and drying with warm air or the like, the high refractive index layer and A heat ray reflective layer can be produced while suppressing mixing of particles contained in the low refractive index layer. At this time, the temperature during cooling in the cooling gelation step is preferably 1 to 15 ° C., more preferably 10 to 15 ° C. The cooling time is preferably 10 to 60 seconds. In addition, as a cooling system in a cooling gelation process, it is preferable to carry out by a horizontal set system from a viewpoint of the formed coating-film uniformity. The temperature during the heat treatment in the heat gelation step after the cooling gelation step is preferably 10 ° C. or higher, more preferably under conditions of a wet bulb temperature of 5 to 58 ° C. and a film surface temperature of 10 to 80 ° C. Is to do.
 上述したそれぞれの形態において、熱ゲル化剤をゲル化させるための加熱ゲル化工程における加熱方法としては、温風加熱、赤外線加熱、マイクロウェーブ加熱などいずれの方法も用いられうる。ただし、昇温速度が速く蒸発により熱が奪われない赤外加熱を用いてゲル化温度まで塗布液を昇温し、塗布液のゲル化後に温風乾燥を行うことが生産性およびコストの観点から好ましい。 In each of the above-described forms, any heating method such as warm air heating, infrared heating, or microwave heating can be used as the heating method in the heating gelation step for gelling the thermal gelling agent. However, from the viewpoint of productivity and cost, it is necessary to raise the temperature of the coating liquid to the gelation temperature using infrared heating that has a high rate of temperature rise and does not lose heat by evaporation, and to dry the hot air after the coating liquid is gelled. To preferred.
 (セルロースエステルフィルム)
 セルロースエステルフィルムは、セルロースエステル樹脂組成物(以下、単にセルロースエステルとも言う)を主成分とし、必要に応じて、後述する可塑剤、紫外線吸収剤、微粒子、染料、糖エステル化合物、アクリル系共重合体などの添加剤を含むフィルムである。本明細書において、セルロースエステルとは、セルロースを構成するβ-1,4結合しているグルコース単位中の2位、3位および6位の水酸基(-OH)の水素原子の一部、または全部がアシル基で置換されたセルロースアシレート樹脂をいう。
(Cellulose ester film)
The cellulose ester film is mainly composed of a cellulose ester resin composition (hereinafter also simply referred to as cellulose ester), and if necessary, a plasticizer, an ultraviolet absorber, fine particles, a dye, a sugar ester compound, an acrylic copolymer, which will be described later. It is a film containing additives such as coalescence. In the present specification, the cellulose ester is a part or all of hydrogen atoms of hydroxyl groups (—OH) at the 2nd, 3rd and 6th positions in the β-1,4 bonded glucose units constituting cellulose. Refers to a cellulose acylate resin substituted with an acyl group.
 なお、セルロースエステルフィルムにはリン酸系の可塑剤が添加されていないことが望ましい。加水分解してフィルムが劣化するのを防ぐためである。 In addition, it is desirable that a phosphoric acid plasticizer is not added to the cellulose ester film. This is to prevent the film from deteriorating due to hydrolysis.
 セルロースエステルとしては特に限定されず、例えば、セルロースの水酸基部分の水素原子が、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、ラウロイル基、ステアロイル等の炭素数2~20の脂肪族アシル基で置換されたセルロースエステル樹脂が挙げられる。これらのうち、炭素数2~4のアシル基を有するものが好ましく、アセチル基、プロピオニル基、ブタノイル基がより好ましい。なお、セルロースエステル中のアシル基は単一種であってもよいし、複数のアシル基の組み合わせであってもよい。 The cellulose ester is not particularly limited. Examples thereof include cellulose ester resins substituted with an aliphatic acyl group having 2 to 20 carbon atoms. Among these, those having an acyl group having 2 to 4 carbon atoms are preferable, and an acetyl group, a propionyl group, and a butanoyl group are more preferable. Note that the acyl group in the cellulose ester may be a single species or a combination of a plurality of acyl groups.
 具体的な好ましいセルロースエステルとしては、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート等のセルロースアシレート樹脂が挙げられ、より好ましくは、セルローストリアセテート、セルロースジアセテート、セルロースエステルプロピオネート等のセルロースアシレート樹脂が挙げられる。これらのセルロースエステルは単一種を使用してもよいし、複数種を組み合わせて用いてもよい。これらの中でも、アセチルセルロースが好ましい。 Specific preferred cellulose esters include cellulose acylate resins such as cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, and cellulose acetate propionate, and more preferably cellulose triacetate, cellulose diacetate, and cellulose ester pro Examples thereof include cellulose acylate resins such as pionate. These cellulose esters may be used singly or in combination of two or more. Among these, acetylcellulose is preferable.
 セルロースエステルの原料のセルロースとしては特に限定されないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等が挙げられる。またこれらから得られたセルロースエステルは、それぞれ任意の割合で混合して使用することができる。 The cellulose used as the raw material for the cellulose ester is not particularly limited, and examples thereof include cotton linters, wood pulp (derived from conifers and hardwoods), kenaf and the like. Moreover, the cellulose ester obtained from these can be mixed and used for each arbitrary ratio.
 セルロースエステルは、公知の方法により製造することができる。一般的には、原料のセルロースと所定の有機酸(酢酸、プロピオン酸など)と酸無水物(無水酢酸、無水プロピオン酸など)、触媒(硫酸など)と混合して、セルロースをエステル化し、セルロースのトリエステルができるまで反応を進める。トリエステルにおいてはグルコース単位の三個の水酸基は、有機酸のアシル基で置換されている。同時に2種類の有機酸を使用すると、混合エステル型のセルロースエステル、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。次いで、セルロースのトリエステルを加水分解することで、所望のアシル置換度を有するセルロースエステルを合成することができる。その後、濾過、沈殿、水洗、脱水、乾燥などの工程を経て、最終的にセルロースエステルが製造される。 The cellulose ester can be produced by a known method. Generally, cellulose is esterified by mixing cellulose as a raw material, a predetermined organic acid (such as acetic acid or propionic acid), an acid anhydride (such as acetic anhydride or propionic anhydride), and a catalyst (such as sulfuric acid). The reaction proceeds until the triester is formed. In the triester, the three hydroxyl groups of the glucose unit are substituted with an acyl group of an organic acid. When two kinds of organic acids are used at the same time, a mixed ester type cellulose ester such as cellulose acetate propionate or cellulose acetate butyrate can be produced. Subsequently, a cellulose ester having a desired degree of acyl substitution can be synthesized by hydrolyzing the cellulose triester. Thereafter, a cellulose ester is finally produced through steps such as filtration, precipitation, washing with water, dehydration, and drying.
 より具体的には、セルロースエステルは、特開平10-45804号公報、特開2005-281645号公報、特開2003-270442号公報などに記載の方法を参考にして合成することができる。また、市販品のフィルムとしては、コニカミノルタ(株)製のKC4UAW、KC6UAW、N-TAC KC4KR、富士フイルム(株)製のUZ-TAC、TD-80UL、材料としては、(株)ダイセル製のL20、L30、L40、L50、イーストマンケミカルジャパン(株)製のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60S等が挙げられる。 More specifically, the cellulose ester can be synthesized with reference to the methods described in JP-A-10-45804, JP-A-2005-281645, JP-A-2003-270442, and the like. Commercially available films include Konica Minolta KC4UAW, KC6UAW, N-TAC KC4KR, FUJIFILM UZ-TAC, TD-80UL, and materials manufactured by Daicel Corporation. L20, L30, L40, and L50, Ca398-3, Ca398-6, Ca398-10, Ca398-30, Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd., and the like can be mentioned.
 セルロースエステルのアシル基の置換度は、防曇性および製造工程での生産安定性の観点から2.0以上であることが好ましい。一方、アシル基の置換度は、フィルムの経時耐久性の点から3.0以下が好ましい。なお、本明細書においてアシル基の置換度とは、1グルコース単位あたりのアシル基の平均数を示し、1グルコース単位の2位、3位および6位の水酸基の水素原子のいずれかがアシル基に置換されている割合を示す。すなわち、2位、3位および6位の水酸基の水素原子がすべてアシル基で置換されたとき置換度(最大の置換度)は3.0となる。アシル基の置換度の測定方法は、ASTMのD-817-91に準じて実施することができる。 The degree of substitution of the acyl group of the cellulose ester is preferably 2.0 or more from the viewpoint of antifogging properties and production stability in the production process. On the other hand, the substitution degree of the acyl group is preferably 3.0 or less from the viewpoint of durability with time of the film. In the present specification, the degree of substitution of acyl groups refers to the average number of acyl groups per glucose unit, and any one of the hydrogen atoms of hydroxyl groups at the 2nd, 3rd and 6th positions of the 1 glucose unit is an acyl group. Indicates the percentage replaced. That is, when all of the hydrogen atoms of the hydroxyl groups at the 2nd, 3rd and 6th positions are substituted with acyl groups, the degree of substitution (maximum degree of substitution) is 3.0. The method for measuring the substitution degree of the acyl group can be carried out in accordance with ASTM D-817-91.
 セルロースエステルの重量平均分子量(Mw)は、フィルムの耐熱性や強度(引っ張りや引裂きに対する耐性)を向上させる点から、75,000以上であることが好ましく、より好ましくは80,000以上であり、さらに好ましくは85,000以上である。一方、分子量が小さいほど、経時でのフィルムの変形力を樹脂分子間で吸収し、シワ、剥がれを抑制できるため、重量平均分子量(Mw)は、300,000以下であることが好ましく、より好ましくは200,000以下であり、さらに好ましくは150,000以下である。 The weight average molecular weight (Mw) of the cellulose ester is preferably 75,000 or more, more preferably 80,000 or more, from the viewpoint of improving the heat resistance and strength (resistance to tension and tearing) of the film. More preferably, it is 85,000 or more. On the other hand, the smaller the molecular weight, the more the deformation force of the film over time can be absorbed between the resin molecules, and wrinkles and peeling can be suppressed. Therefore, the weight average molecular weight (Mw) is preferably 300,000 or less, more preferably. Is 200,000 or less, more preferably 150,000 or less.
 セルロースエステルの重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnの値は、2.0~3.5であることが好ましい。これらセルロースエステルの重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、例えば、下記の条件により測定することができる。 The value of the ratio Mw / Mn between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose ester is preferably 2.0 to 3.5. The weight average molecular weight (Mw) and number average molecular weight (Mn) of these cellulose esters can be measured using gel permeation chromatography (GPC), for example, under the following conditions.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用する)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000((株)日立製作所製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500迄の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three products manufactured by Showa Denko KK)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw = 1000000-500 calibration curves with 13 samples are used. Thirteen samples are used at approximately equal intervals.
 (親水化層(防曇層))
 セルロースエステルフィルムの表面は、上述のように、光照射又は鹸化によって親水化処理されている。通常、光照射はフィルムの片面に対して行われ、一方、鹸化はフィルムの両面に対して行われる。これにより、フィルム表面に存在する側鎖のうち炭素が置換されている置換基の一部が水酸基等の酸素含有極性基に置換される。このような親水化処理により、フィルム表面には適度な吸水性が付与される。吸水性が付与されたフィルム表面は、例えば降雨や空気中の湿分が結露することにより水滴が付着する場合であっても、表面が濡れ拡がり、水和層を形成する事でヘイズの上昇がないため、視認性確保という意味での防曇性を発揮する。
(Hydrophilic layer (anti-fogging layer))
As described above, the surface of the cellulose ester film is hydrophilized by light irradiation or saponification. Usually, light irradiation is performed on one side of the film, while saponification is performed on both sides of the film. Thereby, some of the substituents in which carbon is substituted in the side chains existing on the film surface are substituted with oxygen-containing polar groups such as hydroxyl groups. By such a hydrophilic treatment, an appropriate water absorption is imparted to the film surface. Even if water drops adhere to the film surface to which water absorption is given, for example, when rain or moisture in the air is condensed, the surface is wet and spreads, and the haze is increased by forming a hydrated layer. Therefore, the anti-fogging property in terms of ensuring visibility is exhibited.
 本明細書において親水化処理とは、例えば、後述するセルロースエステル中のアシルオキシ基を、水酸基、カルボニル基、カルボン酸基などの酸素含有極性基へと置換する処理をいい、水酸基に置換することが特に好ましい。親水化処理により、防曇層には親水性基が導入され、親水性および吸水性に優れた層となり、防曇性が発揮される。 In this specification, the hydrophilization treatment refers to, for example, a treatment for substituting an acyloxy group in a cellulose ester described later with an oxygen-containing polar group such as a hydroxyl group, a carbonyl group, or a carboxylic acid group. Particularly preferred. By the hydrophilic treatment, a hydrophilic group is introduced into the antifogging layer, resulting in a layer excellent in hydrophilicity and water absorption, and antifogging properties are exhibited.
 光照射の手法としては、真空紫外線を用いた処理などがあり、例えば、(1)窒素環境下で、Ar、Kr、Xeなどを用いた光源(エキシマUVランプ)によりエキシマUVを照射する方法(エキシマUVを照射する方法)や、(2)低圧水銀ランプを使用する方法がある。これらのうち、フィルムの深さ方向への親水化に優れ、フィルム表面に充分な吸水性を付与でき、経時での性能変化が小さいフィルムを簡便に得ることができる観点から、エキシマUVを照射する方法が好ましい。その中でも特にXeを用いた光源で光照射することが好ましい。 Examples of the light irradiation method include treatment using vacuum ultraviolet rays. For example, (1) Excimer UV irradiation with a light source (excimer UV lamp) using Ar, Kr, Xe or the like in a nitrogen environment ( Excimer UV irradiation method) and (2) a method using a low-pressure mercury lamp. Among these, excimer UV is irradiated from the viewpoint that it is excellent in hydrophilization in the depth direction of the film, can impart sufficient water absorption to the film surface, and can easily obtain a film with little change in performance over time. The method is preferred. Among these, it is particularly preferable to irradiate with a light source using Xe.
 これらの光源を用いた光照射は、積算光量がそれぞれの光源ごとに適切に調整されることが好ましい。これにより、フィルムが過度に親水化されることが防がれる。以下、それぞれの方法について説明する。 In the light irradiation using these light sources, the integrated light amount is preferably adjusted appropriately for each light source. This prevents the film from becoming excessively hydrophilic. Hereinafter, each method will be described.
 (1)エキシマUVを照射する方法
 エキシマUVを照射する方法について、キセノン(Xe)ランプを使用する場合を例により具体的に説明する。キセノンランプに用いられるXeは希ガスであり、希ガスの原子は化学的に結合して分子を作らない。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。Xeの場合は、
  e+Xe→e+Xe*
  Xe*+Xe+Xe→Xe2 *+Xe
となり、励起されたエキシマ分子であるXe2 *が基底状態に遷移するときに172nmのエキシマUVを発する。
(1) Method of irradiating excimer UV The method of irradiating excimer UV will be specifically described by way of example using a xenon (Xe) lamp. Xe used in a xenon lamp is a rare gas, and atoms of the rare gas are chemically bonded to form no molecule. However, rare gas atoms (excited atoms) that have gained energy by discharge or the like can be combined with other atoms to form molecules. For Xe,
e + Xe → e + Xe *
Xe * + Xe + Xe → Xe 2 * + Xe
Thus, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer UV of 172 nm is emitted.
 エキシマUVを得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる雷に似た非常に細い微小放電(micro  discharge)と呼ばれる放電である。 A method using dielectric barrier discharge is known for obtaining excimer UV. Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. It is a similar discharge called a very thin micro discharge.
 また、効率よくエキシマUVを得る方法としては、誘電体バリア放電以外には無電極電界放電も知られている。無電極電界放電とは、容量性結合による放電であり、RF放電とも呼ばれる。ランプと電極およびその配置は、基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzとされる。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られる。そして、キセノンランプは、波長の短い172nmのUVを単一波長で放射することから発光効率に優れている。 In addition to the dielectric barrier discharge, electrodeless electric field discharge is also known as a method for efficiently obtaining excimer UV. The electrodeless field discharge is a discharge due to capacitive coupling, and is also called an RF discharge. The lamp and electrodes and their arrangement may be basically the same as in dielectric barrier discharge, but the high frequency applied between the two electrodes is several MHz. In the electrodeless field discharge, a spatially and temporally uniform discharge can be obtained in this way. The xenon lamp emits UV having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency.
 また、エキシマランプは、光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、エキシマランプは、光による温度上昇の要因となる波長の長い光を発さず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる。そのため、熱の影響を受けやすい樹脂フィルムへの照射に適している。 Also, since the excimer lamp has high light generation efficiency, it can be turned on with low power. In addition, the excimer lamp does not emit light having a long wavelength that causes a temperature increase due to light, and irradiates energy of a single wavelength in the ultraviolet region, so that an increase in the surface temperature of the irradiation object can be suppressed. Therefore, it is suitable for irradiation to a resin film that is easily affected by heat.
 エキシマUV処理は、窒素パージや真空化により、酸素濃度を下げた状態(概ね1%より低くする)でエキシマUV光源により光照射する処理方法である。ウシオ電機(株)や(株)エム・ディ・エキシマより市販されているエキシマ照射装置を適宜用いることができる。 Excimer UV treatment is a treatment method in which light is irradiated with an excimer UV light source in a state where the oxygen concentration is lowered (generally lower than 1%) by nitrogen purging or vacuuming. An excimer irradiation device commercially available from USHIO INC. Or M.D. excimer can be used as appropriate.
