WO2012164843A1 - Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel - Google Patents

Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel Download PDF

Info

Publication number
WO2012164843A1
WO2012164843A1 PCT/JP2012/003184 JP2012003184W WO2012164843A1 WO 2012164843 A1 WO2012164843 A1 WO 2012164843A1 JP 2012003184 W JP2012003184 W JP 2012003184W WO 2012164843 A1 WO2012164843 A1 WO 2012164843A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
antiglare
layer
antiglare layer
acid
Prior art date
Application number
PCT/JP2012/003184
Other languages
French (fr)
Japanese (ja)
Inventor
俊哉 小野
岡野 賢
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to CN201280027125.2A priority Critical patent/CN103582829B/en
Priority to KR1020137030580A priority patent/KR101618423B1/en
Priority to JP2013517841A priority patent/JP5935802B2/en
Publication of WO2012164843A1 publication Critical patent/WO2012164843A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an antiglare film and a method for producing the same.
  • the present invention also relates to a polarizing plate, an image display device, and a touch panel member provided with the antiglare film.
  • the surface of the image display unit is anti-glare to prevent the visibility from being disturbed by a ghost phenomenon in which illumination light such as a fluorescent lamp or the sun or an external light beam is reflected on the screen. It is common to provide a layer.
  • Patent Documents 1 and 2 disclose techniques for improving the moire fringe problem.
  • the technique is a technique for reducing the occurrence of moire fringes by adjusting the arrangement direction of the fine uneven structure of the antiglare film, the arrangement direction of the display elements, and the like.
  • Patent Documents 1 and 2 are such that, first, a shaping roll is pressed against the antiglare layer to which fine particles are added at a specific angle to form fine irregularities on the antiglare layer, and the resin and fine particles
  • the antiglare property is imparted to the antiglare layer by the internal scattering due to the difference in refractive index between and the surface scattering due to the fine unevenness of the antiglare layer.
  • the fine unevenness of the antiglare layer is adjusted to a specific angle. By doing so, the generation of moire fringes is reduced.
  • a prism sheet is used in the liquid crystal display device in order to condense the backlight to the front.
  • moire fringes occur due to the surface shape of the prism sheet.
  • the antiglare film described in Patent Documents 1 and 2 is used for the polarizing plate on the rear side, the occurrence of moire fringes is reduced, but the front luminance is reduced. A problem has occurred.
  • the front luminance decreases, the screen of the liquid crystal display device becomes dark, and there is a problem of visibility deterioration due to a decrease in contrast.
  • JP 2003-4917 A Japanese Patent Laid-Open No. 2003-5661
  • the present invention has been made in view of the above-described problems and situations, and an object thereof is to provide an antiglare film capable of achieving both improvement in visibility and reduction of moire fringes and a method for producing the same. And Another object of the present invention is to provide a polarizing plate, an image display device, and a touch panel member provided with the antiglare film.
  • One aspect of the present invention is an antiglare film having an antiglare layer on a substrate film, and the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and a correlation defined by the following defining formula:
  • the antiglare film is characterized in that the length Ic ( ⁇ m) satisfies the following relational expression (1).
  • Relational expression (1) 0 ⁇ Ic ⁇ 21 ⁇ 8 ⁇ exp ((215 ⁇ Ra) / 40) ⁇ 13 ⁇ exp ((215 ⁇ Ra) / 400)
  • Correlation length Ic root mean square roughness Rq ( ⁇ m) / root mean square slope ⁇ q ⁇ 2 1/2
  • Another aspect of the present invention is a method for producing an antiglare film for producing the antiglare film, wherein the viscosity at 25 ° C. is in the range of 20 to 3000 mPa ⁇ s.
  • an antiglare layer coating composition containing at least one solvent selected from the group consisting of esters, glycol ethers, and alcohols, a coating step of coating on a base film, and a decreasing rate drying section Maintaining the temperature within a range of 90 to 160 ° C., drying the antiglare layer coating composition, and curing the dried antiglare layer coating composition to prevent the antiglare layer coating on the base film.
  • It is a manufacturing method of the anti-glare film characterized by including the hardening process which forms a glare layer.
  • FIG. 1 is an explanatory diagram of protrusions.
  • FIG. 2 is a schematic view showing irregular protrusions of the antiglare layer of the antiglare film according to one embodiment of the present invention.
  • FIG. 3 is an observation view showing the result of observing the antiglare layer surface of the antiglare film according to Example 1 with an optical interference surface roughness meter.
  • FIG. 4 is a cross-sectional view of a polarizing plate according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the liquid crystal panel produced in the example.
  • FIG. 6 is a schematic view of a liquid crystal cell of a liquid crystal display device.
  • FIG. 7 is a diagram illustrating a configuration example of an antiglare film with a conductive film.
  • FIG. 8 is a schematic diagram illustrating an example of a configuration of a resistive film type touch panel liquid crystal display device.
  • An anti-glare film according to an embodiment of the present invention is an anti-glare film having an anti-glare layer on a base film, and the arithmetic average roughness Ra (nm) of the surface of the anti-glare layer and the above definition formula
  • the correlation length Ic ( ⁇ m) defined by the above satisfies the relational expression (1).
  • the arithmetic average roughness Ra of the surface of the antiglare layer and the correlation length satisfy the following relational expression (2) from the viewpoint of manifesting the effects of the present invention.
  • the antiglare film preferably has an arithmetic average roughness Ra of the surface of the antiglare layer in the range of 350 to 1300 nm.
  • the antiglare film preferably has a haze due to internal scattering of the antiglare layer in the range of 0 to 0.5%.
  • the antiglare layer preferably contains an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa ⁇ s.
  • the antiglare layer contains fine particles and does not substantially contain a resin that is incompatible with the fine particles and the actinic radiation curable resin.
  • the surface of the antiglare layer preferably has an irregular protrusion shape having no period in the longitudinal direction.
  • Another embodiment of the present invention is a method for producing an antiglare film for producing the antiglare film, wherein the viscosity at 25 ° C. is in the range of 20 to 3000 mPa ⁇ s.
  • It is a manufacturing method of the anti-glare film characterized by including the hardening process which forms an anti-glare layer.
  • the antiglare film according to the present embodiment can be suitably included in a polarizing plate, an image display device, and a touch panel member.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the “surface haze value” and the “internal haze value” are also simply expressed as “surface haze” and “internal haze”, respectively.
  • antiglare film refers to a layer that blurs the outline of a reflected image or external light, that is, an antiglare layer on the surface of a film substrate, so that a liquid crystal display, an organic EL display, a plasma display, etc. It refers to a film that suppresses reflection of external light and reflected images when an image display device is used.
  • An antiglare film according to an embodiment of the present invention is an antiglare film having an antiglare layer on a base film, and the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and the following definition formula:
  • the correlation length Ic ( ⁇ m) defined by the above satisfies the following relational expression (1).
  • Correlation length Ic root mean square roughness Rq ( ⁇ m) / root mean square slope ⁇ q ⁇ 2 1/2
  • Such an antiglare film can achieve both improved visibility and reduced moire fringes.
  • arithmetic mean roughness (Ra) “root mean square roughness (Rq)” and “root mean square slope ( ⁇ q)” of the surface of the antiglare layer are described in JIS B0601: 1994. It conforms to the definition etc. That is, the arithmetic average roughness (Ra) of the roughness curve obtained for the surface of the antiglare layer based on the JIS standard. Specifically, it can be determined by the following method.
  • the surface state of the anti-glare layer was determined by using an optical interference surface roughness meter (for example, RST / PLUS, WYKO, New View 5030, manufactured by Zygo).
  • an optical interference surface roughness meter for example, RST / PLUS, WYKO, New View 5030, manufactured by Zygo.
  • about 0.36 mm ⁇ 0.27 mm is measured, and a surface shape map is created.
  • This map is, for example, an image of 320 pixels ⁇ 240 pixels, and is roughness curved surface data holding height data in each pixel.
  • the arithmetic average roughness (Ra) is obtained by adding and averaging the absolute value of the height deviation from the average surface of this map to the roughness curve for all pixels.
  • the root mean square roughness (Rq) is obtained by summing the squares of height deviations for all pixels and averaging them, and taking the square root.
  • the root mean square slope ( ⁇ q) is obtained by summing the squares of slope data of adjacent pixels for all the pixels and taking the square root.
  • the arithmetic average roughness Ra (nm) and the correlation length Ic ( ⁇ m) of the surface of the antiglare layer satisfy the following relational expression (2). It is preferable. Relational expression (2): 0 ⁇ Ic ⁇ 17 ⁇ 6 ⁇ exp ((225 ⁇ Ra) / 40) ⁇ 11 ⁇ exp ((225 ⁇ Ra) / 400)
  • the right side of the relational expression (1) and the relational expression (2) is a method for calculating the scattering intensity of light on a random uneven surface in consideration of the wave nature of light (“light / radio wave”). It is an approximate curve of a curve obtained by plotting points at which the light intensity in the linear transmission direction is below a certain value according to “Basics of Analysis” (see Corona). On the uneven surface where the roughness is not so large, there is a component that is not substantially scattered by the uneven surface due to the wave nature of light. If the intensity of this component is below a certain value, the degree of elimination of moire fringes (moire) It shows that the reduction degree of fringes is high.
  • the arithmetic average roughness Ra of the surface of the antiglare layer is preferably in the range of 350 to 1300 nm. More preferably, it is in the range of 400 to 1000 nm. By making it within such a range, the generation of moire fringes can be further reduced. Therefore, the elimination of moire fringes can be further improved. That is, the problem of moire fringes can be solved more.
  • the surface of the antiglare layer has an irregular protrusion shape having no period in the longitudinal direction.
  • the height of the protrusion shape is preferably 20 nm to 6 ⁇ m.
  • the width of the protrusion shape is 50 nm to 300 ⁇ m, preferably 50 nm to 100 ⁇ m.
  • the height and width of the protrusion shape can be obtained from cross-sectional observation.
  • FIG. 1 shows an explanatory view of the protrusion.
  • the center line a is drawn on the cross-sectional observation image, and the distance between the two intersections of the lines b and c and the center line a forming the mountain ridge is defined as the protrusion size width t and did. Further, the distance from the summit to the center line a is obtained as the height h of the protrusion size.
  • the 10-point average roughness Rz of the antiglare layer of the antiglare film is preferably 10 times or less the arithmetic average roughness (centerline average roughness) Ra, and the average mountain valley distance Sm is preferably 5 to 150 ⁇ m. More preferably, it is 20 to 100 ⁇ m, the standard deviation of the height of the convex part from the deepest part of the unevenness is 0.5 ⁇ m or less, the standard deviation of the mean mountain valley distance Sm with respect to the center line is 20 ⁇ m or less, and the inclination angle is 0 to 5 degrees.
  • the surface is preferably 10% or more.
  • the root mean square roughness (Rq) is preferably 400 to 1700 nm (0.4 to 1.7 ⁇ m) from the viewpoint of reducing moire fringes.
  • the root mean square slope ( ⁇ q) is preferably 0.01 to 0.3 from the viewpoint of suppression of white sensation.
  • the correlation length is preferably 2 to 240 ⁇ m from both viewpoints.
  • Ra, Sm, Rz, Rq, and ⁇ q are values measured with an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO, New View 5030 manufactured by Zygo) according to JIS B0601: 1994. is there.
  • the haze caused by internal scattering of the antiglare layer is preferably in the range of 0 to 1.0%. Visibility can be further improved by being in such a range.
  • the internal haze within the above range is controlled, and the arithmetic average roughness Ra of the protrusion shape is controlled within the above range, and the antiglare layer is incompatible with the fine particles and the actinic radiation curable resin.
  • the objective effect of this invention is exhibited favorably by not containing substantially the resin which is.
  • the internal haze is more preferably 0 to 0.5%.
  • haze can be measured by the following procedure. A few drops of silicone oil are dropped on the front and back surfaces of the antiglare film and sandwiched between two glass plates (micro slide glass product number S 9111, manufactured by MATSANAMI) having a thickness of 1 mm. An anti-glare film sandwiched between front and back glass is optically brought into close contact with two glass plates, and in this state, haze (Ha) is measured according to JIS-K7105 and JIS K7136. Next, a few drops of silicone oil are dropped between two glass plates and sandwiched to measure glass haze (Hb).
  • the surface haze is computable by drawing glass haze (Hb) from the haze (Ha) which pinched
  • the surface haze (the haze resulting from the surface scattering of the film) is preferably 3 to 40%.
  • the surface haze is obtained by subtracting the internal haze from the total haze.
  • the total haze is preferably 3 to 40%.
  • the antiglare film according to the present embodiment has a protrusion shape in which the antiglare layer forms surface irregularities, the protrusion shape is a protrusion having an irregular shape in the longitudinal direction, and the arrangement thereof is also an irregular arrangement. Preferably there is. By having such a protrusion shape, the object effect of the present invention is exhibited well.
  • the ⁇ irregularly shaped protrusions '' included in the antiglare layer of the antiglare film according to the present embodiment do not have a regular shape periodically in the length direction in which the surface unevenness is formed by embossing, It refers to protrusions of various shapes whose shapes and sizes are not fixed.
  • protrusion 2 of the shape formed on the surface of the glare-proof layer 1 as shown in FIG. 2 is mentioned. That is, the protrusions 2 having different widths and heights illustrated in FIG. 2 are exemplified as irregularly shaped protrusions.
  • the “irregular arrangement” means that the irregularly-protruding protrusions are not regularly arranged (for example, at regular intervals), but are irregularly arranged at random intervals, It may be isotropic or anisotropic.
  • the surface shape is, for example, controlled at a high temperature for the treatment temperature of the rate-decreasing drying section in the drying process of the antiglare layer coating composition, It can be obtained by a method in which a convection of the resin is generated, a non-uniform state is formed on the surface of the antiglare layer, and the coating is formed by curing in this non-uniform surface state.
  • the coating film By forming the coating film by such a method, the film strength of the antiglare layer is improved.
  • the method of controlling the treatment temperature in the decreasing rate drying section in the drying process of the antiglare layer coating composition is preferable in terms of excellent productivity.
  • the manufacturing method of the said anti-glare film will not be specifically limited if it has an anti-glare layer on a base film, and what can satisfy
  • This production method is specifically at least one selected from the group consisting of an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa ⁇ s, esters, glycol ethers, and alcohols.
  • An antiglare layer coating composition containing the above-mentioned solvent, and a coating process for coating the base film, and the temperature of the decreasing rate drying section is maintained within the range of 90 to 160 ° C.
  • a manufacturing method provided with the drying process which dries a thing, and the hardening process which hardens the dried said anti-glare layer coating composition and forms an anti-glare layer on the above-mentioned substrate film is mentioned.
  • an antiglare film capable of achieving both improvement in visibility and reduction of moire fringes can be obtained.
  • the application is not particularly limited as long as it is a method capable of applying the antiglare layer coating composition on the base film so that the thickness after curing becomes a predetermined thickness.
  • a coating method as described later can be used. Drying and curing are not particularly limited as long as the above conditions are satisfied and an antiglare layer can be formed on the base film, and examples thereof include the methods described below.
  • the antiglare layer according to this embodiment preferably contains an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa ⁇ s. By making it within such a range, it becomes easy to produce a desired surface shape. That is, the surface shape of the antiglare layer of the obtained antiglare film becomes closer to the desired shape. Therefore, both improvement in visibility and reduction in moire fringes can be achieved.
  • the antiglare layer does not substantially contain fine particles and a resin that is incompatible with the actinic radiation curable resin.
  • incompatible means that when a melting temperature Tm or a glass transition point Tg of a molten mixture of two or more kinds of resins is measured and observed, each of the resins constituting the molten mixture has a single peak. What is observed. Further, it means that each phase is substantially observed in transmission electron microscope observation. On the other hand, “compatible” means that one or less of the peak of the molten mixture is observed when the melting temperature Tm or glass transition point Tg of the molten mixture of the same kind or two or more kinds of resins is measured and observed. .
  • the resin that is incompatible with the actinic radiation curable resin is a resin obtained by polymerizing or copolymerizing (meth) acrylic or acrylic monomers. And polyester resins, and thermoplastic acrylic resins and cellulose ester resins used in the base film described later.
  • the fine particles include fine particles such as inorganic fine particles and organic fine particles, and specific examples of the inorganic fine particles include silicon oxide, magnesium oxide, and calcium carbonate.
  • organic particles polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, polystyrene resin powder, melamine resin powder, or the like can be added.
  • substantially does not contain means that the content is less than the minimum amount affecting the compatibility when the melting temperature Tm or the glass transition point Tg is measured and observed.
  • the minimum amount varies depending on the type and properties of the particles and the incompatible resin.For example, in general, the content in the hard coat layer excludes the extract component from the film substrate, 0.01% by mass or less.
  • the antiglare layer according to the present embodiment mainly contains an actinic radiation curable resin, that is, a resin that cures through a crosslinking reaction by irradiation with actinic rays (also referred to as active energy rays) such as ultraviolet rays and electron beams. It is preferable to use a layer as a component.
  • actinic radiation curable resin that is, a resin that cures through a crosslinking reaction by irradiation with actinic rays (also referred to as active energy rays) such as ultraviolet rays and electron beams. It is preferable to use a layer as a component.
  • an actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams.
  • Typical examples of the actinic radiation curable resin include ultraviolet curable resins and electron beam curable resins. However, resins cured by ultraviolet irradiation have excellent mechanical film strength (abrasion resistance, pencil hardness). To preferred.
  • the ultraviolet curable resin examples include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray.
  • a curable epoxy resin or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • polyfunctional acrylate monomer examples include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • the active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton. Compounds having an ethylenically unsaturated group and one or more isocyanurate rings are preferred.
  • Adekaoptomer N series Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (manufactured by Sanyo Chemical Industries, Ltd.) SP-1509, SP-1507, Aronix M-6100, M-8030, M-8060, Aronix M-215, Aronix M-315, Aronix M-313, Aronix M-327 (manufactured by Toagosei Co., Ltd.), NK-ester A-TMM-3L, NK-ester AD-TMP, NK-ester ATM-35E, NK ester A-DOG, NK ester A-IBD-2E, A-9300, A-9300-1CL (Shin Nakamura Chemical) Kogyo Co., Ltd.), light acrylate TMP-A, PE-3A (Kyoeisha Chemical), and the like.
  • monofunctional acrylate may be used.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate.
  • Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
  • a monofunctional acrylate 70: 30 to 99: 2 in terms of mass ratio of polyfunctional acrylate and monofunctional acrylate.
  • Actinic radiation curable resins may be used alone or in combination of two or more.
  • the viscosity of the actinic radiation curable resin at 25 ° C. is preferably 20 mPa ⁇ s or more and 3000 mPa ⁇ s or less, more preferably 20 mPa ⁇ s or more and 2000 mPa ⁇ s or less.
  • the above-described protrusion shape and arithmetic average roughness Ra are easily obtained.
