JP4905787B2 - Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film - Google Patents

Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film Download PDF

Info

Publication number
JP4905787B2
JP4905787B2 JP2007055683A JP2007055683A JP4905787B2 JP 4905787 B2 JP4905787 B2 JP 4905787B2 JP 2007055683 A JP2007055683 A JP 2007055683A JP 2007055683 A JP2007055683 A JP 2007055683A JP 4905787 B2 JP4905787 B2 JP 4905787B2
Authority
JP
Japan
Prior art keywords
group
film
antiglare
layer
cellulose ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007055683A
Other languages
Japanese (ja)
Other versions
JP2007272214A (en
Inventor
修 沢登
博之 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007055683A priority Critical patent/JP4905787B2/en
Publication of JP2007272214A publication Critical patent/JP2007272214A/en
Application granted granted Critical
Publication of JP4905787B2 publication Critical patent/JP4905787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、特定のセルロースエステルフィルム上に特定の防眩層を有する防眩フィルム、それを用いた反射防止フィルム、偏光板、液晶表示装置、及び防眩フィルムの製造方法に関する。   The present invention relates to an antiglare film having a specific antiglare layer on a specific cellulose ester film, an antireflection film using the same, a polarizing plate, a liquid crystal display device, and a method for producing the antiglare film.

近年、液晶表示装置(LCD)は大画面化が進み、例えば防眩フィルム、反射防止フィルム、光拡散シート等の光学フィルムを配置した液晶表示装置が増大している。例えば防眩フィルムや反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような様々な画像表示装置において、像の映り込みや外光の反射によるコントラスト低下を防止するために、ディスプレイの表面に配置される。また、光拡散シートは液晶表示装置のバックライトに用いられる。   In recent years, liquid crystal display devices (LCD) have increased in screen size, and for example, liquid crystal display devices having an optical film such as an antiglare film, an antireflection film, and a light diffusion sheet are increasing. For example, antiglare films and antireflection films are used in various image display devices such as liquid crystal display devices (LCD), plasma display panels (PDP), electroluminescence displays (ELD), and cathode ray tube display devices (CRT). In order to prevent a decrease in contrast due to reflection or reflection of external light, it is arranged on the surface of the display. The light diffusion sheet is used for a backlight of a liquid crystal display device.

一般に防眩フィルムは、防眩塗料をプラスチック基材フィルム上に直接、或いは0.1〜1μm程度の下層を介して3〜10μm程度の膜厚の層として形成される。設置法は、生産性に優れる塗布法によって行われることが多い(特許文献1)。防眩フィルムはディスプレイの最表面に用いられるため様々な膜強度、たとえば細かなこすり傷に対する耐擦傷性や、筆記器具で書かれたときの圧力に耐える膜硬度などが要求される。しかしながら、従来の防眩フィルムは、その防眩層の硬度が不十分であったこと、下地のプラスチック基材フィルムの変形により、防眩層も変形し、防眩フィルム全体としての硬度は低く、十分に満足できるものではない。セルロースエステルフィルム上に、電離放射線硬化性樹脂からなる防眩層を上記の厚みで塗設した防眩フィルムにおいては、鉛筆硬度で2H程度が一般的であり、4H以上の十分な硬度は得られなかった。   In general, the antiglare film is formed by directly applying an antiglare coating on a plastic substrate film or as a layer having a thickness of about 3 to 10 μm through a lower layer of about 0.1 to 1 μm. The installation method is often performed by a coating method with excellent productivity (Patent Document 1). Since the antiglare film is used on the outermost surface of the display, various film strengths such as scratch resistance against fine scratches and film hardness that can withstand pressure when written with a writing instrument are required. However, the conventional anti-glare film has insufficient hardness of the anti-glare layer, the deformation of the underlying plastic base film, the anti-glare layer is also deformed, and the overall hardness of the anti-glare film is low, It is not satisfactory enough. In an antiglare film in which an antiglare layer made of an ionizing radiation curable resin is coated on a cellulose ester film with the above thickness, a pencil hardness of about 2H is common, and a sufficient hardness of 4H or more is obtained. There wasn't.

また、セルロースエステルフィルムには、耐久性を付与するために紫外線吸収剤が添加されている。特許文献2には紫外線吸収剤を含有するセルロースエステルフィルム上に紫外線硬化樹脂層を設けた例が示されているが、鉛筆硬度が2H程度しかなく、十分な硬度とはいえなかった。特許文献3には紫外線吸収剤を含有するセルローストリアセテートフィルム上に防眩層を形成した例が記載されているが、これらも鉛筆硬度で2H程度しかなく、十分なレベルとはいえなかった。   Moreover, the ultraviolet absorber is added to the cellulose-ester film in order to provide durability. Patent Document 2 shows an example in which an ultraviolet curable resin layer is provided on a cellulose ester film containing an ultraviolet absorber. However, the pencil hardness is only about 2H, which is not sufficient. Patent Document 3 describes an example in which an antiglare layer is formed on a cellulose triacetate film containing an ultraviolet absorber, but these are only about 2H in pencil hardness, and cannot be said to be a sufficient level.

紫外線吸収剤を含有するセルロースエステルフィルム基材上に紫外線硬化樹脂層を形成する場合、照射する紫外線によってフィルム自身も発熱し、基材が変形してしまうという問題があった。特に薄膜フィルムでは必要な紫外線吸収性を持たせるため、紫外線吸収剤の含有量を増加せざるを得ず、その分その影響が顕著であった。例えば、特許文献4、5、6に記載されている光散乱フィルムは300mJ/cm2の強い紫外線を照射して光拡散層を形成することで、3Hの鉛筆硬度が得られることが示されているが、この方法で得られるフィルムは平面性が劣り、特に膜厚が薄いフィルムや広幅のフィルムでは平面性が更に悪化することがあった。更に、基材フィルムの幅が広くなると幅方向に均一に紫外線を照射することが困難となり、やはり基材が変形してしまうことがあった。基材の変形を恐れて照射量を減らすと端部に近い場所で十分な光量が確保出来ない場合があり、必要な硬度が得られず、光量を減らして照射時間を長くすると生産性が著しく低下することがあった。 When an ultraviolet curable resin layer is formed on a cellulose ester film substrate containing an ultraviolet absorber, there is a problem that the film itself generates heat due to the irradiated ultraviolet rays and the substrate is deformed. In particular, in order to provide the necessary ultraviolet absorptivity for a thin film, the content of the ultraviolet absorber has to be increased, and the effect is significant accordingly. For example, it is shown that the light scattering films described in Patent Documents 4, 5, and 6 can obtain a pencil hardness of 3H by irradiating strong ultraviolet rays of 300 mJ / cm 2 to form a light diffusion layer. However, the film obtained by this method is inferior in planarity, and the planarity may be further deteriorated particularly in a thin film or a wide film. Furthermore, when the width of the base film is increased, it is difficult to irradiate ultraviolet rays uniformly in the width direction, and the base material may be deformed. If the amount of irradiation is reduced due to fear of deformation of the base material, sufficient light intensity may not be secured near the edge, and the required hardness cannot be obtained. There was a decline.

一方、近年、画像表示装置の使用環境は屋外にまで広がってきており、防眩層を有するセルロースエステルフィルムにも屋外での使用に耐え得る耐久性の向上が望まれている。とりわけ、表示装置の外装に使用される防眩フィルムでは、屋外で連続使用して紫外線等にさらされることによりセルロースエステルフィルムと防眩層との密着性が低下して、表示装置の表面に不意の擦傷により剥離傷が発生することがあり、製品として使用できなくなることがある。   On the other hand, in recent years, the use environment of the image display apparatus has been extended to the outdoors, and it is desired that the cellulose ester film having the antiglare layer be improved in durability that can be used outdoors. In particular, in the antiglare film used for the exterior of the display device, the adhesion between the cellulose ester film and the antiglare layer is lowered due to continuous use outdoors and exposed to ultraviolet rays, etc. In some cases, peeling scratches may occur due to the abrasion of the product, and the product may not be used.

これに対して、トリアセチルセルロースフィルムの表面に相溶性の良いケトン系溶剤等を用いることによりハードコート層との密着性を向上させる方法が提案されている。しかしながら、この方法ではトリアセチルセルロースフィルムが白化して透明性を損われることがある。特許文献7には、ハードコート層にセルロース系樹脂を配合することによりトリアセチルセルロースフィルムとの密着性を向上させる方法が開示されている。しかしながら、この方法では紫外線等の光に長期間さらされた場合には密着性が不充分になってしまうことがあった。   On the other hand, a method for improving the adhesion to the hard coat layer by using a compatible ketone solvent or the like on the surface of the triacetyl cellulose film has been proposed. However, in this method, the triacetyl cellulose film may be whitened to impair transparency. Patent Document 7 discloses a method for improving adhesion to a triacetyl cellulose film by blending a cellulose resin in a hard coat layer. However, in this method, the adhesion may be insufficient when exposed to light such as ultraviolet rays for a long time.

特開昭59−50401号公報JP 59-50401 A 特開2001−183528号公報JP 2001-183528 A 特開2001−91705号公報JP 2001-91705 A 特開2003−57415号公報JP 2003-57415 A 特開2003−114304号公報JP 2003-114304 A 特開2003−121618号公報JP 2003-121618 A 特開平9−302144号公報JP-A-9-302144

本発明の目的は、硬度および耐擦傷性に優れ、また、日光等の光線に長期間さらされた場合の密着性に優れ、広幅であっても優れた平面性を有する防眩フィルム及びそれを生産性よく製造する方法を提供することにある。更には、そのような防眩フィルムを用いた反射防止フィルム、偏光板、及び液晶表示装置を提供することにある。   The object of the present invention is to provide an antiglare film having excellent hardness and scratch resistance, and excellent adhesion when exposed to light such as sunlight for a long period of time, and having excellent flatness even if it is wide. The object is to provide a method of manufacturing with high productivity. Furthermore, it is providing the antireflection film, polarizing plate, and liquid crystal display device using such an anti-glare film.

本発明者は、鋭意検討の結果、紫外線吸収剤、及びリン酸エステル系可塑剤以外の可塑剤から選ばれる少なくとも2種以上の可塑剤を含有する(リン酸エステル系可塑剤は実質的に含有しない)セルロースエステルフィルム上に、膜厚が8〜40μmであり、少なくとも1種の透光性樹脂と少なくとも1種の平均粒子径5〜15μmの光拡散性粒子を含有する硬化性樹脂組成物(A)を塗設して表面ヘイズが15%以下である防眩層を形成することで、硬度および耐擦傷性に優れ、また、日光等の光線に長期間さらされた場合の密着性に優れ、広幅であっても優れた平面性を有する防眩フィルム及び反射防止フィルムを作成できることを見出し、本発明の完成に至った。   As a result of intensive studies, the inventor contains at least two plasticizers selected from plasticizers other than ultraviolet absorbers and phosphate ester plasticizers (the phosphate ester plasticizer is substantially contained). No) A curable resin composition having a film thickness of 8 to 40 μm on a cellulose ester film, containing at least one light transmissive resin and at least one light diffusing particle having an average particle diameter of 5 to 15 μm ( A) is applied to form an antiglare layer having a surface haze of 15% or less, so that it has excellent hardness and scratch resistance, and also has excellent adhesion when exposed to light such as sunlight for a long time. The present inventors have found that an antiglare film and an antireflection film having excellent flatness can be produced even if they are wide, and have completed the present invention.

すなわち、上記目的は以下の各構成及び化合物の使用により達成できる。
(1)
紫外線吸収剤、及びリン酸エステル系可塑剤以外の可塑剤から選ばれる少なくとも2種以上の可塑剤を含有するセルロースエステルフィルム上に、少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子とチタンアルコキシド、ジルコニウムアルコキシド及びそれらのキレート化合物よりなる群から選ばれる少なくとも1種の金属化合物とを含有する硬化性樹脂組成物(A)を塗設してなる防眩層を有する防眩フィルムであって、該セルロースエステルフィルム中のリン酸エステル系可塑剤の含有率が1質量%未満であり、かつ該防眩層中の光拡散性粒子の平均粒子径が5〜15μmであり、該防眩層の膜厚が8〜40μm、および該防眩層塗設側の表面ヘイズが15%以下であることを特徴とする防眩フィルム。

表面ヘイズが10%以下であり内部ヘイズが10〜90%であることを特徴とする(1)に記載の防眩フィルム。

荷重4.9Nの鉛筆硬度が4H以上であることを特徴とする(1)又は(2)に記載の防眩フィルム。

該セルロースエステルフィルムが、総アシル基置換度2.6〜2.9、数平均分子量(Mn)80000〜200000、質量平均分子量(Mw)/数平均分子量(Mn)の値が1.4〜3.0であるセルロースエステル溶液を流延後、2軸延伸して製造されたものであり、かつ該防眩層中の透光性樹脂が電離放射線硬化性化合物を含有し、該防眩層が、該セルロースエステルフィルム上に該硬化性樹脂組成物(A)を塗設した後、電離放射線を照射して該硬化性樹脂組成物(A)を硬化させたことを特徴とする(1)〜()のいずれか一項に記載の防眩フィルム。

該防眩層中の透光性樹脂が、1分子中に少なくとも2個以上のエチレン性不飽和基を含む化合物を含有することを特徴とする、(1)〜()のいずれか一項に記載の防眩フィルム。

該セルロースエステルフィルムが含有する可塑剤の少なくとも1種が、多価アルコールエステル系可塑剤であることを特徴とする(1)〜()のいずれか一項に記載の防眩フィルム。

該セルロースエステルフィルムが含有する可塑剤の少なくとも1種が、クエン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、及び脂肪酸エステル系可塑剤から選択されることを特徴とする(1)〜()のいずれか一項に記載の防眩フィルム。

該セルロースエステルフィルムが含有する紫外線吸収剤の少なくとも1種が、ベンゾフェノン系紫外線吸収剤またはトリアジン系紫外線吸収剤であることを特徴とする(1)〜()のいずれか一項に記載の防眩フィルム。

(1)〜()のいずれか一項に記載の防眩フィルム上に、防眩層よりも屈折率の低い低屈折率層を設けたことを特徴とする反射防止フィルム。
10
(1)〜()のいずれか一項に記載の防眩フィルム、または()に記載の反射防止フィルムを、少なくとも一方の側に備えたことを特徴とする偏光板。
(11)
(1)〜()のいずれか一項に記載の防眩フィルム、()に記載の反射防止フィルム、及び(10)に記載の偏光板の少なくとも一つが配置されていることを特徴とする画像表示装置。
12
紫外線吸収剤、及びリン酸エステル系可塑剤以外の可塑剤から選ばれる少なくとも2種以上の可塑剤を含有するセルロースエステルフィルム上に、少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子とチタンアルコキシド、ジルコニウムアルコキシド及びそれらのキレート化合物よりなる群から選ばれる少なくとも1種の金属化合物とを含有する硬化性樹脂組成物(A)を塗設してなる防眩層を有する防眩フィルムの製造方法であって、
紫外線吸収剤及び少なくとも2種の可塑剤を含有し、かつ総アシル基置換度が2.6〜2.9、数平均分子量(Mn)が80,000〜200,000、質量平均分子量(Mw)/数平均分子量(Mn)の値が1.4〜3.0であるセルロースエステルを含有するセルロースエステル溶液を支持体上に流延し、剥離可能となるまで乾燥させ、支持体から剥離後に溶媒を含んだ状態で、2軸延伸し、乾燥させて得られたリン酸エステル系可塑剤の含有量が1質量%未満であるセルロースエステルフィルム上に、
少なくとも1種の透光性樹脂と、少なくとも1種の平均粒子径が5〜15μmである光拡散性粒子と、チタンアルコキシド、ジルコニウムアルコキシド及びそれらのキレート化合物よりなる群から選ばれる少なくとも1種の金属化合物とを含有する硬化性樹脂組成物(A)を塗設し、電離放射線を照射して、電離放射線の光量が5〜100mJ/cm2で該樹脂組成物(A)を硬化することを特徴とする防眩フィルムの製造方法。
13
該樹脂組成物(A)を硬化させた層の膜厚が8〜40μmであることを特徴とする(12)に記載の防眩フィルムの製造方法。
14
該硬化性樹組成物(A)を硬化させる電離放射線照射部の照度が、50〜150mW/cm2であることを特徴とする(12)又は(13)に記載の防眩フィルムの製造方法。
15
該セルロースエステルフィルムの延伸が、支持体から剥離後、溶媒を含んだ状態で縦方向(搬送方向)に延伸し、その後、テンターにて横方向に延伸するものであることを特徴とする(12)〜(14)のいずれか一項に記載の防眩フィルムの製造方法。
16
該硬化性樹脂組成物(A)を、張力を付与させながら硬化させることを特徴とする(12)〜(15)のいずれか一項に記載の防眩フィルムの製造方法。
なお、本発明は上記(1)〜(16)に記載された、防眩フィルム、反射防止フィルム、偏光板、画像表示装置及び防眩フィルムの製造方法であるが、参考のため、明細書中にはその他の事項についても記載してある。
That is, the above object can be achieved by using the following structures and compounds.
(1)
On a cellulose ester film containing at least two kinds of plasticizers selected from ultraviolet absorbers and plasticizers other than phosphoric ester plasticizers, at least one kind of translucent resin and at least one kind of light diffusibility An anti-glare film having an anti-glare layer formed by coating particles and a curable resin composition (A) containing at least one metal compound selected from the group consisting of titanium alkoxides, zirconium alkoxides and their chelate compounds The content of the phosphate ester plasticizer in the cellulose ester film is less than 1% by mass, and the average particle size of the light diffusing particles in the antiglare layer is 5 to 15 μm, An anti-glare film, wherein the film thickness of the anti-glare layer is 8 to 40 μm, and the surface haze on the anti-glare layer coating side is 15% or less.
( 2 )
The antiglare film according to (1 ), wherein the surface haze is 10% or less and the internal haze is 10 to 90%.
( 3 )
The anti-glare film as described in (1) or (2) , wherein the pencil hardness with a load of 4.9 N is 4H or more.
( 4 )
The cellulose ester film has a total acyl group substitution degree of 2.6 to 2.9, a number average molecular weight (Mn) of 80000 to 200000, and a mass average molecular weight (Mw) / number average molecular weight (Mn) of 1.4 to 3 0.0, the cellulose ester solution is cast and then biaxially stretched, and the translucent resin in the antiglare layer contains an ionizing radiation curable compound, and the antiglare layer is The curable resin composition (A) is coated on the cellulose ester film and then irradiated with ionizing radiation to cure the curable resin composition (A). The antiglare film according to any one of ( 3 ).
( 5 )
The translucent resin in the antiglare layer contains a compound containing at least two ethylenically unsaturated groups in one molecule, (1) to ( 4 ), The anti-glare film as described in 2.
( 6 )
The antiglare film according to any one of (1) to ( 5 ), wherein at least one plasticizer contained in the cellulose ester film is a polyhydric alcohol ester plasticizer.
( 7 )
At least one plasticizer contained in the cellulose ester film is selected from citrate ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, and fatty acid ester plasticizers. The antiglare film according to any one of (1) to ( 6 ).
( 8 )
At least 1 sort (s) of the ultraviolet absorber which this cellulose ester film contains is a benzophenone type ultraviolet absorber or a triazine type ultraviolet absorber, The prevention as described in any one of (1)-( 7 ) characterized by the above-mentioned. Dazzle film.
( 9 )
An antireflection film comprising a low refractive index layer having a refractive index lower than that of the antiglare layer on the antiglare film according to any one of (1) to ( 8 ).
( 10 )
A polarizing plate comprising the antiglare film according to any one of (1) to ( 8 ) or the antireflection film according to ( 9 ) on at least one side.
(11)
At least one of the anti-glare film as described in any one of (1)-( 8 ), the antireflection film as described in ( 9 ), and the polarizing plate as described in ( 10 ) is arrange | positioned, It is characterized by the above-mentioned. An image display device.
( 12 )
On a cellulose ester film containing at least two kinds of plasticizers selected from ultraviolet absorbers and plasticizers other than phosphoric ester plasticizers, at least one kind of translucent resin and at least one kind of light diffusibility An anti-glare film having an anti-glare layer formed by coating particles and a curable resin composition (A) containing at least one metal compound selected from the group consisting of titanium alkoxides, zirconium alkoxides and their chelate compounds A manufacturing method of
Contains an ultraviolet absorber and at least two plasticizers, has a total acyl group substitution degree of 2.6 to 2.9, a number average molecular weight (Mn) of 80,000 to 200,000, and a weight average molecular weight (Mw). / A cellulose ester solution containing a cellulose ester having a number average molecular weight (Mn) value of 1.4 to 3.0 is cast on a support and dried until it can be peeled off. On a cellulose ester film having a phosphate ester plasticizer content of less than 1% by mass obtained by biaxial stretching and drying.
At least one kind of metal selected from the group consisting of at least one kind of translucent resin, at least one kind of light diffusing particles having an average particle diameter of 5 to 15 μm , titanium alkoxide, zirconium alkoxide and their chelate compounds. A curable resin composition (A) containing a compound is coated, irradiated with ionizing radiation, and the resin composition (A) is cured with an amount of ionizing radiation of 5 to 100 mJ / cm 2. A method for producing an antiglare film.
( 13 )
The method for producing an antiglare film as described in ( 12 ), wherein the thickness of the layer obtained by curing the resin composition (A) is 8 to 40 μm.
( 14 )
The illuminance of the ionizing radiation irradiation part for curing the curable tree composition (A) is 50 to 150 mW / cm 2 , The method for producing an antiglare film according to ( 12 ) or ( 13 ).
( 15 )
The stretching of the cellulose ester film is characterized in that after peeling from the support, the cellulose ester film is stretched in the longitudinal direction (conveying direction) while containing a solvent, and then stretched in the transverse direction by a tenter ( 12 )-( 14 ) The manufacturing method of the anti-glare film as described in any one of.
( 16 )
The method for producing an antiglare film according to any one of ( 12 ) to ( 15 ), wherein the curable resin composition (A) is cured while applying a tension.
In addition, although this invention is a manufacturing method of the anti-glare film, the antireflection film, the polarizing plate, the image display apparatus, and the anti-glare film which were described in said (1)-(16), it is in the specification for reference. Other items are also described in.

本発明の防眩フィルムおよび反射防止フィルムの特徴は、セルロースエステルフィルム中にリン酸エステル系以外の可塑剤を少なくとも2種以上含有することである。リン酸エステル系可塑剤を含有すると、それ自身が溶出しやすいというだけでなく、他の可塑剤も溶出しやすくなり、セルロースエステルから可塑剤が多く抜けてしまうことで平面性が劣化し、またセルロースエステルフィルム/防眩層間に析出した可塑剤によりセルロールフィルム/防眩層界面の密着性が低下するものと考えられる。この傾向は日光等の光線に長期間さらされた場合、特に顕著である。
本発明の防眩フィルムおよび反射防止フィルムのもう一つの特徴は、リン酸エステル系以外の可塑剤を少なくとも2種以上含有するセルロースエステルフィルム上に、膜厚が8〜40μmであり、少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有する硬化性樹脂組成物(A)を塗設して防眩層を形成することである。防眩層の膜厚がより小さく、光拡散粒子しか含まない通常の防眩フィルムと比較し、耐擦傷性及び防眩性を改良することができた。
A feature of the antiglare film and the antireflection film of the present invention is that the cellulose ester film contains at least two kinds of plasticizers other than phosphate ester. When a phosphate ester plasticizer is contained, not only the plasticizer itself is easily eluted, but also other plasticizers are easily eluted, and the flatness deteriorates due to a large amount of the plasticizer being removed from the cellulose ester. The plasticizer deposited between the cellulose ester film / antiglare layer is considered to reduce the adhesion at the cellulose film / antiglare layer interface. This tendency is particularly prominent when exposed to light rays such as sunlight for a long time.
Another feature of the antiglare film and the antireflection film of the present invention is that the film thickness is 8 to 40 μm on the cellulose ester film containing at least two kinds of plasticizers other than the phosphate ester type, and at least one kind. The anti-glare layer is formed by coating a curable resin composition (A) containing a translucent resin and at least one kind of light diffusing particles. As compared with a normal antiglare film having a smaller film thickness of the antiglare layer and containing only light diffusing particles, the scratch resistance and antiglare property could be improved.

本発明の防眩フィルム及び反射防止フィルムは、硬度および耐擦傷性に優れ、また、日光等の光線に長期間さらされた場合の密着性に優れ、広幅であっても優れた平面性を有する。   The antiglare film and antireflection film of the present invention are excellent in hardness and scratch resistance, have excellent adhesion when exposed to light such as sunlight for a long time, and have excellent flatness even when wide. .

本発明の防眩フィルム及び反射防止フィルムを表面保護フィルムとして用いた偏光板は、硬度および耐擦傷性に優れ、また、日光等の光線に長期間さらされた場合の密着性に優れ、広幅であっても優れた平面性を有する。   The polarizing plate using the antiglare film and the antireflection film of the present invention as a surface protective film has excellent hardness and scratch resistance, and excellent adhesion when exposed to light such as sunlight for a long period of time. Even if it exists, it has excellent flatness.

また、本発明の画像表示装置は、上記防眩フィルム、反射防止フィルムおよび/または偏光板を備えており、硬度および耐擦傷性に優れ、また、日光等の光線に長期間さらされた場合の密着性に優れ、広幅であっても優れた平面性を有する。   Further, the image display device of the present invention includes the antiglare film, the antireflection film and / or the polarizing plate, and has excellent hardness and scratch resistance, and when exposed to light rays such as sunlight for a long time. Excellent adhesion and excellent flatness even with a wide width.

更に、本発明の防眩フィルムの製造方法により、硬度および耐擦傷性に優れ、また、日光等の光線に長期間さらされた場合の密着性に優れ、広幅であっても優れた平面性を有する防眩フィルムを安価で大量に提供することができる。   Furthermore, the method for producing an antiglare film of the present invention provides excellent hardness and scratch resistance, and excellent adhesion when exposed to light such as sunlight for a long period of time. It is possible to provide an antiglare film having a large amount at a low cost.

以下、本発明の防眩フィルム、反射防止フィルム、偏光板、画像表示装置、並びにその製造方法等について説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は、「数値1以上〜数値2以下」の意味を表す。   Hereinafter, the antiglare film, the antireflection film, the polarizing plate, the image display device, and the production method thereof of the present invention will be described. In addition, in this specification, when a numerical value represents a physical property value, a characteristic value, etc., the description “(numerical value 1) to (numerical value 2)” represents the meaning of “numerical value 1 or more and numerical value 2 or less”.

本発明の防眩フィルムは、紫外線吸収剤、及びリン酸エステル系可塑剤以外の可塑剤から選ばれる少なくとも2種以上の可塑剤を含有するセルロースエステルフィルム上に、少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有する硬化性樹脂組成物(A)を塗設してなる防眩層を有する防眩フィルムであって、該セルロースエステルフィルム中のリン酸エステル系可塑剤の含有率が1質量%未満であり、かつ該防眩層中の光拡散性粒子の平均粒子径が5〜15μmであり、該防眩層の膜厚が8〜40μm、および該防眩層塗設側の表面ヘイズが15%以下であることを特徴としている。   The antiglare film of the present invention comprises at least one translucent resin on a cellulose ester film containing at least two or more plasticizers selected from a plasticizer other than an ultraviolet absorber and a phosphate ester plasticizer. And an antiglare film having an antiglare layer formed by coating the curable resin composition (A) containing at least one kind of light diffusing particles, and a phosphate ester plasticizer in the cellulose ester film Is less than 1% by mass, the average particle size of the light diffusing particles in the antiglare layer is 5 to 15 μm, the film thickness of the antiglare layer is 8 to 40 μm, and the antiglare layer The surface haze on the coating side is 15% or less.

本発明において、セルロースエステルフィルムに使用する可塑剤は特に限定はされないが、少なくとも2種の可塑剤を含有することが必要である。その際に、従来、一般的に使用されているリン酸エステル系の可塑剤は実質的に含有しないことが必要である。実質的に含有しないとは、セルロースエステルフィルム中の固形分総量に対し、リン酸エステル系の可塑剤の含有量が1質量%未満であることであることを意味し、好ましくは0.1質量%未満であり、0質量%(検出限界以下)であることが好ましい。   In the present invention, the plasticizer used for the cellulose ester film is not particularly limited, but it is necessary to contain at least two plasticizers. At that time, it is necessary that the phosphoric acid ester-based plasticizer that has been conventionally used is not substantially contained. “Substantially not contained” means that the content of the phosphate plasticizer is less than 1% by mass with respect to the total solid content in the cellulose ester film, preferably 0.1% by mass. % And preferably 0% by mass (below the detection limit).

即ち、前記の少なくとも2種の可塑剤を含有するとは、リン酸エステル系以外の可塑剤を2種以上含有することを意味している。可塑剤の少なくとも1種が多価アルコールエステル系可塑剤であることが他の可塑剤の溶出も防止していると考えられ、単独で用いる場合よりも効果的であり、特に好ましい。リン酸エステル系可塑剤を含有すると、それ自身が溶出しやすいというだけでなく、他の可塑剤も溶出しやすくなり、セルロースエステルから可塑剤が多く抜けてしまうことで平面性が劣化し、またセルロースエステルフィルム/防眩層間に析出した可塑剤によりセルロールフィルム/防眩層界面の密着性が低下するものと考えられる。   That is, to contain at least two kinds of plasticizers means to contain two or more kinds of plasticizers other than the phosphate ester type. It is considered that at least one of the plasticizers is a polyhydric alcohol ester plasticizer, which is considered to prevent the elution of other plasticizers, and is more effective than the case of using alone, and is particularly preferable. When a phosphate ester plasticizer is contained, not only the plasticizer itself is easily eluted, but also other plasticizers are easily eluted, and the flatness deteriorates due to a large amount of the plasticizer being removed from the cellulose ester. The plasticizer deposited between the cellulose ester film / antiglare layer is considered to reduce the adhesion at the cellulose film / antiglare layer interface.

セルロースエステルのMw/Mnの値は、1.4〜3.0であることが好ましい。尚、本発明においては、セルロースエステルフィルムが、材料として、Mw/Mnの値が1.4〜3.0であるセルロースエステルを含有すればよいが、偏光板用保護フィルムに含まれるセルロースエステル(好ましくはセルローストリアセテートまたはセルロースアセテートプロピオネート)全体のMw/Mnの値は1.4〜3.0の範囲であることがより好ましい。セルロースエステルの合成過程で1.4未満とすることは困難であり、ゲル濾過などによって分画することで分子量の揃ったセルロースエステルを得ることは出来るが、コストが著しくかかるため好ましくない。また、3.0を超えると平面性の維持効果が低下するため好ましくない。尚、更に好ましくは1.7〜2.2である。   The value of Mw / Mn of the cellulose ester is preferably 1.4 to 3.0. In addition, in this invention, although the cellulose ester film should just contain the cellulose ester whose value of Mw / Mn is 1.4-3.0 as a material, the cellulose ester ( The value of Mw / Mn of the whole (preferably cellulose triacetate or cellulose acetate propionate) is more preferably in the range of 1.4 to 3.0. In the synthesis process of cellulose ester, it is difficult to make it less than 1.4, and cellulose ester having a uniform molecular weight can be obtained by fractionation by gel filtration or the like. On the other hand, if it exceeds 3.0, the flatness maintaining effect is lowered, which is not preferable. More preferably, it is 1.7 to 2.2.

また、セルロースエステルの数平均分子量(Mn)が80,000〜200,000であることが好ましい。セルロースエステルの分子量が大きく、分子量の分布が少ないと、防眩層を塗布する際に、添加されている可塑剤や紫外線吸収剤が溶出しにくくなるものと推測される。この効果は2軸延伸によってセルロースエステル分子が横方向に配向することで更に顕著になるものと推測される。セルロースエステルの総アシル基置換度が2.6〜2.9の範囲にあることも好ましく、適度な割合で未置換の水酸基がセルロース主鎖に残っていることも水素結合等によって可塑剤や紫外線吸収剤の溶出を防止するのに寄与しているものと考えられる。   Moreover, it is preferable that the number average molecular weight (Mn) of a cellulose ester is 80,000-200,000. If the molecular weight of the cellulose ester is large and the distribution of the molecular weight is small, it is presumed that the plasticizer and ultraviolet absorber added are difficult to elute when the antiglare layer is applied. This effect is presumed to become more remarkable when the cellulose ester molecules are oriented in the transverse direction by biaxial stretching. It is also preferable that the total acyl group substitution degree of the cellulose ester is in the range of 2.6 to 2.9, and that an unsubstituted hydroxyl group remains in the cellulose main chain at an appropriate ratio. It is thought that it contributes to preventing the elution of the absorbent.

本発明における防眩層は、少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子を含有する硬化性樹脂組成物(A)をセルロースエステルフィルム上に塗設してなる。防眩層の膜厚は8〜40μmが必要であり、12〜35μmがより好ましく、18〜30μmが特に好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する、コストアップする、ムラの発生などが発生する場合があるので、前記範囲内とするのが好ましい。防眩層の膜厚がこの範囲より低いと、十分な鉛筆硬度を得ることができず、また防眩層の膜厚がこの範囲より高いと平面性が低下しやすくなり、かつ薄型表示装置に用いるための薄膜化を損なう恐れがある。防眩層中の光拡散性粒子の平均粒子径は5〜15μmが必要であり、好ましくは6〜12μmであり、より好ましくは7〜10μmである。平均粒径が5μm未満であると、光の散乱角度分布が広角にまで広がるため、ディスプレイの文字ボケを引き起こしたりするため、好ましくない。一方、15μmを超えると、防眩層の膜厚を厚くする必要が生じ、カールが大きくなる、素材コストの上昇が生じる。   The antiglare layer in the present invention is formed by coating a curable resin composition (A) containing at least one light transmissive resin and at least one light diffusing particle on a cellulose ester film. The film thickness of the antiglare layer needs to be 8 to 40 μm, more preferably 12 to 35 μm, and particularly preferably 18 to 30 μm. If it is too thin, the hard property will be insufficient, and if it is too thick, the curling and brittleness may deteriorate and the workability may be reduced, the cost may increase, and unevenness may occur. If the film thickness of the antiglare layer is lower than this range, sufficient pencil hardness cannot be obtained, and if the film thickness of the antiglare layer is higher than this range, the flatness tends to be lowered, and a thin display device can be obtained. There is a possibility that the thinning for use is impaired. The average particle size of the light diffusing particles in the antiglare layer needs to be 5 to 15 μm, preferably 6 to 12 μm, more preferably 7 to 10 μm. If the average particle size is less than 5 μm, the light scattering angle distribution spreads to a wide angle, which causes blurring of characters on the display, which is not preferable. On the other hand, if it exceeds 15 μm, it is necessary to increase the thickness of the antiglare layer, resulting in an increase in curl and an increase in material cost.

本発明における防眩フィルムでは、防眩層塗設側の表面ヘイズは15%以下であり、10%以下であることが好ましく、5%以下であることが更に好ましく、3%以下であることが特に好ましい。表面ヘイズを抑え、表面粗さを抑えることにより、細かなこすり傷に対する耐擦傷性に寄与しているものと考えられる。
また、本発明における防眩フィルムでは、ハードコート層の内部散乱を利用して、液晶パネルの模様や色ムラ、輝度ムラ、ギラツキなどを見えにくくしたり、散乱により視野角を拡大したりする機能を付与することができる。内部ヘイズは10〜90%であることが好ましく、更に好ましくは15〜80%であり、最も好ましくは20〜70%である。
In the antiglare film of the present invention, the surface haze on the antiglare layer coating side is 15% or less, preferably 10% or less, more preferably 5% or less, and further preferably 3% or less. Particularly preferred. It is considered that by suppressing the surface haze and suppressing the surface roughness, it contributes to scratch resistance against fine scratches.
In addition, the antiglare film of the present invention uses the internal scattering of the hard coat layer to make it difficult to see the pattern, color unevenness, luminance unevenness, and glare of the liquid crystal panel, and to enlarge the viewing angle by scattering. Can be granted. The internal haze is preferably 10 to 90%, more preferably 15 to 80%, and most preferably 20 to 70%.

本発明のフィルムのヘイズはJIS−K7105に規定されたヘイズ値のことであり、JIS−K7361−1で規定された測定法に基づき、日本電色工業(株)製の濁度計「NDH−1001DP」を用いて測定したヘイズ=(拡散光/全透過光)×100(%)として自動計測される。   The haze of the film of the present invention is the haze value defined in JIS-K7105. Based on the measurement method defined in JIS-K7361-1, a turbidimeter “NDH-” manufactured by Nippon Denshoku Industries Co., Ltd. 1001DP "is automatically measured as haze = (diffused light / total transmitted light) × 100 (%).

なお、表面ヘイズと内部ヘイズは以下の手順で測定することができる。
(1)JIS−K7136に準じてフィルムの全ヘイズ値(H)を測定する。
(2)フィルムの低屈折率層側の表面および裏面にシリコーンオイルを数滴添加し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)を2枚用いて裏表より挟んで、完全に2枚のガラス板とフィルムを光学的に密着させ、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板2枚の間にシリコーンオイルのみを挟みこんで測定したヘイズを引いた値をフィルムの内部ヘイズ(Hi)として算出する。
(3)上記(1)で測定した全ヘイズ(H)から上記(2)で算出した内部ヘイズ(Hi)を引いた値をフィルムの表面ヘイズ(Hs)として算出する。
The surface haze and internal haze can be measured by the following procedure.
(1) The total haze value (H) of the film is measured according to JIS-K7136.
(2) A few drops of silicone oil are added to the front and back surfaces of the low refractive index layer side of the film, and sandwiched from the front and back using two 1 mm thick glass plates (micro slide glass product number S 9111, manufactured by MATSANAMI), Two glass plates and a film are optically closely adhered to each other, and the haze is measured in a state where surface haze is removed, and only the silicone oil is sandwiched between two separately measured glass plates to subtract the measured haze. The calculated value is calculated as the internal haze (Hi) of the film.
(3) A value obtained by subtracting the internal haze (Hi) calculated in (2) from the total haze (H) measured in (1) above is calculated as the surface haze (Hs) of the film.

本発明の防眩層は、硬度として鉛筆硬度で4H以上が得られ、かつ平面性に優れたものであることが特徴の1つである。しかも驚くべきことに、本発明の構成により防眩層を硬化させる際の紫外線照射量が低くても従来以上の硬度を得ることが出来た。紫外線照射量を減らしても十分な硬度が得られるため、紫外線照射によるセルロースエステルフィルム中の紫外線吸収剤や防眩層自身の発熱が抑制され、更に平面性に優れる防眩フィルムが得られ、しかも生産性が飛躍的に改善されることが確認された。特に100mJ/cm2以下の照射量で4H以上の鉛筆硬度を有する防眩フィルムを得ることが出来た。 One feature of the antiglare layer of the present invention is that it has a pencil hardness of 4H or more and is excellent in flatness. Moreover, surprisingly, with the configuration of the present invention, it was possible to obtain a hardness higher than that of the prior art even when the amount of ultraviolet irradiation when curing the antiglare layer was low. Sufficient hardness can be obtained even if the amount of UV irradiation is reduced, so that heat generation of the UV absorber and antiglare layer in the cellulose ester film due to UV irradiation is suppressed, and an antiglare film with excellent flatness is obtained. It was confirmed that productivity was improved dramatically. In particular, an antiglare film having a pencil hardness of 4H or more was obtained at an irradiation dose of 100 mJ / cm 2 or less.

以下更に詳細に本発明を説明する。
[セルロースエステルフィルム]
本発明の防眩フィルムのセルロースエステルフィルムの製造方法について述べる。
〈セルロースエステル〉
本発明に用いられるセルロースエステルの分子量は、数平均分子量(Mn)で80,000〜200,000のものが用いられる。100,000〜200,000のものが更に好ましく、150,000〜200,000が特に好ましい。
The present invention is described in further detail below.
[Cellulose ester film]
The manufacturing method of the cellulose-ester film of the anti-glare film of this invention is described.
<Cellulose ester>
As the molecular weight of the cellulose ester used in the present invention, those having a number average molecular weight (Mn) of 80,000 to 200,000 are used. 100,000 to 200,000 are more preferable, and 150,000 to 200,000 are particularly preferable.

本発明で用いられるセルロースエステルは、質量平均分子量(Mw)と数平均分子量(Mn)の比、Mw/Mnが、前記のように1.4〜3.0であるが、好ましくは1.7〜2.2の範囲である。   The cellulose ester used in the present invention has a mass average molecular weight (Mw) to number average molecular weight (Mn) ratio, Mw / Mn of 1.4 to 3.0 as described above, but preferably 1.7. It is the range of -2.2.

セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用いて公知の方法で測定することが出来る。これを用いて数平均分子量、質量平均分子量を算出し、その比(Mw/Mn)を計算することが出来る。   The average molecular weight and molecular weight distribution of the cellulose ester can be measured by a known method using high performance liquid chromatography. Using this, the number average molecular weight and the mass average molecular weight can be calculated, and the ratio (Mw / Mn) can be calculated.

測定条件は以下の通りである。
溶媒:メチレンクロライド
カラム:Shodex K806,K805,K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度:0.1質量%
検出器:RI Model 504(GLサイエンス社製)
ポンプ:L6000(日立製作所(株)製)
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に得ることが好ましい。
The measurement conditions are as follows.
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 100000 to 500 samples were used. It is preferable to obtain 13 samples at approximately equal intervals.

本発明に用いられるセルロースエステルは、炭素数2〜22程度のカルボン酸エステルであり、特にセルロースの低級脂肪酸エステルであることが好ましい。セルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が6以下の脂肪酸を意味し、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートフタレート等や、特開平10−45804号公報、同8−231761号公報、米国特許第2,319,052号明細書等に記載されているようなセルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることが出来る。上記記載の中でもでも、特に好ましく用いられるセルロースの低級脂肪酸エステルは、セルローストリアセテート、セルロースアセテートプロピオネートである。これらのセルロースエステルは混合して用いることも出来る。   The cellulose ester used in the present invention is a carboxylic acid ester having about 2 to 22 carbon atoms, and is particularly preferably a lower fatty acid ester of cellulose. The lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms. For example, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate phthalate and the like, JP-A-10-45804, Mixed fatty acid esters such as cellulose acetate propionate and cellulose acetate butyrate as described in JP-A-8-231761, U.S. Pat. No. 2,319,052 can be used. Among the above descriptions, the lower fatty acid esters of cellulose particularly preferably used are cellulose triacetate and cellulose acetate propionate. These cellulose esters can be used as a mixture.

セルローストリアセテートの場合には、総アシル基置換度(アセチル基置換度)2.6から2.9のものが好ましく用いられる。   In the case of cellulose triacetate, those having a total acyl group substitution degree (acetyl group substitution degree) of 2.6 to 2.9 are preferably used.

セルローストリアセテート以外で好ましいセルロースエステルは、炭素原子数2〜4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルである。   Preferred cellulose esters other than cellulose triacetate have an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group is Y, the following formula (I) And (II) at the same time.

式(I) 2.6≦X+Y≦2.9
式(II) 0≦X≦2.5
中でも1.9≦X≦2.5、0.1≦Y≦0.9のセルロースアセテートプロピオネート(総アシル基置換度=X+Y)が好ましい。アシル基で置換されていない部分は通常水酸基として存在している。これらは公知の方法で合成することが出来る。
Formula (I) 2.6 ≦ X + Y ≦ 2.9
Formula (II) 0 ≦ X ≦ 2.5
Among them, cellulose acetate propionate (total acyl group substitution degree = X + Y) satisfying 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9 is preferable. The portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.

これらアシル基置換度は、ASTM−D817−96に規定の方法に準じて測定することが出来る。   These acyl group substitution degrees can be measured according to the method prescribed in ASTM-D817-96.

セルロースエステルは綿花リンター、木材パルプ、ケナフ等を原料として合成されたセルロースエステルを単独或いは混合して用いることが出来る。特に綿花リンター(以下、単にリンターとすることがある)、木材パルプから合成されたセルロースエステルを単独或いは混合して用いることが好ましい。   As the cellulose ester, cellulose ester synthesized from cotton linter, wood pulp, kenaf or the like as a raw material can be used alone or in combination. In particular, it is preferable to use a cotton linter (hereinafter sometimes simply referred to as a linter) or a cellulose ester synthesized from wood pulp alone or in combination.

また、これらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することが出来る。これらのセルロースエステルは、セルロース原料をアシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いて常法により反応させて得ることが出来る。   Moreover, the cellulose ester obtained from these can be mixed and used in arbitrary ratios, respectively. These cellulose esters are prepared by using an organic acid such as acetic acid or an organic solvent such as methylene chloride when sulfuric acid is used as the acylating agent (acetic anhydride, propionic anhydride, butyric anhydride). It can obtain by making it react by a conventional method using a protic catalyst like.

アセチルセルロースの場合、酢化率をあげようとすれば、酢化反応の時間を延長する必要がある。但し、反応時間を余り長くとると分解が同時に進行し、ポリマー鎖の切断やアセチル基の分解などが起り、好ましくない結果をもたらす。従って、酢化度をあげ、分解をある程度抑えるためには反応時間はある範囲に設定することが必要である。反応時間で規定することは反応条件が様々であり、反応装置や設備その他の条件で大きく変わるので適切でない。ポリマーの分解は進むにつれ、分子量分布が広くなってゆくので、セルロースエステルの場合にも、分解の度合いは通常用いられる質量平均分子量(Mw)/数平均分子量(Mn)の値で規定出来る。即ちセルローストリアセテートの酢化の過程で、余り長すぎて分解が進みすぎることがなく、かつ酢化には十分な時間酢化反応を行わせしめるための反応度合いの一つの指標として用いられる質量平均分子量(Mw)/数平均分子量(Mn)の値を用いることが出来る。   In the case of acetyl cellulose, it is necessary to extend the time for the acetylation reaction in order to increase the acetylation rate. However, if the reaction time is too long, the decomposition proceeds at the same time, and the polymer chain is broken and the acetyl group is decomposed, resulting in undesirable results. Therefore, it is necessary to set the reaction time within a certain range in order to increase the degree of acetylation and suppress decomposition to some extent. It is not appropriate to define the reaction time because the reaction conditions are various and greatly change depending on the reaction apparatus, equipment and other conditions. As the decomposition of the polymer progresses, the molecular weight distribution becomes wider. Therefore, in the case of cellulose ester as well, the degree of decomposition can be defined by the commonly used value of mass average molecular weight (Mw) / number average molecular weight (Mn). That is, in the process of acetylation of cellulose triacetate, the mass average molecular weight is used as one index of the degree of reaction for allowing the acetylation reaction to take place for a sufficient period of time without causing excessive decomposition due to being too long. The value of (Mw) / number average molecular weight (Mn) can be used.

セルロースエステルの製造法の一例を以下に示すと、セルロース原料として綿化リンター100質量部を解砕し、40質量部の酢酸を添加し、36℃で20分間前処理活性化をした。その後、硫酸8質量部、無水酢酸260質量部、酢酸350質量部を添加し、36℃で120分間エステル化を行った。24%酢酸マグネシウム水溶液11質量部で中和した後、63℃で35分間ケン化熟成し、アセチルセルロースを得た。これを10倍の酢酸水溶液(酢酸:水=1:1(質量比))を用いて、室温で160分間攪拌した後、濾過、乾燥させてアセチル置換度2.75の精製アセチルセルロースを得た。このアセチルセルロースはMnが92,000、Mwが156,000、Mw/Mnは1.7であった。同様にセルロースエステルのエステル化条件(温度、時間、攪拌)、加水分解条件を調整することによって置換度、Mw/Mn比の異なるセルロースエステルを合成することが出来る。   An example of a method for producing a cellulose ester is shown below: 100 parts by mass of a flocculent linter was crushed as a cellulose raw material, 40 parts by mass of acetic acid was added, and pretreatment activation was performed at 36 ° C. for 20 minutes. Thereafter, 8 parts by mass of sulfuric acid, 260 parts by mass of acetic anhydride and 350 parts by mass of acetic acid were added, and esterification was performed at 36 ° C. for 120 minutes. After neutralization with 11 parts by mass of a 24% magnesium acetate aqueous solution, saponification aging was carried out at 63 ° C. for 35 minutes to obtain acetylcellulose. This was stirred for 160 minutes at room temperature using a 10-fold acetic acid aqueous solution (acetic acid: water = 1: 1 (mass ratio)), then filtered and dried to obtain purified acetylcellulose having an acetyl substitution degree of 2.75. . This acetylcellulose had Mn of 92,000, Mw of 156,000, and Mw / Mn of 1.7. Similarly, cellulose esters having different degrees of substitution and Mw / Mn ratios can be synthesized by adjusting the esterification conditions (temperature, time, stirring) and hydrolysis conditions of the cellulose ester.

尚、合成されたセルロースエステルは、精製して低分子量成分を除去したり、未酢化の成分を濾過で取り除くことも好ましく行われる。   The synthesized cellulose ester is preferably purified to remove low molecular weight components or to remove unacetylated components by filtration.

また、混酸セルロースエステルの場合には、特開平10−45804号公報に記載の方法で反応して得ることが出来る。アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することが出来る。   In the case of a mixed acid cellulose ester, it can be obtained by a reaction described in JP-A-10-45804. The measuring method of the substitution degree of an acyl group can be measured according to the provisions of ASTM-D817-96.

また、セルロースエステルは、セルロースエステル中の微量金属成分によっても影響を受ける。これらは製造工程で使われる水に関係していると考えられるが、不溶性の核となり得るような成分は少ない方が好ましく、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形成する事により不溶物を形成する場合があり、少ないことが好ましい。鉄(Fe)成分については、1ppm以下であることが好ましい。カルシウム(Ca)成分については、地下水や河川の水等に多く含まれ、これが多いと硬水となり、飲料水としても不適当であるが、カルボン酸や、スルホン酸等の酸性成分と、また多くの配位子と配位化合物即ち、錯体を形成しやすく、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形成する。   Cellulose esters are also affected by trace metal components in cellulose esters. These are considered to be related to water used in the production process, but it is preferable that there are few components that can become insoluble nuclei, and metal ions such as iron, calcium, and magnesium contain organic acidic groups. Insoluble matter may be formed by salt formation with a polymer degradation product or the like that may be present, and it is preferable that the amount is small. The iron (Fe) component is preferably 1 ppm or less. About calcium (Ca) component, it is contained in a lot of ground water and river water, etc., and it becomes hard water, and it is unsuitable as drinking water. Ligand and coordination compounds, that is, complexes are easily formed, and scum (insoluble starch, turbidity) derived from many insoluble calcium is formed.

カルシウム(Ca)成分は60ppm以下、好ましくは0〜30ppmである。マグネシウム(Mg)成分については、やはり多すぎると不溶分を生ずるため、0〜70ppmであることが好ましく、特に0〜20ppmであることが好ましい。鉄(Fe)分の含量、カルシウム(Ca)分含量、マグネシウム(Mg)分含量等の金属成分は、絶乾したセルロースエステルをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP−AES(誘導結合プラズマ発光分光分析装置)を用いて分析を行うことによって求めることが出来る。   The calcium (Ca) component is 60 ppm or less, preferably 0 to 30 ppm. The magnesium (Mg) component is preferably in the range of 0 to 70 ppm, and more preferably 0 to 20 ppm, because too much will cause insoluble matter. Metal components such as iron (Fe) content, calcium (Ca) content, magnesium (Mg) content, etc. are pre-processed by completely digesting cellulose ester with micro digest wet cracking equipment (sulfuric acid decomposition) and alkali melting. After performing, it can obtain | require by performing an analysis using ICP-AES (inductively coupled plasma emission spectroscopy analyzer).

〈可塑剤〉
本発明で用いられるセルロースエステルフィルムは、少なくとも2種の可塑剤を含有する。また、トリフェニルホスフェート等のリン酸エステル系可塑剤を実質的に含有しない。「実質的に含有しない」とはリン酸エステル系可塑剤の含有量が1質量%未満、好ましくは0.1質量%であり、特に好ましいのは添加していないことである。
<Plasticizer>
The cellulose ester film used in the present invention contains at least two kinds of plasticizers. Further, it does not substantially contain a phosphate ester plasticizer such as triphenyl phosphate. “Substantially not containing” means that the content of the phosphoric ester plasticizer is less than 1% by mass, preferably 0.1% by mass, particularly preferably not added.

2種以上の可塑剤を含有させることによって、可塑剤の溶出を少なくすることができる。その理由は明らかではないが、1種類当たりの添加量を減らすことができることと、2種の可塑剤同士及びセルロースエステルとの相互作用によって溶出が抑制されるものと思われる。   By containing two or more kinds of plasticizers, the elution of the plasticizer can be reduced. The reason is not clear, but it seems that elution is suppressed by the ability to reduce the amount added per type and the interaction between the two plasticizers and the cellulose ester.

2種の可塑剤は特に限定されないが、好ましくは、前記多価アルコールエステル系可塑剤、フタル酸エステル、クエン酸エステル、脂肪酸エステル、グリコレート系可塑剤等から選択される。そのうち、少なくとも1種は多価アルコールエステル系可塑剤であることが好ましい。   The two plasticizers are not particularly limited, but are preferably selected from the polyhydric alcohol ester plasticizer, phthalate ester, citrate ester, fatty acid ester, glycolate plasticizer, and the like. Of these, at least one is preferably a polyhydric alcohol ester plasticizer.

多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環またはシクロアルキル環を有することが好ましい。好ましくは2〜20価の脂肪族多価アルコールエステルである。   The polyhydric alcohol ester plasticizer is a plasticizer comprising an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule. Preferably it is a 2-20 valent aliphatic polyhydric alcohol ester.

本発明に用いられる多価アルコールは次の一般式で表される。
1−(OH)n
但し、R1はn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/またはフェノール性水酸基を表す。
The polyhydric alcohol used in the present invention is represented by the following general formula.
R 1- (OH) n
However, R 1 represents an n-valent organic group, n represents a positive integer of 2 or more, and the OH group represents an alcoholic and / or phenolic hydroxyl group.

好ましい多価アルコールの例としては、例えば以下のようなものを挙げることが出来るが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることが出来る。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。   Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these. Adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, galactitol, mannitol, 3-methylpentane- Examples include 1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol. In particular, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.

本発明の多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることが出来る。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。   There is no restriction | limiting in particular as monocarboxylic acid used for the polyhydric alcohol ester of this invention, Well-known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid, etc. can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.

好ましいモノカルボン酸の例としては以下のようなものを挙げることが出来るが、本発明はこれに限定されるものではない。   Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.

脂肪族モノカルボン酸としては、炭素数1〜32の直鎖または側鎖を有する脂肪酸を好ましく用いることが出来る。炭素数は1〜20であることが更に好ましく、1〜10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。   As the aliphatic monocarboxylic acid, a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. The number of carbon atoms is more preferably 1-20, and particularly preferably 1-10. When acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.

好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2−エチル−ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることが出来る。   Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.

好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることが出来る。   Examples of preferable alicyclic monocarboxylic acids include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.

好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタレンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることが出来る。特に安息香酸が好ましい。   Examples of preferred aromatic monocarboxylic acids include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid. The aromatic monocarboxylic acid which has, or those derivatives can be mentioned. Benzoic acid is particularly preferable.

多価アルコールエステルの分子量は特に制限はないが、300〜1500であることが好ましく、350〜750であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。   The molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose ester.

多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。   The carboxylic acid used for the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.

以下に、多価アルコールエステルの具体的化合物を例示する。   Below, the specific compound of a polyhydric alcohol ester is illustrated.

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

グリコレート系可塑剤は特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることが出来る。アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。   The glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used. Examples of alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl Glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl glycol Butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl methyl glycolate, octyl phthalate Ethyl glycolate, and the like.

フタル酸エステル系可塑剤としては、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。   Examples of the phthalate ester plasticizer include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.

クエン酸エステル系可塑剤としては、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。   Examples of the citrate plasticizer include acetyl trimethyl citrate, acetyl triethyl citrate, and acetyl tributyl citrate.

脂肪酸エステル系可塑剤として、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。   Examples of fatty acid ester plasticizers include butyl oleate, methylacetyl ricinoleate, and dibutyl sebacate.

リン酸エステル系可塑剤としては、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられるが、これらのリン酸エステル系可塑剤は本発明を構成するセルロースエステルフィルム中には実質的に含有しないものである。前述のように、実質的に含有しないとは、含有量が、1質量%未満であり、好ましくは0.1質量%未満であり、全く含有しないことが特に好ましい。   Examples of the phosphate ester plasticizer include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like. The agent is not substantially contained in the cellulose ester film constituting the present invention. As described above, “not containing substantially” means that the content is less than 1% by mass, preferably less than 0.1% by mass, and particularly preferably not contained at all.