 Xeを放電ガスとしたピーク波長が165nm~175nmであるエキシマランプを使用する場合、積算光量を50mJ以上1000mJ以下とすることが好ましく、100mJ以上900mJ以下とすることがより好ましく、300mJ以上600mJ以下とすることがさらに好ましい。このような積算光量となるように光照射を行うことにより、フィルムは、表面が良好に親水化され、充分な吸水性能が発現する。また、このような吸水性能は、経時的に変化しにくい。 When an excimer lamp having a peak wavelength of 165 nm to 175 nm using Xe as a discharge gas is used, the integrated light amount is preferably 50 mJ or more and 1000 mJ or less, more preferably 100 mJ or more and 900 mJ or less, and 300 mJ or more and 600 mJ or less. More preferably. By performing light irradiation so as to obtain such an integrated light amount, the surface of the film is well hydrophilized, and sufficient water absorption performance is exhibited. Further, such water absorption performance hardly changes over time.
 (2)低圧水銀ランプを使用する方法
 低圧水銀ランプを使用する方法の具体例としては、例えば、ピーク波長が180nm~190nmである低圧水銀ランプとピーク波長が250nm~260nmである低圧水銀ランプとを使用する方法が挙げられる。ピーク波長が180nm~190nmである低圧水銀ランプとピーク波長が250nm~260nmである低圧水銀ランプとを使用する場合、ピーク波長の積算光量を1000mJ以上10000mJ以下とすることが好ましく、3000mJ以上9000mJ以下とすることがより好ましく、5000mJ以上8000mJ以下とすることがさらに好ましい。このような積算光量となるように光照射を行うことにより、フィルムは、表面が良好に親水化され、充分な吸水性能が発現する。また、このような吸水性能は、経時的に変化しにくい。さらに、低圧水銀ランプでは窒素下及び真空化よりも大気下で照射した際に防曇機能が得られやすい。また、254nmの波長をフィルターでカットすることでフィルムの黄変を防止することができる。
(2) Method using a low-pressure mercury lamp As a specific example of a method using a low-pressure mercury lamp, for example, a low-pressure mercury lamp having a peak wavelength of 180 nm to 190 nm and a low-pressure mercury lamp having a peak wavelength of 250 nm to 260 nm are used. The method to use is mentioned. When using a low-pressure mercury lamp having a peak wavelength of 180 nm to 190 nm and a low-pressure mercury lamp having a peak wavelength of 250 nm to 260 nm, the integrated light quantity of the peak wavelength is preferably 1000 mJ to 10,000 mJ, and preferably 3000 mJ to 9000 mJ. More preferably, it is more preferably 5000 mJ or more and 8000 mJ or less. By performing light irradiation so as to obtain such an integrated light amount, the surface of the film is well hydrophilized, and sufficient water absorption performance is exhibited. Further, such water absorption performance hardly changes over time. Furthermore, a low-pressure mercury lamp can easily provide an antifogging function when irradiated under the atmosphere rather than under nitrogen and under vacuum. Moreover, yellowing of a film can be prevented by cutting a wavelength of 254 nm with a filter.
 低圧水銀ランプを使用する方法では、例えば、ウシオ電機(株)などから市販されている低圧水銀灯を用いることができる。 In the method using a low-pressure mercury lamp, for example, a low-pressure mercury lamp commercially available from USHIO INC. Can be used.
 なお、上記光照射に加え、コロナ放電処理やプラズマ処理を行ってもよい。コロナ放電処理とは、大気圧下、電極間に1kV以上の高電圧を印加し、放電することで行う処理である。コロナ放電処理によって、フィルム表面に酸素含有極性基(水酸基、カルボニル基、カルボン酸基等)が発生し、表面が親水化される。コロナ放電処理は、春日電機(株)や(株)トーヨー電機などで市販されている装置を用いて行うことができる。また、プラズマ処理は、プラズマ化したガスを基材表面に照射し、基材表面を改質する処理であり、グロー放電処理、フレームプラズマ処理等が挙げられる。これらの処理としては、例えば、特開平6-123062号公報、特開平11-293011号公報、特開平11-005857号公報等に記載された方法を用いることができる。プラズマ処理によって、フィルム表面に酸素含有極性基(水酸基、カルボニル基、カルボン酸基等)が発生し、表面が親水化される。また、グロー放電処理は、相対する電極の間にフィルムを置き、装置中にプラズマ励起性気体を導入し、電極間に高周波電圧を印加することにより、該気体をプラズマ励起させ、電極間においてグロー放電を行うものである。これにより、フィルム表面が処理されて、親水性が高められる。 In addition to the above light irradiation, a corona discharge treatment or a plasma treatment may be performed. The corona discharge treatment is a treatment performed by applying a high voltage of 1 kV or higher between the electrodes under atmospheric pressure and discharging. By corona discharge treatment, oxygen-containing polar groups (hydroxyl group, carbonyl group, carboxylic acid group, etc.) are generated on the film surface, and the surface is hydrophilized. The corona discharge treatment can be performed using an apparatus commercially available from Kasuga Electric Co., Ltd. or Toyo Electric Co., Ltd. The plasma treatment is a treatment for irradiating the substrate surface with a plasma gas to modify the substrate surface, and examples thereof include glow discharge treatment and flame plasma treatment. For these treatments, for example, methods described in JP-A-6-123062, JP-A-11-293011, JP-A-11-005857, etc. can be used. By the plasma treatment, oxygen-containing polar groups (hydroxyl group, carbonyl group, carboxylic acid group, etc.) are generated on the film surface, and the surface is hydrophilized. In the glow discharge treatment, a film is placed between opposing electrodes, a plasma-excitable gas is introduced into the apparatus, and a high-frequency voltage is applied between the electrodes, thereby plasma-exciting the gas and causing a glow between the electrodes. It is what discharges. Thereby, the film surface is processed and hydrophilicity is improved.
 〔セルロースエステルフィルムの製造方法〕
 次に、防曇性を有するセルロースエステルフィルム14の製造方法について説明する。
[Method for producing cellulose ester film]
Next, the manufacturing method of the cellulose-ester film 14 which has anti-fogging property is demonstrated.
 セルロースエステルフィルム14は、(a)セルロースエステルを溶液流涎法または溶融流延法により製膜する工程(製膜工程)と、(b)製膜されたフィルムの表面に親水化処理を行う工程とにより製造することができる。なお、防曇性を有するセルロースエステルフィルム14は市販のセルロースエステルフィルムを用いて上記(b)の工程により親水化処理を行うことで製造してもよい。 The cellulose ester film 14 includes: (a) a step of forming a cellulose ester by a solution casting method or a melt casting method (film forming step); and (b) a step of hydrophilizing the surface of the film formed. Can be manufactured. In addition, you may manufacture the cellulose-ester film 14 which has anti-fogging property by performing a hydrophilic treatment by the process of said (b) using a commercially available cellulose-ester film.
 (a)製膜工程
 まず、セルロースエステルを溶液流涎法または溶融流延法により製膜する。以下、溶液流涎法を用いた場合を例に挙げて製膜方法を説明するが、溶融流涎法も従来公知の方法を参照して実施することができる。溶液流涎法により製膜する場合、製膜工程は、好ましくは、(i)ドープ調製工程、(ii)ドープ流延工程、(iii)乾燥工程1、(iv)剥離工程、(v)延伸工程、(vi)乾燥工程2、および(vii)フィルム巻取工程を含む。
(A) Film-forming step First, a cellulose ester is formed by a solution casting method or a melt casting method. Hereinafter, the film forming method will be described by taking the case of using the solution pouring method as an example, but the melt pouring method can also be carried out with reference to a conventionally known method. In the case of film formation by the solution pouring method, the film formation step is preferably (i) a dope preparation step, (ii) a dope casting step, (iii) a drying step 1, (iv) a peeling step, and (v) a stretching step. (Vi) a drying step 2 and (vii) a film winding step.
 (i)ドープ調製工程
 ドープ調製工程は、セルロースエステルおよび必要に応じて後述する添加剤を溶剤に溶解させてドープを調製する工程である。ドープ中のセルロースエステルの濃度は、高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高すぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、例えば、10~35質量%であり、好ましくは、15~25質量%である。
(I) Dope preparation process A dope preparation process is a process which prepares dope by dissolving the cellulose ester and the additive mentioned later in a solvent as needed. The concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become. The concentration that achieves both of these is, for example, 10 to 35% by mass, and preferably 15 to 25% by mass.
 ドープ調製時に用いられる溶剤は、単独でも2種以上を併用してもよい。セルロースエステルを単独で溶解する溶剤(良溶剤)に、単独ではセルロースエステルを膨潤するかまたは溶解しない溶剤(貧溶剤)を混合して使用することが生産効率の点で好ましい。良溶剤としては、好ましくはメチレンクロライドまたは酢酸メチルが挙げられ、貧溶剤としては、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中に水を0.01~2質量%含有させる形態も好ましい。 The solvent used at the time of dope preparation may be used alone or in combination of two or more. From the viewpoint of production efficiency, it is preferable to use a solvent (good solvent) that dissolves cellulose ester alone and a solvent (poor solvent) that does not swell or dissolve cellulose ester alone. The good solvent is preferably methylene chloride or methyl acetate. As the poor solvent, for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used. A form in which water is contained in the dope in an amount of 0.01 to 2% by mass is also preferable.
 セルロースエステルの溶解に用いられる溶媒としては、製膜工程で乾燥によりフィルムから除去された溶媒が回収され、これが再利用されたものを用いることができる。 As the solvent used for dissolving the cellulose ester, a solvent in which the solvent removed from the film by drying in the film forming step is recovered and reused can be used.
 上記記載のドープを調製するときの、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。また、加熱と加圧を組み合わせることにより、常圧における沸点以上に加熱することができる。 A general method can be used as a method of dissolving the cellulose ester when preparing the dope described above. Further, by combining heating and pressurization, it is possible to heat above the boiling point at normal pressure.
 続いて、上記で得たドープを濾紙等の適当な濾過材を用いて濾過することが好ましい。これにより、ドープ内の不純物を除去、低減することができる。濾過材としては、絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材がさらに好ましい。濾材としては特に限定されず、公知の濾材を使用することができる。 Subsequently, it is preferable to filter the dope obtained above using an appropriate filter medium such as filter paper. Thereby, impurities in the dope can be removed and reduced. As the filter medium, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is more preferable. It does not specifically limit as a filter medium, A well-known filter medium can be used.
 (ii)ドープ流延工程
 ドープ流延工程は、ドープを無端の金属支持体上に流延(キャスト)する工程である。金属支持体は、表面を鏡面仕上げしたものが好ましく、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は、1~4mとすることができる。金属支持体の表面温度は、-50℃以上で溶剤の沸点未満の温度とすることができ、好ましくは0~40℃とすることができ、より好ましくは5~30℃とすることができる。
(Ii) Dope Casting Step The dope casting step is a step of casting (casting) the dope onto an endless metal support. The metal support preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used. The cast width can be 1 to 4 m. The surface temperature of the metal support can be set to −50 ° C. or higher and lower than the boiling point of the solvent, preferably 0 to 40 ° C., and more preferably 5 to 30 ° C.
 金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。 The method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
 (iii)乾燥工程1
 乾燥工程1は、流延したドープをウェブとして乾燥する工程である。金属支持体の表面温度は、ドープ流延工程と同様である。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、高すぎるとウェブが発泡したり、平面性が劣化したりする場合がある。
(Iii) Drying step 1
The drying step 1 is a step of drying the cast dope as a web. The surface temperature of the metal support is the same as in the dope casting process. A higher temperature is preferable because the web can be dried at a higher speed. However, if the temperature is too high, the web may foam or the flatness may deteriorate.
 (iv)剥離工程
 剥離工程は、ウェブを金属支持体から剥離する工程である。製膜後のフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は、10~150質量%であることが好ましく、より好ましくは20~40質量%または60~130質量%であり、さらに好ましくは、20~30質量%または70~120質量%である。
(Iv) Peeling process A peeling process is a process of peeling a web from a metal support body. In order for the film after film formation to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass. Alternatively, it is 60 to 130% by mass, and more preferably 20 to 30% by mass or 70 to 120% by mass.
 なお、本明細書において、残留溶媒量は下記式で定義される。
   残留溶媒量(質量%)={(M-N)/N}×100
(式中、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量であり、Nはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料を115℃で1時間の加熱した後の質量である)
In the present specification, the residual solvent amount is defined by the following formula.
Residual solvent amount (% by mass) = {(MN) / N} × 100
(Wherein, M is the mass of a sample taken at any time during or after production of the web or film, and N is 115 ° C. of the sample taken at any time during or after production of the web or film. Is the mass after heating for 1 hour)
 (v)延伸工程
 延伸工程は、金属支持体より剥離した直後のウェブを少なくとも一方向に延伸処理する工程である。延伸処理を行うことにより、フィルム内の分子の配向を制御することができる。延伸フィルムは、二軸延伸フィルムであってもよいが、一軸延伸フィルムであることが好ましい。ただし、延伸工程は必須ではなく、セルロースエステルフィルムは未延伸フィルムであってもよい。
(V) Stretching step The stretching step is a step of stretching the web immediately after peeling from the metal support in at least one direction. By performing the stretching treatment, the orientation of molecules in the film can be controlled. The stretched film may be a biaxially stretched film, but is preferably a uniaxially stretched film. However, the stretching step is not essential, and the cellulose ester film may be an unstretched film.
 延伸を行う場合において、幅手方向(TD方向)に1.05~1.50倍延伸することが好ましい。このような延伸倍率に基づいて延伸処理を行うことにより、樹脂分子が配向し、配向方向への経時での伸縮が抑制されるとともに、フィルムに弾性が付与される。したがって、フィルムの厚みが小さい場合であっても、高い防曇性が維持されたまま、経時的なシワの発生が抑制されつつ、優れた作業性が付与される。 When stretching, it is preferable to stretch 1.05 to 1.50 times in the width direction (TD direction). By performing the stretching treatment based on such a stretching ratio, the resin molecules are oriented, expansion and contraction with time in the orientation direction is suppressed, and elasticity is imparted to the film. Therefore, even if the thickness of the film is small, excellent workability is imparted while suppressing the generation of wrinkles over time while maintaining high antifogging properties.
 これに加えて、またはこれに代えて、長手方向(MD方向)に1.01~1.50倍の延伸倍率で延伸してもよい。幅手方向(TD方向)および長手方向(MD方向)の延伸は、逐次または同時に行うことができる。 In addition to this, or alternatively, the film may be stretched at a stretching ratio of 1.01 to 1.50 times in the longitudinal direction (MD direction). Stretching in the width direction (TD direction) and the longitudinal direction (MD direction) can be performed sequentially or simultaneously.
 延伸時のフィルム中の残留溶媒量は1~50質量%であることが好ましく、より好ましくは3~45質量%である。このような残留溶媒量の場合、生産効率とフィルムの透明性とが両立されやすい。 The amount of residual solvent in the stretched film is preferably 1 to 50% by mass, more preferably 3 to 45% by mass. In the case of such an amount of residual solvent, it is easy to achieve both production efficiency and film transparency.
 延伸方法は特に限定されない。延伸方法としては、たとえば、複数のロールに周速差をつけ、その間でロール周速差を利用してMD方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げてMD方向に延伸する方法、同様に横方向に広げてTD方向に延伸する方法、MD/TD方向に同時に広げてMD/TD両方向に延伸する方法などが挙げられる。 The stretching method is not particularly limited. As a stretching method, for example, a method is used in which a circumferential speed difference is applied to a plurality of rolls, and the roll circumferential speed difference is used to stretch in the MD direction. Examples include a method of spreading the film in the traveling direction and stretching it in the MD direction, a method of stretching the film in the horizontal direction and stretching in the TD direction, and a method of simultaneously stretching in the MD / TD direction and stretching in both the MD / TD directions.
 また、延伸方法は、斜め延伸であってもよい。斜め延伸とは、フィルムの繰り出し方向と巻き取り方向とを交差させ、フィルムの幅手方向の一端部側を他端部側よりも先行して搬送することにより、フィルムを幅手方向に対して斜め方向に延伸する手法である。 Further, the stretching method may be oblique stretching. Diagonal stretching means crossing the film feeding direction and the winding direction, and transporting one end of the film in the width direction ahead of the other end, thereby causing the film to cross the width direction. This is a method of stretching in an oblique direction.
 延伸温度は、120℃以上200℃以下であることが好ましく、より好ましくは150℃以上200℃以下であり、さらに好ましくは150℃を超えて190℃以下である。 The stretching temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 150 ° C. or higher and 200 ° C. or lower, and further preferably higher than 150 ° C. and 190 ° C. or lower.
 フィルムは、延伸後に熱固定されることが好ましい。熱固定は、その最終TD方向延伸温度より高温で、Tg-20℃以下の温度範囲内で通常0.5~300秒間行うことが好ましい。この際、2つ以上に分割された領域で温度差が1~100℃となる範囲で順次昇温しながら熱固定することが好ましい。なお、フィルムのTg(ガラス転移温度)は、フィルムを構成する材料種および構成する材料の比率によって制御され、JIS K7121:1987に記載の方法などによって求めることができる。 The film is preferably heat-set after stretching. The heat setting is preferably performed at a temperature higher than the final stretching temperature in the TD direction and within a temperature range of Tg-20 ° C., usually for 0.5 to 300 seconds. At this time, it is preferable to perform heat fixing while sequentially raising the temperature in a range where the temperature difference is 1 to 100 ° C. in the region divided into two or more. In addition, Tg (glass transition temperature) of a film is controlled by the kind of material which comprises a film, and the ratio of the material which comprises, and can be calculated | required by the method of JISK7121: 1987.