  • the viscosity of the actinic radiation curable resin is 20 mPa ⁇ s or higher, a monomer having a high functionality can be used, and sufficiently high curability is obtained. If the viscosity is 3000 mPa ⁇ s or lower, the drying step In this case, it is easy to obtain sufficient fluidity of the actinic radiation curable resin.
  • the said viscosity is the value measured on 25 degreeC conditions using the B-type viscosity meter.
  • the antiglare layer preferably contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin.
  • Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof. In particular, it is not limited to these.
  • a commercial item may be used for such a photoinitiator, for example, Irgacure 184, Irgacure 907, Irgacure 651, etc. by BASF Japan Ltd. are mentioned as a preferable illustration.
  • the antiglare layer may contain a conductive agent in order to impart antistatic properties.
  • a conductive agent include ⁇ -conjugated conductive polymers and ionic liquids.
  • the antiglare layer may contain a silicone surfactant, a fluorine surfactant, an acrylic surfactant, a fluorine-siloxane graft compound, or a compound having an HLB value of 3 to 18 from the viewpoint of coatability. good.
  • a compound having an HLB value of 3 to 18 will be described.
  • the HLB value is Hydrophile-Lipophile-Balance, hydrophilic-lipophilic-balance, and is a value indicating the hydrophilicity or lipophilicity of a compound. The smaller the HLB value, the higher the lipophilicity, and the higher the value, the higher the hydrophilicity.
  • Mw represents the molecular weight of the hydrophilic group
  • Mo represents the molecular weight of the lipophilic group
  • Mw + Mo M (molecular weight of the compound).
  • HLB value 20 ⁇ total formula weight of hydrophilic part / molecular weight (J. Soc. Cosmetic Chem., 5 (1954), 294) and the like.
  • Specific examples of the compound having an HLB value of 3 to 18 are listed below, but are not limited thereto. Figures in parentheses indicate HLB values.
  • Emulgen 102KG (6.3), Emulgen 103 (8.1), Emulgen 104P (9.6), Emulgen 105 (9.7), Emulgen 106 (10.5), Emulgen 108 (12. 1), Emulgen 109P (13.6), Emulgen 120 (15.3), Emulgen 123P (16.9), Emulgen 147 (16.3), Emulgen 210P (10.7), Emulgen 220 (14.2) , Emulgen 306P (9.4), Emulgen 320P (13.9), Emulgen 404 (8.8), Emulgen 408 (10.0), Emulgen 409PV (12.0), Emulgen 420 (13.6), Emulgen 430 (16.2), Emulgen 705 (10.5), Emulgen 707 (12.1), Emulgen 09 (13.3), Emulgen 1108 (13.5), Emulgen 1118S-70 (16.4), Emulgen 1135S-70 (17.9), Emulgen 2020G-HA (13.0), Emulgen 2025G (15.
  • Emulgen LS-106 (12.5), Emulgen LS-110 (13.4), Emulgen LS-114 (14.0), manufactured by Nissin Chemical Industry Co., Ltd .: Surfynol 104E (4), Surfynol 104H (4), Surfinol 104A (4), Surfinol 104BC (4), Surfinol 104DPM (4), Surfinol 104PA (4), Surfinol 104PG-50 (4), Surfinol 104S (4), Surfy Knoll 420 (4), Surfynol 440 (8), Surfynol 4 5 (13), Surfynol 485 (17), Surfynol SE (6), manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-4272 (7), X-22-6266 (8), KF-351 (12) KF-352 (7), KF-353 (10), KF-354L (16), KF-355A (12), KF-615A (10), KF-9
  • silicone surfactant examples include polyether-modified silicone, and the KF series manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • acrylic surfactant examples include commercially available compounds such as BYK-350 and BYK-352 manufactured by BYK Japan.
  • fluorosurfactant examples include Megafac RS series, Megafac F-444 and Megafac F-556 manufactured by DIC Corporation.
  • the fluorine-siloxane graft compound refers to a copolymer compound obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone to at least a fluorine-based resin.
  • the antiglare layer is prepared by diluting the above-described components for forming the antiglare layer with a solvent as an antiglare layer coating composition, and applying, drying and curing the antiglare layer coating composition on the film substrate in the following manner. Thus, it is preferable to provide an antiglare layer.
  • Solvents include ketones (methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, propyl acetate, propylene glycol monomethyl ether acetate, etc.), alcohols (ethanol, methanol, butanol, etc.) , N-propyl alcohol, isopropyl alcohol, diacetone alcohol), hydrocarbons (toluene, xylene, benzene, cyclohexane), glycol ethers (propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethylene glycol monopropyl ether, etc.), etc.
  • ketones methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone, etc.
  • esters methyl acetate, ethy
  • glycol ethers or alcohols are used in the range of 20 to 200 parts by mass with respect to 100 parts by mass of the actinic radiation curable resin, so that the antiglare layer coating composition is applied to the base film.
  • the solvent of the antiglare layer coating composition evaporates, convection of the resin is likely to occur, and as a result, irregular surface roughness is likely to occur in the antiglare layer. It is preferable because the arithmetic average roughness Ra can be easily controlled.
  • the coating amount of the antiglare layer is suitably 0.1 to 40 ⁇ m as a wet film thickness, and preferably 0.5 to 30 ⁇ m.
  • the dry film thickness is from 0.1 to 30 ⁇ m, preferably from 1 to 20 ⁇ m, particularly preferably from 2 to 15 ⁇ m.
  • an antiglare layer coating composition for forming an antiglare layer is applied, dried after application, irradiated with actinic radiation (also referred to as UV curing treatment), and, if necessary, after UV curing It can be formed by heat treatment.
  • the heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher.
  • Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature of the decreasing rate drying section is 90 ° C or higher and 160 ° C or lower.
  • the temperature of the reduced rate drying section is 90 ° C or higher and 160 ° C or lower.
  • the drying process changes from a constant state to a gradually decreasing state when drying starts.
  • the decreasing section is called the decreasing rate drying section.
  • the constant rate drying section the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section.
  • the temperature of the coating film surface rises and approaches the hot air temperature, and the temperature of the actinic radiation curable resin of the coating film rises.
  • the convection of the coating film resin is caused by the decrease in the viscosity of the actinic radiation curable resin and the increase in fluidity.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying tension is not particularly limited, and tension may be applied in the conveying direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • the antiglare layer may further contain an ultraviolet absorber described in the base film described later.
  • the antiglare layer is preferably composed of two or more layers, and the antiglare layer in contact with the base film preferably contains the ultraviolet absorber.
  • the film thickness of the antiglare layer in contact with the base film is preferably in the range of 0.05 to 2 ⁇ m.
  • Two or more layers may be formed as a simultaneous multilayer.
  • the simultaneous multi-layering means that two or more antiglare layers are applied on a wet substrate on a substrate without passing through a drying step to form an antiglare layer.
  • the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
  • the antiglare film according to the present embodiment has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it is not only difficult to be scratched in the polarizing plate forming step of the liquid crystal display device, but also used for outdoor applications, and is a surface protective film for large liquid crystal display devices and liquid crystal display devices for digital signage. Excellent mechanical properties when used.
  • the pencil hardness is determined by JIS K5400 using a test pencil specified by JIS S 6006 under the condition of a weight of 500 g after conditioning the prepared antiglare film at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more. It is a value measured according to the pencil hardness evaluation method specified. Next, the base film will be described.
  • the base film is easy to manufacture, easily adheres to the antiglare layer, and is optically isotropic. Moreover, in this embodiment, a base film is used as a polarizing plate protective film.
  • cellulose ester-based films such as triacetyl cellulose film, cellulose acetate propionate film, cellulose diacetate film, and cellulose acetate butyrate film, polyethylene terephthalate, polyethylene Polyester film such as naphthalate, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, Syndiotactic polystyrene film, norbornene resin film, polymethylpente Films, polyether ketone films, polyether ketone imide film, a polyamide film, a fluorine resin film, nylon film, can be used cycloolefin polymer film, a polymethylmethacrylate film, or an acrylic film.
  • cellulose ester-based films such as triacetyl cellulose film, cellulose acetate propionate film, cellulose di
  • cellulose ester films for example, Konica Minoltac KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UE, KC4UE, and KC12UR (above, manufactured by Konica Minolta Opto, Polycarbonate Co., Ltd.)
  • An olefin polymer film and a polyester film are preferable, and in the present embodiment, the cellulose ester film is preferable from the viewpoint of ease of obtaining the above-described protruding shape with an antiglare layer, productivity, and cost.
  • the refractive index of the base film is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65.
  • the refractive index is measured by the method of JIS K7142 using an upe refractometer 2T manufactured by Atago Co., Ltd.
  • the cellulose ester film is not particularly limited as long as it has the characteristics as the base film, but the cellulose ester resin (hereinafter also referred to as cellulose ester) is preferably a lower fatty acid ester of cellulose.
  • the lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms.
  • mixed fatty acid esters such as cellulose acetate butyrate can be used.
  • the lower fatty acid esters of cellulose particularly preferably used are cellulose diacetate, cellulose triacetate, and cellulose acetate propionate. These cellulose esters can be used alone or in combination.
  • Cellulose diacetate preferably has an average degree of acetylation (amount of bound acetic acid) of 51.0 to 56.0%.
  • Commercially available products include Daicel L20, L30, L40, and L50, and Eastman Chemical's Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S.
  • the cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
  • the cellulose triacetate has an acetyl group substitution degree of 2.80 to 2.95, a number average molecular weight (Mn) of 125,000 or more and less than 155000, a weight average molecular weight (Mw) of 265,000 or more and less than 310,000, and Mw / Mn of Cellulose triacetate A of 1.9 to 2.1, acetyl group substitution degree of 2.75 to 2.90, number average molecular weight (Mn) of 155,000 to less than 180,000, Mw of 290000 to less than 360,000, Mw / Mn
  • a preferred cellulose ester other than cellulose triacetate has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y, It is a cellulose ester containing the cellulose ester which satisfy
  • cellulose acetate propionate is preferably used, and among them, 1.9 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 0.9 are preferable.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw) of cellulose ester can be measured using high performance liquid chromatography.
  • the measurement conditions are as follows.
  • a certain film may be used.
  • Acrylic resin includes methacrylic resin.
  • the acrylic resin is not particularly limited but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more monomers.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the weight average molecular weight (Mw) is preferably 80,000 to 500,000, and more preferably 110,000 to 500,000.
  • the weight average molecular weight of the acrylic resin can be measured by gel permeation chromatography including the measurement conditions.
  • a manufacturing method of an acrylic resin You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • alkyl mercaptan Commercial products can also be used.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned.
  • Two or more acrylic resins can be used in combination.
  • the acrylic resin may be a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound.
  • a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer.
  • -A shell-type graft copolymer is preferred.
  • the total mass of the acrylic resin and the cellulose ester resin in the base film is preferably 55% by mass or more of the base film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the base film may be configured to contain resins and additives other than thermoplastic acrylic resins and cellulose ester resins.
  • the base film may contain acrylic particles because it is excellent in improving brittleness.
  • An acrylic particle represents the acrylic component which exists in the state of particle
  • the acrylic particles are not particularly limited, but are preferably multi-layered acrylic granular composites.
  • Examples of commercially available acrylic granular composites that are multi-layer structured polymers include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paralloid” manufactured by Kureha Chemical Co., Ltd., Rohm and Examples include “Acryloid” manufactured by Haas, “Staffyroid” manufactured by Gantz Kasei Kogyo, and “Parapet SA” manufactured by Kuraray, and these may be used alone or in combination of two or more.
  • the refractive index of the mixture of the acrylic resin and the cellulose ester resin is close to the refractive index of the acrylic particles in order to obtain a highly transparent film.
  • the refractive index difference between the acrylic particles and the acrylic resin is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • Acrylic fine particles are in a range of 0.5: 100 to 30: 100 in terms of the content of acrylic fine particles: acrylic resin and cellulose ester resin with respect to the total mass of acrylic resin and cellulose ester resin constituting the film.
  • the base film is, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate. It is preferable to contain inorganic fine particles such as calcium phosphate and a matting agent such as a crosslinked polymer. Among these, silicon dioxide is preferably used because it can reduce the haze of the film.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
  • a plasticizer can also be used in combination with the base film in order to improve the fluidity and flexibility of the composition.
  • the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy. Of these, polyester and phthalate plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • the polyester plasticizer is preferably an aromatic terminal ester plasticizer.
  • the aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms. As long as it has an adipic acid residue and a phthalic acid residue as the structure of such a compound, when an ester compound is produced, it may be reacted as an acid anhydride or esterified product of dicarboxylic acid.
  • benzene monocarboxylic acid component examples include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can each be used as a 1 type, or 2 or more types of mixture.
  • alkylene glycol component having 2 to 12 carbon atoms examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1, 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol 1 , 6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl 1,3-hexan
  • the aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000.
  • the acid value is 1.5 mgKOH / g or less, the hydroxy group value (hydroxyl value) is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxy group value (hydroxyl value) is 15 mgKOH / g or less. Is.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the base film.
  • Specific examples thereof include, but are not limited to, compounds (B-1 to B-10) shown below.
  • the base film may contain a sugar ester compound.
  • the sugar ester compound is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide or oligosaccharide.
  • a general formula (1) The compound etc. which are represented by these can be mention
  • R 1 to R 8 represent a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, and R 1 to R 8 May be the same or different.
  • R represents any one of R 1 to R 8 .
  • the “average degree of substitution” in the table below indicates the degree of substitution of R 1 to R 8 .
  • an average degree of substitution of 6.0 indicates that the number of R 1 to R 8 that are substituted with any of the following R is 6 on average.
  • R 1 to R 8 in the compound represented by the general formula (1) are unsubstituted except for those substituted with R, that is, a hydrogen atom is bonded.
  • the base film preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
  • UV absorbers with a molecular weight of 400 or more are difficult to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. Can do.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, and TINUVIN 928 manufactured by BASF Japan Ltd.
  • various antioxidants can also be added to the base film in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the base film antistatic performance.
  • a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
  • Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphate esters, halogen-containing condensed phosphonate esters, halogen-containing phosphite esters, and the like.
  • triphenyl phosphate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
  • the base film is required to withstand use in a higher temperature environment, and if the tension softening point of the base film is 105 to 145 ° C., it can be judged that the base film exhibits sufficient heat resistance. 110 to 130 ° C. is particularly preferable.
  • a Tensilon tester (ORIENTEC Co., RTC-1225A) is used to cut out the optical film at 120 mm (length) ⁇ 10 mm (width) and pull it with a tension of 10 N.
  • the temperature can be continuously increased at a rate of temperature increase of 30 ° C./min, and the temperature at 9 N can be measured three times, and the average value can be obtained.
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
  • the dimensional change rate (%) is preferably less than 0.5%, and more preferably less than 0.3%.
  • the base film preferably has a defect of 5 ⁇ m or more in diameter in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object.
  • the defect is a change in the surface shape, such as transfer of a roll flaw or an abrasion
  • the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the coating agent may not be formed uniformly, resulting in defects (coating defects).
  • the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign substance in the film forming stock solution, or a foreign substance mixed in the film forming process. This refers to the foreign matter (foreign matter defect) in the film.
  • the base film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS-K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the thickness of the base film is preferably 10 ⁇ m or more. More preferably, it is 20 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 ⁇ m from the viewpoint of applicability, foaming, solvent drying, and the like.
  • the thickness of a film can be suitably selected according to a use.
  • the base film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roll, calender roll, drum, belt, coating substrate in solution casting, transport roll, etc.) during film formation. It is also effective to reduce the diffusion and reflection of light on the film surface by reducing the refractive index of the acrylic resin.
  • a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, or the like can be used.
  • melt casting film forming method From the viewpoint of suppressing the residual solvent using a cellulose ester resin or an acrylic resin for dissolution, a method of producing by a melt casting film forming method is preferable.
  • Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like.
  • the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained.
  • solution casting by casting is preferred.
  • a method of extrusion film formation on a drum or an endless belt is also included as a melt casting film formation method.
  • Organic solvent useful for forming the dope when the base film is produced by the solution casting method can be used without limitation as long as it dissolves acrylic resin, cellulose ester resin, and other additives simultaneously. .
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms When the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy, and when the proportion of alcohol is small, the acrylic resin and cellulose ester resin dissolve in a non-chlorine organic solvent system.
  • a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms at least 15 to 45 mass% in total of at least three kinds of acrylic resin, cellulose ester resin, and acrylic particles are used.
  • a dissolved dope composition is preferred.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • the base film can be produced by a solution casting method.
  • a step of preparing a dope by dissolving a resin and an additive in a solvent a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , Peeling from the metal support, stretching or maintaining the width, further drying, and winding the finished film.
  • the concentration of cellulose ester in the dope, and the concentration of cellulose ester resin / acrylic resin is preferably higher because the drying load after casting on a metal support can be reduced. Will increase the filtration accuracy.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 ⁇ 4m.
  • the surface temperature of the metal support in the casting step is set to ⁇ 50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of a sample collected during or after the production of the web or film
  • N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0. 0.1 mass% or less, particularly preferably 0 to 0.01 mass% or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the film in the stretching step, can be sequentially or simultaneously stretched in the longitudinal direction (MD direction) and the width direction (TD direction) of the film.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.0 to 2.0 times in the MD direction and 1.07 to 2.0 times in the TD direction, respectively. It is preferably performed in the range of 1.0 to 1.5 times and 1.07 to 2.0 times in the TD direction.
  • width maintenance or width direction stretching in the film forming step is preferably performed by a tenter, and may be a pin tenter or a clip tenter.
  • the film transport tension in the film forming process such as in the tenter depends on the temperature, but is preferably 120 to 200 N / m, more preferably 140 to 200 N / m. 140 to 160 N / m is most preferable.
  • the glass transition temperature of the substrate film is Tg, (Tg-30) to (Tg + 100) ° C., more preferably (Tg-20) to (Tg + 80) ° C., and more preferably (Tg-5) to (T Tg + 20) ° C.
  • the Tg of the base film can be controlled by the type of material constituting the film and the ratio of the constituting materials.
  • the Tg when the film is dried is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • the glass transition temperature is preferably 190 ° C. or lower, more preferably 170 ° C. or lower.
  • the Tg of the film can be determined by the method described in JIS K7121.
  • the surface is suitably roughened, which is preferable. Roughening the film surface is preferable because it improves not only the slipperiness but also the surface processability, particularly the adhesion of the antiglare layer.
  • the base film may be formed by a melt film forming method.
  • the melt film-forming method refers to heating and melting a composition containing an additive such as a resin and a plasticizer to a temperature exhibiting fluidity, and then casting a melt containing a fluid cellulose ester.
  • the molding method for heating and melting can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like.
  • the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder using a feeder, kneaded using a single or twin screw extruder, and extruded from a die into a strand. It can be done by water cooling or air cooling and cutting.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed before mixing in order to mix uniformly.
  • the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the melting temperature when extruding is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T-die.