前述のように、リン酸エステル系可塑剤が含まれると防眩層を形成する際に基材が変形しやすくなるため、好ましくない。   As described above, when a phosphate ester plasticizer is included, the base material is likely to be deformed when the antiglare layer is formed, which is not preferable.

セルロースエステルフィルム中の可塑剤の総含有量は、固形分総量に対し、5〜20質量%が好ましく、6〜16質量%が更に好ましく、特に好ましくは8〜13質量%である。また、2種の可塑剤の含有量は各々少なくとも1質量%以上であり、好ましくは各々2質量%以上含有することである。   The total content of the plasticizer in the cellulose ester film is preferably 5 to 20% by mass, more preferably 6 to 16% by mass, and particularly preferably 8 to 13% by mass with respect to the total solid content. The contents of the two kinds of plasticizers are each at least 1% by mass, preferably 2% by mass or more.

多価アルコールエステル系可塑剤は1〜12質量%含有することが好ましく、特に3〜11質量%含有することが好ましい。少ないと平面性の劣化が認められ、多すぎるとブリードアウトがしやすい。多価アルコールエステル系可塑剤とその他の可塑剤との比率は1:4〜4:1の範囲であることが好ましく、1:3〜3:1であることが更に好ましい。可塑剤の添加量が多すぎても、また少なすぎてもフィルムが変形しやすく好ましくない。   The polyhydric alcohol ester plasticizer is preferably contained in an amount of 1 to 12% by mass, particularly preferably 3 to 11% by mass. If the amount is too small, deterioration of flatness is recognized, and if it is too large, bleeding out tends to occur. The ratio of the polyhydric alcohol ester plasticizer to the other plasticizer is preferably in the range of 1: 4 to 4: 1, more preferably 1: 3 to 3: 1. If the amount of the plasticizer added is too large or too small, the film is liable to be deformed, which is not preferable.

〈紫外線吸収剤〉
本発明に係わるセルロースエステルフィルムは紫外線吸収剤を含有する。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐久性を向上させることを目的としており、特に波長370nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは2%以下である。
<Ultraviolet absorber>
The cellulose ester film according to the present invention contains an ultraviolet absorber. The ultraviolet absorber is intended to improve durability by absorbing ultraviolet rays of 400 nm or less, and in particular, the transmittance at a wavelength of 370 nm is preferably 10% or less, more preferably 5% or less, and further Preferably it is 2% or less.

本発明に用いられる紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。   Although the ultraviolet absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body.

例えば、5−クロロ−2−(3,5−ジ−sec−ブチル−2−ヒドロキシルフェニル)−2H−ベンゾトリアゾール、(2−2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2,4−ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328等のチヌビン類があり、これらはいずれもチバ・スペシャルティ・ケミカルズ社製の市販品であり好ましく使用出来る。   For example, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6- (linear and side Chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, etc., and tinuvin 109, tinuvin 171, tinuvin 234, tinuvin 326, tinuvin 327, tinuvin 328, etc. These are commercially available products manufactured by Ciba Specialty Chemicals and can be preferably used.

例えば、ベンゾトリアゾール系紫外線吸収剤としては下記一般式(A)で示される化合物を用いることができる。   For example, as the benzotriazole ultraviolet absorber, a compound represented by the following general formula (A) can be used.

Figure 0004905787
Figure 0004905787

式中、R1、R2、R3、R4及びR5は同一でも異なってもよく、水素原子、ハロゲン原子、ニトロ基、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アルコキシル基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、モノ若しくはジアルキルアミノ基、アシルアミノ基または5〜6員の複素環基を表し、R4とR5は閉環して5〜6員の炭素環を形成してもよい。 In the formula, R 1 , R 2 , R 3 , R 4 and R 5 may be the same or different, and are a hydrogen atom, halogen atom, nitro group, hydroxyl group, alkyl group, alkenyl group, aryl group, alkoxyl group, acyloxy Represents a group, aryloxy group, alkylthio group, arylthio group, mono- or dialkylamino group, acylamino group or 5- to 6-membered heterocyclic group, and R 4 and R 5 are closed to form a 5- to 6-membered carbocyclic ring May be.

また、上記記載のこれらの基は、任意の置換基を有していてよい。
以下に本発明に係る紫外線吸収剤の具体例を挙げるが、本発明はこれらに限定されない。
Moreover, these groups described above may have an arbitrary substituent.
Although the specific example of the ultraviolet absorber which concerns on this invention is given to the following, this invention is not limited to these.

UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
更に、本発明で好ましく用いられる紫外線吸収剤は、ベンゾフェノン系紫外線吸収剤やトリアジン系紫外線吸収剤であり、特に好ましくはトリアジン系紫外線吸収剤である。紫外線吸収剤が分子内にハロゲン原子を含有しないことが好ましい。
UV-1: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole UV-2: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole UV-3 : 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole UV-4: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole UV-5: 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl) benzotriazole UV-6: 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
UV-7: 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole UV-8: 2- (2H-benzotriazol-2-yl) -6 (Linear and side chain dodecyl) -4-methylphenol (TINUVIN171, manufactured by Ciba)
UV-9: Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl- 4-Hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate (TINUVIN109, manufactured by Ciba)
Furthermore, the ultraviolet absorber preferably used in the present invention is a benzophenone ultraviolet absorber or a triazine ultraviolet absorber, and particularly preferably a triazine ultraviolet absorber. It is preferable that the ultraviolet absorber does not contain a halogen atom in the molecule.

ベンゾフェノン系紫外線吸収剤としては下記一般式(B)で表される化合物が好ましく用いられる。   As the benzophenone-based ultraviolet absorber, a compound represented by the following general formula (B) is preferably used.

Figure 0004905787
Figure 0004905787

式中、Yは水素原子、ハロゲン原子またはアルキル基、アルケニル基、アルコキシル基、及びフェニル基を表し、これらのアルキル基、アルケニル基及びフェニル基は置換基を有していてもよい。Aは水素原子、アルキル基、アルケニル基、フェニル基、シクロアルキル基、アルキルカルボニル基、アルキルスルホニル基または−CO(NH)n-1−D基を表し、Dはアルキル基、アルケニル基または置換基を有していてもよいフェニル基を表す。m及びnは1または2を表す。 In the formula, Y represents a hydrogen atom, a halogen atom or an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and these alkyl group, alkenyl group, and phenyl group may have a substituent. A represents a hydrogen atom, an alkyl group, an alkenyl group, a phenyl group, a cycloalkyl group, an alkylcarbonyl group, an alkylsulfonyl group or a —CO (NH) n-1 —D group, and D represents an alkyl group, an alkenyl group or a substituent. Represents a phenyl group which may have m and n represent 1 or 2.

上記において、アルキル基としては、例えば、炭素数24までの直鎖または分岐の脂肪族基を表し、アルコキシル基としては例えば、炭素数18までのアルコキシル基を表し、アルケニル基としては例えば、炭素数16までのアルケニル基でアリル基、2−ブテニル基等を表す。また、アルキル基、アルケニル基、フェニル基への置換基としてはハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシル基、フェニル基(このフェニル基にはアルキル基またはハロゲン原子等を置換していてもよい)等が挙げられる。   In the above, the alkyl group represents, for example, a linear or branched aliphatic group having up to 24 carbon atoms, the alkoxyl group represents, for example, an alkoxyl group having up to 18 carbon atoms, and the alkenyl group has, for example, carbon number An alkenyl group up to 16 represents an allyl group, a 2-butenyl group, or the like. In addition, as substituents to alkyl groups, alkenyl groups, and phenyl groups, halogen atoms such as chlorine atoms, bromine atoms, fluorine atoms, etc., hydroxyl groups, phenyl groups (this phenyl group is substituted with alkyl groups or halogen atoms, etc.) May be used).

以下に一般式(B)で表されるベンゾフェノン系化合物の具体例を示すが、本発明はこれらに限定されない。   Specific examples of the benzophenone compound represented by the general formula (B) are shown below, but the present invention is not limited thereto.

UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
UV-10: 2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV-12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)

また、本発明の光学フィルムの紫外線吸収剤として、1,3,5−トリアジン環を有する化合物を好ましく用いることが出来る。
1,3,5−トリアジン環を有する化合物は、中でも、下記一般式(I)で表される化合物が好ましい。
Moreover, the compound which has a 1,3,5-triazine ring can be used preferably as a ultraviolet absorber of the optical film of this invention.
Among them, the compound having a 1,3,5-triazine ring is preferably a compound represented by the following general formula (I).

Figure 0004905787
Figure 0004905787

一般式(I)において、X1は、単結合、−NR4−、−O−または−S−であり;X2は単結合、−NR5−、−O−または−S−であり;X3は単結合、−NR6−、−O−または−S−であり;R1、R2及びR3はアルキル基、アルケニル基、アリール基または複素環基であり;そして、R4、R5及びR6は、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。一般式(I)で表される化合物は、メラミン化合物であることが特に好ましい。 In the general formula (I), X 1 is a single bond, —NR 4 —, —O— or —S—; X 2 is a single bond, —NR 5 —, —O— or —S—; X 3 is a single bond, —NR 6 —, —O— or —S—; R 1 , R 2 and R 3 are an alkyl group, an alkenyl group, an aryl group or a heterocyclic group; and R 4 , R 5 and R 6 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, or a heterocyclic group. The compound represented by the general formula (I) is particularly preferably a melamine compound.

メラミン化合物では、一般式(I)において、X1、X2及びX3が、それぞれ、−NR4−、−NR5−及び−NR6−であるか、或いは、X1、X2及びX3が単結合であり、かつ、R1、R2及びR3が窒素原子に遊離原子価を持つ複素環基である。−X1−R1、−X2−R2及び−X3−R3は、同一の置換基であることが好ましい。R1、R2及びR3は、アリール基であることが特に好ましい。R4、R5及びR6は、水素原子であることが特に好ましい。 In the melamine compound, in the general formula (I), X 1 , X 2 and X 3 are —NR 4 —, —NR 5 — and —NR 6 —, respectively, or X 1 , X 2 and X 3 3 is a single bond, and R 1 , R 2 and R 3 are heterocyclic groups having a free valence on the nitrogen atom. -X 1 -R 1, -X 2 -R 2 and -X 3 -R 3 are preferably the same substituents. R 1 , R 2 and R 3 are particularly preferably aryl groups. R 4 , R 5 and R 6 are particularly preferably a hydrogen atom.

上記アルキル基は、環状アルキル基よりも鎖状アルキル基である方が好ましい。分岐を有する鎖状アルキル基よりも、直鎖状アルキル基の方が好ましい。   The alkyl group is preferably a chain alkyl group rather than a cyclic alkyl group. A linear alkyl group is preferred to a branched alkyl group.

アルキル基の炭素原子数は、1〜30であることが好ましく、1〜20であることがより好ましく、1〜10であることが更に好ましく、1〜8であることが更にまた好ましく、1〜6であることが最も好ましい。アルキル基は置換基を有していてもよい。   The number of carbon atoms of the alkyl group is preferably 1-30, more preferably 1-20, still more preferably 1-10, still more preferably 1-8, 6 is most preferred. The alkyl group may have a substituent.

置換基の具体例としては、例えばハロゲン原子、アルコキシ基(例えばメトキシ、エトキシ、エポキシエチルオキシ等の各基)及びアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ)等が挙げられる。上記アルケニル基は、環状アルケニル基よりも鎖状アルケニル基である方が好ましい。分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基の方が好ましい。アルケニル基の炭素原子数は、2〜30であることが好ましく、2〜20であることがより好ましく、2〜10であることが更に好ましく、2〜8であることが更にまた好ましく、2〜6であることが最も好ましい。アルケニル基は、置換基を有していてもよい。   Specific examples of the substituent include a halogen atom, an alkoxy group (for example, each group such as methoxy, ethoxy, and epoxyethyloxy) and an acyloxy group (for example, acryloyloxy, methacryloyloxy). The alkenyl group is preferably a chain alkenyl group rather than a cyclic alkenyl group. A linear alkenyl group is preferable to a branched chain alkenyl group. The number of carbon atoms in the alkenyl group is preferably 2 to 30, more preferably 2 to 20, still more preferably 2 to 10, still more preferably 2 to 8, 6 is most preferred. The alkenyl group may have a substituent.

置換基の具体例としては、ハロゲン原子、アルコキシ基(例えば、メトキシ、エトキシ、エポキシエチルオキシ等の各基)またはアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ等の各基)が挙げられる。   Specific examples of the substituent include a halogen atom, an alkoxy group (for example, each group such as methoxy, ethoxy, and epoxyethyloxy) or an acyloxy group (for example, each group such as acryloyloxy and methacryloyloxy).

上記アリール基は、フェニル基またはナフチル基であることが好ましく、フェニル基であることが特に好ましい。アリール基は置換基を有していてもよい。   The aryl group is preferably a phenyl group or a naphthyl group, and particularly preferably a phenyl group. The aryl group may have a substituent.

置換基の具体例としては、例えば、ハロゲン原子、ヒドロキシル、シアノ、ニトロ、カルボキシル、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルホンアミド基、カルバモイル、アルキル置換カルモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基及びアシル基が含まれる。上記アルキル基は、前述したアルキル基と同義である。   Specific examples of the substituent include, for example, a halogen atom, hydroxyl, cyano, nitro, carboxyl, alkyl group, alkenyl group, aryl group, alkoxy group, alkenyloxy group, aryloxy group, acyloxy group, alkoxycarbonyl group, alkenyloxy Carbonyl group, aryloxycarbonyl group, sulfamoyl, alkyl-substituted sulfamoyl group, alkenyl-substituted sulfamoyl group, aryl-substituted sulfamoyl group, sulfonamido group, carbamoyl, alkyl-substituted carmoyl group, alkenyl-substituted carbamoyl group, aryl-substituted carbamoyl group, amide group, alkylthio Groups, alkenylthio groups, arylthio groups and acyl groups are included. The said alkyl group is synonymous with the alkyl group mentioned above.

アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アルキル置換スルファモイル基、スルホンアミド基、アルキル置換カルバモイル基、アミド基、アルキルチオ基とアシル基のアルキル部分も、前述したアルキル基と同義である。   The alkyl group of the alkoxy group, acyloxy group, alkoxycarbonyl group, alkyl-substituted sulfamoyl group, sulfonamido group, alkyl-substituted carbamoyl group, amide group, alkylthio group and acyl group is also synonymous with the alkyl group described above.

上記アルケニル基は、前述したアルケニル基と同義である。
アルケニルオキシ基、アシルオキシ基、アルケニルオキシカルボニル基、アルケニル置換スルファモイル基、スルホンアミド基、アルケニル置換カルバモイル基、アミド基、アルケニルチオ基及びアシル基のアルケニル部分も、前述したアルケニル基と同義である。
The said alkenyl group is synonymous with the alkenyl group mentioned above.
The alkenyl part of the alkenyloxy group, acyloxy group, alkenyloxycarbonyl group, alkenyl-substituted sulfamoyl group, sulfonamide group, alkenyl-substituted carbamoyl group, amide group, alkenylthio group and acyl group is also synonymous with the alkenyl group described above.

上記アリール基の具体例としては、例えば、フェニル、α−ナフチル、β−ナフチル、4−メトキシフェニル、3,4−ジエトキシフェニル、4−オクチルオキシフェニルまたは4−ドデシルオキシフェニル等の各基が挙げられる。   Specific examples of the aryl group include phenyl, α-naphthyl, β-naphthyl, 4-methoxyphenyl, 3,4-diethoxyphenyl, 4-octyloxyphenyl, and 4-dodecyloxyphenyl. Can be mentioned.

アリールオキシ基、アシルオキシ基、アリールオキシカルボニル基、アリール置換スルファモイル基、スルホンアミド基、アリール置換カルバモイル基、アミド基、アリールチオ基及びアシル基の部分の例は、上記アリール基と同義である。   Examples of the aryloxy group, acyloxy group, aryloxycarbonyl group, aryl-substituted sulfamoyl group, sulfonamido group, aryl-substituted carbamoyl group, amide group, arylthio group, and acyl group are the same as the above aryl group.

1、X2またはX3が−NR−、−O−または−S−である場合の複素環基は、芳香族
性を有することが好ましい。
When X 1 , X 2 or X 3 is —NR—, —O— or —S—, the heterocyclic group preferably has aromaticity.

芳香族性を有する複素環基中の複素環としては、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることが更に好ましく、6員環であることが最も好ましい。   The heterocyclic ring in the heterocyclic group having aromaticity is generally an unsaturated heterocyclic ring, preferably a heterocyclic ring having the largest number of double bonds. The heterocyclic ring is preferably a 5-membered ring, a 6-membered ring or a 7-membered ring, more preferably a 5-membered ring or a 6-membered ring, and most preferably a 6-membered ring.

複素環中のヘテロ原子は、N、SまたはO等の各原子であることが好ましく、N原子であることが特に好ましい。   The hetero atom in the heterocyclic ring is preferably each atom such as N, S or O, and particularly preferably an N atom.

芳香族性を有する複素環としては、ピリジン環(複素環基としては、例えば、2−ピリジルまたは4−ピリジル等の各基)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。   As the heterocyclic ring having aromaticity, a pyridine ring (as the heterocyclic group, for example, each group such as 2-pyridyl or 4-pyridyl) is particularly preferable. The heterocyclic group may have a substituent. Examples of the substituent of the heterocyclic group are the same as the examples of the substituent of the aryl moiety.

1、X2またはX3が単結合である場合の複素環基は、窒素原子に遊離原子価を持つ複素環基であることが好ましい。窒素原子に遊離原子価を持つ複素環基は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることが更に好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。 When X 1 , X 2 or X 3 is a single bond, the heterocyclic group is preferably a heterocyclic group having a free valence on the nitrogen atom. The heterocyclic group having a free valence on the nitrogen atom is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and a 5-membered ring. Is most preferred. The heterocyclic group may have a plurality of nitrogen atoms.

また、複素環基中のヘテロ原子は、窒素原子以外のヘテロ原子(例えば、O原子、S原子)を有していてもよい。複素環基は、置換基を有していてもよい。複素環基の置換基の具体例は、上記アリール部分の置換基の具体例と同義である。   Moreover, the hetero atom in a heterocyclic group may have hetero atoms other than a nitrogen atom (for example, O atom, S atom). The heterocyclic group may have a substituent. Specific examples of the substituent of the heterocyclic group are the same as the specific examples of the substituent of the aryl moiety.

以下に、窒素原子に遊離原子価を持つ複素環基の具体例を示す。   Specific examples of the heterocyclic group having a free valence on the nitrogen atom are shown below.

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

1,3,5−トリアジン環を有する化合物の分子量は、300〜2000であることが好ましい。該化合物の沸点は、260℃以上であることが好ましい。沸点は、市販の測定装置(例えば、TG/DTA100、セイコー電子工業(株)製)を用いて測定出来る。   The molecular weight of the compound having a 1,3,5-triazine ring is preferably 300 to 2,000. The boiling point of the compound is preferably 260 ° C. or higher. The boiling point can be measured using a commercially available measuring device (for example, TG / DTA100, manufactured by Seiko Electronics Industry Co., Ltd.).

以下に、1,3,5−トリアジン環を有する化合物の具体例を示す。
尚、以下に示す複数のRは同一の基を表す。
Specific examples of the compound having a 1,3,5-triazine ring are shown below.
A plurality of R shown below represent the same group.

Figure 0004905787
Figure 0004905787

(1)ブチル
(2)2−メトキシ−2−エトキシエチル
(3)5−ウンデセニル
(4)フェニル
(5)4−エトキシカルボニルフェニル
(6)4−ブトキシフェニル
(7)p−ビフェニリル
(8)4−ピリジル
(9)2−ナフチル
(10)2−メチルフェニル
(11)3,4−ジメトキシフェニル
(12)2−フリル
(1) Butyl (2) 2-methoxy-2-ethoxyethyl (3) 5-undecenyl (4) phenyl (5) 4-ethoxycarbonylphenyl (6) 4-butoxyphenyl (7) p-biphenylyl (8) 4 -Pyridyl (9) 2-naphthyl (10) 2-methylphenyl (11) 3,4-dimethoxyphenyl (12) 2-furyl

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

(14)フェニル
(15)3−エトキシカルボニルフェニル
(16)3−ブトキシフェニル
(17)m−ビフェニリル
(18)3−フェニルチオフェニル
(19)3−クロロフェニル
(20)3−ベンゾイルフェニル
(21)3−アセトキシフェニル
(22)3−ベンゾイルオキシフェニル
(23)3−フェノキシカルボニルフェニル
(24)3−メトキシフェニル
(25)3−アニリノフェニル
(26)3−イソブチリルアミノフェニル
(27)3−フェノキシカルボニルアミノフェニル
(28)3−(3−エチルウレイド)フェニル
(29)3−(3,3−ジエチルウレイド)フェニル
(30)3−メチルフェニル
(31)3−フェノキシフェニル
(32)3−ヒドロキシフェニル
(33)4−エトキシカルボニルフェニル
(34)4−ブトキシフェニル
(35)p−ビフェニリル
(36)4−フェニルチオフェニル
(37)4−クロロフェニル
(38)4−ベンゾイルフェニル
(39)4−アセトキシフェニル
(40)4−ベンゾイルオキシフェニル
(41)4−フェノキシカルボニルフェニル
(42)4−メトキシフェニル
(43)4−アニリノフェニル
(44)4−イソブチリルアミノフェニル
(45)4−フェノキシカルボニルアミノフェニル
(46)4−(3−エチルウレイド)フェニル
(47)4−(3,3−ジエチルウレイド)フェニル
(48)4−メチルフェニル
(49)4−フェノキシフェニル
(50)4−ヒドロキシフェニル
(51)3,4−ジエトキシカルボニルフェニル
(52)3,4−ジブトキシフェニル
(53)3,4−ジフェニルフェニル
(54)3,4−ジフェニルチオフェニル
(55)3,4−ジクロロフェニル
(56)3,4−ジベンゾイルフェニル
(57)3,4−ジアセトキシフェニル
(58)3,4−ジベンゾイルオキシフェニル
(59)3,4−ジフェノキシカルボニルフェニル
(60)3,4−ジメトキシフェニル
(61)3,4−ジアニリノフェニル
(62)3,4−ジメチルフェニル
(63)3,4−ジフェノキシフェニル
(64)3,4−ジヒドロキシフェニル
(65)2−ナフチル
(66)3,4,5−トリエトキシカルボニルフェニル
(67)3,4,5−トリブトキシフェニル
(68)3,4,5−トリフェニルフェニル
(69)3,4,5−トリフェニルチオフェニル
(70)3,4,5−トリクロロフェニル
(71)3,4,5−トリベンゾイルフェニル
(72)3,4,5−トリアセトキシフェニル
(73)3,4,5−トリベンゾイルオキシフェニル
(74)3,4,5−トリフェノキシカルボニルフェニル
(75)3,4,5−トリメトキシフェニル
(76)3,4,5−トリアニリノフェニル
(77)3,4,5−トリメチルフェニル
(78)3,4,5−トリフェノキシフェニル
(79)3,4,5−トリヒドロキシフェニル
(14) Phenyl (15) 3-ethoxycarbonylphenyl (16) 3-butoxyphenyl (17) m-biphenylyl (18) 3-phenylthiophenyl (19) 3-chlorophenyl (20) 3-benzoylphenyl (21) 3 Acetoxyphenyl (22) 3-benzoyloxyphenyl (23) 3-phenoxycarbonylphenyl (24) 3-methoxyphenyl (25) 3-anilinophenyl (26) 3-isobutyrylaminophenyl (27) 3-phenoxy Carbonylaminophenyl (28) 3- (3-ethylureido) phenyl (29) 3- (3,3-diethylureido) phenyl (30) 3-methylphenyl (31) 3-phenoxyphenyl (32) 3-hydroxyphenyl (33) 4-Ethoxycarbonylphenyl (34) 4- Toxiphenyl (35) p-biphenylyl (36) 4-phenylthiophenyl (37) 4-chlorophenyl (38) 4-benzoylphenyl (39) 4-acetoxyphenyl (40) 4-benzoyloxyphenyl (41) 4-phenoxy Carbonylphenyl (42) 4-methoxyphenyl (43) 4-anilinophenyl (44) 4-isobutyrylaminophenyl (45) 4-phenoxycarbonylaminophenyl (46) 4- (3-ethylureido) phenyl (47 ) 4- (3,3-diethylureido) phenyl (48) 4-methylphenyl (49) 4-phenoxyphenyl (50) 4-hydroxyphenyl (51) 3,4-diethoxycarbonylphenyl (52) 3,4 -Dibutoxyphenyl (53) 3,4-diphenylphenyl (5 ) 3,4-diphenylthiophenyl (55) 3,4-dichlorophenyl (56) 3,4-dibenzoylphenyl (57) 3,4-diacetoxyphenyl (58) 3,4-dibenzoyloxyphenyl (59) 3,4-diphenoxycarbonylphenyl (60) 3,4-dimethoxyphenyl (61) 3,4-dianilinophenyl (62) 3,4-dimethylphenyl (63) 3,4-diphenoxyphenyl (64) 3 , 4-Dihydroxyphenyl (65) 2-naphthyl (66) 3,4,5-triethoxycarbonylphenyl (67) 3,4,5-tributoxyphenyl (68) 3,4,5-triphenylphenyl (69 ) 3,4,5-triphenylthiophenyl (70) 3,4,5-trichlorophenyl (71) 3,4,5-tribenzoylphenol Nyl (72) 3,4,5-triacetoxyphenyl (73) 3,4,5-tribenzoyloxyphenyl (74) 3,4,5-triphenoxycarbonylphenyl (75) 3,4,5-trimethoxy Phenyl (76) 3,4,5-trianilinophenyl (77) 3,4,5-trimethylphenyl (78) 3,4,5-triphenoxyphenyl (79) 3,4,5-trihydroxyphenyl

Figure 0004905787
Figure 0004905787

(80)フェニル
(81)3−エトキシカルボニルフェニル
(82)3−ブトキシフェニル
(83)m−ビフェニリル
(84)3−フェニルチオフェニル
(85)3−クロロフェニル
(86)3−ベンゾイルフェニル
(87)3−アセトキシフェニル
(88)3−ベンゾイルオキシフェニル
(89)3−フェノキシカルボニルフェニル
(90)3−メトキシフェニル
(91)3−アニリノフェニル
(92)3−イソブチリルアミノフェニル
(93)3−フェノキシカルボニルアミノフェニル
(94)3−(3−エチルウレイド)フェニル
(95)3−(3,3−ジエチルウレイド)フェニル
(96)3−メチルフェニル
(97)3−フェノキシフェニル
(98)3−ヒドロキシフェニル
(99)4−エトキシカルボニルフェニル
(100)4−ブトキシフェニル
(101)p−ビフェニリル
(102)4−フェニルチオフェニル
(103)4−クロロフェニル
(104)4−ベンゾイルフェニル
(105)4−アセトキシフェニル
(106)4−ベンゾイルオキシフェニル
(107)4−フェノキシカルボニルフェニル
(108)4−メトキシフェニル
(109)4−アニリノフェニル
(110)4−イソブチリルアミノフェニル
(111)4−フェノキシカルボニルアミノフェニル
(112)4−(3−エチルウレイド)フェニル
(113)4−(3,3−ジエチルウレイド)フェニル
(114)4−メチルフェニル
(115)4−フェノキシフェニル
(116)4−ヒドロキシフェニル
(117)3,4−ジエトキシカルボニルフェニル
(118)3,4−ジブトキシフェニル
(119)3,4−ジフェニルフェニル
(120)3,4−ジフェニルチオフェニル
(121)3,4−ジクロロフェニル
(122)3,4−ジベンゾイルフェニル
(123)3,4−ジアセトキシフェニル
(124)3,4−ジベンゾイルオキシフェニル
(125)3,4−ジフェノキシカルボニルフェニル
(126)3,4−ジメトキシフェニル
(127)3,4−ジアニリノフェニル
(128)3,4−ジメチルフェニル
(129)3,4−ジフェノキシフェニル
(130)3,4−ジヒドロキシフェニル
(131)2−ナフチル
(132)3,4,5−トリエトキシカルボニルフェニル
(133)3,4,5−トリブトキシフェニル
(134)3,4,5−トリフェニルフェニル
(135)3,4,5−トリフェニルチオフェニル
(136)3,4,5−トリクロロフェニル
(137)3,4,5−トリベンゾイルフェニル
(138)3,4,5−トリアセトキシフェニル
(139)3,4,5−トリベンゾイルオキシフェニル
(140)3,4,5−トリフェノキシカルボニルフェニル
(141)3,4,5−トリメトキシフェニル
(142)3,4,5−トリアニリノフェニル
(143)3,4,5−トリメチルフェニル
(144)3,4,5−トリフェノキシフェニル
(145)3,4,5−トリヒドロキシフェニル
(80) Phenyl (81) 3-ethoxycarbonylphenyl (82) 3-butoxyphenyl (83) m-biphenylyl (84) 3-phenylthiophenyl (85) 3-chlorophenyl (86) 3-benzoylphenyl (87) 3 Acetoxyphenyl (88) 3-benzoyloxyphenyl (89) 3-phenoxycarbonylphenyl (90) 3-methoxyphenyl (91) 3-anilinophenyl (92) 3-isobutyrylaminophenyl (93) 3-phenoxy Carbonylaminophenyl (94) 3- (3-ethylureido) phenyl (95) 3- (3,3-diethylureido) phenyl (96) 3-methylphenyl (97) 3-phenoxyphenyl (98) 3-hydroxyphenyl (99) 4-Ethoxycarbonylphenyl (100) 4 Butoxyphenyl (101) p-biphenylyl (102) 4-phenylthiophenyl (103) 4-chlorophenyl (104) 4-benzoylphenyl (105) 4-acetoxyphenyl (106) 4-benzoyloxyphenyl (107) 4-phenoxy Carbonylphenyl (108) 4-methoxyphenyl (109) 4-anilinophenyl (110) 4-isobutyrylaminophenyl (111) 4-phenoxycarbonylaminophenyl (112) 4- (3-ethylureido) phenyl (113 ) 4- (3,3-diethylureido) phenyl (114) 4-methylphenyl (115) 4-phenoxyphenyl (116) 4-hydroxyphenyl (117) 3,4-diethoxycarbonylphenyl (118) 3,4 -Dibutoxyphenyl 119) 3,4-diphenylphenyl (120) 3,4-diphenylthiophenyl (121) 3,4-dichlorophenyl (122) 3,4-dibenzoylphenyl (123) 3,4-diacetoxyphenyl (124) 3 , 4-Dibenzoyloxyphenyl (125) 3,4-diphenoxycarbonylphenyl (126) 3,4-dimethoxyphenyl (127) 3,4-dianilinophenyl (128) 3,4-dimethylphenyl (129) 3 , 4-Diphenoxyphenyl (130) 3,4-dihydroxyphenyl (131) 2-naphthyl (132) 3,4,5-triethoxycarbonylphenyl (133) 3,4,5-tributoxyphenyl (134) 3 , 4,5-triphenylphenyl (135) 3,4,5-triphenylthiophenyl (1 36) 3,4,5-trichlorophenyl (137) 3,4,5-tribenzoylphenyl (138) 3,4,5-triacetoxyphenyl (139) 3,4,5-tribenzoyloxyphenyl (140) 3,4,5-triphenoxycarbonylphenyl (141) 3,4,5-trimethoxyphenyl (142) 3,4,5-trianilinophenyl (143) 3,4,5-trimethylphenyl (144) 3 , 4,5-Triphenoxyphenyl (145) 3,4,5-trihydroxyphenyl

Figure 0004905787
Figure 0004905787

(146)フェニル
(147)4−エトキシカルボニルフェニル
(148)4−ブトキシフェニル
(149)p−ビフェニリル
(150)4−フェニルチオフェニル
(151)4−クロロフェニル
(152)4−ベンゾイルフェニル
(153)4−アセトキシフェニル
(154)4−ベンゾイルオキシフェニル
(155)4−フェノキシカルボニルフェニル
(156)4−メトキシフェニル
(157)4−アニリノフェニル
(158)4−イソブチリルアミノフェニル
(159)4−フェノキシカルボニルアミノフェニル
(160)4−(3−エチルウレイド)フェニル
(161)4−(3,3−ジエチルウレイド)フェニル
(162)4−メチルフェニル
(163)4−フェノキシフェニル
(164)4−ヒドロキシフェニル
(146) phenyl (147) 4-ethoxycarbonylphenyl (148) 4-butoxyphenyl (149) p-biphenylyl (150) 4-phenylthiophenyl (151) 4-chlorophenyl (152) 4-benzoylphenyl (153) 4 Acetoxyphenyl (154) 4-benzoyloxyphenyl (155) 4-phenoxycarbonylphenyl (156) 4-methoxyphenyl (157) 4-anilinophenyl (158) 4-isobutyrylaminophenyl (159) 4-phenoxy Carbonylaminophenyl (160) 4- (3-ethylureido) phenyl (161) 4- (3,3-diethylureido) phenyl (162) 4-methylphenyl (163) 4-phenoxyphenyl (164) 4-hydroxyphenyl

Figure 0004905787
Figure 0004905787

(165)フェニル
(166)4−エトキシカルボニルフェニル
(167)4−ブトキシフェニル
(168)p−ビフェニリル
(169)4−フェニルチオフェニル
(170)4−クロロフェニル
(171)4−ベンゾイルフェニル
(172)4−アセトキシフェニル
(173)4−ベンゾイルオキシフェニル
(174)4−フェノキシカルボニルフェニル
(175)4−メトキシフェニル
(176)4−アニリノフェニル
(177)4−イソブチリルアミノフェニル
(178)4−フェノキシカルボニルアミノフェニル
(179)4−(3−エチルウレイド)フェニル
(180)4−(3,3−ジエチルウレイド)フェニル
(181)4−メチルフェニル
(182)4−フェノキシフェニル
(183)4−ヒドロキシフェニル
(165) phenyl (166) 4-ethoxycarbonylphenyl (167) 4-butoxyphenyl (168) p-biphenylyl (169) 4-phenylthiophenyl (170) 4-chlorophenyl (171) 4-benzoylphenyl (172) 4 Acetoxyphenyl (173) 4-benzoyloxyphenyl (174) 4-phenoxycarbonylphenyl (175) 4-methoxyphenyl (176) 4-anilinophenyl (177) 4-isobutyrylaminophenyl (178) 4-phenoxy Carbonylaminophenyl (179) 4- (3-ethylureido) phenyl (180) 4- (3,3-diethylureido) phenyl (181) 4-methylphenyl (182) 4-phenoxyphenyl (183) 4-hydroxyphenyl

Figure 0004905787
Figure 0004905787

(184)フェニル
(185)4−エトキシカルボニルフェニル
(186)4−ブトキシフェニル
(187)p−ビフェニリル
(188)4−フェニルチオフェニル
(189)4−クロロフェニル
(190)4−ベンゾイルフェニル
(191)4−アセトキシフェニル
(192)4−ベンゾイルオキシフェニル
(193)4−フェノキシカルボニルフェニル
(194)4−メトキシフェニル
(195)4−アニリノフェニル
(196)4−イソブチリルアミノフェニル
(197)4−フェノキシカルボニルアミノフェニル
(198)4−(3−エチルウレイド)フェニル
(199)4−(3,3−ジエチルウレイド)フェニル
(200)4−メチルフェニル
(201)4−フェノキシフェニル
(202)4−ヒドロキシフェニル
(184) phenyl (185) 4-ethoxycarbonylphenyl (186) 4-butoxyphenyl (187) p-biphenylyl (188) 4-phenylthiophenyl (189) 4-chlorophenyl (190) 4-benzoylphenyl (191) 4 Acetoxyphenyl (192) 4-benzoyloxyphenyl (193) 4-phenoxycarbonylphenyl (194) 4-methoxyphenyl (195) 4-anilinophenyl (196) 4-isobutyrylaminophenyl (197) 4-phenoxy Carbonylaminophenyl (198) 4- (3-ethylureido) phenyl (199) 4- (3,3-diethylureido) phenyl (200) 4-methylphenyl (201) 4-phenoxyphenyl (202) 4-hydroxyphenyl

Figure 0004905787
Figure 0004905787

(203)フェニル
(204)4−エトキシカルボニルフェニル
(205)4−ブトキシフェニル
(206)p−ビフェニリル
(207)4−フェニルチオフェニル
(208)4−クロロフェニル
(209)4−ベンゾイルフェニル
(210)4−アセトキシフェニル
(211)4−ベンゾイルオキシフェニル
(212)4−フェノキシカルボニルフェニル
(213)4−メトキシフェニル
(214)4−アニリノフェニル
(215)4−イソブチリルアミノフェニル
(216)4−フェノキシカルボニルアミノフェニル
(217)4−(3−エチルウレイド)フェニル
(218)4−(3,3−ジエチルウレイド)フェニル
(219)4−メチルフェニル
(220)4−フェノキシフェニル
(221)4−ヒドロキシフェニル
(203) phenyl (204) 4-ethoxycarbonylphenyl (205) 4-butoxyphenyl (206) p-biphenylyl (207) 4-phenylthiophenyl (208) 4-chlorophenyl (209) 4-benzoylphenyl (210) 4 Acetoxyphenyl (211) 4-benzoyloxyphenyl (212) 4-phenoxycarbonylphenyl (213) 4-methoxyphenyl (214) 4-anilinophenyl (215) 4-isobutyrylaminophenyl (216) 4-phenoxy Carbonylaminophenyl (217) 4- (3-ethylureido) phenyl (218) 4- (3,3-diethylureido) phenyl (219) 4-methylphenyl (220) 4-phenoxyphenyl (221) 4-hydroxyphenyl

Figure 0004905787
Figure 0004905787

(222)フェニル
(223)4−ブチルフェニル
(224)4−(2−メトキシ−2−エトキシエチル)フェニル
(225)4−(5−ノネニル)フェニル
(226)p−ビフェニリル
(227)4−エトキシカルボニルフェニル
(228)4−ブトキシフェニル
(229)4−メチルフェニル
(230)4−クロロフェニル
(231)4−フェニルチオフェニル
(232)4−ベンゾイルフェニル
(233)4−アセトキシフェニル
(234)4−ベンゾイルオキシフェニル
(235)4−フェノキシカルボニルフェニル
(236)4−メトキシフェニル
(237)4−アニリノフェニル
(238)4−イソブチリルアミノフェニル
(239)4−フェノキシカルボニルアミノフェニル
(240)4−(3−エチルウレイド)フェニル
(241)4−(3,3−ジエチルウレイド)フェニル
(242)4−フェノキシフェニル
(243)4−ヒドロキシフェニル
(244)3−ブチルフェニル
(245)3−(2−メトキシ−2−エトキシエチル)フェニル
(246)3−(5−ノネニル)フェニル
(247)m−ビフェニリル
(248)3−エトキシカルボニルフェニル
(249)3−ブトキシフェニル
(250)3−メチルフェニル
(251)3−クロロフェニル
(252)3−フェニルチオフェニル
(253)3−ベンゾイルフェニル
(254)3−アセトキシフェニル
(255)3−ベンゾイルオキシフェニル
(256)3−フェノキシカルボニルフェニル
(257)3−メトキシフェニル
(258)3−アニリノフェニル
(259)3−イソブチリルアミノフェニル
(260)3−フェノキシカルボニルアミノフェニル
(261)3−(3−エチルウレイド)フェニル
(262)3−(3,3−ジエチルウレイド)フェニル
(263)3−フェノキシフェニル
(264)3−ヒドロキシフェニル
(265)2−ブチルフェニル
(266)2−(2−メトキシ−2−エトキシエチル)フェニル
(267)2−(5−ノネニル)フェニル
(268)o−ビフェニリル
(269)2−エトキシカルボニルフェニル
(270)2−ブトキシフェニル
(271)2−メチルフェニル
(272)2−クロロフェニル
(273)2−フェニルチオフェニル
(274)2−ベンゾイルフェニル
(275)2−アセトキシフェニル
(276)2−ベンゾイルオキシフェニル
(277)2−フェノキシカルボニルフェニル
(278)2−メトキシフェニル
(279)2−アニリノフェニル
(280)2−イソブチリルアミノフェニル
(281)2−フェノキシカルボニルアミノフェニル
(282)2−(3−エチルウレイド)フェニル
(283)2−(3,3−ジエチルウレイド)フェニル
(284)2−フェノキシフェニル
(285)2−ヒドロキシフェニル
(286)3,4−ジブチルフェニル
(287)3,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(288)3,4−ジフェニルフェニル
(289)3,4−ジエトキシカルボニルフェニル
(290)3,4−ジドデシルオキシフェニル
(291)3,4−ジメチルフェニル
(292)3,4−ジクロロフェニル
(293)3,4−ジベンゾイルフェニル
(294)3,4−ジアセトキシフェニル
(295)3,4−ジメトキシフェニル
(296)3,4−ジ−N−メチルアミノフェニル
(297)3,4−ジイソブチリルアミノフェニル
(298)3,4−ジフェノキシフェニル
(299)3,4−ジヒドロキシフェニル
(300)3,5−ジブチルフェニル
(301)3,5−ジ(2−メトキシ−2−エトキシエチル)フェニル
(302)3,5−ジフェニルフェニル
(303)3,5−ジエトキシカルボニルフェニル
(304)3,5−ジドデシルオキシフェニル
(305)3,5−ジメチルフェニル
(306)3,5−ジクロロフェニル
(307)3,5−ジベンゾイルフェニル
(308)3,5−ジアセトキシフェニル
(309)3,5−ジメトキシフェニル
(310)3,5−ジ−N−メチルアミノフェニル
(311)3,5−ジイソブチリルアミノフェニル
(312)3,5−ジフェノキシフェニル
(313)3,5−ジヒドロキシフェニル
(314)2,4−ジブチルフェニル
(315)2,4−ジ(2−メトキシ−2−エトキシエチル)フェニル
(316)2,4−ジフェニルフェニル
(317)2,4−ジエトキシカルボニルフェニル
(318)2,4−ジドデシルオキシフェニル
(319)2,4−ジメチルフェニル
(320)2,4−ジクロロフェニル
(321)2,4−ジベンゾイルフェニル
(322)2,4−ジアセトキシフェニル
(323)2,4−ジメトキシフェニル
(324)2,4−ジ−N−メチルアミノフェニル
(325)2,4−ジイソブチリルアミノフェニル
(326)2,4−ジフェノキシフェニル
(327)2,4−ジヒドロキシフェニル
(328)2,3−ジブチルフェニル
(329)2,3−ジ(2−メトキシ−2−エトキシエチル)フェニル
(330)2,3−ジフェニルフェニル
(331)2,3−ジエトキシカルボニルフェニル
(332)2,3−ジドデシルオキシフェニル
(333)2,3−ジメチルフェニル
(334)2,3−ジクロロフェニル
(335)2,3−ジベンゾイルフェニル
(336)2,3−ジアセトキシフェニル
(337)2,3−ジメトキシフェニル
(338)2,3−ジ−N−メチルアミノフェニル
(339)2,3−ジイソブチリルアミノフェニル
(340)2,3−ジフェノキシフェニル
(341)2,3−ジヒドロキシフェニル
(342)2,6−ジブチルフェニル
(343)2,6−ジ(2−メトキシ−2−エトキシエチル)フェニル
(344)2,6−ジフェニルフェニル
(345)2,6−ジエトキシカルボニルフェニル
(346)2,6−ジドデシルオキシフェニル
(347)2,6−ジメチルフェニル
(348)2,6−ジクロロフェニル
(349)2,6−ジベンゾイルフェニル
(350)2,6−ジアセトキシフェニル
(351)2,6−ジメトキシフェニル
(352)2,6−ジ−N−メチルアミノフェニル
(353)2,6−ジイソブチリルアミノフェニル
(354)2,6−ジフェノキシフェニル
(355)2,6−ジヒドロキシフェニル
(356)3,4,5−トリブチルフェニル
(357)3,4,5−トリ(2−メトキシ−2−エトキシエチル)フェニル
(358)3,4,5−トリフェニルフェニル
(359)3,4,5−トリエトキシカルボニルフェニル
(360)3,4,5−トリドデシルオキシフェニル
(361)3,4,5−トリメチルフェニル
(362)3,4,5−トリクロロフェニル
(363)3,4,5−トリベンゾイルフェニル
(364)3,4,5−トリアセトキシフェニル
(365)3,4,5−トリメトキシフェニル
(366)3,4,5−トリ−N−メチルアミノフェニル
(367)3,4,5−トリイソブチリルアミノフェニル
(368)3,4,5−トリフェノキシフェニル
(369)3,4,5−トリヒドロキシフェニル
(370)2,4,6−トリブチルフェニル
(371)2,4,6−トリ(2−メトキシ−2−エトキシエチル)フェニル
(372)2,4,6−トリフェニルフェニル
(373)2,4,6−トリエトキシカルボニルフェニル
(374)2,4,6−トリドデシルオキシフェニル
(375)2,4,6−トリメチルフェニル
(376)2,4,6−トリクロロフェニル
(377)2,4,6−トリベンゾイルフェニル
(378)2,4,6−トリアセトキシフェニル
(379)2,4,6−トリメトキシフェニル
(380)2,4,6−トリ−N−メチルアミノフェニル
(381)2,4,6−トリイソブチリルアミノフェニル
(382)2,4,6−トリフェノキシフェニル
(383)2,4,6−トリヒドロキシフェニル
(384)ペンタフルオロフェニル
(385)ペンタクロロフェニル
(386)ペンタメトキシフェニル
(387)6−N−メチルスルファモイル−8−メトキシ−2−ナフチル
(388)5−N−メチルスルファモイル−2−ナフチル
(389)6−N−フェニルスルファモイル−2−ナフチル
(390)5−エトキシ−7−N−メチルスルファモイル−2−ナフチル
(391)3−メトキシ−2−ナフチル
(392)1−エトキシ−2−ナフチル
(393)6−N−フェニルスルファモイル−8−メトキシ−2−ナフチル
(394)5−メトキシ−7−N−フェニルスルファモイル−2−ナフチル
(395)1−(4−メチルフェニル)−2−ナフチル
(396)6,8−ジ−N−メチルスルファモイル−2−ナフチル
(397)6−N−2−アセトキシエチルスルファモイル−8−メトキシ−2−ナフチル
(398)5−アセトキシ−7−N−フェニルスルファモイル−2−ナフチル
(399)3−ベンゾイルオキシ−2−ナフチル
(400)5−アセチルアミノ−1−ナフチル
(401)2−メトキシ−1−ナフチル
(402)4−フェノキシ−1−ナフチル
(403)5−N−メチルスルファモイル−1−ナフチル
(404)3−N−メチルカルバモイル−4−ヒドロキシ−1−ナフチル
(405)5−メトキシ−6−N−エチルスルファモイル−1−ナフチル
(406)7−テトラデシルオキシ−1−ナフチル
(407)4−(4−メチルフェノキシ)−1−ナフチル
(408)6−N−メチルスルファモイル−1−ナフチル
(409)3−N,N−ジメチルカルバモイル−4−メトキシ−1−ナフチル
(410)5−メトキシ−6−N−ベンジルスルファモイル−1−ナフチル
(411)3,6−ジ−N−フェニルスルファモイル−1−ナフチル
(412)メチル
(413)エチル
(414)ブチル
(415)オクチル
(416)ドデシル
(417)2−ブトキシ−2−エトキシエチル
(418)ベンジル
(419)4−メトキシベンジル
(222) phenyl (223) 4-butylphenyl (224) 4- (2-methoxy-2-ethoxyethyl) phenyl (225) 4- (5-nonenyl) phenyl (226) p-biphenylyl (227) 4-ethoxy Carbonylphenyl (228) 4-butoxyphenyl (229) 4-methylphenyl (230) 4-chlorophenyl (231) 4-phenylthiophenyl (232) 4-benzoylphenyl (233) 4-acetoxyphenyl (234) 4-benzoyl Oxyphenyl (235) 4-phenoxycarbonylphenyl (236) 4-methoxyphenyl (237) 4-anilinophenyl (238) 4-isobutyrylaminophenyl (239) 4-phenoxycarbonylaminophenyl (240) 4- ( 3-ethylureido) phenyl ( 41) 4- (3,3-Diethylureido) phenyl (242) 4-phenoxyphenyl (243) 4-hydroxyphenyl (244) 3-butylphenyl (245) 3- (2-methoxy-2-ethoxyethyl) phenyl (246) 3- (5-Nonenyl) phenyl (247) m-biphenylyl (248) 3-ethoxycarbonylphenyl (249) 3-butoxyphenyl (250) 3-methylphenyl (251) 3-chlorophenyl (252) 3- Phenylthiophenyl (253) 3-benzoylphenyl (254) 3-acetoxyphenyl (255) 3-benzoyloxyphenyl (256) 3-phenoxycarbonylphenyl (257) 3-methoxyphenyl (258) 3-anilinophenyl (259) ) 3-Isobutyrylaminophenyl 260) 3-phenoxycarbonylaminophenyl (261) 3- (3-ethylureido) phenyl (262) 3- (3,3-diethylureido) phenyl (263) 3-phenoxyphenyl (264) 3-hydroxyphenyl (265) ) 2-Butylphenyl (266) 2- (2-methoxy-2-ethoxyethyl) phenyl (267) 2- (5-nonenyl) phenyl (268) o-biphenylyl (269) 2-ethoxycarbonylphenyl (270) 2 -Butoxyphenyl (271) 2-methylphenyl (272) 2-chlorophenyl (273) 2-phenylthiophenyl (274) 2-benzoylphenyl (275) 2-acetoxyphenyl (276) 2-benzoyloxyphenyl (277) 2 -Phenoxycarbonylphenyl (278 ) 2-methoxyphenyl (279) 2-anilinophenyl (280) 2-isobutyrylaminophenyl (281) 2-phenoxycarbonylaminophenyl (282) 2- (3-ethylureido) phenyl (283) 2- ( 3,3-diethylureido) phenyl (284) 2-phenoxyphenyl (285) 2-hydroxyphenyl (286) 3,4-dibutylphenyl (287) 3,4-di (2-methoxy-2-ethoxyethyl) phenyl (288) 3,4-diphenylphenyl (289) 3,4-diethoxycarbonylphenyl (290) 3,4-didodecyloxyphenyl (291) 3,4-dimethylphenyl (292) 3,4-dichlorophenyl (293 ) 3,4-Dibenzoylphenyl (294) 3,4-diacetoxyphenyl ( 95) 3,4-dimethoxyphenyl (296) 3,4-di-N-methylaminophenyl (297) 3,4-diisobutyrylaminophenyl (298) 3,4-diphenoxyphenyl (299) 3,4 -Dihydroxyphenyl (300) 3,5-dibutylphenyl (301) 3,5-di (2-methoxy-2-ethoxyethyl) phenyl (302) 3,5-diphenylphenyl (303) 3,5-diethoxycarbonyl Phenyl (304) 3,5-didodecyloxyphenyl (305) 3,5-dimethylphenyl (306) 3,5-dichlorophenyl (307) 3,5-dibenzoylphenyl (308) 3,5-diacetoxyphenyl ( 309) 3,5-dimethoxyphenyl (310) 3,5-di-N-methylaminophenyl (311) 3,5 Diisobutyrylaminophenyl (312) 3,5-diphenoxyphenyl (313) 3,5-dihydroxyphenyl (314) 2,4-dibutylphenyl (315) 2,4-di (2-methoxy-2-ethoxyethyl) ) Phenyl (316) 2,4-diphenylphenyl (317) 2,4-diethoxycarbonylphenyl (318) 2,4-didodecyloxyphenyl (319) 2,4-dimethylphenyl (320) 2,4-dichlorophenyl (321) 2,4-Dibenzoylphenyl (322) 2,4-diacetoxyphenyl (323) 2,4-dimethoxyphenyl (324) 2,4-di-N-methylaminophenyl (325) 2,4- Diisobutyrylaminophenyl (326) 2,4-diphenoxyphenyl (327) 2,4-dihydroxy Phenyl (328) 2,3-dibutylphenyl (329) 2,3-di (2-methoxy-2-ethoxyethyl) phenyl (330) 2,3-diphenylphenyl (331) 2,3-diethoxycarbonylphenyl ( 332) 2,3-didodecyloxyphenyl (333) 2,3-dimethylphenyl (334) 2,3-dichlorophenyl (335) 2,3-dibenzoylphenyl (336) 2,3-diacetoxyphenyl (337) 2,3-dimethoxyphenyl (338) 2,3-di-N-methylaminophenyl (339) 2,3-diisobutyrylaminophenyl (340) 2,3-diphenoxyphenyl (341) 2,3-dihydroxy Phenyl (342) 2,6-dibutylphenyl (343) 2,6-di (2-methoxy-2-ethoxyethyl) Phenyl (344) 2,6-diphenylphenyl (345) 2,6-diethoxycarbonylphenyl (346) 2,6-didodecyloxyphenyl (347) 2,6-dimethylphenyl (348) 2,6-dichlorophenyl ( 349) 2,6-dibenzoylphenyl (350) 2,6-diacetoxyphenyl (351) 2,6-dimethoxyphenyl (352) 2,6-di-N-methylaminophenyl (353) 2,6-diisobu Tyrylaminophenyl (354) 2,6-diphenoxyphenyl (355) 2,6-dihydroxyphenyl (356) 3,4,5-tributylphenyl (357) 3,4,5-tri (2-methoxy-2) -Ethoxyethyl) phenyl (358) 3,4,5-triphenylphenyl (359) 3,4,5-triethoxy Carbonylphenyl (360) 3,4,5-tridodecyloxyphenyl (361) 3,4,5-trimethylphenyl (362) 3,4,5-trichlorophenyl (363) 3,4,5-tribenzoylphenyl ( 364) 3,4,5-triacetoxyphenyl (365) 3,4,5-trimethoxyphenyl (366) 3,4,5-tri-N-methylaminophenyl (367) 3,4,5-triiso Butyrylaminophenyl (368) 3,4,5-triphenoxyphenyl (369) 3,4,5-trihydroxyphenyl (370) 2,4,6-tributylphenyl (371) 2,4,6-tri ( 2-methoxy-2-ethoxyethyl) phenyl (372) 2,4,6-triphenylphenyl (373) 2,4,6-triethoxycarbonyl Enyl (374) 2,4,6-tridodecyloxyphenyl (375) 2,4,6-trimethylphenyl (376) 2,4,6-trichlorophenyl (377) 2,4,6-tribenzoylphenyl (378) ) 2,4,6-triacetoxyphenyl (379) 2,4,6-trimethoxyphenyl (380) 2,4,6-tri-N-methylaminophenyl (381) 2,4,6-triisobuty Rylaminophenyl (382) 2,4,6-triphenoxyphenyl (383) 2,4,6-trihydroxyphenyl (384) pentafluorophenyl (385) pentachlorophenyl (386) pentamethoxyphenyl (387) 6-N -Methylsulfamoyl-8-methoxy-2-naphthyl (388) 5-N-methylsulfamoyl-2-naphthy (389) 6-N-phenylsulfamoyl-2-naphthyl (390) 5-ethoxy-7-N-methylsulfamoyl-2-naphthyl (391) 3-methoxy-2-naphthyl (392) 1-ethoxy 2-naphthyl (393) 6-N-phenylsulfamoyl-8-methoxy-2-naphthyl (394) 5-methoxy-7-N-phenylsulfamoyl-2-naphthyl (395) 1- (4- Methylphenyl) -2-naphthyl (396) 6,8-di-N-methylsulfamoyl-2-naphthyl (397) 6-N-2-acetoxyethylsulfamoyl-8-methoxy-2-naphthyl (398) ) 5-Acetoxy-7-N-phenylsulfamoyl-2-naphthyl (399) 3-benzoyloxy-2-naphthyl (400) 5-acetylamino-1 Naphthyl (401) 2-methoxy-1-naphthyl (402) 4-phenoxy-1-naphthyl (403) 5-N-methylsulfamoyl-1-naphthyl (404) 3-N-methylcarbamoyl-4-hydroxy- 1-naphthyl (405) 5-methoxy-6-N-ethylsulfamoyl-1-naphthyl (406) 7-tetradecyloxy-1-naphthyl (407) 4- (4-methylphenoxy) -1-naphthyl ( 408) 6-N-methylsulfamoyl-1-naphthyl (409) 3-N, N-dimethylcarbamoyl-4-methoxy-1-naphthyl (410) 5-methoxy-6-N-benzylsulfamoyl-1 -Naphtyl (411) 3,6-di-N-phenylsulfamoyl-1-naphthyl (412) methyl (413) ethyl (414) butyl ( 415) Octyl (416) dodecyl (417) 2-butoxy-2-ethoxyethyl (418) benzyl (419) 4-methoxybenzyl

Figure 0004905787
Figure 0004905787

(424)メチル
(425)フェニル
(426)ブチル
(424) methyl (425) phenyl (426) butyl

Figure 0004905787
Figure 0004905787

(430)メチル
(431)エチル
(432)ブチル
(433)オクチル
(434)ドデシル
(435)2−ブトキシ2−エトキシエチル
(436)ベンジル
(437)4−メトキシベンジル
(430) methyl (431) ethyl (432) butyl (433) octyl (434) dodecyl (435) 2-butoxy 2-ethoxyethyl (436) benzyl (437) 4-methoxybenzyl

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

本発明においては、1,3,5−トリアジン環を有する化合物として、メラミンポリマーを用いてもよい。メラミンポリマーは、下記一般式(II)で示すメラミン化合物とカルボニル化合物との重合反応により合成することが好ましい。   In the present invention, a melamine polymer may be used as the compound having a 1,3,5-triazine ring. The melamine polymer is preferably synthesized by a polymerization reaction between a melamine compound represented by the following general formula (II) and a carbonyl compound.