 (vi)乾燥工程2
 乾燥工程2は、延伸後のフィルムをさらに乾燥する工程である。乾燥工程2では、フィルムは、残留溶媒量が1質量%以下になるように乾燥されることが好ましく、より好ましくは0.1質量%以下であり、さらに好ましくは0~0.01質量%以下である。
(Vi) Drying step 2
Drying step 2 is a step of further drying the stretched film. In the drying step 2, the film is preferably dried so that the residual solvent amount is 1% by mass or less, more preferably 0.1% by mass or less, and further preferably 0 to 0.01% by mass or less. It is.
 (vii)フィルム巻取工程
 フィルム巻取工程は、乾燥後のウェブ(仕上がったセルロースエステルフィルム)を巻き取る工程である。フィルムの巻き取りは、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。
(Vii) Film winding process A film winding process is a process of winding up the web after drying (finished cellulose-ester film). When the film is wound, a film having good dimensional stability can be obtained by setting the residual solvent amount to 0.4% by mass or less.
 (b)親水化処理工程
 製膜したセルロースエステルフィルムを繰り出して、親水化処理によりフィルム表面に防曇性を付与する工程である。この工程の詳細は上述の通りであるため、その説明を省略する。
(B) Hydrophilization treatment step This is a step of drawing out the formed cellulose ester film and imparting antifogging properties to the film surface by the hydrophilic treatment. Since the details of this process are as described above, the description thereof is omitted.
 〔セルロースエステルフィルムに含まれる添加剤〕
 次に、本実施形態で使用するセルロースエステルフィルムが含有し得る添加剤について説明する。本実施形態で使用するセルロースエステルフィルムは、防曇性能をさらに向上させる目的で、例えば、以下に示す(a)可塑剤、(b)紫外線吸収剤、(c)微粒子、(d)染料、(e)糖エステル化合物、(f)アクリル系共重合体を含んでもよい。中でも、(a)可塑剤、(b)紫外線吸収剤、(c)微粒子のうち少なくとも1種以上を含むことが好ましく、(a)可塑剤、(b)紫外線吸収剤および(c)微粒子のすべてを含むことがより好ましい。
[Additives contained in cellulose ester film]
Next, the additive which the cellulose ester film used by this embodiment can contain is demonstrated. For the purpose of further improving the antifogging performance, the cellulose ester film used in the present embodiment includes, for example, the following (a) plasticizer, (b) ultraviolet absorber, (c) fine particles, (d) dye, ( e) A sugar ester compound and (f) an acrylic copolymer may be included. Among them, it is preferable to include at least one or more of (a) a plasticizer, (b) an ultraviolet absorber, and (c) fine particles, and (a) a plasticizer, (b) an ultraviolet absorber, and (c) all of the fine particles. It is more preferable to contain.
 (a)可塑剤
 セルロースエステルフィルムは、機械強度や耐水特性を向上させる目的で、可塑剤を含有することが好ましい。可塑剤としては、ポリエステル化合物が好ましい。
(A) Plasticizer The cellulose ester film preferably contains a plasticizer for the purpose of improving mechanical strength and water resistance. As the plasticizer, a polyester compound is preferable.
 ポリエステル化合物としては特に限定されないが、例えば、ジカルボン酸またはこれらのエステル形成性誘導体とグリコールとの縮合反応により得られる、末端が水酸基となる重合体(以下、「ポリエステルポリオール」という)、または、当該ポリエステルポリオールの末端の水酸基がモノカルボン酸で封止された重合体(以下、「末端封止ポリエステル」という)を用いることができる。なお、本明細書において、エステル形成性誘導体とは、ジカルボン酸のエステル化物、ジカルボン酸クロライド、ジカルボン酸の無水物のことである。 Although it does not specifically limit as a polyester compound, For example, the polymer (henceforth a "polyester polyol") obtained by the condensation reaction of dicarboxylic acid or these ester-forming derivatives, and glycol (henceforth "polyester polyol"), or the said A polymer in which the terminal hydroxyl group of the polyester polyol is sealed with a monocarboxylic acid (hereinafter referred to as “end-capped polyester”) can be used. In the present specification, the ester-forming derivative is an esterified product of dicarboxylic acid, dicarboxylic acid chloride, or anhydride of dicarboxylic acid.
 上記ポリエステルポリオールや末端封止ポリエステルを用いることにより、フィルムの経時での剥がれやシワ発生が、一層抑制される。このような効果が得られる理由は明確ではないが、上記化合物は、フィルムの製膜時に面方向に配向し、吸湿時の変形応力が厚み方向へ分散されるため、フィルムの経時での剥がれ、シワが抑えられるものと推定される。 The use of the polyester polyol or the end-capped polyester further suppresses peeling and wrinkling of the film over time. The reason why such an effect is obtained is not clear, but the above-mentioned compound is oriented in the surface direction during film formation, and the deformation stress at the time of moisture absorption is dispersed in the thickness direction. It is estimated that wrinkles can be suppressed.
 ポリエステル化合物の具体例としては、下記一般式(A)で表されるエステル系化合物が挙げられる。 Specific examples of the polyester compound include ester compounds represented by the following general formula (A).
   B-(G-A)n-G-B ・・・ (A)
(式中、Bは水酸基、ベンゼンモノカルボン酸残基または脂肪族モノカルボン酸残基であり、Gは炭素数2~18のアルキレングリコール残基または炭素数6~12のアリールグリコール残基または炭素数が4~12のオキシアルキレングリコール残基であり、Aは炭素数4~12のアルキレンジカルボン酸残基または炭素数6~16のアリールジカルボン酸残基であり、nは1以上の整数である。)
B- (GA) n-GB (A)
Wherein B is a hydroxyl group, a benzene monocarboxylic acid residue or an aliphatic monocarboxylic acid residue, and G is an alkylene glycol residue having 2 to 18 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms or a carbon atom. An oxyalkylene glycol residue having 4 to 12 carbon atoms, A is an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 16 carbon atoms, and n is an integer of 1 or more .)
 上記一般式(A)において、Bが水酸基である化合物がポリエステルポリオールに相当し、Bがベンゼンモノカルボン酸残基または脂肪族モノカルボン酸残基である化合物が末端封止ポリエステルに相当する。一般式(A)で表されるポリエステル化合物は、通常のポリエステル系可塑剤と同様の反応により得られるものである。 In the above general formula (A), a compound in which B is a hydroxyl group corresponds to a polyester polyol, and a compound in which B is a benzene monocarboxylic acid residue or an aliphatic monocarboxylic acid residue corresponds to an end-capped polyester. The polyester compound represented by the general formula (A) is obtained by the same reaction as a normal polyester plasticizer.
 一般式(A)で表されるポリエステル化合物の脂肪族モノカルボン酸成分としては、例えば、炭素数3以下の脂肪族モノカルボン酸が好ましく、酢酸、プロピオン酸、ブタン酸(酪酸)が挙げられ、これらはそれぞれ1種または2種以上の混合物として使用することができる。 As the aliphatic monocarboxylic acid component of the polyester compound represented by the general formula (A), for example, an aliphatic monocarboxylic acid having 3 or less carbon atoms is preferable, and examples include acetic acid, propionic acid, and butanoic acid (butyric acid). Each of these can be used as one kind or a mixture of two or more kinds.
 一般式(A)で表されるポリエステル化合物のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、脂肪族酸等があり、これらはそれぞれ1種または2種以上の混合物として使用することができる。特に、安息香酸、またはパラトルイル酸を含むことが好ましい。 Examples of the benzene monocarboxylic acid component of the polyester compound represented by the general formula (A) include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal There are propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid, aliphatic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively. In particular, it is preferable to contain benzoic acid or p-toluic acid.
 一般式(A)で表されるポリエステル化合物の炭素数2~18のアルキレングリコール成分としては、エチレングリコール、1,2-プロパンジオール(1,2-プロピレングリコール)、1,3-プロパンジオール(1,3-プロピレングリコール)、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,4-シクロヘキサンジオール、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、1種または2種以上の混合物として使用される。なかでもエチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、2-メチル1,3-プロパンジオールが好ましく、さらに好ましくは、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコールである。特に、炭素数2~12のアルキレングリコールがフィルムを構成する樹脂との相溶性に優れているため好ましい。より好ましくは炭素数2~6のアルキレングリコールであり、さらに好ましくは炭素数2~4のアルキレングリコールである。 Examples of the alkylene glycol component having 2 to 18 carbon atoms of the polyester compound represented by the general formula (A) include ethylene glycol, 1,2-propanediol (1,2-propylene glycol), 1,3-propanediol (1 , 3-propylene glycol), 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 2,3-butane Diol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,4-cyclohexanediol, 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl 2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentane Diols, 2-ethyl 1,3-hexanediol, 2-methyl 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, and the like. It is used as one kind or a mixture of two or more kinds. Of these, ethylene glycol, diethylene glycol, 1,2-propylene glycol, and 2-methyl 1,3-propanediol are preferable, and ethylene glycol, diethylene glycol, and 1,2-propylene glycol are more preferable. In particular, an alkylene glycol having 2 to 12 carbon atoms is preferable because of excellent compatibility with the resin constituting the film. More preferred are alkylene glycols having 2 to 6 carbon atoms, and still more preferred are alkylene glycols having 2 to 4 carbon atoms.
 一般式(A)で表されるポリエステル化合物の炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種または2種以上の混合物として使用できる。 Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the polyester compound represented by the general formula (A) include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. Glycols can be used as one or a mixture of two or more.
 一般式(A)で表されるポリエステル化合物の炭素数6~12のアリールグリコールとしては、例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、シクロヘキサンジエタノール、1,4-ベンゼンジメタノール等の環状グリコール類があり、これらのグリコールは、1種または2種以上の混合物として使用できる。 Examples of the aryl glycol having 6 to 12 carbon atoms of the polyester compound represented by the general formula (A) include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, cyclohexanediethanol, and 1,4-benzenedimethanol. And these glycols can be used as one kind or a mixture of two or more kinds.
 一般式(A)で表されるポリエステル化合物の炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ1種または2種以上の混合物として使用される。 Examples of the alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the polyester compound represented by the general formula (A) include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. There are acids and the like, and these are used as one kind or a mixture of two or more kinds, respectively.
 一般式(A)で表されるポリエステル化合物の炭素数6~16のアリールジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,6-アントラセンジカルボン酸等がある。上記アリールジカルボン酸は芳香族環に置換基を有していてもよい。置換基としては、炭素数1~6の直鎖もしくは分岐状のアルキル基、アルコキシ基、炭素数6~12のアリール基が挙げられる。 Examples of the aryl dicarboxylic acid component having 6 to 16 carbon atoms of the polyester compound represented by the general formula (A) include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, There are 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,6-anthracenedicarboxylic acid and the like. The aryl dicarboxylic acid may have a substituent on the aromatic ring. Examples of the substituent include a linear or branched alkyl group having 1 to 6 carbon atoms, an alkoxy group, and an aryl group having 6 to 12 carbon atoms.
 一般式(A)において、Bが水酸基である場合、すなわち、ポリエステル化合物がポリエステルポリオールである場合には、Aは炭素数10~16のアリールジカルボン酸残基であることが好ましい。例えばベンゼン環構造、ナフタレン環構造、アントラセン環構造等の芳香族環式構造を有するジカルボン酸を使用することができる。具体的なアリールジカルボン酸成分としては、例えばオルソフタル酸、イソフタル酸、テレフタル酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,6-アントラセンジカルボン酸を挙げることができる。好ましくは、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸であり、さらに好ましくは、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸であり、特に好ましくは、2,6-ナフタレンジカルボン酸である。これらは1種または2種以上を併用することができる。 In the general formula (A), when B is a hydroxyl group, that is, when the polyester compound is a polyester polyol, A is preferably an aryl dicarboxylic acid residue having 10 to 16 carbon atoms. For example, a dicarboxylic acid having an aromatic cyclic structure such as a benzene ring structure, a naphthalene ring structure, or an anthracene ring structure can be used. Specific examples of the aryl dicarboxylic acid component include orthophthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid. And acid, 1,8-naphthalenedicarboxylic acid, and 2,6-anthracene dicarboxylic acid. Preferred are 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, and more preferred is 2 1,3-naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid, particularly preferably 2,6-naphthalenedicarboxylic acid. These can be used alone or in combination of two or more.
 上記ポリエステルポリオールは、原料として使用するジカルボン酸の炭素数の平均が10~16の範囲であることが好ましい。ジカルボン酸の炭素数の平均が10以上であれば、フィルムの寸法安定性に優れ、炭素数の平均が16以下であれば、フィルムを構成する樹脂との相溶性に優れ、得られるフィルムの透明性が著しく優れる。ジカルボン酸として、好ましくは炭素数の平均が10~14であり、さらに好ましくは炭素数の平均が10~12である。 The polyester polyol preferably has an average carbon number of 10 to 16 in the dicarboxylic acid used as a raw material. If the carbon number average of the dicarboxylic acid is 10 or more, the film has excellent dimensional stability, and if the carbon number average is 16 or less, it has excellent compatibility with the resin constituting the film, and the resulting film is transparent. The property is remarkably excellent. The dicarboxylic acid preferably has an average carbon number of 10 to 14, and more preferably has an average carbon number of 10 to 12.
 前記ポリエステルポリオールのジカルボン酸の炭素数の平均とは、単一のジカルボン酸を用いてポリエステルポリオールを重合する場合は該ジカルボン酸の炭素数を意味するが、2種以上のジカルボン酸を用いてポリエステルポリオールを重合する場合、それぞれのジカルボン酸の炭素数とそのジカルボン酸のモル分率の積の合計を意味する。 The average carbon number of the dicarboxylic acid of the polyester polyol means the carbon number of the dicarboxylic acid when the polyester polyol is polymerized using a single dicarboxylic acid, but the polyester using two or more kinds of dicarboxylic acids. When polymerizing a polyol, it means the sum of the products of the carbon number of each dicarboxylic acid and the molar fraction of the dicarboxylic acid.
 前記炭素数の平均が10~16であれば、上記した10~16個の炭素原子を有するアリールジカルボン酸とそれ以外のジカルボン酸を併用することができる。併用できるジカルボン酸としては、4~9個の炭素原子を有するジカルボン酸が好ましく、例えば、コハク酸、グルタル酸、アジピン酸、マレイン酸、オルソフタル酸、イソフタル酸、テレフタル酸やこれらのエステル化物、酸塩化物、酸無水物を挙げることができる。 If the average carbon number is 10 to 16, the above-mentioned aryl dicarboxylic acid having 10 to 16 carbon atoms and other dicarboxylic acids can be used in combination. The dicarboxylic acid that can be used in combination is preferably a dicarboxylic acid having 4 to 9 carbon atoms. For example, succinic acid, glutaric acid, adipic acid, maleic acid, orthophthalic acid, isophthalic acid, terephthalic acid, esterified products thereof, acid A chloride and an acid anhydride can be mentioned.
 以下に、ポリエステルポリオールの炭素数が10~16であるジカルボン酸の具体例を示すが、本実施形態ではこれらに何ら限定されない。
(1)2,6-ナフタレンジカルボン酸
(2)2,3-ナフタレンジカルボン酸
(3)2,6-アントラセンジカルボン酸
(4)2,6-ナフタレンジカルボン酸:コハク酸(75:25~99:1 モル比)
(5)2,6-ナフタレンジカルボン酸:テレフタル酸(50:50~99:1 モル比)
(6)2,3-ナフタレンジカルボン酸:コハク酸(75:25~99:1 モル比)
(7)2,3-ナフタレンジカルボン酸:テレフタル酸(50:50~99:1 モル比)
(8)2,6-アントラセンジカルボン酸:コハク酸(50:50~99:1 モル比)
(9)2,6-アントラセンジカルボン酸:テレフタル酸(25:75~99:1 モル比)
(10)2,6-ナフタレンジカルボン酸:アジピン酸(67:33~99:1 モル比)
(11)2,3-ナフタレンジカルボン酸:アジピン酸(67:33~99:1 モル比)
(12)2,6-アントラセンジカルボン酸:アジピン酸(40:60~99:1 モル比)
Specific examples of the dicarboxylic acid in which the polyester polyol has 10 to 16 carbon atoms are shown below, but the present embodiment is not limited thereto.
(1) 2,6-naphthalenedicarboxylic acid (2) 2,3-naphthalenedicarboxylic acid (3) 2,6-anthracene dicarboxylic acid (4) 2,6-naphthalenedicarboxylic acid: succinic acid (75:25 to 99: 1 molar ratio)
(5) 2,6-Naphthalenedicarboxylic acid: terephthalic acid (50:50 to 99: 1 molar ratio)
(6) 2,3-naphthalenedicarboxylic acid: succinic acid (75:25 to 99: 1 molar ratio)
(7) 2,3-naphthalenedicarboxylic acid: terephthalic acid (50:50 to 99: 1 molar ratio)
(8) 2,6-anthracene dicarboxylic acid: succinic acid (50:50 to 99: 1 molar ratio)
(9) 2,6-anthracene dicarboxylic acid: terephthalic acid (25:75 to 99: 1 molar ratio)
(10) 2,6-Naphthalenedicarboxylic acid: Adipic acid (67:33 to 99: 1 molar ratio)
(11) 2,3-naphthalenedicarboxylic acid: adipic acid (67:33 to 99: 1 molar ratio)
(12) 2,6-anthracene dicarboxylic acid: adipic acid (40:60 to 99: 1 molar ratio)
 本実施形態において用いることができるポリエステル化合物としては、上記のポリエステルポリオール以外に、化合物の水溶性や配向性の観点から、オクタノール-水分配係数(logP(B))が0以上7未満の化合物を用いることも好ましい。 Examples of the polyester compound that can be used in the present embodiment include compounds having an octanol-water partition coefficient (logP (B)) of 0 or more and less than 7 from the viewpoint of water solubility and orientation of the compound, in addition to the polyester polyol described above. It is also preferable to use it.