  • the film is cast and the film is nipped by a cooling roll and an elastic touch roll, and solidified on the cooling roll.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film.
  • a well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
  • the elastic touch roll is also called a pinching rotator.
  • As the elastic touch roll a commercially available one can be used.
  • the film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roll.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
  • the end Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding.
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • grip part of the clip of both ends of a film is cut out and reused.
  • the film thickness of the substrate film in the present embodiment is not particularly limited, but 10 to 200 ⁇ m is used. In particular, the film thickness is particularly preferably 10 to 100 ⁇ m. More preferably, it is 20 to 60 ⁇ m.
  • the base film according to this embodiment has a width of 1 to 4 m.
  • those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
  • the arithmetic average roughness Ra of the base film is preferably 2.0 to 4.0 nm, more preferably 2.5 to 3.5 nm.
  • the antiglare film according to the present embodiment can be provided with functional layers such as a backcoat layer and an antireflection layer.
  • the anti-glare film according to the present embodiment is a back surface for preventing sticking when a curl or anti-glare film is stored in a roll on the surface opposite to the side on which the anti-glare layer of the base film is provided.
  • a coat layer may be provided.
  • the back coat layer preferably contains fine particles for the above purpose, and the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined silicic acid. Mention may be made of calcium, tin oxide, indium oxide, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Moreover, it is preferable to contain a solvent in order to disperse the fine particles and to dissolve a binder described later to form a coating composition. As the solvent, the solvents described in the antiglare layer are preferable.
  • the particles contained in the back coat layer are preferably 0.1 to 50% by mass with respect to the binder. When the back coat layer is provided, the increase in haze is preferably 1.5% or less, and 0.5% or less. Further, it is preferable to use a cellulose ester resin such as diacetyl cellulose as the binder.
  • the antiglare film according to the present embodiment is provided with a low refractive index layer which is an antireflection layer directly or via another layer on the antiglare layer, so that the adhesion between the low refractive index layer and the antiglare layer is improved.
  • a low refractive index layer which is an antireflection layer directly or via another layer on the antiglare layer, so that the adhesion between the low refractive index layer and the antiglare layer is improved.
  • the antireflection layer composed of the low refractive index layer may have a single layer configuration consisting of only the low refractive index layer, but may also be a multilayer.
  • a high refractive index layer having a higher refractive index than the support and a low refractive index layer having a lower refractive index than the support can be combined. Further, three layers having different refractive indexes from the support side are divided into a medium refractive index layer (a layer having a higher refractive index than the support or the antiglare layer and a lower refractive index than the high refractive index layer) / high refractive index layer / low. You may laminate
  • An antifouling layer may be further provided on the outermost low refractive index layer so that dirt and fingerprints can be easily wiped off.
  • fluorine-containing organic compounds are preferably used as the antifouling layer.
  • an intermediate layer may be provided as appropriate.
  • an antistatic layer containing conductive polymer fine particles (for example, crosslinked cation fine particles) or metal oxide fine particles (for example, SnO 2 , ITO) is preferable.
  • ⁇ Low refractive index layer> In the low refractive index layer, a layer lower than the refractive index of the base film is formed, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
  • the thickness of the low refractive index layer is not particularly limited, but is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and more preferably 30 nm to 0.2 ⁇ m. Most preferred.
  • the low refractive index layer preferably uses hollow spherical silica-based fine particles from the viewpoint of refractive index adjustment and mechanical strength.
  • the hollow spherical fine particles are (I) composite particles comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) having a cavity inside, and the content is a solvent, gas or porous Cavity particles filled with a substance. Note that the low refractive index layer only needs to contain either (I) composite particles or (II) hollow particles, or both.
  • the cavity particles are particles having a cavity inside, and the cavity is surrounded by a particle wall.
  • the cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow spherical fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm.
  • the hollow spherical fine particles used are appropriately selected according to the thickness of the transparent film to be formed, and are in the range of 2/3 to 1/10 of the film thickness of the transparent film such as the low refractive index layer to be formed. Is desirable.
  • These hollow spherical fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer.
  • an appropriate medium for example, water, alcohol (for example, methanol, ethanol, isopropyl alcohol), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), and ketone alcohol (for example, diacetone alcohol) are preferable.
  • the thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably 1 to 20 nm, preferably 2 to 15 nm.
  • the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and it is easy to use a silicate monomer or oligomer having a low polymerization degree, which is a coating liquid component described later.
  • the inside of the composite particles may enter and the internal porosity may decrease, and the low refractive index effect may not be sufficiently obtained.
  • the thickness of the coating layer exceeds 20 nm, the silicic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficiently obtained. It may not be possible.
  • the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index may not be sufficiently exhibited. is there.
  • the coating layer of the composite particles or the particle wall of the hollow particles is preferably composed mainly of silica.
  • components other than silica may be contained, and specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3. , MoO 3 , ZnO 2 , WO 3 and the like.
  • the porous particles constituting the composite particles include those made of silica, those made of silica and an inorganic compound other than silica, and those made of CaF 2 , NaF, NaAlF 6 , MgF, and the like.
  • porous particles made of a composite oxide of silica and an inorganic compound other than silica are particularly preferable.
  • inorganic compounds other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3. 1 type or 2 types or more can be mentioned.
  • the molar ratio MOX / SiO 2 when the silica is represented by SiO 2 and the inorganic compound other than silica is represented by oxide (MOX) is 0.0001 to 1.0, preferably It is desirable to be in the range of 0.001 to 0.3.
  • the pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml / g, preferably 0.2 to 1.5 ml / g.
  • the pore volume of such porous particles can be determined by a mercury intrusion method.
  • Such hollow spherical fine particles can be produced from the following first to third steps.
  • First Step Preparation of Porous Particle Precursor
  • an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a silica raw material and an inorganic compound raw material other than silica are prepared in advance.
  • a mixed aqueous solution is prepared, and this aqueous solution is gradually added to an aqueous alkaline solution having a pH of 10 or more while stirring according to the composite ratio of the target composite oxide to prepare a porous particle precursor.
  • alkali metal, ammonium or organic base silicate is used as the silica raw material.
  • Sodium silicate (water glass) or potassium silicate is used as the alkali metal silicate.
  • the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine.
  • the ammonium silicate or organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound, or the like to a silicate solution.
  • alkali-soluble inorganic compounds are used as raw materials for inorganic compounds other than silica.
  • an oxo acid of an element selected from Al, B, Ti, Zr, Sn, Ce, P, Sb, Mo, Zn, W, etc. an alkali metal salt or alkaline earth metal salt of the oxo acid, ammonium And salts and quaternary ammonium salts. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, and sodium phosphate are suitable.
  • the aqueous solution finally has a pH value determined by the type of inorganic oxide and the mixing ratio thereof. There is no restriction
  • a dispersion of seed particles can be used as a starting material.
  • the seed particles are not particularly limited, but inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 or ZrO 2 or fine particles of these composite oxides are used. Usually, these sols are used. Can do.
  • the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion.
  • the pH of the seed particle dispersion is adjusted to 10 or higher, and then an aqueous solution of the compound is added to the above-mentioned alkaline aqueous solution while stirring. Also in this case, it is not always necessary to control the pH of the dispersion.
  • seed particles are used in this way, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.
  • the silica raw material and inorganic compound raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into fine particles, or seed particles. It grows on the top and particle growth occurs. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.
  • the composite ratio of silica and an inorganic compound other than silica in the first step is that the inorganic compound relative to silica is converted to oxide (MOX), and the molar ratio of MOX / SiO 2 is 0.05 to 2.0, preferably It is desirable to be within the range of 0.2 to 2.0. Within this range, the pore volume of the porous particles increases as the proportion of silica decreases. However, even when the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small.
  • the molar ratio of MOX / SiO 2 is preferably in the range of 0.25 to 2.0.
  • Second step Removal of inorganic compound other than silica from porous particles
  • inorganic compounds other than silica elements other than silicon and oxygen
  • the porous particle precursor obtained in the first step At least a portion is selectively removed.
  • the inorganic compound in the porous particle precursor is dissolved and removed using a mineral acid or an organic acid, or is contacted with a cation exchange resin for ion exchange removal.
  • the porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded through oxygen.
  • fluorine-substituted obtained by dealkalizing an alkali metal salt of silica into the porous particle precursor dispersion obtained in the first step. It is preferable to add a silicic acid solution containing an alkyl group-containing silane compound or a hydrolyzable organosilicon compound to form a silica protective film.
  • the thickness of the silica protective film may be 0.5 to 15 nm. Even if the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove inorganic compounds other than silica described above from the porous particle precursor.
  • silica protective film By forming such a silica protective film, inorganic compounds other than silica can be removed from the porous particle precursor while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later is formed without reducing the pore volume. Can do. Note that when the amount of the inorganic compound to be removed is small, the particles are not broken, and thus it is not always necessary to form a protective film.
  • the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content.
  • a coating layer to be described later is formed on the precursor, the formed coating layer becomes a particle wall to form hollow particles.
  • the amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. If the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than silica from the porous particle precursor.
  • tetraalkoxysilanes such as fluorine-substituted tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
  • a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed.
  • the produced silicic acid polymer is deposited on the surface of the inorganic oxide particles.
  • alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion.
  • the alkali catalyst ammonia, an alkali metal hydroxide, or an amine can be used.
  • the acid catalyst various inorganic acids and organic acids can be used.
  • a silica protective film can be formed using a silicic acid solution.
  • a silicic acid solution a predetermined amount of the silicic acid solution is added to the dispersion, and at the same time an alkali is added to deposit the silicic acid solution on the surface of the porous particles.
  • the porous particle dispersion prepared in the second step contains a fluorine-substituted alkyl group-containing silane compound.
  • a hydrolyzable organosilicon compound or silicic acid solution By adding a hydrolyzable organosilicon compound or silicic acid solution, the surface of the particles is coated with a polymer such as a hydrolyzable organosilicon compound or silicic acid solution to form a silica coating layer.
  • a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilanes, pure water, and alcohol is used as a dispersion of the porous particles (in the case of hollow particles, hollow particle precursor).
  • the silicic acid polymer produced by hydrolyzing alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, hollow particle precursors).
  • alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion.
  • the alkali catalyst ammonia, an alkali metal hydroxide, or an amine can be used.
  • the acid catalyst various inorganic acids and organic acids can be used.
  • the silicic acid solution is an aqueous solution of a low silicic acid polymer obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.
  • the silicic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursors), and at the same time, alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors). ) Deposit on the surface.
  • alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors).
  • a silicic acid liquid for the coating layer formation in combination with the said alkoxysilane.
  • the amount of the organosilicon compound or silicic acid solution used for forming the coating layer may be such that the surface of the colloidal particles can be sufficiently covered, and the finally obtained silica coating layer has a thickness of 1 to 20 nm.
  • the organosilicon compound or the silicate solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.
  • the particle dispersion having the coating layer formed thereon is heat-treated.
  • the heat treatment in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained.
  • the formed coating layer is densified to form hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.
  • the heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C.
  • the heat treatment temperature is less than 80 ° C.
  • the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time.
  • the heat treatment temperature exceeds 300 ° C. for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained.
  • the refractive index of the inorganic fine particles thus obtained is as low as less than 1.42.
  • Such inorganic fine particles are presumed to have a low refractive index because the porosity inside the porous particles is maintained or the inside is hollow.
  • Specific examples of commercially available particles include P-4 manufactured by Catalyst Chemical Industry Co., Ltd.
  • the content (mass) of the hollow spherical silica-based fine particles A having an outer shell layer, which is porous or hollow, in the low refractive index layer coating solution is preferably 10 to 80% by mass, more preferably 20 to 60% by mass. % By mass.
  • the low refractive index layer preferably contains a tetraalkoxysilane compound or a hydrolyzate thereof as a sol-gel material.
  • a silicon oxide having an organic group in addition to the inorganic silicon oxide.
  • sol-gel materials metal alcoholates, organoalkoxy metal compounds and hydrolysates thereof can be used.
  • alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable.
  • Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. Tetraalkoxysilane and its hydrolyzate are particularly preferable.
  • organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, ⁇ -glycidyloxypropyltrialkoxysilane, ⁇ -glycidyloxypropylmethyl dialkoxysilane, ⁇ - (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, ⁇ -methacryloyloxypropyltrialkoxysilane, ⁇ -aminopropyltrialkoxysilane, ⁇ -mercaptopropyltrialkoxysilane, ⁇ -chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds (for example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxys
  • the low refractive index layer preferably contains the silicon oxide and the following silane coupling agent.
  • silane coupling agent examples include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane.
  • silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and ⁇ -glycidyloxypropylmethyldiethoxysilane.
  • ⁇ -acryloyloxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldiethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane, ⁇ -methacryloyloxypropylmethyldiethoxy are those having a disubstituted alkyl group with respect to silicon.
  • Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, ⁇ -acryloyloxypropyltrimethoxysilane and ⁇ -methacryloyloxy Particularly preferred are propyltrimethoxysilane, ⁇ -acryloyloxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldiethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane and ⁇ -methacryloyloxypropylmethyldiethoxysilane.
  • silane coupling agent examples include KBM-303, KBM-403, KBM-402, KBM-403, KBM-1403, KBM-502, KBM-503, KBE-502, KBE- manufactured by Shin-Etsu Chemical Co., Ltd. 503, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9103, KBM-802, KBM-803 and the like.
  • silane coupling agents Two or more coupling agents may be used in combination.
  • other silane coupling agents may be used.
  • Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and hydrolysates thereof.
  • the low refractive index layer can also contain a polymer in an amount of 5 to 50% by mass.
  • the polymer has a function of adhering fine particles and maintaining the structure of a low refractive index layer including voids.
  • the amount of the polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids.
  • the amount of the polymer is preferably 10 to 30% by mass with respect to the total amount of the low refractive index layer.
  • the polymer is bonded to the surface treatment agent of the fine particles, (2) the fine particles are used as a core, and a polymer shell is formed around the fine particles. It is preferable to use a polymer as the binder.
  • the polymer to be bonded to the surface treating agent (1) is preferably the shell polymer (2) or the binder polymer (3).
  • the polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer.
  • the polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and by polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to implement a combination of two or all of the above (1) to (3), and to implement a combination of (1) and (3), or (1) to (3) all combinations. Particularly preferred. (1) Surface treatment, (2) shell, and (3) binder will be described sequentially.
  • the surface treatment can be classified into physical surface treatment such as plasma discharge treatment and corona discharge treatment, and chemical surface treatment using a coupling agent. It is preferable to carry out by chemical surface treatment alone or a combination of physical surface treatment and chemical surface treatment.
  • a coupling agent an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used.
  • the fine particles are made of SiO 2, the surface treatment with the above-described silane coupling agent can be carried out particularly effectively.
  • the surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and leaving the dispersion at a temperature from room temperature to 60 ° C. for several hours to 10 days.
  • inorganic acids for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid
  • organic acids for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid
  • salts thereof eg, metal salts, ammonium salts
  • the polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain.
  • a polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred.
  • Polyacrylic acid esters or polymethacrylic acid esters are preferred, and esters of fluorine-substituted alcohols with polyacrylic acid or polymethacrylic acid are most preferred.
  • the refractive index of the shell polymer decreases as the content of fluorine atoms in the polymer increases.
  • the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms.
  • the polymer containing a fluorine atom is preferably synthesized by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom.
  • Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Examples thereof include esters of fluorinated vinyl ethers and fluorine-substituted alcohols with acrylic acid or methacrylic acid.
  • fluoroolefins eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole
  • the polymer forming the shell may be a copolymer comprising a repeating unit containing a fluorine atom and a repeating unit not containing a fluorine atom.
  • the repeating unit containing no fluorine atom is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer containing no fluorine atom.
  • ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene and its derivatives (for example, styrene, divinylbenzene, vinyl toluene, ⁇ -methyl styrene), vinyl ether ( For example, methyl vinyl ether), vinyl esters (for example, vinyl acetate, vinyl propionate, vinyl cinnamate), acrylamide (for example, N-tertbutylacrylamide, N-cyclohexylacrylic) Amides
  • a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking.
  • the shell polymer may have crystallinity.
  • Tg glass transition temperature
  • the core-shell fine particles preferably contain 5 to 90% by volume, more preferably 15 to 80% by volume of a core composed of inorganic fine particles. Two or more kinds of core-shell fine particles may be used in combination. Further, inorganic fine particles having no shell and core-shell particles may be used in combination.
  • Binder The binder polymer is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain.
  • the binder polymer is preferably crosslinked.
  • the polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
  • Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol).
  • esters of polyhydric alcohols and (meth) acrylic acid eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol.
  • 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloyl ethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg divinyl sulfone), acrylamide (eg methylene bisacrylamide) and methacrylamide Can be mentioned.
  • the polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound.
  • a crosslinked structure may be introduced into the binder polymer by the reaction of a crosslinkable group.
  • crosslinkable functional groups include isocyanate groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carbonyl groups, hydrazine groups, carboxy groups, methylol groups, and active methylene groups.
  • Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as a monomer for introducing a crosslinked structure.
  • a functional group that exhibits crosslinkability as a result of the decomposition reaction such as a block isocyanate group, may be used.
  • the cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group.
  • the polymerization initiator used for the polymerization reaction and the crosslinking reaction of the binder polymer a thermal polymerization initiator or a photopolymerization initiator is used, and the photopolymerization initiator is more preferable.
  • photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums.
  • acetophenones examples include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
  • benzoins include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone.
  • phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • the binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time as or after the coating of the low refractive index layer, by a polymerization reaction (further crosslinking reaction if necessary). Even if a small amount of polymer (for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) is added to the coating solution for the low refractive index layer Good.
  • a polymer for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin
  • the low refractive index layer may be a low refractive index layer formed by crosslinking a fluorine-containing resin that is crosslinked by heat or ionizing radiation (hereinafter also referred to as “fluorine-containing resin before crosslinking”).
  • fluorine-containing resin before crosslinking include a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group.
  • fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxole, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (produced by Osaka Organic Chemical), M-2020 (produced by Daikin), etc.), fully or partially fluorinated vinyl ethers, etc.
  • fluoroolefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, he
  • Examples of the monomer for imparting a crosslinkable group include glycidyl methacrylate, vinyltrimethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, vinyl glycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule. , Vinyl monomers having a carboxy group, a hydroxy group, an amino group, a sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.).
  • the latter can introduce a crosslinked structure by adding a compound having a group that reacts with a functional group in the polymer and one or more reactive groups after copolymerization, as disclosed in JP-A-10-25388 and 10-147739.
  • the crosslinkable group include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxy, methylol, and active methylene group.
  • the fluorine-containing copolymer When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, it is a thermosetting type.
  • a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator
  • it is a thermosetting type.
  • crosslinking by irradiation with light preferably ultraviolet rays, electron beams, etc.
  • the ionizing radiation curable type is used.