Figure 0004905787
Figure 0004905787

上記合成反応スキームにおいて、R11、R12、R13、R14、R15及びR16は、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。 In the above synthetic reaction scheme, R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group.

上記アルキル基、アルケニル基、アリール基及び複素環基及びこれらの置換基は前記一般式(I)で説明した各基、それらの置換基と同義である。   The alkyl group, alkenyl group, aryl group, heterocyclic group, and substituents thereof have the same meanings as the groups and substituents described in the general formula (I).

メラミン化合物とカルボニル化合物との重合反応は、通常のメラミン樹脂(例えば、メラミンホルムアルデヒド樹脂等)の合成方法と同様である。また、市販のメラミンポリマー(メラミン樹脂)を用いてもよい。   The polymerization reaction between the melamine compound and the carbonyl compound is the same as the method for synthesizing a normal melamine resin (for example, melamine formaldehyde resin). Moreover, you may use a commercially available melamine polymer (melamine resin).

メラミンポリマーの分子量は、2千〜40万であることが好ましい。メラミンポリマーの繰り返し単位の具体例を以下に示す。   The molecular weight of the melamine polymer is preferably 2,000 to 400,000. Specific examples of the repeating unit of the melamine polymer are shown below.

Figure 0004905787
Figure 0004905787

MP−1:R13、R14、R15、R16:CH2OH
MP−2:R13、R14、R15、R16:CH2OCH3
MP−3:R13、R14、R15、R16:CH2O−i−C49
MP−4:R13、R14、R15、R16:CH2O−n−C49
MP−5:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−6:R13、R14、R15、R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−7:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−8:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−9:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−10:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−11:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−12:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−13:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−14:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−15:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−16:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−17:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−18:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−19:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−20:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−21:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−22:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−23:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−24:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−25:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−26:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−27:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−28:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−29:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−30:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−31:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−32:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−33:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−34:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−35:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−36:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−37:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−38:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−39:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−40:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−41:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−42:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−43:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−44:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−45:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH2)CH=CH(CH2)CH3;R16:CH2NHCOCH=CH2
MP−46:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−47:R13:CH2OH;R14:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−48:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−49:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−50:R13:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP-1: R 13 , R 14 , R 15 , R 16 : CH 2 OH
MP-2: R 13, R 14, R 15, R 16: CH 2 OCH 3
MP-3: R 13, R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-4: R 13, R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-5: R 13, R 14, R 15, R 16: CH 2 NHCOCH = CH 2
MP-6: R 13, R 14, R 15, R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-7: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 OCH 3
MP-8: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 OCH 3
MP-9: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 OCH 3
MP-10: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 OCH 3
MP-11: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 OCH 3
MP-12: R 13, R 14, R 16: CH 2 OCH 3; R 15: CH 2 OH
MP-13: R 13, R 16: CH 2 OCH 3; R 14, R 15: CH 2 OH
MP-14: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-i-C 4 H 9
MP-15: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-i-C 4 H 9
MP-16: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-i-C 4 H 9
MP-17: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-i-C 4 H 9
MP-18: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-19: R 13, R 14, R 16: CH 2 O-i-C 4 H 9; R 15: CH 2 OH
MP-20: R 13, R 16: CH 2 O-i-C 4 H 9; R 14, R 15: CH 2 OH
MP-21: R 13 , R 14 , R 15 : CH 2 OH; R 16 : CH 2 On -C 4 H 9
MP-22: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-23: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-n-C 4 H 9
MP-24: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9
MP-25: R 13: CH 2 OH; R 14, R 15, R 16: CH 2O -n-C 4 H 9
MP-26: R 13, R 14, R 16: CH 2 O-n-C 4 H 9; R 15: CH 2 OH
MP-27: R 13, R 16: CH 2 O-n-C 4 H 9; R 14, R 15: CH 2 OH
MP-28: R 13, R 14: CH 2 OH; R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-29: R 13, R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-30: R 13, R 16: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-31: R 13: CH 2 OH; R 14, R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-32: R 13: CH 2 OH; R 14, R 16: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-33: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15, R 16: CH 2 O-n-C 4 H 9
MP-34: R 13: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-35: R 13, R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-36: R 13, R 16: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-37: R 13: CH 2 OCH 3; R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-38: R 13, R 16: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH
MP-39: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-40: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-41: R 13: CH 2 OH; R 14: CH 2 O-n-C 4 H 9; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-42: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-43: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-44: R 13: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
MP-45: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-46: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-47: R 13: CH 2 OH; R 14: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-48: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-49: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-50: R 13: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2

Figure 0004905787
Figure 0004905787

MP−51:R13、R14、R15、R16:CH2OH
MP−52:R13、R14、R15、R16:CH2OCH3
MP−53:R13、R14、R15、R16:CH2O−i−C49
MP−54:R13、R14、R15、R16:CH2O−n−C49
MP−55:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−56:R13、R14、R15、R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−57:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−58:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−59:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−60:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−61:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−62:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−63:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−64:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−65:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−66:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−67:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−68:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−69:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−70:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−71:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−72:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−73:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−74:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−75:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−76:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−77:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−78:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−79:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−80:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−81:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−82:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−83:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−84:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−85:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−86:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−87:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−88:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−89:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−90:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−91:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−92:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−93:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−94:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−95:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−96:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−97:R13:CH2OH;R14:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−98:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−99:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−100:R13:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP-51: R 13, R 14, R 15, R 16: CH 2 OH
MP-52: R 13, R 14, R 15, R 16: CH 2 OCH 3
MP-53: R 13, R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-54: R 13, R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-55: R 13, R 14, R 15, R 16: CH 2 NHCOCH = CH 2
MP-56: R 13, R 14, R 15, R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-57: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 OCH 3
MP-58: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 OCH 3
MP-59: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 OCH 3
MP-60: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 OCH 3
MP-61: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 OCH 3
MP-62: R 13, R 14, R 16: CH 2 OCH 3; R 15: CH 2 OH
MP-63: R 13, R 16: CH 2 OCH 3; R 14, R 15: CH 2 OH
MP-64: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-i-C 4 H 9
MP-65: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-i-C 4 H 9
MP-66: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-i-C 4 H 9
MP-67: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-i-C 4 H 9
MP-68: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-69: R 13, R 14, R 16: CH 2 O-i-C 4 H 9; R 15: CH 2 OH
MP-70: R 13, R 16: CH 2 O-i-C 4 H 9; R 14, R 15: CH 2 OH
MP-71: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-72: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-73: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-n-C 4 H 9
MP-74: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9
MP-75: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-76: R 13, R 14, R 16: CH 2 O-n-C 4 H 9; R 15: CH 2 OH
MP-77: R 13, R 16: CH 2 O-n-C 4 H 9; R 14, R 15: CH 2 OH
MP-78: R 13, R 14: CH 2 OH; R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-79: R 13, R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-80: R 13, R 16: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-81: R 13: CH 2 OH; R 14, R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-82: R 13: CH 2 OH; R 14, R 16: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-83: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15, R 16: CH 2 O-n-C 4 H 9
MP-84: R 13: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-85: R 13, R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-86: R 13, R 16: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-87: R 13: CH 2 OCH 3; R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-88: R 13, R 16: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH
MP-89: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-90: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-91: R 13: CH 2 OH; R 14: CH 2 O-n-C 4 H 9; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-92: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-93: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-94: R 13: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
MP-95: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-96: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-97: R 13: CH 2 OH; R 14: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-98: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-99: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-100: R 13: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2

Figure 0004905787
Figure 0004905787

MP−101:R13、R14、R15、R16:CH2OH
MP−102:R13、R14、R15、R16:CH2OCH3
MP−103:R13、R14、R15、R16:CH2O−i−C49
MP−104:R13、R14、R15、R16:CH2O−n−C49
MP−105:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−106:R13、R14、R15、R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−107:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−108:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−109:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−110:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−111:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−112:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−113:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−114:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−115:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−116:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−117:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−118:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−119:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−120:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−121:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−122:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−123:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−124:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−125:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−126:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−127:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−128:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−129:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−130:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−131:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−132:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−133:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−134:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−135:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−136:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−137:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−138:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−139:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−140:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−141:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−142:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−143:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−144:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−145:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−146:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−147:R13:CH2OH;R14:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−148:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−149:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−150:R13:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP-101: R 13, R 14, R 15, R 16: CH 2 OH
MP-102: R 13, R 14, R 15, R 16: CH 2 OCH 3
MP-103: R 13, R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-104: R 13, R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-105: R 13, R 14, R 15, R 16: CH 2 NHCOCH = CH 2
MP-106: R 13, R 14, R 15, R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-107: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 OCH 3
MP-108: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 OCH 3
MP-109: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 OCH 3
MP-110: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 OCH 3
MP-111: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 OCH 3
MP-112: R 13, R 14, R 16: CH 2 OCH 3; R 15: CH 2 OH
MP-113: R 13, R 16: CH 2 OCH 3; R 14, R 15: CH 2 OH
MP-114: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-i-C 4 H 9
MP-115: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-i-C 4 H 9
MP-116: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-i-C 4 H 9
MP-117: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-i-C 4 H 9
MP-118: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-119: R 13, R 14, R 16: CH 2 O-i-C 4 H 9; R 15: CH 2 OH
MP-120: R 13, R 16: CH 2 O-i-C 4 H 9; R 14, R 15: CH 2 OH
MP-121: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-122: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-123: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-n-C 4 H 9
MP-124: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9
MP-125: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-126: R 13, R 14, R 16: CH 2 O-n-C 4 H 9; R 15: CH 2 OH
MP-127: R 13, R 16: CH 2 O-n-C 4 H 9; R 14, R 15: CH 2 OH
MP-128: R 13, R 14: CH 2 OH; R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-129: R 13, R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-130: R 13, R 16: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-131: R 13: CH 2 OH; R 14, R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-132: R 13: CH 2 OH; R 14, R 16: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-133: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15, R 16: CH 2 O-n-C 4 H 9
MP-134: R 13: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-135: R 13, R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-136: R 13, R 16: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-137: R 13: CH 2 OCH 3; R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-138: R 13, R 16: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH
MP-139: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-140: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-141: R 13: CH 2 OH; R 14: CH 2 O-n-C 4 H 9; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-142: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-143: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-144: R 13: CH2O -n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
MP-145: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-146: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-147: R 13: CH 2 OH; R 14: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-148: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-149: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-150: R 13: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2

Figure 0004905787
Figure 0004905787

MP−151:R13、R14、R15、R16:CH2OH
MP−152:R13、R14、R15、R16:CH2OCH3
MP−153:R13、R14、R15、R16:CH2O−i−C49
MP−154:R13、R14、R15、R16:CH2O−n−C49
MP−155:R13、R14、R15、R16:CH2NHCOCH=CH2
MP−156:R13、R14、R15、R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−157:R13、R14、R15:CH2OH;R16:CH2OCH3
MP−158:R13、R14、R16:CH2OH;R15:CH2OCH3
MP−159:R13、R14:CH2OH;R15、R16:CH2OCH3
MP−160:R13、R16:CH2OH;R14、R15:CH2OCH3
MP−161:R13:CH2OH;R14、R15、R16:CH2OCH3
MP−162:R13、R14、R16:CH2OCH3;R15:CH2OH
MP−163:R13、R16:CH2OCH3;R14、R15:CH2OH
MP−164:R13、R14、R15:CH2OH;R16:CH2O−i−C49
MP−165:R13、R14、R16:CH2OH;R15:CH2O−i−C49
MP−166:R13、R14:CH2OH;R15、R16:CH2O−i−C49
MP−167:R13、R16:CH2OH;R14、R15:CH2O−i−C49
MP−168:R13:CH2OH;R14、R15、R16:CH2O−i−C49
MP−169:R13、R14、R16:CH2O−i−C49;R15:CH2OH
MP−170:R13、R16:CH2O−i−C49;R14、R15:CH2OH
MP−171:R13、R14、R15:CH2OH;R16:CH2O−n−C49
MP−172:R13、R14、R16:CH2OH;R15:CH2O−n−C49
MP−173:R13、R14:CH2OH;R15、R16:CH2O−n−C49
MP−174:R13、R16:CH2OH;R14、R15:CH2O−n−C49
MP−175:R13:CH2OH;R14、R15、R16:CH2O−n−C49
MP−176:R13、R14、R16:CH2O−n−C49;R15:CH2OH
MP−177:R13、R16:CH2O−n−C49;R14、R15:CH2OH
MP−178:R13、R14:CH2OH;R15:CH2OCH3;R16:CH2O−n−C49
MP−179:R13、R14:CH2OH;R15:CH2O−n−C49;R16:CH2OCH3
MP−180:R13、R16:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49
MP−181:R13:CH2OH;R14、R15:CH2OCH3;R16:CH2O−n−C49
MP−182:R13:CH2OH;R14、R16:CH2OCH3;R15:CH2O−n−C49
MP−183:R13:CH2OH;R14:CH2OCH3;R15、R16:CH2O−n−C49
MP−184:R13:CH2OH;R14、R15:CH2O−n−C49;R16:CH2OCH3
MP−185:R13、R14:CH2OCH3;R15:CH2OH;R16:CH2O−n−C49
MP−186:R13、R16:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49
MP−187:R13:CH2OCH3;R14、R15:CH2OH;R16:CH2O−n−C49
MP−188:R13、R16:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH
MP−189:R13:CH2OH;R14:CH2OCH3;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−190:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−191:R13:CH2OH;R14:CH2O−n−C49;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−192:R13:CH2OCH3;R14:CH2OH;R15:CH2O−n−C49;R16:CH2NHCOCH=CH2
MP−193:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2O−n−C49
MP−194:R13:CH2O−n−C49;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
MP−195:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−196:R13:CH2OH;R14:CH2OCH3;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−197:R13:CH2OH;R14:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R15:CH2NHCOCH=CH2;R16:CH2OCH3
MP−198:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R16:CH2NHCOCH=CH2
MP−199:R13:CH2OCH3;R14:CH2OH;R15:CH2NHCOCH=CH2;R16:CH2NHCO(CH2)7CH=CH(CH2)7CH3
MP−200:R13:CH2NHCO(CH2)7CH=CH(CH2)7CH3;R14:CH2OCH3;R15:CH2OH;R16:CH2NHCOCH=CH2
本発明においては、上記繰り返し単位を二種類以上組み合わせたコポリマーを用いてもよい。二種類以上のホモポリマーまたはコポリマーを併用してもよい。
MP-151: R 13, R 14, R 15, R 16: CH 2 OH
MP-152: R 13, R 14, R 15, R 16: CH2OCH 3
MP-153: R 13, R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-154: R 13, R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-155: R 13, R 14, R 15, R 16: CH 2 NHCOCH = CH 2
MP-156: R 13, R 14, R 15, R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-157: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 OCH 3
MP-158: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 OCH 3
MP-159: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 OCH 3
MP-160: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 OCH 3
MP-161: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 OCH 3
MP-162: R 13, R 14, R 16: CH 2 OCH 3; R 15: CH 2 OH
MP-163: R 13, R 16: CH 2 OCH 3; R 14, R 15: CH 2 OH
MP-164: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-i-C 4 H 9
MP-165: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-i-C 4 H 9
MP-166: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-i-C 4 H 9
MP-167: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-i-C 4 H 9
MP-168: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-i-C 4 H 9
MP-169: R 13, R 14, R 16: CH 2 O-i-C 4 H 9; R 15: CH 2 OH
MP-170: R 13, R 16: CH 2 O-i-C 4 H 9; R 14, R 15: CH 2 OH
MP-171: R 13, R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-172: R 13, R 14, R 16: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-173: R 13, R 14: CH 2 OH; R 15, R 16: CH 2 O-n-C 4 H 9
MP-174: R 13, R 16: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9
MP-175: R 13: CH 2 OH; R 14, R 15, R 16: CH 2 O-n-C 4 H 9
MP-176: R 13 , R 14 , R 16 : CH 2 On -C 4 H 9 ; R 15 : CH 2 OH
MP-177: R 13, R 16: CH 2 O-n-C 4 H 9; R 14, R 15: CH 2 OH
MP-178: R 13, R 14: CH 2 OH; R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-179: R 13, R 14: CH 2 OH; R 15: CH2O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-180: R 13, R 16: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-181: R 13: CH 2 OH; R 14, R 15: CH 2 OCH 3; R 16: CH 2 O-n-C 4 H 9
MP-182: R 13: CH 2 OH; R 14, R 16: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9
MP-183: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15, R 16: CH 2 O-n-C 4 H 9
MP-184: R 13: CH 2 OH; R 14, R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 OCH 3
MP-185: R 13, R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-186: R 13, R 16: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9
MP-187: R 13: CH 2 OCH 3; R 14, R 15: CH 2 OH; R 16: CH 2 O-n-C 4 H 9
MP-188: R 13, R 16: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH
MP-189: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-190: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-191: R 13: CH 2 OH; R 14: CH 2 O-n-C 4 H 9; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-192: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 O-n-C 4 H 9; R 16: CH 2 NHCOCH = CH 2
MP-193: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 O-n-C 4 H 9
MP-194: R 13: CH 2 O-n-C 4 H 9; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
MP-195: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-196: R 13: CH 2 OH; R 14: CH 2 OCH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-197: R 13: CH 2 OH; R 14: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 OCH 3
MP-198: R 13: CH 2 OCH 3; R 14: CH2OH; R 15: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 16: CH 2 NHCOCH = CH 2
MP-199: R 13: CH 2 OCH 3; R 14: CH 2 OH; R 15: CH 2 NHCOCH = CH 2; R 16: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3
MP-200: R 13: CH 2 NHCO (CH 2) 7 CH = CH (CH 2) 7 CH 3; R 14: CH 2 OCH 3; R 15: CH 2 OH; R 16: CH 2 NHCOCH = CH 2
In the present invention, a copolymer obtained by combining two or more of the above repeating units may be used. Two or more homopolymers or copolymers may be used in combination.

また、二種類以上の1,3,5−トリアジン環を有する化合物を併用してもよい。二種類以上の円盤状化合物(例えば、1,3,5−トリアジン環を有する化合物とポルフィリン骨格を有する化合物)を併用してもよい。   Moreover, you may use together the compound which has a 2 or more types of 1,3,5- triazine ring. Two or more kinds of discotic compounds (for example, a compound having a 1,3,5-triazine ring and a compound having a porphyrin skeleton) may be used in combination.

これらの添加剤はセルロースエステルフィルムに対して0.2〜30質量%、特に好ましくは1〜20質量%含有することが好ましい。   These additives are preferably contained in an amount of 0.2 to 30% by mass, particularly preferably 1 to 20% by mass with respect to the cellulose ester film.

また、特開2001−235621号公報の一般式(I)で示されているトリアジン系化合物も本発明に係わるセルロースエステルフィルムに好ましく用いられる。   Moreover, the triazine type compound shown by general formula (I) of Unexamined-Japanese-Patent No. 2001-235621 is also preferably used for the cellulose-ester film concerning this invention.

本発明に係わるセルロースエステルフィルムは紫外線吸収剤を2種以上を含有することが好ましい。   The cellulose ester film according to the present invention preferably contains two or more ultraviolet absorbers.

また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることが出来、特に特開平6−148430号公報記載のポリマータイプの紫外線吸収剤が好ましく用いられる。   As the UV absorber, a polymer UV absorber can be preferably used, and in particular, a polymer type UV absorber described in JP-A-6-148430 is preferably used.

紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒或いはこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、または直接ドープ組成中に添加してもよい。無機粉体のように有機溶剤に溶解しないものは、有機溶剤とセルロースエステル中にデゾルバーやサンドミルを使用し、分散してからドープに添加する。   The method for adding the UV absorber is to add the UV absorber to the dope after dissolving the UV absorber in an alcohol such as methanol, ethanol or butanol, an organic solvent such as methylene chloride, methyl acetate, acetone or dioxolane, or a mixed solvent thereof. Or you may add directly in dope composition. For an inorganic powder that does not dissolve in an organic solvent, a dissolver or a sand mill is used in the organic solvent and cellulose ester to disperse and then added to the dope.

紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、セルロースエステルフィルムの乾燥膜厚が30〜200μmの場合は、セルロースエステルフィルムに対して0.5〜4.0質量%が好ましく、0.6〜2.0質量%が更に好ましい。   The amount of UV absorber used is not uniform depending on the type of UV absorber, operating conditions, etc., but when the dry film thickness of the cellulose ester film is 30 to 200 μm, it is 0.5 to 4 with respect to the cellulose ester film. 0.0 mass% is preferable, and 0.6 to 2.0 mass% is still more preferable.

〈微粒子〉
本発明に係わるセルロースエステルフィルムには、微粒子を含有することが好ましい。
<Fine particles>
The cellulose ester film according to the present invention preferably contains fine particles.

本発明に使用される微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることが出来る。微粒子は珪素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。   As fine particles used in the present invention, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated silicic acid. Mention may be made of calcium, aluminum silicate, magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.

微粒子の一次粒子の平均径は5〜50nmが好ましく、更に好ましいのは7〜20nmである。これらは主に粒径0.05〜0.3μmの2次凝集体として含有されることが好ましい。微粒子の平均径は、粒子の質量を重みとした平均径であり、光散乱法や電子顕微鏡写真により測定できる。セルロースエステルフィルム中のこれらの微粒子の含有量は0.05〜1質量%であることが好ましく、特に0.1〜0.5質量%が好ましい。共流延法による多層構成のセルロースエステルフィルムの場合は、表面にこの添加量の微粒子を含有することが好ましい。   The average primary particle diameter of the fine particles is preferably 5 to 50 nm, and more preferably 7 to 20 nm. These are preferably contained mainly as secondary aggregates having a particle size of 0.05 to 0.3 μm. The average diameter of the fine particles is an average diameter weighted by the mass of the particles and can be measured by a light scattering method or an electron micrograph. The content of these fine particles in the cellulose ester film is preferably 0.05 to 1% by mass, particularly preferably 0.1 to 0.5% by mass. In the case of a cellulose ester film having a multilayer structure by the co-casting method, it is preferable to contain fine particles of this addition amount on the surface.

二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。   Silicon dioxide fine particles are commercially available under the trade names of, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). I can do it.

酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することが出来る。   Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.

ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることが出来る。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することが出来る。   Examples of the polymer include silicone resin, fluorine resin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.

これらの中でもでアエロジル200V、アエロジルR972Vがセルロースエステルフィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましく用いられる。本発明で用いられるセルロースエステルフィルムにおいては防眩層の裏面側の動摩擦係数が1.0以下であることが好ましい。   Among these, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the turbidity of the cellulose ester film low. In the cellulose ester film used in the present invention, the dynamic friction coefficient on the back side of the antiglare layer is preferably 1.0 or less.

〈染料〉
本発明で用いられるセルロースエステルフィルムには、色味調整のため染料を添加することも出来る。例えば、フィルムの黄色味を抑えるために青色染料を添加してもよい。好ましい染料としてはアンスラキノン系染料が挙げられる。
<dye>
A dye may be added to the cellulose ester film used in the present invention to adjust the color. For example, a blue dye may be added to suppress the yellowness of the film. Preferred examples of the dye include anthraquinone dyes.

アンスラキノン系染料は、アンスラキノンの1位から8位迄の任意の位置に任意の置換基を有することが出来る。好ましい置換基としてはアニリノ基、ヒドロキシル基、アミノ基、ニトロ基、または水素原子が挙げられる。特に特開2001−154017号公報記載の青色染料、特にアントラキノン系染料を含有することが好ましい。   The anthraquinone dye may have an arbitrary substituent at an arbitrary position from the 1st position to the 8th position of the anthraquinone. Preferred substituents include an anilino group, hydroxyl group, amino group, nitro group, or hydrogen atom. In particular, it is preferable to contain a blue dye described in JP-A-2001-154017, particularly an anthraquinone dye.

各種添加剤は製膜前のセルロースエステル含有溶液であるドープにバッチ添加してもよいし、添加剤溶解液を別途用意してインライン添加してもよい。特に微粒子は濾過材への負荷を減らすために、一部または全量をインライン添加することが好ましい。   Various additives may be batch-added to a dope that is a cellulose ester-containing solution before film formation, or an additive solution may be separately prepared and added in-line. In particular, it is preferable to add a part or all of the fine particles in-line in order to reduce the load on the filter medium.

添加剤溶解液をインライン添加する場合は、ドープとの混合性をよくするため、少量のセルロースエステルを溶解するのが好ましい。好ましいセルロースエステルの量は、溶剤100質量部に対して1〜10質量部で、より好ましくは、3〜5質量部である。   When the additive solution is added in-line, it is preferable to dissolve a small amount of cellulose ester in order to improve mixing with the dope. The amount of the cellulose ester is preferably 1 to 10 parts by mass, more preferably 3 to 5 parts by mass with respect to 100 parts by mass of the solvent.

本発明においてインライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器Hi−Mixer)等のインラインミキサー等が好ましく用いられる。   In the present invention, for example, an in-line mixer such as a static mixer (manufactured by Toray Engineering Co., Ltd.) or SWJ (Toray Static In-Pipe Mixer Hi-Mixer) is preferably used for performing in-line addition and mixing.

〈セルロースエステルフィルムの製造方法〉
次に、本発明のセルロースエステルフィルムの製造方法について説明する。
<Method for producing cellulose ester film>
Next, the manufacturing method of the cellulose-ester film of this invention is demonstrated.

本発明のセルロースエステルフィルムの製造は、セルロースエステル及び添加剤を溶剤に溶解させてドープを調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻取る工程により行われる。   The cellulose ester film of the present invention is prepared by dissolving a cellulose ester and an additive in a solvent to prepare a dope, casting a dope onto an endless metal support, and casting the dope. It is carried out by a step of drying as a web, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.

ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減出来て好ましいが、セルロースエステルの濃度が濃すぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、更に好ましくは、15〜25質量%である。   The process for preparing the dope will be described. The concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced, but if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become. As a density | concentration which makes these compatible, 10-35 mass% is preferable, More preferably, it is 15-25 mass%.

本発明のドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70〜98質量%であり、貧溶剤が2〜30質量%である。良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。そのため、セルロースエステルの平均酢化度(アセチル基置換度)によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。   The solvent used in the dope of the present invention may be used alone or in combination of two or more. However, it is preferable from the viewpoint of production efficiency that a good solvent and a poor solvent of cellulose ester are mixed and used. The more solvent is preferable from the viewpoint of solubility of the cellulose ester. The preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent. With a good solvent and a poor solvent, what dissolve | melts the cellulose ester to be used independently is defined as a good solvent, and what poorly swells or does not melt | dissolve is defined as a poor solvent. Therefore, depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester, the good solvent and the poor solvent change. For example, when acetone is used as the solvent, the cellulose ester acetate ester (acetyl group substitution degree 2.4), cellulose Acetate propionate is a good solvent, and cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent.

本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。   Although the good solvent used for this invention is not specifically limited, Organic halogen compounds, such as a methylene chloride, dioxolanes, acetone, methyl acetate, methyl acetoacetate, etc. are mentioned. Particularly preferred is methylene chloride or methyl acetate.

また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n−ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01〜2質量%含有していることが好ましい。   Moreover, although the poor solvent used for this invention is not specifically limited, For example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone, etc. are used preferably. Moreover, it is preferable that 0.01-2 mass% of water contains in dope.

上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることが出来る。加熱と加圧を組み合わせると常圧における沸点以上に加熱出来る。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤或いは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。   A general method can be used as a method of dissolving the cellulose ester when preparing the dope described above. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure. It is preferable to stir and dissolve while heating at a temperature that is equal to or higher than the boiling point of the solvent at normal pressure and that the solvent does not boil under pressure, in order to prevent the generation of massive undissolved materials called gels and mamacos. Moreover, after mixing a cellulose ester with a poor solvent and making it wet or swell, the method of adding a good solvent and melt | dissolving is also used preferably.

加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。   The pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.

溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高すぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45〜120℃であり、60〜110℃がより好ましく、70℃〜105℃が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。   The heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates. A preferable heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.

若しくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースエステルを溶解させることが出来る。   Alternatively, a cooling dissolution method is also preferably used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate.

次に、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると濾過材の目詰まりが発生しやすい。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001〜0.008mmの濾材がより好ましく、0.003〜0.006mmの濾材が更に好ましい。   Next, this cellulose ester solution is filtered using a suitable filter medium such as filter paper. As the filter medium, it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like, but if the absolute filtration accuracy is too small, the filter medium is likely to be clogged. For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is still more preferable.

濾材の材質は特に制限はなく、通常の濾材を使用することが出来るが、ポリプロピレン、テフロン(R)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。   The material of the filter medium is not particularly limited, and a normal filter medium can be used. However, a plastic filter medium such as polypropylene and Teflon (R) and a metal filter medium such as stainless steel are preferable because there is no loss of fibers. . It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester by filtration.

輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にセルロースエステルフィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm2以下であることが好ましい。より好ましくは100個/cm2以下であり、更に好ましくは50個/m2以下であり、更に好ましくは0〜10個/cm2以下である。また、0.01mm以下の輝点も少ない方が好ましい。 A bright spot foreign substance is when two polarizing plates are placed in a crossed Nicol state, a cellulose ester film is placed between them, light is applied from the side of one polarizing plate, and observed from the side of the other polarizing plate. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm < 2 > or less, More preferably, it is 50 pieces / m < 2 > or less, More preferably, it is 0-10 pieces / cm < 2 > or less. Further, it is preferable that the number of bright spots of 0.01 mm or less is small.

ドープの濾過は通常の方法で行うことが出来るが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45〜120℃であり、45〜70℃がより好ましく、45〜55℃であることが更に好ましい。   The dope can be filtered by an ordinary method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration. The increase in the difference (referred to as differential pressure) is small and preferable. A preferred temperature is 45 to 120 ° C, more preferably 45 to 70 ° C, and still more preferably 45 to 55 ° C.

濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。   A smaller filtration pressure is preferred. The filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.

ここで、ドープの流延について説明する。
流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1〜4mとすることが出来る。流延工程の金属支持体の表面温度は−50℃〜溶剤の沸点未満の温度で、温度が高い方がウェブの乾燥速度が速く出来るので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度は0〜40℃であり、5〜30℃が更に好ましい。或いは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。
Here, the dope casting will be described.
The metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support. The cast width can be 1 to 4 m. The surface temperature of the metal support in the casting step is −50 ° C. to a temperature lower than the boiling point of the solvent, and a higher temperature is preferable because the web drying rate can be increased. May deteriorate. A preferable support body temperature is 0-40 degreeC, and 5-30 degreeC is still more preferable. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.

セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、更に好ましくは20〜40質量%または60〜130質量%であり、特に好ましくは、20〜30質量%または70〜120質量%である。   In order for the cellulose ester film to exhibit good flatness, the residual solvent amount when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Especially preferably, it is 20-30 mass% or 70-120 mass%.

本発明においては、残留溶媒量は下記式で定義される。
残留溶媒量(質量%)={(M−N)/N}×100
尚、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
In the present invention, the amount of residual solvent is defined by the following formula.
Residual solvent amount (% by mass) = {(MN) / N} × 100
M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.

また、セルロースエステルフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。   Further, in the drying step of the cellulose ester film, the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Especially preferably, it is 0-0.01 mass% or less.

フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。   In the film drying process, generally, a roll drying method (a method in which a plurality of rolls arranged on the upper and lower sides are alternately passed through and dried) or a method of drying while transporting the web by a tenter method is adopted.

本発明の防眩フィルム用のセルロースエステルフィルムを作製するためには、金属支持体より剥離した直後のウェブの残留溶剤量の多いところで搬送方向に延伸し、更にウェブの両端をクリップ等で把持するテンター方式で幅方向に延伸を行うことが特に好ましい。縦方向、横方向ともに好ましい延伸倍率は1.05〜1.3倍であり、1.05〜1.15倍が更に好ましい。縦方向及び横方向延伸により面積が1.12倍〜1.44倍となっていることが好ましく、1.15倍〜1.32倍となっていることが好ましい。これは縦方向の延伸倍率×横方向の延伸倍率で求めることが出来る。縦方向と横方向の延伸倍率のいずれかが1.05倍未満では防眩層を形成する際の紫外線照射による平面性の劣化が大きく好ましくない。また、延伸倍率が1.3倍を超えても平面性が劣化し、ヘイズも増加するため好ましくない。   In order to produce the cellulose ester film for an antiglare film of the present invention, the web is stretched in the conveying direction immediately after peeling from the metal support where the residual solvent amount is large, and both ends of the web are gripped with clips or the like. It is particularly preferable to perform stretching in the width direction by a tenter method. The preferred draw ratio in both the machine direction and the transverse direction is 1.05 to 1.3 times, and more preferably 1.05 to 1.15 times. It is preferable that the area is 1.12 times to 1.44 times, and preferably 1.15 times to 1.32 times due to longitudinal and lateral stretching. This can be determined by the draw ratio in the longitudinal direction × the draw ratio in the transverse direction. If one of the draw ratios in the machine direction and the transverse direction is less than 1.05 times, the deterioration of the flatness due to ultraviolet irradiation when forming the antiglare layer is unfavorable. Moreover, even if a draw ratio exceeds 1.3 times, since planarity deteriorates and haze also increases, it is not preferable.

剥離直後に縦方向に延伸するために、剥離張力を210N/m以上で剥離することが好ましく、特に好ましくは220〜300N/mである。   In order to stretch in the longitudinal direction immediately after peeling, peeling is preferably performed at a peeling tension of 210 N / m or more, particularly preferably 220 to 300 N / m.

ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことが出来るが、簡便さの点で熱風で行うことが好ましい。   The means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but it is preferably performed with hot air in terms of simplicity.

ウェブの乾燥工程における乾燥温度は40〜150℃で段階的に高くしていくことが好ましく、50〜140℃の範囲で行うことが寸法安定性を良くするため更に好ましい。   The drying temperature in the web drying step is preferably increased stepwise from 40 to 150 ° C, more preferably from 50 to 140 ° C in order to improve dimensional stability.

セルロースエステルフィルムの膜厚は、特に限定はされないが10〜200μmが好ましく用いられる。特に10〜70μmの薄膜フィルムでは平面性と硬度に優れた防眩フィルムを得ることが困難であったが、本発明によれば、平面性と硬度に優れた薄膜の防眩フィルムが得られ、また生産性にも優れているため、セルロースエステルフィルムの膜厚は10〜70μmであることが特に好ましい。更に好ましくは20〜60μmである。最も好ましくは35〜60μmである。   Although the film thickness of a cellulose-ester film is not specifically limited, 10-200 micrometers is used preferably. In particular, it was difficult to obtain an antiglare film excellent in flatness and hardness with a thin film of 10 to 70 μm, but according to the present invention, a thin antiglare film excellent in flatness and hardness was obtained, Moreover, since it is excellent also in productivity, it is especially preferable that the film thickness of a cellulose-ester film is 10-70 micrometers. More preferably, it is 20-60 micrometers. Most preferably, it is 35-60 micrometers.

本発明の防眩フィルムは、幅1〜4mのものが好ましく用いられる。
セルロースエステルフィルムの幅が広くなると紫外線硬化の際の照射光の照度むらが無視出来なくなり、平面性が劣化するばかりか、硬度のむらも生じ、この上に反射防止層を形成した場合に反射むらが顕著になる。本発明の防眩フィルムは少ない照射量で十分な硬度が得られるため、照射光の幅手方向に照射量のむらがあっても幅手方向の硬度むらが少なく、平面性にも優れた防眩フィルムが得られるため、広幅のセルロースエステルフィルムで著しい効果が認められる。特に幅1.4〜4mのものが好ましく用いられ、特に好ましくは1.4〜2mである。4mを超えると搬送が困難となる。
The antiglare film of the present invention preferably has a width of 1 to 4 m.
When the width of the cellulose ester film becomes wider, the illuminance unevenness of the irradiated light at the time of UV curing cannot be ignored, not only the flatness is deteriorated, but also the unevenness of the hardness occurs, and when the antireflection layer is formed on this, the uneven reflection is generated. Become prominent. Since the anti-glare film of the present invention can provide sufficient hardness with a small amount of irradiation, even if there is unevenness of the irradiation amount in the width direction of the irradiation light, there is little unevenness of the hardness in the width direction, and anti-glare with excellent flatness Since a film is obtained, a remarkable effect is recognized with a wide cellulose ester film. In particular, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.4 to 2 m. If it exceeds 4 m, conveyance becomes difficult.

〈物性〉
本発明に用いられるセルロースエステルフィルムの透湿度は、40℃、90%RHで850g/m2・24h以下であり、好ましくは20〜800g/m2・24hであり、20〜750g/m2・24hであることが特に好ましい。透湿度はJIS Z0208に記載の方法に従い測定することが出来る。
<Physical properties>
The moisture permeability of the cellulose ester film used in the present invention, 40 ° C., or less 850g / m 2 · 24h at 90% RH, preferably 20~800g / m 2 · 24h, 20~750g / m 2 · 24 h is particularly preferable. The moisture permeability can be measured according to the method described in JIS Z0208.

本発明に用いられるセルロースエステルフィルムは破断伸度は10〜80%であることが好ましく20〜50%であることが更に好ましい。   The breaking elongation of the cellulose ester film used in the present invention is preferably 10 to 80%, and more preferably 20 to 50%.

本発明に用いられるセルロースエステルフィルムの可視光透過率は90%以上であることが好ましく、93%以上であることが更に好ましい。   The visible light transmittance of the cellulose ester film used in the present invention is preferably 90% or more, and more preferably 93% or more.

本発明に用いられるセルロースエステルフィルムのヘイズは1%未満であることが好ましく0〜0.1%であることが特に好ましい。   The haze of the cellulose ester film used in the present invention is preferably less than 1%, particularly preferably 0 to 0.1%.

本発明に用いられるセルロースエステルフィルムの面内レターデーション値(Re)が0〜70nm以下であることが好ましい。より好ましくは0〜30nm以下であリ、より好ましくは0〜10nm以下である。膜厚方向のレターデーション値(Rth)は、400nm以下であることが好ましく、10〜200nmであることが好ましく、更に30〜150nmであることが好ましい。   The in-plane retardation value (Re) of the cellulose ester film used in the present invention is preferably 0 to 70 nm or less. More preferably, it is 0-30 nm or less, More preferably, it is 0-10 nm or less. The retardation value (Rth) in the film thickness direction is preferably 400 nm or less, preferably 10 to 200 nm, and more preferably 30 to 150 nm.

レターデーション値(Re)(Rth)は以下の式によって求めることが出来る。   The retardation value (Re) (Rth) can be obtained by the following equation.

Re=(nx−ny)×d
Rth=((nx+ny)/2−nz)×d
ここにおいて、dはフィルムの厚み(nm)、屈折率nx(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう)、ny(フィルム面内で遅相軸に直角な方向の屈折率)、nz(厚み方向におけるフィルムの屈折率)である。
Re = (nx−ny) × d
Rth = ((nx + ny) / 2−nz) × d
Here, d is the thickness (nm) of the film, the refractive index nx (also referred to as the maximum refractive index in the plane of the film, the refractive index in the slow axis direction), ny (in the direction perpendicular to the slow axis in the film plane). ) (Refractive index of the film in the thickness direction).

尚、レターデーション値(Re)、(Rth)は自動複屈折率計を用いて測定することが出来る。例えば、KOBRA−21ADH(王子計測機器(株))を用いて、23℃、55%RHの環境下で、波長が590nmで求めることが出来る。   The retardation values (Re) and (Rth) can be measured using an automatic birefringence meter. For example, the wavelength can be obtained at 590 nm in an environment of 23 ° C. and 55% RH using KOBRA-21ADH (Oji Scientific Instruments).

また、遅相軸はフィルムの幅手方向±1°若しくは長尺方向±1°にあることが好ましい。   The slow axis is preferably in the width direction ± 1 ° of the film or in the longitudinal direction ± 1 °.

[防眩層]
次に、本発明の防眩フィルムの防眩層の製造方法について述べる。
[Anti-glare layer]
Next, the manufacturing method of the anti-glare layer of the anti-glare film of this invention is described.

防眩層は、表面凹凸形状に起因する表面散乱性と、内部散乱性と、好ましくはフィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。従って、好ましくはハードコート性を付与することのできる少なくとも1種の透光性樹脂、内部散乱性を付与するための少なくとも1種の光拡散性粒子を含有する。   The antiglare layer is formed for the purpose of contributing to the film surface scattering properties due to the surface irregularity shape, internal scattering properties, and preferably hard coat properties for improving the scratch resistance of the film. Therefore, it preferably contains at least one translucent resin capable of imparting hard coat properties and at least one light diffusing particle for imparting internal scattering properties.

(光拡散性粒子)
光拡散性粒子の平均粒径は5〜15μmが必要であり、好ましくは6〜12μmであり、より好ましくは7〜10μmである。光拡散性粒子の平均粒子径は、粒子の質量を重みとした平均径であり、光散乱法や電子顕微鏡写真により測定できる。平均粒径が5μm未満であると、光の散乱角度分布が広角にまで広がるため、ディスプレイの文字ボケを引き起こしたりするため、好ましくない。一方、15μmを超えると、防眩層の膜厚を厚くする必要が生じ、カールが大きくなる、素材コストの上昇等が生じる。
光拡散性粒子の具体例としては、例えばポリ((メタ)アクリレート)粒子、架橋ポリ((メタ)アクリレート)粒子、ポリスチレン粒子、架橋ポリスチレン粒子、架橋ポリ(アクリル−スチレン)粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋ポリスチレン粒子、架橋ポリ((メタ)アクリレート)粒子、架橋ポリ(アクリル−スチレン)粒子が好ましく用いられ、これらの粒子の中から選ばれた各光拡散性粒子の屈折率にあわせて透光性樹脂の屈折率を調整することにより、内部ヘイズ、表面ヘイズを所望の範囲にすることができ、透光性樹脂と光拡散性粒子、塗布組成物の溶媒の組み合わせ、添加量等を調整することで、中心線平均粗さを所望の範囲にすることができる。
(Light diffusing particles)
The average particle size of the light diffusing particles needs to be 5 to 15 μm, preferably 6 to 12 μm, and more preferably 7 to 10 μm. The average particle diameter of the light diffusing particles is an average diameter weighted by the mass of the particles, and can be measured by a light scattering method or an electron micrograph. If the average particle size is less than 5 μm, the light scattering angle distribution spreads to a wide angle, which causes blurring of characters on the display, which is not preferable. On the other hand, when the thickness exceeds 15 μm, it is necessary to increase the film thickness of the antiglare layer, resulting in an increase in curling and an increase in material cost.
Specific examples of the light diffusing particles include, for example, poly ((meth) acrylate) particles, crosslinked poly ((meth) acrylate) particles, polystyrene particles, crosslinked polystyrene particles, crosslinked poly (acryl-styrene) particles, melamine resin particles, Preferred examples include resin particles such as benzoguanamine resin particles. Of these, cross-linked polystyrene particles, cross-linked poly ((meth) acrylate) particles, and cross-linked poly (acryl-styrene) particles are preferably used, and the light diffusible particles selected from these particles are used in accordance with the refractive index. By adjusting the refractive index of the light-sensitive resin, the internal haze and surface haze can be adjusted to the desired ranges, and the combination of the light-transmitting resin and the light diffusing particles, the solvent of the coating composition, the addition amount, etc. are adjusted. By doing so, the center line average roughness can be in a desired range.

具体的には、後述する防眩層に好ましく用いられる3官能以上の(メタ)アクリレートモノマーを主成分とした透光性樹脂(硬化後の屈折率が1.50〜1.54)を用いた場合には、アクリル含率20〜100質量%である架橋ポリ(メタ)アクリレート重合体からなる光拡散性粒子を組み合わせることが好ましく、特に前記透光性樹脂と架橋ポリ(アクリル−スチレン)共重合体からなる光拡散性粒子(屈折率が1.48〜1.58)との組み合わせが好ましい。
ここで、「3官能以上の(メタ)アクリレートモノマーを主成分とした透光性樹脂」とは、透光性樹脂中に3官能以上の(メタ)アクリレートモノマーからなる繰り返し単位が、50〜100質量%含まれていることを意味する。3官能以上の(メタ)アクリレートモノマーからなる繰り返し単位の含有量は好ましくは60〜100質量%である。
Specifically, a translucent resin (having a refractive index after curing of 1.50 to 1.54) mainly composed of a tri- or higher functional (meth) acrylate monomer that is preferably used for an antiglare layer described later is used. In this case, it is preferable to combine light diffusing particles composed of a crosslinked poly (meth) acrylate polymer having an acrylic content of 20 to 100% by mass, and in particular, the light-transmitting resin and the crosslinked poly (acryl-styrene) copolymer A combination with light diffusing particles made of coalescence (refractive index: 1.48 to 1.58) is preferable.
Here, the “translucent resin having a trifunctional or higher functional (meth) acrylate monomer as a main component” means that a repeating unit composed of a trifunctional or higher functional (meth) acrylate monomer is 50 to 100 in the translucent resin. It means that it is contained by mass%. The content of the repeating unit composed of a tri- or higher functional (meth) acrylate monomer is preferably 60 to 100% by mass.

また、粒子径の異なる2種以上の光拡散性粒子を併用して用いてもよい。   Two or more kinds of light diffusing particles having different particle diameters may be used in combination.

前記光拡散性粒子は、形成された防眩層中に、防眩層全固形分中に3質量%以上含有することが必要であり、3〜30質量%含有されるように配合されることが好ましい。より好ましくは4〜25質量%である。さらに好ましくは5〜15質量%である。3質量%未満であると、内部散乱性が不足し、30質量%を超えると、画像ボケや表面の白濁やギラツキ等が生じる場合がある。
また、光拡散性粒子の密度は、好ましくは0.8〜3.2g/m2、より好ましくは0.9〜2.8g/m2である。
The light diffusing particles are required to be contained in the formed antiglare layer in an amount of 3% by mass or more in the total solid content of the antiglare layer, and are blended so as to be contained in an amount of 3 to 30% by mass. Is preferred. More preferably, it is 4-25 mass%. More preferably, it is 5-15 mass%. If it is less than 3% by mass, the internal scattering property is insufficient, and if it exceeds 30% by mass, image blurring, surface turbidity or glare may occur.
The density of the light diffusing particles is preferably 0.8 to 3.2 g / m 2 , more preferably 0.9 to 2.8 g / m 2 .

透光性樹脂と光拡散性粒子との屈折率は、上述の範囲であることが好ましい。また、透光性樹脂と光拡散性粒子との屈折率の差(光拡散性粒子の屈折率−透光性樹脂の屈折率)は、絶対値として好ましくは0.008〜0.15であり、より好ましくは0.01〜0.10である。特に好ましくは0.008〜0.05の範囲の光拡散性粒子を全光拡散性粒子の30%以上用いることである。以上のような範囲にすることで、画像のボケ、表面の白濁、コントラストなど良好な性能を得ることが可能である。
光拡散性粒子の屈折率は、屈折率の異なる2種類の溶媒の混合比を変化させて屈折率を変化させた溶媒中に光拡散性粒子を等量分散して濁度を測定し、濁度が極小になった時の溶媒の屈折率をアッベ屈折計で測定することで測定される。
また、透光性樹脂の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。透光性樹脂が硬化性の場合には硬化後の屈折率を指す。
The refractive indexes of the translucent resin and the light diffusing particles are preferably in the above range. The difference in refractive index between the light-transmitting resin and the light-diffusing particles (the refractive index of the light-diffusing particles−the refractive index of the light-transmitting resin) is preferably 0.008 to 0.15 as an absolute value. More preferably, it is 0.01-0.10. Particularly preferably, light diffusing particles in the range of 0.008 to 0.05 are used in an amount of 30% or more of the total light diffusing particles. By setting the range as described above, it is possible to obtain good performance such as image blur, surface turbidity, and contrast.
The refractive index of the light diffusing particles is determined by measuring the turbidity by dispersing an equal amount of the light diffusing particles in the solvent in which the refractive index is changed by changing the mixing ratio of two types of solvents having different refractive indexes. It is measured by measuring the refractive index of the solvent when the degree becomes minimum with an Abbe refractometer.
Further, the refractive index of the translucent resin can be quantitatively evaluated by directly measuring it with an Abbe refractometer or by measuring a spectral reflection spectrum or a spectral ellipsometry. When the translucent resin is curable, it indicates the refractive index after curing.

防眩層の膜厚は、8〜40μmが必要であり、12〜35μmがより好ましく、18〜30μmが特に好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が低下する、コストアップする、ムラの発生などが発生する場合があるので、前記範囲内とするのが好ましい。   The film thickness of the antiglare layer needs to be 8 to 40 μm, more preferably 12 to 35 μm, and particularly preferably 18 to 30 μm. If it is too thin, the hard property will be insufficient, and if it is too thick, the curling and brittleness may deteriorate and the workability may be reduced, the cost may increase, and unevenness may occur.

(透光性樹脂)
透光性樹脂は、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するバインダーポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するバインダーポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
(Translucent resin)
The translucent resin is preferably a binder polymer having a saturated hydrocarbon chain or a polyether chain as a main chain, and more preferably a binder polymer having a saturated hydrocarbon chain as a main chain. The binder polymer preferably has a crosslinked structure.
As the binder polymer having a saturated hydrocarbon chain as a main chain, a polymer of an ethylenically unsaturated monomer is preferable. As the binder polymer having a saturated hydrocarbon chain as the main chain and having a crosslinked structure, a (co) polymer of monomers having two or more ethylenically unsaturated groups is preferable.

二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル〔例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート〕、前記のエステルのエチレンオキサイド変性体やカプロラクトン変性体、ビニルベンゼンおよびその誘導体〔例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン〕、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。前記モノマーは2種以上併用してもよい。   Examples of the monomer having two or more ethylenically unsaturated groups include esters of polyhydric alcohol and (meth) acrylic acid [for example, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di ( (Meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3- Chlorohexane tetramethacrylate, polyurethane polyacrylate, polyester polyacrylate], ethylene oxide-modified products and caprolactone-modified products of the above esters, vinylbenzene and its derivatives [eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2- Acryloyl ethyl ester, 1,4-divinylcyclohexanone], vinyl sulfone (eg, divinyl sulfone), acrylamide (eg, methylenebisacrylamide) and methacrylamide. Two or more of these monomers may be used in combination.

バインダーポリマーを高屈折率にするには、モノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含む高屈折率モノマーや、フルオレン骨格を分子内に有するモノマー等を選択することもできる。
高屈折率モノマーの具体例としては、フルオレン骨格を有する(メタ)アクリレート類、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
In order to make the binder polymer have a high refractive index, the monomer structure has a high refractive index containing at least one atom selected from an aromatic ring, a halogen atom other than fluorine, a sulfur atom, a phosphorus atom, and a nitrogen atom. A monomer, a monomer having a fluorene skeleton in the molecule, or the like can also be selected.
Specific examples of the high refractive index monomer include (meth) acrylates having a fluorene skeleton, bis (4-methacryloylthiophenyl) sulfide, vinyl naphthalene, vinyl phenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenyl thioether, etc. Is mentioned. Two or more of these monomers may be used in combination.

これらのモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、前記防眩層は、上述のエチレン性不飽和モノマー等の透光性樹脂形成用のモノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、光拡散性粒子および必要に応じて後述するような無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または熱による重合反応により硬化させることにより形成することができる。
Polymerization of these monomers can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
Therefore, the antiglare layer is composed of a monomer for forming a translucent resin such as the above-mentioned ethylenically unsaturated monomer, a photo radical initiator or a thermal radical initiator, a light diffusing particle, and an inorganic material as described later if necessary. It can be formed by preparing a coating liquid containing a filler and curing the coating liquid on a transparent support by a polymerization reaction by ionizing radiation or heat.

光ラジカル(重合)開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類が挙げられる。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
最新UV硬化技術(p.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル(重合)開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,907)等が好ましい例として挙げられる。
光ラジカル(重合)開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
光ラジカル(重合)開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
Photo radical (polymerization) initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfides Examples include compounds, fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone is included. Examples of benzoins include benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether. Examples of the benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
Various examples are described in the latest UV curing technology (p.159, issuer; Kazuhiro Takashiro, publisher; Technical Information Association, Inc., published in 1991), which is useful for the present invention.
Preferable examples of commercially available photocleavable photoradical (polymerization) initiators include Irgacure (651, 184, 907) manufactured by Ciba Specialty Chemicals Co., Ltd.
The photo radical (polymerization) initiator is preferably used in the range of 0.1 to 15 parts by mass, more preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the polyfunctional monomer.
In addition to the photoradical (polymerization) initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.

熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2−アゾ−ビス−イソブチロニトリル、2−アゾ−ビス−プロピオニトリル、2−アゾ−ビス−シクロヘキサンジニトリル等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等を挙げることができる。
As the thermal radical initiator, organic or inorganic peroxides, organic azo, diazo compounds, and the like can be used.
Specifically, benzoyl peroxide, halogen benzoyl peroxide, lauroyl peroxide, acetyl peroxide, dibutyl peroxide, cumene hydroperoxide, butyl hydroperoxide as organic peroxides, hydrogen peroxide, peroxides as inorganic peroxides. Ammonium sulfate, potassium persulfate, etc., 2-azo-bis-isobutyronitrile, 2-azo-bis-propionitrile, 2-azo-bis-cyclohexanedinitrile, etc. as diazo compounds, diazoaminobenzene, p -Nitrobenzenediazonium etc. can be mentioned.

二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
Instead of or in addition to a monomer having two or more ethylenically unsaturated groups, a monomer having a crosslinkable functional group is used to introduce a crosslinkable functional group into the polymer, and by reaction of this crosslinkable functional group, A crosslinked structure may be introduced into the binder polymer.
Examples of the crosslinkable functional group include isocyanate group, epoxy group, aziridine group, oxazoline group, aldehyde group, carbonyl group, hydrazine group, carboxyl group, methylol group and active methylene group. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane, and metal alkoxide such as tetramethoxysilane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. That is, the crosslinkable functional group may not react immediately but may exhibit reactivity as a result of decomposition.
These binder polymers having a crosslinkable functional group can form a crosslinked structure by heating after coating.

ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキシ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。このうち生産性の観点から紫外線によってカチオンを発生させる光酸発生剤の使用が好ましい。   The polymer having a polyether as the main chain is preferably a ring-opening polymer of a polyfunctional epoxy compound. The ring-opening polymerization of the polyfunctional epoxy compound can be performed by irradiation with ionizing radiation or heating in the presence of a photoacid generator or a thermal acid generator. Of these, the use of a photoacid generator that generates cations by ultraviolet rays is preferred from the viewpoint of productivity.