 ポリエステルポリオールは、ジカルボン酸またはそれらのエステル形成性誘導体(一般式(A)のAに相当する成分)とグリコール(一般式(A)のGに相当する成分)を必要に応じてエステル化触媒の存在下で、例えば180~250℃の温度範囲内で、10~25時間、周知慣用の方法でエステル化反応させることによって製造することができる。 The polyester polyol is a dicarboxylic acid or an ester-forming derivative thereof (a component corresponding to A in the general formula (A)) and a glycol (a component corresponding to G in the general formula (A)). For example, it can be produced by an esterification reaction in a well-known and conventional manner for 10 to 25 hours in the temperature range of 180 to 250 ° C., for example.
 エステル化反応を行う際に、トルエン、キシレン等の溶媒を用いてもよいが、無溶媒もしくは原料として使用するグリコールを溶媒として用いる方法が好ましい。 In performing the esterification reaction, a solvent such as toluene or xylene may be used, but a method using no solvent or glycol used as a raw material as a solvent is preferable.
 前記エステル化触媒としては、例えばテトライソプロピルチタネート、テトラブチルチタネート、p-トルエンスルホン酸、ジブチル錫オキサイド等を使用することができる。前記エステル化触媒は、ジカルボン酸またはそれらのエステル形成性誘導体の全量100質量部に対して0.01~0.5質量部使用することが好ましい。 As the esterification catalyst, for example, tetraisopropyl titanate, tetrabutyl titanate, p-toluenesulfonic acid, dibutyltin oxide and the like can be used. The esterification catalyst is preferably used in an amount of 0.01 to 0.5 parts by mass based on 100 parts by mass of the total amount of dicarboxylic acids or their ester-forming derivatives.
 ジカルボン酸またはそれらのエステル形成性誘導体とグリコールを反応させる際のモル比は、ポリエステルの末端基が水酸基となるモル比でなければならず、そのためジカルボン酸またはそれらのエステル形成性誘導体1モルに対してグリコールは1.1~10モルである。好ましくは、ジカルボン酸またはそれらのエステル形成性誘導体1モルに対して、グリコールが1.5~7モルであり、より好ましくは、ジカルボン酸またはそれらのエステル形成性誘導体1モルに対して、グリコールが2~5モルである。 The molar ratio in the reaction of the dicarboxylic acid or their ester-forming derivative with the glycol must be such that the terminal group of the polyester is a hydroxyl group, so that the molar ratio is 1 mol of the dicarboxylic acid or their ester-forming derivative. The glycol is 1.1 to 10 moles. Preferably, the glycol is 1.5 to 7 moles per mole of the dicarboxylic acid or their ester-forming derivatives, and more preferably, the glycol is moles per mole of the dicarboxylic acid or their ester-forming derivatives. 2 to 5 moles.
 上記ポリエステルポリオールの末端基は水酸基であるが、ポリエステルポリオール中には、副生成物としてカルボキシ基末端の化合物も含まれうる。ただし、ポリエステルポリオール中におけるカルボキシ基末端は、湿度安定性を低下させるため、その含有量は低い方が好ましい。具体的には、酸価5.0mgKOH/g以下が好ましく、より好ましくは1.0mgKOH/g以下であり、さらに好ましくは0.5mgKOH/g以下である。なお、ここでいう「酸価」とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070:1992に準拠して測定することができる。 The terminal group of the polyester polyol is a hydroxyl group, but the polyester polyol may contain a carboxy group-terminated compound as a by-product. However, the carboxy group terminal in the polyester polyol lowers the humidity stability, so that the content is preferably low. Specifically, the acid value is preferably 5.0 mgKOH / g or less, more preferably 1.0 mgKOH / g or less, and still more preferably 0.5 mgKOH / g or less. Here, the “acid value” refers to the number of milligrams of potassium hydroxide necessary to neutralize the acid (carboxy group present in the sample) contained in 1 g of the sample. The acid value can be measured according to JIS K0070: 1992.
 前記ポリエステルポリオールは、ヒドロキシ(水酸基)価(OHV)が35mg/g以上220mg/g以下の範囲であることが好ましい。ここで言うヒドロキシ(水酸基)価とは、試料1g中に含まれる水酸基をアセチル化したときに、水酸基と結合した酢酸を中和するために要する水酸化カリウムのミリグラム数をいう。ヒドロキシ(水酸基)価は、無水酢酸を用いて試料中の水酸基をアセチル化し、使われなかった酢酸を水酸化カリウム溶液で滴定し、初期の無水酢酸の滴定値との差より求められる。 The polyester polyol preferably has a hydroxy (hydroxyl group) value (OHV) in the range of 35 mg / g to 220 mg / g. The hydroxy (hydroxyl group) value here means the number of milligrams of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when the hydroxyl group contained in 1 g of a sample is acetylated. The hydroxy (hydroxyl group) value is obtained by acetylating a hydroxyl group in a sample with acetic anhydride, titrating acetic acid not used with a potassium hydroxide solution, and obtaining a difference from the initial titration value of acetic anhydride.
 前記ポリエステルポリオールの水酸基含有量は、70%以上であることが好ましい。水酸基含有量が少ない場合、ポリエステルポリオールとフィルムを構成する樹脂との相溶性が低下する傾向がある。このため、水酸基含有量は、70%以上が好ましく、より好ましくは90%以上であり、さらに好ましくは99%以上である。本実施形態において、水酸基含有量が50%以下の化合物は、末端基の一方が水酸基以外の基で置換されているためポリエステルポリオールには含まれない。 The hydroxyl content of the polyester polyol is preferably 70% or more. When the hydroxyl group content is low, the compatibility between the polyester polyol and the resin constituting the film tends to decrease. For this reason, the hydroxyl group content is preferably 70% or more, more preferably 90% or more, and still more preferably 99% or more. In the present embodiment, a compound having a hydroxyl group content of 50% or less is not included in the polyester polyol because one of the end groups is substituted with a group other than the hydroxyl group.
 前記水酸基含有量は、下記の式(B)により求めることができる。
   Y/X×100=水酸基含有量(%) ・・・ (B)
    X:前記ポリエステルポリオールの水酸基価(OHV)
    Y:1/(数平均分子量(Mn))×56×2×1000
The hydroxyl group content can be determined by the following formula (B).
Y / X × 100 = hydroxyl group content (%) (B)
X: Hydroxyl value (OHV) of the polyester polyol
Y: 1 / (number average molecular weight (Mn)) × 56 × 2 × 1000
 前記ポリエステルポリオールは、300~3000の範囲内の数平均分子量を有することが好ましく、350~2000の数平均分子量を有することがより好ましい。 The polyester polyol preferably has a number average molecular weight within a range of 300 to 3,000, and more preferably a number average molecular weight of 350 to 2,000.
 また、本実施形態のポリエステルポリオールの分子量の分散度は1.0~3.0であることが好ましく、1.0~2.0であることがより好ましい。分散度が上記範囲内であれば、フィルムを構成する樹脂との相溶性に優れたポリエステルポリオールが得られやすい。 Further, the degree of dispersion of the molecular weight of the polyester polyol of this embodiment is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. If the degree of dispersion is within the above range, a polyester polyol excellent in compatibility with the resin constituting the film can be easily obtained.
 また、前記ポリエステルポリオールは、分子量が300~1800の成分を50%以上含有することが好ましい。数平均分子量を前記範囲とすることにより、相溶性を大幅に向上させることができる。 Further, the polyester polyol preferably contains 50% or more of a component having a molecular weight of 300 to 1800. By setting the number average molecular weight within the above range, the compatibility can be greatly improved.
 末端封止ポリエステルは、2つの末端基Bのうちの少なくとも一方がモノカルボン酸残基であればよい。すなわち、2つの末端基Bのうちの一方が水酸基であり、他方がモノカルボン酸残基であってもよい。ただし、2つの末端基Bの両方がモノカルボン酸残基であることが好ましい。 The end-capped polyester may be such that at least one of the two end groups B is a monocarboxylic acid residue. That is, one of the two end groups B may be a hydroxyl group and the other may be a monocarboxylic acid residue. However, it is preferable that both of the two terminal groups B are monocarboxylic acid residues.
 末端基Bとしては、上述したベンゼンモノカルボン酸残基、脂肪族モノカルボン酸残基を使用することができ、好ましくはベンゼンモノカルボン酸残基を使用することができる。すなわち、末端基Bは、芳香族末端ポリエステルであることが好ましい。 As the terminal group B, the above-mentioned benzene monocarboxylic acid residue and aliphatic monocarboxylic acid residue can be used, and preferably a benzene monocarboxylic acid residue can be used. That is, the terminal group B is preferably an aromatic terminal polyester.
 上記末端封止ポリエステルは、グリコール(一般式(A)のGに相当する成分)と、ジカルボン酸またはそれらのエステル形成性誘導体(一般式(A)のAに相当する成分)およびモノカルボン酸またはそれらのエステル形成性誘導体(一般式(A)のBに相当する成分)とエステル化反応させることにより得ることができ、例えば、特開2011-52205号公報、特開2008-69225号公報、特開2008-88292号公報、特開2008-115221号公報等を参考にして合成することができる。 The end-capped polyester is composed of glycol (a component corresponding to G in the general formula (A)), a dicarboxylic acid or an ester-forming derivative thereof (a component corresponding to A in the general formula (A)) and a monocarboxylic acid or These ester-forming derivatives (components corresponding to B in the general formula (A)) can be obtained by an esterification reaction. For example, JP 2011-52205 A, JP 2008-69225 A, It can be synthesized with reference to Kaikai 2008-88292, JP-A-2008-115221 and the like.
 本実施形態のエステル化合物は、その合成時点では分子量および分子構造に分布を有する混合物であるが、そのなかに本実施形態に好ましい成分、例えば、一般式(A)のAとしてフタル酸残基およびアジピン酸残基を有するポリエステル化合物を少なくとも1種含有していることが好ましい。 The ester compound of the present embodiment is a mixture having a distribution in molecular weight and molecular structure at the time of its synthesis. Among them, preferred components for the present embodiment, for example, phthalic acid residues as A in the general formula (A) and It is preferable to contain at least one polyester compound having an adipic acid residue.
 末端封止ポリエステルは、数平均分子量が、好ましくは300~1500、より好ましくは400~1000である。また、酸価は、0.5mgKOH/g以下、ヒドロキシ(水酸基)価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、ヒドロキシ(水酸基)価は15mgKOH/g以下である。 The end-capped polyester has a number average molecular weight of preferably 300-1500, more preferably 400-1000. The acid value is 0.5 mg KOH / g or less, the hydroxy (hydroxyl group) value is 25 mg KOH / g or less, more preferably the acid value is 0.3 mg KOH / g or less, and the hydroxy (hydroxyl group) value is 15 mg KOH / g or less.
 以下に、本実施形態に用いることのできる一般式(A)で表されるエステル系化合物の具体的化合物を示すが、本実施形態はこれに限定されない。 Hereinafter, specific compounds of the ester compound represented by the general formula (A) that can be used in the present embodiment are shown, but the present embodiment is not limited thereto.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本実施形態のフィルムは、ポリエステル化合物を、フィルム全体(100質量%)に対して、0.1~30質量%含むことが好ましく、特には、0.5~10質量%含むことが好ましい。また、その他の可塑剤として、国際公開10/026832号の[0102]~[0155]等に記載の材料などを適宜使用することができる。 The film of this embodiment preferably contains the polyester compound in an amount of 0.1 to 30% by mass, particularly 0.5 to 10% by mass, based on the entire film (100% by mass). As other plasticizers, materials described in [0102] to [0155] of International Publication No. 10/026832, etc. can be appropriately used.
 (b)紫外線吸収剤
 本実施形態のフィルムは、紫外線吸収剤を含有することができる。紫外線吸収剤は400nm以下の紫外線を吸収することで、フィルムの耐久性を向上させることを目的として添加される。紫外線吸収剤は、波長370nmでの透過率が10%以下、好ましくは5%以下、より好ましくは2%以下となるように添加される。
(B) Ultraviolet absorber The film of this embodiment can contain an ultraviolet absorber. The ultraviolet absorber is added for the purpose of improving the durability of the film by absorbing ultraviolet rays of 400 nm or less. The ultraviolet absorber is added so that the transmittance at a wavelength of 370 nm is 10% or less, preferably 5% or less, more preferably 2% or less.
 紫外線吸収剤としては特に限定されず、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。これらの中でも、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤が好ましく使用され、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤がより好ましく使用される。具体的には、例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖および側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等が挙げられ、市販品としてはチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類(以上、チバ・ジャパン社製)が好ましく使用される。この他、1,3,5-トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。 The ultraviolet absorber is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like. Can be mentioned. Among these, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers are preferably used, and benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers are more preferably used. Specifically, for example, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxyphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6- (Straight and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone and the like are listed, and commercially available products are Tinuvin 109, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 928 and the like are preferably used. In addition, a discotic compound such as a compound having a 1,3,5-triazine ring is also preferably used as the ultraviolet absorber.
 本実施形態におけるセルロースエステル溶液は紫外線吸収剤を2種以上含有することが好ましい。また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号公報に記載のポリマータイプの紫外線吸収剤が好ましく用いられる。 The cellulose ester solution in the present embodiment preferably contains two or more ultraviolet absorbers. As the UV absorber, a polymer UV absorber can also be preferably used. In particular, a polymer type UV absorber described in JP-A-6-148430 is preferably used.
 紫外線吸収剤の添加方法としては、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒あるいはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、直接ドープ組成中に添加する方法を採用することができる。その際、無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースエステル中にディゾルバーやサンドミルを使用し、分散してからドープに添加することが好ましい。 As a method for adding the ultraviolet absorber, the ultraviolet absorber is dissolved in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane, or a mixed solvent thereof, and then added to the dope. The method of adding directly into the dope composition can be employed. At that time, it is preferable to use a dissolver or a sand mill in an organic solvent and a cellulose ester for those that do not dissolve in an organic solvent, such as inorganic powder, and then add to the dope after dispersion.
 紫外線吸収剤の使用量としては、紫外線吸収剤の種類、使用条件等により一様ではないが、フィルムの乾燥膜厚が30~200μmの場合には、フィルムに対して0.5~10質量%が好ましく、0.6~4質量%がより好ましい。 The amount of the UV absorber used is not uniform depending on the type of UV absorber, usage conditions, etc., but when the dry film thickness is 30 to 200 μm, it is 0.5 to 10% by mass relative to the film. Is preferable, and 0.6 to 4% by mass is more preferable.
 (c)微粒子
 フィルムは、滑り性、保管安定性の観点から、微粒子を含有することが好ましい。微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウム等を挙げることができる。微粒子は珪素を含むものが、濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。
(C) Fine particles The film preferably contains fine particles from the viewpoint of slipperiness and storage stability. As fine particles, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
 二酸化珪素については、疎水化処理をされたものが滑り性とヘイズを両立する上で好ましい。4個のシラノール基のうち、2個以上が疎水性の置換基で置換わったものが好ましく、3個以上が置換されたものがより好ましい。疎水性の置換基はメチル基であることが好ましい。 As for silicon dioxide, a hydrophobized one is preferable for achieving both slipperiness and haze. Of the four silanol groups, those in which two or more are substituted with a hydrophobic substituent are preferred, and those in which three or more are substituted are more preferred. The hydrophobic substituent is preferably a methyl group.
 二酸化珪素の平均1次粒子径は20nm以下であることが好ましく、10nm以下であることがより好ましい。なお、微粒子の平均1次粒子径は、透過型電子顕微鏡(倍率50万~200万倍)で粒子の観察を行い、粒子100個を観察し、粒子径を測定しその平均値をもって、1次平均粒子径とすることができる。 The average primary particle diameter of silicon dioxide is preferably 20 nm or less, and more preferably 10 nm or less. The average primary particle size of the fine particles is determined by observing the particles with a transmission electron microscope (magnification of 500,000 to 2,000,000 times), observing 100 particles, measuring the particle size, and using the average value as the primary value. The average particle diameter can be set.
 二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上、日本アエロジル(株)製)の商品名で市販されているものを使用することができる。 As the fine particles of silicon dioxide, for example, those commercially available under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above, manufactured by Nippon Aerosil Co., Ltd.) are used. be able to.
 ポリマー微粒子の例として、シリコーン樹脂、フッ素樹脂およびアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120および同240(以上、東芝シリコーン(株)製)の商品名で市販されているものを使用することができる。 Examples of polymer fine particles include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120 and 240 (manufactured by Toshiba Silicone Co., Ltd.) What is marketed with a brand name can be used.
 これらの中でも、アエロジル200V、アエロジルR972V、アエロジルR812がフィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため好ましく、アエロジルR812がより好ましく用いられる。 Among these, Aerosil 200V, Aerosil R972V, and Aerosil R812 are preferable because they have a large effect of reducing the friction coefficient while keeping the film haze low, and Aerosil R812 is more preferably used.
 微粒子の添加量は、セルロースエステル100質量部に対して、0.01質量部~5.0質量部が好ましい。添加量が多い方が、動摩擦係数に優れ、添加量が少ない方が、凝集物が少なくなる。 The amount of fine particles added is preferably 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the cellulose ester. The larger the added amount, the better the dynamic friction coefficient, and the smaller the added amount, the fewer the aggregates.
 本実施形態のフィルムにおいては、少なくとも一方の面の動摩擦係数が0.2~1.0であることが好ましい。 In the film of this embodiment, it is preferable that the dynamic friction coefficient of at least one surface is 0.2 to 1.0.