  • a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking.
  • the monomer that can be used in combination is not particularly limited.
  • olefins ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.
  • acrylic esters methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl
  • methacrylic acid esters methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.
  • styrene derivatives styrene, divinylbenzene, vinyl toluene, ⁇ -methyl styrene, etc.
  • vinyl ethers methyl vinyl ether) Etc.
  • vinyl esters vinyl acetate, vinyl propionate, vinyl cinnamate, etc.
  • acrylamides N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.
  • methacrylamides Ronitoriru derivatives and the like
  • polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties.
  • polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.
  • the proportion of each monomer used to form the fluorinated copolymer before cross-linking is preferably 20 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer,
  • the amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.
  • the fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means of solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization or the like.
  • Fluorine-containing resin before crosslinking is commercially available and can be used.
  • Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opstar (JSR), etc. Can be mentioned.
  • the low refractive index layer comprising a crosslinked fluorine-containing resin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.
  • the low refractive index layer may contain a cationically polymerizable compound as a binder.
  • Any cationically polymerizable compound can be used as long as it undergoes cationic polymerization by irradiation with energy active rays or heat to form a resin.
  • Specific examples include an epoxy group, a cyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester compound, and a vinyloxo group.
  • a compound having a functional group such as an epoxy group or a vinyl ether group is preferably used in the present embodiment.
  • Examples of the cationically polymerizable compound having an epoxy group or a vinyl ether group include phenyl glycidyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, vinylcyclohexene dioxide, limonene dioxide, 3,4-epoxycyclohexylmethyl-3 ′.
  • oxetane compounds can be mentioned.
  • the oxetane compound may be a compound having at least one oxetane ring in the molecule.
  • a (co) polymer containing a monomer having a hydrogen bond forming group and a reactive polymer having an oxetanyl group in the main chain or side chain and having a number average molecular weight of 20,000 or more can also be used.
  • the above cationic polymerizable compound is preferably 15% by mass or more and less than 70% by mass in the solid content in the low refractive layer coating composition.
  • Examples of the compound that accelerates the polymerization of the cationic polymerizable compound include known acids and photoacid generators.
  • Examples of the photoacid generator include a cationic polymerization photoinitiator, a dye photodecoloring agent, a photochromic agent, a known compound used in a microresist, and a mixture thereof. Specific examples include onium compounds, organic halogen compounds, and disulfone compounds, and onium compounds are preferable.
  • As the onium compound diazonium salts, sulfonium salts, iodonium salts and the like represented by the following formulas are preferably used.
  • Ar represents an aryl group
  • R represents an alkyl group having an aryl group or having 1 to 20 carbon atoms, when appearing more than R are times in one molecule may be different from each other in the same
  • Z - is Represents a non-basic and non-nucleophilic anion.
  • the aryl group represented by Ar or R is also typically phenyl or naphthyl, and these may be substituted with an appropriate group.
  • Specific examples of the anion represented by Z ⁇ include tetrafluoroborate ion (BF 4 ⁇ ), tetrakis (pentafluorophenyl) borate ion (B (C 6 F 5 ) 4 ⁇ ), hexafluorophosphate ion.
  • PF 6 ⁇ hexafluoroarsenate ion
  • AsF 6 ⁇ hexafluoroantimonate ion
  • SbF 6 ⁇ hexafluoroantimonate ion
  • SbCl 6 ⁇ hexachloroantimonate ion
  • HSO 4 ⁇ hydrogen sulfate ion
  • ClO 4 ⁇ perchloric acid Ions
  • onium compounds include ammonium salts, iminium salts, phosphonium salts, arsonium salts, selenonium salts, boron salts and the like.
  • diazonium salts iodonium salts, sulfonium salts, and iminium salts are preferable from the viewpoint of the material stability of the compound.
  • initiators include, for example, “Syracure UVI-6990” (trade name) sold by Dow Chemical Japan Co., Ltd., and “Adekaoptomer SP-150” (trade name) sold by ADEKA Co., Ltd. Product name), “Adekaoptomer SP-300” (product name), “RHODORSIL PHOTOINITIAOR 2074” (product name) sold by Rhodia Japan Co., Ltd., and the like.
  • Bronsted acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like, or organic acid such as acetic acid, formic acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, dibutyltin dilaurate
  • organic acid such as acetic acid, formic acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, dibutyltin dilaurate
  • Lewis acids such as dibutyltin diacetate, dibutyltin dioctate, triisopropoxyaluminum, tetrabutoxyzirconium, and tetrabutoxytitanate.
  • Aromatic polycarboxylic acids such as pyromellitic acid, pyromellitic anhydride, trimellitic acid, trimellitic anhydride, phthalic acid, phthalic anhydride, or anhydrides thereof, maleic acid, maleic anhydride, succinic acid, succinic anhydride Aliphatic polyvalent carboxylic acid or anhydride thereof such as
  • the acid only one kind may be used, or two or more kinds may be used in combination.
  • These acids and photoacid generators are preferably added in an amount of 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, with respect to 100 parts by mass of the cationic polymerizable compound. is there.
  • the addition amount is in the above range, it is preferable from the viewpoint of stability of the curable composition, polymerization reactivity, and the like.
  • the low refractive index layer can also contain a radical polymerizable compound as a binder.
  • a radical polymerizable group include ethylenically unsaturated groups such as a (meth) acryloyl group, a vinyloxy group, a styryl group, and an allyl group, and among them, a compound having a (meth) acryloyl group is preferable.
  • the radical polymerizable compound preferably contains a polyfunctional monomer containing two or more radical polymerizable groups in the molecule.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the addition amount of the radical polymerizable compound is preferably 15% by mass or more and less than 70% by mass in the solid content in the low refractive layer coating composition from the viewpoint of the stability of the low refractive layer coating composition.
  • Radar polymerization accelerator In order to accelerate the curing of the radical polymerizable compound, it is preferable to use a photopolymerization initiator in combination with the radical polymerizable compound.
  • a photopolymerization initiator and a radical polymerizable compound are used in combination, the photopolymerization initiator and the radical polymerizable compound are preferably contained in a mass ratio of 20: 100 to 0.01: 100.
  • photopolymerization initiator examples include acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.
  • the low refractive index layer is a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, a known method such as an inkjet method, and the above coating composition for forming the low refractive index layer is applied, and after coating, It is formed by heat drying and curing treatment as necessary.
  • the coating amount is suitably 0.05 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, as the wet film thickness. Further, the solid content concentration of the coating composition is adjusted so that the dry film thickness becomes the above film thickness.
  • the method may include a step of performing heat treatment at a temperature of 50 to 160 ° C. after forming the low refractive index layer.
  • the period of the heat treatment may be appropriately determined depending on the set temperature. For example, if it is 50 ° C., preferably it is a period of 3 days or more and less than 30 days, and if it is 160 ° C., a range of 10 minutes or more and 1 day or less is preferable.
  • the curing method include a method of thermosetting by heating, a method of curing by irradiation with light such as ultraviolet rays, and the like.
  • the heating temperature is preferably 50 to 300 ° C, preferably 60 to 250 ° C, more preferably 80 to 150 ° C.
  • the exposure amount of the irradiation light is preferably 10 mJ / cm 2 to 1 J / cm 2 , and more preferably 100 to 500 mJ / cm 2 .
  • the wavelength range of the irradiated light is not particularly limited, but light having a wavelength in the ultraviolet region is preferably used.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the high refractive index layer and the middle refractive index layer preferably contain metal oxide fine particles.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S
  • a metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used.
  • the main component is at least one metal oxide fine particle selected from organic titanium compounds, zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate. It is particularly preferable to use as In particular, it is preferable to contain zinc antimonate particles.
  • the average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 to 200 nm, particularly preferably 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased.
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the refractive index of the high refractive index layer is preferably higher than the refractive index of the base film, and is preferably in the range of 1.5 to 2.3 when measured at 23 ° C. and a wavelength of 550 nm.
  • the means for adjusting the refractive index of the high refractive index layer is that the kind and addition amount of the metal oxide fine particles are dominant, so that the refractive index of the metal oxide fine particles is preferably 1.80 to 2.60. More preferably, it is 1.85 to 2.50.
  • the refractive index of the middle refractive index layer is adjusted to be an intermediate value between the refractive index of the base film and the refractive index of the high refractive index layer.
  • the refractive index of the middle refractive index layer is preferably 1.55 to 1.80.
  • the thickness of the high refractive index layer and the middle refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 to 100 nm.
  • the high refractive index layer and the medium refractive index layer preferably contain metal oxide particles as fine particles, and further contain a binder polymer.
  • a crosslinked polymer is preferable.
  • a monomer having two or more ethylenically unsaturated groups is most preferable, and examples thereof include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate).
  • 1,4-dichlorohexanediacrylate pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) ) Acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate Relate), vinylbenzene and its derivatives (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinylsulfone (eg, divinylsulfone
  • a photopolymerization reaction or a thermal polymerization reaction can be used for the polymerization reaction of the polymer.
  • a photopolymerization reaction is particularly preferable.
  • a polymerization initiator is preferably used for the polymerization reaction.
  • the thermal polymerization initiator mentioned later used in order to form the binder polymer of a hard-coat layer, and a photoinitiator are mentioned.
  • a commercially available polymerization initiator may be used as the polymerization initiator.
  • a polymerization accelerator may be used.
  • the addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to 10% by mass of the total amount of monomers.
  • the coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Moreover, it may heat after the photopolymerization reaction after application
  • the middle and high refractive index layers can be provided by coating, drying and curing on the antiglare layer as a coating layer composition by diluting the above-described components forming the middle and high refractive index layers with a solvent.
  • a light source for curing any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the amount of irradiation light is preferably 20 mJ / cm 2 to 1 J / cm 2, more preferably 100 to 500 mJ / cm 2 .
  • the antireflection layer of the antiglare antireflection film has an average reflectance at 450 to 650 nm of preferably 1.5% or less, particularly preferably 1.2% or less. Further, the minimum reflectance in this range is preferably 0.00 to 0.5%.
  • the refractive index and film thickness of the antireflection layer can be calculated and calculated by measuring the spectral reflectance.
  • the reflection optical characteristic of the anti-glare antireflection film having the antireflection layer thus produced can be measured for reflectance under the condition of regular reflection at 5 degrees using a spectrophotometer.
  • the light absorption treatment is performed with a black spray, or the light absorption treatment is performed by attaching a black acrylic plate or the like.
  • the reflectance can be measured by preventing reflection of the back light of the film.
  • the transmittance at a transmittance of 550 nm is measured using a spectrophotometer with reference to air.
  • the antiglare antireflection film according to this embodiment preferably has a flat reflection spectrum in the wavelength region of visible light. Reflective hues are often colored red and blue due to the high reflectance in the short-wavelength and long-wavelength regions in the visible light region due to the design of the antireflection layer. In contrast, when used on the surface of an image display device or the like, a neutral color tone is preferred. In this case, generally preferred reflection hue ranges are 0.17 ⁇ x ⁇ 0.27 and 0.07 ⁇ y ⁇ 0.17 on the XYZ color system (CIE1931 color system).
  • the color tone can be calculated from the refractive index of each layer in accordance with a conventional method in consideration of the reflectance and the color of reflected light.
  • the polarizing plate according to this embodiment using the antiglare film according to this embodiment will be described.
  • the polarizing plate according to the present embodiment is provided with the antiglare film according to the present embodiment. Since such a polarizing plate includes the antiglare film, it improves both visibility and reduces moire fringes.
  • the polarizing plate includes, for example, a polarizing film and a transparent protective film (polarizing plate protective film) disposed on the surface of the polarizing film, and the transparent protective film is an antiglare film according to this embodiment. Some are listed. More specifically, as shown in FIG. 4, the polarizing plate 10 has an antiglare layer 12 on the outer side and a base film 13 on the inner surface of the polarizing film 14 on the visible side.
  • the optical film 15 is disposed on the surface of the polarizing film 14 opposite to the surface on the viewing side, and the adhesive layer 16 that can be attached to other members is disposed outside the polarizing film 14.
  • the optical film 15 is disposed on the surface of the polarizing film 14 opposite to the surface on the viewing side, and the adhesive layer 16 that can be attached to other members is disposed outside the polarizing film 14.
  • the optical film 15 is disposed on the surface of the polarizing film 14 opposite to the surface on the viewing side, and the adhesive layer 16 that can be attached to other members is disposed outside the polarizing film 14.
  • the optical film 15 is disposed on the surface of the polarizing film 14 opposite to the surface on the viewing side, and the adhesive layer 16 that can be attached to other members is disposed outside the polarizing film 14.
  • the optical film 15 is disposed on the surface of the polarizing film 14 opposite to the surface on the viewing side, and the adhesive layer 16 that can be attached to other members is disposed outside the polarizing film 14.
  • the optical film 15
  • the polarizing plate can be produced by a general method.
  • the back surface side of the antiglare film according to the present embodiment is subjected to alkali saponification treatment, and the processed antiglare film is immersed and stretched in an iodine solution, and at least one surface of the polarizing film is completely saponified polyvinyl alcohol. It is preferable to bond using an aqueous solution.
  • the antiglare film may be used on the other surface, or another polarizing plate protective film may be used.
  • an optical compensation film (retardation film) having a retardation of in-plane retardation Ro of 590 nm, 20 to 70 nm, and Rt of 70 to 400 nm may be used to obtain a polarizing plate capable of widening the viewing angle. it can.
  • an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal.
  • polarizing plate protective films preferably used include KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-2, KC4FR-2, KC4FR-2, KC8FR-2 KC4UE (Konica Minolta Opto Co., Ltd.) etc. are mentioned.
  • a polarizing film which is a main component of a polarizing plate, is an element that allows only light having a polarization plane in a certain direction to pass through. That is, the polarizing film is an optical element that emits incident light by converting it into polarized light.
  • a typical polarizing film currently known is a polyvinyl alcohol polarizing film, which includes a polyvinyl alcohol film stained with iodine and a dichroic dye stained, but is not limited to this. It is not something.
  • polarizing film a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound.
  • a polarizing film having a thickness of 5 to 30 ⁇ m, preferably 8 to 15 ⁇ m is preferably used.
  • On the surface of the polarizing film one side of the antiglare film according to the present embodiment is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
  • the pressure-sensitive adhesive layer used on one side of the protective film to be bonded to the substrate of the liquid crystal cell is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
  • the adhesive layer include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers.
  • a film such as a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like can be formed and cured using a polymer such as the above.
  • the acrylic copolymer can be preferably used because it is most easy to control the physical properties of the adhesive and is excellent in transparency, weather resistance, durability and the like.
  • the antiglare film according to the present embodiment exhibits excellent performance when used in an image display device.
  • an image display device a reflection type, a transmission type, a semi-transmission type liquid crystal display device, a liquid crystal display device of various drive systems such as a TN type, STN type, OCB type, VA type, IPS type, ECB type, etc., organic electroluminescence Examples include a display device having an element and a plasma display.
  • the use of the antiglare film according to the present embodiment for the polarizing plate of a liquid crystal display device is preferable from the viewpoint of excellent visibility.
  • a polarizing plate according to this embodiment is shown in FIG.
  • the polarizing plate comprised from the anti-glare film which concerns on this embodiment on the rear side (backlight side) of a liquid crystal cell (FIG. 6) of a liquid crystal display device provided with a liquid crystal panel as shown in FIG.
  • FIG. 6 In view of excellent prevention of occurrence of moire fringes.
  • the image forming apparatus according to the present embodiment is provided with the antiglare film according to the present embodiment. Since such an image forming apparatus is provided with the antiglare film, it improves both visibility and reduces moire fringes.
  • the image forming apparatus include a liquid crystal cell and at least one of two polarizing plates arranged so as to sandwich the liquid crystal cell is the polarizing plate according to the above-described embodiment. More specifically, as shown in FIG. 5, the liquid crystal panel 20 has an anti-glare film 25 on the surface of the liquid crystal cell 21 on the rear (backlight) side (opposite to the viewing side surface). In such a case, a polarizing plate 28 is disposed.
  • the liquid crystal panel 20 includes a liquid crystal cell 21 in which a polarizing plate 27 different from the polarizing plate 28 is disposed on the surface on the viewing side.
  • a polarizing plate 27 different from the polarizing plate 28 is disposed on the surface on the viewing side.
  • the polarizing plate 27 include a polarizing plate including a clear hard coat film 24 instead of an antiglare film.
  • the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes. By applying a voltage to this electrode, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled.
  • the liquid crystal cell 30 includes two stacked bodies in which an alignment film 32, a color filter 33, and a glass substrate 34 are stacked.
  • the liquid crystal 31 is disposed between the alignment films 32 and the like.
  • a transparent electrode for applying a voltage to the liquid crystal 31 may be disposed between the alignment film 32 and the color filter 33.
  • the antiglare film according to the present embodiment may be used for a touch panel member.
  • the touch panel member according to the present embodiment is provided with the antiglare film according to the present embodiment. Since such a member for touch panels is provided with the said anti-glare film, it is compatible with the improvement of visibility and the reduction of moire fringes.
  • the antiglare film 40 with a conductive film is a member for a touch panel, and includes an antiglare film including an antiglare layer 42 on the surface of the base film 41.
  • the antiglare film includes an antiglare layer 42 on both surfaces of the base film 41.
  • the anti-glare film 40 with a conductive film is equipped with the transparent conductive thin film (ITO layer) 43 on one surface of this anti-glare film.
  • the antiglare film according to the present embodiment is used for the touch panel member of the image display device with a touch panel, it is preferable in view of excellent visibility and durability against pen input (such as scratches caused by sliding).
  • ⁇ Touch panel> An example at the time of using the anti-glare film which concerns on this embodiment for the image display apparatus with a touch panel is shown.
  • FIG. 8 is a schematic view of a liquid crystal display device 50 with a resistive touch panel using the antiglare film according to the present embodiment as a touch panel.
  • the conductive antiglare film (antiglare film with conductive film) 40 is opposed to the glass substrate 53 on which the transparent conductive thin film 52 is formed so that the transparent conductive thin films face each other, and between the transparent conductive thin films By using the spacer 51, a resistive film type touch panel can be configured with a certain interval. Electrodes (not shown) are arranged at the ends of the conductive antiglare film 40 and the glass substrate 53.
  • the resistive film type touch panel is such that the transparent conductive thin film of the conductive antiglare film 40 is formed on the glass substrate 53 when the user presses the conductive antiglare film 40 with a finger or a pen. 52. This is a mechanism in which the pressed position is detected by electrically detecting this contact through the electrode at the end.
  • dot-shaped spacers 51 are disposed as necessary. Further, by mounting the touch panel on the liquid crystal display device (LCD) 54, the image display device 50 with a touch panel can be configured.
  • LCD liquid crystal display device
  • One aspect of the present invention is an antiglare film having an antiglare layer on a base film,
  • the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and the correlation length Ic ( ⁇ m) preferably satisfy the following relational expression (2).