紫外線によってカチオンを発生させる光酸発生剤としては、トリアリールスルホニウム塩やジアリールヨードニウム塩などのイオン性の硬化性樹脂やスルホン酸のニトロベンジルエステルなど、非イオン性の硬化性樹脂が挙げられ、有機エレクトロニクス材料研究会編、“イメージング用有機材料”ぶんしん出版社刊(1997)などに記載されている硬化性樹脂等種々の公知の光酸発生剤が使用できる。本発明では光拡散層を厚膜で形成する場合、トリアリールスルホニウム塩を用いると黄着色が発生することがあり、着色を抑制するためにジアリールヨードニウム塩を用いることが好ましい。このことに関しては、本発明者等が特開2003−268141号公報に詳しく記載してある。対イオンとしてはPF6 -、SbF6 -、AsF6 -、(C65)4-などが好ましい。また、トリアリールスルホニウム塩とジアリールヨードニウム塩を組み合わせて用いることも好ましい態様である。 Examples of photoacid generators that generate cations by ultraviolet rays include ionic curable resins such as triarylsulfonium salts and diaryliodonium salts, and nonionic curable resins such as nitrobenzyl esters of sulfonic acids. Various known photoacid generators such as curable resins described in “Electronic Materials for Imaging” (1997) edited by Electronics Materials Research Group can be used. In the present invention, when the light diffusion layer is formed as a thick film, yellow coloring may occur when a triarylsulfonium salt is used, and it is preferable to use a diaryl iodonium salt in order to suppress coloring. Regarding this, the present inventors have described in detail in Japanese Patent Application Laid-Open No. 2003-268141. As the counter ion, PF 6 , SbF 6 , AsF 6 , (C 6 F 5 ) 4 B − and the like are preferable. It is also a preferred embodiment to use a combination of triarylsulfonium salt and diaryliodonium salt.

ヨードニウム塩型の光酸発生剤としては、例えば“イメージング用有機材料”(ぶんしん出版、有機エレクトロニクス材料研究会、1997年)や、特開平11−322900号公報等に記載されている。本発明に用いるものとして好ましくは下記一般式(1')で表わされるものである。
一般式(1')
(Ar1)m−I+−(Ar2)n-
ここで、Ar1、Ar2は、それぞれ芳香族炭化水素基または芳香族ヘテロ環基を表し、Ar1とAr2が結合して環を形成してもよい。芳香族炭化水素基としてはフェニル、1−ナフチル、2−ナフチル等が挙げられる。芳香族ヘテロ環基としては2−チエニル、3−チエニル、2−フリル、3−フリル、2−ピロリル、3−ピロリル、2−チアゾリル等が挙げられる。Ar1、Ar2として好ましくは芳香族炭化水素基であり、更に好ましくはフェニル基である。これらは更に置換基を有していても良く、置換基としては特に限定されないが、アミノ基のように塩基性を有するものは発生した酸を中和するために好ましくない。置換基の具体例としてはアルキル基(メチル、エチル、イソプロピル、t−ブチル、t−アミル、2−エチルヘキシル、ドデシル等)、シクロアルキル(シクロヘキシル、シクロペンチル等)、アリール基(フェニル、2−ナフチル等)、アルケニル基(ビニル等)、アルコキシ基(メトキシ、エトキシ、イソプロポキシ、オクチルオキシ、シクロヘキシルオキシ等)、アリールオキシ基(フェノキシ等)、ハロゲン(フッ素、塩素、臭素、ヨウ素等)、アルコキシカルボニル基(エトキシカルボニル、ブトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、アシルオキシ基(アセトキシ、ベンゾイルオキシ等)、カルバモイル基、アシルアミノ基、シアノ基、ヒドロキシル基、カルボキシル基、ヘテロ環基(2−チエニル、3−チエニル、2−フリル、2−ピロリル、オキシラニル、オキセタニル等)等が挙げられ、これらは更に置換されていてもよい。
Examples of the iodonium salt-type photoacid generator are described in, for example, “imaging organic material” (Bunshin Publishing Co., Ltd., Organic Electronics Materials Research Group, 1997), Japanese Patent Application Laid-Open No. 11-322900, and the like. As what is used for this invention, Preferably it is represented by the following general formula (1 ').
General formula (1 ')
(Ar 1 ) m −I + − (Ar 2 ) n X
Here, Ar 1 and Ar 2 each represent an aromatic hydrocarbon group or an aromatic heterocyclic group, and Ar 1 and Ar 2 may combine to form a ring. Aromatic hydrocarbon groups include phenyl, 1-naphthyl, 2-naphthyl and the like. Examples of the aromatic heterocyclic group include 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-thiazolyl and the like. Ar 1 and Ar 2 are preferably aromatic hydrocarbon groups, and more preferably phenyl groups. These may further have a substituent, and the substituent is not particularly limited, but those having a basicity such as an amino group are not preferable in order to neutralize the generated acid. Specific examples of the substituent include alkyl groups (methyl, ethyl, isopropyl, t-butyl, t-amyl, 2-ethylhexyl, dodecyl, etc.), cycloalkyl (cyclohexyl, cyclopentyl, etc.), aryl groups (phenyl, 2-naphthyl, etc.) ), Alkenyl group (vinyl etc.), alkoxy group (methoxy, ethoxy, isopropoxy, octyloxy, cyclohexyloxy etc.), aryloxy group (phenoxy etc.), halogen (fluorine, chlorine, bromine, iodine etc.), alkoxycarbonyl group (Ethoxycarbonyl, butoxycarbonyl, etc.), aryloxycarbonyl groups (phenoxycarbonyl, etc.), acyloxy groups (acetoxy, benzoyloxy, etc.), carbamoyl groups, acylamino groups, cyano groups, hydroxyl groups, carboxyl groups, heterocyclic groups ( - thienyl, 3-thienyl, 2-furyl, 2-pyrrolyl, oxiranyl, oxetanyl, etc.) and the like can be mentioned, which may be further substituted.

m、nは、各々1または2を表し、好ましくは1である。また、Ar1またはAr2が複数存在する場合、m、nは同じであっても異なっていてもよい。X-はヨードニウム塩の対アニオンであり、強酸の共役塩基であることが好ましい。X-としてはPF6 -、BF4 -、ClO4 -、AsF6 -、SbF6 -、CF3SO3 -、CH3−C64−SO3 -、(C65)4-、Cl-、Br-等が挙げられ、これらのうちで好ましくはPF6 -、BF4 -、CF3SO3 -であり、特に好ましくはPF6 -である。
ヨードニウム塩型の光酸発生剤の具体例として、特開2003−268141号公報の段落[0078]〜[0081]に記載されている(1)〜(28)の化合物を挙げることができるが、本発明はこれらに限定されるものではない。
m and n each represent 1 or 2, preferably 1. When a plurality of Ar 1 or Ar 2 are present, m and n may be the same or different. X is a counter anion of the iodonium salt and is preferably a conjugate base of a strong acid. X includes PF 6 , BF 4 , ClO 4 , AsF 6 , SbF 6 , CF 3 SO 3 , CH 3 —C 6 H 4 —SO 3 , (C 6 F 5 ) 4 B -, Cl -, Br -, and the like, of these preferably the PF 6 -, BF 4 -, CF 3 SO 3 - , and particularly preferably PF 6 - is.
Specific examples of the iodonium salt-type photoacid generator include the compounds (1) to (28) described in paragraphs [0078] to [0081] of JP-A No. 2003-268141. The present invention is not limited to these.

(金属化合物)
防眩層には金属化合物を用いることができる。驚くべきことに、金属化合物は平均粒子径が5〜15μmの光拡散性粒子と共に用いることにより防眩フィルムの鉛筆硬度を良化する。これは、膜厚8〜40μmの防眩フィルムに平均粒子径5〜15μmの光拡散性粒子を含有することによる硬度良化の効果と、金属化合物の含有による透光性樹脂の変形・破壊を抑制する効果の相乗効果と推定される。また、防眩層上に低屈折率層を設ける際、防眩層と低屈折率層との界面密着を高め、耐擦傷性を良化する。特に低屈折率層がオルガノシラン化合物・シランカップリング剤などを含有するとき、その効果は大きい。金属化合物の添加量は、防眩層に含まれる該金属化合物由来の金属酸化物の含有量が0.3〜5質量%であるように調整することが好ましい。0.3質量%未満では鉛筆硬度向上の硬化が見られず、5質量%を超えると耐光性が劣化する傾向がある。
(Metal compound)
A metal compound can be used for the antiglare layer. Surprisingly, the metal compound improves the pencil hardness of the antiglare film when used with light diffusing particles having an average particle size of 5 to 15 μm. This is because the anti-glare film having a film thickness of 8 to 40 μm contains light diffusing particles having an average particle diameter of 5 to 15 μm and the effect of improving the hardness and the deformation and destruction of the translucent resin due to the inclusion of the metal compound. It is presumed to be a synergistic effect of suppressing effect. Moreover, when providing a low refractive index layer on an anti-glare layer, the interface adhesion of an anti-glare layer and a low refractive index layer is improved, and scratch resistance is improved. In particular, when the low refractive index layer contains an organosilane compound or a silane coupling agent, the effect is great. The addition amount of the metal compound is preferably adjusted so that the content of the metal oxide derived from the metal compound contained in the antiglare layer is 0.3 to 5% by mass. When the amount is less than 0.3% by mass, the pencil hardness is not improved. When the amount exceeds 5% by mass, the light resistance tends to deteriorate.

本発明に用いられる金属化合物は下記一般式(1)で表される化合物またはそのキレート化合物を用いることができる。   As the metal compound used in the present invention, a compound represented by the following general formula (1) or a chelate compound thereof can be used.

一般式(1) AnMBx-n
式中、Mは金属原子、Aは加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合またはイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
General formula (1) An MB xn
In the formula, M represents a metal atom, A represents a hydrolyzable functional group or a hydrocarbon group having a hydrolyzable functional group, and B represents an atomic group covalently or ionically bonded to the metal atom M. x represents the valence of the metal atom M, and n represents an integer of 2 or more and x or less.

加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記式(1)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシドまたはそれらのキレート化合物を挙げることができる。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。また、チタンアルコキシドは紫外線硬化樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることができる。   Examples of the hydrolyzable functional group A include halogens such as alkoxyl groups and chloro atoms, ester groups and amide groups. The metal compound belonging to the above formula (1) includes an alkoxide having two or more alkoxyl groups bonded directly to a metal atom, or a chelate compound thereof. Preferable metal compounds include titanium alkoxide, zirconium alkoxide, or chelate compounds thereof. Titanium alkoxide has a high reaction rate and a high refractive index and is easy to handle. However, since it has a photocatalytic action, its light resistance deteriorates when added in a large amount. Zirconium alkoxide has a high refractive index but tends to become cloudy, so care must be taken in dew point management during coating. Moreover, since titanium alkoxide has the effect of promoting the reaction between the ultraviolet curable resin and the metal alkoxide, the physical properties of the coating film can be improved even by adding a small amount.

驚くべきことに、金属化合物を含有する防眩層の上に積層した低屈折率層の耐擦傷性を著しく改善することが出来たのである。   Surprisingly, the scratch resistance of the low refractive index layer laminated on the antiglare layer containing the metal compound could be remarkably improved.

チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。   Examples of the titanium alkoxide include tetramethoxy titanium, tetraethoxy titanium, tetra-iso-propoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-sec-butoxy titanium, tetra-tert-butoxy titanium, and the like. Is mentioned.

ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。   Examples of the zirconium alkoxide include tetramethoxy zirconium, tetraethoxy zirconium, tetra-iso-propoxy zirconium, tetra-n-propoxy zirconium, tetra-n-butoxy zirconium, tetra-sec-butoxy zirconium, tetra-tert-butoxy zirconium, and the like. Is mentioned.

遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることができる。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成できる。   Preferred chelating agents for forming a chelate compound by coordination with a free metal compound include alkanolamines such as diethanolamine and triethanolamine, glycols such as ethylene glycol, diethylene glycol and propylene glycol, acetylacetone and acetoacetic acid. Examples thereof include ethyl and the like having a molecular weight of 10,000 or less. By using these chelating agents, it is possible to form a chelate compound that is stable against water mixing and is excellent in the effect of reinforcing the coating film.

(オルガノシラン化合物)
防眩層にオルガノシラン化合物を用いることができる。オルガノシラン化合物の添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。
防眩層に用いるオルガノシラン化合物としては、後述の低屈折率層用オルガノシラン化合物と同様のものを使用することができる。
(Organosilane compound)
An organosilane compound can be used for the antiglare layer. The addition amount of the organosilane compound is preferably 0.001 to 50% by mass, more preferably 0.01 to 20% by mass, and still more preferably 0.05 to 10% by mass, based on the total solid content of the containing layer (addition layer). 0.1 to 5% by mass is particularly preferable.
As the organosilane compound used for the antiglare layer, the same organosilane compound as described later for the low refractive index layer can be used.

本発明では防眩層を形成する硬化樹脂と同種の重合性基を有するオルガノシラン化合物の使用が好ましく、厚膜で形成される本発明の防眩層の硬化収縮やカールを抑制するために重合性基当たりの分子量が150以上であることが好ましい。 In the present invention, it is preferable to use an organosilane compound having a polymerizable group of the same type as the cured resin forming the antiglare layer, and polymerization is performed to suppress curing shrinkage and curling of the antiglare layer of the present invention formed in a thick film. The molecular weight per sex group is preferably 150 or more.

(無機フィラー)
防眩層には、層の屈折率を調整して内部散乱に起因するヘイズ値を調整するため、また、低屈折率層との屈折率差を調整し、反射率、色味を好ましい範囲にするために、前記の光拡散性粒子に加えて、無機フィラーを含有してもよい。無機フィラーは、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなることが好ましい。また、平均粒径は、0.2μm以下であることが好ましく、より好ましくは0.1μm以下、さらに好ましくは0.06μm以下である。このような無機フィラーは、一般的に比重が有機物よりも高く、塗布組成物の密度を高くできるため、光拡散性粒子の沈降速度を遅くする効果もある。なお、このような無機フィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
(Inorganic filler)
In the antiglare layer, the refractive index of the layer is adjusted to adjust the haze value resulting from internal scattering, and the refractive index difference from the low refractive index layer is adjusted to make the reflectance and color tone within a preferable range. Therefore, an inorganic filler may be contained in addition to the light diffusing particles. The inorganic filler is preferably made of an oxide of at least one metal selected from silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony. Moreover, it is preferable that an average particle diameter is 0.2 micrometer or less, More preferably, it is 0.1 micrometer or less, More preferably, it is 0.06 micrometer or less. Such an inorganic filler generally has a specific gravity higher than that of an organic substance and can increase the density of the coating composition, and thus has an effect of slowing the sedimentation rate of the light diffusing particles. Such an inorganic filler does not scatter because its particle size is sufficiently smaller than the wavelength of light, and a dispersion in which the filler is dispersed in a binder polymer behaves as an optically uniform substance.

防眩層に用いられる無機フィラーは、表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、この場合はフィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
無機フィラーの添加量は、防眩層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
The surface of the inorganic filler used in the antiglare layer is also preferably subjected to silane coupling treatment or titanium coupling treatment. In this case, a surface treatment agent having a functional group capable of reacting with the binder species on the filler surface is preferably used.
The amount of the inorganic filler added is preferably 10 to 90% of the total mass of the antiglare layer, more preferably 20 to 80%, and particularly preferably 30 to 75%.

(防眩層用界面活性剤)
防眩層には、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を防眩層形成用の塗布組成物中に含有することが好ましい。面状均一性を高めることにより、高速塗布することが可能となり、生産性を高めることができる。特にフッ素系の界面活性剤は、より少ない添加量において、反射防止フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。
(Surfactant for antiglare layer)
In order to ensure surface uniformity such as coating unevenness, drying unevenness, point defects, etc., the antiglare layer is preferably made of either a fluorine-based surfactant or a silicone-based surfactant, or both for forming the antiglare layer. It is preferably contained in the coating composition. By increasing the surface uniformity, it becomes possible to apply at high speed, and productivity can be improved. In particular, a fluorine-based surfactant is preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects of the antireflection film appears with a smaller addition amount.

フッ素系の界面活性剤の好ましい例としては、フルオロ脂肪族基含有共重合体(「フッ素系ポリマー」と略記することもある)が挙げられ、該フッ素系ポリマーは、下記(i)のモノマーに相当する繰り返し単位からなる樹脂、下記(i)のモノマーに相当する繰り返し単位を含むアクリル樹脂、メタアクリル樹脂、又はこれらに共重合可能なビニル系モノマー(例えば、下記(i)のモノマーが好ましい)との共重合体が有用である。   Preferable examples of the fluorosurfactant include a fluoroaliphatic group-containing copolymer (sometimes abbreviated as “fluorine polymer”), and the fluoropolymer includes the following monomer (i): Resin consisting of a corresponding repeating unit, an acrylic resin containing a repeating unit corresponding to the monomer (i) below, a methacrylic resin, or a vinyl monomer copolymerizable therewith (for example, the monomer (i) below is preferred) Are useful.

Figure 0004905787
Figure 0004905787

一般式イにおいてR11は水素原子またはメチル基を表し、Xは酸素原子、イオウ原子または−N(R12)−を表す。R12は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Xは酸素原子が好ましい。mは1以上6以下の整数、nは2〜4の整数を表す。 In the general formula A, R 11 represents a hydrogen atom or a methyl group, and X represents an oxygen atom, a sulfur atom or —N (R 12 ) —. R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom. m represents an integer of 1 to 6, and n represents an integer of 2 to 4.

Figure 0004905787
Figure 0004905787

一般式ロにおいて、R13は水素原子またはメチル基を表し、Yは酸素原子、イオウ原子または−N(R15)−を表し、R15は水素原子または炭素数1〜4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Yは酸素原子、−N(H)−、および−N(CH3)−が好ましい。
14は置換基を有しても良い炭素数4以上20以下の直鎖、分岐または環状のアルキル基を表す。R14のアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。炭素数4以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基、等の多環シクロアルキル基が好適に用いられる。
In the general formula B, R 13 represents a hydrogen atom or a methyl group, Y represents an oxygen atom, a sulfur atom or —N (R 15 ) —, R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically Specifically, it represents a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. Y is an oxygen atom, -N (H) -, and -N (CH 3) - are preferred.
R 14 represents a linear, branched or cyclic alkyl group having 4 to 20 carbon atoms which may have a substituent. Examples of the substituent for the alkyl group of R 14 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group, an alkyl ether group, an aryl ether group, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom, a nitro group, and a cyano group. , Amino groups and the like, but not limited thereto. Examples of the linear, branched or cyclic alkyl group having 4 to 20 carbon atoms include a butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group which may be linear or branched. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group, eicosanyl group, etc., and monocyclic cycloalkyl groups such as cyclohexyl group, cycloheptyl group and bicycloheptyl group, bicyclodecyl group, tricycloundecyl group, A polycyclic cycloalkyl group such as a tetracyclododecyl group, an adamantyl group, a norbornyl group, a tetracyclodecyl group, or the like is preferably used.

フッ素系ポリマー中に用いられる一般式イで示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系ポリマーの各単量体に基づいて10モル%以上であることが好ましく、より好ましくは15〜70モル%であり、さらに好ましくは20〜60モル%の範囲である。
また、フッ素系ポリマー中に用いられる一般式ロで示されるモノマーの量は、該フッ素系ポリマーの各単量体に基づいて1モル%以上であることが好ましく、より好ましくは5〜70モル%であり、さらに好ましくは10〜60モル%の範囲である。
The amount of the fluoroaliphatic group-containing monomer represented by the general formula (A) used in the fluorine-based polymer is preferably 10 mol% or more based on each monomer of the fluorine-based polymer, more preferably 15 to It is 70 mol%, More preferably, it is the range of 20-60 mol%.
Further, the amount of the monomer represented by the general formula (b) used in the fluorine-based polymer is preferably 1 mol% or more based on each monomer of the fluorine-based polymer, more preferably 5 to 70 mol%. More preferably, it is the range of 10-60 mol%.

一般式イで表されるモノマーからなるフッ素系ポリマーを使用することにより、防眩層表面にF原子を含有する官能基が偏析することにより防眩層の表面エネルギーが低下し、防眩層上に低屈折率層をオーバーコートしたときに反射防止性能の悪化が生じることがある。これは低屈折率層を形成するために用いられる硬化性組成物の濡れ性が悪化するために低屈折率層に目視では検知できない微小なムラが悪化するためと推定される。
このような課題を解決するためには、フッ素系ポリマーの構造と添加量を調整することにより、防眩層の表面エネルギーを好ましくは20mN・m-1〜50mN・m-1に、より好ましくは30mN・m-1〜40mN・m-1に制御することが効果的であることを見出した。前記のような表面エネルギーを実現するためには、X線光電子分光法で測定したフッ素原子由来のピークと炭素原子由来のピークの比であるF/Cが0.1〜1.5であることが必要である。
By using a fluorine-based polymer composed of the monomer represented by the general formula (a), the surface energy of the antiglare layer is reduced due to segregation of the functional group containing F atoms on the surface of the antiglare layer, and the antiglare layer Further, when the low refractive index layer is overcoated, the antireflection performance may be deteriorated. This is presumably because minute unevenness that cannot be visually detected in the low refractive index layer deteriorates because the wettability of the curable composition used for forming the low refractive index layer deteriorates.
In order to solve such problems, by adjusting the structure and amount of the fluorine-based polymer, the surface energy of the antiglare layer preferably in 20mN · m -1 ~50mN · m -1 , more preferably it was found that it is effective to control the 30mN · m -1 ~40mN · m -1 . In order to realize the surface energy as described above, F / C, which is a ratio of a peak derived from a fluorine atom and a peak derived from a carbon atom, measured by X-ray photoelectron spectroscopy is 0.1 to 1.5. is required.

或いは、上層を塗布する時には上層を形成する溶媒に抽出されるようなフッ素系ポリマーを選択することで、下層表面(=界面)に偏在することがなくなり上層と下層の密着性を持たせることで、高速塗布においても面状の均一性を保ち、かつ耐擦傷性の強い反射防止フィルムを提供できる表面自由エネルギーの低下を防ぐことにより、低屈折率層塗布前の防眩層の表面エネルギーを前記範囲に制御することでも目的を達成することができる。そのような素材の例としては、下記一般式ハで表されるフルオロ脂肪族基含有モノマーに相当する繰り返し単位を含むアクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマー(例えば、下記(iv)のモノマーが好ましい)との共重合体が挙げられる。   Alternatively, by selecting a fluorine-based polymer that is extracted by the solvent that forms the upper layer when the upper layer is applied, it is not unevenly distributed on the lower layer surface (= interface), so that the adhesion between the upper layer and the lower layer is provided. The surface energy of the antiglare layer before coating the low refractive index layer can be reduced by maintaining the surface uniformity even at high speed coating and preventing the decrease in surface free energy that can provide an antireflection film with high scratch resistance. The purpose can also be achieved by controlling the range. Examples of such materials include acrylic resins, methacrylic resins, and vinyl monomers copolymerizable therewith, including repeating units corresponding to fluoroaliphatic group-containing monomers represented by the following general formula c: And the following (iv) monomers are preferred).

Figure 0004905787
Figure 0004905787

一般式ハにおいてR21は水素原子またはハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。X2は酸素原子、イオウ原子または−N(R22)−を表し、酸素原子または−N(R22)−がより好ましく、酸素原子が更に好ましい。mは1以上6以下の整数(1〜3がより好ましく、1であることが更に好ましい。)、nは1以上18以下の整数(4〜12がより好ましく、6〜8が更に好ましい。)を表す。R22は水素原子または置換基を有しても良い炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。X2は酸素原子が好ましい。
またフッ素系ポリマー中に一般式ハで表されるフルオロ脂肪族基含有モノマーが2種類以上構成成分として含まれていても良い。
In the general formula C, R 21 represents a hydrogen atom, a halogen atom or a methyl group, more preferably a hydrogen atom or a methyl group. X 2 represents an oxygen atom, a sulfur atom or —N (R 22 ) —, more preferably an oxygen atom or —N (R 22 ) —, and still more preferably an oxygen atom. m is an integer from 1 to 6 (more preferably from 1 to 3, more preferably 1), and n is an integer from 1 to 18 (more preferably from 4 to 12, and even more preferably from 6 to 8). Represents. R 22 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms which may have a substituent, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and further preferably a hydrogen atom or a methyl group. X 2 is preferably an oxygen atom.
In addition, two or more kinds of fluoroaliphatic group-containing monomers represented by the general formula C may be contained in the fluorine-based polymer as constituent components.

Figure 0004905787
Figure 0004905787

一般式ニにおいて、R23は水素原子、ハロゲン原子またはメチル基を表し、水素原子、メチル基がより好ましい。Y2は酸素原子、イオウ原子または−N(R25)−を表し、酸素原子または−N(R25)−がより好ましく、酸素原子が更に好ましい。R25は水素原子または炭素数1〜8のアルキル基を表し、水素原子または炭素数1〜4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。
24は置換基を有しても良い炭素数1〜20の直鎖、分岐または環状のアルキル基、ポリ(アルキレンオキシ)基を含むアルキル基、置換基を有していても良い芳香族基(例えば、フェニル基またはナフチル基)を表す。炭素数1〜12の直鎖、分岐、または環状のアルキル基、または総炭素数6〜18の芳香族がより好ましく、炭素数1〜8の直鎖、分岐、または環状のアルキル基が更に好ましい。
In the general formula D, R 23 represents a hydrogen atom, a halogen atom or a methyl group, more preferably a hydrogen atom or a methyl group. Y 2 represents an oxygen atom, a sulfur atom or —N (R 25 ) —, more preferably an oxygen atom or —N (R 25 ) —, and still more preferably an oxygen atom. R 25 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and further preferably a hydrogen atom or a methyl group.
R 24 is an optionally substituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkyl group containing a poly (alkyleneoxy) group, and an optionally substituted aromatic group. (For example, a phenyl group or a naphthyl group). A linear, branched or cyclic alkyl group having 1 to 12 carbon atoms or an aromatic group having 6 to 18 carbon atoms is more preferable, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is more preferable. .

フッ素系ポリマー中に用いられる一般式ハで示されるフルオロ脂肪族基含有モノマーの量は、該フッ素系ポリマーの各単量体に基づいて10モル%以上であることが好ましく、より好ましくは50〜100モル%であり、さらに好ましくは60〜100モル%の範囲である。
また、フッ素系ポリマー中に用いられる一般式ニで示されるモノマーの量は、該フッ素系ポリマーの各単量体に基づいて0モル%以上であることが好ましく、より好ましくは0〜50モル%であり、さらに好ましくは0〜40モル%の範囲である。
The amount of the fluoroaliphatic group-containing monomer represented by the general formula C used in the fluoropolymer is preferably 10 mol% or more based on each monomer of the fluoropolymer, more preferably 50 to It is 100 mol%, More preferably, it is the range of 60-100 mol%.
Further, the amount of the monomer represented by the general formula D used in the fluoropolymer is preferably 0 mol% or more, more preferably 0 to 50 mol% based on each monomer of the fluoropolymer. More preferably, it is the range of 0-40 mol%.

フッ素系ポリマーの好ましい質量平均分子量は、3000〜100,000が好ましく、5,000〜80,000がより好ましい。
更に、フッ素系ポリマーの好ましい添加量は、塗布液に対して0.001〜5質量%の範囲であり、好ましくは0.005〜3質量%の範囲であり、更に好ましくは0.01〜1質量%の範囲である。フッ素系ポリマーの添加量が0.001質量%未満では効果が不十分であり、また5質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、塗膜としての性能(例えば反射率、耐擦傷性)に悪影響を及ぼすことがある。
The preferred weight average molecular weight of the fluoropolymer is preferably 3000 to 100,000, more preferably 5,000 to 80,000.
Furthermore, the preferable addition amount of a fluorine-type polymer is the range of 0.001-5 mass% with respect to a coating liquid, Preferably it is the range of 0.005-3 mass%, More preferably, it is 0.01-1 It is the range of mass%. If the addition amount of the fluorine-based polymer is less than 0.001% by mass, the effect is insufficient, and if it exceeds 5% by mass, the coating film may not be sufficiently dried or the performance as a coating film (for example, reflectance) , May have an adverse effect on the scratch resistance).

また防眩層上に低屈折率層をオーバーコートする時点で表面エネルギーの低下を防げば、反射防止性能の悪化が防げる。このため、防眩層塗布時にはフッ素系ポリマーを用いて塗布液の表面張力を下げて面状均一性を高め、高速塗布による高生産性を維持し、防眩層塗布後にコロナ処理、UV処理、熱処理、鹸化処理、溶剤処理といった表面処理手法を用いて、表面自由エネルギーの低下を防ぐことにより、低屈折率層塗布前の防眩層の表面エネルギーを前記範囲に制御することでも目的を達成することができる。表面処理手法として、特に好ましいのはコロナ処理である。   Further, if the surface energy is prevented from being lowered when the low refractive index layer is overcoated on the antiglare layer, the deterioration of the antireflection performance can be prevented. For this reason, when applying an anti-glare layer, the surface tension of the coating solution is lowered by using a fluoropolymer to improve surface uniformity, maintaining high productivity by high-speed application, and after applying the anti-glare layer, corona treatment, UV treatment, By using surface treatment techniques such as heat treatment, saponification treatment, and solvent treatment, the objective can also be achieved by controlling the surface energy of the antiglare layer before application of the low refractive index layer by preventing the surface free energy from decreasing. be able to. A particularly preferable surface treatment method is corona treatment.

(増粘剤)
本発明のフィルムは、塗布液の粘度を調整するために増粘剤を用いてもよい。
ここでいう増粘剤とは、それを添加することにより液の粘度が増大するものを意味し、添加することにより塗布液の粘度が上昇する大きさとして好ましくは0.05〜50cPであり、さらに好ましくは0.10〜20cPであり、最も好ましくは0.10〜10cPである。
このような高分子増粘剤を用いることにより、塗布液中の光拡散性粒子の沈降を防止できる上、硬化時の硬化収縮やカールを抑制することも同時にできるため、好ましい。
高分子増粘剤の含有量は防眩層中の全固形分に対して3〜30質量%であることが好ましく、5〜20質量%であることがより好ましく、8〜15質量%であることが好ましい。この範囲にすることで、増粘効果、硬化収縮効果および硬度を両立できる。
(Thickener)
The film of the present invention may use a thickener to adjust the viscosity of the coating solution.
The term “thickener” as used herein means that the viscosity of the liquid is increased by adding it, and is preferably 0.05 to 50 cP as the magnitude of increase in the viscosity of the coating liquid by adding it. More preferably, it is 0.10-20 cP, Most preferably, it is 0.10-10 cP.
Use of such a polymer thickener is preferable because precipitation of light diffusing particles in the coating solution can be prevented and curing shrinkage and curling at the time of curing can be suppressed at the same time.
The content of the polymer thickener is preferably 3 to 30% by mass, more preferably 5 to 20% by mass, and 8 to 15% by mass with respect to the total solid content in the antiglare layer. It is preferable. By setting it within this range, it is possible to achieve both a thickening effect, a curing shrinkage effect, and hardness.

このような増粘剤としては以下のものが挙げられるが、これに限定されない。
ポリ−ε−カプロラクトン
ポリ−ε−カプロラクトンジオール
ポリ−ε−カプロラクトントリオール
ポリビニルアセテート
ポリ(エチレンアジペート)
ポリ(1,4−ブチレンアジペート)
ポリ(1,4−ブチレングルタレート)
ポリ(1,4−ブチレンスクシネート)
ポリ(1,4−ブチレンテレフタレート)
ポリ(エチレンテレフタレート)
ポリ(2−メチル−1,3−プロピレンアジペート)
ポリ(2−メチル−1,3−プロピレングルタレート)
ポリ(ネオペンチルグリコールアジペート)
ポリ(ネオペンチルグリコールセバケート)
ポリ(1,3−プロピレンアジペート)
ポリ(1,3−プロピレングルタレート)
ポリビニルブチラール
ポリビニルホルマール
ポリビニルアセタール
ポリビニルプロパナール
ポリビニルヘキサナール
ポリビニルピロリドン
ポリアクリル酸エステル
ポリメタクリル酸エステル
セルロースアセテート
セルロースプロピオネート
セルロースアセテートブチレート
Examples of such thickeners include, but are not limited to:
Poly-ε-caprolactone poly-ε-caprolactone diol poly-ε-caprolactone triol polyvinyl acetate poly (ethylene adipate)
Poly (1,4-butylene adipate)
Poly (1,4-butylene glutarate)
Poly (1,4-butylene succinate)
Poly (1,4-butylene terephthalate)
polyethylene terephthalate)
Poly (2-methyl-1,3-propylene adipate)
Poly (2-methyl-1,3-propylene glutarate)
Poly (neopentyl glycol adipate)
Poly (neopentyl glycol sebacate)
Poly (1,3-propylene adipate)
Poly (1,3-propylene glutarate)
Polyvinyl butyral polyvinyl formal polyvinyl acetal polyvinyl propanal polyvinyl hexanal polyvinyl pyrrolidone polyacrylic ester polymethacrylic acid ester cellulose acetate cellulose propionate cellulose acetate butyrate

この他にも特開平8−325491号公報記載のスメクタイト、フッ素四珪素雲母、ベントナイト、シリカ、モンモリロナイト及びポリアクリル酸ソーダ、特開平10−219136号公報記載のエチルセルロース、ポリアクリル酸、有機粘土など、公知の粘度調整剤やチキソトロピー性付与剤を使用することが出来る。   In addition, smectite, fluorine tetrasilicon mica, bentonite, silica, montmorillonite and sodium polyacrylate described in JP-A-8-325491, ethylcellulose, polyacrylic acid, organic clay described in JP-A-10-219136, Known viscosity modifiers and thixotropic agents can be used.

(溶媒)
防眩層は、直接透明支持体上にウエット塗布されるケースが多いため、特に塗布組成物に用いる溶媒は重要な要因となる。溶媒は、上記透光性樹脂等の各種溶質を充分に溶解すること、上記光拡散性粒子を溶解しないこと、塗布〜乾燥過程で塗布ムラ、乾燥ムラを発生しにくいこと、支持体を溶解しないこと(平面性悪化、白化等の故障防止に必要)、逆に最低限の程度には支持体を膨潤させること(密着性に必要)、等の要件を満たしていることが好ましい。
溶媒としては、少なくとも、透明支持体の膨潤性の低く、透明支持体を溶解しない溶媒を主溶媒として含有することが好ましい。主溶媒の具体例としては、支持体にトリアセチルセルロースを用いる場合には、各種ケトン(メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等)、各種セロソルブ(エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等)、その他として、各種アルコール類(プロピレングリコール、エチレングリコール、エタノール、メタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール等)、トルエンなどが好ましく用いられる。
(solvent)
Since the antiglare layer is often wet-coated directly on the transparent support, the solvent used in the coating composition is an important factor. The solvent should sufficiently dissolve various solutes such as the translucent resin, do not dissolve the light diffusing particles, be difficult to cause coating unevenness and drying unevenness in the coating to drying process, and not dissolve the support. It is preferable to satisfy requirements such as (necessary for preventing failure such as deterioration of flatness and whitening) and conversely swelling the support to the minimum extent (necessary for adhesion).
As the solvent, it is preferable to contain as a main solvent at least a solvent that does not swell the transparent support and does not dissolve the transparent support. As specific examples of the main solvent, when triacetyl cellulose is used for the support, various ketones (methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone, etc.), various cellosolves (ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, etc.), In addition, various alcohols (propylene glycol, ethylene glycol, ethanol, methanol, isopropyl alcohol, 1-butanol, 2-butanol, etc.), toluene and the like are preferably used.

また、上記の中から選択した、透明支持体の膨潤性の低い主溶媒に対して、膨潤性の高い少量溶媒を添加することにより、他の性能、面状を悪化させることなく、透明支持体との密着性を向上させることができる。具体的には、主溶媒として、メチルイソブチルケトン、トルエンを用い、少量溶媒として、メチルエチルケトン、アセトン、シクロヘキサノン、プロピレングリコール、エチレングリコール、エタノール、メタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール等を用いることができ、特に好ましくは、主溶媒として、メチルイソブチルケトン、トルエンを用い、少量溶媒として、メチルエチルケトン、シクロヘキサノン、を用いることである。また、溶媒の親水性制御のために、プロピレングリコール、エチレングリコール、エタノール、メタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール等を添加して用いることもでき、特にプロピレングリコール、エチレングリコールが好ましく用いることができる。主溶媒と少量溶媒の混合比は、質量比で99:1〜50:50が好ましく、95:5〜60:40がより好ましい。50:50を超えると、塗布後の乾燥工程における面質のバラツキが大きくなり、好ましくない。   In addition, the transparent support is selected from the above, by adding a small amount of a highly swellable solvent to the main solvent having a low swellability of the transparent support without deteriorating other performance and surface condition. Adhesiveness can be improved. Specifically, methyl isobutyl ketone and toluene are used as a main solvent, and methyl ethyl ketone, acetone, cyclohexanone, propylene glycol, ethylene glycol, ethanol, methanol, isopropyl alcohol, 1-butanol, 2-butanol and the like are used as a small amount of solvent. It is particularly preferable to use methyl isobutyl ketone and toluene as the main solvent and methyl ethyl ketone and cyclohexanone as the small amount of solvent. Further, for controlling the hydrophilicity of the solvent, propylene glycol, ethylene glycol, ethanol, methanol, isopropyl alcohol, 1-butanol, 2-butanol and the like can be added and used, and propylene glycol and ethylene glycol are particularly preferably used. be able to. The mixing ratio of the main solvent and the small amount of solvent is preferably 99: 1 to 50:50, more preferably 95: 5 to 60:40 in terms of mass ratio. If it exceeds 50:50, the variation in the surface quality in the drying step after coating increases, which is not preferable.

また、上記の中から選択した主溶媒に対して、水酸基を有する少量溶媒を添加することにより、表面凹凸が調整でき、好ましい。水酸基を有する少量溶媒は、塗布組成物の乾燥工程において主溶媒よりも後まで残留することで表面凹凸性を大きくすることができるため、20〜30℃の範囲内のある温度における蒸気圧が前記主溶媒に対して低いことが好ましい。例えば、主溶媒をメチルイソブチルケトン(21.7℃における蒸気圧:16.5mmHg)に対して水酸基を有する少量溶媒としてプロピレングリコール(20.0℃における蒸気圧:0.08mmHg)の組み合わせが好ましい一例として挙げられる。主溶媒と水酸基を有する少量溶媒の混合比は、質量比で100:0〜50:50が好ましく、100:0〜80:20がより好ましい。50:50を超えると、塗布液の安定性や、塗布後の乾燥工程における面質のバラツキが大きくなり、好ましくない。特に、本発明のように、表面凹凸起因の表面散乱を抑制するためには、100:0〜97:3であるとより好ましい。   Moreover, surface irregularities can be adjusted by adding a small amount of a solvent having a hydroxyl group to the main solvent selected from the above, which is preferable. Since the small amount of the solvent having a hydroxyl group can increase the surface unevenness by remaining until after the main solvent in the drying step of the coating composition, the vapor pressure at a certain temperature within the range of 20 to 30 ° C. Preferably it is low relative to the main solvent. For example, a preferable example is a combination of propylene glycol (vapor pressure at 20.0 ° C .: 0.08 mmHg) as a small amount solvent having a hydroxyl group with respect to methyl isobutyl ketone (vapor pressure at 21.7 ° C .: 16.5 mmHg) as the main solvent. As mentioned. The mixing ratio of the main solvent and the small amount solvent having a hydroxyl group is preferably 100: 0 to 50:50, more preferably 100: 0 to 80:20 in terms of mass ratio. If it exceeds 50:50, the stability of the coating solution and the variation in surface quality in the drying step after coating increase, which is not preferable. In particular, in order to suppress surface scattering due to surface irregularities as in the present invention, it is more preferably 100: 0 to 97: 3.

次に、低屈折率層について以下に説明する。
[低屈折率層]
本発明の反射防止フィルムにおける低屈折率層の屈折率は、1.30〜1.55であることが好ましく、好ましくは1.30〜1.45の範囲である。屈折率が1.30未満であると、反射防止性能は向上するが、膜の機械強度が低下し、1.55を超えると、反射防止性能が著しく悪化してしまう。
さらに、低屈折率層は下記数式(I)を満たすことが低反射率化の点で好ましい。
数式(I)
(mλ/4)×0.7<n1×d1<(mλ/4)×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
なお、前記数式(I)を満たすとは、前記波長の範囲において数式(I)を満たすm(正の奇数、通常1である)が存在することを意味している。
Next, the low refractive index layer will be described below.
[Low refractive index layer]
The refractive index of the low refractive index layer in the antireflection film of the present invention is preferably 1.30 to 1.55, and preferably 1.30 to 1.45. When the refractive index is less than 1.30, the antireflection performance is improved, but the mechanical strength of the film is lowered, and when it exceeds 1.55, the antireflection performance is remarkably deteriorated.
Further, the low refractive index layer preferably satisfies the following formula (I) from the viewpoint of reducing the reflectance.
Formula (I)
(Mλ / 4) × 0.7 <n1 × d1 <(mλ / 4) × 1.3
In the formula, m is a positive odd number, n1 is the refractive index of the low refractive index layer, and d1 is the film thickness (nm) of the low refractive index layer. Further, λ is a wavelength, which is a value in the range of 500 to 550 nm.
In addition, satisfy | filling said numerical formula (I) means that m (positive odd number, usually 1) which satisfy | fills numerical formula (I) exists in the said wavelength range.

[オルガノシラン、該オルガノシランの加水分解物及び/又は縮合反応物を主成分とする低屈折率層]
低屈折率層は、例えばオルガノシラン、該オルガノシランの加水分解物及び/又は縮合反応物を主成分とする硬化性組成物を塗布、乾燥、硬化して形成される硬化膜である。ここで、「オルガノシラン、該オルガノシランの加水分解物及び/又は縮合反応物を主成分とする硬化性組成物」とは、低屈折率層を形成したときにオルガノシラン、該オルガノシランの加水分解物及び/又は縮合反応物がバインダーとして機能しうる程度の量で含まれていることを意味し、オルガノシラン、該オルガノシランの加水分解物及び/又は縮合反応物の好ましい範囲は後述の通りである。
また、低屈折率層には、オルガノシランの加水分解物及び/又は縮合反応物のほかに、無機微粒子を含有するのが好ましい。低屈折率層を形成する素材について以下に説明する。
[Low refractive index layer mainly composed of organosilane, hydrolyzate and / or condensation reaction product of organosilane]
The low refractive index layer is a cured film formed by applying, drying, and curing a curable composition containing, for example, organosilane, a hydrolyzate of the organosilane and / or a condensation reaction product as a main component. Here, “a curable composition mainly composed of an organosilane, a hydrolyzate of the organosilane and / or a condensation reaction product” means that the hydrosilane of the organosilane and the organosilane when the low refractive index layer is formed. This means that the decomposition product and / or condensation reaction product is contained in such an amount that it can function as a binder, and preferred ranges of organosilane, hydrolyzate of the organosilane and / or condensation reaction product are as described below. It is.
The low refractive index layer preferably contains inorganic fine particles in addition to the hydrolyzate and / or condensation reaction product of organosilane. The material for forming the low refractive index layer is described below.

(低屈折率層用オルガノシラン化合物)
本発明に用いるオルガノシラン化合物について詳細に説明する。この化合物はそのまま、又は加水分解物、又は縮合物として低屈折率層のバインダーとして用いることができる。一般式を以下に示す。
一般式:(R10m−Si(X)4-m
上記一般式においてR10は、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ヘキシル基、t-ブチル基、sec-ブチル基、ヘキシル基、デシル基、ヘキサデシル基等が挙げられる。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アリール基としてはフェニル基、ナフチル基等が挙げられ、好ましくはフェニル基である。
(Organosilane compound for low refractive index layer)
The organosilane compound used in the present invention will be described in detail. This compound can be used as a binder for the low refractive index layer as it is or as a hydrolyzate or condensate. The general formula is shown below.
General formula: (R 10) m -Si ( X) 4-m
In the above general formula, R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, hexyl, t-butyl, sec-butyl, hexyl, decyl, hexadecyl and the like. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Examples of the aryl group include a phenyl group and a naphthyl group, and a phenyl group is preferable.

Xは、水酸基または加水分解可能な基を表す。加水分解可能な基としては、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、およびR2COO基(R2は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO基、C25COO基等が挙げられる)が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは0〜3の整数を表す。R10もしくはXが複数存在するとき、複数のR10もしくはXはそれぞれ同じであっても異なっていても良い。mとして好ましくは0、1または2である。
X represents a hydroxyl group or a hydrolyzable group. Examples of the hydrolyzable group include an alkoxy group (an alkoxy group having 1 to 5 carbon atoms, such as a methoxy group and an ethoxy group), a halogen atom (for example, Cl, Br, I, etc.), and R 2. COO groups (R 2 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Examples include CH 3 COO groups and C 2 H 5 COO groups), preferably alkoxy groups, particularly preferably. Is a methoxy group or an ethoxy group.
m represents an integer of 0 to 3. When R 10 or X there are a plurality, a plurality of R 10 or X groups may be different, even the same, respectively. m is preferably 0, 1 or 2.

10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル基、エチル基、i-プロピル基、プロピル基、t-ブチル基等)、アリール基(フェニル基、ナフチル基等)、芳香族ヘテロ環基(フリル基、ピラゾリル基、ピリジル基等)、アルコキシ基(メトキシ基、エトキシ基、i-プロポキシ基、ヘキシルオキシ基等)、アリールオキシ基(フェノキシ基等)、アルキルチオ基(メチルチオ基、エチルチオ基等)、アリールチオ基(フェニルチオ基等)、アルケニル基(ビニル基、1-プロペニル基等)、アシルオキシ基(アセトキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基等)、アリールオキシカルボニル基(フェノキシカルボニル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N-メチル-N-オクチルカルバモイル基等)、アシルアミノ基(アセチルアミノ基、ベンゾイルアミノ基、アクリルアミノ基、メタクリルアミノ基等)等が挙げられ、これら置換基は更に置換されていても良い。なお、本明細書においては、水素原子を置換するものが単一の原子であっても、便宜上置換基として取り扱う。
10が複数ある場合は、少なくとも一つが、置換アルキル基もしくは置換アリール基であることが好ましい。中でも該置換アルキル基もしくは置換アリール基がさらにビニル重合性基を有することが好ましい。
The substituent contained in R 10 is not particularly limited, but is a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl group, ethyl group, i -Propyl group, propyl group, t-butyl group etc.), aryl group (phenyl group, naphthyl group etc.), aromatic heterocyclic group (furyl group, pyrazolyl group, pyridyl group etc.), alkoxy group (methoxy group, ethoxy group) , I-propoxy group, hexyloxy group, etc.), aryloxy group (phenoxy group, etc.), alkylthio group (methylthio group, ethylthio group, etc.), arylthio group (phenylthio group, etc.), alkenyl group (vinyl group, 1-propenyl group) Etc.), acyloxy groups (acetoxy group, acryloyloxy group, methacryloyloxy group, etc.), alkoxycarbonyl groups (me Toxylcarbonyl group, ethoxycarbonyl group, etc.), aryloxycarbonyl group (phenoxycarbonyl group, etc.), carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N-methyl-N-octylcarbamoyl group) Etc.), acylamino groups (acetylamino group, benzoylamino group, acrylamino group, methacrylamino group, etc.) and the like, and these substituents may be further substituted. In the present specification, even if a hydrogen atom is replaced by a single atom, it is treated as a substituent for convenience.
When there are a plurality of R 10 , at least one is preferably a substituted alkyl group or a substituted aryl group. Among these, the substituted alkyl group or substituted aryl group preferably further has a vinyl polymerizable group.

本発明において好ましい化合物は、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン等のトリアルコキシシラン;ジメチルジメトキシシラン、ジメチルジエトキシシラン等のジアルコキシシラン等が挙げられる。この中でも硬化組成物中での無機粒子の分散安定性、耐擦傷性の観点からテトラメトキシシラン、テトラエトキシシラン、γ−アクリロキシプロピルトリメトキシシランが好ましい。   Preferred compounds in the present invention are tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltri Methoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, pentyltrimethoxysilane, pentyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltri Methoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, octadecyltrimethyl Xysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ- Trialkoxysilanes such as glycidoxypropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropyltriethoxysilane; dimethyl Examples thereof include dialkoxysilanes such as dimethoxysilane and dimethyldiethoxysilane. Among these, tetramethoxysilane, tetraethoxysilane, and γ-acryloxypropyltrimethoxysilane are preferable from the viewpoints of dispersion stability of the inorganic particles in the cured composition and scratch resistance.

本発明においてオルガノシラン化合物は、あらかじめ加水分解又はそれらを部分縮合させて塗布組成物に用いることができる。オルガノシランの加水分解および縮合反応の少なくともいずれかの反応は、触媒の存在下で行われることが好ましい。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類等が挙げられるが、無機酸化物微粒子液の製造安定性や保存安定性の点から、本発明においては、酸触媒(無機酸類、有機酸類)及び金属キレート化合物の少なくともいずれかが用いられる。無機酸では塩酸、硫酸、硝酸、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましい。有機酸の中では、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が好ましく、シュウ酸が特に好ましい。   In the present invention, the organosilane compound can be used in the coating composition after hydrolysis or partial condensation thereof. It is preferable that at least one of hydrolysis and condensation reaction of organosilane is performed in the presence of a catalyst. Catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as oxalic acid, acetic acid, formic acid, methanesulfonic acid and toluenesulfonic acid; inorganic bases such as sodium hydroxide, potassium hydroxide and ammonia; triethylamine, Examples include organic bases such as pyridine; metal alkoxides such as triisopropoxyaluminum and tetrabutoxyzirconium. From the viewpoint of production stability and storage stability of the inorganic oxide fine particle liquid, an acid catalyst is used in the present invention. At least one of (inorganic acids, organic acids) and a metal chelate compound is used. Among inorganic acids, hydrochloric acid, sulfuric acid, nitric acid, and organic acids preferably have an acid dissociation constant (pKa value (25 ° C.)) of 4.5 or less in water. Among organic acids, methanesulfonic acid, oxalic acid, phthalic acid, and malonic acid are preferable, and oxalic acid is particularly preferable.

本発明において、オルガノシランの加水分解物の生成および縮合反応に用いる金属キレート化合物は、一般式R3OH(式中、R3は炭素数1〜10のアルキル基を示す。)で表されるアルコールと一般式R4COCH2COR5(式中、R4は炭素数1〜10のアルキル基を、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す。)で表される化合物とを配位子とした、Zr、TiおよびAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物が好ましい。 In the present invention, the metal chelate compound used for the formation of the hydrolyzate of organosilane and the condensation reaction is represented by the general formula R 3 OH (wherein R 3 represents an alkyl group having 1 to 10 carbon atoms). alcohol of the general formula R 4 COCH 2 COR 5 (wherein, the R 4 is an alkyl group having 1 to 10 carbon atoms, R 5 represents an alkyl group or an alkoxy group having 1 to 10 carbon atoms having 1 to 10 carbon atoms. And at least one metal chelate compound having a metal selected from Zr, Ti and Al as a central metal.

金属キレート化合物は、Zr、TiまたはAlから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。本発明に用いられる金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。   The metal chelate compound can be suitably used without particular limitation as long as it has a metal selected from Zr, Ti or Al as a central metal. Within this category, two or more metal chelate compounds may be used in combination. Specific examples of the metal chelate compound used in the present invention include tri-n-butoxyethyl acetoacetate zirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate) zirconium, tetrakis (n Zirconium chelate compounds such as propylacetoacetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxy bis (ethylacetoacetate) titanium, diisopropoxy bis (acetylacetate) titanium , Titanium chelate compounds such as diisopropoxy bis (acetylacetone) titanium; diisopropoxyethyl acetoacetate aluminum Diisopropoxyacetylacetonate aluminum, isopropoxybis (ethylacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonato) aluminum, monoacetylacetonate bis (Ethyl acetoacetate) Aluminum chelate compounds such as aluminum can be mentioned.

これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる   Among these metal chelate compounds, tri-n-butoxyethyl acetoacetate zirconium, diisopropoxybis (acetylacetonato) titanium, diisopropoxyethyl acetoacetate aluminum, and tris (ethyl acetoacetate) aluminum are preferable. These metal chelate compounds can be used individually by 1 type or in mixture of 2 or more types. Moreover, the partial hydrolyzate of these metal chelate compounds can also be used.

オルガノシランの加水分解および縮合反応は、無溶媒でも、溶媒中でも行うことができる。この反応により、本発明の硬化性組成物を製造することができる。溶媒を用いる場合はオルガノシランの加水分解物およびその部分縮合物の濃度を適宜に定めることができる。溶媒としては成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒が塗布液あるいは塗布液の一部として用いられることが工程上好ましく、含フッ素ポリマーなどのその他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。   The hydrolysis and condensation reaction of the organosilane can be performed without a solvent or in a solvent. By this reaction, the curable composition of the present invention can be produced. When a solvent is used, the concentration of the hydrolyzate of organosilane and its partial condensate can be appropriately determined. As the solvent, an organic solvent is preferably used in order to uniformly mix the components. For example, alcohols, aromatic hydrocarbons, ethers, ketones, esters and the like are preferable. The solvent preferably dissolves the organosilane and the catalyst. In addition, it is preferable in the process that an organic solvent is used as a coating solution or a part of the coating solution, and those that do not impair the solubility or dispersibility when mixed with other materials such as a fluorine-containing polymer are preferable.

このうち、アルコール類としては、例えば1価アルコールまたは2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。   Among these, examples of the alcohols include monohydric alcohols and dihydric alcohols. Among these, monohydric alcohols are preferably saturated aliphatic alcohols having 1 to 8 carbon atoms. Specific examples of these alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol. Examples thereof include monobutyl ether and ethylene glycol monoethyl ether acetate.

また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなど、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。該反応における溶媒に対する固形分の濃度は特に限定されるものではないが通常1質量%〜90質量%の範囲であり、好ましくは20質量%〜70質量%の範囲である。   Specific examples of aromatic hydrocarbons include benzene, toluene, xylene and the like. Specific examples of ethers include tetrahydrofuran and dioxane. Specific examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, Specific examples of esters such as diisobutyl ketone include ethyl acetate, propyl acetate, butyl acetate, and propylene carbonate. These organic solvents can be used alone or in combination of two or more. The concentration of the solid content relative to the solvent in the reaction is not particularly limited, but is usually in the range of 1% by mass to 90% by mass, and preferably in the range of 20% by mass to 70% by mass.

加水分解および縮合反応は、通常、オルガノシランの加水分解性基1モルに対して0.3〜2モル、好ましくは0.5〜1モルの水を添加し、上記溶媒の存在下あるいは非存在下に、そして酸触媒の存在下に、25〜100℃で、撹拌することにより行われる。加水分解性基がアルコキシ基で酸触媒が有機酸の場合には、有機酸のカルボキシル基やスルホ基がプロトンを供給するために、水の添加量を減らすことができ、オルガノシランのアルコキシ基等の加水分解性基1モルに対する水の添加量は、0〜2モル、好ましくは0〜1.5モル、より好ましくは、0〜1モル、特に好ましくは、0〜0.5モルである。アルコールを溶媒に用いた場合には、実質的に水を添加しない場合も好適である。   In the hydrolysis and condensation reaction, usually 0.3 to 2 mol, preferably 0.5 to 1 mol of water is added to 1 mol of the hydrolyzable group of the organosilane, and in the presence or absence of the solvent. Under stirring and in the presence of an acid catalyst at 25-100 ° C. When the hydrolyzable group is an alkoxy group and the acid catalyst is an organic acid, since the carboxyl group or sulfo group of the organic acid supplies protons, the amount of water added can be reduced, such as the alkoxy group of organosilane. The amount of water added to 1 mol of the hydrolyzable group is 0 to 2 mol, preferably 0 to 1.5 mol, more preferably 0 to 1 mol, and particularly preferably 0 to 0.5 mol. When alcohol is used as the solvent, it is also preferred that substantially no water is added.

酸触媒の使用量は、酸触媒が無機酸の場合には加水分解性基に対して0.01〜10モル%、好ましくは0.1〜5モル%であり、酸触媒が有機酸の場合には、水の添加量によって最適な使用量が異なるが、水を添加する場合には加水分解性基に対して0.01〜10モル%、好ましくは0.1〜5モル%であり、実質的に水を添加しない場合には、加水分解性基に対して1〜500モル%、好ましくは10〜200モル%であり、より好ましくは20〜200モル%であり、更に好ましくは50〜150モル%であり、特に好ましくは50〜120モル%である。反応は25〜100℃で撹拌することにより行われるがオルガノシランの反応性により調節されることが好ましい。   The amount of the acid catalyst used is 0.01 to 10 mol%, preferably 0.1 to 5 mol%, based on the hydrolyzable group when the acid catalyst is an inorganic acid, and the acid catalyst is an organic acid. However, when water is added, the optimal amount of use is 0.01 to 10 mol%, preferably 0.1 to 5 mol%, based on the hydrolyzable group. When substantially no water is added, it is 1 to 500 mol%, preferably 10 to 200 mol%, more preferably 20 to 200 mol%, still more preferably 50 to 50 mol% with respect to the hydrolyzable group. 150 mol%, particularly preferably 50 to 120 mol%. The reaction is carried out by stirring at 25 to 100 ° C., but is preferably controlled by the reactivity of organosilane.