 (d)染料
 フィルムには、本実施形態の効果を損なわない範囲内で、色味調整のため染料を添加することもできる。フィルムには、例えば、フィルムの黄色味を抑えるために青色染料を添加してもよい。好ましい染料としてはアンスラキノン系染料が挙げられる。
(D) Dye A dye can be added to the film for adjusting the color within a range not impairing the effects of the present embodiment. For example, a blue dye may be added to the film in order to suppress the yellowness of the film. Preferred examples of the dye include anthraquinone dyes.
 (e)糖エステル化合物
 本実施形態に用いられる糖エステル化合物としては、例えば、グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノースあるいはケストース挙げられる。この他、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。
(E) Sugar ester compound Examples of the sugar ester compound used in the present embodiment include glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol. , Lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose. In addition, gentiobiose, gentiotriose, gentiotetraose, xylotriose, galactosyl sucrose, and the like are also included.
 これらの化合物の中で、特にピラノース構造とフラノース構造を両方有する化合物が好ましい。具体的には、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、より好ましくは、スクロースである。 Among these compounds, compounds having both a pyranose structure and a furanose structure are particularly preferable. Specifically, sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
 ピラノース構造またはフラノース構造中の水酸基のすべてもしくは一部をエステル化するのに用いられるモノカルボン酸としては特に限定されず、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は1種類でもよく、2種以上を混合してもよい。 The monocarboxylic acid used for esterifying all or part of the hydroxyl groups in the pyranose structure or furanose structure is not particularly limited, and is known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid. An acid or the like can be used. One kind of carboxylic acid may be used, or two or more kinds may be mixed.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等が挙げられる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples thereof include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and octenoic acid.
 好ましい脂環族モノカルボン酸としては、例えば、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。 Preferred examples of the alicyclic monocarboxylic acid include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸としては、例えば、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体が挙げられる。具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸が挙げられる。中でも、特に安息香酸、ナフチル酸が好ましい。 Preferred aromatic monocarboxylic acids include, for example, aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene. Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof. Specifically, xylic acid, hemelitic acid, mesitylene acid, prenicylic acid, γ-isoduric acid, duric acid, mesitonic acid, α-isoduric acid, cumic acid, α-toluic acid, hydroatropic acid, atropic acid, hydrocinnamic acid , Salicylic acid, o-anisic acid, m-anisic acid, p-anisic acid, creosote acid, o-homosalicylic acid, m-homosalicylic acid, p-homosalicylic acid, o-pyrocatechuic acid, β-resorcylic acid, vanillic acid, Examples thereof include isovanillic acid, veratrumic acid, o-veratrumic acid, gallic acid, asaronic acid, mandelic acid, homoanisic acid, homovanillic acid, homoveratrumic acid, o-homoveratric acid, phthalonic acid, and p-coumaric acid. Of these, benzoic acid and naphthylic acid are particularly preferable.
 オリゴ糖のエステル化合物は、後述の「ピラノース構造又はフラノース構造の少なくとも一種を1~12個を有する化合物」として適用できる。 Oligosaccharide ester compounds can be applied as “compounds having 1 to 12 at least one pyranose structure or furanose structure” described later.
 オリゴ糖は、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるものであり、本実施形態に適用できるオリゴ糖としては、たとえば、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。 The oligosaccharide is produced by allowing an enzyme such as amylase to act on starch, sucrose, etc., and examples of the oligosaccharide applicable to this embodiment include malto-oligosaccharide, isomalt-oligosaccharide, fructo-oligosaccharide, and galactooligosaccharide. And xylooligosaccharides.
 また、前記エステル化合物は、下記一般式(B)で表されるピラノース構造またはフラノース構造の少なくとも1種を1個以上12個以下縮合した化合物である。一般式(B)において、R11~R15、R21~R25は、炭素数2~22のアシル基または水素原子を、m、nはそれぞれ0~12の整数、m+nは1~12の整数を表す。 Moreover, the said ester compound is a compound which condensed 1 or more and 12 or less of at least 1 sort (s) of the pyranose structure or furanose structure represented with the following general formula (B). In the general formula (B), R 11 to R 15 and R 21 to R 25 are each an acyl group having 2 to 22 carbon atoms or a hydrogen atom, m and n are each an integer of 0 to 12, and m + n is 1 to 12. Represents an integer.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 R11~R15、R21~R25は、ベンゾイル基、水素原子であることが好ましい。ベンゾイル基はさらに置換基R26を有していてもよく、R26としては、例えばアルキル基、アルケニル基、アルコキシル基、フェニル基が挙げられ、さらにこれらのアルキル基、アルケニル基、フェニル基は置換基を有していてもよい。オリゴ糖もエステル化合物と同様の方法で製造することができる。 R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom. The benzoyl group may further have a substituent R 26 , and examples of R 26 include an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group. Further, these alkyl groups, alkenyl groups, and phenyl groups are substituted. It may have a group. Oligosaccharides can also be produced in the same manner as ester compounds.
 糖エステル化合物のより具体的な例示としては、一般式(1)で表される化合物などを挙げることができる。 More specific examples of sugar ester compounds include compounds represented by general formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中、R1~R8は、水素原子、置換若しくは無置換の炭素数2~22のアルキルカルボニル基、又は置換若しくは無置換の炭素数2~22のアリールカルボニル基を表す。R1~R8は、同じであってもよく、異なっていてもよい。 In the formula, R 1 to R 8 represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms. R 1 to R 8 may be the same or different.
 以下に、一般式(1)で示される化合物を具体的に示すが(化合物1-1~化合物1-23)、これらには限定されない。なお、下表において平均置換度が8.0未満の場合、R1~R8のうちのいずれかは水素原子を表す。 The compounds represented by the general formula (1) are specifically shown below (Compound 1-1 to Compound 1-23), but are not limited thereto. In the table below, when the average substitution degree is less than 8.0, any one of R 1 to R 8 represents a hydrogen atom.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (f)アクリル系共重合体
 本実施形態のフィルムは、重量平均分子量が500以上30000以下であるアクリル系重合体を含有することができる。中でも分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーX、より好ましくは、分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーXと、芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下のポリマーYとを含有することが好ましい。
(F) Acrylic copolymer The film of this embodiment can contain the acrylic polymer whose weight average molecular weight is 500-30000. Above all, the weight obtained by copolymerizing ethylenically unsaturated monomer Xa having no aromatic ring and hydrophilic group in the molecule and ethylenically unsaturated monomer Xb having no aromatic ring and having a hydrophilic group in the molecule. Polymer X having an average molecular weight of 5,000 to 30,000, more preferably, an ethylenically unsaturated monomer Xa having no aromatic ring and a hydrophilic group in the molecule and an ethylenically unsaturated group having no aromatic ring and a hydrophilic group in the molecule. A weight average molecular weight of 500 to 3,000 obtained by polymerizing a polymer X having a weight average molecular weight of 5,000 to 30,000 obtained by copolymerization with a saturated monomer Xb and an ethylenically unsaturated monomer Ya having no aromatic ring. The polymer Y is preferably contained.
 アクリル系共重合体は、セルロースエステル100質量部に対して1~30質量部の範囲で添加することができる。 The acrylic copolymer can be added in the range of 1 to 30 parts by mass with respect to 100 parts by mass of the cellulose ester.
 (ハードコート層)
 〈ハードコート樹脂〉
 ハードコート層を形成するハードコート樹脂は、活性線硬化樹脂であることが機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。すなわち、紫外線や電子線のような活性線(活性エネルギー線ともいう。)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層である。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。活性線硬化樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が特に機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられ、中でも紫外線硬化型アクリレート系樹脂又は紫外線硬化型ウレタンアクリレート系樹脂が好ましい。
(Hard coat layer)
<Hard coat resin>
The hard coat resin forming the hard coat layer is preferably an actinic radiation curable resin from the viewpoint of excellent mechanical film strength (abrasion resistance, pencil hardness). That is, it is a layer mainly composed of a resin that is cured through a crosslinking reaction upon irradiation with active rays (also called active energy rays) such as ultraviolet rays and electron beams. As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams. The Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin curable by ultraviolet irradiation is particularly excellent in mechanical film strength (abrasion resistance, pencil hardness). It is preferable from the point. Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable resin. A curable epoxy resin or the like is preferably used, and among them, an ultraviolet curable acrylate resin or an ultraviolet curable urethane acrylate resin is preferable.
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基又はメタクロイルオキシ基を有する化合物である。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリ/テトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、活性エネルギー線硬化型のイソシアヌレート誘導体等が好ましく挙げられる。 As the ultraviolet curable acrylate resin, polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule. Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tri / tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, pentaerythritol tetraacrylate, glycerol triacrylate relay , Dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol di Methacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetramethylolmethane trimethacrylate, tetramethylolmethane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pen Pentaerythritol tetramethacrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate, etc. isocyanurate derivatives of the active energy ray-curable are preferably exemplified.
 紫外線硬化型ウレタンアクリレート系樹脂としては、例えば、アルコール、ポリオール、及び/又はヒドロキシ基含有アクリレート等のヒドロキシ基含有化合物類とイソシアネート類を反応させたり、又は必要によって、これらの反応によって得られたポリウレタン化合物を(メタ)アクリル酸でエステル化して得られる。より具体的には、ポリイソシアネートと1分子中に1つのヒドロキシ基及び1つ以上の(メタ)アクリロイル基を有するアクリレートとの付加反応物である。ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート等の芳香族イソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、1,4-シクロヘキサンジイソシアネート等の脂環式炭化水素に結合したイソシアネート基を2個有する化合物(以下、脂環族ジイソシアネートと略す。)、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族炭化水素に結合したイソシアネート基を2個有する化合物(以下、脂肪族ジイソシアネートと略す。)フェニレンジイソシアネート、トルエンジイソシアネート等の芳香族ジイソシアネート、キシリレンジイソシアネート等の芳香脂肪族ジイソシアネートなどが挙げられる。これらポリイソシアネートは、単独で用いることも、2種以上を併用することもでき、好ましくは脂肪族ジイソシアネート、脂環族ジイソシアネートである。中でも、イソホロンジイソシアネート、ノルボルナンジイソシアネート、トルエンジイソシアネート及びヘキサメチレンジイソシアネートが好ましい。1分子中に1つのヒドロキシ基及び1つ以上の(メタ)アクリロイル基を有するアクリレートとしては、例えば、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の多価ヒドロキシ基含有化合物のポリアクリレート類が挙げられ、これらのポリアクリレート類とε-カプロラクトンとの付加物、これらのポリアクリレート類とアルキレンオキサイドとの付加物、エポキシアクリレート類などが挙げられる。1分子中に1つのヒドロキシ基及び1つ以上の(メタ)アクリロイル基を有するアクリレートは、単独で用いることも、2種以上を併用することもできる。 Examples of the ultraviolet curable urethane acrylate resin include, for example, a polyurethane obtained by reacting an alcohol, a polyol, and / or a hydroxyl group-containing compound such as a hydroxyl group-containing acrylate and an isocyanate or, if necessary, these reactions. It is obtained by esterifying a compound with (meth) acrylic acid. More specifically, it is an addition reaction product of polyisocyanate and an acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule. Examples of the polyisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4 ′. A compound having two isocyanate groups bonded to an alicyclic hydrocarbon such as aromatic isocyanate such as diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 1,4-cyclohexane diisocyanate (hereinafter referred to as alicyclic diisocyanate and A compound having two isocyanate groups bonded to an aliphatic hydrocarbon such as trimethylene diisocyanate and hexamethylene diisocyanate (hereinafter referred to as aliphatic diisocyanate). Abbreviated as sulphonate.) Phenylene diisocyanate, aromatic diisocyanates such as toluene diisocyanate, and aromatic aliphatic diisocyanates such as xylylene diisocyanate. These polyisocyanates can be used alone or in combination of two or more, preferably aliphatic diisocyanates and alicyclic diisocyanates. Of these, isophorone diisocyanate, norbornane diisocyanate, toluene diisocyanate and hexamethylene diisocyanate are preferred. Examples of the acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule include trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth). Examples include polyacrylates of polyvalent hydroxy group-containing compounds such as acrylates, adducts of these polyacrylates and ε-caprolactone, adducts of these polyacrylates and alkylene oxides, and epoxy acrylates. It is done. The acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule can be used alone or in combination of two or more.
 また、1分子中に1つのヒドロキシ基及び1つ以上の(メタ)アクリロイル基を有するアクリレートのうち、1分子中に1つのヒドロキシ基及び3~5つの(メタ)アクリロイル基を有するアクリレートが好ましい。このようなアクリレートとしては、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられる。 Further, among acrylates having one hydroxy group and one or more (meth) acryloyl groups in one molecule, acrylates having one hydroxy group and 3 to 5 (meth) acryloyl groups in one molecule are preferable. Examples of such acrylates include pentaerythritol triacrylate and dipentaerythritol pentaacrylate.
 紫外線硬化型ウレタンアクリレート系樹脂の具体的商品としては、日本合成化学工業株式会社製、紫光UV-1700B、同UV-6300B、同UV-7600B、同UV-7630B、同UV-7640B、共栄社化学株式会社製、UA-306H、UA-306T、UA-306I、UA-510H、新中村化学工業式会社製、NKオリゴ UA-1100H、NKオリゴ UA-53H、NKオリゴ UA-33H、NKオリゴ UA-15HAなどが挙げられる。 Specific products of the UV curable urethane acrylate resin include: Nippon Synthetic Chemical Industry Co., Ltd., Shikou UV-1700B, UV-6300B, UV-7600B, UV-7630B, UV-7630B, UV-7640B, Kyoeisha Chemical Co., Ltd. Company-made, UA-306H, UA-306T, UA-306I, UA-510H, Shin-Nakamura Chemical Co., Ltd., NK Oligo UA-1100H, NK Oligo UA-53H, NK Oligo UA-33H, NK Oligo UA-15HA Etc.
 活性線硬化型樹脂の粘度は、樹脂をディスパーにて撹拌混合し25℃の条件にてB型粘度計を用いて粘度測定を行うことができる。また、単官能アクリレートを用いても良い。 The viscosity of the actinic radiation curable resin can be measured using a B-type viscometer under the condition of 25 ° C. after stirring and mixing the resin with a disper. A monofunctional acrylate may also be used.
 単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレートなどが挙げられる。このような単官能アクリレートは、日本化成工業株式会社、新中村化学工業株式会社、大阪有機化学工業株式会社等から入手できる。 Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate. Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
 単官能アクリレートを用いる場合には、多官能アクリレートと単官能アクリレートの含有質量比で、多官能アクリレート:単官能アクリレート=80:20~98:2の範囲で含有することが好ましい。 When a monofunctional acrylate is used, it is preferably contained in the range of polyfunctional acrylate: monofunctional acrylate = 80: 20 to 98: 2 in terms of the mass ratio of polyfunctional acrylate to monofunctional acrylate.
 〈光重合開始剤〉
 また、ハードコート層には活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂=20:100~0.01:100の範囲で含有することが好ましい。光重合開始剤としては、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及び、これらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
<Photopolymerization initiator>
The hard coat layer preferably contains a photopolymerization initiator to accelerate the curing of the actinic radiation curable resin. The amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active ray curable resin = 20: 100 to 0.01: 100. Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not something.
 このような光重合開始剤は市販品を用いてもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。 Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
 〈導電剤〉
 ハードコート層には、帯電防止性を付与するために導電剤が含まれていても良い。好ましい導電剤としては、金属酸化物粒子又はπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。
<Conductive agent>
The hard coat layer may contain a conductive agent in order to impart antistatic properties. Preferred conductive agents include metal oxide particles or π-conjugated conductive polymers. An ionic liquid is also preferably used as the conductive compound.
 〈レベリング剤〉
 ハードコート層には、表面を平滑にするためにレベリング剤が含まれていても良い。レベリング剤としては、シリコーン系界面活性剤、フッ素系界面活性剤、アニオン界面活性剤、及びフッ素-シロキサングラフト化合物、フッ素系化合物、アクリル共重合物などを用いることができる。
<Leveling agent>
The hard coat layer may contain a leveling agent in order to smooth the surface. As the leveling agent, silicone surfactants, fluorine surfactants, anionic surfactants, fluorine-siloxane graft compounds, fluorine compounds, acrylic copolymers, and the like can be used.
 シリコーン系界面活性剤としては、ポリエーテル変性シリコーンなどを挙げることができ、上記信越化学工業社製のKFシリーズなどを挙げることができる。アクリル共重合物としては、ビックケミー・ジャパン社製のBYK-350、BYK-352などの市販品化合物を挙げることができる。フッ素系界面活性剤としては、DIC株式会社製のメガファック RSシリーズ、メガファックF-444メガファックF-556などを挙げることができる。フッ素-シロキサングラフト化合物とは、少なくともフッ素系樹脂に、シロキサン及び/又はオルガノシロキサン単体を含むポリシロキサン及び/又はオルガノポリシロキサンをグラフト化させて得られる共重合体の化合物をいう。このようなフッ素-シロキサングラフト化合物は、後述の実施例に記載されているような方法で調製することができる。あるいは、市販品としては、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。またフッ素系化合物としては、ダイキン工業株式会社製のオプツールDSX、オプツールDACなどを挙げることができる。これら成分は、ハードコート組成物中の固形分成分に対し、0.005質量部以上、5質量部以下の範囲で添加することが好ましい。 Examples of the silicone surfactant include polyether-modified silicone, and the KF series manufactured by Shin-Etsu Chemical Co., Ltd. can be used. Examples of the acrylic copolymer include commercially available compounds such as BYK-350 and BYK-352 manufactured by BYK Japan. Examples of the fluorosurfactant include MegaFuck RS series and MegaFuck F-444 MegaFuck F-556 manufactured by DIC Corporation. The fluorine-siloxane graft compound refers to a copolymer compound obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone to at least a fluorine-based resin. Such a fluorine-siloxane graft compound can be prepared by a method as described in Examples described later. Alternatively, examples of commercially available products include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Chemical Industry Co., Ltd. Moreover, as a fluorine-type compound, Daikin Industries Ltd. OPTOOL DSX, OPTOOL DAC, etc. can be mentioned. These components are preferably added in the range of 0.005 parts by mass or more and 5 parts by mass or less with respect to the solid component in the hard coat composition.