  • Relational expression (2) 0 ⁇ Ic ⁇ 17 ⁇ 6 ⁇ exp ((225 ⁇ Ra) / 40) ⁇ 11 ⁇ exp ((225 ⁇ Ra) / 400)
  • the arithmetic average roughness Ra of the surface of the antiglare layer is preferably in the range of 350 to 1300 nm.
  • the haze resulting from internal scattering of the antiglare layer is preferably in the range of 0 to 0.5%.
  • the antiglare layer preferably contains an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa ⁇ s.
  • the surface shape of the antiglare layer becomes closer to the desired shape. Therefore, both improvement in visibility and reduction in moire fringes can be achieved.
  • the antiglare layer contains fine particles and does not substantially contain a resin that is incompatible with the fine particles and the actinic radiation curable resin.
  • the surface of the antiglare layer has an irregular protrusion shape having no period in the longitudinal direction.
  • Another aspect of the present invention is a method for producing an antiglare film for producing the antiglare film, wherein the viscosity at 25 ° C. is in the range of 20 to 3000 mPa ⁇ s.
  • an antiglare layer coating composition containing at least one solvent selected from the group consisting of esters, glycol ethers, and alcohols, a coating step of coating on a base film, and a decreasing rate drying section Maintaining the temperature within a range of 90 to 160 ° C., drying the antiglare layer coating composition, and curing the dried antiglare layer coating composition to prevent the antiglare layer coating on the base film.
  • It is a manufacturing method of the anti-glare film characterized by including the hardening process which forms a glare layer.
  • another aspect of the present invention is a polarizing plate characterized in that the antiglare film is provided.
  • Another aspect of the present invention is an image display device including the antiglare film.
  • another aspect of the present invention is a member for a touch panel, characterized in that the antiglare film is provided.
  • a touch panel member that achieves both improved visibility and reduced moire fringes can be obtained.
  • a touch panel liquid crystal display device or the like is manufactured using such a touch panel member, a touch panel liquid crystal display device that achieves both improved visibility and reduced moire fringes can be obtained.
  • Example 1 ⁇ Preparation of base film 1> (Preparation of silicon dioxide dispersion) Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 7 nm) 10 parts by mass Ethanol 90 parts by mass The above was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution. The mixture was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
  • a fine particle dispersion dilution filter Advancedtech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
  • the belt was cast evenly on a stainless steel band support using a belt casting apparatus.
  • the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off.
  • the cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and stretched 1.3 times in the TD direction (film width direction) with a tenter, and the MD direction draw ratio was 1.01 times. While stretching, the film was dried at a drying temperature of 160 ° C. The residual solvent amount at the start of drying was 20%. Then, after drying for 15 minutes while transporting the inside of a drying device at 120 ° C.
  • the base film 1 was obtained.
  • the residual solvent amount of the base film was 0.2%, the film thickness was 40 ⁇ m, and the number of turns was 3900 m.
  • ⁇ Preparation of antiglare film 1> The following anti-glare layer coating composition 1 filtered through a polypropylene filter having a pore diameter of 0.4 ⁇ m is applied on the base film 1 produced above using an extrusion coater, and a constant rate drying zone temperature of 80 ° C. is reduced at a reduced rate. After drying at a section temperature of 97 ° C., while purging with nitrogen so that the oxygen concentration becomes 1.0% by volume or less, the illuminance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp and the irradiation amount is 0.25 J / The coating layer was cured as cm 2 to form an antiglare layer having a dry film thickness of 8 ⁇ m.
  • an antiglare film 1 After forming the antiglare layer, it was wound up into a roll to produce an antiglare film 1. As a result of observing the surface of the antiglare layer of the antiglare film 1 with an optical interference type surface roughness meter (New View 5030 manufactured by Zygo), irregular projection shapes irregularly in the longitudinal direction and the width direction as shown in FIG. It was found that they are arranged in
  • Anti-Glare Layer Coating Composition 1 The following antiglare layer coating composition 1 was stirred and mixed with a disper to obtain an antiglare layer coating composition 1.
  • PETA Pentaerythritol tri / tetraacrylate
  • Irgacure 184 BASF Japan
  • Polyether-modified silicone KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.
  • solvent 100 parts by
  • an antiglare film 2 was produced in the same manner except that the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 2.
  • [Anti-Glare Layer Coating Composition 2] Actinic radiation curable resin
  • Pentaerythritol tri / tetraacrylate (PETA) (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 100 parts by mass (photopolymerization initiator) Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
  • Polyether-modified silicone KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by mass (solvent)
  • Propylene glycol monomethyl ether PGME) 60 parts by weight Methyl ethyl ketone (MEK) 40 parts by weight
  • the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 3, and the temperature in the decreasing rate drying section in the drying step was changed to 100 ° C. in the same manner. A dazzling film 3 was produced.
  • Anti-glare layer coating composition 3 Actinic radiation curable resin
  • Pentaerythritol tri / tetraacrylate PETA
  • NK ester A-TMM-3L manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Irgacure 184 BASF Japan
  • Polyether-modified silicone KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.
  • solvent 100 parts by mass of methyl alcohol (MeOH)
  • an antiglare film 4 was produced in the same manner except that the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 4.
  • [Anti-Glare Layer Coating Composition 4] Actinic radiation curable resin
  • Pentaerythritol tri / tetraacrylate (PETA) (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 90 parts by mass t-butyl acrylate (TBA, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 10 parts by mass (photopolymerization initiator) Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
  • Polyether-modified silicone KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by mass (solvent) 100 parts by mass of propylene glycol monomethyl ether (PGME)
  • the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 5 and the temperature in the decreasing rate drying section in the drying step was changed to 95 ° C. in the same manner. A dazzling film 5 was produced.
  • [Anti-Glare Layer Coating Composition 5] Actinic radiation curable resin
  • Pentaerythritol tri / tetraacrylate (PETA) (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 80 parts by mass 4-hydroxybutyl acrylate (4HBA, manufactured by Osaka Organic Chemical Co., Ltd.) 20 parts by mass (photopolymerization initiator) Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent) Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by mass (solvent) 100 parts by mass of methyl alcohol (MeOH)
  • the anti-glare layer coating composition 1 was changed to the following anti-glare layer coating composition 6 and the temperature in the decreasing rate drying section in the drying step was changed to 100 ° C. in the same manner. A dazzling film 6 was produced.
  • Anti-glare layer coating composition 6 (Actinic radiation curable resin) Pentaerythritol tri / tetraacrylate (PETA) (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 90 parts by mass Hydroxyethyl acrylate (HEA, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 10 parts by mass (photopolymerization initiator) Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent) Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by mass (solvent) 100 parts by mass of propylene glycol monomethyl ether (PGME)
  • PETA Pentaerythritol tri / tetraacrylate
  • HOA Hydroxyethyl acrylate
  • Irgacure 184 BASF Japan
  • leveling agent Polyether-modified silicone
  • KF-889 manufactured by Shin-E
  • the anti-glare layer coating composition 1 was changed to the following anti-glare layer coating composition 7 and the temperature of the rate-of-decreasing drying section in the drying process was changed to 80 ° C. in the same manner. A dazzling film 9 was produced.
  • [Anti-Glare Layer Coating Composition 7] Actinic radiation curable resin 80 parts by mass of dipentaerythritol penta / hexaacrylate (NK ester A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) 20 parts by mass of isostearyl acrylate (ISTA) (manufactured by Osaka Organic Chemical Industry Co., Ltd.) (Photopolymerization initiator) Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent) Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.) 2 parts by mass (solvent) Propylene glycol monomethyl ether (PGME) 60 parts by weight Methyl ethyl ketone (MEK) 40 parts by weight
  • the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 8 and the temperature in the decreasing rate drying section in the drying step was changed to 80 ° C. in the same manner. A dazzling film 10 was produced.
  • the antiglare layer coating composition 1 was changed to the antiglare layer coating composition 9 prepared with reference to Example 1 of JP-A-2008-225195, and the drying temperature was further specified.
  • An antiglare film 11 was produced in the same manner as the antiglare film 1 except that the temperature was set at 70 ° C., which was the same as that in Example 1 of Kaikai 2008-225195.
  • Anti-Glare Layer Coating Composition 9 The following antiglare layer coating composition 9 was stirred and mixed with a disper to obtain an antiglare layer coating composition 9.
  • Cyclomer P (ACA) 320 (Unsaturated group-containing acrylic resin mixture, manufactured by Daicel Chemical Industries, Ltd.) 47 parts by mass Dipentaerythritol hexaacrylate (DPHA, manufactured by Daicel Cytec Co., Ltd.) 53 parts by mass (incompatible resin) Polymethyl methacrylate (weight average molecular weight 480000; manufactured by Mitsubishi Rayon Co., Ltd., BR88) 7.5 parts by mass (photopolymerization initiator) Irgacure 184 (manufactured by BASF Japan Ltd.) 4.2 parts by mass (solvent) Methyl ethyl ketone (MEK) 0.84 parts by mass Butanol 45 parts by mass Propylene glycol monomethyl ether (PGME) 7.4 parts by mass
  • Hb glass haze
  • Hi internal haze
  • the arithmetic average roughness Ra of the antiglare layer of each antiglare film was measured 10 times using an optical interference type surface roughness meter (New View 5030 manufactured by Zygo), and each antiglare property was determined from the average of the measurement results. The arithmetic average roughness Ra of the film was determined.
  • the root mean square roughness (Rq) and root mean square slope ( ⁇ q) were determined as described above.
  • the correlation length was calculated based on the definition formula.
  • Fine particle addition liquid 1 The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1. 99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion 1
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressure dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
  • the above composition was put into a sealed container and dissolved with stirring to prepare a dope solution.
  • an endless belt casting apparatus was used to uniformly cast the dope solution on a stainless steel belt support at a temperature of 33 ° C. and a width of 2000 mm.
  • the temperature of the stainless steel belt was controlled at 30 ° C.
  • the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the film is stretched 1.4 times in the width direction by a tenter set at 170 ° C., then dried by being transported in a drying zone set at 130 ° C. for 30 minutes, trimmed at both ends,
  • the optical film 1 having a film thickness of 40 ⁇ m having a knurling of 1 cm width and 6 ⁇ m height was prepared, and wound up with a width of 1.49 m and 3900 m.
  • the in-plane retardation value Ro of the optical film 1 was 50 nm, and the thickness direction retardation Rt was 130 nm.
  • ⁇ Preparation of polarizing plate> A 120 ⁇ m-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer.
  • step 6 the adhesive layer was bonded to each of the polarizing plates 1 to 11.
  • Step 1 An anti-glare film 1 to 11 and an optical film 1 that are immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to saponify the side to be bonded to a polarizer. Obtained.
  • Step 2 The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was gently wiped off, and the antiglare films 1 to 11 treated in Step 1 and the optical film 1 were placed on the back side.
  • Step 4 The films laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 A sample obtained by bonding the polarizer prepared in Step 4 to each of the antiglare films 1 to 11 and the optical film 1 in a drier at 80 ° C. is dried for 2 minutes, wound into a roll, and polarizing plate 1 to 11 were produced.
  • Step 6 A commercially available acrylic pressure-sensitive adhesive is applied to the optical film 1 of each polarizing plate produced in Step 5 so that the thickness after drying is 25 ⁇ m, and is dried in an oven at 110 ° C. for 5 minutes. And a peelable protective film was attached to the adhesive layer. The polarized light was cut (punched) to produce polarizing plates 1 to 11.
  • Table 1 summarizes the measurement results such as the haze and arithmetic average roughness Ra of the antiglare films 1 to 11 and the visibility evaluation results of the liquid crystal display devices 1 to 11.
  • the antiglare layer does not substantially contain a resin that is incompatible with the fine particles or the actinic radiation curable resin, and the arithmetic average roughness of the surface of the antiglare layer A polarizing plate produced using the antiglare film according to the present embodiment in which the thickness (Ra) and the correlation length satisfy the relational expression (1), and the internal haze of the antiglare layer is 0 to 1.0% It can be seen that the use of the liquid crystal display device is excellent in visibility.
  • the antiglare film according to this embodiment having an arithmetic average roughness Ra of 350 to 1300 nm is particularly excellent in visibility when used in a liquid crystal display device.
  • An antiglare layer coating composition obtained by diluting an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa ⁇ s with glycol ethers such as PGME and EPGE, or alcohols such as ethanol and methanol, at least
  • the arithmetic average roughness Ra and the internal haze of the antiglare layer are formed through the drying process and the curing process, and are processed under the condition that the drying rate of the drying process is maintained at 90 to 160 ° C.
  • the antiglare film of the present invention in which the internal haze of the antiglare layer is 0 to 0.5% is preferable because the objective effect of the present invention can be obtained satisfactorily.
  • an antiglare layer is formed with a pencil of each hardness using a 500 g weight according to a pencil hardness evaluation method specified by JIS-K5400 using a test pencil specified by JIS-S6006.
  • JIS-K5400 a pencil hardness evaluation method specified by JIS-K5400
  • JIS-S6006 a test pencil specified by JIS-S6006.
  • Example 2 ⁇ Preparation of clear hard coat film 1>
  • the following clear hard coat coating composition 1 filtered through a polypropylene filter having a pore diameter of 0.4 ⁇ m was coated on the base film 1 prepared in Example 1 using a micro gravure coater, and a constant rate drying section temperature of 80 ° C., After drying at a reduced rate drying section temperature of 80 ° C., while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, the illuminance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp and the irradiation amount is 0
  • the coating layer was cured at .25 J / cm 2 to form a clear hard coat layer having a dry film thickness of 5 ⁇ m.
  • Actinic radiation curable resin 100 parts by mass of dipentaerythritol polyacrylate (NK ester A-9550, manufactured by Shin-Nakamura Chemical Co., Ltd.) (Photopolymerization initiator) Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent) Acrylic copolymer (BYK-350, manufactured by Big Chemie Japan) 2 parts by mass (solvent) Propylene glycol monomethyl ether (PGME) 10 parts by weight Methyl ethyl ketone 45 parts by weight Methyl acetate 45 parts by weight
  • PGME Propylene glycol monomethyl ether
  • ⁇ Preparation of polarizing plate> A 120 ⁇ m-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer.
  • Step 1 Soaked in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to saponify the side to be bonded to the polarizer to obtain a clear hard coat film 1 and an optical film 1 .
  • Step 2 The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was lightly wiped off, and the optical film 1 was placed on the clear hard coat film 1 treated in Step 1 and the back side.
  • Step 4 The films laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 A sample obtained by bonding the polarizer, the clear hard coat film 1 and the optical film 1 prepared in Step 4 in a dryer at 80 ° C. is dried for 2 minutes, wound into a roll, and the polarizing plate 100 is produced. did.
  • Step 6 Apply a commercially available acrylic pressure-sensitive adhesive to the protective film of the polarizing plate prepared in Step 5 so that the thickness after drying is 25 ⁇ m, and dry in an oven at 110 ° C. for 5 minutes to form an adhesive layer. A peelable protective film was attached to the adhesive layer. This polarized light was cut (punched) to produce a polarizing plate 100.
  • the polarizing plate 1 produced in Example 1 was peeled off the peelable protective film of the pressure-sensitive adhesive layer, and was bonded to the rear side through the glass of the liquid crystal cell. Furthermore, the peelable protective film of the pressure-sensitive adhesive layer of the polarizing plate 100 produced above is peeled off and bonded to the front side to produce a liquid crystal panel 101.
  • the liquid crystal panel 101 is attached to a panel made of SONY notebook PC VAIO TYPE B.
  • the liquid crystal display device 101 was manufactured by removing and fitting.
  • Liquid crystal display devices 102 to 111 were manufactured in the same manner except that the polarizing plate 1 on the rear side was changed to polarizing plates 2 to 11 in the manufacture of the liquid crystal display device 101.
  • the manufactured liquid crystal display devices 101 to 111 were observed for moire fringes and evaluated according to the following criteria.
  • the liquid crystal display device used on the rear side using the polarizing plate composed of the antiglare film according to the present embodiment has no moiré fringes observed. It can be seen that it is excellent in preventing occurrence.
  • Example 3 Preparation of antiglare film 1 with conductive film>
  • a double-sided antiglare film 1 was produced in the same manner except that the antiglare layer coating layer composition 1 was coated on both sides.
  • a transparent conductive thin film of indium tin oxide (ITO) having a surface resistivity of about 200 ⁇ is provided on one side of the antiglare layer using a sputtering method, and the antiglare film 1 with a conductive film shown in FIG. was made.
  • ITO indium tin oxide
  • the antiglare films 2 to 11 with a conductive film were prepared by using a sputtering method.
  • a film with a conductive film of a commercially available resistive film type touch panel liquid crystal display device (model name: LCD-USB10XB-T, manufactured by IO DATA Co.) is peeled off, and the antiglare film 1 with the conductive film produced above is shown in FIG. Thus, a resistive film type touch panel liquid crystal display device 201 was produced.
  • the resistive film type touch panel liquid crystal display device 202 is manufactured in the same manner except that the antiglare film 1 with conductive film is changed to the antiglare films 2 to 11 with conductive film in the production of the resistive film type touch panel liquid crystal display device 1. 211 was produced.
  • the anti-glare layer of each anti-glare film with a conductive film used in a resistive touch panel liquid crystal display device is a polyacetal pen with a tip of 0.08 mm ⁇ , with a load of 500 g and a pen sliding speed of 100 mm / sec.
  • the straight line 40 mm was reciprocated 150,000 times, and the anti-glare layer was scratched and peeled after the reciprocation.
  • the antiglare film with a conductive film according to the present embodiment and the resistive film type touch panel liquid crystal display device using the film have improved visibility and pen sliding resistance. It turns out that it is excellent.
  • the anti-glare film which can achieve coexistence of a visibility improvement and the reduction of a moire fringe, and its manufacturing method are provided. Moreover, the polarizing plate provided with the said anti-glare film, an image display apparatus, and the member for touchscreens are provided.

Abstract

One embodiment of the present invention is an antiglare film having an antiglare film disposed on top of a substrate film, the antiglare film being characterized in that the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and the correlation length Ic (µm) as defined by the following definitional equation satisfy the following relational equation (1). Relational equation (1): 0 ≤ Ic ≤ 21-8×exp((215-Ra)/40)-13×exp((215-Ra)/400) Definitional equation: Correlation length Ic = root mean square roughness Rq (µm)/root mean square gradient ∆q × 21/2

Description

防眩性フィルム、その製造方法、偏光板、画像表示装置、及びタッチパネル用部材Antiglare film, method for producing the same, polarizing plate, image display device, and touch panel member
 本発明は、防眩性フィルム及びその製造方法に関する。また、本発明は、当該防眩性フィルムが具備された偏光板、画像表示装置、及びタッチパネル用部材に関する。 The present invention relates to an antiglare film and a method for producing the same. The present invention also relates to a polarizing plate, an image display device, and a touch panel member provided with the antiglare film.