本発明に用いられるオルガノシランの加水分解物および縮合反応物の形状は鎖状であっても3次元の網目構造であっても良い。また、これらの化合物の質量平均分子量は、エチレングリコール換算による質量平均分子量が300〜10000であることが好ましい。質量平均分子量が上記範囲にあると、硬化性組成物の塗工および保存安定性が良好であると共に、硬化膜の耐擦傷性を充分に確保でき、好ましい。エチレングリコール換算による質量平均分子量が300〜9000であることがさらに好ましく、300〜8000であることが特に好ましい。
前記質量平均分子量は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、DMF、示差屈折計検出によるエチレングリコール換算で表した分子量である。
The organosilane hydrolyzate and condensation reaction product used in the present invention may have a chain or a three-dimensional network structure. Moreover, as for the mass average molecular weight of these compounds, it is preferable that the mass average molecular weight in conversion of ethylene glycol is 300-10000. When the mass average molecular weight is in the above range, the coating and storage stability of the curable composition are good, and the scratch resistance of the cured film can be sufficiently secured, which is preferable. The mass average molecular weight in terms of ethylene glycol is more preferably 300 to 9000, and particularly preferably 300 to 8000.
The mass average molecular weight is a molecular weight expressed in terms of ethylene glycol by DMF and differential refractometer detection using a GPC analyzer using columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (both trade names manufactured by Tosoh Corporation). It is.

(低屈折率層用含フッ素オルガノシラン化合物)
低屈折率層用オルガノシラン化合物としては、フッ素を含まなくても含んでも良く、また非含フッ素のオルガノシラン化合物と含フッ素オルガノシラン化合物の混合物でも良い。含フッ素オルガノシラン化合物を用いることで、低屈折率層の屈折率を下げ、反射防止フィルム表面に防汚性を付与することができる。以下に、含フッ素オルガノシラン化合物について詳しく説明する。含フッ素オルガノシラン化合物に制限はないが、以下に示す一般式[1]〜[4]で表される化合物が好ましい。以下順次説明する。
(Fluorine-containing organosilane compound for low refractive index layer)
The organosilane compound for the low refractive index layer may contain no fluorine, or may be a mixture of a non-fluorinated organosilane compound and a fluorine-containing organosilane compound. By using a fluorine-containing organosilane compound, the refractive index of the low refractive index layer can be lowered, and antifouling properties can be imparted to the surface of the antireflection film. Hereinafter, the fluorine-containing organosilane compound will be described in detail. Although there is no restriction | limiting in a fluorine-containing organosilane compound, The compound represented by the general formula [1]-[4] shown below is preferable. This will be sequentially described below.

一般式[1] (Rf−L1n−Si(R114-n
上記式中、Rfは炭素数1〜20の直鎖、分岐、環状の含フッ素アルキル基、または炭素数6〜14の含フッ素芳香族基を表す。Rfは更に別の置換基で置換されていても良い。Rfは、炭素数3〜10の直鎖、分岐、環状のフルオロアルキル基が好ましく、炭素数4〜8の直鎖のフルオロアルキル基が更に好ましい。L1は炭素数10以下の2価の連結基を表し、好ましくは炭素数1〜10のアルキレン基、更に好ましくは炭素数1〜5のアルキレン基を表す。アルキレン基は、直鎖もしくは分岐の、置換もしくは無置換の、内部に連結基(例えば、エーテル、エステル、アミド)を有していてもよいアルキレン基である。アルキレン基は置換基を有していてもよく、その場合の好ましい置換基は、ハロゲン原子、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられる。R11はアルキル基、水酸基または加水分解可能な基を表し、炭素数1〜5のアルコキシ基またはハロゲン原子が好ましく、メトキシ基、エトキシ基、及び塩素原子が更に好ましい。Rf、L1、R11が複数存在するときはそれぞれは、同じでも異なっていても良い。nは1〜3の整数を表す。
Formula [1] (Rf-L 1 ) n -Si (R 11) 4-n
In the above formula, Rf represents a linear, branched or cyclic fluorinated alkyl group having 1 to 20 carbon atoms or a fluorinated aromatic group having 6 to 14 carbon atoms. Rf may be further substituted with another substituent. Rf is preferably a linear, branched or cyclic fluoroalkyl group having 3 to 10 carbon atoms, and more preferably a linear fluoroalkyl group having 4 to 8 carbon atoms. L 1 represents a divalent linking group having 10 or less carbon atoms, preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms. The alkylene group is a linear or branched, substituted or unsubstituted alkylene group that may have a linking group (for example, ether, ester, amide) inside. The alkylene group may have a substituent, and preferable substituents in that case include a halogen atom, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, and an aryl group. R 11 represents an alkyl group, a hydroxyl group or a hydrolyzable group, preferably an alkoxy group having 1 to 5 carbon atoms or a halogen atom, more preferably a methoxy group, an ethoxy group, or a chlorine atom. When there are a plurality of Rf, L 1 and R 11, each may be the same or different. n represents an integer of 1 to 3.

一般式[1]で表される含フッ素シラン化合物の中でも、下記一般式[2]で表される含フッ素シラン化合物が好ましい。
一般式[2] Cn2n+1−(CH2m−Si(R)3
上記式中、nは10以上の整数、mは1〜5の整数を表す。Rは炭素数1〜5のアルコキシ基またはハロゲン原子を表す。nは4〜10が好ましく、mは1〜3が好ましく、Rはメトキシ基、エトキシ基、及び塩素原子が好ましい。
Among the fluorine-containing silane compounds represented by the general formula [1], a fluorine-containing silane compound represented by the following general formula [2] is preferable.
Formula [2] C n F 2n + 1 - (CH 2) m -Si (R) 3
In the above formula, n represents an integer of 10 or more, and m represents an integer of 1 to 5. R represents an alkoxy group having 1 to 5 carbon atoms or a halogen atom. n is preferably 4 to 10, m is preferably 1 to 3, and R is preferably a methoxy group, an ethoxy group, or a chlorine atom.

以下に、一般式[1]または[2]で表される含フッ素シランカップリング剤の具体例を示すが、これに限定されるものではない。   Specific examples of the fluorine-containing silane coupling agent represented by the general formula [1] or [2] are shown below, but are not limited thereto.

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

37CH2CH2Si(OC25)3 A−41
817CH2CH2Si(CH3)(OCH3)2 A−42
1021CH2CH2Si(OCH3)3 A−43
1021CH2CH2Si(OC25)3 A−44
1224CH2CH2Si(OCH3)3 A−45
1429CH2CH2Si(OCH3)3 A−46
C 3 F 7 CH 2 CH 2 Si (OC 2 H 5) 3 A-41
C 8 F 17 CH 2 CH 2 Si (CH 3) (OCH 3) 2 A-42
C 10 F 21 CH 2 CH 2 Si (OCH 3) 3 A-43
C 10 F 21 CH 2 CH 2 Si (OC 2 H 5) 3 A-44
C 12 F 24 CH 2 CH 2 Si (OCH 3) 3 A-45
C 14 F 29 CH 2 CH 2 Si (OCH 3 ) 3 A-46

これら具体例のなかで、(A−1)、(A−3)、(A−43)、(A−45)、(A−46)が好ましく、特に(A−43)が好ましい。これらの化合物は例えば特開平11−189599号公報に記載の方法によって合成することができる。   Among these specific examples, (A-1), (A-3), (A-43), (A-45), and (A-46) are preferable, and (A-43) is particularly preferable. These compounds can be synthesized, for example, by the method described in JP-A-11-189599.

また、本発明において防汚性に加えて表面の潤滑性を向上させる観点からは、パーフルオロポリエーテル基を含有する含フッ素シラン化合物が好ましい。該化合物について以下好ましい構造の化合物を順次説明する。
一般式[3]
In addition, in the present invention, a fluorine-containing silane compound containing a perfluoropolyether group is preferred from the viewpoint of improving surface lubricity in addition to antifouling properties. The compounds having preferred structures will be described below in order.
General formula [3]

Figure 0004905787
Figure 0004905787

(式中、Rf は炭素数1〜16の直鎖状または分岐状パーフルオロアルキル基、Xはヨウ素原子または水素原子、Yは水素原子または低級アルキル基、Zはフッ素原子またはトリフルオロメチル基、R1は加水分解可能な基、R2は水素または不活性な一価の有機基、a、b、c、dは0〜200の整数、eは0または1、mおよびnは0〜2の整数、及びpは1〜10の整数を表す。)
一般式[3]中のRfは、通常、炭素数1〜16の直鎖状または分岐状パーフルオロアルキル基であり、好ましくはCF3基、C25基、C37基である。Yにおける低級アルキル基としては通常、炭素数1〜5のものが挙げられる。R1の加水分解可能な基としては、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、R3O基、R3COO基、(R4)2C=C(R3)CO基、(R3)2C=NO基、R5C=NO基、(R4)2N基、及びR3CONR4基が好ましい。(ここで、R3はアルキル基等の通常は炭素数1〜10の脂肪族炭化水素基またはフェニル基等の通常は炭素数6〜20の芳香族炭化水素基、R4は水素原子またはアルキル基等の通常は炭素数1〜5の低級脂肪族炭化水素基、R5はアルキリデン基等の通常は炭素数3〜6の二価の脂肪族炭化水素基である。)さらに好ましくは、塩素原子、CH3O基、C25O基である。R2は水素原子または不活性な一価の有機基であり、好ましくは、アルキル基等の通常は炭素数1〜4の一価の炭化水素基である。a、b、c、dは0〜200の整数であり、好ましくは1〜50である。mおよびnは、0〜2の整数であり、好ましくは0である。pは1または2以上の整数であり、好ましくは1〜10の整数であり、さらに好ましくは1〜5の整数である。また、数平均分子量は5×102〜1×105が好ましく、更に好ましくは1×103〜1×104である。
Wherein R f is a linear or branched perfluoroalkyl group having 1 to 16 carbon atoms, X is an iodine atom or a hydrogen atom, Y is a hydrogen atom or a lower alkyl group, Z is a fluorine atom or a trifluoromethyl group , R 1 is a hydrolyzable group, R 2 is hydrogen or an inert monovalent organic group, a, b, c, d are integers of 0 to 200, e is 0 or 1, and m and n are 0 to 0. (The integer of 2 and p represent the integer of 1-10.)
R f in the general formula [3] is usually a linear or branched perfluoroalkyl group having 1 to 16 carbon atoms, preferably a CF 3 group, a C 2 F 5 group, or a C 3 F 7 group. is there. Examples of the lower alkyl group for Y usually include those having 1 to 5 carbon atoms. Examples of the hydrolyzable group of R 1 include halogen atoms such as chlorine atom, bromine atom and iodine atom, R 3 O group, R 3 COO group, (R 4 ) 2 C═C (R 3 ) CO group, ( R 3 ) 2 C═NO group, R 5 C═NO group, (R 4 ) 2 N group, and R 3 CONR 4 group are preferred. (Wherein R 3 is usually an aliphatic hydrocarbon group having 1 to 10 carbon atoms such as an alkyl group or an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a phenyl group, and R 4 is a hydrogen atom or an alkyl group. A lower aliphatic hydrocarbon group having 1 to 5 carbon atoms such as a group, and R 5 is a divalent aliphatic hydrocarbon group usually having 3 to 6 carbon atoms such as an alkylidene group.) More preferably, chlorine An atom, a CH 3 O group, and a C 2 H 5 O group. R 2 is a hydrogen atom or an inert monovalent organic group, and is preferably a monovalent hydrocarbon group usually having 1 to 4 carbon atoms such as an alkyl group. a, b, c and d are integers of 0 to 200, preferably 1 to 50. m and n are integers of 0 to 2, preferably 0. p is an integer of 1 or 2 or more, preferably an integer of 1 to 10, and more preferably an integer of 1 to 5. The number average molecular weight is preferably 5 × 10 2 to 1 × 10 5, more preferably 1 × 10 3 to 1 × 10 4 .

また、上記の一般式[3]で表される含フッ素シラン化合物の好ましい構造のものとして、RfがC37基であり、aが1〜50の整数であり、b、c及びdが0であり、eが1であり、Zがフッ素原子であり、nが0である化合物、即ち下記の一般式[4]で表される化合物がある。
一般式[4]
Further, as a preferable structure of the fluorine-containing silane compound represented by the general formula [3], R f is C 3 F 7 group, a is an integer of 1 to 50, b, c and d Is a compound in which e is 1, z is a fluorine atom, and n is 0, that is, a compound represented by the following general formula [4].
General formula [4]

Figure 0004905787
Figure 0004905787

(式中、Y、m、R1及びpは前記と同じ意味を表し、qは1〜50の整数を表す。) (In the formula, Y, m, R 1 and p represent the same meaning as described above, and q represents an integer of 1 to 50.)

これらの含フッ素シラン化合物は、市販のパーフルオロポリエーテルをシラン処理することによって得ることができる。例えば、特開平1−294709号公報に開示のあるごとくである。   These fluorine-containing silane compounds can be obtained by treating a commercially available perfluoropolyether with silane. For example, as disclosed in JP-A-1-294709.

また、下記一般式で表されるパーフルオロポリエーテル基を有する化合物も防汚性に優れ好ましい。
一般式[5]
Rf5[−(L5)−X−R51−Si(OR52)3]
(式中、Rf5はパーフルオロポリエーテル基を、R51はアルキレン基を、R52はアルキル基を、L5は−CO−を、Xは−O−、−NR53−、−S−、−SO2−、−SO2NR53−、−NR53CO−から選ばれる基を、nは0又は1、mは2以下の自然数をそれぞれ表す。R53は水素原子又は炭素数3以下のアルキル基を表す。)
一般式[5]中のパーフルオロポリエーテル基Rf5のうち、一価のものとしては、例えば下記一般式[51]、[52]あるいは[53]等が例示されるが、これら構造式に限定されることはない。また二価のものであってもよい。この場合にはRf5基の両末端にアルコキシシラン化合物が結合する。パーフルオロポリエーテル基の分子量はこれも特に限定はないが、安定性や取り扱い易さの観点からは数平均分子量で500〜10,000、さらに好ましくは500〜2,000のものが使用される。
一般式[51] F(CF2CF2CF2O)j
一般式[52] CF3(OCF(CF3)CF2)m(OCF2)l
一般式[53] F(CF(CF3)CF2O)k
ここで上記一般式[51]、[52]あるいは[53]中のj、k、lおよびmは、1以上の自然数を表す。
好ましい化合物の具体例は、例えば特開平10−148701号公報に記載されている。
A compound having a perfluoropolyether group represented by the following general formula is also preferable because of its excellent antifouling property.
General formula [5]
Rf5 [- (L 5) n -X-R 51 -Si (OR 52) 3] m
(Wherein the perfluoropolyether group RF5, the R 51 is an alkylene group, a R 52 represents an alkyl group, L 5 is a -CO-, X is -O -, - NR 53 -, - S-, -SO 2 -, - SO 2 NR 53 -, - a group selected from NR 53 CO-, n is 0 or 1, m is .R 53 representing 2 following the natural numbers respectively a hydrogen atom or having 3 or less carbon Represents an alkyl group.)
Of the perfluoropolyether groups Rf5 in the general formula [5], examples of the monovalent group include the following general formulas [51], [52], and [53], but are limited to these structural formulas. It will never be done. Moreover, a bivalent thing may be sufficient. In this case, an alkoxysilane compound is bonded to both ends of the Rf5 group. The molecular weight of the perfluoropolyether group is not particularly limited, but from the viewpoint of stability and ease of handling, a number average molecular weight of 500 to 10,000, more preferably 500 to 2,000 is used. .
Formula [51] F (CF 2 CF 2 CF 2 O) j
[52] CF 3 (OCF (CF 3 ) CF 2 ) m (OCF 2 ) l
Formula [53] F (CF (CF 3 ) CF 2 O) k
Here, j, k, l and m in the above general formula [51], [52] or [53] represent a natural number of 1 or more.
Specific examples of preferred compounds are described in, for example, JP-A-10-148701.

また、硬化の際の反応性が高いオルガノシラザン化合物として以下の一般式の化合物が挙げられる。
一般式[6]
[C2n+1m2mSi(CH3)2]2−NH
式中、nは4以上の整数であり、mは2又は3である。このようなジシラザン化合物として例えば以下のものが挙げられる。
[C4924(CH3)2Si]2NH
[C4936(CH3)2Si]2NH
[C81724(CH3)2Si]2NH
[C81736(CH3)2Si]2NH
[C81736(CH3)(C25)Si]2NH
[C102136(CH3)2Si]2NH
これらの化合物は単独又は混合して使用される。これらは、特開平10−26703号公報に開示されている。
Moreover, the compound of the following general formula is mentioned as an organosilazane compound with high reactivity in the case of hardening.
General formula [6]
[C n F 2n + 1 C m H 2m Si (CH 3) 2] 2 -NH
In the formula, n is an integer of 4 or more, and m is 2 or 3. Examples of such a disilazane compound include the following.
[C 4 F 9 C 2 H 4 (CH 3 ) 2 Si] 2 NH
[C 4 F 9 C 3 H 6 (CH 3 ) 2 Si] 2 NH
[C 8 F 17 C 2 H 4 (CH 3 ) 2 Si] 2 NH
[C 8 F 17 C 3 H 6 (CH 3 ) 2 Si] 2 NH
[C 8 F 17 C 3 H 6 (CH 3 ) (C 2 H 5 ) Si] 2 NH
[C 10 F 21 C 3 H 6 (CH 3 ) 2 Si] 2 NH
These compounds are used alone or in combination. These are disclosed in JP-A-10-26703.

本発明において、用いるフッ素化合物としては、上記一般式[3]〜[5]で表されるパーフルオロポリエーテル基を有するアルコキシシラン化合物が、単純なパーフルオロアルキル基を有する化合物よりも耐磨耗性や撥水性の点で好ましい。この理由は必ずしも明らかではないが、フッ素化合物基同士の相互作用が少なからずあること、あるいは極性基であるアルコキシシラン化合物基と下地の層との相互作用が変化すること等が考えられる。   In the present invention, as the fluorine compound to be used, the alkoxysilane compound having a perfluoropolyether group represented by the above general formulas [3] to [5] is more resistant to abrasion than a compound having a simple perfluoroalkyl group. From the viewpoint of properties and water repellency. The reason for this is not necessarily clear, but it is conceivable that there is a considerable interaction between fluorine compound groups, or that the interaction between the alkoxysilane compound group, which is a polar group, and the underlying layer changes.

また、高分子の含フッ素シラン化合物として、特開2000−191977号公報、特開2000−204319号公報、特開2000−328001号公報等に記載の化合物を用いることも塗布故障が少なく好ましい。   Further, it is preferable to use the compounds described in JP 2000-191977 A, JP 2000-204319 A, JP 2000-328001 A, etc. as the high-molecular fluorine-containing silane compound since there are few coating failures.

含フッ素シラン化合物は、非含フッ素のオルガノシラン化合物とあらかじめ部分的に縮合させて使用することも塗布面状の安定性に優れ好ましい。また、含フッ素オルガノシラン化合物含有層に下記一般式[7]で表されるオルガノシラン化合物を併用することが防汚性耐久性の点で特に好ましい。
一般式[7]
71−Si(OR72)3
(式中、R71は炭素数10以上の長鎖炭化水素基を、R72はアルキル基を表す。長鎖炭化水素基R71は、その構成炭素数が10以上のものが好まく、直鎖、分岐の別は問わない。また不飽和結合や、芳香環等の環状構造を含んでいても良い。しかしながら、好ましくは、炭素数12〜20の範囲で直鎖状のものが選ばれる。かかる分子設計により、一般式(7)のアルコキシシラノ基部分は反射防止層のSiO2等との相互作用が得られるとともに、長鎖炭化水素基R71部分の疏水性が大きくなり、疏水基同士の分子間相互作用すなわちファンデルワールス力が高まる。これを一般式[3]〜[5]で示されるパーフルオロポリエーテル基を有するアルコキシシラン化合物と併用することにより、これらの効果が相乗され、耐溶剤性、撥水性、耐磨耗性が大きく改良される。
It is preferable that the fluorine-containing silane compound is partially condensed with a non-fluorine-containing organosilane compound in advance for excellent stability of the coated surface. In addition, it is particularly preferable from the viewpoint of antifouling durability to use an organosilane compound represented by the following general formula [7] in the fluorine-containing organosilane compound-containing layer.
General formula [7]
R 71 -Si (OR 72 ) 3
(In the formula, R 71 represents a long-chain hydrocarbon group having 10 or more carbon atoms, R 72 represents an alkyl group. The long-chain hydrocarbon group R 71 preferably has 10 or more carbon atoms. The chain may be branched or branched, and may contain an unsaturated bond, a cyclic structure such as an aromatic ring, etc. However, a straight chain having 12 to 20 carbon atoms is preferably selected. By such molecular design, the alkoxysilano group portion of the general formula (7) can interact with SiO 2 and the like of the antireflection layer, and the hydrophobicity of the long-chain hydrocarbon group R 71 portion is increased. When these are used in combination with an alkoxysilane compound having a perfluoropolyether group represented by the general formulas [3] to [5], these effects are synergized, Solvent resistance, water repellency, abrasion resistance Sex is greatly improved.

含フッ素シラン化合物を防汚層に用いる場合には、含フッ素オルガノシラン化合物100質量部に対する、フッ素非含有オルガノシランの割合は1質量部以上150質量部以下が好ましく、更に好ましくは1質量部以上50質量部である。この範囲にすることで、防汚性と耐擦傷性が優れる。   When the fluorine-containing silane compound is used for the antifouling layer, the ratio of the fluorine-free organosilane to 100 parts by mass of the fluorine-containing organosilane compound is preferably 1 part by mass or more and 150 parts by mass or less, more preferably 1 part by mass or more. 50 parts by mass. By setting it within this range, antifouling properties and scratch resistance are excellent.

(低屈折率層用無機微粒子)
無機微粒子の配合量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。
無機微粒子は、低屈折率層に含有させることから、低屈折率であることが望ましい。例えば、フッ化マグネシウムやシリカの微粒子が挙げられる。特に、屈折率、分散安定性、コストの点で、シリカ微粒子が好ましい。
無機微粒子の平均粒径は、低屈折率層の厚みの30%以上100%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、シリカ微粒子の粒径は30nm以上100nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
前記無機微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する場合があるので、上述の範囲内とするのが好ましい。無機微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。
ここで、無機微粒子の平均粒径はコールターカウンターにより測定することができる。
(Inorganic fine particles for low refractive index layer)
The amount of the inorganic fine particles is preferably 1mg / m 2 ~100mg / m 2 , more preferably 5mg / m 2 ~80mg / m 2 , more preferably from 10mg / m 2 ~60mg / m 2 . If the amount is too small, the effect of improving the scratch resistance is reduced. If the amount is too large, fine irregularities are formed on the surface of the low refractive index layer, and the appearance such as black tightening and the integrated reflectance may be deteriorated. It is preferable to be inside.
Since the inorganic fine particles are contained in the low refractive index layer, a low refractive index is desirable. Examples thereof include fine particles of magnesium fluoride and silica. In particular, silica fine particles are preferable in terms of refractive index, dispersion stability, and cost.
The average particle size of the inorganic fine particles is preferably 30% or more and 100% or less, more preferably 35% or more and 80% or less, and still more preferably 40% or more and 60% or less of the thickness of the low refractive index layer. That is, when the thickness of the low refractive index layer is 100 nm, the particle size of the silica fine particles is preferably 30 nm to 100 nm, more preferably 35 nm to 80 nm, and still more preferably 40 nm to 60 nm.
If the particle size of the inorganic fine particles is too small, the effect of improving the scratch resistance is reduced. Therefore, it is preferable to be within the above range. The inorganic fine particles may be either crystalline or amorphous, and may be monodispersed particles or aggregated particles as long as a predetermined particle size is satisfied. The shape is most preferably a spherical diameter, but there is no problem even if the shape is indefinite.
Here, the average particle diameter of the inorganic fine particles can be measured by a Coulter counter.

低屈折率層の屈折率上昇をより一層少なくするために、前記無機微粒子は、中空構造であるのが好ましく、また、無機微粒子の屈折率は1.17〜1.40、より好ましくは1.17〜1.35、さらに好ましくは1.17〜1.30である。ここでの屈折率は粒子全体としての屈折率を表し、中空構造の無機微粒子の場合に外殻の無機質のみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(II)で表される空隙率xは、好ましくは10〜60%、さらに好ましくは20〜60%、最も好ましくは30〜60%である。
(数式II)
x=(4πa3/3)/(4πb3/3)×100
In order to further reduce the increase in the refractive index of the low refractive index layer, the inorganic fine particles preferably have a hollow structure, and the refractive index of the inorganic fine particles is 1.17 to 1.40, more preferably 1. It is 17-1.35, More preferably, it is 1.17-1.30. Here, the refractive index represents the refractive index of the entire particle, and does not represent the refractive index of only the inorganic material of the outer shell in the case of inorganic fine particles having a hollow structure. At this time, when the radius of the void in the particle is a and the radius of the particle outer shell is b, the porosity x represented by the following formula (II) is preferably 10 to 60%, more preferably 20 to 60. %, Most preferably 30-60%.
(Formula II)
x = (4πa 3/3) / (4πb 3/3) × 100

中空の無機微粒子の屈折率をより低屈折率に、より空隙率を大きくしようとすると、外殻の厚みが薄くなり、粒子の強度としては弱くなるため、耐擦傷性の観点からは屈折率1.17未満の低屈折率の粒子は成り立たない。
なお、無機微粒子の屈折率はアッベ屈折率計(アタゴ(株)製)にて測定することができる。
If the refractive index of the hollow inorganic fine particles is made lower and the porosity is increased, the thickness of the outer shell becomes thinner and the strength of the particles becomes weaker. From the viewpoint of scratch resistance, the refractive index is 1 Particles with a low refractive index of less than .17 do not hold.
The refractive index of the inorganic fine particles can be measured with an Abbe refractometer (manufactured by Atago Co., Ltd.).

また、平均粒径が低屈折率層の厚みの25%未満である無機微粒子(以下「小サイズ無機微粒子」と称す)の少なくとも1種を前記の好ましい範囲内の粒径の無機微粒子(以下「大サイズ無機微粒子」と称す)と併用してもよい。
小サイズ無機微粒子は、大サイズ無機微粒子同士の隙間に存在することができるため、大サイズ無機微粒子の保持剤として寄与することができる。
小サイズ無機微粒子の平均粒径は、低屈折率層が100nmの場合、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このような無機微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
Further, at least one kind of inorganic fine particles (hereinafter referred to as “small-size inorganic fine particles”) having an average particle size of less than 25% of the thickness of the low refractive index layer is referred to as “inorganic fine particles (hereinafter referred to as“ small size inorganic fine particles ”). It may be used in combination with “large-size inorganic fine particles”.
Since the small-sized inorganic fine particles can exist in the gaps between the large-sized inorganic fine particles, they can contribute as a retaining agent for the large-sized inorganic fine particles.
When the low refractive index layer is 100 nm, the average particle size of the small-sized inorganic fine particles is preferably 1 nm to 20 nm, more preferably 5 nm to 15 nm, and particularly preferably 10 nm to 15 nm. Use of such inorganic fine particles is preferable in terms of raw material costs and a retaining agent effect.

無機微粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。中でもカップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、シランカップリング処理が特に有効である。
カップリング剤は、低屈折率層の無機微粒子の表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
無機微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
Inorganic fine particles are treated with physical surface treatment such as plasma discharge treatment or corona discharge treatment in order to stabilize dispersion in the dispersion or coating solution, or to improve the affinity and binding properties with the binder component. Chemical surface treatment with a surfactant, a coupling agent, or the like may be performed. Of these, the use of a coupling agent is particularly preferred. As the coupling agent, an alkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Of these, silane coupling treatment is particularly effective.
The coupling agent is used as a surface treatment agent for the inorganic fine particles of the low refractive index layer in advance for surface treatment prior to the preparation of the layer coating solution. It is preferable to make it contain.
The inorganic fine particles are preferably dispersed in the medium in advance before the surface treatment in order to reduce the load of the surface treatment.

[含フッ素ポリマーを主成分とする低屈折率層]
低屈折率層は、例えば含フッ素ポリマーを主成分とする硬化性組成物を塗布、乾燥、硬化して形成される硬化膜である。ここで、「含フッ素ポリマーを主成分とする硬化性組成物」とは、低屈折率層を形成したときに含フッ素ポリマーがバインダーポリマーとして機能しうる程度の量で含まれていることを意味し、含フッ素ポリマーの含有量の好ましい範囲は後述の通りである。
また、低屈折率層には、含フッ素ポリマーのほかに、無機微粒子及びオルガノシラン化合物の少なくともいずれかを含有するのが好ましい。低屈折率層を形成する素材について以下に説明する。
[Low refractive index layer mainly composed of fluoropolymer]
The low refractive index layer is a cured film formed, for example, by applying, drying and curing a curable composition containing a fluorine-containing polymer as a main component. Here, “a curable composition containing a fluorine-containing polymer as a main component” means that the fluorine-containing polymer is contained in an amount capable of functioning as a binder polymer when a low refractive index layer is formed. And the preferable range of content of a fluoropolymer is as below-mentioned.
In addition to the fluorine-containing polymer, the low refractive index layer preferably contains at least one of inorganic fine particles and an organosilane compound. The material for forming the low refractive index layer is described below.

(低屈折率層用含フッ素ポリマー)
含フッ素ポリマーは、硬化被膜にした場合の被膜の動摩擦係数が0.03〜0.20、水に対する接触角が90〜120°、純水の滑落角が70°以下であり、熱または電離放射線により架橋するポリマーであるのが、ロールフィルムをウェブ搬送しながら塗布、硬化する場合などにおいて生産性向上の点で好ましい。
また、反射防止フィルムを画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなるので、剥離力は、500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微小硬度計で測定した表面硬度が高いほど、傷がつき難いので、該表面硬度が、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
(Fluoropolymer for low refractive index layer)
The fluorine-containing polymer has a coefficient of dynamic friction of 0.03 to 0.20, a contact angle with water of 90 to 120 °, and a sliding angle of pure water of 70 ° or less when formed into a cured coating, and heat or ionizing radiation. The polymer that is crosslinked by the above is preferable in terms of productivity improvement in the case of coating and curing the roll film while transporting the web.
Further, when the antireflection film is mounted on the image display device, the lower the peel strength from the commercially available adhesive tape, the easier it is to peel off after sticking a sticker or memo. More preferred is 100 gf or less. Further, the higher the surface hardness measured with a microhardness meter, the harder it is to scratch. Therefore, the surface hardness is preferably 0.3 GPa or more, and more preferably 0.5 GPa or more.

低屈折率層に用いられる含フッ素ポリマーは、フッ素原子を35〜80質量%の範囲で含有し、且つ架橋性もしくは重合性の官能基を含む含フッ素ポリマーであることが好ましい。このような含フッ素ポリマーとしては、例えば、パーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。含フッ素共重合体の場合、主鎖は、炭素原子のみからなるのが好ましい。すなわち、主鎖骨格に酸素原子や窒素原子などを有しないのが好ましい。   The fluorine-containing polymer used for the low refractive index layer is preferably a fluorine-containing polymer containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Examples of such a fluorine-containing polymer include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane]. And a fluorine-containing copolymer having a fluorine-containing monomer unit and a cross-linking reactive unit as constituent units. In the case of a fluorinated copolymer, the main chain preferably consists of only carbon atoms. That is, it is preferable that the main chain skeleton does not have an oxygen atom or a nitrogen atom.

前記含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。   Specific examples of the fluorine-containing monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, perfluorooctylethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3- Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (manufactured by Osaka Organic Chemicals) and M-2020 (manufactured by Daikin)), fully or partially fluorinated vinyl ethers, etc. However, perfluoroolefins are preferable, and hexafluoropropylene is particularly preferable from the viewpoint of refractive index, solubility, transparency, availability, and the like.

前記架橋反応性単位としては、グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位;カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー〔例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等〕の重合によって得られる構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。   Examples of the crosslinking reactive unit include a structural unit obtained by polymerization of a monomer having a self-crosslinking functional group in the molecule such as glycidyl (meth) acrylate and glycidyl vinyl ether; carboxyl group, hydroxy group, amino group, sulfo group A structural unit obtained by polymerization of a monomer having, for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, maleic acid, crotonic acid, etc. And a structural unit in which a crosslinkable reactive group such as a (meth) acryloyl group is introduced by a polymer reaction (for example, it can be introduced by a technique such as allowing acrylic acid chloride to act on a hydroxy group).

また、前記含フッ素モノマー単位及び前記架橋反応性単位以外に溶剤への溶解性、皮膜の透明性等の観点から、適宜フッ素原子を含有しないモノマーを共重合させて、他の重合単位を導入することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類〔エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等〕、アクリル酸エステル類〔アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル〕、メタクリル酸エステル類〔メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等〕、スチレン誘導体〔スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等〕、ビニルエーテル類〔メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等〕、ビニルエステル類〔酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等〕、アクリルアミド類〔N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等〕、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。   In addition to the fluorine-containing monomer unit and the cross-linking reactive unit, from the viewpoint of solubility in a solvent, film transparency, and the like, a monomer not containing a fluorine atom is appropriately copolymerized to introduce another polymerization unit. You can also There are no particular limitations on the monomer units that can be used in combination, such as olefins [ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.], acrylic esters [methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid 2 -Ethylhexyl], methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers (methyl) Vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, etc.], vinyl esters [vinyl acetate, vinyl propionate, vinyl cinnamate, etc.], acrylamides [N-tertbutylacrylamide, N-silane] B hexyl acrylamide], methacrylamides, and acrylonitrile derivatives.

前記含フッ素ポリマーに対しては特開平10−25388号公報および特開平10−147739号公報に記載のごとく適宜硬化剤を併用しても良い。   As described in JP-A-10-25388 and JP-A-10-147739, a curing agent may be appropriately used in combination with the fluoropolymer.

特に有用な含フッ素ポリマーは、パーフルオロオレフィンとビニルエーテル類またはビニルエステル類とのランダム共重合体である。特に単独で架橋反応可能な基〔(メタ)アクリロイル基等のラジカル反応性基、エポキシ基、オキセタニル基等の開環重合性基等〕を有していることが好ましい。
これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%を占めていることである。
Particularly useful fluorine-containing polymers are random copolymers of perfluoroolefin and vinyl ethers or vinyl esters. In particular, it preferably has a group capable of undergoing crosslinking reaction alone (radical reactive group such as (meth) acryloyl group, ring-opening polymerizable group such as epoxy group and oxetanyl group).
These cross-linking reactive group-containing polymer units preferably occupy 5 to 70 mol%, particularly preferably 30 to 60 mol% of the total polymer units of the polymer.

低屈折率層用含フッ素ポリマーの好ましい形態として一般式1で表される共重合体が挙げられる。   A preferred form of the fluorine-containing polymer for the low refractive index layer is a copolymer represented by the general formula 1.

Figure 0004905787
Figure 0004905787

一般式1中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N及びSから選ばれるヘテロ原子を有していても良い。
好ましい例としては、 *−(CH2)2−O−**, *−(CH2)2−NH−**, *−(CH2)4−O−**, *−(CH2)6−O−**, *−(CH2)2−O−(CH2)2−O−**, *−CONH−(CH2)3−O−**, *−CH2CH(OH)CH2−O−**, *−CH2CH2OCONH(CH2)3−O−**(* はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表わす。
In General Formula 1, L represents a linking group having 1 to 10 carbon atoms, more preferably a linking group having 1 to 6 carbon atoms, particularly preferably a linking group having 2 to 4 carbon atoms, It may have a branched structure, may have a ring structure, or may have a heteroatom selected from O, N and S.
Preferred examples include * — (CH 2 ) 2 —O — **, * — (CH 2 ) 2 —NH — **, * — (CH 2 ) 4 —O — **, * — (CH 2 ). 6 -O - **, * - ( CH 2) 2 -O- (CH 2) 2 -O - **, * -CONH- (CH 2) 3 -O - **, * -CH 2 CH (OH ) CH 2 —O — **, * —CH 2 CH 2 OCONH (CH 2 ) 3 —O — ** (* represents a linking site on the polymer main chain side, and ** represents a linking on the (meth) acryloyl group side) Represents a part). m represents 0 or 1;

一般式1中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。   In general formula 1, X represents a hydrogen atom or a methyl group. From the viewpoint of curing reactivity, a hydrogen atom is more preferable.

一般式1中、Aは任意のビニルモノマーから導かれる繰返し単位を表わし、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていても良い。   In the general formula 1, A represents a repeating unit derived from an arbitrary vinyl monomer, and is not particularly limited as long as it is a constituent component of a monomer copolymerizable with hexafluoropropylene. Tg (contributes to film hardness), solubility in solvents, transparency, slipperiness, dust / antifouling properties, etc., can be selected as appropriate, depending on the purpose, depending on the single or multiple vinyl monomers It may be configured.

好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。   Preferred examples include methyl vinyl ether, ethyl vinyl ether, t-butyl vinyl ether, cyclohexyl vinyl ether, isopropyl vinyl ether, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, glycidyl vinyl ether, vinyl ethers such as allyl vinyl ether, vinyl acetate, vinyl propionate, butyric acid. (Meth) such as vinyl esters such as vinyl, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, glycidyl methacrylate, allyl (meth) acrylate, (meth) acryloyloxypropyltrimethoxysilane Acrylates, styrene, styrene derivatives such as p-hydroxymethylstyrene, crotonic acid, maleic acid, itaconic acid Can be mentioned unsaturated carboxylic acids and derivatives thereof, more preferably ether derivatives, vinyl ester derivatives, particularly preferably a vinyl ether derivative.

x、y、zはそれぞれの構成成分のモル%を表わし、30≦x≦60、5≦y≦70、0≦z≦65が好ましく、更に好ましくは、35≦x≦55、30≦y≦60、0≦z≦20の場合であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10の場合である。ただし、x+y+z=100である。
本発明に用いられる共重合体の特に好ましい形態として一般式2が挙げられる。
x, y, and z represent mol% of each constituent component, and 30 ≦ x ≦ 60, 5 ≦ y ≦ 70, and 0 ≦ z ≦ 65 are preferable, and 35 ≦ x ≦ 55, and 30 ≦ y ≦ 65 are more preferable. 60, 0 ≦ z ≦ 20, particularly preferably 40 ≦ x ≦ 55, 40 ≦ y ≦ 55, and 0 ≦ z ≦ 10. However, x + y + z = 100.
A particularly preferred form of the copolymer used in the present invention is General Formula 2.

Figure 0004905787
Figure 0004905787

一般式2においてXは一般式1と同じ意味を表し、好ましい範囲も同じである。
nは2≦n≦10の整数を表わし、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を表し、単一組成であっても複数の組成によって構成されていても良い。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
x、y、z1およびz2はそれぞれの繰返し単位のmol%を表し、x及びyは、それぞれ30≦x≦60、5≦y≦70を満たすのが好ましく、更に好ましくは、35≦x≦55、30≦y≦60の場合であり、特に好ましくは40≦x≦55、40≦y≦55の場合である。z1及びz2については、0≦z1≦65、0≦z2≦65を満たすのが好ましく、更に好ましくは0≦z1≦30、0≦z2≦10であることが好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。ただし、x+y+z1+z2=100である。
In general formula 2, X represents the same meaning as in general formula 1, and the preferred range is also the same.
n represents an integer of 2 ≦ n ≦ 10, preferably 2 ≦ n ≦ 6, and particularly preferably 2 ≦ n ≦ 4.
B represents a repeating unit derived from an arbitrary vinyl monomer, and may be composed of a single composition or a plurality of compositions. As an example, what was demonstrated as an example of A in the said General formula 1 is applicable.
x, y, z1 and z2 each represent mol% of each repeating unit, and x and y preferably satisfy 30 ≦ x ≦ 60 and 5 ≦ y ≦ 70, respectively, more preferably 35 ≦ x ≦ 55. 30 ≦ y ≦ 60, particularly preferably 40 ≦ x ≦ 55 and 40 ≦ y ≦ 55. z1 and z2 preferably satisfy 0 ≦ z1 ≦ 65 and 0 ≦ z2 ≦ 65, more preferably 0 ≦ z1 ≦ 30 and 0 ≦ z2 ≦ 10, and 0 ≦ z1 ≦ 10, 0 It is particularly preferable that ≦ z2 ≦ 5. However, x + y + z1 + z2 = 100.

一般式1又は2で表される共重合体は、例えば、ヘキサフルオロプロピレン成分とヒドロキシアルキルビニルエーテル成分とを含んでなる共重合体に前記のいずれかの手法により(メタ)アクリロイル基を導入することにより合成できる。この際用いられる再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。
一般式1又は2で表わされる共重合体の好ましい具体例としては、特開2004−45462号公報の段落[0035]〜[0047]に記載されたものを挙げることができ、該公報に記載の方法により合成することができる。
For the copolymer represented by the general formula 1 or 2, for example, a (meth) acryloyl group is introduced into a copolymer comprising a hexafluoropropylene component and a hydroxyalkyl vinyl ether component by any one of the methods described above. Can be synthesized. As the reprecipitation solvent used at this time, isopropanol, hexane, methanol and the like are preferable.
Preferable specific examples of the copolymer represented by the general formula 1 or 2 include those described in paragraphs [0035] to [0047] of JP-A-2004-45462. It can be synthesized by the method.

(低屈折率層用無機微粒子)
「含フッ素ポリマーを主成分とする」低屈折率層用無機微粒子としては、前述の「オルガノシラン、該オルガノシランの加水分解物及び/又は縮合反応物を主成分とする」低屈折率層用無機微粒子と同じものを好適に用いることができる。
(Inorganic fine particles for low refractive index layer)
As the inorganic fine particles for the low refractive index layer “mainly containing a fluorine-containing polymer”, the above-mentioned “organosilane, a hydrolyzate of the organosilane and / or a condensation reaction product” are used for the low refractive index layer. The same inorganic fine particles can be preferably used.

(低屈折率層用オルガノシラン化合物及びその誘導体)
前記硬化性組成物には、オルガノシラン化合物、該オルガノシランの加水分解物、及び該オルガノシランの加水分解物の部分縮合物の中から選ばれる少なくとも一種を含有させることが、耐擦傷性の点で、特に反射防止能と耐擦傷性とを両立させる点で、好ましい。
以下では、オルガノシランの加水分解物、またはその部分縮合物を含有する反応溶液を「ゾル成分」とも称する。
このオルガノシラン化合物、またはそのゾル成分は、前記硬化性組成物を塗布後、乾燥、加熱工程で縮合して硬化物を形成することにより低屈折率層のバインダーとして機能する。また、前記含フッ素ポリマーを有する場合は、活性光線の照射により3次元構造を有するバインダーが形成される。
(Organosilane compound for low refractive index layer and its derivatives)
The curable composition contains at least one selected from the group consisting of an organosilane compound, a hydrolyzate of the organosilane, and a partial condensate of the hydrolyzate of the organosilane. In particular, it is preferable in terms of achieving both the antireflection ability and the scratch resistance.
Hereinafter, a reaction solution containing a hydrolyzate of organosilane or a partial condensate thereof is also referred to as a “sol component”.
This organosilane compound, or its sol component, functions as a binder for the low refractive index layer by applying the curable composition and then condensing in a drying and heating step to form a cured product. Moreover, when it has the said fluoropolymer, the binder which has a three-dimensional structure is formed by irradiation of actinic light.

オルガノシラン化合物は、下記一般式[A]で表されるものが好ましい。
一般式[A]
(R10)m−Si(X)4-m
前記一般式[A]において、R10は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としてはメチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アルキル基として好ましくは炭素数1〜30、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜6のものである。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。
Xは、水酸基または加水分解可能な基を表し、例えばアルコキシ基(炭素数1〜5のアルコキシ基が好ましい。例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原子(例えばCl、Br、I等)、及びR2COO(R2は水素原子または炭素数1〜5のアルキル基が好ましい。例えばCH3COO、C25COO等が挙げられる)で表される基が挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基またはエトキシ基である。
mは1〜3の整数を表し、好ましくは1または2であり、特に好ましくは1である。
The organosilane compound is preferably represented by the following general formula [A].
Formula [A]
(R 10 ) m -Si (X) 4-m
In the general formula [A], R 10 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, hexyl, decyl, hexadecyl and the like. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 6 carbon atoms. Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable.
X represents a hydroxyl group or a hydrolyzable group, for example, an alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms, such as a methoxy group or an ethoxy group), a halogen atom (for example, Cl, Br, I or the like). ), And R 2 COO (R 2 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, such as CH 3 COO, C 2 H 5 COO, etc.), preferably An alkoxy group, particularly preferably a methoxy group or an ethoxy group.
m represents an integer of 1 to 3, preferably 1 or 2, and particularly preferably 1.

10あるいはXが複数存在するとき、複数のR10あるいはXはそれぞれ同じであっても異なっていても良い。
10に含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。
When R 10 or X there are a plurality, a plurality of R 10 or X groups may be different, even the same, respectively.
The substituent contained in R 10 is not particularly limited, but a halogen atom (fluorine, chlorine, bromine, etc.), hydroxyl group, mercapto group, carboxyl group, epoxy group, alkyl group (methyl, ethyl, i-propyl, propyl, t-butyl etc.), aryl groups (phenyl, naphthyl etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy etc.), aryloxy (phenoxy etc.) ), Alkylthio groups (methylthio, ethylthio, etc.), arylthio groups (phenylthio, etc.), alkenyl groups (vinyl, 1-propenyl, etc.), acyloxy groups (acetoxy, acryloyloxy, methacryloyloxy, etc.), alkoxycarbonyl groups (methoxycarbonyl, ethoxy) Carbonyl, etc.), aryloxy Carbonyl groups (such as phenoxycarbonyl), carbamoyl groups (such as carbamoyl, N-methylcarbamoyl, N, N-dimethylcarbamoyl, N-methyl-N-octylcarbamoyl), acylamino groups (acetylamino, benzoylamino, acrylicamino, methacrylamino) Etc.), and these substituents may be further substituted.

10が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換アリール基であることが好ましい。
前記一般式[A]で表されるオルガノシラン化合物の中でも、下記一般式[B]で表されるビニル重合性の置換基を有するオルガノシラン化合物が好ましい。
When there are a plurality of R 10 s , at least one is preferably a substituted alkyl group or a substituted aryl group.
Among the organosilane compounds represented by the general formula [A], an organosilane compound having a vinyl polymerizable substituent represented by the following general formula [B] is preferable.

Figure 0004905787
Figure 0004905787

前記一般式[B]において、R1は水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
Yは単結合もしくは *−COO−**, *−CONH−**又は *−O−**を表し、単結合、 *−COO−**および *−CONH−**が好ましく、単結合および *−COO−**が更に好ましく、 *−COO−**が特に好ましい。* は=C(R1)−に結合する位置を、**はLに結合する位置を表す。
In the general formula [B], R 1 represents a hydrogen atom, a methyl group, a methoxy group, an alkoxycarbonyl group, a cyano group, a fluorine atom, or a chlorine atom. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group. A hydrogen atom, a methyl group, a methoxy group, a methoxycarbonyl group, a cyano group, a fluorine atom and a chlorine atom are preferred, a hydrogen atom, a methyl group, a methoxycarbonyl group, a fluorine atom and a chlorine atom are more preferred, and a hydrogen atom and a methyl group Is particularly preferred.
Y represents a single bond or * -COO-**, * -CONH-** or * -O-**, preferably a single bond, * -COO-** or * -CONH-**, * -COO-** is more preferable, and * -COO-** is particularly preferable. * Represents a position bonded to ═C (R 1 ) —, and ** represents a position bonded to L.

Lは2価の連結鎖を表す。具体的には、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。   L represents a divalent linking chain. Specifically, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group having a linking group (for example, ether, ester, amide, etc.) inside, and a linking group inside. A substituted or unsubstituted arylene group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, an alkylene group having a linking group therein is preferred, an unsubstituted alkylene group, an unsubstituted arylene group Further, an alkylene group having an ether or ester linking group inside is more preferable, an unsubstituted alkylene group, and an alkylene group having an ether or ester linking group inside is particularly preferable. Examples of the substituent include a halogen, a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, and an aryl group, and these substituents may be further substituted.

nは0または1を表す。nとして好ましくは0である。Xが複数存在するとき、複数のXはそれぞれ同じであっても異なっていても良い。
10は一般式[A]と同義であり、置換もしくは無置換のアルキル基、無置換のアリール基が好ましく、無置換のアルキル基、無置換のアリール基が更に好ましい。
Xは一般式[A]と同義であり、ハロゲン原子、水酸基、無置換のアルコキシ基が好ましく、塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基が更に好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、メトキシ基が特に好ましい。
n represents 0 or 1. n is preferably 0. When there are a plurality of Xs, the plurality of Xs may be the same or different.
R 10 has the same meaning as in formula [A], preferably a substituted or unsubstituted alkyl group or an unsubstituted aryl group, and more preferably an unsubstituted alkyl group or an unsubstituted aryl group.
X has the same meaning as in the general formula [A], preferably a halogen atom, a hydroxyl group or an unsubstituted alkoxy group, more preferably a chlorine atom, a hydroxyl group or an unsubstituted alkoxy group having 1 to 6 carbon atoms, a hydroxyl group or a carbon number of 1 -3 alkoxy groups are more preferred, and methoxy groups are particularly preferred.

一般式[A]、一般式[B]の化合物は2種類以上を併用しても良い。一般式[A]、一般式[B]で表される化合物の具体例を示すが、以下に限定されるものではない。   Two or more compounds of the general formula [A] and general formula [B] may be used in combination. Although the specific example of a compound represented by general formula [A] and general formula [B] is shown, it is not limited to the following.

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

これらのうち、(M−1)、(M−2)、および(M−5)が特に好ましい。   Of these, (M-1), (M-2), and (M-5) are particularly preferable.

そして、ゾル成分として使用する場合には、前記オルガノシラン化合物の加水分解物またはその加水分解物の部分縮合物は、一般に前記オルガノシラン化合物を触媒の存在下で処理して製造されるものである。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム等の金属アルコキシド類;Zr、Ti又はAlなどの金属を中心金属とする金属キレート化合物等が挙げられる。本発明においては、金属キレート化合物、無機酸類及び有機酸類の酸触媒を用いるのが好ましい。無機酸では塩酸、硫酸が好ましく、有機酸では、水中での酸解離定数(pKa値(25℃))が4.5以下のものが好ましく、更には、塩酸、硫酸、水中での酸解離定数が3.0以下の有機酸が好ましく、特に、塩酸、硫酸、水中での酸解離定数が2.5以下の有機酸が好ましく、水中での酸解離定数が2.5以下の有機酸が更に好ましく、具体的には、メタンスルホン酸、シュウ酸、フタル酸、マロン酸が更に好ましく、シュウ酸が特に好ましい。   When used as a sol component, the hydrolyzate of the organosilane compound or the partial condensate of the hydrolyzate is generally produced by treating the organosilane compound in the presence of a catalyst. . Catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as oxalic acid, acetic acid, formic acid, methanesulfonic acid and toluenesulfonic acid; inorganic bases such as sodium hydroxide, potassium hydroxide and ammonia; triethylamine, Examples thereof include organic bases such as pyridine; metal alkoxides such as triisopropoxyaluminum and tetrabutoxyzirconium; metal chelate compounds having a metal such as Zr, Ti or Al as a central metal. In the present invention, it is preferable to use a metal chelate compound, an acid catalyst of inorganic acids and organic acids. Inorganic acids are preferably hydrochloric acid and sulfuric acid, and organic acids are preferably those having an acid dissociation constant (pKa value (25 ° C.)) of 4.5 or less in water, and further, acid dissociation constants in hydrochloric acid, sulfuric acid and water. Is preferably an organic acid having an acid dissociation constant of 2.5 or less in hydrochloric acid, sulfuric acid or water, more preferably an organic acid having an acid dissociation constant of 2.5 or less in water. Specifically, methanesulfonic acid, oxalic acid, phthalic acid, and malonic acid are more preferable, and oxalic acid is particularly preferable.

金属キレート化合物としては、一般式R3OH(式中、R3は炭素数1〜10のアルキル基を示す)で表されるアルコールとR4COCH2COR5(式中、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。本発明に用いられる金属キレート化合物は、一般式Zr(OR3)p1(R4COCHCOR5)p2、Ti(OR3)q1(R4COCHCOR5)q2、およびAl(OR3)r1(R4COCHCOR5)r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物および/または部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR3およびR4は、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、R5は、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1、およびr2は、それぞれp1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
As the metal chelate compound, (wherein, R 3 represents an alkyl group having 1 to 10 carbon atoms) Formula R 3 OH alcohol and R 4 COCH 2 COR 5 (formula represented by, R 4 is the number of carbon atoms 1 to 10 alkyl groups, R 5 represents an alkyl group having 1 to 10 carbon atoms or a compound represented by an alkoxy group having 1 to 10 carbon atoms), and is selected from Zr, Ti, and Al. Any metal having a central metal as the metal can be used without any particular limitation. Within this category, two or more metal chelate compounds may be used in combination. The metal chelate compound used in the present invention has the general formula Zr (OR 3 ) p1 (R 4 COCHCOR 5 ) p2 , Ti (OR 3 ) q1 (R 4 COCHCOR 5 ) q2 , and Al (OR 3 ) r1 (R 4 Those selected from the group of compounds represented by COCHCOR 5 ) r2 are preferred, and serve to promote the condensation reaction of the hydrolyzate and / or partial condensate of the organosilane compound.
R 3 and R 4 in the metal chelate compound may be the same or different and each is an alkyl group having 1 to 10 carbon atoms, specifically, an ethyl group, n-propyl group, i-propyl group, n-butyl group, sec -Butyl group, t-butyl group, n-pentyl group, phenyl group and the like. R 5 represents an alkyl group having 1 to 10 carbon atoms as described above, or an alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, and n-butoxy. Group, sec-butoxy group, t-butoxy group and the like. Moreover, p1, p2, q1, q2, r1, and r2 in the metal chelate compound represent integers determined so as to be p1 + p2 = 4, q1 + q2 = 4, and r1 + r2 = 3, respectively.

これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
Specific examples of these metal chelate compounds include tri-n-butoxyethyl acetoacetate zirconium, di-n-butoxybis (ethylacetoacetate) zirconium, n-butoxytris (ethylacetoacetate) zirconium, tetrakis (n-propylacetate). Zirconium chelate compounds such as acetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium; diisopropoxy bis (ethylacetoacetate) titanium, diisopropoxy bis (acetylacetate) titanium, diiso Titanium chelate compounds such as propoxy bis (acetylacetone) titanium; diisopropoxyethyl acetoacetate aluminum, diisopropyl Poxyacetylacetonate aluminum, isopropoxybis (ethylacetoacetate) aluminum, isopropoxybis (acetylacetonate) aluminum, tris (ethylacetoacetate) aluminum, tris (acetylacetonato) aluminum, monoacetylacetonate bis (ethyl) An aluminum chelate compound such as acetoacetate) aluminum.
Among these metal chelate compounds, tri-n-butoxyethyl acetoacetate zirconium, diisopropoxybis (acetylacetonato) titanium, diisopropoxyethyl acetoacetate aluminum, and tris (ethyl acetoacetate) aluminum are preferable. These metal chelate compounds can be used individually by 1 type or in mixture of 2 or more types. Moreover, the partial hydrolyzate of these metal chelate compounds can also be used.

また、低屈折率層用組成物には、更にβ−ジケトン化合物および/またはβ−ケトエステル化合物が添加されることが好ましい。以下にさらに説明する。   Moreover, it is preferable that a β-diketone compound and / or a β-ketoester compound is further added to the composition for a low refractive index layer. This will be further described below.

β−ジケトン化合物および/またはβ−ケトエステル化合物としては、一般式R4COCH2COR5で表されるβ−ジケトン化合物および/またはβ−ケトエステル化合物が好ましく、これらは低屈折率層用組成物の安定性向上剤として作用するものである。ここで、R4は炭素数1〜10のアルキル基、R5は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を表す。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよび/またはアルミニウム化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物またはその部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。β−ジケトン化合物および/またはβ−ケトエステル化合物を構成するR4およびR5は、前記金属キレート化合物を構成するR4およびR5と同様である。 The β-diketone compound and / or β-ketoester compound is preferably a β-diketone compound and / or β-ketoester compound represented by the general formula R 4 COCH 2 COR 5, which is a composition for a low refractive index layer. It acts as a stability improver. Here, R 4 represents an alkyl group having 1 to 10 carbon atoms, and R 5 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. That is, by coordinating to the metal atom in the metal chelate compound (zirconium, titanium and / or aluminum compound), the condensation reaction of the hydrolyzate of organosilane compound or its partial condensate by these metal chelate compounds is promoted. It is thought that the action which suppresses the effect | action to make and the effect | action which improves the storage stability of the obtained composition is made | formed. R 4 and R 5 constituting the β- diketone compound and / or β- ketoester compound are the same as R 4 and R 5 constituting the metal chelate compound.