 〈紫外線吸収剤〉
 ハードコート層は、紫外線吸収剤をさらに含有しても良い。紫外線吸収剤の含有量としては質量比で、紫外線吸収剤:ハードコート樹脂=0.01:100~10:100の範囲で含有することが好ましい。紫外線吸収剤は400nm以下の紫外線を吸収することため、耐久性を向上させるができる。紫外線吸収剤は、特に波長370nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは2%以下である。紫外線吸収剤の具体例としては特に限定されないが、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
<Ultraviolet absorber>
The hard coat layer may further contain an ultraviolet absorber. The content of the ultraviolet absorber is preferably in a mass ratio of ultraviolet absorber: hard coat resin = 0.01: 100 to 10: 100. Since the ultraviolet absorber absorbs ultraviolet rays of 400 nm or less, durability can be improved. In particular, the ultraviolet absorber preferably has a transmittance of 10% or less at a wavelength of 370 nm, more preferably 5% or less, and still more preferably 2% or less. Specific examples of the ultraviolet absorber are not particularly limited. For example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex salts, inorganic powders. Examples include the body.
 より具体的には、例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等を用いることができる。これらは、市販品を用いてもよく、例えば、BASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328等のチヌビン類を好ましく使用できる。 More specifically, for example, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6 -(Linear and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, and the like can be used. Commercially available products may be used. For example, TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, and TINUVIN 328 manufactured by BASF Japan Ltd. can be preferably used.
 好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などである。 Preferably used ultraviolet absorbers are benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers, and particularly preferably benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
 この他、1,3,5トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特にポリマータイプの紫外線吸収剤が好ましく用いられる。 In addition, a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as an ultraviolet absorber. As the UV absorber, a polymer UV absorber can be preferably used, and a polymer type UV absorber is particularly preferably used.
 ベンゾトリアゾール系紫外線吸収剤としては、市販品であるBASFジャパン社製のTINUVIN 109(オクチル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートと2-エチルヘキシル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートの混合物)、TINUVIN 928(2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール)などを用いることができる。トリアジン系紫外線吸収剤としては、市販品であるBASFジャパン社製のTINUVIN 400(2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルとオキシランとの反応生成物)、TINUVIN 460(2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン)、TINUVIN 405(2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物)などを用いることができる。 As the benzotriazole ultraviolet absorber, TINUVIN 109 (octyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazole-2-) manufactured by BASF Japan Ltd., which is a commercial product, is available. Yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate), TINUVIN 928 (2 -(2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol) and the like can be used. As the triazine-based ultraviolet absorber, commercially available TINUVIN 400 (2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -manufactured by BASF Japan Ltd.- Reaction product of 5-hydroxyphenyl and oxirane), TINUVIN 460 (2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3-5 Triazine), TINUVIN 405 (2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid ester Reaction products) and the like.
 〈溶剤〉
 ハードコート層は、上記したハードコート層を形成する成分を、基材となるフィルムを膨潤又は一部溶解をする溶剤で希釈してハードコート層組成物として、以下の方法でフィルム上に塗布、乾燥、硬化してハードコート層を設けることが好ましい。
<solvent>
The hard coat layer is a component that forms the above-described hard coat layer, diluted with a solvent that swells or partially dissolves the film as a base material, and is applied onto the film by the following method as a hard coat layer composition. It is preferable to provide a hard coat layer by drying and curing.
 溶剤としては、ケトン(メチルエチルケトン、アセトンなど)及び/又は酢酸エステル(酢酸メチル、酢酸エチル、酢酸ブチルなど)、アルコール(エタノール、メタノール)、プロピレングリコールモノメチルエーテル、シクロヘキサノン、メチルイソブチルケトンなどが好ましい。ハードコート層の塗布量はウェット膜厚として0.1~40μmの範囲が適当で、好ましくは0.5~30μmの範囲である。また、ドライ膜厚としては平均膜厚0.01~20μmの範囲、好ましくは0.5~10μmの範囲である。より好ましくは、0.5~5μmの範囲である。 As the solvent, ketones (methyl ethyl ketone, acetone, etc.) and / or acetate esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (ethanol, methanol), propylene glycol monomethyl ether, cyclohexanone, methyl isobutyl ketone, etc. are preferable. The coating amount of the hard coat layer is suitably in the range of 0.1 to 40 μm as wet film thickness, and preferably in the range of 0.5 to 30 μm. The dry film thickness is in the range of an average film thickness of 0.01 to 20 μm, preferably in the range of 0.5 to 10 μm. More preferably, it is in the range of 0.5 to 5 μm.
 ハードコート層の塗布方法は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、及びインクジェット法等の公知の方法を用いることができる。 As a method for applying the hard coat layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used.
 〔ハードコート層の形成方法〕
 ハードコート層組成物塗布後、乾燥し、活性線を照射して硬化(UV硬化処理ともいう。)し、更に必要に応じて、UV硬化処理後に加熱処理しても良い。UV硬化処理後の加熱処理温度としては80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化処理後の加熱処理を行うことで、膜強度に優れたハードコート層を得ることができる。
[Method of forming hard coat layer]
After applying the hard coat layer composition, it may be dried and cured by irradiation with active rays (also referred to as UV curing treatment), and if necessary, heat treatment may be performed after the UV curing treatment. The heat treatment temperature after the UV curing treatment is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after the UV curing treatment at such a high temperature, a hard coat layer having excellent film strength can be obtained.
 乾燥は、減率乾燥区間の温度を90℃以上の高温処理で行うことが好ましい。更に好ましくは、減率乾燥区間の温度は90℃以上、125℃以下である。 Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature in the decreasing rate drying section is 90 ° C. or higher and 125 ° C. or lower.
 一般に乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。恒率乾燥区間においては流入する熱量は全て塗膜表面の溶媒蒸発に費やされており、塗膜表面の溶媒が少なくなると蒸発面が表面から内部に移動して減率乾燥区間に入る。これ以降は塗膜表面の温度が上昇し熱風温度に近づいていくため、活性線硬化型樹脂組成物の温度が上昇し、樹脂粘度が低下して流動性が増すと考えられる。 In general, it is known that the drying process changes from a constant state to a gradually decreasing state when drying starts. The decreasing section is called the decreasing rate drying section. In the constant rate drying section, the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cm2の範囲、好ましくは50~300mJ/cm2の範囲である。また、UV硬化処理では酸素による反応阻害を防止するため、酸素除去(例えば、窒素パージなどの不活性ガスによる置換)を行うこともできる。酸素濃度の除去量を調整することで、表面の硬化状態を制御できる。活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックローラー上で搬送方向に張力を付与してもよく、テンターにて幅方向、又は2軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 . In the UV curing treatment, oxygen removal (for example, replacement with an inert gas such as nitrogen purge) can be performed to prevent reaction inhibition by oxygen. The cured state of the surface can be controlled by adjusting the removal amount of the oxygen concentration. When irradiating actinic radiation, it is preferably performed while applying tension in the film transport direction, and more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying the tension is not particularly limited, and the tension may be applied in the transport direction on the back roller, or the tension may be applied in the width direction or the biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
 〔ガラス積層体の製造方法〕
 本実施形態のガラス積層体の製造方法は、セルロースエステルフィルムの両面又は片面を光照射又は鹸化によって親水化処理して防曇層を形成し、両面に防曇層を形成した場合は任意の面に熱線反射層を積層し、片面に防曇層を形成した場合は防曇層とは反対側の面に熱線反射層を積層する。なお、セルロースエステルフィルムの一方の面に熱線反射層を積層してから、他方の面を光照射光照射によって親水化処理して防曇層を形成してもよい。その後、必要に応じて防曇層上にハードコート層を積層する。続いて、熱線反射層上又はガラスに水貼り用粘着剤を塗布して、ガラスと熱線反射層面とを貼着してガラス積層体を得る。なお、水貼り用粘着剤を熱線反射層上に塗布して乾燥させ、建物や車両の窓ガラス等に施工する際に水貼り用粘着剤に水を吹き付けて貼着するようにしてもよい。
[Method for producing glass laminate]
In the method for producing a glass laminate of the present embodiment, both sides or one side of the cellulose ester film are subjected to a hydrophilic treatment by light irradiation or saponification to form an antifogging layer, and any surface is formed when the antifogging layer is formed on both sides. When the anti-fogging layer is formed on one side, the heat ray reflecting layer is laminated on the surface opposite to the anti-fogging layer. In addition, after laminating | stacking a heat ray reflective layer on one surface of a cellulose-ester film, you may hydrophilize the other surface by light irradiation light irradiation, and form an anti-fogging layer. Thereafter, if necessary, a hard coat layer is laminated on the antifogging layer. Then, the adhesive for water sticking is apply | coated on a heat ray reflective layer or glass, glass and a heat ray reflective layer surface are stuck, and a glass laminated body is obtained. Alternatively, the water sticking adhesive may be applied onto the heat ray reflective layer and dried, and when applied to a window glass of a building or a vehicle, water sticking may be applied to the water sticking adhesive.
 〔熱及び光に関する性能測定方法〕
 ガラス積層体または遮熱防曇フィルムの断熱性能、日射熱遮へい性能は、一般的にJIS R 3209(複層ガラス)、JIS R 3106(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。
[Performance measurement method for heat and light]
Insulation performance and solar heat shielding performance of glass laminates or thermal barrier / antifogging films are generally JIS R 3209 (multi-layer glass), JIS R 3106 (obtain transmittance, reflectance, emissivity, and solar heat of plate glass) Rate test method) and JIS R 3107 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
 日射透過率、日射反射率、放射率、可視光透過率の測定は、(1)波長(300~2500nm)の分光測光器を用い、各種単板ガラスの分光透過率、分光反射率を測定する。また、波長5.5~50μmの分光測定器を用いて放射率を測定する。なお、フロート板ガラス、磨き板ガラス、型板ガラス、熱線吸収板ガラスの放射率は既定値を用いる。(2)日射透過率、日射反射率、日射吸収率、修正放射率の算出は、JIS R 3106に従い、日射透過率、日射反射率、日射吸収率、垂直放射率を算出する。修正放射率に関しては、JIS R 3107に示されている係数を、垂直放射率に乗ずることにより求める。断熱性、日射熱遮へい性の算出は、(1)厚さの測定値、修正放射率を用いJIS R 3209に従って複層ガラスの熱抵抗を算出する。ただし中空層が2mmを超える場合はJIS R 3107に従って中空層の気体熱コンダクタンスを求める。(2)断熱性は、複層ガラスの熱抵抗に熱伝達抵抗を加えて熱貫流抵抗で求める。(3)日射熱遮蔽性はJIS R 3106により日射熱取得率を求め、1から差し引いて算出する。 Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance. (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 μm. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) The solar transmittance, solar reflectance, solar absorption rate, and modified emissivity are calculated according to JIS R 3106 by calculating the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity. The corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107. The heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multilayer glass according to JIS R 3209 using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is determined according to JIS R 3107. (2) The heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance. (3) The solar heat shielding property is calculated by obtaining the solar heat acquisition rate according to JIS R 3106 and subtracting it from 1.
 〔実施例〕
 以下、本発明の具体例を実施例として説明する。また、本発明との比較のため、比較例についても併せて説明する。なお、本発明は、以下の実施例に限定されるものではない。なお、以下での説明において、「部」あるいは「%」の表示は、特に断りがない限り、「質量部」あるいは「質量%」を表すものとする。
〔Example〕
Hereinafter, specific examples of the present invention will be described as examples. For comparison with the present invention, comparative examples will also be described. The present invention is not limited to the following examples. In the following description, “parts” or “%” indicates “parts by mass” or “mass%” unless otherwise specified.
 <実施例1>
 (防曇層の形成)
 セルロースエステルフィルム(6UA(コニカミノルタ(株)製))の片面に、エキシマ光を500mJ/cm2の強度で照射して表面を親水化処理し、防曇性フィルムを作製した。エキシマ光源を備えた改質処理装置および改質処理条件は、以下の通りである。
<Example 1>
(Formation of anti-fogging layer)
One side of a cellulose ester film (6UA (manufactured by Konica Minolta Co., Ltd.)) was irradiated with excimer light at an intensity of 500 mJ / cm 2 to hydrophilize the surface, thereby producing an antifogging film. The reforming apparatus provided with the excimer light source and the reforming process conditions are as follows.
 〈改質処理装置〉
 (株)エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長:172nm
 ランプ封入ガス:Xe
 〈改質処理条件〉
 エキシマ光強度   :130mW/cm2(172nm)
 試料と光源の距離  :2mm
 照射装置内の酸素濃度:0.3%
<Modification processing equipment>
Excimer irradiation device MODEL: MECL-M-1-200 manufactured by M.D.Com
Wavelength: 172nm
Lamp filled gas: Xe
<Reforming treatment conditions>
Excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 2mm
Oxygen concentration in the irradiation device: 0.3%
 (熱線反射層の形成)
 次に、セルロースエステルフィルム(6UA)の親水化処理した面とは反対側の面に高屈折率層用塗布液および低屈折率層用塗布液とを交互に塗布して熱線反射層を形成した。具体的な形成方法は以下の通りである。
(Formation of heat ray reflective layer)
Next, a high-refractive index layer coating solution and a low-refractive index layer coating solution were alternately applied to the surface opposite to the hydrophilic surface of the cellulose ester film (6UA) to form a heat ray reflective layer. . A specific forming method is as follows.
 〈酸化チタン粒子ゾルの調製〉
 二酸化チタン水和物を水に懸濁させた水性懸濁液(TiO2濃度100g/L)10L(リットル)に、水酸化ナトリウム水溶液(濃度10モル/L)を30L撹拌下で添加し、90℃に昇温し、5時間熟成した後、塩酸で中和、濾過、水洗した。なお、上記反応(処理)において、二酸化チタン水和物は公知の手法に従い、硫酸チタン水溶液を熱加水分解して得られたものを用いた。
<Preparation of titanium oxide particle sol>
An aqueous sodium hydroxide solution (concentration 10 mol / L) was added to 10 L (liter) of an aqueous suspension (TiO 2 concentration 100 g / L) in which titanium dioxide hydrate was suspended in water, with stirring, 30 L, 90 The mixture was heated to 0 ° C. and aged for 5 hours, and then neutralized with hydrochloric acid, filtered, and washed with water. In the above reaction (treatment), titanium dioxide hydrate was obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
 塩基処理チタン化合物をTiO2濃度20g/Lになるよう純水に懸濁させ、撹拌下クエン酸をTiO2量に対し0.4モル%加え昇温した。液温が95℃になったところで、濃塩酸を塩酸濃度30g/Lになるように加え、液温を維持しつつ3時間撹拌して、酸化チタン粒子が20質量%となるようにして、酸化チタン粒子ゾル溶液を調製した。 The base-treated titanium compound was suspended in pure water so as to have a TiO 2 concentration of 20 g / L, and citric acid was added in an amount of 0.4 mol% with respect to the amount of TiO 2 with stirring, and the temperature was raised. When the liquid temperature reached 95 ° C., concentrated hydrochloric acid was added to a hydrochloric acid concentration of 30 g / L, and the mixture was stirred for 3 hours while maintaining the liquid temperature to oxidize the titanium oxide particles to 20% by mass. A titanium particle sol solution was prepared.
 得られた酸化チタン粒子ゾル溶液のpHおよびゼータ電位を測定したところ、25℃におけるpHは1.4、ゼータ電位は+40mVであった。さらに、マルバーン社製ゼータサイザーナノにより粒径測定を行ったところ、体積平均粒径は35nm、単分散度は16%であった。また、酸化チタン粒子ゾル溶液を105℃で3時間乾燥させて粒子紛体を得て、日本電子データム社製JDX-3530型)を用いてX線回折の測定を行い、ルチル型酸化チタン粒子であることを確認した。 When the pH and zeta potential of the obtained titanium oxide particle sol solution were measured, the pH at 25 ° C. was 1.4, and the zeta potential was +40 mV. Furthermore, when the particle size was measured by Zetasizer Nano manufactured by Malvern, the volume average particle size was 35 nm, and the monodispersity was 16%. In addition, the titanium oxide particle sol solution was dried at 105 ° C. for 3 hours to obtain a particle powder, and X-ray diffraction measurement was performed using JDX-3530 type manufactured by JEOL Datum Co., Ltd. to obtain rutile type titanium oxide particles. It was confirmed.
 〈コロイダルシリカゾル〉
 日本化学工業製シリカドール20Pを用いた。
<Colloidal silica sol>
Silica Dole 20P manufactured by Nippon Chemical Industry Co., Ltd. was used.
 〈高屈折率層用塗布液の調製〉
 上記で調製した酸化チタン粒子ゾル溶液、ポバール水溶液(クラレ株式会社製、PVA217 5重量%溶液)、熱ゲル化剤水溶液(信越化学工業株式会社製、60SH-50  2重量%溶液)、低温ゲル化剤水溶液(豚皮ゼラチン 5重量%溶液)、および純水を、45℃に保ちつつ適宜配合して、高屈折率層用塗布液を調製した。
<Preparation of coating solution for high refractive index layer>
Titanium oxide particle sol solution prepared above, poval aqueous solution (Kuraray Co., Ltd., PVA217 5 wt% solution), thermal gelling agent aqueous solution (Shin-Etsu Chemical Co., Ltd., 60SH-50 2 wt% solution), low temperature gelation An aqueous agent solution (5% by weight pork skin gelatin solution) and pure water were appropriately blended while maintaining at 45 ° C. to prepare a coating solution for a high refractive index layer.