 液晶表示装置等の画像表示装置では、蛍光灯、太陽等の照明光や外部光線が画面に映り込むゴースト現象で視認性が阻害されることを防止するために、画像表示部の表面に防眩層を設けることが一般的である。 In an image display device such as a liquid crystal display device, the surface of the image display unit is anti-glare to prevent the visibility from being disturbed by a ghost phenomenon in which illumination light such as a fluorescent lamp or the sun or an external light beam is reflected on the screen. It is common to provide a layer.
 近年、高精細化やカラー化した画像表示装置に、防眩層を有する防眩性フィルムをそのまま用いると、表示画面にモアレ縞が発生するという問題が生じていた。 Recently, when an anti-glare film having an anti-glare layer is used as it is in a high-definition or color image display device, there has been a problem that moire fringes are generated on the display screen.
 前記モアレ縞の問題を改良する技術については、例えば、特許文献1及び2に開示されている。前記技術は、防眩性フィルムの微細凹凸構造の配列方向と表示素子の配列方向等とを調整することで、モアレ縞の発生を低減させる技術である。 For example, Patent Documents 1 and 2 disclose techniques for improving the moire fringe problem. The technique is a technique for reducing the occurrence of moire fringes by adjusting the arrangement direction of the fine uneven structure of the antiglare film, the arrangement direction of the display elements, and the like.
 特許文献1及び2に開示の技術は、具体的には、まず、微粒子を添加した防眩層に賦型ロールを特定角度で押し当てて、防眩層に微細凹凸を形成し、樹脂と微粒子との屈折率差による内部散乱と防眩層の微細凹凸による表面散乱とで、前記防眩層に防眩性を付与する。更に、防眩層の微細凹凸が特定角度に調整する。そうすることで、モアレ縞の発生を小さくする。 Specifically, the techniques disclosed in Patent Documents 1 and 2 are such that, first, a shaping roll is pressed against the antiglare layer to which fine particles are added at a specific angle to form fine irregularities on the antiglare layer, and the resin and fine particles The antiglare property is imparted to the antiglare layer by the internal scattering due to the difference in refractive index between and the surface scattering due to the fine unevenness of the antiglare layer. Furthermore, the fine unevenness of the antiglare layer is adjusted to a specific angle. By doing so, the generation of moire fringes is reduced.
 一方、液晶表示装置には、バックライトを正面に集光させるためにプリズムシートが使用されている。このプリズムシートの表面形状によりモアレ縞が発生する問題もあった。このプリズムシートによるモアレ縞の問題を改良するため、リヤ側の偏光板に前記特許文献1及び2に記載された防眩フィルムを用いたところ、モアレ縞の発生が小さくなるものの、正面輝度の低下を招く問題が発生した。正面輝度が低下すると、液晶表示装置の画面が暗くなり、コントラスト低下による視認性劣化の問題があった。 On the other hand, a prism sheet is used in the liquid crystal display device in order to condense the backlight to the front. There is also a problem that moire fringes occur due to the surface shape of the prism sheet. In order to improve the problem of moire fringes due to this prism sheet, when the antiglare film described in Patent Documents 1 and 2 is used for the polarizing plate on the rear side, the occurrence of moire fringes is reduced, but the front luminance is reduced. A problem has occurred. When the front luminance decreases, the screen of the liquid crystal display device becomes dark, and there is a problem of visibility deterioration due to a decrease in contrast.
特開2003-4917号公報JP 2003-4917 A 特開2003-5661号公報Japanese Patent Laid-Open No. 2003-5661
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、視認性の向上とモアレ縞の低減の両立を達成できる防眩性フィルムとその製造方法を提供することを目的とする。また、本発明は、当該防眩性フィルムが具備された偏光板、画像表示装置、及びタッチパネル用部材を提供することを目的とする。 The present invention has been made in view of the above-described problems and situations, and an object thereof is to provide an antiglare film capable of achieving both improvement in visibility and reduction of moire fringes and a method for producing the same. And Another object of the present invention is to provide a polarizing plate, an image display device, and a touch panel member provided with the antiglare film.
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 本発明の一局面は、基材フィルム上に防眩層を有する防眩性フィルムであって、当該防眩層の表面の算術平均粗さRa(nm)と、下記定義式で定義される相関長Ic(μm)とが、下記関係式(1)を満たすことを特徴とする防眩性フィルムである。
  関係式(1):0 ≦ Ic ≦ 21-8×exp((215-Ra)/40)-13×exp((215-Ra)/400)
  定義式:相関長Ic = 二乗平均平方根粗さRq(μm)/二乗平均平方根傾斜Δq×21/2
One aspect of the present invention is an antiglare film having an antiglare layer on a substrate film, and the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and a correlation defined by the following defining formula: The antiglare film is characterized in that the length Ic (μm) satisfies the following relational expression (1).
Relational expression (1): 0 ≦ Ic ≦ 21−8 × exp ((215−Ra) / 40) −13 × exp ((215−Ra) / 400)
Definition formula: Correlation length Ic = root mean square roughness Rq (μm) / root mean square slope Δq × 2 1/2
 また、本発明の他の一局面は、前記防眩性フィルムを製造する防眩性フィルムの製造方法であって、25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂と、エステル類、グリコールエーテル類、及びアルコール類からなる群から選ばれる少なくとも一種の溶剤とを含有する防眩層塗布組成物を、基材フィルム上に塗布する塗布工程と、減率乾燥区間の温度を90~160℃の範囲内に維持して、前記防眩層塗布組成物を乾燥させる乾燥工程と、乾燥させた前記防眩層塗布組成物を硬化させて、前記基材フィルム上に防眩層を形成する硬化工程とを備えることを特徴とする防眩性フィルムの製造方法である。 Another aspect of the present invention is a method for producing an antiglare film for producing the antiglare film, wherein the viscosity at 25 ° C. is in the range of 20 to 3000 mPa · s. And an antiglare layer coating composition containing at least one solvent selected from the group consisting of esters, glycol ethers, and alcohols, a coating step of coating on a base film, and a decreasing rate drying section Maintaining the temperature within a range of 90 to 160 ° C., drying the antiglare layer coating composition, and curing the dried antiglare layer coating composition to prevent the antiglare layer coating on the base film. It is a manufacturing method of the anti-glare film characterized by including the hardening process which forms a glare layer.
 本発明の目的、特徴、局面、及び利点は、以下の詳細な記載と添付図面によって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、突起の説明図である。FIG. 1 is an explanatory diagram of protrusions. 図2は、本発明の一実施態様に係る防眩性フィルムの防眩層の不規則な突起を示す概略図である。FIG. 2 is a schematic view showing irregular protrusions of the antiglare layer of the antiglare film according to one embodiment of the present invention. 図3は、実施例1に係る防眩性フィルムの防眩層表面を光学干渉式表面粗さ計で観察した結果を示す観察図である。FIG. 3 is an observation view showing the result of observing the antiglare layer surface of the antiglare film according to Example 1 with an optical interference surface roughness meter. 図4は、本発明の他の一実施形態に係る偏光板の断面図である。FIG. 4 is a cross-sectional view of a polarizing plate according to another embodiment of the present invention. 図5は、実施例で作製した液晶パネルの断面図である。FIG. 5 is a cross-sectional view of the liquid crystal panel produced in the example. 図6は、液晶表示装置の液晶セルの概略図である。FIG. 6 is a schematic view of a liquid crystal cell of a liquid crystal display device. 図7は、導電性膜付き防眩性フィルムの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of an antiglare film with a conductive film. 図8は、抵抗膜方式タッチパネル液晶表示装置の構成の一例を示す概略図である。FIG. 8 is a schematic diagram illustrating an example of a configuration of a resistive film type touch panel liquid crystal display device.
 本発明の実施形態に係る防眩性フィルムは、基材フィルム上に防眩層を有する防眩性フィルムであって、当該防眩層の表面の算術平均粗さRa(nm)と前記定義式で定義される相関長Ic(μm)とが、前記関係式(1)を満たすことを特徴とする。この特徴は、本発明の他の実施形態にも共通する技術的特徴である。 An anti-glare film according to an embodiment of the present invention is an anti-glare film having an anti-glare layer on a base film, and the arithmetic average roughness Ra (nm) of the surface of the anti-glare layer and the above definition formula The correlation length Ic (μm) defined by the above satisfies the relational expression (1). This feature is a technical feature common to other embodiments of the present invention.
 前記防眩性フィルムは、本発明の効果発現の観点から、前記防眩層の表面の算術平均粗さRaと前記相関長が、下記関係式(2)を満たすことが好ましい。 In the antiglare film, it is preferable that the arithmetic average roughness Ra of the surface of the antiglare layer and the correlation length satisfy the following relational expression (2) from the viewpoint of manifesting the effects of the present invention.
 また、前記防眩性フィルムは、前記防眩層の表面の算術平均粗さRaが、350~1300nmの範囲内であることが好ましい。 The antiglare film preferably has an arithmetic average roughness Ra of the surface of the antiglare layer in the range of 350 to 1300 nm.
 また、前記防眩性フィルムは、前記防眩層の内部散乱に起因するヘイズが、0~0.5%の範囲内であることが好ましい。 The antiglare film preferably has a haze due to internal scattering of the antiglare layer in the range of 0 to 0.5%.
 また、前記防眩性フィルムは、前記防眩層が、25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂を含有していることが好ましい。 In the antiglare film, the antiglare layer preferably contains an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa · s.
 また、前記防眩性フィルムは、前記防眩層が、微粒子を含有し、前記微粒子及び前記活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有していないことが好ましい。 In the antiglare film, it is preferable that the antiglare layer contains fine particles and does not substantially contain a resin that is incompatible with the fine particles and the actinic radiation curable resin.
 また、前記防眩性フィルムは、前記防眩層の表面が、長手方向に周期を持たない不規則な突起形状を有していることが好ましい。 In the antiglare film, the surface of the antiglare layer preferably has an irregular protrusion shape having no period in the longitudinal direction.
 また、本発明の他の一実施形態は、前記防眩性フィルムを製造する防眩性フィルムの製造方法であって、25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂と、エステル類、グリコールエーテル類、及びアルコール類からなる群から選ばれる少なくとも一種の溶剤とを含有する防眩層塗布組成物を、基材フィルム上に塗布する塗布工程と、減率乾燥区間の温度を90~160℃の範囲内に維持して、前記防眩層塗布組成物を乾燥させる乾燥工程と、乾燥させた前記防眩層塗布組成物を硬化させて、前記基材フィルム上に防眩層を形成する硬化工程とを備えることを特徴とする防眩性フィルムの製造方法である。 Another embodiment of the present invention is a method for producing an antiglare film for producing the antiglare film, wherein the viscosity at 25 ° C. is in the range of 20 to 3000 mPa · s. A coating step for coating an antiglare layer coating composition containing a resin and at least one solvent selected from the group consisting of esters, glycol ethers, and alcohols on a base film; And maintaining the temperature within a range of 90 to 160 ° C. to dry the antiglare layer coating composition, and curing the dried antiglare layer coating composition onto the base film. It is a manufacturing method of the anti-glare film characterized by including the hardening process which forms an anti-glare layer.
 本実施形態に係る防眩性フィルムは、偏光板、画像表示装置、及びタッチパネル用部材に好適に具備することができる。 The antiglare film according to the present embodiment can be suitably included in a polarizing plate, an image display device, and a touch panel member.
 以下、本発明に係る実施形態について説明するが、本発明は、これに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。また、「表面ヘイズ値」及び「内部ヘイズ値」は、それぞれ、単に「表面ヘイズ」、「内部ヘイズ」とも表現する。 In this application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. The “surface haze value” and the “internal haze value” are also simply expressed as “surface haze” and “internal haze”, respectively.
 (防眩性フィルムの概要)
 本願でいう「防眩性フィルム」とは、反射した像や外光の輪郭をぼかす層、すなわち、防眩層をフィルム基材の表面に設けることで、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイといった画像表示装置等の使用時に、外光や反射像の映り込みを抑制したフィルムをいう。
(Outline of antiglare film)
The term “antiglare film” as used in the present application refers to a layer that blurs the outline of a reflected image or external light, that is, an antiglare layer on the surface of a film substrate, so that a liquid crystal display, an organic EL display, a plasma display, etc. It refers to a film that suppresses reflection of external light and reflected images when an image display device is used.
 <表面形状>
 本発明の実施形態に係る防眩性フィルムは、基材フィルム上に防眩層を有する防眩性フィルムであって、当該防眩層の表面の算術平均粗さRa(nm)と下記定義式で定義される相関長Ic(μm)とが、下記関係式(1)を満たすことを特徴とする。
  関係式(1):0 ≦ Ic ≦ 21-8×exp((215-Ra)/40)-13×exp((215-Ra)/400)
  定義式:相関長Ic = 二乗平均平方根粗さRq(μm)/二乗平均平方根傾斜Δq×21/2
<Surface shape>
An antiglare film according to an embodiment of the present invention is an antiglare film having an antiglare layer on a base film, and the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and the following definition formula: The correlation length Ic (μm) defined by the above satisfies the following relational expression (1).
Relational expression (1): 0 ≦ Ic ≦ 21−8 × exp ((215−Ra) / 40) −13 × exp ((215−Ra) / 400)
Definition formula: Correlation length Ic = root mean square roughness Rq (μm) / root mean square slope Δq × 2 1/2
 このような防眩性フィルムは、視認性の向上とモアレ縞の低減の両立を達成できる。 Such an antiglare film can achieve both improved visibility and reduced moire fringes.
 ここで、防眩層の表面の「算術平均粗さ(Ra)」、「二乗平均平方根粗さ(Rq)」、及び「二乗平均平方根傾斜(Δq)」は、JIS B0601:1994に記載されている定義等に準拠するものである。すなわち、当該JIS規格に基づき、防眩層の表面について得た粗さ曲線の算術平均粗さ(Ra)等である。具体的には、以下の方法で求めることができる。 Here, “arithmetic mean roughness (Ra)”, “root mean square roughness (Rq)” and “root mean square slope (Δq)” of the surface of the antiglare layer are described in JIS B0601: 1994. It conforms to the definition etc. That is, the arithmetic average roughness (Ra) of the roughness curve obtained for the surface of the antiglare layer based on the JIS standard. Specifically, it can be determined by the following method.
 まず、防眩層の表面状態を、JIS B0601:1994に準じて、光学干渉式表面粗さ計(例えば、RST/PLUS、WYKO社製、Zygo社製 New View 5030)でフィルムの一定面積(本実施形態においては、約0.36mm×0.27mm)を測定し、表面形状マップを作成する。このマップは、例えば、320ピクセル×240ピクセルの画像であり、各ピクセルに高さデータを保持している粗さ曲面データである。 First, according to JIS B0601: 1994, the surface state of the anti-glare layer was determined by using an optical interference surface roughness meter (for example, RST / PLUS, WYKO, New View 5030, manufactured by Zygo). In the embodiment, about 0.36 mm × 0.27 mm) is measured, and a surface shape map is created. This map is, for example, an image of 320 pixels × 240 pixels, and is roughness curved surface data holding height data in each pixel.
 例えば、算術平均粗さ(Ra)は、このマップの平均面から粗さ曲線までの高さ偏差の絶対値を全ピクセルについて合計し、平均することにより求められる。 For example, the arithmetic average roughness (Ra) is obtained by adding and averaging the absolute value of the height deviation from the average surface of this map to the roughness curve for all pixels.
 二乗平均平方根粗さ(Rq)は、高さ偏差の二乗を全ピクセルについて合計して平均し、平方根をとることにより求められる。 The root mean square roughness (Rq) is obtained by summing the squares of height deviations for all pixels and averaging them, and taking the square root.
 二乗平均平方根傾斜(Δq)は、隣接するピクセルの傾きデータの二乗を全ピクセルについて合計して平均し、平方根をとることにより求められる。 The root mean square slope (Δq) is obtained by summing the squares of slope data of adjacent pixels for all the pixels and taking the square root.
 本発明の実施態様としては、本発明の効果発現の観点から、前記防眩層の表面の算術平均粗さRa(nm)と相関長Ic(μm)とが、下記関係式(2)を満たすことが好ましい。
  関係式(2): 0 ≦ Ic ≦17-6×exp((225-Ra)/40)-11×exp((225-Ra)/400)
As an embodiment of the present invention, from the viewpoint of the effect of the present invention, the arithmetic average roughness Ra (nm) and the correlation length Ic (μm) of the surface of the antiglare layer satisfy the following relational expression (2). It is preferable.
Relational expression (2): 0 ≦ Ic ≦ 17−6 × exp ((225−Ra) / 40) −11 × exp ((225−Ra) / 400)
 なお、関係式(1)と関係式(2)との右辺(指数関数で表現した式)は、光の波動性を考慮したランダムな凹凸面での光の散乱強度計算法(「光・電波解析の基礎」コロナ社参照)によって直線透過方向への光強度がある一定値以下となる点をプロットして求められた曲線の近似曲線である。粗さがあまり大きくない凹凸面では、光の波動性のために、凹凸面で実質的には散乱されない成分が生じるが、この成分の強度が一定値以下であればモアレ縞の解消度合(モアレ縞の低減度合)が高くなることを示している。 Note that the right side of the relational expression (1) and the relational expression (2) (expression expressed by an exponential function) is a method for calculating the scattering intensity of light on a random uneven surface in consideration of the wave nature of light (“light / radio wave”). It is an approximate curve of a curve obtained by plotting points at which the light intensity in the linear transmission direction is below a certain value according to “Basics of Analysis” (see Corona). On the uneven surface where the roughness is not so large, there is a component that is not substantially scattered by the uneven surface due to the wave nature of light. If the intensity of this component is below a certain value, the degree of elimination of moire fringes (moire) It shows that the reduction degree of fringes is high.
 本実施形態においては、前記防眩層の表面の算術平均粗さRaが、350~1300nmの範囲内であることが好ましい。更に好ましくは、400~1000nmの範囲内である。このような範囲内にすることによりモアレ縞の発生をより低減できる。よって、モアレ縞の解消を一層改良することができる。すなわち、モアレ縞の問題をより解消できる。 In the present embodiment, the arithmetic average roughness Ra of the surface of the antiglare layer is preferably in the range of 350 to 1300 nm. More preferably, it is in the range of 400 to 1000 nm. By making it within such a range, the generation of moire fringes can be further reduced. Therefore, the elimination of moire fringes can be further improved. That is, the problem of moire fringes can be solved more.
 本実施形態においては、前記防眩層の表面が、長手方向に周期を持たない不規則な突起形状を有していることが、視認性の観点から、好ましい。 In the present embodiment, it is preferable from the viewpoint of visibility that the surface of the antiglare layer has an irregular protrusion shape having no period in the longitudinal direction.