このβ−ジケトン化合物および/またはβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec−ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物および/またはβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明においてβ−ジケトン化合物および/またはβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。2モル未満では得られる組成物の保存安定性に劣るおそれがあり好ましいものではない。   Specific examples of the β-diketone compound and / or β-ketoester compound include acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetoacetate-n-propyl, acetoacetate-i-propyl, acetoacetate-n-butyl, acetoacetate. Acetic acid-sec-butyl, acetoacetic acid-t-butyl, 2,4-hexane-dione, 2,4-heptane-dione, 3,5-heptane-dione, 2,4-octane-dione, 2,4-nonane -Dione, 5-methyl-hexane-dione and the like can be mentioned. Of these, ethyl acetoacetate and acetylacetone are preferred, and acetylacetone is particularly preferred. These β-diketone compounds and / or β-ketoester compounds may be used alone or in combination of two or more. In the present invention, the β-diketone compound and / or β-ketoester compound is preferably used in an amount of 2 mol or more, more preferably 3 to 20 mol, per 1 mol of the metal chelate compound. If it is less than 2 mol, the storage stability of the resulting composition may be inferior, which is not preferable.

前記オルガノシラン化合物の配合量は、低屈折率層の全固形分の0.1〜50質量%が好ましく、0.5〜20質量%がより好ましく、1〜10質量%が最も好ましい。
前記オルガノシラン化合物は硬化性組成物(内部散乱層用、低屈折率層用等の塗布液)に直接添加してもよいが、オルガノシラン化合物をあらかじめ触媒の存在下に処理して前記オルガノシラン化合物の加水分解物またはその部分縮合物を調製し、得られた反応溶液(ゾル液)を用いて前記硬化性組成物を調整するのが好ましく、本発明においてはまず前記オルガノシラン化合物の加水分解物またはその部分縮合物および金属キレート化合物を含有する組成物を調製し、これにβ−ジケトン化合物および/またはβ−ケトエステル化合物を添加した液を内部散乱層もしくは低屈折率層の少なくとも1層の塗布液に含有せしめて塗設することが好ましい。
The compounding amount of the organosilane compound is preferably 0.1 to 50% by mass, more preferably 0.5 to 20% by mass, and most preferably 1 to 10% by mass based on the total solid content of the low refractive index layer.
The organosilane compound may be added directly to the curable composition (coating liquid for internal scattering layer, low refractive index layer, etc.), but the organosilane compound is treated in the presence of a catalyst in advance. It is preferable to prepare a hydrolyzate of the compound or a partial condensate thereof, and adjust the curable composition using the obtained reaction solution (sol solution). In the present invention, first, the hydrolysis of the organosilane compound is performed. Or a composition containing a partial condensate thereof and a metal chelate compound, and a liquid obtained by adding a β-diketone compound and / or a β-ketoester compound to at least one layer of an internal scattering layer or a low refractive index layer It is preferable to coat the coating liquid so that it is contained.

低屈折率層における、含フッ素ポリマーに対するオルガノシランのゾル成分の使用量は、5〜100質量%が好ましく、5〜40質量%がより好ましく、8〜35質量%が更に好ましく、10〜30質量%が特に好ましい。使用量が少ないと本発明の効果が得にくく、使用量が多すぎると屈折率が増加したり、膜の形状・面状が悪化したりするので好ましくない。   5-100 mass% is preferable, the usage-amount of the sol component of the organosilane with respect to a fluorine-containing polymer in a low refractive index layer has more preferable 5-40 mass%, 8-35 mass% is still more preferable, 10-30 mass % Is particularly preferred. If the amount used is small, it is difficult to obtain the effect of the present invention, and if the amount used is too large, the refractive index increases or the shape / surface shape of the film deteriorates.

(ゾルゲル素材)
低屈折率層用の素材として、各種ゾルゲル素材を用いることもできる。このようなゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物、およびその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシランおよびその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化および撥水・撥油性付与の点で好ましい。
(Sol-gel material)
Various sol-gel materials can also be used as the material for the low refractive index layer. As such a sol-gel material, metal alcoholates (alcohols such as silane, titanium, aluminum, and zirconium), organoalkoxy metal compounds, and hydrolysates thereof can be used. In particular, alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. In addition, organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, γ-glycidyloxypropyltrialkoxysilane, γ-glycidyloxypropylmethyl dialkoxysilane, β- (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, γ-methacryloyloxypropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, γ-chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds ( For example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, etc.). In particular, the use of a fluorine-containing silane compound is preferable in terms of lowering the refractive index of the layer and imparting water and oil repellency.

(低屈折率層用組成物に含まれるその他の物質)
低屈折率層用組成物には、前述の含フッ素ポリマー、無機微粒子、及びオルガノシラン化合物の他に、必要に応じて各種添加剤およびラジカル重合開始剤、カチオン重合開始剤を添加することができる。この際、添加剤等の固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。
(Other substances contained in the composition for the low refractive index layer)
In addition to the aforementioned fluorine-containing polymer, inorganic fine particles, and organosilane compound, various additives, radical polymerization initiators, and cationic polymerization initiators can be added to the low refractive index layer composition as necessary. . At this time, the concentration of solids such as additives is appropriately selected according to the use, but is generally about 0.01 to 60% by mass, preferably 0.5 to 50% by mass, particularly preferably. It is about 1% to 20% by mass.

低屈折率層と直接接する下層との界面密着性等の観点からは、多官能(メタ)アクリレート化合物、多官能エポキシ化合物、ポリイソシアネート化合物、アミノプラスト、多塩基酸またはその無水物等の硬化剤を少量添加することもできる。これらを添加する場合には低屈折率層皮膜の全固形分に対して30質量%以下の範囲とすることが好ましく、20質量%以下の範囲とすることがより好ましく、10質量%以下の範囲とすることが特に好ましい。   Curing agents such as polyfunctional (meth) acrylate compounds, polyfunctional epoxy compounds, polyisocyanate compounds, aminoplasts, polybasic acids or anhydrides thereof from the viewpoint of interfacial adhesion with the lower layer directly in contact with the low refractive index layer Can also be added in small amounts. When adding these, it is preferable to set it as the range of 30 mass% or less with respect to the total solid of a low-refractive-index layer film, It is more preferable to set it as the range of 20 mass% or less, The range of 10 mass% or less It is particularly preferable that

また、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系化合物あるいはフッ素系化合物の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。   In addition, for the purpose of imparting properties such as antifouling properties, water resistance, chemical resistance, and slipping properties, a known silicone compound or fluorine compound antifouling agent, slipping agent, and the like may be appropriately added. When these additives are added, it is preferably added in the range of 0.01 to 20% by mass of the total solid content of the low refractive index layer, more preferably in the range of 0.05 to 10% by mass. Particularly preferred is 0.1 to 5% by mass.

シリコーン系化合物の好ましい例としては、ジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端および/または側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることが特に好ましく、3000〜30000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、FM−4421、FM−5521、FM6621、FM−1121やGelest製DMS−U22、RMS−033、RMS−083、UMS−182、DMS−H21、DMS−H31、HMS−301、FMS121、FMS123、FMS131、FMS141、FMS221(以上商品名)などが挙げられるがこれらに限定されるものではない。   Preferable examples of the silicone compound include those having a substituent at the terminal and / or side chain of a compound chain containing a plurality of dimethylsilyloxy units as repeating units. The compound chain containing dimethylsilyloxy as a repeating unit may contain a structural unit other than dimethylsilyloxy. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, fluoroalkyl group, polyoxyalkylene group, carboxyl group, amino group and the like. It is done. Although there is no restriction | limiting in particular in molecular weight, It is preferable that it is 100,000 or less, It is especially preferable that it is 50,000 or less, It is most preferable that it is 3000-30000. Although there is no restriction | limiting in particular in silicone atom content of a silicone type compound, it is preferable that it is 18.0 mass% or more, it is especially preferable that it is 25.0-37.8 mass%, and 30.0-37.0. Most preferably, it is mass%. Examples of preferred silicone compounds are X-22-174DX, X-22-2426, X-22-164B, X22-164C, X-22-170DX, X-22-176D, X, manufactured by Shin-Etsu Chemical Co., Ltd. -22-1821 (named above), manufactured by Chisso Corporation, FM-0725, FM-7725, FM-4421, FM-5521, FM6621, FM-1121, Gelest DMS-U22, RMS-033, RMS- 083, UMS-182, DMS-H21, DMS-H31, HMS-301, FMS121, FMS123, FMS131, FMS141, FMS221 (named above) but not limited thereto.

フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば−CF2CF3,−CH2(CF2)4H,−CH2(CF2)8CF3,−CH2CH2(CF2)4H等)であっても、分岐構造(例えば−CH(CF3)2,−CH2CF(CF3)2,−CH(CH3)CF2CF3,−CH(CH3)(CF2)5CF2H等)であっても、脂環式構造(好ましくは5員環または6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基またはこれらで置換されたアルキル基等)であっても良く、エーテル結合を有していても良い(例えば−CH2OCH2CF2CF3,−CH2CH2OCH248H,−CH2CH2OCH2CH2817,−CH2CH2OCF2CF2OCF2CF2H等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。 As the fluorine compound, a compound having a fluoroalkyl group is preferable. The fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and a straight chain (for example, —CF 2 CF 3 , —CH 2 (CF 2 ) 4 H, —CH 2 (CF 2) 8 CF 3, even -CH 2 CH 2 (CF 2) 4 H , etc.), a branched structure (e.g. -CH (CF 3) 2, -CH 2 CF (CF 3) 2, -CH (CH 3 ) CF 2 CF 3 , —CH (CH 3 ) (CF 2 ) 5 CF 2 H, etc.), and alicyclic structures (preferably 5-membered or 6-membered rings such as perfluorocyclohexyl groups) , A perfluorocyclopentyl group or an alkyl group substituted with these, and may have an ether bond (for example, —CH 2 OCH 2 CF 2 CF 3 , —CH 2 CH 2 OCH 2 C). 4 F 8 H, -CH 2 CH 2 OCH 2 CH 2 C 8 F 17, -CH 2 CH 2 OCF 2 CF 2 O F 2 CF 2 H, etc.). A plurality of the fluoroalkyl groups may be contained in the same molecule.

フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R−2020、M−2020、R−3833、M−3833(以上商品名)、大日本インキ(株)製、メガファックF−171、F−172、F−179A、ディフェンサMCF−300(以上商品名)などが挙げられるがこれらに限定されるものではない。   It is preferable that the fluorine-based compound further has a substituent that contributes to bond formation or compatibility with the low refractive index layer film. The substituents may be the same or different, and a plurality of substituents are preferable. Examples of preferred substituents include acryloyl group, methacryloyl group, vinyl group, aryl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group, amino group and the like. The fluorine-based compound may be a polymer or an oligomer with a compound not containing a fluorine atom, and the molecular weight is not particularly limited. Although there is no restriction | limiting in particular in fluorine atom content of a fluorine-type compound, It is preferable that it is 20 mass% or more, It is especially preferable that it is 30-70 mass%, It is most preferable that it is 40-70 mass%. Examples of preferred fluorine-based compounds include Daikin Chemical Industries, Ltd., R-2020, M-2020, R-3833, M-3833 (named above), Dainippon Ink Co., Ltd., Megafac F-171. , F-172, F-179A, defender MCF-300 (trade name), etc., but are not limited thereto.

防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低n層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF−150(商品名)、東レダウコーニング(株)製、SH−3748(商品名)などが挙げられるが、これらに限定されるわけではない。   For the purpose of imparting properties such as dust resistance and antistatic properties, a known cationic surfactant or a dustproof agent such as a polyoxyalkylene compound, an antistatic agent, or the like can be appropriately added. These dustproofing agent and antistatic agent may contain the structural unit as a part of the function in the above-mentioned silicone compound or fluorine compound. When these are added as additives, it is preferably added in the range of 0.01 to 20% by mass, more preferably in the range of 0.05 to 10% by mass of the total solid content of the low n layer. Particularly preferably 0.1 to 5% by mass. Examples of preferred compounds include, but are not limited to, Dainippon Ink Co., Ltd., Megafac F-150 (trade name), Toray Dow Corning Co., Ltd., SH-3748 (trade name), and the like. Do not mean.

また、低屈折率層用組成物には、上述した無機微粒子以外の無機フィラーを本発明の所望の効果を損なわない範囲の添加量で添加することもできる。無機フィラーとしては、前述のものを用いることができる。   In addition, an inorganic filler other than the above-described inorganic fine particles can be added to the composition for a low refractive index layer in an addition amount within a range that does not impair the desired effect of the present invention. As the inorganic filler, those described above can be used.

(低屈折率層用の溶剤)
低屈折率層を形成するための塗布組成物に用いられる溶剤としては、各成分を溶解または分散可能であること、塗布工程、乾燥工程において均一な面状となり易いこと、液保存性が確保できること、適度な飽和蒸気圧を有すること、等の観点で選ばれる各種の溶剤が使用できる。乾燥負荷の観点からは、常圧、室温における沸点が100℃以下の溶剤を主成分とし、乾燥速度の調整のために沸点が100℃以上の溶剤を少量含有することが好ましい。
(Solvent for low refractive index layer)
As a solvent used in the coating composition for forming the low refractive index layer, it is possible to dissolve or disperse each component, to easily form a uniform surface in the coating process and the drying process, and to ensure liquid storage stability. Various solvents selected from the viewpoint of having an appropriate saturated vapor pressure can be used. From the viewpoint of the drying load, it is preferable that a solvent having a boiling point of 100 ° C. or lower at normal pressure and room temperature as a main component and a small amount of a solvent having a boiling point of 100 ° C. or higher for adjusting the drying speed.

沸点が100℃以下の溶剤としては、例えば、ヘキサン(沸点68.7℃)、ヘプタン(98.4℃)、シクロヘキサン(80.7℃)、ベンゼン(80.1℃)などの炭化水素類、ジクロロメタン(39.8℃)、クロロホルム(61.2℃)、四塩化炭素(76.8℃)、1,2−ジクロロエタン(83.5℃)、トリクロロエチレン(87.2℃)などのハロゲン化炭化水素類、ジエチルエーテル(34.6℃)、ジイソプロピルエーテル(68.5℃)、ジプロピルエーテル(90.5℃)、テトラヒドロフラン(66℃)などのエーテル類、ギ酸エチル(54.2℃)、酢酸メチル(57.8℃)、酢酸エチル(77.1℃)、酢酸イソプロピル(89℃)などのエステル類、アセトン(56.1℃)、2−ブタノン(メチルエチルケトンと同じ、79.6℃)などのケトン類、メタノール(64.5℃)、エタノール(78.3℃)、2−プロパノール(82.4℃)、1−プロパノール(97.2℃)などのアルコール類、アセトニトリル(81.6℃)、プロピオニトリル(97.4℃)などのシアノ化合物類、二硫化炭素(46.2℃)などがある。このうちケトン類、エステル類が好ましく、特に好ましくはケトン類である。ケトン類の中では2−ブタノンが特に好ましい。   Examples of the solvent having a boiling point of 100 ° C. or lower include hydrocarbons such as hexane (boiling point 68.7 ° C.), heptane (98.4 ° C.), cyclohexane (80.7 ° C.), benzene (80.1 ° C.), Halogenated carbonization such as dichloromethane (39.8 ° C), chloroform (61.2 ° C), carbon tetrachloride (76.8 ° C), 1,2-dichloroethane (83.5 ° C), trichloroethylene (87.2 ° C) Hydrogens, diethyl ether (34.6 ° C), diisopropyl ether (68.5 ° C), dipropyl ether (90.5 ° C), tetrahydrofuran (66 ° C) and other ethers, ethyl formate (54.2 ° C), Esters such as methyl acetate (57.8 ° C.), ethyl acetate (77.1 ° C.), isopropyl acetate (89 ° C.), acetone (56.1 ° C.), 2-butanone (methyl ethyl) Ketones such as 79.6 ° C, the same as ketone, methanol (64.5 ° C), ethanol (78.3 ° C), 2-propanol (82.4 ° C), 1-propanol (97.2 ° C), etc. Alcohols, cyano compounds such as acetonitrile (81.6 ° C.), propionitrile (97.4 ° C.), carbon disulfide (46.2 ° C.), and the like. Of these, ketones and esters are preferable, and ketones are particularly preferable. Among the ketones, 2-butanone is particularly preferable.

沸点が100℃以上の溶剤としては、例えば、オクタン(125.7℃)、トルエン(110.6℃)、キシレン(138℃)、テトラクロロエチレン(121.2℃)、クロロベンゼン(131.7℃)、ジオキサン(101.3℃)、ジブチルエーテル(142.4℃)、酢酸イソブチル(118℃)、シクロヘキサノン(155.7℃)、2−メチル−4−ペンタノン(MIBKと同じ、115.9℃)、1−ブタノール(117.7℃)、N,N−ジメチルホルムアミド(153℃)、N,N−ジメチルアセトアミド(166℃)、ジメチルスルホキシド(189℃)などがある。好ましくは、シクロヘキサノン、2−メチル−4−ペンタノンである。   Examples of the solvent having a boiling point of 100 ° C or higher include, for example, octane (125.7 ° C), toluene (110.6 ° C), xylene (138 ° C), tetrachloroethylene (121.2 ° C), chlorobenzene (131.7 ° C), Dioxane (101.3 ° C.), dibutyl ether (142.4 ° C.), isobutyl acetate (118 ° C.), cyclohexanone (155.7 ° C.), 2-methyl-4-pentanone (same as MIBK, 115.9 ° C.), Examples thereof include 1-butanol (117.7 ° C.), N, N-dimethylformamide (153 ° C.), N, N-dimethylacetamide (166 ° C.), dimethyl sulfoxide (189 ° C.) and the like. Cyclohexanone and 2-methyl-4-pentanone are preferable.

[透明導電性層]
本発明の反射防止フィルムには、帯電防止の目的で透明導電性層を設けることがフィルム表面での静電気防止の点で好ましい。透明導電性層は、ディスプレイ側からの表面抵抗値を下げる等の要求がある場合、表面等へのゴミつきが問題となる場合に有効である。透明導電性層を形成する方法としては、例えば、通電性粒子と反応性硬化樹脂を含む導電性塗工液を塗工する方法、或いは透明膜を形成する金属や金属酸化物等を蒸着やスパッタリングして導電性薄膜を形成する方法等の公知の方法を挙げることができる。塗工する場合、その方法は特に限定されず、塗工液の特性や塗工量に応じて、例えば、ロールコート、グラビアコート、バーコート、押出しコート等の公知の方法より最適な方法を選択して行えばよい。
透明導電性層は、透明支持体又は内部散乱層上に直接又はこれらとの接着を強固にするプライマー層を介して形成することができる。
[Transparent conductive layer]
The antireflection film of the present invention is preferably provided with a transparent conductive layer for the purpose of antistatic from the viewpoint of preventing static electricity on the film surface. The transparent conductive layer is effective when there is a demand for lowering the surface resistance value from the display side or when dust on the surface or the like becomes a problem. As a method of forming the transparent conductive layer, for example, a method of applying a conductive coating liquid containing conductive particles and a reactive curable resin, or a metal or metal oxide that forms a transparent film is deposited or sputtered. And a known method such as a method of forming a conductive thin film. In the case of coating, the method is not particularly limited, and an optimum method is selected from known methods such as roll coating, gravure coating, bar coating, extrusion coating, etc., depending on the characteristics of the coating liquid and the coating amount. You can do it.
The transparent conductive layer can be formed on the transparent support or the internal scattering layer directly or via a primer layer that strengthens adhesion with them.

透明導電性層の厚さは、0.01〜10μmが好ましく、0.03〜7μmであることがより好ましく、0.05〜5μmであることがさらに好ましい。最表層から近い層で使用する場合には、膜の厚さが薄くても十分に帯電防止性を得ることができる。透明導電性層の表面抵抗は、105〜1012Ω/sqであることが好ましく、105〜109Ω/sqであることがさらに好ましく、105〜108Ω/sqであることが最も好ましい。帯透明導電性層の表面抵抗は、四探針法により測定することができる。   The thickness of the transparent conductive layer is preferably from 0.01 to 10 μm, more preferably from 0.03 to 7 μm, and further preferably from 0.05 to 5 μm. When used in a layer close to the outermost layer, sufficient antistatic properties can be obtained even if the film is thin. The surface resistance of the transparent conductive layer is preferably 105 to 1012 Ω / sq, more preferably 105 to 109 Ω / sq, and most preferably 105 to 108 Ω / sq. The surface resistance of the transparent conductive layer can be measured by a four probe method.

透明導電性層は、実質的に透明であることが好ましい。具体的には、透明導電性層のヘイズが、10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましく、1%以下であることが最も好ましい。波長550nmの光の透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましく、70%以上であることが最も好ましい。
透明導電性層は、強度が優れていることが好ましく、具体的な帯電防止層の強度は、1kg荷重の鉛筆硬度(JIS−K−5400の規定)で、H以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがさらに好ましく、4H以上であることが最も好ましい。
It is preferable that the transparent conductive layer is substantially transparent. Specifically, the haze of the transparent conductive layer is preferably 10% or less, more preferably 5% or less, further preferably 3% or less, and most preferably 1% or less. preferable. The transmittance of light having a wavelength of 550 nm is preferably 50% or more, more preferably 60% or more, further preferably 65% or more, and most preferably 70% or more.
The transparent conductive layer preferably has excellent strength, and the specific antistatic layer has a pencil hardness of 1 kg (as defined in JIS-K-5400), preferably H or higher. More preferably, it is more preferably 3H or more, and most preferably 4H or more.

(通電性粒子)
透明導電性層に用いる通電性粒子の一次粒子の平均粒子径は、1〜150nmであることが好ましく、5〜100nmであることがさらに好ましく、5〜70nmであることが最も好ましい。形成される透明導電性層中の通電性粒子の平均粒子径は、1〜200nmであり、5〜150nmであることが好ましく、10〜100nmであることがさらに好ましく、10〜80nmであることが最も好ましい。通電性粒子の平均粒子径は、粒子の質量を重みとした平均径であり、光散乱法や電子顕微鏡写真により測定できる。
通電性粒子の比表面積は、10〜400m2/gであることが好ましく、20〜200m2/gであることがさらに好ましく、30〜150m2/gであることが最も好ましい。
(Electrically conductive particles)
The average particle diameter of the primary particles of the conductive particles used for the transparent conductive layer is preferably 1 to 150 nm, more preferably 5 to 100 nm, and most preferably 5 to 70 nm. The average particle diameter of the conductive particles in the formed transparent conductive layer is 1 to 200 nm, preferably 5 to 150 nm, more preferably 10 to 100 nm, and more preferably 10 to 80 nm. Most preferred. The average particle diameter of the conductive particles is an average diameter weighted by the mass of the particles, and can be measured by a light scattering method or an electron micrograph.
The specific surface area of the energizing particles is preferably 10 to 400 m 2 / g, more preferably from 20 to 200 m 2 / g, and most preferably from 30 to 150 m 2 / g.

通電性粒子は、金属の酸化物または窒化物からなる無機微粒子であることが好ましい。金属の酸化物または窒化物の例としては、酸化錫、酸化インジウム、酸化亜鉛および窒化チタンが挙げられる。酸化錫および酸化インジウムが特に好ましい。
通電性粒子は、これらの金属の酸化物または窒化物を主成分とし、さらに他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P、S、B、Nb、In、Vおよびハロゲン原子が挙げられる。酸化錫および酸化インジウムの導電性を高めるために、Sb、P、B、Nb、In、Vおよびハロゲン原子を添加することが好ましい。Sbを含有する酸化錫(ATO)およびSnを含有する酸化インジウム(ITO)が特に好ましい。ATO中のSbの割合は、3〜20質量%であることが好ましい。ITO中のSnの割合は、5〜20質量%であることが好ましい。
The conductive particles are preferably inorganic fine particles made of a metal oxide or nitride. Examples of metal oxides or nitrides include tin oxide, indium oxide, zinc oxide and titanium nitride. Tin oxide and indium oxide are particularly preferred.
The conductive particles are mainly composed of oxides or nitrides of these metals, and can further contain other elements. The main component means a component having the largest content (mass%) among the components constituting the particles. Examples of other elements include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, S, B, Nb, In, V and a halogen atom are mentioned. In order to increase the conductivity of tin oxide and indium oxide, it is preferable to add Sb, P, B, Nb, In, V and a halogen atom. Particularly preferred are tin oxide containing Sb (ATO) and indium oxide containing Sn (ITO). The ratio of Sb in ATO is preferably 3 to 20% by mass. The ratio of Sn in ITO is preferably 5 to 20% by mass.

通電性粒子は表面処理されていてもよい。表面処理は、無機化合物または有機化合物を用いて実施することができる。表面処理に用いる無機化合物の例には、アルミナおよびシリカが含まれる。シリカ処理が特に好ましい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれる。シランカップリング剤が最も好ましい。二種類以上の表面処理を組み合わせて実施してもよい。
通電性粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。
The conductive particles may be surface-treated. The surface treatment can be performed using an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include alumina and silica. Silica treatment is particularly preferred. Examples of organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Silane coupling agents are most preferred. Two or more kinds of surface treatments may be performed in combination.
The shape of the conductive particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape.

透明導電性層中の導電性無機微粒子の割合は、20〜90質量%であることが好ましく、25〜85質量%であることが好ましく、30〜80質量%であることがさらに好ましい。
二種類以上の通電性粒子を透明導電性層内で併用してもよい。
The ratio of the conductive inorganic fine particles in the transparent conductive layer is preferably 20 to 90% by mass, preferably 25 to 85% by mass, and more preferably 30 to 80% by mass.
Two or more kinds of conductive particles may be used in combination in the transparent conductive layer.

通電性粒子は、分散物の状態で透明導電性層に使用することができる。通電性粒子の分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。この中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが特に好ましい。通電性粒子は、分散機を用いて媒体中に分散できる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが挙げられ、サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが挙げられる。   The conductive particles can be used in the transparent conductive layer in a dispersion state. As the dispersion medium for the conductive particles, it is preferable to use a liquid having a boiling point of 60 to 170 ° C. Examples of dispersion media include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ester (eg, methyl acetate, ethyl acetate, Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1 Methoxy-2-propanol). Among these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable. The conductive particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (for example, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill, and a sand grinder mill and a high-speed impeller mill are particularly preferable. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.

(透明導電性層のバインダー)
透明導電性層は、架橋しているポリマーをバインダーとして用いることができる。架橋しているポリマーはアニオン性基を有するのが好ましい。架橋しているアニオン性基を有するポリマーは、アニオン性基を有するポリマーの主鎖が架橋している構造を有する。アニオン性基は、通電性粒子の分散状態を維持する機能を有する。架橋構造は、ポリマーに皮膜形成能を付与して、透明導電性層を強化する機能を有する。
(Binder for transparent conductive layer)
The transparent conductive layer can use a crosslinked polymer as a binder. The crosslinked polymer preferably has an anionic group. The polymer having a crosslinked anionic group has a structure in which the main chain of the polymer having an anionic group is crosslinked. The anionic group has a function of maintaining the dispersed state of the conductive particles. The crosslinked structure has a function of reinforcing the transparent conductive layer by imparting a film-forming ability to the polymer.

ポリマーの主鎖の例には、ポリオレフィン(飽和炭化水素)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミドおよびメラミン樹脂が含まれる。ポリオレフィン主鎖、ポリエーテル主鎖およびポリウレア主鎖が好ましく、ポリオレフィン主鎖およびポリエーテル主鎖がさらに好ましく、ポリオレフィン主鎖が最も好ましい。   Examples of the polymer main chain include polyolefin (saturated hydrocarbon), polyether, polyurea, polyurethane, polyester, polyamine, polyamide and melamine resin. A polyolefin main chain, a polyether main chain and a polyurea main chain are preferable, a polyolefin main chain and a polyether main chain are more preferable, and a polyolefin main chain is most preferable.

ポリオレフィン主鎖は、飽和炭化水素からなる。ポリオレフィン主鎖は、例えば、不飽和重合性基の付加重合反応により得られる。
ポリエーテル主鎖は、エーテル結合(−O−)によって繰り返し単位が結合している。ポリエーテル主鎖は、例えば、エポキシ基の開環重合反応により得られる。
ポリウレア主鎖は、ウレア結合(−NH−CO−NH−)によって、繰り返し単位が結合している。ポリウレア主鎖は、例えば、イソシアネート基とアミノ基との縮重合反応により得られる。ポリウレタン主鎖は、ウレタン結合(−NH−CO−O−)によって、繰り返し単位が結合している。
ポリウレタン主鎖は、例えば、イソシアネート基と、水酸基(N−メチロール基を含む)との縮重合反応により得られる。
The polyolefin main chain is composed of a saturated hydrocarbon. The polyolefin main chain is obtained, for example, by an addition polymerization reaction of an unsaturated polymerizable group.
The polyether main chain has repeating units bonded by an ether bond (—O—). The polyether main chain is obtained, for example, by a ring-opening polymerization reaction of an epoxy group.
In the polyurea main chain, repeating units are bonded by a urea bond (—NH—CO—NH—). The polyurea main chain is obtained, for example, by a condensation polymerization reaction between an isocyanate group and an amino group. The polyurethane main chain has repeating units bonded by urethane bonds (—NH—CO—O—).
The polyurethane main chain is obtained, for example, by a polycondensation reaction between an isocyanate group and a hydroxyl group (including an N-methylol group).

ポリエステル主鎖は、エステル結合(−CO−O−)によって、繰り返し単位が結合している。ポリエステル主鎖は、例えば、カルボキシル基(酸ハライド基を含む)と水酸基(N−メチロール基を含む)との縮重合反応により得られる。
ポリアミン主鎖は、イミノ結合(−NH−)によって、繰り返し単位が結合している。ポリアミン主鎖は、例えば、エチレンイミン基の開環重合反応により得られる。
ポリアミド主鎖は、アミド結合(−NH−CO−)によって、繰り返し単位が結合している。ポリアミド主鎖は、例えば、イソシアネート基とカルボキシル基(酸ハライド基を含む)との反応により得られる。
メラミン樹脂主鎖は、例えば、トリアジン基(例、メラミン)とアルデヒド(例、ホルムアルデヒド)との縮重合反応により得られる。なお、メラミン樹脂は、主鎖そのものが架橋構造を有する。
The polyester main chain has repeating units bonded by an ester bond (—CO—O—). The polyester main chain is obtained, for example, by a polycondensation reaction between a carboxyl group (including an acid halide group) and a hydroxyl group (including an N-methylol group).
In the polyamine main chain, repeating units are bonded by an imino bond (—NH—). The polyamine main chain is obtained, for example, by a ring-opening polymerization reaction of an ethyleneimine group.
The polyamide main chain has repeating units bonded by an amide bond (—NH—CO—). The polyamide main chain is obtained, for example, by a reaction between an isocyanate group and a carboxyl group (including an acid halide group).
The melamine resin main chain is obtained, for example, by a polycondensation reaction between a triazine group (eg, melamine) and an aldehyde (eg, formaldehyde). In the melamine resin, the main chain itself has a crosslinked structure.

アニオン性基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アニオン性基は、連結基を介して側鎖として、主鎖に結合させることが好ましい。
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)およびリン酸基(ホスホノ)などが挙げられ、スルホン酸基およびリン酸基が好ましい。
アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。
アニオン性基とポリマーの主鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、およびこれらの組み合わせから選ばれる二価の基であることが好ましい。
The anionic group is bonded directly to the main chain of the polymer or bonded to the main chain via a linking group. The anionic group is preferably bonded to the main chain as a side chain via a linking group.
Examples of the anionic group include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono), and a sulfonic acid group and a phosphoric acid group are preferable.
The anionic group may be in a salt state. The cation that forms a salt with the anionic group is preferably an alkali metal ion. Moreover, the proton of the anionic group may be dissociated.
The linking group that binds the anionic group and the polymer main chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof.

架橋構造は、二以上の主鎖を化学的に結合(好ましくは共有結合)する。架橋構造は、三以上の主鎖を共有結合することが好ましい。架橋構造は、−CO−、−O−、−S−、窒素原子、リン原子、脂肪族残基、芳香族残基およびこれらの組み合わせから選ばれる二価以上の基からなることが好ましい。   The crosslinked structure chemically bonds (preferably covalently bonds) two or more main chains. The cross-linked structure is preferably covalently bonded to three or more main chains. The cross-linked structure is preferably composed of a divalent or higher valent group selected from —CO—, —O—, —S—, a nitrogen atom, a phosphorus atom, an aliphatic residue, an aromatic residue, and combinations thereof.

架橋しているアニオン性基を有するポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることがさらに好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、二以上のアニオン性基を有していてもよい。コポリマー中の架橋構造を有する繰り返し単位の割合は、4〜98質量%であることが好ましく、6〜96質量%であることがさらに好ましく、8〜94質量%であることが最も好ましい。   The crosslinked polymer having an anionic group is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure. The proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. The repeating unit may have two or more anionic groups. The proportion of the repeating unit having a crosslinked structure in the copolymer is preferably 4 to 98% by mass, more preferably 6 to 96% by mass, and most preferably 8 to 94% by mass.

架橋しているアニオン性基を有するポリマーの繰り返し単位は、アニオン性基と架橋構造の双方を有していてもよい。また、その他の繰り返し単位(アニオン性基も架橋構造もない繰り返し単位)が含まれていてもよい。
その他の繰り返し単位としては、アミノ基または四級アンモニウム基を有する繰り返し単位およびベンゼン環を有する繰り返し単位が好ましい。アミノ基または四級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。なお、アミノ基、四級アンモニウム基およびベンゼン環は、アニオン性基を有する繰り返し単位あるいは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
The repeating unit of the polymer having a crosslinked anionic group may have both an anionic group and a crosslinked structure. Further, other repeating units (repeating units having neither an anionic group nor a crosslinked structure) may be contained.
Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring. The amino group or quaternary ammonium group has a function of maintaining the dispersed state of the inorganic fine particles, like the anionic group. In addition, even if the amino group, the quaternary ammonium group and the benzene ring are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure, the same effect can be obtained.

アミノ基または四級アンモニウム基を有する繰り返し単位では、アミノ基または四級アンモニウム基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アミノ基または四級アンモニウム基は、連結基を介して側鎖として、主鎖に結合させることが好ましい。
アミノ基または四級アンモニウム基は、二級アミノ基、三級アミノ基または四級アンモニウム基であることが好ましく、三級アミノ基または四級アンモニウム基であることがさらに好ましい。二級アミノ基、三級アミノ基または四級アンモニウム基の窒素原子に結合する基は、アルキル基であることが好ましく、炭素原子数が1〜12のアルキル基であることが好ましく、炭素原子数が1〜6のアルキル基であることがさらに好ましい。
In a repeating unit having an amino group or a quaternary ammonium group, the amino group or quaternary ammonium group is directly bonded to the main chain of the polymer or bonded to the main chain through a linking group. The amino group or quaternary ammonium group is preferably bonded to the main chain as a side chain via a linking group.
The amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, more preferably a tertiary amino group or a quaternary ammonium group. The group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, preferably an alkyl group having 1 to 12 carbon atoms, Is more preferably an alkyl group of 1 to 6.

四級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または四級アンモニウム基とポリマーの主鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、およびこれらの組み合わせから選ばれる二価の基であることが好ましい。架橋しているアニオン性基を有するポリマーが、アミノ基または四級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることがさらに好ましく、0.1〜28質量%であることが最も好ましい。   The counter ion of the quaternary ammonium group is preferably a halide ion. The linking group that connects the amino group or quaternary ammonium group to the polymer main chain is a divalent group selected from -CO-, -NH-, -O-, an alkylene group, an arylene group, and combinations thereof. Preferably there is. When the crosslinked polymer having an anionic group contains a repeating unit having an amino group or a quaternary ammonium group, the ratio is preferably 0.06 to 32% by mass, and 0.08 to 30% by mass. % Is more preferable, and 0.1 to 28% by mass is most preferable.

上記バインダーに対して、例えば特開2003−39586号公報に記載の以下の反応性有機珪素化合物と併用することもできる。反応性有機珪素化合物は、電離放射線硬化型樹脂と反応性有機珪素化合物の合計に対して10〜100質量%の範囲で使用される。特に下記の(3)の電離放射線硬化性有機珪素化合物を使用する場合には、これだけを樹脂成分として導電層を形成することが可能である。   For example, the following reactive organosilicon compound described in JP-A-2003-39586 can be used in combination with the binder. The reactive organosilicon compound is used in the range of 10 to 100% by mass with respect to the total of the ionizing radiation curable resin and the reactive organosilicon compound. In particular, when the ionizing radiation curable organosilicon compound (3) below is used, it is possible to form a conductive layer using only this as a resin component.

(1)珪素アルコキシド
mSi(OR’)nで表される化合物であり、ここでR、R’は炭素数1〜10のアルキル基を表し、m及びnはそれぞれm+n=4となる整数である。例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラペンタエトキシシラン、テトラペンタ−iso−プロポキシシラン、テトラペンタ−n−プロキシシラン、テトラペンタ−n−ブトキシシラン、テトラペンタ−sec−ブトキシシラン、テトラペンタ−tert−ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルエトキシシラン、ジメチルメトキシシラン、ジメチルプロポキシシラン、ジメチルブトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。
(1) Silicon alkoxide is a compound represented by R m Si (OR ′) n , wherein R and R ′ represent an alkyl group having 1 to 10 carbon atoms, and m and n are integers such that m + n = 4, respectively. It is. For example, tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetrapentaethoxysilane, Tetrapenta-iso-propoxysilane, tetrapenta-n-proxysilane, tetrapenta-n-butoxysilane, tetrapenta-sec-butoxysilane, tetrapenta-tert-butoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, Methyl tributoxy silane, dimethyl dimethoxy silane, dimethyl diethoxy silane, dimethyl ethoxy silane, dimethyl methoxy silane, dimethyl propoxy silane, dimethyl butyl Kishishiran, methyldimethoxysilane, methyldiethoxysilane, hexyl trimethoxysilane.

(2)シランカップリング剤
例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルメトキシシラン・塩酸塩、γ−グリシドキシプロピルトリメトキシシラン、アミノシラン、メチルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラザン、ビニルトリス(β−メトキシエトキシ)シラン、オクタデシルジメチル[3−(トリメトキシシリル)プロピル]アンモニウムクロライド、メチルトリクロロシラン、ジメチルジクロロシラン等が挙げられる。
(2) Silane coupling agent For example, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxy Silane, γ-aminopropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropylmethoxysilane hydrochloride, γ-glycidoxypropyltrimethoxy Silane, aminosilane, methyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilazane, vinyltris (β-methoxyethoxy) silane, octadecyldimethyl [3 (Trimethoxysilyl) propyl] ammonium chloride, methyl trichlorosilane, dimethyl dichlorosilane, and the like.

(3)電離放射線硬化性珪素化合物
電離放射線によって反応架橋する複数の基、例えば、重合性二重結合基を有する分子量5,000以下の有機珪素化合物が挙げられる。このような反応性有機珪素化合物は、片末端ビニル官能性ポリシラン、両末端ビニル官能性ポリシラン、片末端ビニル官能ポリシロキサン、両末端ビニル官能性ポリシロキサン、或いはこれらの化合物を反応させたビニル官能性ポリシラン、又はビニル官能性ポリシロキサン等が挙げられる。
(3) Ionizing radiation curable silicon compound A plurality of groups that undergo reactive crosslinking by ionizing radiation, for example, organosilicon compounds having a molecular weight of 5,000 or less having a polymerizable double bond group. Such reactive organosilicon compounds may be one end vinyl functional polysilane, both end vinyl functional polysilane, one end vinyl functional polysiloxane, both end vinyl functional polysiloxane, or a vinyl functionality obtained by reacting these compounds. Examples include polysilane, vinyl functional polysiloxane, and the like.

その他の化合物としては、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロキシシラン化合物等が挙げられる。   Examples of other compounds include (meth) acryloxysilane compounds such as 3- (meth) acryloxypropyltrimethoxysilane and 3- (meth) acryloxypropylmethyldimethoxysilane.

帯電防止機能をより発現するためには、特開2003−39586号公報に示されるように、本発明の内部散乱層中に通電性粒子を分散し、異方性導電膜としての機能を有させることも好ましい。   In order to further develop the antistatic function, as disclosed in Japanese Patent Application Laid-Open No. 2003-39586, the conductive particles are dispersed in the internal scattering layer of the present invention to have a function as an anisotropic conductive film. It is also preferable.

[他の層について]
[その他の層]
透明支持体と本発明の防眩層の間に設けても良い他の層として、防湿層、密着改良層、虹ムラ(干渉ムラ)防止層等が挙げられる。これらの層は、公知の方法にて形成することができる。
[About other layers]
[Other layers]
Examples of other layers that may be provided between the transparent support and the antiglare layer of the present invention include a moisture proof layer, an adhesion improving layer, and a rainbow unevenness (interference unevenness) preventing layer. These layers can be formed by a known method.

[防眩フィルム及び反射防止フィルムの製造方法]
本発明の反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。防眩フィルムの形成も、反射防止フィルムの製造方法と同様である。
(塗布液の調製)
まず、各層を形成するための成分を含有した塗布液を調製する。その際、溶剤の揮発量を最小限に抑制することにより、塗布液中の含水率の上昇を抑制できる。塗布液中の含水率は5%以下が好ましく、2%以下がより好ましい。溶剤の揮発量の抑制は、各素材をタンクに投入後の攪拌時の密閉性を向上すること、移液作業時の塗布液の空気接触面積を最小化すること等で達成される。また、塗布中或いはその前後に塗布液中の含水率を低減する手段を設けてもよい。
[Production Method of Antiglare Film and Antireflection Film]
The antireflection film of the present invention can be formed by the following method, but is not limited to this method. The formation of the antiglare film is the same as the method for producing the antireflection film.
(Preparation of coating solution)
First, a coating solution containing components for forming each layer is prepared. In that case, the raise of the moisture content in a coating liquid can be suppressed by suppressing the volatilization amount of a solvent to the minimum. The moisture content in the coating solution is preferably 5% or less, more preferably 2% or less. The suppression of the volatilization amount of the solvent is achieved by improving the hermeticity at the time of stirring after putting each material into the tank, minimizing the air contact area of the coating liquid during the transfer operation, and the like. Moreover, you may provide the means to reduce the moisture content in a coating liquid during application | coating or before and after that.

防眩層を形成する塗布液中には、直接その上に形成される低屈折率層の乾燥膜厚(50nm〜120nm程度)に相当する大きさの異物を概ね全て(90%以上を指す)除去できるろ過をすることが好ましい。を付与する為の光拡散性粒子が低屈折率層の膜厚と同等以上であるため、前記ろ過は、光拡散性粒子以外の全ての素材を添加した中間液に対して行うことが好ましい。また、前記のような粒径の小さな異物を除去可能なフィルターが入手できない場合には、少なくとも直接その上に形成される層のウエット膜厚(8〜40μm程度)に相当する異物を概ね全て除去できるろ過をすることが好ましい。このような手段により、直接その上に形成される層の点欠陥を減少することができる。   In the coating solution for forming the antiglare layer, almost all foreign matters having a size corresponding to the dry film thickness (about 50 nm to 120 nm) of the low refractive index layer directly formed thereon (pointing to 90% or more) It is preferable to perform filtration that can be removed. Since the light diffusing particles for imparting the amount are equal to or greater than the film thickness of the low refractive index layer, the filtration is preferably performed on the intermediate liquid to which all materials other than the light diffusing particles are added. In addition, when a filter capable of removing foreign substances having a small particle size as described above is not available, almost all foreign substances corresponding to the wet film thickness (about 8 to 40 μm) of the layer directly formed thereon are removed. It is preferable to perform filtration. By such means, the point defects of the layer formed directly thereon can be reduced.

(塗布)
次に、防眩層、および必要に応じて低屈折率層を形成するための塗布液をエクストルージョン法(ダイコート法)、マイクログラビア法等の塗布方法により、該セルロースエステルフィルム上に塗布し、加熱・乾燥する。その後、光照射および/または加熱して、防眩層ないし低屈折率層を形成するためのモノマーや硬化性樹脂を硬化する。これにより防眩層、低屈折率層が形成される。
(Application)
Next, a coating solution for forming an antiglare layer and, if necessary, a low refractive index layer is applied onto the cellulose ester film by an application method such as an extrusion method (die coating method) or a micro gravure method, Heat and dry. Thereafter, the monomer and curable resin for forming the antiglare layer or the low refractive index layer are cured by light irradiation and / or heating. Thereby, an anti-glare layer and a low refractive index layer are formed.

(乾燥)
防眩層および低屈折率層は、該セルロースエステルフィルム上に直接又は他の層を介して塗布された後、溶剤を乾燥するために加熱されたゾーンにウェブで搬送される。その際の乾燥ゾーンの温度は25℃〜140℃が好ましく、乾燥ゾーンの前半は比較的低温であり、後半は比較的高温であることが好ましい。但し、各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。例えば、紫外線硬化樹脂と併用される市販の光ラジカル発生剤のなかには120℃の温風中で数分以内にその数10%前後が揮発してしまうものもあり、また、単官能、2官能のアクリレートモノマー等は100℃の温風中で揮発が進行するものもある。そのような場合には、前記のように各層の塗布組成物に含有される溶剤以外の成分の揮発が始まる温度以下であることが好ましい。
(Dry)
The antiglare layer and the low refractive index layer are coated on the cellulose ester film directly or via another layer, and then conveyed by a web to a heated zone to dry the solvent. In this case, the temperature of the drying zone is preferably 25 ° C. to 140 ° C., the first half of the drying zone is relatively low temperature, and the second half is preferably relatively high temperature. However, it is preferably below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize. For example, some of the commercially available photo radical generators used in combination with ultraviolet curable resins volatilize around several tens of percent within a few minutes in warm air at 120 ° C. Some acrylate monomers and the like undergo volatilization in warm air at 100 ° C. In such a case, it is preferable that it is below the temperature at which components other than the solvent contained in the coating composition of each layer start to volatilize as described above.

また、各層の塗布組成物を該セルロースエステルフィルム上に塗布した後の乾燥風は、前記塗布組成物の固形分濃度が1〜50%の間は塗膜表面の風速が0.1〜2m/秒の範囲にあることが、乾燥ムラを防止するために好ましい。
また、各層の塗布組成物を該セルロースエステルフィルム上に塗布した後、乾燥ゾーン内で基材フィルムの塗布面とは反対の面に接触する搬送ロールと基材フィルムとの温度差を0℃〜20℃の範囲内とすると、搬送ロール上での伝熱ムラによる乾燥ムラが防止でき、好ましい。
Moreover, the dry wind after apply | coating the coating composition of each layer on this cellulose-ester film has a wind speed of the coating-film surface of 0.1-2 m / w while the solid content concentration of the said coating composition is 1-50%. It is preferable to be in the second range in order to prevent drying unevenness.
Moreover, after apply | coating the coating composition of each layer on this cellulose-ester film, the temperature difference of the conveyance roll and base material film which contact the surface opposite to the application surface of a base film in a drying zone is 0 degreeC- When the temperature is within the range of 20 ° C., drying unevenness due to heat transfer unevenness on the transport roll can be prevented, which is preferable.

表面凹凸を乾燥条件である程度制御することも可能である。本発明では、塗布後早く乾燥風を当てることで、表面凹凸の形成を抑制できることを見出し、好ましい表面凹凸範囲に制御することを可能とした。   It is also possible to control the surface irregularities to some extent by the drying conditions. In this invention, it discovered that the formation of surface unevenness | corrugation can be suppressed by applying a dry wind early after application | coating, and made it possible to control to a preferable surface unevenness | corrugation range.

(硬化)
溶剤の乾燥ゾーンの後に、ウェブで電離放射線および/または熱により各塗膜を硬化させるゾーンを通過させ、塗膜を硬化する。塗膜が電離放射線硬化性であるとき、硬化被膜層を形成するための光源としては、電離放射線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、電離放射線の照射量は、好ましくは5mJ/cm2〜100mJ/cm2であり、更に好ましくは20mJ/cm2〜80mJ/cm2である。その際、ウェブの幅方向の照射量分布は中央の最大照射量に対して両端まで含めて50〜100%の分布が好ましく、80〜100%の分布がより好ましい。更に表面硬化を促進する為に窒素ガス等をパージして酸素濃度を低下する必要がある際には、酸素濃度0.01%〜5%が好ましく、幅方向の分布は酸素濃度で2%以下が好ましい。
(Curing)
After the solvent drying zone, the coating is cured by passing through a zone where the coating is cured by ionizing radiation and / or heat on the web. When the coating film is ionizing radiation curable, the light source for forming the cured coating layer can be used without limitation as long as it is a light source that generates ionizing radiation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The irradiation conditions vary depending on individual lamps, the dose of ionizing radiation, preferably 5mJ / cm 2 ~100mJ / cm 2 , more preferably from 20mJ / cm 2 ~80mJ / cm 2 . At that time, the irradiation distribution in the width direction of the web is preferably 50 to 100%, more preferably 80 to 100%, including both ends with respect to the central maximum irradiation. Further, when it is necessary to purge nitrogen gas or the like to lower the oxygen concentration in order to promote surface hardening, the oxygen concentration is preferably 0.01% to 5%, and the distribution in the width direction is 2% or less in terms of oxygen concentration Is preferred.

従来の防眩フィルムではこのような低い照射量では4H以上の鉛筆硬度でかつ平面性に優れる防眩フィルムは得られなかった。硬度がそれほど要求されない防眩フィルムの場合は、照射量を更に少なく出来るため、紫外線照射部の能力によって制限されていた塗布速度をはるかに上回る速度で防眩フィルムを製造することが出来、生産性が著しく改善される。   Conventional antiglare films have not been able to obtain an antiglare film having a pencil hardness of 4H or more and excellent flatness at such a low irradiation dose. In the case of an anti-glare film that does not require much hardness, the amount of irradiation can be further reduced, so that an anti-glare film can be produced at a speed much higher than the coating speed limited by the ability of the ultraviolet irradiation section, and the productivity Is significantly improved.

また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、若しくは2軸方向に張力を付与してもよい。これによって更に平面性優れたフィルムを得ることが出来る。   Moreover, when irradiating actinic radiation, it is preferable to carry out while applying tension | tensile_strength in the conveyance direction of a film, More preferably, it is performing applying tension | tensile_strength also in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying the tension is not particularly limited, and the tension may be applied in the conveying direction on the back roll, or the tension may be applied in the width direction or the biaxial direction by a tenter. This makes it possible to obtain a film having further excellent flatness.

また、防眩層の硬化率(100−残存官能基含率)が100%未満のある値となった場合、その上に低屈折率層を設けて電離放射線および/または熱により低屈折率層を硬化した際に下層の防眩層の硬化率が低屈折率層を設ける前よりも高くなると、防眩層と低屈折率層との間の密着性が改良され、好ましい。   Further, when the curing rate (100-residual functional group content) of the antiglare layer becomes a certain value less than 100%, a low refractive index layer is provided on the low refractive index layer by ionizing radiation and / or heat. If the curing rate of the lower antiglare layer is higher than that before providing the low refractive index layer when the is cured, the adhesion between the antiglare layer and the low refractive index layer is improved, which is preferable.

以上のようにして製造された反射防止フィルムは、これを用いて偏光板を作成することにより液晶表示装置に用いることができる。この場合、片面に粘着層を設ける等してディスプレイの最表面に配置する。本発明の反射防止フィルムは、偏光板における偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いることが好ましい。
本発明の反射防止フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、本発明の反射防止フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐擦傷性、防汚性等も優れた偏光板とすることができる。
The antireflection film produced as described above can be used for a liquid crystal display device by forming a polarizing plate using the antireflection film. In this case, it arrange | positions on the outermost surface of a display by providing an adhesive layer on one side. The antireflection film of the present invention is preferably used for at least one of the two protective films sandwiching the polarizing film in the polarizing plate from both sides.
Since the antireflection film of the present invention also serves as a protective film, the production cost of the polarizing plate can be reduced. Further, by using the antireflection film of the present invention as the outermost layer, reflection of external light and the like can be prevented, and a polarizing plate having excellent scratch resistance, antifouling property and the like can be obtained.

反射防止フィルムを2枚の偏光膜の表面保護フィルムの内の一方として用いて偏光板を作成する際には、前記の反射防止フィルムを、反射防止構造を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面を親水化することで、接着面における接着性を改良することが好ましい。親水化された表面は、ポリビニルアルコールを主成分とする接着層との接着性を改良するのに有効である。反射防止フィルムの親水化処理としては、下記の鹸化処理を行うことが好ましい。   When producing a polarizing plate using an antireflection film as one of the surface protective films of two polarizing films, the antireflection film is used as a transparent support on the side opposite to the side having the antireflection structure. It is preferable to improve the adhesion on the adhesive surface by hydrophilizing the surface of the film, that is, the surface to be bonded to the polarizing film. The hydrophilized surface is effective for improving the adhesiveness with the adhesive layer mainly composed of polyvinyl alcohol. As the hydrophilic treatment of the antireflection film, the following saponification treatment is preferably performed.

(鹸化処理)
(1)アルカリ液に浸漬する法
アルカリ液の中に反射防止フィルムを適切な条件で浸漬して、フィルム全表面のアルカリと反応性を有する全ての面を鹸化処理する手法であり、特別な設備を必要としないため、コストの観点で好ましい。アルカリ液は、水酸化ナトリウム水溶液であることが好ましい。好ましい濃度は0.5〜3mol/Lであり、特に好ましくは1〜2mol/Lである。好ましいアルカリ液の液温は30〜75℃、特に好ましくは40〜60℃である。
前記の鹸化条件の組合せは比較的穏和な条件同士の組合せであることが好ましいが、防眩性反射防止フィルムの素材や構成、目標とする接触角によって設定することができる。
アルカリ液に浸漬した後は、フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
(Saponification treatment)
(1) Method of immersing in alkaline solution This is a method in which an antireflection film is immersed in an alkaline solution under appropriate conditions, and all surfaces having reactivity with alkali on the entire surface of the film are saponified, and special equipment Is preferable from the viewpoint of cost. The alkaline liquid is preferably a sodium hydroxide aqueous solution. A preferred concentration is 0.5 to 3 mol / L, particularly preferably 1 to 2 mol / L. The liquid temperature of a preferable alkali liquid is 30-75 degreeC, Most preferably, it is 40-60 degreeC.
The combination of the saponification conditions is preferably a combination of relatively mild conditions, but can be set according to the material and configuration of the antiglare antireflection film and the target contact angle.
After being immersed in the alkaline solution, it is preferable to sufficiently wash with water or neutralize the alkaline component by immersing in a dilute acid so that the alkaline component does not remain in the film.

鹸化処理は、内部散乱層や低屈折率層を有する側とは反対側の透明支持体の表面の水に対する接触角が低いほど、偏光膜との接着性の観点では好ましいが、一方、上記のような浸漬法では同時に内部散乱層や低屈折率層を有する表面から内部までアルカリによるダメージを受ける為、必要最小限の反応条件とすることが重要となる。アルカリによる各層の受けるダメージの指標として、反対側の表面の透明支持体の水に対する接触角を用いた場合、特に透明支持体がトリアセチルセルロースであれば、好ましくは10度〜50度、より好ましくは30度〜50度、さらに好ましくは40度〜50度となる。50度以上では、偏光膜との接着性に問題が生じる為、好ましくない。一方、10度未満では、反射防止膜の受けるダメージが大きすぎる為、物理強度を損ない、好ましくない。   In the saponification treatment, the lower the contact angle with water on the surface of the transparent support opposite to the side having the internal scattering layer or the low refractive index layer, the better from the viewpoint of adhesiveness to the polarizing film. In such a dipping method, alkali damage is caused from the surface having the internal scattering layer and the low refractive index layer to the inside at the same time, so that it is important to set the necessary minimum reaction conditions. When the contact angle to water of the transparent support on the opposite surface is used as an index of damage to each layer due to alkali, particularly when the transparent support is triacetylcellulose, preferably 10 to 50 degrees, more preferably Is 30 to 50 degrees, more preferably 40 to 50 degrees. If it is 50 degrees or more, there is a problem in the adhesion to the polarizing film, which is not preferable. On the other hand, if it is less than 10 degrees, the damage received by the antireflection film is too large, and the physical strength is impaired, which is not preferable.