 〈低屈折率層用塗布液の調製〉
 上述したコロイダルシリカゾル溶液、ポバール水溶液(クラレ株式会社製、PVA217 5重量%溶液)、熱ゲル化剤水溶液(信越化学工業株式会社製、60SH-50  2重量%溶液)、低温ゲル化剤水溶液(豚皮ゼラチン 5重量%溶液)、および純水を、45℃に保ちつつ適宜配合して、低屈折率層用塗布液を調製した。
<Preparation of coating solution for low refractive index layer>
Colloidal silica sol solution, PVA aqueous solution (Kuraray Co., Ltd., PVA217 5 wt% solution), thermal gelling agent aqueous solution (Shin-Etsu Chemical Co., Ltd., 60SH-50 2 wt% solution), low temperature gelling agent aqueous solution (pig A 5% by weight solution of skin gelatin) and pure water were appropriately blended while maintaining at 45 ° C. to prepare a coating solution for a low refractive index layer.
 〈製膜〉
 上記の高屈折率層用塗布液及び低屈折率層用塗布液を用い、同時重層用スライドコーターによって各層流量を調整し、各層の乾燥時厚みを200nmに設定して高屈折率層および低屈折率層が交互に各7層積層されるようにセルロースエステルフィルム(6UA)の親水化処理した面とは反対側の面に同時重層塗布を行った(塗布工程)。そして、塗布工程に続いて5℃の冷風による冷却ゾーンを20秒間で通過させて低温ゲル化剤をゲル化させ(冷却ゲル化工程)、次いで50℃の温風による温風乾燥ゾーンを20秒間で通過させて熱ゲル化剤をゲル化させた(加熱ゲル化工程)。これにより、熱線反射層を形成した。
<Film formation>
Using the above coating solution for the high refractive index layer and the coating solution for the low refractive index layer, the flow rate of each layer is adjusted by a simultaneous multi-layer slide coater, and the dry thickness of each layer is set to 200 nm. Simultaneous multi-layer coating was performed on the surface of the cellulose ester film (6UA) opposite to the surface subjected to the hydrophilic treatment so that seven rate layers were alternately laminated (coating step). Then, following the coating step, a cooling zone with cold air at 5 ° C. is passed in 20 seconds to gel the low-temperature gelling agent (cooling gelation step), and then the hot air drying zone with hot air at 50 ° C. is set for 20 seconds. In order to gel the thermal gelling agent (heating gelation step). Thereby, a heat ray reflective layer was formed.
 (ガラス積層体の形成)
 そして、厚さ3mmのガラス板に水貼り用粘着剤(東亜合成社製、アロンタックM-300)を塗布し、熱線反射層側の面と貼着することで実施例1のガラス積層体を得た。
(Formation of glass laminate)
And the glass laminated body of Example 1 is obtained by apply | coating the adhesive for water sticking (The Toagosei Co., Ltd. product, Aron Tack M-300) to the glass plate of thickness 3mm, and sticking with the surface at the side of a heat ray reflective layer. It was.
 <実施例2>
 実施例1において、光照射処理の代わりに鹸化処理によってセルロースエステルフィルム(6UA)の両面を親水化処理して防曇層を形成した。それ以外は、実施例1と同様にして実施例2のガラス積層体を得た。
<Example 2>
In Example 1, both sides of the cellulose ester film (6UA) were hydrophilized by saponification instead of light irradiation to form an antifogging layer. Other than that was carried out similarly to Example 1, and obtained the glass laminated body of Example 2. FIG.
 〈鹸化処理条件〉
 2規定(2N)のNaOH水溶液を55℃に設定し、この水溶液に作製したセルロースエステルフィルム(6UA)を1時間浸漬し、水洗後乾燥させて防曇性フィルムを作製した。
<Saponification conditions>
A 2N (2N) aqueous NaOH solution was set at 55 ° C., and the cellulose ester film (6UA) produced in this aqueous solution was immersed for 1 hour, washed with water and dried to produce an antifogging film.
 <実施例3>
 実施例1において、防曇層の外側面にATM35-E(ポリエトキシ化テトラメチロールメタンテトラアクリレート:新中村化学製)を主成分とするハードコート層組成物を押し出しコーターを用いて塗布し、恒率乾燥区間温度50℃、減率乾燥区間温度50℃で乾燥の後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を0.2J/cm2として塗布層を硬化させ、ドライ膜厚2μmのハードコート層を形成した。それ以外は、実施例1と同様にして実施例3のガラス積層体を得た。
<Example 3>
In Example 1, a hard coat layer composition mainly composed of ATM35-E (polyethoxylated tetramethylolmethane tetraacrylate: manufactured by Shin-Nakamura Chemical Co., Ltd.) was applied to the outer surface of the antifogging layer using an extrusion coater, and the constant rate After drying at a drying zone temperature of 50 ° C. and a reduced rate drying zone temperature of 50 ° C., the irradiance of the irradiated part is 100 mW / cm using an ultraviolet lamp while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less. 2 , the applied layer was cured with an irradiation dose of 0.2 J / cm 2 to form a hard coat layer having a dry film thickness of 2 μm. Other than that was carried out similarly to Example 1, and obtained the glass laminated body of Example 3. FIG.
 <比較例1>
 実施例1において、6UAの代わりに同じ厚みのPMMA(ポリメタクリル酸メチル)フィルムを用いた。それ以外は、実施例1と同様にして比較例1のガラス積層体を得た。
<Comparative Example 1>
In Example 1, a PMMA (polymethyl methacrylate) film having the same thickness was used instead of 6UA. Other than that was carried out similarly to Example 1, and obtained the glass laminated body of the comparative example 1. FIG.
 <比較例2>
 実施例2において、6UAの代わりに同じ厚みのPET(ポリエチレンテレフタレート)フィルムを用いた。それ以外は、実施例2と同様にして比較例2のガラス積層体を得た。
<Comparative example 2>
In Example 2, a PET (polyethylene terephthalate) film having the same thickness was used instead of 6UA. Other than that was carried out similarly to Example 2, and obtained the glass laminated body of the comparative example 2. FIG.
 <比較例3>
 実施例1において、防曇層を省略することで比較例3のガラス積層体を得た。
<Comparative Example 3>
In Example 1, the glass laminate of Comparative Example 3 was obtained by omitting the antifogging layer.
 <比較例4>
 実施例1において、熱線反射層としてセルロースエステルフィルム(6UA)に特許文献1に従って表面が酸化チタンで被覆された雲母を積層し、防曇層として特許文献1に従って防曇流滴剤を積層して比較例4のガラス積層体を得た。
<Comparative example 4>
In Example 1, mica whose surface was coated with titanium oxide according to Patent Document 1 was laminated on a cellulose ester film (6UA) as a heat ray reflective layer, and an antifogging drop agent was laminated as an antifogging layer according to Patent Document 1. A glass laminate of Comparative Example 4 was obtained.
 〈防曇流滴剤の調整〉
 以下の材料を混合して防曇流滴剤を調整した。
 水                          100質量部
 球状シリカコロイド                    5質量部
 ポリエチレンオキサイド                  2質量部
<Adjustment of antifogging drop>
The following materials were mixed to prepare an antifogging drop.
Water 100 parts by weight Spherical silica colloid 5 parts by weight Polyethylene oxide 2 parts by weight
 <評価方法>
 (透過率)
 作製したガラス積層体について、ヘイズメーター(NDH2000(日本電色社製))で透過率を測定し、以下の評価基準に基づいて評価した。
 〈評価基準〉
 ○:透過率80%以上である
 △:透過率70%以上80%未満である
 ×:透過率70%未満である
<Evaluation method>
(Transmittance)
About the produced glass laminated body, the transmittance | permeability was measured with the haze meter (NDH2000 (made by Nippon Denshoku)), and it evaluated based on the following evaluation criteria.
<Evaluation criteria>
○: The transmittance is 80% or more Δ: The transmittance is 70% or more and less than 80% ×: The transmittance is less than 70%
 (水貼り用粘着剤による水貼り適性)
 ガラス板と熱線反射層側の面とを水貼り用粘着剤で貼着した直後から水貼り用粘着剤の水分が蒸発するまでの期間を測定し、以下の評価基準に基づいて評価した。
 〈評価基準〉
 ○:貼着後1日以内に水分が蒸発する
 △:貼着後1日以上1週間以内に水分が蒸発する
 ×:貼着後1週間以上水分が残留する
(Applicability to water application with adhesive for water application)
The period from the time when the glass plate and the surface on the heat ray reflective layer side were pasted with the water sticking adhesive to the time when the moisture of the water sticking adhesive evaporated was measured and evaluated based on the following evaluation criteria.
<Evaluation criteria>
○: Water evaporates within 1 day after sticking Δ: Water evaporates within 1 week and 1 week after sticking ×: Water remains for over 1 week after sticking
 (熱線反射層塗布適性)
 フィルムに高屈折率層用塗布液及び低屈折率層用塗布液を塗布する際の濡れ性、均一性、密着性を測定し、以下の評価基準に基づいて評価した。
 〈評価基準〉
 ◎:濡れ性が良く、均一性と密着性が確保できる
 ○:均一に塗れ、密着性も確保できる
 △:均一に塗れるが、密着性が確保できない
 ×:均一性も密着性も確保できない
(Applicability to heat ray reflective layer application)
The wettability, uniformity, and adhesion when the coating solution for the high refractive index layer and the coating solution for the low refractive index layer were applied to the film were measured and evaluated based on the following evaluation criteria.
<Evaluation criteria>
◎: Good wettability, ensuring uniformity and adhesion ○: Applying uniformly, ensuring adhesion △: Applying uniformly, but not ensuring adhesion X: Unable to ensure uniformity and adhesion
 (蒸気照射後の視認性)
 作製したガラス積層体に対して、23℃55%RHの条件下で40℃の蒸気を照射しながら後方の視認性を調べ、以下の評価基準に基づいて評価した。
 〈評価基準〉
 ○:20秒以上照射しても後方が綺麗に見える
 △:7秒以上20秒未満照射しても後方が見える
 ×:7秒未満の照射で水滴が付着して後方が見えなくなる
(Visibility after vapor irradiation)
The rear visibility was examined while irradiating steam at 40 ° C. under conditions of 23 ° C. and 55% RH on the produced glass laminate, and evaluated based on the following evaluation criteria.
<Evaluation criteria>
○: The back is clearly visible even after irradiation for 20 seconds or longer. Δ: The rear is visible even after irradiation for 7 seconds or longer but less than 20 seconds.
 (耐擦傷性)
 実施例1及び3のガラス積層体について、スチールウール試験を行った。スチールウール試験は、ヘイドン社製の荷重変動型摩擦摩耗試験システムHHS2000を用い、実施例1のガラス積層体については防曇層の表面を、実施例3のガラス積層体についてはハードコート層の表面をそれぞれ200g/cm2の荷重を掛けたスチールウール(日本スチールウール(株)製、#0000)で10往復させて、傷の発生を目視にて観察した。スチールウールのスピードは500mm/min、スチールウールの片道移動距離は50mmとした。
(Abrasion resistance)
A steel wool test was performed on the glass laminates of Examples 1 and 3. The steel wool test uses a load variation type frictional wear test system HHS2000 manufactured by Haydon Co., Ltd., the surface of the antifogging layer for the glass laminate of Example 1, and the surface of the hard coat layer for the glass laminate of Example 3. Were reciprocated 10 times with steel wool applied with a load of 200 g / cm 2 (manufactured by Nippon Steel Wool Co., Ltd., # 0000), and the occurrence of scratches was visually observed. The speed of steel wool was 500 mm / min, and the one-way travel distance of steel wool was 50 mm.
 実施例および比較例の評価結果を表1及び表2に示す。 Table 1 and Table 2 show the evaluation results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1の結果より、透過率については、比較例4のみ×であり、後方の視認性が悪く不適であると言える。それ以外の実施例及び比較例については透過率に問題はないと言える。これは、比較例4のガラス積層体には透過率低下の原因となる雲母が含まれているためである。 From the results in Table 1, it can be said that the transmittance is only x in Comparative Example 4, and the rear visibility is poor and inappropriate. For the other examples and comparative examples, it can be said that there is no problem in the transmittance. This is because the glass laminate of Comparative Example 4 contains mica that causes a decrease in transmittance.
 次に、水貼り用粘着剤による水貼り適性については、比較例1が△、比較例2及び4が×であり、水貼り用粘着剤の水分が抜けるまでに時間が掛かり、つまり施工に時間が掛かり、好ましくない。一方、実施例1、2、比較例3は○であり、水貼り用粘着剤の水分が抜けるまでの時間が短く、つまり短時間で施工することができることを意味している。これは、比較例1ではPMMAフィルム、比較例2ではPETフィルム、比較例4ではポリエチレンを主体とするフィルムが用いられており、それらのフィルムの透湿度が低いため、水貼り用粘着剤の水分が抜けるのに時間が掛かるものと考えられる。一方、実施例1及び2、比較例3では透湿度の高いセルロースエステルフィルムを用いているため、水貼り用粘着剤の水分が速やかに抜けたものと考えられる。 Next, as for water sticking suitability by the water sticking adhesive, Comparative Example 1 is Δ, Comparative Examples 2 and 4 are ×, and it takes time for the water sticking adhesive to drain, that is, time for construction. Is undesirable. On the other hand, Examples 1 and 2 and Comparative Example 3 are ◯, which means that the time until the moisture of the water sticking adhesive is removed is short, that is, it can be applied in a short time. This is because a PMMA film is used in Comparative Example 1, a PET film is used in Comparative Example 2, and a film mainly composed of polyethylene is used in Comparative Example 4, and the moisture content of the adhesive for water application is low because the moisture permeability of these films is low. It is thought that it takes time to escape. On the other hand, in Examples 1 and 2 and Comparative Example 3, since the cellulose ester film having a high moisture permeability is used, it is considered that the moisture of the adhesive for water sticking was quickly removed.
 次に、熱線反射層塗布適性については、比較例1が×であり、実用に耐えないと言える。一方、実施例1が◎、実施例2、比較例2及び3が○であり、実用上問題ないと言える。これは、実施例1及び比較例3では、熱線反射層を積層するフィルム面も鹸化によって親水化処理されているため、塗布適性に優れていると考えられる。また、実施例1及び比較例1では、熱線反射層を積層するフィルム面は親水化処理されていないため、それぞれのフィルムが元々有する塗布適性が反映されたものと考えられる。 Next, with regard to the suitability for applying the heat ray reflective layer, Comparative Example 1 is x, and it can be said that it is not practical. On the other hand, Example 1 is (double-circle), Example 2, and Comparative Examples 2 and 3 are (circle), and it can be said that there is no problem practically. In Example 1 and Comparative Example 3, it is considered that the film surface on which the heat ray reflective layer is laminated is also hydrophilized by saponification, so that it is excellent in coating suitability. Moreover, in Example 1 and Comparative Example 1, since the film surface on which the heat ray reflective layer is laminated is not hydrophilized, it is considered that the coating suitability inherent to each film is reflected.
 次に、蒸気照射後の視認性については、比較例1~3が×であり、高湿下において後方視認性が悪く、実用に耐えないと言える。また、比較例4は△であり、高湿下において後方視認性が悪くなりやすく、実用上あまり好ましくないと言える。一方、実施例1及び2は○であり、高湿下において後方視認性が良く、実用上問題ないと言える。これは、比較例3では防曇処理がされておらず、比較例1のPMMAフィルム及び比較例2のPETフィルムでは光照射又は鹸化によって防曇性が付与できていないためであると考えられる。また、比較例4では防曇流滴剤により防曇性は付与されているが、急激な湿度変化に対応するだけの性能はないと考えられる。一方、実施例1及び2ではセルロースエステルフィルムの表面を光照射又は鹸化によって十分に親水化されているため、良好な防曇性能を有しているものと考えられる。 Next, regarding the visibility after vapor irradiation, Comparative Examples 1 to 3 are x, and it can be said that the rear visibility is poor under high humidity and is not practical. Further, Comparative Example 4 is Δ, and it can be said that rear visibility is likely to deteriorate under high humidity, which is not preferable in practice. On the other hand, Example 1 and 2 is (circle), and it can be said that there is no problem in practical use with good backward visibility under high humidity. This is presumably because the antifogging treatment was not performed in Comparative Example 3, and the PMMA film of Comparative Example 1 and the PET film of Comparative Example 2 were not imparted with antifogging properties by light irradiation or saponification. Further, in Comparative Example 4, the antifogging property is imparted by the antifogging drop agent, but it is considered that there is not enough performance to cope with a rapid humidity change. On the other hand, in Examples 1 and 2, since the surface of the cellulose ester film is sufficiently hydrophilicized by light irradiation or saponification, it is considered that the cellulose ester film has good antifogging performance.