 前記範囲の算術平均粗さRaとするため突起形状の高さは、20nm~6μmが好ましい。また突起形状の幅は50nm~300μm、好ましくは、50nm~100μmである。上記突起形状の高さ、及び幅は断面観察から求めることができる。よりわかりやすくするために、図1に突起の説明図を示した。 In order to obtain the arithmetic average roughness Ra within the above range, the height of the protrusion shape is preferably 20 nm to 6 μm. The width of the protrusion shape is 50 nm to 300 μm, preferably 50 nm to 100 μm. The height and width of the protrusion shape can be obtained from cross-sectional observation. In order to make it easier to understand, FIG. 1 shows an explanatory view of the protrusion.
 次に突起形状について説明する。図1に示されているように、断面観察の画像に中心線aを引き、山の麓を形成する線b、cと中心線aとの二つの交点の距離を、突起サイズの幅tとした。また、山頂と中心線aまでの距離を突起サイズの高さhとして求められる。 Next, the protrusion shape will be described. As shown in FIG. 1, the center line a is drawn on the cross-sectional observation image, and the distance between the two intersections of the lines b and c and the center line a forming the mountain ridge is defined as the protrusion size width t and did. Further, the distance from the summit to the center line a is obtained as the height h of the protrusion size.
 本実施形態においては、防眩性フィルムの防眩層の10点平均粗さRzは、算術平均粗さ(中心線平均粗さ)Raの10倍以下、平均山谷距離Smは5~150μmが好ましく、より好ましくは20~100μm、凹凸最深部からの凸部高さの標準偏差は0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0~5度の面は10%以上が好ましい。このように設計することで、白呆け抑制効果が得られる。 In the present embodiment, the 10-point average roughness Rz of the antiglare layer of the antiglare film is preferably 10 times or less the arithmetic average roughness (centerline average roughness) Ra, and the average mountain valley distance Sm is preferably 5 to 150 μm. More preferably, it is 20 to 100 μm, the standard deviation of the height of the convex part from the deepest part of the unevenness is 0.5 μm or less, the standard deviation of the mean mountain valley distance Sm with respect to the center line is 20 μm or less, and the inclination angle is 0 to 5 degrees. The surface is preferably 10% or more. By designing in this way, an effect of suppressing white sensation can be obtained.
 本実施形態において、二乗平均平方根粗さ(Rq)は、モアレ縞の低減の観点から、400~1700nm(0.4~1.7μm)であることが好ましい。 In this embodiment, the root mean square roughness (Rq) is preferably 400 to 1700 nm (0.4 to 1.7 μm) from the viewpoint of reducing moire fringes.
 二乗平均平方根傾斜(Δq)は、白呆け抑制の観点から、0.01~0.3であることが好ましい。 The root mean square slope (Δq) is preferably 0.01 to 0.3 from the viewpoint of suppression of white sensation.
 したがって、相関長は、両者の観点から、2~240μmであることが好ましい。 Therefore, the correlation length is preferably 2 to 240 μm from both viewpoints.
 前記Ra、Sm、Rz、Rq、及びΔqは、JIS B0601:1994に準じて光学干渉式表面粗さ計(たとえば、RST/PLUS、WYKO社製、Zygo社製 New View 5030)で測定した値である。 Ra, Sm, Rz, Rq, and Δq are values measured with an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO, New View 5030 manufactured by Zygo) according to JIS B0601: 1994. is there.
 本実施形態に係る防眩性フィルムは、前記防眩層の内部散乱に起因するヘイズが、0~1.0%の範囲内であることが好ましい。このような範囲内にすることにより、視認性を一層改良することができる。 In the antiglare film according to this embodiment, the haze caused by internal scattering of the antiglare layer is preferably in the range of 0 to 1.0%. Visibility can be further improved by being in such a range.
 前記した突起形状を形成する際、前記範囲の内部ヘイズにコントロールし、かつ突起形状の算術平均粗さRaを前記範囲に制御し、防眩層が微粒子及び活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有しないことで、本発明の目的効果が良好に発揮される。内部ヘイズとしては、更に好ましくは0~0.5%である。 When forming the above-described protrusion shape, the internal haze within the above range is controlled, and the arithmetic average roughness Ra of the protrusion shape is controlled within the above range, and the antiglare layer is incompatible with the fine particles and the actinic radiation curable resin. The objective effect of this invention is exhibited favorably by not containing substantially the resin which is. The internal haze is more preferably 0 to 0.5%.
 内部ヘイズは、以下の手順で測定することができる。防眩性フィルムの表面及び裏面にシリコーンオイルを数滴滴下し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)二枚で、裏表より挟む。表裏をガラスで挟み込んだ防眩性フィルムを、完全に二枚のガラス板と光学的に密着させ、この状態でヘイズ(Ha)をJIS-K7105及びJIS K7136に準じて測定する。次に、ガラス板二枚の間にシリコーンオイルのみ数滴滴下して挟みこんでガラスヘイズ(Hb)を測定する。そして、防眩性フィルムをガラスで挟み込んだヘイズ(Ha)から、ガラスヘイズ(Hb)を引きくことで、内部ヘイズ(Hi)は算出できる。また、表面ヘイズ(フィルムの表面散乱に起因するヘイズ)は3~40%であることが好ましい。表面ヘイズは、全ヘイズから内部ヘイズを引くことで求められる。全ヘイズは3~40%であることが好ましい。 Internal haze can be measured by the following procedure. A few drops of silicone oil are dropped on the front and back surfaces of the antiglare film and sandwiched between two glass plates (micro slide glass product number S 9111, manufactured by MATSANAMI) having a thickness of 1 mm. An anti-glare film sandwiched between front and back glass is optically brought into close contact with two glass plates, and in this state, haze (Ha) is measured according to JIS-K7105 and JIS K7136. Next, a few drops of silicone oil are dropped between two glass plates and sandwiched to measure glass haze (Hb). And internal haze (Hi) is computable by drawing glass haze (Hb) from the haze (Ha) which pinched | interposed the glare-proof film with glass. Further, the surface haze (the haze resulting from the surface scattering of the film) is preferably 3 to 40%. The surface haze is obtained by subtracting the internal haze from the total haze. The total haze is preferably 3 to 40%.
 本実施形態に係る防眩性フィルムは、防眩層が表面凹凸を形成する突起形状を有し、その突起形状が長手方向に不規則な形状の突起であり、その配置も不規則な配置であることが好ましい。このような突起形状を有することで、本発明の目的効果が良好に発揮される。 The antiglare film according to the present embodiment has a protrusion shape in which the antiglare layer forms surface irregularities, the protrusion shape is a protrusion having an irregular shape in the longitudinal direction, and the arrangement thereof is also an irregular arrangement. Preferably there is. By having such a protrusion shape, the object effect of the present invention is exhibited well.
 本実施形態に係る防眩性フィルムの防眩層が有する「不規則な形状の突起」とは、表面凹凸が型押しにより形成された長さ方向に周期的に規則的な形状を持たず、形も大きさも定まらない様々な形状の突起をさす。これらに限定はされないが、例えば、図2に示すような、防眩層1の表面上に形成される形状の突起2が挙げられる。すなわち、図2に示す幅も高さも異なる突起2が、不規則な形状の突起として例示される。また、「不規則な配置」とは、前記不規則な傾向の突起が規則的に(例えば、等間隔などで)配置されているのではなく、ランダムな間隔で不規則に配置されており、等方的であっても、異方的であってもよいことをさす。 The `` irregularly shaped protrusions '' included in the antiglare layer of the antiglare film according to the present embodiment do not have a regular shape periodically in the length direction in which the surface unevenness is formed by embossing, It refers to protrusions of various shapes whose shapes and sizes are not fixed. Although not limited to these, For example, the processus | protrusion 2 of the shape formed on the surface of the glare-proof layer 1 as shown in FIG. 2 is mentioned. That is, the protrusions 2 having different widths and heights illustrated in FIG. 2 are exemplified as irregularly shaped protrusions. The “irregular arrangement” means that the irregularly-protruding protrusions are not regularly arranged (for example, at regular intervals), but are irregularly arranged at random intervals, It may be isotropic or anisotropic.
 なお、上述したような特徴を有する防眩層は、詳細については後述するが、上記表面形状は、例えば、防眩層塗布組成物の乾燥工程における減率乾燥区間の処理温度を高温制御し、樹脂の塗膜対流を発生させ、防眩層表面に不均一な状態を作り、この不均一な表面状態で硬化し、塗膜を形成する方法などによって得ることができる。このような方法で塗膜を形成することで、防眩層の膜強度が向上する。また、防眩層塗布組成物の乾燥工程における減率乾燥区間の処理温度を高温条件に制御する方法は、本発明の目的効果に加えて、生産性にも優れる点で好ましい。 In addition, although the antiglare layer having the characteristics as described above will be described in detail later, the surface shape is, for example, controlled at a high temperature for the treatment temperature of the rate-decreasing drying section in the drying process of the antiglare layer coating composition, It can be obtained by a method in which a convection of the resin is generated, a non-uniform state is formed on the surface of the antiglare layer, and the coating is formed by curing in this non-uniform surface state. By forming the coating film by such a method, the film strength of the antiglare layer is improved. In addition to the objective effect of the present invention, the method of controlling the treatment temperature in the decreasing rate drying section in the drying process of the antiglare layer coating composition is preferable in terms of excellent productivity.
 <製造方法>
 また、前記防眩性フィルムの製造方法は、基材フィルム上に防眩層を有し、上記関係式(1)を満たすものを製造することができれば、特に限定されない。この製造方法は、具体的には、25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂と、エステル類、グリコールエーテル類、及びアルコール類からなる群から選ばれる少なくとも一種の溶剤とを含有する防眩層塗布組成物を、基材フィルム上に塗布する塗布工程と、減率乾燥区間の温度を90~160℃の範囲内に維持して、前記防眩層塗布組成物を乾燥させる乾燥工程と、乾燥させた前記防眩層塗布組成物を硬化させて、前記基材フィルム上に防眩層を形成する硬化工程とを備える製造方法が挙げられる。このような製造方法によれば、視認性の向上とモアレ縞の低減の両立を達成できる防眩性フィルムが得られる。前記塗布は、硬化後の厚みが所定の厚みになるように、基材フィルム上に防眩層塗布組成物を塗布できる方法であれば、特に限定されない。具体的には、後述するような塗布方法が挙げられる。乾燥及び硬化は、上記の条件を満たし、基材フィルム上に防眩層を形成できる方法であれば、特に限定されず、後述する方法が挙げられる。
<Manufacturing method>
Moreover, the manufacturing method of the said anti-glare film will not be specifically limited if it has an anti-glare layer on a base film, and what can satisfy | fill the said relational expression (1) can be manufactured. This production method is specifically at least one selected from the group consisting of an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa · s, esters, glycol ethers, and alcohols. An antiglare layer coating composition containing the above-mentioned solvent, and a coating process for coating the base film, and the temperature of the decreasing rate drying section is maintained within the range of 90 to 160 ° C. A manufacturing method provided with the drying process which dries a thing, and the hardening process which hardens the dried said anti-glare layer coating composition and forms an anti-glare layer on the above-mentioned substrate film is mentioned. According to such a manufacturing method, an antiglare film capable of achieving both improvement in visibility and reduction of moire fringes can be obtained. The application is not particularly limited as long as it is a method capable of applying the antiglare layer coating composition on the base film so that the thickness after curing becomes a predetermined thickness. Specifically, a coating method as described later can be used. Drying and curing are not particularly limited as long as the above conditions are satisfied and an antiglare layer can be formed on the base film, and examples thereof include the methods described below.
 <防眩層を構成する樹脂等>
 本実施形態に係る防眩層は、25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂を含有していることが好ましい。このような範囲内にすることにより、所望の表面形状を作製しやすくなる。すなわち、得られた防眩性フィルムの防眩層の表面形状が、所望の形状により近いものとなる。よって、視認性の向上とモアレ縞の低減の両立をより図ることができる。
<Resin etc. constituting the antiglare layer>
The antiglare layer according to this embodiment preferably contains an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa · s. By making it within such a range, it becomes easy to produce a desired surface shape. That is, the surface shape of the antiglare layer of the obtained antiglare film becomes closer to the desired shape. Therefore, both improvement in visibility and reduction in moire fringes can be achieved.
 さらに、当該防眩層が、微粒子及び前記活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有していないことが、視認性の観点から、好ましい。 Furthermore, it is preferable from the viewpoint of visibility that the antiglare layer does not substantially contain fine particles and a resin that is incompatible with the actinic radiation curable resin.
 なお、本願において、「非相溶性」とは、二種類以上の樹脂の溶融混合物の融解温度Tm又はガラス転移点Tgを測定・観察したときに、当該溶融混合物を構成する樹脂それぞれ単独のピークが観察されるものをいう。また、透過型電子顕微鏡観察においてそれぞれの相が実質的に観察されるものをいう。一方、「相溶性」とは、同種又は二種類以上の樹脂の溶融混合物の融解温度Tm又はガラス転移点Tgを測定・観察したときに、当該溶融混合物のピークが一個以下観察されるものをいう。 In the present application, “incompatible” means that when a melting temperature Tm or a glass transition point Tg of a molten mixture of two or more kinds of resins is measured and observed, each of the resins constituting the molten mixture has a single peak. What is observed. Further, it means that each phase is substantially observed in transmission electron microscope observation. On the other hand, “compatible” means that one or less of the peak of the molten mixture is observed when the melting temperature Tm or glass transition point Tg of the molten mixture of the same kind or two or more kinds of resins is measured and observed. .
 本実施形態において、活性線硬化型樹脂(詳細は後述する。)に対し非相溶性である樹脂としては、(メタ)アクリル系やアクリル系の単量体を重合又は共重合して得られる樹脂やポリエステル樹脂、更に、後述する基材フィルムにおいて用いられる熱可塑性アクリル樹脂、セルロースエステル樹脂などが挙げられる。 In the present embodiment, the resin that is incompatible with the actinic radiation curable resin (details will be described later) is a resin obtained by polymerizing or copolymerizing (meth) acrylic or acrylic monomers. And polyester resins, and thermoplastic acrylic resins and cellulose ester resins used in the base film described later.
 微粒子としては、無機微粒子や有機微粒子といった微粒子が挙げられ、具体的には無機微粒子としては、酸化珪素、酸化マグネシウム、炭酸カルシウム、などを挙げることができる。また、有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、ポリスチレン系樹脂粉末、又はメラミン系樹脂粉末等を添加することができる。 Examples of the fine particles include fine particles such as inorganic fine particles and organic fine particles, and specific examples of the inorganic fine particles include silicon oxide, magnesium oxide, and calcium carbonate. Further, as the organic particles, polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, polystyrene resin powder, melamine resin powder, or the like can be added.
 なお、本願において、「実質的に含有しない」とは、融解温度Tm又はガラス転移点Tgを測定・観察したときに、上記相溶性に影響を及ぼす最低限の量より少ない含有量であることをいう。当該最低限の量は、粒子や非相溶性である樹脂の種類・性質によって異なるが、例えば、一般的には、ハードコート層中の含有量が、フィルム基材からの抽出物成分を除き、0.01質量%以下である。 In the present application, “substantially does not contain” means that the content is less than the minimum amount affecting the compatibility when the melting temperature Tm or the glass transition point Tg is measured and observed. Say. The minimum amount varies depending on the type and properties of the particles and the incompatible resin.For example, in general, the content in the hard coat layer excludes the extract component from the film substrate, 0.01% by mass or less.
 本実施形態に係る防眩層は、活性線硬化樹脂を含有すること、すなわち、紫外線や電子線のような活性線(活性エネルギー線ともいう。)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層とすることが好ましい。 The antiglare layer according to the present embodiment mainly contains an actinic radiation curable resin, that is, a resin that cures through a crosslinking reaction by irradiation with actinic rays (also referred to as active energy rays) such as ultraviolet rays and electron beams. It is preferable to use a layer as a component.
 活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。 As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams. The
 活性線硬化樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。 Typical examples of the actinic radiation curable resin include ultraviolet curable resins and electron beam curable resins. However, resins cured by ultraviolet irradiation have excellent mechanical film strength (abrasion resistance, pencil hardness). To preferred.
 紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。 Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray. A curable epoxy resin or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に二個以上のアクリロイルオキシ基又はメタクロイルオキシ基を有する化合物である。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリ/テトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、活性エネルギー線硬化型のイソシアヌレート誘導体等が好ましく挙げられる。活性エネルギー線硬化型のイソシアヌレート誘導体としては、イソシアヌル酸骨格に一個以上のエチレン性不飽和基が結合した構造を有する化合物であればよく、特に制限はないが、同一分子内に三個以上のエチレン性不飽和基及び一個以上のイソシアヌレート環を有する化合物が好ましい。 As the ultraviolet curable acrylate resin, polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule. Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol tri / tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, pentaerythritol tet Acrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1, 6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetramethylolmethane trimethacrylate, tetramethylolmethane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pen Preferred examples include erythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerin trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexamethacrylate, active energy ray-curable isocyanurate derivatives, etc. It is done. The active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton. Compounds having an ethylenically unsaturated group and one or more isocyanurate rings are preferred.
 これらの市販品としては、アデカオプトマーNシリーズ、サンラッドH-601、RC-750、RC-700、RC-600、RC-500、RC-611、RC-612(三洋化成工業(株)製);SP-1509、SP-1507、アロニックスM-6100、M-8030、M-8060、アロニックスM-215、アロニックスM-315、アロニックスM-313、アロニックスM-327(東亞合成(株)製)、NK-エステルA-TMM-3L、NK-エステルAD-TMP、NK-エステルATM-35E、NKエステルA-DOG、NKエステルA-IBD-2E、A-9300、A-9300-1CL(新中村化学工業(株))、ライトアクリレートTMP-A、PE-3A(共栄社化学)などが挙げられる。 As these commercial products, Adekaoptomer N series, Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (manufactured by Sanyo Chemical Industries, Ltd.) SP-1509, SP-1507, Aronix M-6100, M-8030, M-8060, Aronix M-215, Aronix M-315, Aronix M-313, Aronix M-327 (manufactured by Toagosei Co., Ltd.), NK-ester A-TMM-3L, NK-ester AD-TMP, NK-ester ATM-35E, NK ester A-DOG, NK ester A-IBD-2E, A-9300, A-9300-1CL (Shin Nakamura Chemical) Kogyo Co., Ltd.), light acrylate TMP-A, PE-3A (Kyoeisha Chemical), and the like.