(2)アルカリ液を塗布する方法
上述の浸漬法における各膜へのダメージを回避する手段として、適切な条件でアルカリ液を内部散乱層や反射防止膜を有する表面と反対側の表面のみに塗布、加熱、水洗、乾燥するアルカリ液塗布法が好ましく用いられる。なお、この場合の塗布とは、鹸化を行う面に対してのみアルカリ液などを接触させることを意味し、塗布以外にも噴霧、液を含んだベルト等に接触させる、などによって行われることも含む。これらの方法を採ることにより、別途、アルカリ液を塗布する設備、工程が必要となるため、コストの観点では(1)の浸漬法に劣る。一方で、鹸化処理を施す面にのみアルカリ液が接触するため、反対側の面にはアルカリ液に弱い素材を用いた層を有することができる。例えば、蒸着膜やゾル−ゲル膜では、アルカリ液によって、腐食、溶解、剥離など様々な影響が起こるため、浸漬法では設けることが望ましくないが、この塗布法では液と接触しないため問題なく使用することが可能である。
(2) Method of applying alkaline solution As a means for avoiding damage to each film in the above-mentioned immersion method, the alkaline solution is applied only to the surface opposite to the surface having the internal scattering layer or antireflection film under appropriate conditions. An alkaline solution coating method of heating, washing with water and drying is preferably used. The application in this case means that an alkaline solution or the like is brought into contact only with the surface to be saponified, and in addition to the application, it may be carried out by spraying or contacting a belt containing the solution. Including. By adopting these methods, a separate facility and process for applying an alkaline solution are required, which is inferior to the immersion method (1) from the viewpoint of cost. On the other hand, since the alkali solution contacts only the surface to be saponified, the opposite surface can have a layer using a material that is weak against the alkali solution. For example, vapor deposition films and sol-gel films have various effects such as corrosion, dissolution, and peeling due to alkali solution, so it is not desirable to use the immersion method. Is possible.

前記(1)、(2)のどちらの鹸化方法においても、ロール状の支持体から巻き出して各層を形成後に行うことができるため、前述の反射防止フィルム製造工程の後に加えて一連の操作で行っても良い。さらに、同様に巻き出した支持体からなる偏光板との張り合わせ工程もあわせて連続で行うことにより、枚葉で同様の操作をするよりもより効率良く偏光板を作成することができる。   In any of the saponification methods (1) and (2), since each layer can be formed by unwinding from a roll-shaped support, a series of operations can be performed in addition to the above-described antireflection film manufacturing process. You can go. Furthermore, the polarizing plate can be produced more efficiently than the same operation with a single wafer by continuously performing the pasting step with the polarizing plate made of the unwound support.

(3)防眩層や反射防止層をラミネートフィルムで保護して鹸化する方法
前記(2)と同様に、防眩層および/または低屈折率層がアルカリ液に対する耐性が不足している場合に、最終層まで形成した後に該最終層を形成した面にラミネートフィルムを貼り合せてからアルカリ液に浸漬することで最終層を形成した面とは反対側のトリアセチルセルロース面だけを親水化し、その後ラミネートフィルムを剥離することができる。この方法でも、防眩層、低屈折率層へのダメージなしに偏光板保護フィルムとして必要なだけの親水化処理をトリアセチルセルロースフィルムの最終層を形成した面とは反対の面だけに施すことができる。前記(2)の方法と比較して、ラミネートフィルムが廃棄物として発生する反面、特別なアルカリ液を塗布する装置が不要である利点がある。
(3) Method of protecting and saponifying an antiglare layer and an antireflection layer with a laminate film When the antiglare layer and / or the low refractive index layer is insufficient in resistance to an alkaline solution as in the above (2) After the final layer is formed, the laminate film is bonded to the surface on which the final layer is formed and then immersed in an alkaline solution to hydrophilize only the side of the triacetyl cellulose opposite to the surface on which the final layer is formed. The laminate film can be peeled off. Even in this method, only the surface opposite to the surface on which the final layer of the triacetyl cellulose film is formed is subjected to the hydrophilization treatment necessary for the polarizing plate protective film without damage to the antiglare layer and the low refractive index layer. Can do. Compared with the method (2), the laminate film is generated as waste, but there is an advantage that a device for applying a special alkaline solution is unnecessary.

(4)防眩層まで形成後にアルカリ液に浸漬する方法
防眩層まではアルカリ液に対する耐性があるが、低屈折率層がアルカリ液に対する耐性不足である場合には、防眩層まで形成後にアルカリ液に浸漬して両面を親水化処理し、然る後に防眩層上に低屈折率層を形成することもできる。製造工程が煩雑になるが、特に低屈折率層がフッ素含有ゾル−ゲル膜等、親水基を有する場合には防眩層と低屈折率層との層間密着性が向上する利点がある。
(4) Method of immersing in alkaline solution after forming up to antiglare layer Up to antiglare layer is resistant to alkaline solution, but when low refractive index layer is insufficiently resistant to alkaline solution, after forming up to antiglare layer It is also possible to soak both surfaces in an alkali solution to hydrophilize both surfaces, and then form a low refractive index layer on the antiglare layer. Although the manufacturing process becomes complicated, there is an advantage that the interlayer adhesion between the antiglare layer and the low refractive index layer is improved particularly when the low refractive index layer has a hydrophilic group such as a fluorine-containing sol-gel film.

(5)予め鹸化済のトリアセチルセルロースフィルムに防眩層や反射防止層を形成する方法
トリアセチルセルロースフィルムを予めアルカリ液に浸漬するなどして鹸化し、何れか一方の面に直接または他の層を介して内部散乱層、低屈折率層を形成してもよい。アルカリ液に浸漬して鹸化する場合には、防眩層または他の層と鹸化により親水化されたトリアセチルセルロース面との層間密着性が悪化することがある。そのような場合には、鹸化後、防眩層または他の層を形成する面だけにコロナ放電、グロー放電等の処理をすることで親水化面を除去してから内部散乱層または他の層を形成することで対処できる。また、防眩層または他の層が親水性基を有する場合には層間密着が良好なこともある。
(5) Method of forming an antiglare layer or an antireflection layer on a previously saponified triacetyl cellulose film Saponified by, for example, pre-immersing the triacetyl cellulose film in an alkali solution, either directly or on the other side An internal scattering layer and a low refractive index layer may be formed through the layers. In the case of saponification by dipping in an alkaline solution, interlayer adhesion between the antiglare layer or other layers and the triacetyl cellulose surface hydrophilized by saponification may deteriorate. In such a case, after the saponification, only the surface on which the antiglare layer or other layer is formed is treated with corona discharge, glow discharge or the like to remove the hydrophilic surface, and then the internal scattering layer or other layer. Can be dealt with by forming Further, when the antiglare layer or other layer has a hydrophilic group, the interlayer adhesion may be good.

以下に、本発明の反射防止フィルムを用いた偏光板及び該偏光板を用いた液晶表示装置について説明する。   Below, the polarizing plate using the antireflection film of this invention and the liquid crystal display device using this polarizing plate are demonstrated.

[偏光板]
本発明の好ましい偏光板は、偏光膜の保護フィルム(偏光板用保護フィルム)の少なくとも一方として、本発明の反射防止フィルムを有する。偏光板用保護フィルムは、前記のように、内部散乱層や低屈折率層を有する側とは反対側の透明支持体の表面、すなわち偏光膜と貼り合わせる側の表面の水に対する接触角が10度〜50度の範囲にあることが好ましい。
本発明の反射防止フィルムを偏光板用保護フィルムとして用いることにより、物理強度、耐光性に優れた光散乱機能、あるいは反射防止機能を有する偏光板が作製でき、大幅なコスト削減、表示装置の薄手化が可能となる。
また、本発明の反射防止フィルムを偏光板用保護フィルムの一方に、後述する光学異方性のある光学補償フィルムを偏光膜の保護フィルムのもう一方に用いた偏光板を作製することにより、さらに、液晶表示装置の明室での視認性やコントラストを改良し、上下左右の視野角が非常に広げることができる偏光板を作製できる。
[Polarizer]
A preferred polarizing plate of the present invention has the antireflection film of the present invention as at least one of a polarizing film protective film (polarizing plate protective film). As described above, the polarizing plate protective film has a water contact angle of 10 on the surface of the transparent support opposite to the side having the internal scattering layer and the low refractive index layer, that is, the surface to be bonded to the polarizing film. It is preferable to be in the range of degrees to 50 degrees.
By using the antireflection film of the present invention as a protective film for a polarizing plate, it is possible to produce a polarizing plate having a light scattering function or an antireflection function excellent in physical strength and light resistance. Can be realized.
Further, by preparing a polarizing plate using the antireflection film of the present invention as one of the protective films for polarizing plates and an optical compensation film having optical anisotropy described later as the other protective film of the polarizing film, In addition, it is possible to improve the visibility and contrast in a bright room of a liquid crystal display device and to produce a polarizing plate that can greatly widen the vertical and horizontal viewing angles.

(光学補償フィルム)
偏光板に光学補償フィルムを用いることにより、液晶表示画面の視野角特性を改良することができ、偏光子を挟んで本発明の反射防止フィルムの反対側に光学補償フィルムを好ましく用いることができる光学補償フォルムは偏光板の片側の保護フィルムの上に粘着剤で貼付してもよいし、片側の保護フィルムとして用いてもよい。偏光板の厚みの観点からは、片側の保護フィルムとして本発明の反射防止フィルムを用い、偏光子を挟んで反対側の保護フィルムとして光学補償フィルム用いることが特に望ましい。光学補償フィルムは、光学異方性のある物質をフィルム自体に含有させたり、フィルムを延伸したりすること、あるいはその両方を行うことで、フィルム自体が特定の光学異方性を有してもよいし、フィルム上に光学異方性層(位相差層)を設けてもよい。
光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点では、ディスコティック構造単位を有する化合物からなる光学異方性を有する層を有するフィルムが望ましく、具体的には富士写真フイルム製のワイドビューフィルム(WV−A、WV−SA)があるが、これに限られない。
また、液晶ディスプレイのコントラストの良化、色味を改良するために、光学的異方性(Re、Rth)が小さく実質的に光学的等方性であり、さらには光学的異方性(Re、Rth)の波長分散が小さいセルロースアシレートフィルムを用いることも好ましいし、反射型ディスプレイの場合は1枚または複数枚のフィルムからなるλ/4板の機能を有するフィルムを用いるのも好ましい。
光学補償フィルムを偏光膜の保護フィルムとして用いる場合、偏光膜と貼り合わせる側の表面が鹸化処理されていることが好ましく、前記の鹸化処理に従って実施することが好ましい。
(Optical compensation film)
By using the optical compensation film for the polarizing plate, the viewing angle characteristics of the liquid crystal display screen can be improved, and the optical compensation film can be preferably used on the opposite side of the antireflection film of the present invention across the polarizer. The compensation form may be affixed on the protective film on one side of the polarizing plate with an adhesive, or may be used as a protective film on one side. From the viewpoint of the thickness of the polarizing plate, it is particularly desirable to use the antireflection film of the present invention as the protective film on one side and the optical compensation film as the protective film on the opposite side across the polarizer. The optical compensation film may contain a material having optical anisotropy in the film itself, stretch the film, or both, so that the film itself has a specific optical anisotropy. Alternatively, an optically anisotropic layer (retardation layer) may be provided on the film.
As the optical compensation film, a known film can be used, but in terms of widening the viewing angle, a film having a layer having optical anisotropy made of a compound having a discotic structural unit is desirable. There are wide view films (WV-A, WV-SA) manufactured by Fuji Photo Film, but not limited thereto.
Further, in order to improve the contrast and color of the liquid crystal display, the optical anisotropy (Re, Rth) is small and substantially optically isotropic, and further the optical anisotropy (Re , Rth) having a small wavelength dispersion is preferably used, and in the case of a reflective display, it is also preferable to use a film having a function of a λ / 4 plate composed of one or a plurality of films.
When the optical compensation film is used as a protective film for the polarizing film, the surface on the side to be bonded to the polarizing film is preferably saponified, and is preferably performed according to the saponifying process.

(偏光膜)
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸する際、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に、吸収軸が長手方向に対して45°傾斜させたものが偏光板の生産性の観点から好ましく用いられる。
ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落[0020]〜[0030]に詳しい記載がある。
(Polarizing film)
As the polarizing film, a known polarizing film or a polarizing film cut out from a long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction may be used. A long polarizing film whose absorption axis is neither parallel nor perpendicular to the longitudinal direction is produced by the following method.
That is, at the time of stretching by applying tension while holding both ends of a continuously supplied polymer film by a holding means, the film is stretched at least 1.1 to 20.0 times in the film width direction, and the film is held at both ends. The direction of travel of the film is such that the angle between the direction of travel of the film at the exit of the step of holding both ends of the film and the substantial stretching direction of the film is inclined by 20 to 70 °. The film can be manufactured by a stretching method in which both ends of the film are bent. In particular, a film whose absorption axis is inclined by 45 ° with respect to the longitudinal direction is preferably used from the viewpoint of productivity of the polarizing plate.
The method for stretching the polymer film is described in detail in paragraphs [0020] to [0030] of JP-A-2002-86554.

[画像表示装置]
本発明の反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)、電界放出ディスプレイ(FED)、表面電界ディスプレイ(SED)のような画像表示装置に適用することができる。本発明の反射防止フィルムは透明支持体を有しているので、透明支持体側を画像表示装置の画像表示面に接着して用いられる。
[Image display device]
The antireflection film of the present invention includes a liquid crystal display (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), a cathode tube display (CRT), a field emission display (FED), and a surface electric field display (SED). The present invention can be applied to such an image display device. Since the antireflection film of the present invention has a transparent support, the transparent support side is adhered to the image display surface of the image display device.

本発明の反射防止フィルムを、偏光膜の表面保護フィルムの片側として用いて偏光板を作成し、液晶表示装置の表面に用いることが特に好ましい。この場合、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。特に、大型液晶テレビ等の用途として、VA、IPS、OCB等で好ましく用いることができ、中小型の表示装置用途であれば、TN、STN等にも好ましく用いることができる。液晶テレビ等の用途としては、表示画面の対角が13インチ以上であり、特に好ましくは20インチ以上である。本発明の反射防止フィルムは表面ヘイズ値、粗さなどが好ましい範囲にあるため、実質上でギラツキの問題が無く、精細度に関しては制限無くもちいることが可能であるが、XGA以下(縦横比3:4の表示装置において1024×768以下)に特に好ましく用いることができる。   It is particularly preferable to prepare a polarizing plate using the antireflection film of the present invention as one side of the surface protective film of the polarizing film and use it on the surface of the liquid crystal display device. In this case, transmissive and reflective types of modes such as twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB), etc. Alternatively, it can be preferably used for a transflective liquid crystal display device. In particular, it can be preferably used for VA, IPS, OCB, etc. as a use for large liquid crystal televisions, etc., and it can also be preferably used for TN, STN, etc. if it is used for small and medium display devices. For applications such as liquid crystal televisions, the diagonal of the display screen is 13 inches or more, particularly preferably 20 inches or more. Since the antireflection film of the present invention has a surface haze value, roughness and the like in a preferable range, there is substantially no problem of glare and it can be used without limitation with regard to definition, but it is XGA or less (aspect ratio) In a display device of 3: 4, it can be particularly preferably used for 1024 × 768 or less).

VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。   The VA mode liquid crystal cell includes (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Proceed) 28 (1997) 845 in which the VA mode is converted into a multi-domain (MVA mode) for widening the viewing angle. ), (3) A liquid crystal cell in a mode (n-ASM mode) in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied (Preliminary collections 58-59 of the Japan Liquid Crystal Society) (1998)) and (4) SURVAVAL mode liquid crystal cells (announced at LCD International 98).

OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置であり、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。   The OCB mode liquid crystal cell is a liquid crystal display device using a bend alignment mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned in a substantially opposite direction (symmetrically) between the upper part and the lower part of the liquid crystal cell. It is disclosed in the specifications of Japanese Patent Nos. 45882525 and 5410422. Since the rod-like liquid crystal molecules are symmetrically aligned at the upper and lower portions of the liquid crystal cell, the bend alignment mode liquid crystal cell has a self-optical compensation function. For this reason, this liquid crystal mode is also called an OCB (Optically Compensatory Bend) liquid crystal mode. The bend alignment mode liquid crystal display device has an advantage of high response speed.

ECBモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向しており、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。例えば「EL、PDP、LCDディスプレイ」東レリサーチセンター発行(2001)などに記載されている。   In an ECB mode liquid crystal cell, rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and is most frequently used as a color TFT liquid crystal display device, and is described in many documents. For example, it is described in “EL, PDP, LCD display” published by Toray Research Center (2001).

以下本発明を実施例により具体的に説明するが、本発明はこれらに限定されない。なお特別に断りのない限り、「部」及び「%」は質量基準である。
なお、以下、[実施例B]の防眩層用塗布液にチタンアルコキシドをも使用した防眩層用塗布液D、E、該防眩層用塗布液D、Eを用いた防眩フィルム(実施例B1−2、B1−3)、該防眩フィルムを用いた反射防止フィルム(実施例B2−2、B2−3)、該防眩フィルムないし反射防止フィルムを用いた偏光板(実施例B201−2、B201−3ないし実施例B202−2、B202−3)、該偏光板を用いた液晶表示装置(実施例B301−2、B301−3ないし実施例B302−2、B302−3)などが、本発明の直接の実施例の記載である(表6〜10なども参照)。
一方、防眩層用塗布液にチタンアルコキシドなどの金属化合物を使用していない[実施例A]記載の各実施例(表1〜5なども参照)や[実施例B]記載の他の実施例(実施例B1−1、実施例B2−1、実施例B201−1、実施例B202−1、実施例B301−1、実施例B302−1)の記載は本発明の実施例ではなく、本発明を理解する上での参考例としての記載である。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Unless otherwise specified, “part” and “%” are based on mass.
In addition, hereinafter, the antiglare layer coating liquids D and E using titanium alkoxide in the coating liquid for the antiglare layer in [Example B], and the antiglare film using the coating liquids D and E for the antiglare layer ( Example B1-2, B1-3), antireflection film using the antiglare film (Example B2-2, B2-3), polarizing plate using the antiglare film or antireflection film (Example B201) -2, B201-3 to Examples B202-2, B202-3), liquid crystal display devices using the polarizing plates (Examples B301-2, B301-3 to Examples B302-2, B302-3), etc. , A description of direct examples of the invention (see also Tables 6-10, etc.).
On the other hand, no metal compound such as titanium alkoxide is used in the coating solution for the antiglare layer. Examples described in [Example A] (see also Tables 1 to 5) and other examples described in [Example B] Examples (Example B1-1, Example B2-1, Example B201-1, Example B202-1, Example B301-1, Example B302-1) are not examples of the present invention. It is a description as a reference example for understanding the invention.

[実施例A]
〔防眩フィルムの作製〕
[Example A]
[Preparation of antiglare film]

(セルロースエステル溶液の調整)
─────────────────────────────────────
セルロースエステル溶液Aの組成
─────────────────────────────────────
セルロースエステル(アセチル基置換度2.9、Mn=160000、
Mw/Mn=1.7) 100.0部
トリメチロールプロパントリベンゾエート(多価アルコールエステル、可塑剤)
5.0部
エチルフタリルエチルグリコレート(可塑剤) 5.0部
2−ヒドロキシ−4−ベンジルオキシベンゾフェノン(紫外線吸収剤) 1.0部
アエロジル R972V(日本アエロジル(株)製、微粒子) 0.15部
メチレンクロライド 440.0部
エタノール 35.0部
─────────────────────────────────────
(Adjustment of cellulose ester solution)
─────────────────────────────────────
Composition of cellulose ester solution A ------------------------------
Cellulose ester (acetyl group substitution degree 2.9, Mn = 16000,
Mw / Mn = 1.7) 100.0 parts trimethylolpropane tribenzoate (polyhydric alcohol ester, plasticizer)
5.0 parts ethylphthalyl ethyl glycolate (plasticizer) 5.0 parts 2-hydroxy-4-benzyloxybenzophenone (ultraviolet absorber) 1.0 part Aerosil R972V (manufactured by Nippon Aerosil Co., Ltd., fine particles) 0. 15 parts methylene chloride 440.0 parts ethanol 35.0 parts ─────────────────────────────────────

─────────────────────────────────────
セルロースエステル溶液Bの組成
─────────────────────────────────────
セルロースエステル(アセチル基置換度2.9、Mn=160000、
Mw/Mn=1.7) 100.0部
トリフェニルホスフェート(可塑剤) 12.0部
2−ヒドロキシ−4−ベンジルオキシベンゾフェノン(紫外線吸収剤) 1.0部
アエロジル R972V(日本アエロジル(株)製、微粒子) 0.15部
メチレンクロライド 440.0部
エタノール 35.0部
─────────────────────────────────────
─────────────────────────────────────
Composition of cellulose ester solution B ─────────────────────────────────────
Cellulose ester (acetyl group substitution degree 2.9, Mn = 16000,
Mw / Mn = 1.7) 100.0 parts triphenyl phosphate (plasticizer) 12.0 parts 2-hydroxy-4-benzyloxybenzophenone (ultraviolet absorber) 1.0 part Aerosil R972V (manufactured by Nippon Aerosil Co., Ltd.) 0.15 parts Methylene chloride 440.0 parts Ethanol 35.0 parts ──────────────────────────────── ─────

(セルロースエステルフィルムの作製)
記載のセルロースエステル、可塑剤、紫外線吸収剤、微粒子、溶剤を用いてセルロースエステル溶液A、Bを調製した。即ち、溶剤を密閉容器に投入し、攪拌しながら残りの素材を順次投入し、加熱、攪拌しながら完全に溶解し、混合した。微粒子は溶剤の一部で分散して添加した。溶液を流延する温度まで下げて一晩静置し、脱泡操作を施した後、溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過し、セルロースエステル溶液A,Bを得た。
(Production of cellulose ester film)
Cellulose ester solutions A and B were prepared using the described cellulose ester, plasticizer, ultraviolet absorber, fine particles, and solvent. That is, the solvent was put into an airtight container, the remaining materials were put in order while stirring, and completely dissolved and mixed while heating and stirring. The fine particles were added dispersed in a part of the solvent. After the temperature was lowered to the temperature at which the solution was cast and allowed to stand overnight, a defoaming operation was performed. Filtration using 244 gave cellulose ester solutions A and B.

次に、33℃に温度調整したセルロースエステル溶液を、ダイに送液して、ダイスリットからステンレスベルト上に均一に流延した。ステンレスベルトの流延部は裏面から37℃の温水で加熱した。流延後、金属支持体上のドープ膜(ステンレスベルトに流延以降はウェブと言う)に44℃の温風を当てて乾燥させ、剥離の際の残留溶媒量が120質量%で剥離し、剥離の際に張力をかけて縦延伸倍率1.1倍となるように延伸し、次いで、テンターでウェブ端部を把持し、130℃で幅手方向に延伸倍率1.1倍となるように延伸した。延伸後、その幅を維持したまま数秒間保持し、幅方向の張力を緩和させた後幅保持を解放し、更に125℃に設定された第3乾燥ゾーンで20分間搬送させて乾燥を行い、幅1.5m、かつ端部に幅1.5cm、高さ8μmのナーリングを有する膜厚50μmのセルロースエステルフィルムA、Bを作製した。   Next, the cellulose ester solution whose temperature was adjusted to 33 ° C. was fed to a die and uniformly cast from a die slit onto a stainless steel belt. The cast part of the stainless steel belt was heated from the back with hot water of 37 ° C. After casting, the dope film on the metal support (referred to as web after casting on the stainless steel belt) is dried by applying hot air of 44 ° C., and the residual solvent amount at the time of peeling is peeled off at 120% by mass, Tension is applied at the time of peeling so that the longitudinal draw ratio is 1.1 times, and then the web end is gripped by a tenter so that the draw ratio is 1.1 times in the width direction at 130 ° C. Stretched. After stretching, hold for several seconds while maintaining its width, release the width holding after relaxing the tension in the width direction, and further carry it for 20 minutes in the third drying zone set at 125 ° C. to perform drying, Cellulose ester films A and B with a film thickness of 50 μm having a width of 1.5 m, a width of 1.5 cm at the end, and a height of 8 μm were prepared.

(防眩層用塗布液の調整)
─────────────────────────────────────
防眩層用塗布液Aの組成
─────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
8μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
8μm架橋アクリル−スチレン粒子トルエン分散液(30%) 133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
─────────────────────────────────────
(Adjustment of antiglare layer coating solution)
─────────────────────────────────────
Composition of coating solution A for anti-glare layer ──────────────────────────────────────
PETA 540.0 parts polymethyl methacrylate solution (20%) 300.0 parts Irgacure 184 20.0 parts 8 μm crosslinked polystyrene particle toluene dispersion (30%) 17.0 parts 8 μm crosslinked acrylic-styrene particle toluene dispersion (30 %) 133.0 parts Toluene 47.0 parts Cyclohexanone 98.0 parts Silicone oil “X-22-164C” 0.1 part ───────────────────── ────────────────

─────────────────────────────────────
防眩層用塗布液Bの組成
─────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
6μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
6μm架橋アクリル−スチレン粒子トルエン分散液(30%) 133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
─────────────────────────────────────
─────────────────────────────────────
Composition of coating solution B for antiglare layer ──────────────────────────────────────
PETA 540.0 parts polymethyl methacrylate solution (20%) 300.0 parts Irgacure 184 20.0 parts 6 μm crosslinked polystyrene particle toluene dispersion (30%) 17.0 parts 6 μm crosslinked acrylic-styrene particle toluene dispersion (30 %) 133.0 parts Toluene 47.0 parts Cyclohexanone 98.0 parts Silicone oil “X-22-164C” 0.1 part ───────────────────── ────────────────

─────────────────────────────────────
防眩層用塗布液Cの組成
─────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
3.5μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
3.5μm架橋アクリル−スチレン粒子トルエン分散液(30%) 133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
─────────────────────────────────────
─────────────────────────────────────
Composition of Coating Solution C for Antiglare Layer ─────────────────────────────────────
PETA 540.0 parts polymethyl methacrylate solution (20%) 300.0 parts Irgacure 184 20.0 parts 3.5 μm crosslinked polystyrene particle toluene dispersion (30%) 17.0 parts 3.5 μm crosslinked acrylic-styrene particle toluene Dispersion (30%) 133.0 parts Toluene 47.0 parts Cyclohexanone 98.0 parts Silicone oil “X-22-164C” 0.1 part ───────────────── ────────────────────

それぞれ使用した化合物を以下に示す。
・PETA:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[KAYARAD PET−30:日本化薬(株)製]・ポリメタクリル酸メチル溶液(20%):分子量12万のポリメタクリル酸メチル(アルドリッチ社製)の30%トルエン溶液
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
The compounds used are shown below.
PETA: mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate [KAYARAD PET-30: manufactured by Nippon Kayaku Co., Ltd.] Polymethyl methacrylate solution (20%): polymethyl methacrylate having a molecular weight of 120,000 (Aldrich) 30% toluene solution Irgacure 184: Polymerization initiator [Ciba Specialty Chemicals Co., Ltd.]

・3.5μm架橋ポリスチレン粒子トルエン分散液(30%):SX−350H[平均粒径3.5μm架橋ポリスチレン粒子、屈折率1.60、綜研化学(株)製]の30wt%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・6μm架橋ポリスチレン粒子トルエン分散液(30%):[SX−350Hと同様の組成を有し、平均粒径6.0μm、屈折率1.60の架橋ポリスチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・8μm架橋ポリスチレン粒子トルエン分散液(30%):[SX−350Hと同様の組成を有し、平均粒径8.0μm、屈折率1.60の架橋ポリスチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・3.5μm架橋アクリル−スチレン粒子トルエン分散液(30%):SX−350HL[平均粒径3.5μm、屈折率1.55、綜研化学(株)製]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・6μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径6.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・8μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径8.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
3.5 μm crosslinked polystyrene particle toluene dispersion (30%): 30 wt% toluene dispersion of SX-350H [average particle size 3.5 μm crosslinked polystyrene particles, refractive index 1.60, manufactured by Soken Chemical Co., Ltd.], Polytron Use after dispersion at 10,000 rpm for 20 minutes with a disperser. 6 μm crosslinked polystyrene particle toluene dispersion (30%): [Crosslinked with the same composition as SX-350H, average particle size 6.0 μm, refractive index 1.60. Polystyrene particles] 30% toluene dispersion, Polytron disperser used after dispersion for 20 minutes at 10,000 rpm. 8 μm cross-linked polystyrene particle toluene dispersion (30%): [Same composition as SX-350H, average particle size 8.0 μm, cross-linked polystyrene particles having a refractive index of 1.60] in a 30% toluene dispersion, 20% at 10,000 rpm in a polytron disperser. Use after dispersion: 3.5 μm crosslinked acrylic-styrene particle toluene dispersion (30%): 30% toluene dispersion of SX-350HL [average particle size 3.5 μm, refractive index 1.55, manufactured by Soken Chemical Co., Ltd.] , Used after dispersion for 20 minutes at 10,000 rpm with a Polytron disperser. 6 μm crosslinked acrylic-styrene particle toluene dispersion (30%): [same composition as SX-350HL, average particle size 6.0 μm, refractive index 1 .55 cross-linked acrylic-styrene particles] 30% toluene dispersion, polytron disperser used after dispersion for 20 minutes at 10,000 rpm. 8 μm cross-linked acrylic-styrene particles toluene dispersion (30%): [same as SX-350HL 30% toluene dispersion of a cross-linked acrylic-styrene particle having a composition, an average particle size of 8.0 μm, and a refractive index of 1.55] 20 minutes after use distributed 10000rpm

・X22−164C:両末端メタクリル変性ポリジメチルシロキサン(信越化学工業(株)製) X22-164C: methacryl-modified polydimethylsiloxane at both ends (Shin-Etsu Chemical Co., Ltd.)

(防眩層の塗設)
防眩層用塗布液A、B、Cを調製し、これをセルロースエステルフィルムA、Bの各々の表面上に、マイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を80mJ/cm2として塗布層を硬化させ、厚さ25μmの防眩層を形成し、防眩フィルム(実施例A1−1、2、比較例A1−1〜4)を作製した。更に、防眩層の厚さが7.5μmであること以外は同様にして、防眩層を形成し、防眩フィルム(比較例A1−5〜10)を作製した。また更に、紫外線ランプの照射部の照射量を150mJ/cm2として塗布層を硬化させる以外は同様にして、防眩層を形成し、防眩フィルム(実施例A1−3、4、比較例A1−11〜20)を作製した。更に、紫外線ランプの照度を20、50、150、200mW/cm2と変化させる以外は実施例A1−1と同様にして、防眩層を形成し、防眩フィルム(実施例A1−5〜8)を作製した。得られた防眩フィルムを表1に示す。
(Coating of antiglare layer)
Prepare coating solutions A, B, and C for an antiglare layer, apply them on the surfaces of cellulose ester films A and B using a micro gravure coater, dry at 90 ° C, and then use an ultraviolet lamp. The illuminance of the irradiated part is 100 mW / cm 2 , the irradiation amount is 80 mJ / cm 2 , the coating layer is cured to form an antiglare layer with a thickness of 25 μm, and an antiglare film (Examples A1-1, 2 and Comparative Examples) A1-1 to 4) were prepared. Further, an antiglare layer was formed in the same manner except that the thickness of the antiglare layer was 7.5 μm, and antiglare films (Comparative Examples A1-5 to 10) were produced. Further, an antiglare layer was formed in the same manner except that the coating layer was cured by setting the irradiation amount of the irradiation part of the ultraviolet lamp to 150 mJ / cm 2 , and an antiglare film (Examples A1-3, 4, Comparative Example A1). -11 to 20) were produced. Further, an antiglare layer was formed in the same manner as in Example A1-1 except that the illuminance of the ultraviolet lamp was changed to 20 , 50, 150, 200 mW / cm 2, and an antiglare film (Examples A1-5 to 8) ) Was produced. The obtained antiglare film is shown in Table 1.

Figure 0004905787
Figure 0004905787

(防眩フィルムの鹸化処理)
上記の様にして得られた防眩フィルム(実施例A1−1〜A1−8、比較例A1−1〜A1−20)に、以下の鹸化処理を行った。
1.5モル/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.005モル/Lの希硫酸水溶液を調製し、35℃に保温した。
作製した防眩フィルムを、上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬して水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬して希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。このようにして、鹸化処理済み防眩フィルム(実施例A101−1〜8、比較例A101−1〜20)を作製した。
(Saponification treatment of antiglare film)
The anti-glare films (Examples A1-1 to A1-8, Comparative Examples A1-1 to A1-20) obtained as described above were subjected to the following saponification treatment.
A 1.5 mol / L aqueous sodium hydroxide solution was prepared and kept at 55 ° C. A 0.005 mol / L dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C.
The produced antiglare film was immersed in the aqueous sodium hydroxide solution for 2 minutes, and then immersed in water to sufficiently wash away the aqueous sodium hydroxide solution. Next, after immersing in the dilute sulfuric acid aqueous solution for 1 minute, the dilute sulfuric acid aqueous solution was sufficiently washed away by immersing in water. Finally, the sample was thoroughly dried at 120 ° C. In this way, saponified antiglare films (Examples A101-1 to 8 and Comparative Examples A101-1 to 20) were produced.

〔評価〕
得られた鹸化処理済み防眩フィルムについて下記の評価を行った。
[Evaluation]
The obtained saponification-treated antiglare film was evaluated as follows.

《平面性指数;微小な凹凸評価》
レーザー変位計:キーエンス(株)、型式:LT−8100、分解能:0.2μmを用いて、幅手方向にレーザー変位計で走査して、表面の細かい起伏を測定し、防眩フィルムの平面性を評価した。
<< Flatness index; Evaluation of minute irregularities >>
Laser displacement meter: Keyence Co., Ltd., Model: LT-8100, Resolution: 0.2 μm, Scan with a laser displacement meter in the width direction to measure fine undulations on the surface, flatness of anti-glare film Evaluated.

測定方法は、フィルムを平坦で水平の台の上に載せ、テープで幅手の両端を台に固定し、測定カメラを台と平行にセットしたシグマ光機社製の移動レールに、カメラレンズと試料フィルムの間隔が25mmとなるようにセットし、移動速度5cm/分で走査し測定した。測定はフィルム自身のうねり等の変形を観察する為、防眩層を設けた裏面側より行った。測定で得られる値はフィルムの微少な凹凸の状態と大きさである。   The measuring method is to place the film on a flat and horizontal table, fix both ends of the width to the table with tape, and set the measuring camera parallel to the table. It set so that the space | interval of a sample film might be set to 25 mm, and scanned and measured with the moving speed of 5 cm / min. The measurement was performed from the back side provided with an antiglare layer in order to observe deformation such as undulation of the film itself. The value obtained by the measurement is the state and size of minute irregularities on the film.

◎:フィルムの変形による凹凸が0.5μm未満
○:フィルムの変形による凹凸が0.5〜1.0μm未満
△:フィルムの変形による凹凸が1.0〜3.0μm未満
×:フィルムの変形による凹凸が3.0μm以上
A: Unevenness due to film deformation is less than 0.5 μm ○: Unevenness due to film deformation is less than 0.5 to 1.0 μm Δ: Unevenness due to film deformation is less than 1.0 to 3.0 μm ×: Due to film deformation Unevenness is more than 3.0μm

《平面性;目視評価》
幅90cm、長さ100cmの大きさに各試料を切り出し、40W蛍光灯(松下電器製FLR40S−EX−D/M)を5本並べて試料台に45°の角度から照らせるように高さ1.5mの高さに固定し、試料台の上に各フィルム試料を置き、フィルム裏面側に反射して見える凹凸を目で見て、次のように判定した。この方法によって「つれ」及び「しわ」の判定が出来る。
<<Flatness; Visual evaluation >>
Each sample was cut into a size of 90 cm in width and 100 cm in length, and a height of 1.5 m so that five 40 W fluorescent lamps (FLR40S-EX-D / M manufactured by Matsushita Electric) were arranged and the sample stage could be illuminated from an angle of 45 °. The film samples were placed on the sample stage, and the unevenness that was reflected on the back side of the film was visually observed and judged as follows. By this method, it is possible to determine “tsun” and “wrinkle”.

◎:蛍光灯が5本とも真っすぐに見えた
○:蛍光灯が少し曲がって見えるところがある
△:蛍光灯が全体的に少し曲がって見える
×:蛍光灯が大きくうねって見える
◎: All five fluorescent lights look straight ○: Some fluorescent lights appear to be bent slightly △: Fluorescent lights appear to be slightly bent overall ×: Fluorescent lights appear to swell greatly

《鉛筆硬度評価》
耐傷性の指標としてJIS K5400に記載の鉛筆硬度評価を行った。光拡散フィルムを温度25℃、湿度60%RHで2時間調湿した後、JIS S6006に規定する2H〜5Hの試験用鉛筆を用いて、4.9Nの荷重にて、以下のとおりの判定で評価し、OKとなる最も高い硬度を評価値とした。
n=5の評価において傷なし〜傷1つ :OK
n=5の評価において傷が3つ以上 :NG
《Pencil hardness evaluation》
As an index of scratch resistance, pencil hardness evaluation described in JIS K5400 was performed. After conditioning the light diffusion film at a temperature of 25 ° C. and a humidity of 60% RH for 2 hours, using a 2H-5H test pencil specified in JIS S6006, with a load of 4.9 N, the following determination was made. The highest hardness that was evaluated as OK was taken as the evaluation value.
In evaluation of n = 5, there is no scratch to one scratch: OK
In evaluation of n = 5, 3 or more scratches: NG

《耐傷性》
#0000のスティールウールにより、防眩層の表面を1000gの荷重をかけながら10回往復させ、裏に黒テープを密着させ、グリーンランプで傷の発生の有無を目視により観察し、面積1cm2あたりの傷の本数を判定した。
《Scratch resistance》
The steel wool # 0000, the surface of the antiglare layer by reciprocating 10 times while applying a load of 1000 g, back to is adhered black tape was visually observed occurrence of scratches in the green lamp, per area 1 cm 2 The number of wounds was determined.

《密着性》
各試料の防眩層を有する側の表面に、カッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて、合計100個の正方形の升目を刻み、サンシャインウエザーメーター〔スガイ試験機(株)製、炭素アーク灯、ブラックパネル温度83℃、雨あり条件下〕による340時間の耐候性試験後、下記基準により評価した。
反射防止フィルム試料を温度25℃、相対湿度60%の条件で2時間調湿した。各試料の防眩層を有する側の表面に、カッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて、合計100個の正方形の升目を刻み、その面に日東電工(株)製のポリエステル粘着テープ(No.31B)を貼りつけた。30分経時したあとに、垂直方向にテープを素早く引き剥がし、剥がれた升目の数を数えて、下記4段階の基準で評価した。同じ密着評価を3回行って平均をとった。
◎:100升において剥がれが全く認められなかった。
○:100升において1〜2升の剥がれが認められた。
△:100升において3〜10升の剥がれが認められた(許容範囲内)。
×:100升において11升以上の剥がれが認められた。
《Adhesion》
On the surface of each sample that has an antiglare layer, cut in 11 vertical and 11 horizontal cuts with a cutter knife in a grid pattern, and carve a total of 100 square squares. After a 340-hour weather resistance test according to a carbon arc lamp manufactured by Co., Ltd., a black panel temperature of 83 ° C. and a rainy condition, evaluation was performed according to the following criteria.
The antireflection film sample was conditioned for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%. On the surface of each sample that has an antiglare layer, 11 vertical and 11 horizontal cuts are made in a grid pattern with a cutter knife, and a total of 100 square squares are carved, and Nitto Denko Corporation ) Made of polyester adhesive tape (No. 31B). After 30 minutes, the tape was quickly peeled off in the vertical direction, and the number of squares peeled off was counted and evaluated according to the following four criteria. The same adhesion evaluation was performed 3 times and the average was taken.
A: No peeling was observed at 100 mm.
○: peeling of 1 to 2 mm was observed at 100 mm.
Δ: Peeling of 3 to 10 mm was observed at 100 mm (within tolerance).
X: Peeling of 11 mm or more was observed at 100 mm.

Figure 0004905787
Figure 0004905787

(まとめ)
表2に示される結果より、以下のことが明らかである。
リン酸エステル系の可塑剤を含有するセルロースエステルフィルムBを用いたもの(比較例A101−2〜4,8〜10,12〜14,18〜20)は、平面性及び密着性において劣ったものであった。
また、膜厚が薄い(7.5μm)防眩層を形成したもの(比較例A101−5〜10,15〜20)は、鉛筆硬度、耐擦傷性において劣ったものであった。そして、防眩層の膜厚が薄い場合に平均粒子径の大きい光拡散性粒子(8μm)を用いたもの(比較例A101−5,8,15,18)は、表面ヘイズが大きくなりすぎ(25%)、耐擦傷性も少し劣っていた。
一方、防眩層の膜厚が適切(25μm)であっても、平均粒子径が小さい(3.5μm)光拡散性粒子を含有する防眩層用塗布液Cを用いたもの(比較例A101−1,4,11,14)は、耐擦傷性において少し劣ったものであった。
これに対し、本発明の防眩フィルム(実施例A101−1〜8)は、リン酸エステル系以外の2種の可塑剤と紫外線吸収剤を含有するセルロースエステルフィルムAの表面上に、適切な平均粒子径範囲内(8μmないし6μm)の光拡散性粒子を含有する防眩層用塗布液AないしBを塗布後硬化して、適切な厚さ範囲内(25μm)の防眩層を形成し、適切な表面ヘイズ範囲内(1%)としたもので、密着性、鉛筆硬度、耐擦傷性、平面性のすべてにおいて優れたものであった。特に、電離放射線の照射光量が100mJ/cm2以下であっても(実施例A101−1,2)、すべてにおいて優れたものであった。この優れた性能は、電離放射線の照射光量を80mJ/cm2に固定して、電離放射線の照度を20、50、100、150mJと変化させたときも変わらなかった(実施例A101−5〜8)。
(Summary)
From the results shown in Table 2, the following is clear.
What used the cellulose-ester film B containing the phosphate ester type plasticizer (Comparative Example A101-2-4,8-10,12-14,18-20) was inferior in planarity and adhesiveness. Met.
Moreover, what formed the thin (7.5 micrometer) anti-glare layer (Comparative Example A101-5-10, 15-20) was inferior in pencil hardness and scratch resistance. And when the film thickness of an anti-glare layer is thin, those using light diffusing particles (8 μm) having a large average particle diameter (Comparative Examples A101-5, 8, 15, 18) have too high surface haze ( 25%), and the scratch resistance was slightly inferior.
On the other hand, even when the film thickness of the antiglare layer is appropriate (25 μm), the antiglare layer coating liquid C containing light diffusing particles having a small average particle diameter (3.5 μm) is used (Comparative Example A101). -1,4,11,14) was slightly inferior in scratch resistance.
On the other hand, the anti-glare film of the present invention (Examples A101-1 to 8) is suitable on the surface of the cellulose ester film A containing two kinds of plasticizers other than the phosphate ester and the ultraviolet absorber. The antiglare layer coating liquids A and B containing light diffusing particles within the average particle size range (8 μm to 6 μm) are cured after application to form an antiglare layer within an appropriate thickness range (25 μm). It was within an appropriate surface haze range (1%), and was excellent in all of adhesion, pencil hardness, scratch resistance, and flatness. In particular, even when the amount of ionizing radiation was 100 mJ / cm 2 or less (Examples A101-1, 2), all were excellent. This excellent performance was not changed when the irradiation light amount of ionizing radiation was fixed at 80 mJ / cm 2 and the illuminance of ionizing radiation was changed to 20, 50, 100, 150 mJ (Examples A101-5 to 8). ).

〔反射防止フィルムの作製〕
(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
[Preparation of antireflection film]
(Preparation of sol solution a)
A stirrer, a reactor equipped with a reflux condenser, 120 parts of methyl ethyl ketone, 100 parts of acryloyloxypropyltrimethoxysilane (KBM-5103, manufactured by Shin-Etsu Chemical Co., Ltd.), 3 parts of diisopropoxyaluminum ethyl acetoacetate were added and mixed. Thereafter, 30 parts of ion-exchanged water was added and reacted at 60 ° C. for 4 hours, and then cooled to room temperature to obtain sol solution a. The mass average molecular weight was 1600, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. Further, from the gas chromatography analysis, the raw material acryloyloxypropyltrimethoxysilane did not remain at all.

(低屈折率層用塗布液の調製)
────────────────────────────────────────
低屈折率層用塗布液Aの組成
────────────────────────────────────────
・ポリシロキサンおよび水酸基を含有する熱架橋性含フッ素ポリマー
(JTA113、固形分濃度6%、屈折率:1.44、JSR(株)製) 13質量部
・コロイダルシリカ分散液MEK−ST−L
(商品名、平均粒径45nm、固形分濃度30%、日産化学(株)製) 1.3質量部
・前記ゾル液a 0.6質量部
・メチルエチルケトン 5質量部
・シクロヘキサノン 0.6質量部
・レベリング剤 総塗布液量の0.3質量%となるように計算して混合
────────────────────────────────────────
(Preparation of coating solution for low refractive index layer)
────────────────────────────────────────
Composition of coating liquid A for low refractive index layer ─────────────────────────────────────────
-Thermally crosslinkable fluorine-containing polymer containing polysiloxane and hydroxyl group (JTA113, solid content concentration 6%, refractive index: 1.44, manufactured by JSR Corporation) 13 parts by mass-Colloidal silica dispersion MEK-ST-L
(Trade name, average particle size 45 nm, solid content concentration 30%, manufactured by Nissan Chemical Co., Ltd.) 1.3 parts by mass, the sol solution a 0.6 parts by mass, methyl ethyl ketone 5 parts by mass, cyclohexanone 0.6 parts by mass, Leveling agent Calculated to be 0.3% by mass of the total coating liquid amount ─────────────────────────────── ──────────

上記混合液を攪拌した後、孔径1μmのポリプロピレン製フィルターで濾過して低屈折率層用塗布液Aを調製した。この塗布液により形成される層の屈折率は、1.45であった。   After stirring the mixed solution, it was filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution A for a low refractive index layer. The refractive index of the layer formed with this coating solution was 1.45.

(低屈折率層の塗設)
上記防眩フィルム(実施例A1−1〜8、比較例A1−1〜20)の上に、上記低屈折率層用塗布液Aを用い、低屈折率層膜厚が95nmになるように調節して、マイクログラビア塗工方式で低屈折率層を形成し、反射防止フィルム試料(実施例A2−1〜8、比較例A2−1〜20)を作製した。
(Coating of low refractive index layer)
On the antiglare film (Examples A1-1 to 8, Comparative Examples A1-1 to A-20), the coating solution A for the low refractive index layer is used, and the thickness of the low refractive index layer is adjusted to 95 nm. And the low-refractive-index layer was formed with the micro gravure coating system, and the anti-reflective film sample (Example A2-1 to 8, Comparative Example A2-1 to 20) was produced.

硬化条件を以下に示す。
(1)乾燥:80℃−120秒
(2)照射前熱処理:95℃−5分
(3)UV硬化:90℃−1分、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度120mW/cm2、照射量240mJ/cm2の照射量とした。
(4)照射後熱処理:30℃−5分
The curing conditions are shown below.
(1) Drying: 80 ° C. for 120 seconds (2) Pre-irradiation heat treatment: 95 ° C. for 5 minutes (3) UV curing: 90 ° C. for 1 minute, nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less. While purging, a 240 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) was used to obtain an irradiance of 120 mW / cm 2 and an irradiation amount of 240 mJ / cm 2 .
(4) Post-irradiation heat treatment: 30 ° C. for 5 minutes

(反射防止フィルムの鹸化処理)
上記の様にして得られた反射防止フィルム試料に、以下の鹸化処理を行った。
1.5モル/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.005モル/Lの希硫酸水溶液を調製し、35℃に保温した。
作製した反射防止フィルムを、上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬して水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬して希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。このようにして、鹸化処理済み反射防止フィルム(実施例A102−1〜8、比較例A102−1〜20)を作製した。
(Saponification treatment of antireflection film)
The antireflection film sample obtained as described above was subjected to the following saponification treatment.
A 1.5 mol / L aqueous sodium hydroxide solution was prepared and kept at 55 ° C. A 0.005 mol / L dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C.
The prepared antireflection film was immersed in the aqueous sodium hydroxide solution for 2 minutes, and then immersed in water to sufficiently wash away the aqueous sodium hydroxide solution. Next, after immersing in the dilute sulfuric acid aqueous solution for 1 minute, the dilute sulfuric acid aqueous solution was sufficiently washed away by immersing in water. Finally, the sample was thoroughly dried at 120 ° C. In this way, saponified antireflection films (Examples A102-1 to 8 and Comparative Examples A102-1 to 20) were produced.

〔評価〕
得られた鹸化処理済み反射防止フィルムについて、上記鹸化処理済み防眩フィルムと同様の評価を行った。
[Evaluation]
The obtained saponified antireflection film was evaluated in the same manner as the saponified antiglare film.

Figure 0004905787
Figure 0004905787

(まとめ)
表3に示した反射防止フィルムの評価は、表2に示した防眩フィルムと同様、リン酸エステル系の可塑剤を含有するセルロースエステルフィルムBを用いたものは、平面性及び密着性において劣り、膜厚が薄い(7.5μm)防眩層を形成したものは、鉛筆硬度、耐擦傷性において劣り、防眩層の膜厚が薄い場合に平均粒子径の大きい光拡散性粒子(8μm)を用いたものは、表面ヘイズが大きくなりすぎ、耐擦傷性も少し劣っている。また、防眩層の膜厚が適切(25μm)であっても、平均粒子径が小さい(3.5μm)光拡散性粒子を含有する防眩層用塗布液Cを用いたものは、耐擦傷性において少し劣った。
また、リン酸エステル系以外の2種の可塑剤と紫外線吸収剤を含有するセルロースエステルフィルムAの表面上に、適切な平均粒子径範囲内(8μmないし6μm)の光拡散性粒子を含有する防眩層用塗布液AないしBを塗布後硬化して、適切な厚さ範囲内(25μm)の防眩層を形成し、さらに低屈折率層用塗布液Aをその上に塗布後硬化して、低屈折率層を形成した本発明の反射防止フィルムは、表面ヘイズも適切な範囲内(1%)にあり、密着性、鉛筆硬度、耐擦傷性、平面性のすべてにおいて優れたものであった。特に、電離放射線の照射光量が100mJ/cm2以下であっても(実施例A102−1,2)、すべてにおいて優れたものであった。この優れた性能は、電離放射線の照射光量を80mJ/cm2に固定して、電離放射線の照度を20、50、100、150mJと変化させたときも変わらなかった(実施例A102−5〜8)。
(Summary)
The evaluation of the antireflection film shown in Table 3 is inferior in flatness and adhesiveness using the cellulose ester film B containing a phosphate ester type plasticizer as in the antiglare film shown in Table 2. Those having a thin (7.5 μm) antiglare layer are inferior in pencil hardness and scratch resistance, and have a large average particle diameter when the antiglare layer is thin (8 μm) In the case of using, the surface haze becomes too large and the scratch resistance is slightly inferior. In addition, even when the film thickness of the antiglare layer is appropriate (25 μm), an antiglare layer coating solution C containing light diffusing particles having a small average particle diameter (3.5 μm) is scratch resistant. A little inferior in sex.
Further, a protective film containing light diffusing particles within an appropriate average particle diameter range (8 μm to 6 μm) on the surface of the cellulose ester film A containing two kinds of plasticizers other than phosphate ester and an ultraviolet absorber. After applying the coating liquid A or B for the glare layer, the coating is cured to form an antiglare layer within an appropriate thickness range (25 μm), and further, the coating liquid A for the low refractive index layer is coated thereon and cured. The antireflective film of the present invention having a low refractive index layer has a surface haze within an appropriate range (1%), and is excellent in all of adhesion, pencil hardness, scratch resistance, and flatness. It was. In particular, even when the amount of ionizing radiation applied was 100 mJ / cm 2 or less (Examples A102-1, 2), all were excellent. This excellent performance was not changed even when the irradiation light amount of ionizing radiation was fixed at 80 mJ / cm 2 and the illuminance of ionizing radiation was changed to 20, 50, 100, 150 mJ (Examples A102-5 to 8). ).

〔防眩フィルム付き偏光板の作製〕
延伸したポリビニルアルコールフィルムに、ヨウ素を吸着させて偏光膜を作製した。鹸化処理済みの防眩フィルム(実施例A101−1〜8、比較例A101−1〜20)に、ポリビニルアルコール系接着剤を用いて、防眩フィルムの支持体側(トリアセチルセルロース)が偏光膜側となるように偏光膜の片側に貼り付けた。また、ディスコティック構造単位の円盤面が支持体面に対して傾いており、且つ該ディスコティック構造単位の円盤面と支持体面とのなす角度が、光学異方性層の深さ方向において変化している光学異方性層を有する視野角拡大フィルム「ワイドビューフィルムSA」{富士写真フイルム(株)製}を鹸化処理し、ポリビニルアルコール系接着剤を用いて、偏光膜のもう一方の側に貼り付けた。このようにして防眩フィルム付き偏光板(実施例A201−1〜8、比較例A201−1〜20)を作製した。これら防眩フィルム付き偏光板(実施例A201−1〜8、比較例A201−1〜20)に鉛筆硬度、耐擦傷性、密着性の評価を行ったところ、鹸化処理済み防眩フィルム(実施例A101−1〜8、比較例A101−1〜20)と同様の性能が得られた。
[Production of polarizing plate with antiglare film]
A polarizing film was prepared by adsorbing iodine to a stretched polyvinyl alcohol film. A saponified antiglare film (Examples A101-1 to 8 and Comparative Examples A101-1 to 20) is coated with a polyvinyl alcohol adhesive, and the support side (triacetylcellulose) of the antiglare film is on the polarizing film side. It stuck on the one side of the polarizing film so that it might become. Further, the disc surface of the discotic structural unit is inclined with respect to the support surface, and the angle formed by the disc surface of the discotic structural unit and the support surface changes in the depth direction of the optically anisotropic layer. Wide-view film SA with an optically anisotropic layer “Side-view film SA” {Fuji Photo Film Co., Ltd.} is saponified and attached to the other side of the polarizing film using a polyvinyl alcohol adhesive I attached. Thus, polarizing plates with antiglare films (Examples A201-1 to 8 and Comparative Examples A201-1 to 20) were produced. These polarizing plates with an antiglare film (Examples A201-1 to 8 and Comparative Examples A201-1 to 20) were evaluated for pencil hardness, scratch resistance, and adhesion. As a result, a saponified antiglare film (Examples) was obtained. A101-1 to 8 and Comparative Example A101-1 to 20) were obtained.

〔反射防止フィルム付き偏光板の作製〕
鹸化処理済みの防眩フィルムの替わりに鹸化処理済みの反射防止フィルム(実施例A102−1〜8、比較例A102−1〜20)を使用する以外は、防眩フィルム付き偏光板の作製と同様にして、反射防止フィルム付き偏光板(実施例A202−1〜8、比較例A202−1〜20)を作製した。これら反射防止フィルム付き偏光板(実施例A202−1〜8、比較例A202−1〜20)に鉛筆硬度、耐擦傷性、密着性の評価を行ったところ、鹸化処理済み反射防止フィルム(実施例A102−1〜8、比較例A102−1〜20)と同様の性能が得られた。
[Production of polarizing plate with antireflection film]
Similar to the production of a polarizing plate with an antiglare film, except that a saponified antireflection film (Example A 102-1 to 8, Comparative Example A 102-1 to 20) is used in place of the saponified antiglare film. Thus, polarizing plates with antireflection films (Examples A202-1 to 8, Comparative Examples A202-1 to 20) were produced. These polarizing plates with antireflection films (Examples A202-1 to 8 and Comparative Examples A202-1 to 20-20) were evaluated for pencil hardness, scratch resistance, and adhesion. As a result, a saponified antireflection film (Examples) was obtained. A performance similar to that of A102-1 to 8 and Comparative Example A102-1 to 20) was obtained.

〔液晶表示装置の作製〕
視野角測定を行う液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。
[Production of liquid crystal display device]
A liquid crystal panel for viewing angle measurement was produced as follows, and the characteristics as a liquid crystal display device were evaluated.