 表2の結果より、耐擦傷性については、ハードコート層を有する実施例3はハードコート層を有さない実施例1より傷が付きにくくなっている。また、実施例1及び3で透湿度はあまり変わっていないが、これは、実施例3のハードコート層として透湿度の高い(300g/m2・24hr以上)ハードコート樹脂を用いているからである。これにより、ハードコート層が水貼り用粘着剤の水分の蒸発を妨げることがないので、水貼り用粘着剤による水貼り適性も良好である。そして、実施例3では蒸気照射後の視認性も問題ない。これはハードコート層が防曇機能を妨げないことを意味している。 From the results in Table 2, with respect to scratch resistance, Example 3 having a hard coat layer is less likely to be scratched than Example 1 having no hard coat layer. Moreover, although the moisture permeability did not change so much in Examples 1 and 3, this is because a hard coat resin having a high moisture permeability (300 g / m 2 · 24 hr or more) is used as the hard coat layer of Example 3. is there. Thereby, since a hard-coat layer does not prevent evaporation of the water | moisture content of the adhesive for water sticking, the water sticking property by the adhesive for water sticking is also favorable. And in Example 3, there is no problem in the visibility after vapor irradiation. This means that the hard coat layer does not interfere with the antifogging function.
 以上より、評価結果に×のない実施例1~3のガラス積層体は、遮熱機能を有し水貼り用粘着剤によって短時間でガラスに貼着でき、急激な湿度変化に対して防曇特性を有すると言える。さらに、実施例3のガラス積層体は耐擦傷性も有しており、車両の窓ガラスなど耐擦傷性が要求される使用形態でより有効となる。 From the above, the glass laminates of Examples 1 to 3 having no evaluation result have a heat shielding function and can be adhered to the glass in a short time with a water sticking adhesive, and are anti-fogged against sudden humidity changes. It can be said that it has characteristics. Furthermore, the glass laminate of Example 3 also has scratch resistance, and is more effective in usage forms that require scratch resistance, such as vehicle window glass.
 以上で説明した本実施形態の遮熱防曇フィルム及びガラス積層体は、以下のように表現することができる。 The heat-shielding and anti-fogging film and glass laminate of the present embodiment described above can be expressed as follows.
 1.遮熱機能及び防曇機能を有する遮熱防曇フィルムであって、
 セルロースエステルフィルムと、
 前記セルロースエステルフィルムの一方の面に積層された親水性の熱線反射層と、
 前記セルロースエステルフィルムの他方の面が親水化処理されて形成された防曇層と、を備えることを特徴とする遮熱防曇フィルム。
1. A heat and anti-fogging film having a heat and anti-fogging function,
A cellulose ester film;
A hydrophilic heat ray reflective layer laminated on one surface of the cellulose ester film;
An antifogging film comprising: an antifogging layer formed by hydrophilizing the other surface of the cellulose ester film.
 2.前記熱線反射層の前記セルロースエステルフィルムとは反対面側に積層された水貼り用粘着剤を備えることを特徴とする前記1に記載の遮熱防曇フィルム。 2. 2. The heat-shielding anti-fogging film as described in 1 above, further comprising a water sticking pressure-sensitive adhesive layered on the opposite side of the heat ray reflective layer from the cellulose ester film.
 3.前記防曇層の表面に、JIS Z 0208に準拠して測定される40℃、90%RHにおける透湿度が300g/m2・24hr以上であるハードコート樹脂を含むハードコート層を備えることを特徴とする前記1又は2に記載の遮熱防曇フィルム。 3. A surface of the anti-fogging layer is provided with a hard coat layer containing a hard coat resin having a moisture permeability of 300 g / m 2 · 24 hr or more at 40 ° C. and 90% RH measured in accordance with JIS Z 0208. The heat shielding and antifogging film as described in 1 or 2 above.
 4.前記熱線反射層は、金属酸化物粒子を含んでいることを特徴とする前記1~3の何れかに記載の遮熱防曇フィルム。 4. 4. The heat-shielding antifogging film as described in any one of 1 to 3 above, wherein the heat ray reflective layer contains metal oxide particles.
 5.前記セルロースエステルフィルムにはリン酸系の可塑剤が添加されていないことを特徴とする前記1~4の何れかに記載の遮熱防曇フィルム。 5. 5. The thermal barrier and antifogging film as described in any one of 1 to 4 above, wherein a phosphoric acid plasticizer is not added to the cellulose ester film.
 6.前記防曇層は、前記セルロースエステルフィルムの表面に155kcal/mol以上の光子エネルギーを持つ光を照射することによって形成されることを特徴とする前記1~5の何れかに記載の遮熱防曇フィルム。 6. 6. The heat-shielding and anti-fogging layer according to any one of 1 to 5, wherein the anti-fogging layer is formed by irradiating the surface of the cellulose ester film with light having a photon energy of 155 kcal / mol or more. the film.
 7.前記1~6の何れかに記載の遮熱防曇フィルムの前記熱線反射層側とガラスとを水貼り用接着剤で貼着したことを特徴とするガラス積層体。 7. 7. A glass laminate, wherein the heat ray-reflecting antifogging film according to any one of 1 to 6 above and the glass are adhered to the heat ray reflective layer side with a water sticking adhesive.
 本発明の遮熱防曇フィルムは、建物や車両の窓ガラスに貼合してガラス積層体として使用することができる。 The heat-shielding and anti-fogging film of the present invention can be used as a glass laminate by being bonded to a window glass of a building or a vehicle.
  10   ガラス積層体
  11   ガラス
  12   水貼り用粘着剤
  13   熱線反射層
  14   セルロースエステルフィルム
  14a  防曇層
  15   ハードコート層
DESCRIPTION OF SYMBOLS 10 Glass laminated body 11 Glass 12 Adhesive for water sticking 13 Heat ray reflective layer 14 Cellulose ester film 14a Anti-fogging layer 15 Hard coat layer

Claims (7)

  1.  遮熱機能及び防曇機能を有する遮熱防曇フィルムであって、
     セルロースエステルフィルムと、
     前記セルロースエステルフィルムの一方の面に積層された親水性の熱線反射層と、
     前記セルロースエステルフィルムの他方の面が親水化処理されて形成された防曇層と、を備えることを特徴とする遮熱防曇フィルム。
    A heat and anti-fogging film having a heat and anti-fogging function,
    A cellulose ester film;
    A hydrophilic heat ray reflective layer laminated on one surface of the cellulose ester film;
    An antifogging film comprising: an antifogging layer formed by hydrophilizing the other surface of the cellulose ester film.
  2.  前記熱線反射層の前記セルロースエステルフィルムとは反対面側に積層された水貼り用粘着剤を備えることを特徴とする請求項1に記載の遮熱防曇フィルム。 The heat-shielding anti-fogging film according to claim 1, further comprising a water sticking adhesive laminated on the opposite side of the heat ray reflective layer from the cellulose ester film.
  3.  前記防曇層の表面に、JIS Z 0208に準拠して測定される40℃、90%RHにおける透湿度が300g/m2・24hr以上であるハードコート樹脂を含むハードコート層を備えることを特徴とする請求項1又は2に記載の遮熱防曇フィルム。 A surface of the anti-fogging layer is provided with a hard coat layer containing a hard coat resin having a moisture permeability of 300 g / m 2 · 24 hr or more at 40 ° C. and 90% RH measured in accordance with JIS Z 0208. The heat-shielding anti-fogging film according to claim 1 or 2.
  4.  前記熱線反射層は、金属酸化物粒子を含んでいることを特徴とする請求項1~3の何れかに記載の遮熱防曇フィルム。 The heat shielding and antifogging film according to any one of claims 1 to 3, wherein the heat ray reflective layer contains metal oxide particles.
  5.  前記セルロースエステルフィルムにはリン酸系の可塑剤が添加されていないことを特徴とする請求項1~4の何れかに記載の遮熱防曇フィルム。 The heat-shielding and anti-fogging film according to any one of claims 1 to 4, wherein a phosphoric acid plasticizer is not added to the cellulose ester film.
  6.  前記防曇層は、前記セルロースエステルフィルムの表面に155kcal/mol以上の光子エネルギーを持つ光を照射することによって形成されることを特徴とする請求項1~5の何れかに記載の遮熱防曇フィルム。 The heat shield layer according to any one of claims 1 to 5, wherein the antifogging layer is formed by irradiating the surface of the cellulose ester film with light having a photon energy of 155 kcal / mol or more. Fog film.
  7.  請求項1~6の何れかに記載の遮熱防曇フィルムの前記熱線反射層側とガラスとを水貼り用粘着剤で貼着したことを特徴とするガラス積層体。 7. A glass laminate comprising the heat-shielding and anti-fogging film according to claim 1 and the glass layer adhered to the heat ray reflective layer side with a water sticking adhesive.
PCT/JP2014/079306 2013-12-05 2014-11-05 Heat-shielding antifog film and glass laminate WO2015083479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551434A JPWO2015083479A1 (en) 2013-12-05 2014-11-05 Thermal barrier / antifogging film and glass laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-251883 2013-12-05
JP2013251883 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083479A1 true WO2015083479A1 (en) 2015-06-11

Family

ID=53273252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079306 WO2015083479A1 (en) 2013-12-05 2014-11-05 Heat-shielding antifog film and glass laminate

Country Status (2)

Country Link
JP (1) JPWO2015083479A1 (en)
WO (1) WO2015083479A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021499A1 (en) * 2016-07-29 2018-02-01 日本板硝子株式会社 Windshield and windshield manufacturing method
WO2018123916A1 (en) * 2016-12-28 2018-07-05 日本板硝子株式会社 Glass plate production method and automotive glass plate
WO2018181569A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Transparent film, and transparent film for agricultural use
JP2018171913A (en) * 2017-03-30 2018-11-08 富士フイルム株式会社 Transparent film, and transparent film for agricultural use
CN109496205A (en) * 2016-07-20 2019-03-19 日本板硝子株式会社 The manufacturing method of windshield and windshield
JP2019135284A (en) * 2018-02-05 2019-08-15 Dsp五協フード&ケミカル株式会社 Aqueous composition, method for producing the same, and method for producing film
WO2019163758A1 (en) * 2018-02-20 2019-08-29 富士フイルム株式会社 Anti-fog film
WO2020021882A1 (en) * 2018-07-24 2020-01-30 富士フイルム株式会社 Anti-fogging layered body and anti-fogging layered body manufacturing method
JP2021037636A (en) * 2019-08-30 2021-03-11 富士フイルム株式会社 Anti-fogging laminate, and method for producing anti-fogging laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331752A (en) * 1986-07-28 1988-02-10 住友化学工業株式会社 Light selective transmitting film or sheet
JPS63246237A (en) * 1987-04-01 1988-10-13 住友化学工業株式会社 Fog-resistant light-selecting transmitting film or sheet
JP2006095927A (en) * 2004-09-30 2006-04-13 Kimoto & Co Ltd Fog resistance film
JP2009086659A (en) * 2007-09-13 2009-04-23 Mitsubishi Chemicals Corp Heat ray shielding film and laminated body thereof
JP2013044916A (en) * 2011-08-24 2013-03-04 Konica Minolta Advanced Layers Inc Optical reflection film, method of manufacturing optical reflection film, and optical reflector using the same
JP2013100401A (en) * 2011-11-08 2013-05-23 Konica Minolta Advanced Layers Inc Anti-fogging thin film
JP2013099879A (en) * 2011-11-08 2013-05-23 Konica Minolta Advanced Layers Inc Thin anti-fog film
JP2014210389A (en) * 2013-04-19 2014-11-13 コニカミノルタ株式会社 Glass laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331752A (en) * 1986-07-28 1988-02-10 住友化学工業株式会社 Light selective transmitting film or sheet
JPS63246237A (en) * 1987-04-01 1988-10-13 住友化学工業株式会社 Fog-resistant light-selecting transmitting film or sheet
JP2006095927A (en) * 2004-09-30 2006-04-13 Kimoto & Co Ltd Fog resistance film
JP2009086659A (en) * 2007-09-13 2009-04-23 Mitsubishi Chemicals Corp Heat ray shielding film and laminated body thereof
JP2013044916A (en) * 2011-08-24 2013-03-04 Konica Minolta Advanced Layers Inc Optical reflection film, method of manufacturing optical reflection film, and optical reflector using the same
JP2013100401A (en) * 2011-11-08 2013-05-23 Konica Minolta Advanced Layers Inc Anti-fogging thin film
JP2013099879A (en) * 2011-11-08 2013-05-23 Konica Minolta Advanced Layers Inc Thin anti-fog film
JP2014210389A (en) * 2013-04-19 2014-11-13 コニカミノルタ株式会社 Glass laminate

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496205A (en) * 2016-07-20 2019-03-19 日本板硝子株式会社 The manufacturing method of windshield and windshield
EP3489204A4 (en) * 2016-07-20 2020-05-06 Nippon Sheet Glass Company, Limited Windshield and windshield manufacturing method
JP2020073364A (en) * 2016-07-29 2020-05-14 日本板硝子株式会社 Windshield and manufacturing method of windshield
WO2018021499A1 (en) * 2016-07-29 2018-02-01 日本板硝子株式会社 Windshield and windshield manufacturing method
CN109641793A (en) * 2016-07-29 2019-04-16 日本板硝子株式会社 The manufacturing method of windshield and windshield
JPWO2018021499A1 (en) * 2016-07-29 2019-05-23 日本板硝子株式会社 Windshield and method of manufacturing windshield
US11897810B2 (en) 2016-07-29 2024-02-13 Nippon Sheet Glass Company, Limited Windshield and windshield manufacturing method
US20200023618A1 (en) * 2016-12-28 2020-01-23 Nippon Sheet Glass Company, Limited Method for manufacturing glass plate and glass plate for automobile
JP2018108677A (en) * 2016-12-28 2018-07-12 日本板硝子株式会社 Glass plate production method and automobile glass plate
WO2018123916A1 (en) * 2016-12-28 2018-07-05 日本板硝子株式会社 Glass plate production method and automotive glass plate
CN110446746B (en) * 2017-03-30 2022-03-11 富士胶片株式会社 Transparent film and agricultural transparent film
JP2018171913A (en) * 2017-03-30 2018-11-08 富士フイルム株式会社 Transparent film, and transparent film for agricultural use
CN110446746A (en) * 2017-03-30 2019-11-12 富士胶片株式会社 Transparent membrane and agricultural transparent membrane
WO2018181569A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Transparent film, and transparent film for agricultural use
JP2019135284A (en) * 2018-02-05 2019-08-15 Dsp五協フード&ケミカル株式会社 Aqueous composition, method for producing the same, and method for producing film
CN111801221B (en) * 2018-02-20 2022-07-26 富士胶片株式会社 Antifogging film
JPWO2019163758A1 (en) * 2018-02-20 2021-02-04 富士フイルム株式会社 Anti-fog film
WO2019163758A1 (en) * 2018-02-20 2019-08-29 富士フイルム株式会社 Anti-fog film
CN111801221A (en) * 2018-02-20 2020-10-20 富士胶片株式会社 Antifogging film
CN112154067A (en) * 2018-07-24 2020-12-29 富士胶片株式会社 Antifogging laminate and method for producing antifogging laminate
US20210060913A1 (en) * 2018-07-24 2021-03-04 Fujifilm Corporation Antifogging laminate and method for manufacturing antifogging laminate
JPWO2020021882A1 (en) * 2018-07-24 2021-06-24 富士フイルム株式会社 Method for manufacturing anti-fog laminate and anti-fog laminate
JP7065968B2 (en) 2018-07-24 2022-05-12 富士フイルム株式会社 Method for manufacturing anti-fog laminate and anti-fog laminate
WO2020021882A1 (en) * 2018-07-24 2020-01-30 富士フイルム株式会社 Anti-fogging layered body and anti-fogging layered body manufacturing method
CN112154067B (en) * 2018-07-24 2022-09-30 富士胶片株式会社 Antifogging laminate and method for producing antifogging laminate
US11654666B2 (en) 2018-07-24 2023-05-23 Fujifilm Corporation Antifogging laminate and method for manufacturing antifogging laminate
JP2021037636A (en) * 2019-08-30 2021-03-11 富士フイルム株式会社 Anti-fogging laminate, and method for producing anti-fogging laminate
JP7179701B2 (en) 2019-08-30 2022-11-29 富士フイルム株式会社 Anti-fogging laminate and method for producing anti-fogging laminate

Also Published As

Publication number Publication date
JPWO2015083479A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015083479A1 (en) Heat-shielding antifog film and glass laminate
WO2016027733A1 (en) Light-reflecting film, production method for light-reflecting film, decorative molding method for light-reflecting film, laminated glass, and curved surface body
TWI448747B (en) Optical film, polarizing plate and liquid crystal display device
JP6597598B2 (en) Solar durable high transparency film, solar control film, infrared reflective film and film mirror
TWI551881B (en) Optical continuum
JP5799954B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
JP2013099879A (en) Thin anti-fog film
JP2009098636A (en) Optical film, polarizer, and liquid crystal display
WO2015146674A1 (en) Optical film, and window film employing same
JP5895657B2 (en) Manufacturing method of optical film
TW201617393A (en) Manufacturing method of optical film, optical film, polarizer, and image display device
TWI448719B (en) Anti-reflection film, and anti-reflection film, and a polarizing plate using the same, and a display device
WO2011055624A1 (en) Polarizing plate and liquid crystal display device
JP2007233375A (en) Antireflection film, polarizing plate using the same, and image display device
JPWO2015115329A1 (en) Optical film
WO2015146676A1 (en) Optical film, infrared reflective film using same and laminated glass
JP2014224920A (en) Production method of antireflection film
WO2017077839A1 (en) Self-healing film
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
JP4393232B2 (en) Method for producing antireflection film
JP2010031141A (en) Acrylic resin film and laminate
TW200907491A (en) Antireflection film, polarizing plate using the same, and image display
JP4905787B2 (en) Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film
JP2007114377A (en) Anti-glare film, anti-glare and anti-reflection film, polarizing plate and image display apparatus
JP2017203965A (en) Optical reflection film in roll state

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867200

Country of ref document: EP

Kind code of ref document: A1