富士通製15型ディスプレイVL−150SDのあらかじめ貼合されていた両面の偏光板を剥がして、上記作製した防眩フィルム付き偏光板(実施例A201−1〜8、比較例A201−1〜20)をそれぞれ液晶セルのガラス面に貼合した。   The polarizing plates on both sides of the 15-inch display VL-150SD manufactured by Fujitsu were previously peeled off, and the polarizing plates with antiglare films prepared above (Examples A201-1 to 8 and Comparative Examples A201-1 to 20) were used. Each was bonded to the glass surface of the liquid crystal cell.

その際、その偏光板の貼合の向きは、光学補償フィルム(位相差フィルム)の面が、液晶セル側となるように、かつ、あらかじめ貼合されていた偏光板と同一の方向に吸収軸が向くように行い、液晶表示装置(実施例A301−1〜8、比較例A301−1〜20)を各々作製した。   At that time, the direction of bonding of the polarizing plate is such that the surface of the optical compensation film (retardation film) is on the liquid crystal cell side, and the absorption axis is in the same direction as the polarizing plate previously bonded. The liquid crystal display devices (Examples A301-1 to 8 and Comparative Examples A301-1 to A20-1) were respectively produced.

富士通製15型ディスプレイVL−150SDのあらかじめ貼合されていた両面の偏光板を剥がして、上記作製した反射防止フィルム付き偏光板(実施例A202−1〜8、比較例A202−1〜20)をそれぞれ液晶セルのガラス面に貼合した。   The polarizing plates on both sides of the 15-inch display VL-150SD manufactured by Fujitsu were previously peeled off, and the polarizing plates with antireflection films prepared above (Examples A202-1 to 8, Comparative Examples A202-1 to 20) were used. Each was bonded to the glass surface of the liquid crystal cell.

その際、その偏光板の貼合の向きは、光学補償フィルム(位相差フィルム)の面が、液晶セル側となるように、かつ、あらかじめ貼合されていた偏光板と同一の方向に吸収軸が向くように行い、液晶表示装置(実施例A302−1〜8、比較例A302−1〜20)を各々作製した。   At that time, the direction of bonding of the polarizing plate is such that the surface of the optical compensation film (retardation film) is on the liquid crystal cell side, and the absorption axis is in the same direction as the polarizing plate previously bonded. The liquid crystal display devices (Examples A302-1 to A302-1, Comparative Example A302-1 to 20) were manufactured.

〔評価〕
《視認性の評価》
こうして得られた各液晶表示装置について、60℃、90%RHの条件で100時間放置した後、23℃、55%RHに戻した。その結果、表示装置の表面を観察すると本発明の防眩性反射防止フィルムを用いたものは、平面性に優れていたのに対し、比較の偏光板は細かい波打ち状のむらが認められ、目が疲れやすかった。
[Evaluation]
<Evaluation of visibility>
Each liquid crystal display device thus obtained was allowed to stand for 100 hours at 60 ° C. and 90% RH, and then returned to 23 ° C. and 55% RH. As a result, when the surface of the display device was observed, the one using the antiglare antireflection film of the present invention was excellent in flatness, whereas the comparative polarizing plate had fine wavy unevenness and eyes. It was easy to get tired.

◎:表面に波打ち状のむらは全く認められない
○:表面にわずかに波打ち状のむらが認められる
△:表面に細かい波打ち状のむらがやや認められる
×:表面に細かい波打ち状のむらが認められる
A: No wavy unevenness is observed on the surface. O: A slight wavy unevenness is observed on the surface. Δ: A slight wavy unevenness is slightly observed on the surface. X: A fine wavy unevenness is observed on the surface.

《塗布むら評価》
塗布むらは試料を目視にて観察し、以下の評価尺度で評価した。
<Evaluation of coating unevenness>
The coating unevenness was observed visually and evaluated with the following evaluation scale.

◎:塗布むらは認められない
○:端部にわずかにむらが認められる
△:白く弱い塗布斑が認められる
×:幅方向で白く見える塗布斑が認められる
◎: Application unevenness is not recognized. ○: Slight unevenness is observed at the end. △: White and weak application spots are observed. ×: Application spots that appear white in the width direction are observed.

《反射色むらの評価》
各液晶表示装置について、画面を黒表示として、表面の反射むらを目視で評価した。
<Evaluation of uneven reflection color>
About each liquid crystal display device, the screen was set as black display, and the reflection unevenness of the surface was evaluated visually.

◎:反射光の色むらはわからず、黒がしまって見える
○:わずかに反射光の色むらが認識される
△:反射光の色むらが認識されるが実用上問題ないレベル
×:反射光の色むらがかなり気になる
◎: Color unevenness of reflected light is not known and black appears to be dark ○: Color unevenness of reflected light is slightly recognized Δ: Color unevenness of reflected light is recognized, but there is no practical problem ×: Reflected light I'm worried about uneven color

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

また、別に、ELDIM社製EZ−contrastにより各液晶表示装置において、視野角を測定した。視野角は、液晶セルの白表示と黒表示時のコントラスト比が10以上を示すパネル面に対する法線方向からの傾き角の範囲で表した。その結果、本発明の偏光板を用いた、本発明の液晶表示装置(実施例A301−1〜8、実施例A302−1〜8)では、斜め45°方向から測定した時に160°以上の視野角であることが確認された。また、斜め方向から蛍光灯の写りこみがあっても黒がしまって見え、反射光の色むらもなく、目が疲れることはなかった。それに対して、比較の液晶表示装置(比較例A301−1〜20、比較例A302−1〜20)では、細かい波打ち状のむらにより斜め方向からの黒がしまって見えず、視認性に劣り、視野角拡大による視認性改善効果が減退してしまっていた。   Separately, the viewing angle was measured in each liquid crystal display device by EZ-contrast manufactured by ELDIM. The viewing angle was expressed in the range of the tilt angle from the normal direction with respect to the panel surface where the contrast ratio at the time of white display and black display of the liquid crystal cell is 10 or more. As a result, in the liquid crystal display devices of the present invention using the polarizing plate of the present invention (Examples A301-1 to 8 and Examples A302-1 to 8), a field of view of 160 ° or more when measured from an oblique 45 ° direction. It was confirmed to be a horn. Moreover, even if there was a reflection of a fluorescent lamp from an oblique direction, it looked black, the color of reflected light was not uneven, and the eyes did not get tired. On the other hand, in the comparative liquid crystal display devices (Comparative Examples A301-1 to 20 and Comparative Example A302-1 to 20), black from an oblique direction does not appear due to fine wavy unevenness, and the visibility is inferior. Visibility improvement effect by corner enlargement had declined.

(まとめ)
表4、表5に示される結果より、以下のことが明らかである。
リン酸エステル系の可塑剤を含有するセルロースエステルフィルムBを用いたものは、視認性、塗布ムラ及び反射色むらにおいて劣ったものであった。
(Summary)
From the results shown in Tables 4 and 5, the following is clear.
What used the cellulose-ester film B containing the phosphate ester type plasticizer was inferior in visibility, coating unevenness, and reflection color unevenness.

(結果)
本発明の防眩フィルムは、硬度や耐擦傷性とともに密着性や平面性に優れ、また、低い照射光量で硬化させることが出来るため、生産性に優れ、特に薄膜や広幅のセルロースエステルフィルム基材を用いて製造された防眩フィルムであっても硬度や耐擦傷性に優れるばかりでなく、密着性や平面性にも優れた防眩フィルムが得られた。また、この防眩フィルム上に反射防止層を設けることによって、反射光の色むらもなく、偏光板に用いることで視野角拡大効果が生かされて、斜めからの視認性に優れた液晶表示装置が得られた。
(result)
The antiglare film of the present invention has excellent adhesion and flatness as well as hardness and scratch resistance, and can be cured with a low irradiation light quantity, so that it is excellent in productivity, particularly a thin film or wide cellulose ester film substrate. Even if it was the anti-glare film manufactured using this, not only was it excellent in hardness and scratch resistance, but also an anti-glare film excellent in adhesion and flatness was obtained. In addition, by providing an antireflection layer on the antiglare film, there is no uneven color of reflected light, and the effect of widening the viewing angle is obtained by using it for a polarizing plate. was gotten.

[実施例B]
〔防眩フィルムの作製〕
[Example B]
[Preparation of antiglare film]

(セルロースエステル溶液の調整・セルロースエステルフィルムの作製)
実施例Aと同様にセルロースエステル溶液A、Bを調整し、実施例Aと同様にセルロースエステルフィルムA、Bを作製した。
(Adjustment of cellulose ester solution and production of cellulose ester film)
Cellulose ester solutions A and B were prepared in the same manner as in Example A, and cellulose ester films A and B were prepared in the same manner as in Example A.

(防眩層用塗布液の調整)
─────────────────────────────────────
防眩層用塗布液Dの組成
─────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
Ti(OBu)4 20.0部
8μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
8μm架橋アクリル−スチレン粒子トルエン分散液(30%) 133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
─────────────────────────────────────
(Adjustment of antiglare layer coating solution)
─────────────────────────────────────
Composition of coating solution D for anti-glare layer ─────────────────────────────────────
PETA 540.0 parts polymethyl methacrylate solution (20%) 300.0 parts Irgacure 184 20.0 parts Ti (OBu) 4 20.0 parts 8 μm crosslinked polystyrene particle toluene dispersion (30%) 17.0 parts 8 μm crosslinked Acrylic-styrene particle toluene dispersion (30%) 133.0 parts Toluene 47.0 parts Cyclohexanone 98.0 parts Silicone oil “X-22-164C” 0.1 part ──────────── ─────────────────────────

─────────────────────────────────────
防眩層用塗布液Eの組成
─────────────────────────────────────
PETA 540.0部
ポリメタクリル酸メチル溶液(20%) 300.0部
イルガキュア184 20.0部
Ti(OBu)4 20.0部
5μm架橋ポリスチレン粒子トルエン分散液(30%) 17.0部
5μm架橋アクリル−スチレン粒子トルエン分散液(30%) 133.0部
トルエン 47.0部
シクロヘキサノン 98.0部
シリコーンオイル「X−22−164C」 0.1部
─────────────────────────────────────
─────────────────────────────────────
Composition of coating solution E for antiglare layer ──────────────────────────────────────
PETA 540.0 parts polymethyl methacrylate solution (20%) 300.0 parts Irgacure 184 20.0 parts Ti (OBu) 4 20.0 parts 5 μm crosslinked polystyrene particle toluene dispersion (30%) 17.0 parts 5 μm crosslinked Acrylic-styrene particle toluene dispersion (30%) 133.0 parts Toluene 47.0 parts Cyclohexanone 98.0 parts Silicone oil “X-22-164C” 0.1 part ──────────── ─────────────────────────

それぞれ使用した化合物を以下に示す。
・PETA:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[KAYARAD PET−30:日本化薬(株)製]
・ポリメタクリル酸メチル溶液(20%):分子量12万のポリメタクリル酸メチル(アルドリッチ社製)の30%トルエン溶液
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
The compounds used are shown below.
PETA: a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate [KAYARAD PET-30: manufactured by Nippon Kayaku Co., Ltd.]
Polymethyl methacrylate solution (20%): 30% toluene solution of polymethyl methacrylate having a molecular weight of 120,000 (manufactured by Aldrich) Irgacure 184: polymerization initiator [manufactured by Ciba Specialty Chemicals Co., Ltd.]

・Ti(OBu)4:テトラ−n−ブトキシチタン[日本曹達株式会社製]
・3.5μm架橋ポリスチレン粒子トルエン分散液(30%):SX−350H[平均粒径3.5μm架橋ポリスチレン粒子、屈折率1.60、綜研化学(株)製]の30wt%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・5μm架橋ポリスチレン粒子トルエン分散液(30%):[SX−350Hと同様の組成を有し、平均粒径5.0μm、屈折率1.60の架橋ポリスチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・8μm架橋ポリスチレン粒子トルエン分散液(30%):[SX−350Hと同様の組成を有し、平均粒径8.0μm、屈折率1.60の架橋ポリスチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・3.5μm架橋アクリル−スチレン粒子トルエン分散液(30%):SX−350HL[平均粒径3.5μm、屈折率1.55、綜研化学(株)製]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・5μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径5.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
・8μm架橋アクリル−スチレン粒子トルエン分散液(30%):[SX−350HLと同様の組成を有し、平均粒径8.0μm、屈折率1.55の架橋アクリル−スチレン粒子]の30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用
Ti (OBu) 4 : Tetra-n-butoxy titanium [manufactured by Nippon Soda Co., Ltd.]
3.5 μm crosslinked polystyrene particle toluene dispersion (30%): 30 wt% toluene dispersion of SX-350H [average particle size 3.5 μm crosslinked polystyrene particles, refractive index 1.60, manufactured by Soken Chemical Co., Ltd.], Polytron Use after dispersion at 10,000 rpm for 20 minutes in a disperser. 5 μm crosslinked polystyrene particle toluene dispersion (30%): [Cross-linked with the same composition as SX-350H, average particle size 5.0 μm, refractive index 1.60. Polystyrene particles] 30% toluene dispersion, Polytron disperser used after dispersion for 20 minutes at 10,000 rpm. 8 μm cross-linked polystyrene particle toluene dispersion (30%): [Same composition as SX-350H, average particle size 8.0 μm, cross-linked polystyrene particles having a refractive index of 1.60] in a 30% toluene dispersion, 20% at 10,000 rpm in a polytron disperser. Use after dispersion: 3.5 μm crosslinked acrylic-styrene particle toluene dispersion (30%): 30% toluene dispersion of SX-350HL [average particle size 3.5 μm, refractive index 1.55, manufactured by Soken Chemical Co., Ltd.] , Used after dispersion for 20 minutes at 10,000 rpm with a Polytron disperser. 5 μm crosslinked acrylic-styrene particle toluene dispersion (30%): [Same composition as SX-350HL, average particle size 5.0 μm, refractive index 1 .55 cross-linked acrylic-styrene particles] 30% toluene dispersion, polytron disperser used after dispersion for 20 minutes at 10,000 rpm. 8 μm cross-linked acrylic-styrene particles toluene dispersion (30%): [same as SX-350HL 30% toluene dispersion of a cross-linked acrylic-styrene particle having an average particle size of 8.0 μm and a refractive index of 1.55] in a polytron disperser 20 minutes after use distributed 10000rpm

・X22−164C:両末端メタクリル変性ポリジメチルシロキサン(信越化学工業(株)製) X22-164C: methacryl-modified polydimethylsiloxane at both ends (Shin-Etsu Chemical Co., Ltd.)

(防眩層の塗設)
防眩層用塗布液A,D、Eを調製し、これをセルロースエステルフィルムA、Bの各々の表面上に、マイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を80mJ/cm2として塗布層を硬化させ、厚さ25μmの防眩層を形成し、防眩フィルム(実施例B1−1〜3、比較例B1−1〜3)を作製した。得られた防眩フィルムを表6に示す。
(Coating of antiglare layer)
Prepare coating solutions A, D, and E for the antiglare layer, apply them on the surfaces of cellulose ester films A and B using a micro gravure coater, dry at 90 ° C, and then use an ultraviolet lamp. The illuminance of the irradiated part is 100 mW / cm 2 , the irradiation amount is 80 mJ / cm 2 , the coating layer is cured, and an antiglare layer with a thickness of 25 μm is formed. B1-1 to 3) were produced. Table 6 shows the obtained antiglare film.

Figure 0004905787
Figure 0004905787

〔評価〕
得られた防眩フィルムについて下記の評価を行った。
[Evaluation]
The following evaluation was performed about the obtained anti-glare film.

《平面性指数;微小な凹凸評価》
レーザー変位計:キーエンス(株)、型式:LT−8100、分解能:0.2μmを用いて、幅手方向にレーザー変位計で走査して、表面の細かい起伏を測定し、防眩フィルムの平面性を評価した。
<< Flatness index; Evaluation of minute irregularities >>
Laser displacement meter: Keyence Co., Ltd., Model: LT-8100, Resolution: 0.2 μm, Scan with a laser displacement meter in the width direction to measure fine undulations on the surface, flatness of anti-glare film Evaluated.

測定方法は、フィルムを平坦で水平の台の上に載せ、テープで幅手の両端を台に固定し、測定カメラを台と平行にセットしたシグマ光機社製の移動レールに、カメラレンズと試料フィルムの間隔が25mmとなるようにセットし、移動速度5cm/分で走査し測定した。測定はフィルム自身のうねり等の変形を観察する為、防眩層を設けた裏面側より行った。測定で得られる値はフィルムの微少な凹凸の状態と大きさである。   The measuring method is to place the film on a flat and horizontal table, fix both ends of the width to the table with tape, and set the measuring camera parallel to the table. It set so that the space | interval of a sample film might be set to 25 mm, and scanned and measured with the moving speed of 5 cm / min. The measurement was performed from the back side provided with an antiglare layer in order to observe deformation such as undulation of the film itself. The value obtained by the measurement is the state and size of minute irregularities on the film.

◎:フィルムの変形による凹凸が0.5μm未満
○:フィルムの変形による凹凸が0.5〜1.0μm未満
△:フィルムの変形による凹凸が1.0〜3.0μm未満
×:フィルムの変形による凹凸が3.0μm以上
A: Unevenness due to film deformation is less than 0.5 μm ○: Unevenness due to film deformation is less than 0.5 to 1.0 μm Δ: Unevenness due to film deformation is less than 1.0 to 3.0 μm ×: Due to film deformation Unevenness is more than 3.0μm

《平面性;目視評価》
幅90cm、長さ100cmの大きさに各試料を切り出し、40W蛍光灯(松下電器製FLR40S−EX−D/M)を5本並べて試料台に45°の角度から照らせるように高さ1.5mの高さに固定し、試料台の上に各フィルム試料を置き、フィルム裏面側に反射して見える凹凸を目で見て、次のように判定した。この方法によって「つれ」及び「しわ」の判定が出来る。
<<Flatness; Visual evaluation >>
Each sample was cut into a size of 90 cm in width and 100 cm in length, and a height of 1.5 m so that five 40 W fluorescent lamps (FLR40S-EX-D / M manufactured by Matsushita Electric) were arranged and the sample stage could be illuminated from an angle of 45 °. The film samples were placed on the sample stage, and the unevenness that was reflected on the back side of the film was visually observed and judged as follows. By this method, it is possible to determine “tsun” and “wrinkle”.

◎:蛍光灯が5本とも真っすぐに見えた
○:蛍光灯が少し曲がって見えるところがある
△:蛍光灯が全体的に少し曲がって見える
×:蛍光灯が大きくうねって見える
◎: All five fluorescent lights look straight ○: Some fluorescent lights appear to be bent slightly △: Fluorescent lights appear to be slightly bent overall ×: Fluorescent lights appear to swell greatly

《鉛筆硬度評価》
耐傷性の指標としてJIS K5400に記載の鉛筆硬度評価を行った。光拡散フィルムを温度25℃、湿度60%RHで2時間調湿した後、JIS S6006に規定する2H〜5Hの試験用鉛筆を用いて、4.9Nの荷重にて、以下のとおりの判定で評価し、OKとなる最も高い硬度を評価値とした。
n=5の評価において傷なし〜傷1つ :OK
n=5の評価において傷が3つ以上 :NG
《Pencil hardness evaluation》
As an index of scratch resistance, pencil hardness evaluation described in JIS K5400 was performed. After conditioning the light diffusion film at a temperature of 25 ° C. and a humidity of 60% RH for 2 hours, using a 2H-5H test pencil specified in JIS S6006, with a load of 4.9 N, the following determination was made. The highest hardness that was evaluated as OK was taken as the evaluation value.
In evaluation of n = 5, there is no scratch to one scratch: OK
In evaluation of n = 5, 3 or more scratches: NG

《耐傷性》
#0000のスティールウールにより、防眩層の表面を1000gの荷重をかけながら10回往復させ、裏に黒テープを密着させ、グリーンランプで傷の発生の有無を目視により観察し、面積1cm2あたりの傷の本数を判定した。
《Scratch resistance》
The steel wool # 0000, the surface of the antiglare layer by reciprocating 10 times while applying a load of 1000 g, back to is adhered black tape was visually observed occurrence of scratches in the green lamp, per area 1 cm 2 The number of wounds was determined.

《密着性》
各試料の防眩層を有する側の表面に、カッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて、合計100個の正方形の升目を刻み、サンシャインウエザーメーター〔スガイ試験機(株)製、炭素アーク灯、ブラックパネル温度83℃、雨あり条件下〕による340時間の耐候性試験後、下記基準により評価した。
反射防止フィルム試料を温度25℃、相対湿度60%の条件で2時間調湿した。各試料の防眩層を有する側の表面に、カッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて、合計100個の正方形の升目を刻み、その面に日東電工(株)製のポリエステル粘着テープ(No.31B)を貼りつけた。30分経時したあとに、垂直方向にテー
プを素早く引き剥がし、剥がれた升目の数を数えて、下記4段階の基準で評価した。同じ密着評価を3回行って平均をとった。
◎:100升において剥がれが全く認められなかった。
○:100升において1〜2升の剥がれが認められた。
△:100升において3〜10升の剥がれが認められた(許容範囲内)。
×:100升において11升以上の剥がれが認められた。
《Adhesion》
On the surface of each sample that has an antiglare layer, cut in 11 vertical and 11 horizontal cuts with a cutter knife in a grid pattern, and carve a total of 100 square squares. After a 340-hour weather resistance test according to a carbon arc lamp manufactured by Co., Ltd., a black panel temperature of 83 ° C. and a rainy condition, evaluation was performed according to the following criteria.
The antireflection film sample was conditioned for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%. On the surface of each sample that has an antiglare layer, 11 vertical and 11 horizontal cuts are made in a grid pattern with a cutter knife, and a total of 100 square squares are carved, and Nitto Denko Corporation ) Made of polyester adhesive tape (No. 31B). After 30 minutes, the tape was quickly peeled off in the vertical direction, and the number of squares peeled off was counted and evaluated according to the following four criteria. The same adhesion evaluation was performed 3 times and the average was taken.
A: No peeling was observed at 100 mm.
○: peeling of 1 to 2 mm was observed at 100 mm.
Δ: Peeling of 3 to 10 mm was observed at 100 mm (within tolerance).
X: Peeling of 11 mm or more was observed at 100 mm.

Figure 0004905787
Figure 0004905787

(まとめ)
表7に示される結果より、以下のことが明らかである。
リン酸エステル系の可塑剤を含有するセルロースエステルフィルムBを用いたもの(比較例B1−1〜3)は、平面性及び密着性において劣ったものであった。
これに対し、本発明の防眩フィルム(実施例B1−1〜3)は、リン酸エステル系以外の2種の可塑剤と紫外線吸収剤を含有するセルロースエステルフィルムAの表面上に、適切な平均粒子径範囲内(8μmないし5μm)の光拡散性粒子と共に金属化合物(テトラ−n−ブトキシチタン)を含有する防眩層用塗布液A,D、Eを塗布後硬化して、適切な厚さ範囲内(25μm)の防眩層を形成し、適切な表面ヘイズ範囲内(1%)としたもので、密着性、鉛筆硬度、耐擦傷性、平面性に優れたものであった。
(Summary)
From the results shown in Table 7, the following is clear.
What used the cellulose-ester film B containing the phosphate ester type plasticizer (Comparative Example B1-1-3) was inferior in planarity and adhesiveness.
On the other hand, the antiglare film of the present invention (Examples B1-1 to B3) is appropriate on the surface of the cellulose ester film A containing two kinds of plasticizers other than the phosphate ester and the ultraviolet absorber. Applicable anti-glare layer coating liquids A, D and E containing a metal compound (tetra-n-butoxytitanium) together with light diffusing particles within an average particle diameter range (8 μm to 5 μm) are cured to an appropriate thickness. An antiglare layer having a thickness in the range (25 μm) was formed to have an appropriate surface haze range (1%), and was excellent in adhesion, pencil hardness, scratch resistance, and flatness.

〔反射防止フィルムの作製〕
(低屈折率層用塗布液の調製)
低屈折率層用塗布液Bを以下のようにして調製した。
正珪酸エチル(SiO2濃度28重量%)32.1gとノナデカフルオロドデシルトリメトキシシラン1.22gをイソプロピルアルコール55.0g、純水10g、濃度61重量%の硝酸1.69gとの混合液に混合し、50℃で1時間撹拌し、固形分濃度10重量%のマトリックス形成成分液(M−1)を調製した。
[Preparation of antireflection film]
(Preparation of coating solution for low refractive index layer)
A coating solution B for a low refractive index layer was prepared as follows.
A mixture of 32.1 g of normal ethyl silicate (SiO 2 concentration 28 wt%) and 1.22 g of nonadecafluorododecyltrimethoxysilane in 55.0 g of isopropyl alcohol, 10 g of pure water and 1.69 g of nitric acid with a concentration of 61 wt%. The mixture was mixed and stirred at 50 ° C. for 1 hour to prepare a matrix-forming component liquid (M-1) having a solid concentration of 10% by weight.

ついで、マトリックス形成成分液(M−1)6.7gに、中空シリカ微粒子ゾル(イソプロピルアルコールシリカゾル、平均粒子径40nm、シェル厚み6nm、シリカ濃度20質量%、シリカ粒子の屈折率1.30、特開2002−79616号公報の調製例4に準じサイズを変更して作成)を0.63g混合し、イソプロピルアルコールで希釈し、固形分濃度1.0重量%の低屈折率層用塗布液Bを調製した。   Subsequently, 6.7 g of the matrix-forming component liquid (M-1) was added to a hollow silica fine particle sol (isopropyl alcohol silica sol, average particle diameter 40 nm, shell thickness 6 nm, silica concentration 20 mass%, silica particle refractive index 1.30, Prepared in accordance with Preparation Example 4 of Kai 2002-79616) and mixed with 0.63 g and diluted with isopropyl alcohol to obtain a coating solution B for a low refractive index layer having a solid content concentration of 1.0% by weight. Prepared.

(低屈折率層の塗設)
上記防眩フィルム(実施例B1−1〜3、比較例B1−1〜3)の上に、上記低屈折率層用塗布液Bをマイクログラビア方式で塗設して、硬化後の低屈折率層膜厚が95nmになるように調節して反射防止フィルム試料(実施例B2−1〜3、比較例B2−1〜3)を作製した。低屈折率層塗布直前に、低屈折率層用塗布液に全固形分に対して1.5重量%の3−イソシアネ−トプロピルトリエトキシシランを添加した。
(Coating of low refractive index layer)
On the antiglare film (Examples B1-1 to 3 and Comparative Examples B1-1 to 3), the low refractive index layer coating liquid B is applied by a microgravure method, and the low refractive index after curing. Antireflection film samples (Examples B2-1 to B3 and Comparative Examples B2-1 to B3) were prepared by adjusting the layer thickness to 95 nm. Immediately before the application of the low refractive index layer, 1.5% by weight of 3-isocyanatopropyltriethoxysilane based on the total solid content was added to the coating solution for the low refractive index layer.

硬化条件を以下に示す。
(1)乾燥:90℃−150秒
(2)照射前熱処理:120℃−10分
(3)UV硬化:90℃−1分、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度120mW/cm2、照射量240mJ/cm2の照射量とした。
(4)照射後熱処理:30℃−5分
The curing conditions are shown below.
(1) Drying: 90 ° C. for 150 seconds (2) Pre-irradiation heat treatment: 120 ° C. for 10 minutes (3) UV curing: 90 ° C. for 1 minute, nitrogen so that the oxygen concentration is 0.01 vol% or less. While purging, a 240 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) was used to obtain an irradiance of 120 mW / cm 2 and an irradiation amount of 240 mJ / cm 2 .
(4) Post-irradiation heat treatment: 30 ° C. for 5 minutes

〔評価〕
得られた反射防止フィルムについて、上記防眩フィルムと同様の評価を行った。
[Evaluation]
About the obtained anti-reflective film, evaluation similar to the said anti-glare film was performed.

Figure 0004905787
Figure 0004905787

(まとめ)
表8に示した反射防止フィルムの評価は、表7に示した防眩フィルムと同様、リン酸エステル系の可塑剤を含有するセルロースエステルフィルムBを用いたものは、平面性及び密着性において劣っている(比較例B2−1〜3)。
また、リン酸エステル系以外の2種の可塑剤と紫外線吸収剤を含有するセルロースエステルフィルムAの表面上に、適切な平均粒子径範囲内(8μmないし5μm)の光拡散性粒子と共に金属化合物(テトラ−n−ブトキシチタン)を含有する防眩層用塗布液A,D、Eを塗布後硬化して、適切な厚さ範囲内(25μm)の防眩層を形成し、さらに低屈折率層用塗布液Bをその上に塗布後硬化して、低屈折率層を形成した本発明の反射防止フィルムは、表面ヘイズも適切な範囲内(1%)にあり、密着性、鉛筆硬度、耐擦傷性、平面性に優れたものであった。(実施例B2−1〜3)。
(Summary)
The evaluation of the antireflection film shown in Table 8 is inferior in flatness and adhesion, as in the antiglare film shown in Table 7, using the cellulose ester film B containing a phosphate ester plasticizer. (Comparative Example B2-1 to 3).
Further, on the surface of the cellulose ester film A containing two kinds of plasticizers other than phosphate ester and an ultraviolet absorber, a metal compound (with a light diffusing particle within an appropriate average particle diameter range (8 μm to 5 μm)) ( Anti-glare layer coating solutions A, D and E containing (tetra-n-butoxytitanium) are cured after coating to form an anti-glare layer within an appropriate thickness range (25 μm), and a low refractive index layer The antireflective film of the present invention in which the coating liquid B was applied and then cured to form a low refractive index layer has a surface haze within an appropriate range (1%), adhesion, pencil hardness, It was excellent in scratching and flatness. (Example B2-1 to 3).

〔防眩フィルム付き偏光板の作製〕 [Production of polarizing plate with antiglare film]

(防眩フィルムの裏面鹸化処理)
防眩フィルム試料(実施例B1−1〜3、比較例B1−1〜3)に、以下の鹸化処理を行った。
1.5モル/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.005モル/Lの希硫酸水溶液を調製し、35℃に保温した。
作製した防眩フィルムの防眩層側にラミネートを貼付し、上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬して水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬して希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させ、貼付したラミネートをはがした。このようにして、裏面鹸化処理済み防眩フィルム(実施例B101−1〜3、比較例B101−1〜3)を作製した。
(Back surface saponification treatment of anti-glare film)
The following saponification treatment was performed on the antiglare film samples (Examples B1-1 to B3 and Comparative Examples B1-1 to B3).
A 1.5 mol / L aqueous sodium hydroxide solution was prepared and kept at 55 ° C. A 0.005 mol / L dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C.
A laminate was affixed to the antiglare layer side of the produced antiglare film, immersed in the above sodium hydroxide aqueous solution for 2 minutes, and then immersed in water to sufficiently wash away the sodium hydroxide aqueous solution. Next, after immersing in the dilute sulfuric acid aqueous solution for 1 minute, the dilute sulfuric acid aqueous solution was sufficiently washed away by immersing in water. Finally, the sample was sufficiently dried at 120 ° C., and the adhered laminate was peeled off. Thus, the back surface saponification-treated anti-glare films (Example B101-1 to Comparative Example B101-1 to B101-3) were produced.

延伸したポリビニルアルコールフィルムに、ヨウ素を吸着させて偏光膜を作製した。防眩フィルム(実施例B101−1〜3、比較例B101−1〜3)に、ポリビニルアルコール系接着剤を用いて、防眩フィルムの支持体側(トリアセチルセルロース)が偏光膜側となるように偏光膜の片側に貼り付けた。また、ディスコティック構造単位の円盤面が支持体面に対して傾いており、且つ該ディスコティック構造単位の円盤面と支持体面とのなす角度が、光学異方性層の深さ方向において変化している光学異方性層を有する視野角拡大フィルム「ワイドビューフィルムSA」{富士写真フイルム(株)製}を鹸化処理し、ポリビニルアルコール系接着剤を用いて、偏光膜のもう一方の側に貼り付けた。このようにして防眩フィルム付き偏光板(実施例B201−1〜3、比較例B201−1〜3)を作製した。これら防眩フィルム付き偏光板(実施例B201−1〜3、比較例B201−1〜3)に鉛筆硬度、耐擦傷性、密着性の評価を行ったところ、防眩フィルム(実施例B1−1〜3、比較例B1−1〜3)と同様の性能が得られた。   A polarizing film was prepared by adsorbing iodine to a stretched polyvinyl alcohol film. A polyvinyl alcohol adhesive is used for the antiglare film (Examples B101-1 to B3, Comparative Example B101-1 to B101-3) so that the support side (triacetyl cellulose) of the antiglare film is the polarizing film side. Affixed to one side of the polarizing film. Further, the disc surface of the discotic structural unit is inclined with respect to the support surface, and the angle formed by the disc surface of the discotic structural unit and the support surface changes in the depth direction of the optically anisotropic layer. Wide-view film SA with an optically anisotropic layer “Side-view film SA” {Fuji Photo Film Co., Ltd.} is saponified and attached to the other side of the polarizing film using a polyvinyl alcohol adhesive I attached. In this way, polarizing plates with an antiglare film (Example B201-1 to Example B201-1 to Comparative Example B201-1 to 3) were produced. When evaluation of pencil hardness, scratch resistance, and adhesion was performed on these polarizing plates with an antiglare film (Example B201-1 to Comparative Example B201-1 to Comparative Example B201-1 to 3), an antiglare film (Example B1-1) was used. -3, the same performance as Comparative Examples B1-1 to 3) was obtained.

〔反射防止フィルム付き偏光板の作製〕
防眩フィルムの替わりに反射防止フィルム(実施例B2−1〜3、比較例B2−1〜3)を使用する以外は、防眩フィルム付き偏光板の作製と同様にして、反射防止フィルム付き偏光板(実施例B202−1〜3、比較例B202−1〜3)を作製した。これら反射防止フィルム付き偏光板(実施例B202−1〜3、比較例B202−1〜3)に鉛筆硬度、耐擦傷性、密着性の評価を行ったところ、反射防止フィルム(実施例B2−1〜3、比較例B2−1〜3)と同様の性能が得られた。
[Production of polarizing plate with antireflection film]
Polarized light with antireflection film in the same manner as the production of polarizing plate with antiglare film, except that an antireflection film (Examples B2-1 to B3, Comparative Example B2-1 to B2-1) is used instead of the antiglare film. Plates (Example B202-1 to Example B202-1 to Comparative Example B202-1 to Example B202-1) were produced. When these pencils with antireflection film (Example B202-1 to Comparative Example B202-1 to Comparative Example B202-1 to 3) were evaluated for pencil hardness, scratch resistance, and adhesion, an antireflection film (Example B2-1) was obtained. -3 and Comparative Examples B2-1 to 3) were obtained.

〔液晶表示装置の作製〕
視野角測定を行う液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。
[Production of liquid crystal display device]
A liquid crystal panel for viewing angle measurement was produced as follows, and the characteristics as a liquid crystal display device were evaluated.

富士通製15型ディスプレイVL−150SDのあらかじめ貼合されていた両面の偏光板を剥がして、上記作製した防眩フィルム付き偏光板(実施例B201−1、比較例B201−1)をそれぞれ液晶セルのガラス面に貼合した。   The polarizing plates on both sides of the 15-inch display VL-150SD manufactured by Fujitsu were peeled off in advance, and the polarizing plates with antiglare films (Example B201-1 and Comparative Example B201-1) prepared above were respectively used for liquid crystal cells. Bonded to the glass surface.

その際、その偏光板の貼合の向きは、光学補償フィルム(位相差フィルム)の面が、液晶セル側となるように、かつ、あらかじめ貼合されていた偏光板と同一の方向に吸収軸が向くように行い、液晶表示装置(実施例B301−1、比較例B301−1)を各々作製した。   At that time, the direction of bonding of the polarizing plate is such that the surface of the optical compensation film (retardation film) is on the liquid crystal cell side, and the absorption axis is in the same direction as the polarizing plate previously bonded. The liquid crystal display devices (Example B301-1 and Comparative Example B301-1) were respectively produced.

富士通製15型ディスプレイVL−150SDのあらかじめ貼合されていた両面の偏光板を剥がして、上記作製した反射防止フィルム付き偏光板(実施例B202−1、比較例B202−1)をそれぞれ液晶セルのガラス面に貼合した。   The polarizing plates on both sides of the 15-inch display VL-150SD manufactured by Fujitsu were previously peeled off, and the above-prepared polarizing plates with antireflection films (Example B202-1 and Comparative Example B202-1) were respectively used in the liquid crystal cell. Bonded to the glass surface.

その際、その偏光板の貼合の向きは、光学補償フィルム(位相差フィルム)の面が、液晶セル側となるように、かつ、あらかじめ貼合されていた偏光板と同一の方向に吸収軸が向くように行い、液晶表示装置(実施例B302−1、比較例B302−1)を各々作製した。   At that time, the direction of bonding of the polarizing plate is such that the surface of the optical compensation film (retardation film) is on the liquid crystal cell side, and the absorption axis is in the same direction as the polarizing plate previously bonded. The liquid crystal display devices (Example B302-1, Comparative Example B302-1) were produced.

〔評価〕
《視認性の評価》
こうして得られた各液晶表示装置について、60℃、90%RHの条件で100時間放置した後、23℃、55%RHに戻した。その結果、表示装置の表面を観察すると本発明の防眩性反射防止フィルムを用いたものは、平面性に優れていたのに対し、比較の偏光板は細かい波打ち状のむらが認められ、目が疲れやすかった。
[Evaluation]
<Evaluation of visibility>
Each liquid crystal display device thus obtained was allowed to stand for 100 hours at 60 ° C. and 90% RH, and then returned to 23 ° C. and 55% RH. As a result, when the surface of the display device was observed, the one using the antiglare antireflection film of the present invention was excellent in flatness, whereas the comparative polarizing plate had fine wavy unevenness and eyes. It was easy to get tired.

◎:表面に波打ち状のむらは全く認められない
○:表面にわずかに波打ち状のむらが認められる
△:表面に細かい波打ち状のむらがやや認められる
×:表面に細かい波打ち状のむらが認められる
A: No wavy unevenness is observed on the surface. O: A slight wavy unevenness is observed on the surface. Δ: A slight wavy unevenness is slightly observed on the surface. X: A fine wavy unevenness is observed on the surface.

《塗布むら評価》
塗布むらは試料を目視にて観察し、以下の評価尺度で評価した。
<Evaluation of coating unevenness>
The coating unevenness was observed visually and evaluated with the following evaluation scale.

◎:塗布むらは認められない
○:端部にわずかにむらが認められる
△:白く弱い塗布斑が認められる
×:幅方向で白く見える塗布斑が認められる
◎: Application unevenness is not recognized. ○: Slight unevenness is observed at the end. △: White and weak application spots are observed. ×: Application spots that appear white in the width direction are observed.

《反射色むらの評価》
各液晶表示装置について、画面を黒表示として、表面の反射むらを目視で評価した。
<Evaluation of uneven reflection color>
About each liquid crystal display device, the screen was set as black display, and the reflection unevenness of the surface was evaluated visually.

◎:反射光の色むらはわからず、黒がしまって見える
○:わずかに反射光の色むらが認識される
△:反射光の色むらが認識されるが実用上問題ないレベル
×:反射光の色むらがかなり気になる
◎: Color unevenness of reflected light is not known and black appears to be dark ○: Color unevenness of reflected light is slightly recognized Δ: Color unevenness of reflected light is recognized, but there is no practical problem ×: Reflected light I'm worried about uneven color

Figure 0004905787
Figure 0004905787

Figure 0004905787
Figure 0004905787

また、別に、ELDIM社製EZ−contrastにより各液晶表示装置において、視野角を測定した。視野角は、液晶セルの白表示と黒表示時のコントラスト比が10以上を示すパネル面に対する法線方向からの傾き角の範囲で表した。その結果、本発明の偏光板を用いた、本発明の液晶表示装置(実施例B301−1〜3、実施例B302−1〜3)では、斜め45°方向から測定した時に160°以上の視野角であることが確認された。また、斜め方向から蛍光灯の写りこみがあっても黒がしまって見え、反射光の色むらもなく、目が疲れることはなかった。それに対して、比較の液晶表示装置(比較例B301−1〜3、比較例B302−1〜3)では、細かい波打ち状のむらにより斜め方向からの黒がしまって見えず、視認性に劣り、視野角拡大による視認性改善効果が減退してしまっていた。   Separately, the viewing angle was measured in each liquid crystal display device by EZ-contrast manufactured by ELDIM. The viewing angle was expressed in the range of the tilt angle from the normal direction with respect to the panel surface where the contrast ratio at the time of white display and black display of the liquid crystal cell is 10 or more. As a result, in the liquid crystal display devices of the present invention using the polarizing plate of the present invention (Example B301-1 to Example B303-1 to Example B302-1 to 3), a field of view of 160 ° or more when measured from an oblique 45 ° direction. It was confirmed to be a horn. Moreover, even if there was a reflection of a fluorescent lamp from an oblique direction, it looked black, the color of reflected light was not uneven, and the eyes did not get tired. On the other hand, in the comparative liquid crystal display devices (Comparative Examples B301-1 to B303-1 and Comparative Example B302-1 to 3), black from an oblique direction does not appear due to fine wavy unevenness, and the visibility is inferior. Visibility improvement effect by corner enlargement had declined.

(まとめ)
表9、表10に示される結果より、以下のことが明らかである。
リン酸エステル系の可塑剤を含有するセルロースエステルフィルムBを用いたものは、視認性、塗布ムラ及び反射色むらにおいて劣ったものであった。
(Summary)
From the results shown in Tables 9 and 10, the following is clear.
What used the cellulose-ester film B containing the phosphate ester type plasticizer was inferior in visibility, coating unevenness, and reflection color unevenness.

(結果)
本発明の防眩フィルムは、硬度や耐擦傷性とともに密着性や平面性に優れ、また、低い照射光量で硬化させることが出来るため、生産性に優れ、特に薄膜や広幅のセルロースエステルフィルム基材を用いて製造された防眩フィルムであっても硬度や耐擦傷性に優れるばかりでなく、密着性や平面性にも優れた防眩フィルムが得られた。また、この防眩フィルム上に反射防止層を設けることによって、反射光の色むらもなく、偏光板に用いることで視野角拡大効果が生かされて、斜めからの視認性に優れた液晶表示装置が得られた。
(result)
The antiglare film of the present invention has excellent adhesion and flatness as well as hardness and scratch resistance, and can be cured with a low irradiation light quantity, so that it is excellent in productivity, particularly a thin film or wide cellulose ester film substrate. Even if it was the anti-glare film manufactured using this, not only was it excellent in hardness and scratch resistance, but also an anti-glare film excellent in adhesion and flatness was obtained. In addition, by providing an antireflection layer on the antiglare film, there is no uneven color of reflected light, and the effect of widening the viewing angle is obtained by using it for a polarizing plate. was gotten.

Claims (16)

紫外線吸収剤、及びリン酸エステル系可塑剤以外の可塑剤から選ばれる少なくとも2種以上の可塑剤を含有するセルロースエステルフィルム上に、少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子とチタンアルコキシド、ジルコニウムアルコキシド及びそれらのキレート化合物よりなる群から選ばれる少なくとも1種の金属化合物とを含有する硬化性樹脂組成物(A)を塗設してなる防眩層を有する防眩フィルムであって、該セルロースエステルフィルム中のリン酸エステル系可塑剤の含有率が1質量%未満であり、かつ該防眩層中の光拡散性粒子の平均粒子径が5〜15μmであり、該防眩層の膜厚が8〜40μm、および該防眩層塗設側の表面ヘイズが15%以下であることを特徴とする防眩フィルム。 On a cellulose ester film containing at least two kinds of plasticizers selected from ultraviolet absorbers and plasticizers other than phosphoric ester plasticizers, at least one kind of translucent resin and at least one kind of light diffusibility An anti-glare film having an anti-glare layer formed by coating particles and a curable resin composition (A) containing at least one metal compound selected from the group consisting of titanium alkoxides, zirconium alkoxides and their chelate compounds The content of the phosphate ester plasticizer in the cellulose ester film is less than 1% by mass, and the average particle size of the light diffusing particles in the antiglare layer is 5 to 15 μm, An anti-glare film, wherein the film thickness of the anti-glare layer is 8 to 40 μm, and the surface haze on the anti-glare layer coating side is 15% or less. 表面ヘイズが10%以下であり内部ヘイズが10〜90%であることを特徴とする請求項1に記載の防眩フィルム。 2. The antiglare film according to claim 1, wherein the surface haze is 10% or less and the internal haze is 10 to 90%. 荷重4.9Nの鉛筆硬度が4H以上であることを特徴とする請求項1又は請求項2に記載の防眩フィルム。 The antiglare film according to claim 1 or 2 , wherein a pencil hardness with a load of 4.9N is 4H or more. 該セルロースエステルフィルムが、総アシル基置換度2.6〜2.9、数平均分子量(Mn)80000〜200000、質量平均分子量(Mw)/数平均分子量(Mn)の値が1.4〜3.0であるセルロースエステル溶液を流延後、2軸延伸して製造されたものであり、かつ該防眩層中の透光性樹脂が電離放射線硬化性化合物を含有し、該防眩層が、該セルロースエステルフィルム上に該硬化性樹脂組成物(A)を塗設した後、電離放射線を照射して該硬化性樹脂組成物(A)を硬化させたことを特徴とする請求項1〜請求項のいずれか一項に記載の防眩フィルム。 The cellulose ester film has a total acyl group substitution degree of 2.6 to 2.9, a number average molecular weight (Mn) of 80000 to 200000, and a mass average molecular weight (Mw) / number average molecular weight (Mn) of 1.4 to 3 0.0, the cellulose ester solution is cast and then biaxially stretched, and the translucent resin in the antiglare layer contains an ionizing radiation curable compound, and the antiglare layer is The curable resin composition (A) is coated on the cellulose ester film and then irradiated with ionizing radiation to cure the curable resin composition (A). The anti-glare film according to claim 3 . 該防眩層中の透光性樹脂が、1分子中に少なくとも2個以上のエチレン性不飽和基を含む化合物を含有することを特徴とする、請求項1〜請求項のいずれか一項に記載の防眩フィルム。 -Proof translucent resin glare layer is at least a compound containing two or more ethylenically unsaturated groups characterized by containing any one of claims 1 to 4 in one molecule The anti-glare film as described in 2. 該セルロースエステルフィルムが含有する可塑剤の少なくとも1種が、多価アルコールエステル系可塑剤であることを特徴とする請求項1〜請求項のいずれか一項に記載の防眩フィルム。 The antiglare film according to any one of claims 1 to 5 , wherein at least one plasticizer contained in the cellulose ester film is a polyhydric alcohol ester plasticizer. 該セルロースエステルフィルムが含有する可塑剤の少なくとも1種が、クエン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、及び脂肪酸エステル系可塑剤から選択されることを特徴とする請求項1〜請求項のいずれか一項に記載の防眩フィルム。 At least one plasticizer contained in the cellulose ester film is selected from citrate ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, and fatty acid ester plasticizers. The antiglare film according to any one of claims 1 to 6 . 該セルロースエステルフィルムが含有する紫外線吸収剤の少なくとも1種が、ベンゾフェノン系紫外線吸収剤またはトリアジン系紫外線吸収剤であることを特徴とする請求項1〜請求項のいずれか一項に記載の防眩フィルム。 At least one UV absorber which the cellulose ester film contains is proof according to any one of claims 1 to 7, characterized in that the benzophenone ultraviolet absorber or triazine-based UV absorber Dazzle film. 請求項1〜請求項のいずれか一項に記載の防眩フィルム上に、防眩層よりも屈折率の低い低屈折率層を設けたことを特徴とする反射防止フィルム。 An antireflection film comprising a low refractive index layer having a refractive index lower than that of the antiglare layer on the antiglare film according to any one of claims 1 to 8 . 請求項1〜請求項のいずれか一項に記載の防眩フィルム、または請求項に記載の反射防止フィルムを、少なくとも一方の側に備えたことを特徴とする偏光板。 A polarizing plate comprising the antiglare film according to any one of claims 1 to 8 or the antireflection film according to claim 9 on at least one side. 請求項1〜請求項のいずれか一項に記載の防眩フィルム、請求項に記載の反射防止フィルム、及び請求項10に記載の偏光板の少なくとも一つが配置されていることを特徴とする画像表示装置。 At least one of the antiglare film according to any one of claims 1 to 8, the antireflection film according to claim 9 , and the polarizing plate according to claim 10 is disposed. An image display device. 紫外線吸収剤、及びリン酸エステル系可塑剤以外の可塑剤から選ばれる少なくとも2種以上の可塑剤を含有するセルロースエステルフィルム上に、少なくとも1種の透光性樹脂と少なくとも1種の光拡散性粒子とチタンアルコキシド、ジルコニウムアルコキシド及びそれらのキレート化合物よりなる群から選ばれる少なくとも1種の金属化合物とを含有する硬化性樹脂組成物(A)を塗設してなる防眩層を有する防眩フィルムの製造方法であって、
紫外線吸収剤及び少なくとも2種の可塑剤を含有し、かつ総アシル基置換度が2.6〜2.9、数平均分子量(Mn)が80,000〜200,000、質量平均分子量(Mw)/数平均分子量(Mn)の値が1.4〜3.0であるセルロースエステルを含有するセルロースエステル溶液を支持体上に流延し、剥離可能となるまで乾燥させ、支持体から剥離後に溶媒を含んだ状態で、2軸延伸し、乾燥させて得られたリン酸エステル系可塑剤の含有量が1質量%未満であるセルロースエステルフィルム上に、
少なくとも1種の透光性樹脂と、少なくとも1種の平均粒子径が5〜15μmである光拡散性粒子と、チタンアルコキシド、ジルコニウムアルコキシド及びそれらのキレート化合物よりなる群から選ばれる少なくとも1種の金属化合物とを含有する硬化性樹脂組成物(A)を塗設し、電離放射線を照射して、電離放射線の光量が5〜100mJ/cm2で該樹脂組成物(A)を硬化することを特徴とする防眩フィルムの製造方法。
On a cellulose ester film containing at least two kinds of plasticizers selected from ultraviolet absorbers and plasticizers other than phosphoric ester plasticizers, at least one kind of translucent resin and at least one kind of light diffusibility An anti-glare film having an anti-glare layer formed by coating particles and a curable resin composition (A) containing at least one metal compound selected from the group consisting of titanium alkoxides, zirconium alkoxides and their chelate compounds A manufacturing method of
Contains an ultraviolet absorber and at least two plasticizers, has a total acyl group substitution degree of 2.6 to 2.9, a number average molecular weight (Mn) of 80,000 to 200,000, and a weight average molecular weight (Mw). / A cellulose ester solution containing a cellulose ester having a number average molecular weight (Mn) value of 1.4 to 3.0 is cast on a support and dried until it can be peeled off. On a cellulose ester film having a phosphate ester plasticizer content of less than 1% by mass obtained by biaxial stretching and drying.
At least one kind of metal selected from the group consisting of at least one kind of translucent resin, at least one kind of light diffusing particles having an average particle diameter of 5 to 15 μm , titanium alkoxide, zirconium alkoxide and their chelate compounds. A curable resin composition (A) containing a compound is coated, irradiated with ionizing radiation, and the resin composition (A) is cured with an amount of ionizing radiation of 5 to 100 mJ / cm 2. A method for producing an antiglare film.
該樹脂組成物(A)を硬化させた層の膜厚が8〜40μmであることを特徴とする請求項12に記載の防眩フィルムの製造方法。 The method for producing an antiglare film according to claim 12 , wherein the thickness of the layer obtained by curing the resin composition (A) is 8 to 40 µm. 該硬化性樹組成物(A)を硬化させる電離放射線照射部の照度が、50〜150mW/cm2であることを特徴とする請求項12又は請求項13に記載の防眩フィルムの製造方法。 Illuminance of the ionizing radiation irradiation section for curing the curable wood composition (A) The production method of the antiglare film according to claim 12 or claim 13 characterized in that it is a 50~150mW / cm 2. 該セルロースエステルフィルムの延伸が、支持体から剥離後、溶媒を含んだ状態で縦方向(搬送方向)に延伸し、その後、テンターにて横方向に延伸するものであることを特徴とする請求項12〜請求項14のいずれか一項に記載の防眩フィルムの製造方法。 The cellulose ester film is stretched in the longitudinal direction (conveying direction) in a state containing a solvent after peeling from the support, and then stretched in the transverse direction by a tenter. method for producing an antiglare film according to any one of 12 to claim 14. 該硬化性樹脂組成物(A)を、張力を付与させながら硬化させることを特徴とする請求項12〜請求項15のいずれか一項に記載の防眩フィルムの製造方法。 The method for producing an antiglare film according to any one of claims 12 to 15 , wherein the curable resin composition (A) is cured while applying a tension.
JP2007055683A 2006-03-07 2007-03-06 Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film Active JP4905787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055683A JP4905787B2 (en) 2006-03-07 2007-03-06 Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006061464 2006-03-07
JP2006061464 2006-03-07
JP2007055683A JP4905787B2 (en) 2006-03-07 2007-03-06 Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film

Publications (2)

Publication Number Publication Date
JP2007272214A JP2007272214A (en) 2007-10-18
JP4905787B2 true JP4905787B2 (en) 2012-03-28

Family

ID=38675013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055683A Active JP4905787B2 (en) 2006-03-07 2007-03-06 Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film

Country Status (1)

Country Link
JP (1) JP4905787B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182102B2 (en) * 2008-03-28 2012-05-22 Fujifilm Corporation Transparent support, optical film, polarizing plate and image display device
US20110151224A1 (en) * 2009-12-23 2011-06-23 Ha Seon-Yeong Cellulose film and method for producing the same
CN105223775B (en) * 2014-07-04 2020-03-13 富士胶片株式会社 Curable composition, method for producing cured film, touch panel, and display device
CN106147357B (en) * 2015-06-02 2019-05-21 湖北航天化学技术研究所 A kind of light absorptive anti-glare hard coating film and its preparation method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134609A (en) * 2003-10-30 2005-05-26 Konica Minolta Opto Inc Antireflection film, method for manufacturing antireflection film, polarizing plate and display device
JP2005156615A (en) * 2003-11-20 2005-06-16 Konica Minolta Opto Inc Anti-glare film, glare-proof antireflection film, method for manufacturing them, polarizing plate and display device
JP2005309399A (en) * 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd Method for manufacturing light diffusing film, antireflection film, and polarizing plate using the same, and liquid crystal display device

Also Published As

Publication number Publication date
JP2007272214A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
EP1697131B1 (en) Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
JP4887013B2 (en) Antireflection film and display device using the same
JP5102958B2 (en) Method for producing antireflection film
JP2007045142A (en) Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate
US20060233972A1 (en) Optical functional film, production method thereof, and polarizing plate and image display device using the same
JP5046482B2 (en) Method for producing inorganic oxide fine particle dispersion, inorganic oxide fine particle dispersion, coating composition, optical film, antireflection film, polarizing plate, and liquid crystal display device
JPWO2005061595A1 (en) Stretched cellulose ester film, hard coat film, antireflection film and optical compensation film, and polarizing plate and display device using them
JP2007293313A (en) Coating composition, optical film, polarizing plate, image display device and method for manufacturing optical film
JP2007108725A (en) Optical film, antireflection film, polarizing plate using the same and display device
JP2005115359A (en) Optical functional film, antireflection film, polarizing plate and image display device
JP2006113561A (en) Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate
JP2006048025A (en) Antireflection film and manufacturing method thereof
JP2007133384A (en) Antiglare film, polarizing plate and image display apparatus
JP2012133079A (en) Hard coat film, production method of the same, antireflection film, polarizing plate and image display device
JP2006276839A (en) Optically functional film, its manufacturing method, and polarizing plate using same and image display device
JP4792305B2 (en) Antireflection film, polarizing plate, and image display device
JP2007065635A (en) Optical film, particularly antireflection film and method of manufacturing the same, and polarizer and liquid crystal display device using antireflection film
JP4393232B2 (en) Method for producing antireflection film
JP2007213045A (en) Antireflection film, polarizing plate, and display apparatus
JP2007034213A (en) Antireflection film, and polarizing plate and display device using the same
JP2006337852A (en) Anti-glare reflection film, method for producing the same, polarizer using the anti-glare reflection film, and liquid crystal display device using the polarizer
JP2010085501A (en) Liquid crystal display device
JP4905787B2 (en) Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film
JP2007041495A (en) Anti-glare and anti-reflection film, polarizing plate using the anti-glare and anti-reflection film and liquid crystal display device using the polarizing plate
JP2007057612A (en) Nonglare antireflective film and manufacturing method therefor, polarizer using the same nonglare antireflective film, liquid crystal display device using the same polarizer, and liquid crystal display device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250