 また、単官能アクリレートを用いても良い。単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレートなどが挙げられる。このような単官能アクリレートは、日本化成工業株式会社、新中村化学工業株式会社、大阪有機化学工業株式会社等から入手できる。 In addition, monofunctional acrylate may be used. Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate. Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
 単官能アクリレートを用いる場合には、多官能アクリレートと単官能アクリレートの含有質量比で、多官能アクリレート:単官能アクリレート=70:30~99:2で含有することが好ましい。活性線硬化樹脂は、単独又は二種以上混合しても良い。また、25℃における活性線硬化樹脂の粘度は、好ましくは20mPa・s以上、3000mPa・s以下、更に好ましくは20mPa・s以上、2000mPa・s以下である。このような低粘度の活性線硬化樹脂を用いることで、前述した突起形状と算術平均粗さRaが得られやすい。また、活性線硬化樹脂の粘度が20mPa・s以上の粘度であれば高官能数のモノマーを用いることが出来て、十分高い硬化性が得られ、3000mPa・s以下の粘度であれば、乾燥工程において活性線硬化樹脂の十分な流動性が得られやすい。 In the case of using a monofunctional acrylate, it is preferable to contain polyfunctional acrylate: monofunctional acrylate = 70: 30 to 99: 2 in terms of mass ratio of polyfunctional acrylate and monofunctional acrylate. Actinic radiation curable resins may be used alone or in combination of two or more. The viscosity of the actinic radiation curable resin at 25 ° C. is preferably 20 mPa · s or more and 3000 mPa · s or less, more preferably 20 mPa · s or more and 2000 mPa · s or less. By using such a low-viscosity actinic ray curable resin, the above-described protrusion shape and arithmetic average roughness Ra are easily obtained. In addition, if the viscosity of the actinic radiation curable resin is 20 mPa · s or higher, a monomer having a high functionality can be used, and sufficiently high curability is obtained. If the viscosity is 3000 mPa · s or lower, the drying step In this case, it is easy to obtain sufficient fluidity of the actinic radiation curable resin.
 なお、上記粘度は、B型粘度計を用いて25℃の条件にて測定した値である。 In addition, the said viscosity is the value measured on 25 degreeC conditions using the B-type viscosity meter.
 防眩層には、活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂=20:100~0.01:100で含有することが好ましい。光重合開始剤としては、具体的には、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及び、これらの誘導体を挙げることができるが、特にこれらに限定されるものではない。このような光重合開始剤は市販品を用いてもよく、例えば、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。 The antiglare layer preferably contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin. The amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active ray curable resin = 20: 100 to 0.01: 100. Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, α-amyloxime ester, thioxanthone, and derivatives thereof. In particular, it is not limited to these. A commercial item may be used for such a photoinitiator, for example, Irgacure 184, Irgacure 907, Irgacure 651, etc. by BASF Japan Ltd. are mentioned as a preferable illustration.
 また、防眩層には、帯電防止性を付与するために導電剤を含有しても良い。好ましい導電剤としては、π共役系導電性ポリマーやイオン液体などを挙げることができる。 The antiglare layer may contain a conductive agent in order to impart antistatic properties. Preferable examples of the conductive agent include π-conjugated conductive polymers and ionic liquids.
 防眩層には、塗布性の観点から、シリコーン系界面活性剤、フッ素系界面活性剤、アクリル系界面活性剤、フッ素-シロキサングラフト化合物、或いはHLB値が3~18の化合物を含有しても良い。HLB値が3~18の化合物について説明する。HLB値とは、Hydrophile-Lipophile-Balance、親水性-親油性-バランスのことであり、化合物の親水性又は親油性の大きさを示す値である。HLB値が小さいほど親油性が高く、値が大きいほど親水性が高くなる。また、HLB値は以下のような計算式によって求めることができる。
 HLB=7+11.7Log(Mw/Mo)
The antiglare layer may contain a silicone surfactant, a fluorine surfactant, an acrylic surfactant, a fluorine-siloxane graft compound, or a compound having an HLB value of 3 to 18 from the viewpoint of coatability. good. A compound having an HLB value of 3 to 18 will be described. The HLB value is Hydrophile-Lipophile-Balance, hydrophilic-lipophilic-balance, and is a value indicating the hydrophilicity or lipophilicity of a compound. The smaller the HLB value, the higher the lipophilicity, and the higher the value, the higher the hydrophilicity. The HLB value can be obtained by the following calculation formula.
HLB = 7 + 11.7Log (Mw / Mo)
 式中、Mwは親水基の分子量、Moは親油基の分子量を表し、Mw+Mo=M(化合物の分子量)である。或いはグリフィン法によれば、HLB値=20×親水部の式量の総和/分子量(J.Soc.Cosmetic Chem.,5(1954),294)等が挙げられる。HLB値が3~18の化合物の具体的化合物を下記に挙げるが、これに限定されるものでない。( )内はHLB値を示す。 In the formula, Mw represents the molecular weight of the hydrophilic group, Mo represents the molecular weight of the lipophilic group, and Mw + Mo = M (molecular weight of the compound). Alternatively, according to the Griffin method, HLB value = 20 × total formula weight of hydrophilic part / molecular weight (J. Soc. Cosmetic Chem., 5 (1954), 294) and the like. Specific examples of the compound having an HLB value of 3 to 18 are listed below, but are not limited thereto. Figures in parentheses indicate HLB values.
 花王株式会社製:エマルゲン102KG(6.3)、エマルゲン103(8.1)、エマルゲン104P(9.6)、エマルゲン105(9.7)、エマルゲン106(10.5)、エマルゲン108(12.1)、エマルゲン109P(13.6)、エマルゲン120(15.3)、エマルゲン123P(16.9)、エマルゲン147(16.3)、エマルゲン210P(10.7)、エマルゲン220(14.2)、エマルゲン306P(9.4)、エマルゲン320P(13.9)、エマルゲン404(8.8)、エマルゲン408(10.0)、エマルゲン409PV(12.0)、エマルゲン420(13.6)、エマルゲン430(16.2)、エマルゲン705(10.5)、エマルゲン707(12.1)、エマルゲン709(13.3)、エマルゲン1108(13.5)、エマルゲン1118S-70(16.4)、エマルゲン1135S-70(17.9)、エマルゲン2020G-HA(13.0)、エマルゲン2025G(15.7)、エマルゲンLS-106(12.5)、エマルゲンLS-110(13.4)、エマルゲンLS-114(14.0)、日信化学工業株式会社製:サーフィノール104E(4)、サーフィノール104H(4)、サーフィノール104A(4)、サーフィノール104BC(4)、サーフィノール104DPM(4)、サーフィノール104PA(4)、サーフィノール104PG-50(4)、サーフィノール104S(4)、サーフィノール420(4)、サーフィノール440(8)、サーフィノール465(13)、サーフィノール485(17)、サーフィノールSE(6)、信越化学工業株式会社製:X-22-4272(7)、X-22-6266(8)、KF-351(12)、KF-352(7)、KF-353(10)、KF-354L(16)、KF-355A(12)、KF-615A(10)、KF-945(4)、KF-618(11)、KF-6011(12)、KF-6015(4)、KF-6004(5)。 Made by Kao Corporation: Emulgen 102KG (6.3), Emulgen 103 (8.1), Emulgen 104P (9.6), Emulgen 105 (9.7), Emulgen 106 (10.5), Emulgen 108 (12. 1), Emulgen 109P (13.6), Emulgen 120 (15.3), Emulgen 123P (16.9), Emulgen 147 (16.3), Emulgen 210P (10.7), Emulgen 220 (14.2) , Emulgen 306P (9.4), Emulgen 320P (13.9), Emulgen 404 (8.8), Emulgen 408 (10.0), Emulgen 409PV (12.0), Emulgen 420 (13.6), Emulgen 430 (16.2), Emulgen 705 (10.5), Emulgen 707 (12.1), Emulgen 09 (13.3), Emulgen 1108 (13.5), Emulgen 1118S-70 (16.4), Emulgen 1135S-70 (17.9), Emulgen 2020G-HA (13.0), Emulgen 2025G (15. 7), Emulgen LS-106 (12.5), Emulgen LS-110 (13.4), Emulgen LS-114 (14.0), manufactured by Nissin Chemical Industry Co., Ltd .: Surfynol 104E (4), Surfynol 104H (4), Surfinol 104A (4), Surfinol 104BC (4), Surfinol 104DPM (4), Surfinol 104PA (4), Surfinol 104PG-50 (4), Surfinol 104S (4), Surfy Knoll 420 (4), Surfynol 440 (8), Surfynol 4 5 (13), Surfynol 485 (17), Surfynol SE (6), manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-4272 (7), X-22-6266 (8), KF-351 (12) KF-352 (7), KF-353 (10), KF-354L (16), KF-355A (12), KF-615A (10), KF-945 (4), KF-618 (11), KF-6011 (12), KF-6015 (4), KF-6004 (5).
 シリコーン系界面活性剤としては、ポリエーテル変性シリコーンなどを挙げることができ、上記信越化学工業社製のKFシリーズなどを挙げることができる。アクリル系界面活性剤としては、ビックケミー・ジャパン社製のBYK-350、BYK-352などの市販品化合物を挙げることができる。フッ素系界面活性剤としては、DIC株式会社製のメガファック RSシリーズ、メガファックF-444、メガファックF-556などを挙げることができる。フッ素-シロキサングラフト化合物とは、少なくともフッ素系樹脂に、シロキサン及び/又はオルガノシロキサン単体を含むポリシロキサン及び/又はオルガノポリシロキサンをグラフト化させて得られる共重合体の化合物をいう。市販品としては、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。またこれら成分は、塗布液中の固形分成分に対し、0.01~3質量%の範囲で添加することが好ましい。防眩層は、上記した防眩層を形成する成分を溶剤で希釈して防眩層塗布組成物として、この防眩層塗布組成物を以下の方法でフィルム基材上に塗布、乾燥、硬化して防眩層を設けることが好ましい。溶剤としては、ケトン類(メチルエチルケトン、アセトン、シクロヘキサノン、メチルイソブチルケトンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテートなど)、アルコール類(エタノール、メタノール、ブタノール、n-プロピルアルコール、イソプロピルアルコール、ジアセトンアルコール)、炭化水素類(トルエン、キシレン、ベンゼン、シクロヘキサン)、グリコールエーテル類(プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテルなど)などを好ましく用いることができる。また、これら溶剤の中でもグリコールエーテル類或いはアルコール類を前記活性線硬化樹脂100質量部に対して、20~200質量部の範囲で用いることで、防眩層塗布組成物を基材フィルムに塗布後、防眩層塗布組成物の溶剤が蒸発しながら、防眩層を形成していく過程で、樹脂の対流が生じやすく、その結果、防眩層で、不規則な表面粗れが発現しやすく、前記算術平均粗さRaに制御しやすいため好ましい。 Examples of the silicone surfactant include polyether-modified silicone, and the KF series manufactured by Shin-Etsu Chemical Co., Ltd. can be used. Examples of the acrylic surfactant include commercially available compounds such as BYK-350 and BYK-352 manufactured by BYK Japan. Examples of the fluorosurfactant include Megafac RS series, Megafac F-444 and Megafac F-556 manufactured by DIC Corporation. The fluorine-siloxane graft compound refers to a copolymer compound obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone to at least a fluorine-based resin. Examples of commercially available products include ZX-022H, ZX-007C, ZX-049, ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd. These components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution. The antiglare layer is prepared by diluting the above-described components for forming the antiglare layer with a solvent as an antiglare layer coating composition, and applying, drying and curing the antiglare layer coating composition on the film substrate in the following manner. Thus, it is preferable to provide an antiglare layer. Solvents include ketones (methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, propyl acetate, propylene glycol monomethyl ether acetate, etc.), alcohols (ethanol, methanol, butanol, etc.) , N-propyl alcohol, isopropyl alcohol, diacetone alcohol), hydrocarbons (toluene, xylene, benzene, cyclohexane), glycol ethers (propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethylene glycol monopropyl ether, etc.), etc. Can be preferably used. Further, among these solvents, glycol ethers or alcohols are used in the range of 20 to 200 parts by mass with respect to 100 parts by mass of the actinic radiation curable resin, so that the antiglare layer coating composition is applied to the base film. In the process of forming the antiglare layer while the solvent of the antiglare layer coating composition evaporates, convection of the resin is likely to occur, and as a result, irregular surface roughness is likely to occur in the antiglare layer. It is preferable because the arithmetic average roughness Ra can be easily controlled.
 防眩層の塗布量は、ウェット膜厚として0.1~40μmが適当で、好ましくは、0.5~30μmである。また、ドライ膜厚としては平均膜厚0.1~30μm、好ましくは1~20μm、特に好ましくは2~15μmである。 The coating amount of the antiglare layer is suitably 0.1 to 40 μm as a wet film thickness, and preferably 0.5 to 30 μm. The dry film thickness is from 0.1 to 30 μm, preferably from 1 to 20 μm, particularly preferably from 2 to 15 μm.
 防眩層の塗布方法は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等の公知の方法を用いることができる。これら塗布方法を用いて防眩層を形成する防眩層塗布組成物を塗布し、塗布後、乾燥し、活性線を照射(UV硬化処理とも言う)し、更に必要に応じて、UV硬化後に加熱処理することで形成できる。UV硬化後の加熱処理温度としては80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化後の加熱処理を行うことで、鉛筆硬度に優れた防眩層を得ることができる。 As a method for applying the antiglare layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used. Using these coating methods, an antiglare layer coating composition for forming an antiglare layer is applied, dried after application, irradiated with actinic radiation (also referred to as UV curing treatment), and, if necessary, after UV curing It can be formed by heat treatment. The heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after UV curing at such a high temperature, an antiglare layer having excellent pencil hardness can be obtained.
 乾燥は、減率乾燥区間の温度を90℃以上の高温処理で行うことが好ましい。更に好ましくは、減率乾燥区間の温度は90℃以上、160℃以下である。減率乾燥区間の温度を高温処理とすることで、防眩層の形成時に塗膜樹脂の対流が生じやすくなるため、その結果、防眩層表面に不規則な表面粗れが発現しやすく、前記算術平均粗さRaに制御しやすいため好ましい。 Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature of the decreasing rate drying section is 90 ° C or higher and 160 ° C or lower. By setting the temperature of the reduced rate drying section to a high temperature treatment, convection of the coating film resin is likely to occur during the formation of the antiglare layer, and as a result, irregular surface roughness is likely to appear on the antiglare layer surface, This is preferable because the arithmetic average roughness Ra can be easily controlled.
 一般に乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。恒率乾燥区間においては流入する熱量はすべて塗膜表面の溶剤蒸発に費やされており、塗膜表面の溶媒が少なくなると蒸発面が表面から内部に移動して減率乾燥区間に入る。これ以降は塗膜表面の温度が上昇し熱風温度に近づいていき、塗膜の活性線硬化型樹脂の温度が上昇する。これにより、活性線硬化型樹脂の粘度が低下し、流動性が増すことで、塗膜樹脂の対流が生じると考えられる。 In general, it is known that the drying process changes from a constant state to a gradually decreasing state when drying starts. The decreasing section is called the decreasing rate drying section. In the constant rate drying section, the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. After this, the temperature of the coating film surface rises and approaches the hot air temperature, and the temperature of the actinic radiation curable resin of the coating film rises. Thereby, it is thought that the convection of the coating film resin is caused by the decrease in the viscosity of the actinic radiation curable resin and the increase in fluidity.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cm、好ましくは50~300mJ/cmである。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
 活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、又は二軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。 When irradiating actinic rays, it is preferably performed while applying tension in the transport direction of the film, more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying tension is not particularly limited, and tension may be applied in the conveying direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
 また防眩層は、後述する基材フィルムで説明する紫外線吸収剤をさらに含有しても良い。紫外線吸収剤を含有する場合のフィルムの構成としては、防眩層が二層以上で構成され、かつ基材フィルムと接する防眩層に紫外線吸収剤を含有することが好ましい。 Further, the antiglare layer may further contain an ultraviolet absorber described in the base film described later. As a structure of the film in the case of containing an ultraviolet absorber, the antiglare layer is preferably composed of two or more layers, and the antiglare layer in contact with the base film preferably contains the ultraviolet absorber.
 紫外線吸収剤の含有量としては質量比で、紫外線吸収剤:防眩層構成樹脂=0.01:100~10:100で含有することが好ましい。二層以上設ける場合、基材フィルムと接する防眩層の膜厚は、0.05~2μmの範囲であることが好ましい。二層以上の積層は同時重層で形成しても良い。同時重層とは、乾燥工程を経ずに基材上に二層以上の防眩層をwet on wetで塗布して、防眩層を形成することである。第1防眩層の上に乾燥工程を経ずに、第2防眩層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。 As the content of the ultraviolet absorber, it is preferable that it is contained in a mass ratio of ultraviolet absorber: antiglare layer constituting resin = 0.01: 100 to 10: 100. When two or more layers are provided, the film thickness of the antiglare layer in contact with the base film is preferably in the range of 0.05 to 2 μm. Two or more layers may be formed as a simultaneous multilayer. The simultaneous multi-layering means that two or more antiglare layers are applied on a wet substrate on a substrate without passing through a drying step to form an antiglare layer. In order to laminate the second anti-glare layer on the first anti-glare layer without using a drying process, the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
 なお、本実施形態に係る防眩性フィルムは、硬度の指標で有る鉛筆硬度がH以上、より好ましくは3H以上である。3H以上であれば、液晶表示装置の偏光板化工程で、傷が付きにくいばかりではなく、屋外用途で用いられることが多い、大型の液晶表示装置や、デジタルサイネージ用液晶表示装置の表面保護フィルムとして用いた際も優れた機械特性を示す。鉛筆硬度は、作製した防眩性フィルムを温度23℃、相対湿度55%の条件で2時間以上調湿した後、加重500g条件でJIS S 6006が規定する試験用鉛筆を用いて、JIS K5400が規定する鉛筆硬度評価方法に従い測定した値である。次いで、基材フィルムについて説明する。 In addition, the antiglare film according to the present embodiment has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it is not only difficult to be scratched in the polarizing plate forming step of the liquid crystal display device, but also used for outdoor applications, and is a surface protective film for large liquid crystal display devices and liquid crystal display devices for digital signage. Excellent mechanical properties when used. The pencil hardness is determined by JIS K5400 using a test pencil specified by JIS S 6006 under the condition of a weight of 500 g after conditioning the prepared antiglare film at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more. It is a value measured according to the pencil hardness evaluation method specified. Next, the base film will be described.
 <基材フィルム>
 基材フィルムは、製造が容易であること、防眩層と接着し易いこと、光学的に等方性であることが好ましい。また、本実施形態では、基材フィルムを偏光板保護フィルムとして使用する。
<Base film>
It is preferable that the base film is easy to manufacture, easily adheres to the antiglare layer, and is optically isotropic. Moreover, in this embodiment, a base film is used as a polarizing plate protective film.
 上記性質を有した基材フィルムであれば何れでもよく、例えば、トリアセチルセルロースフィルム、セルロースアセテートプロピオネートフィルム、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリメチルメタクリレートフィルム又はアクリルフィルム等を使用することができる。これらの内、セルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、及びKC12UR(以上、コニカミノルタオプト(株)製))、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム、ポリエステルフィルムが好ましく、本実施形態においては、セルロースエステルフィルムが防眩層で上記した突形状が得られやすいこと、製造性、コスト面から好ましい。基材フィルムの屈折率は、1.30~1.70であることが好ましく、1.40~1.65であることがより好ましい。屈折率は、アタゴ社製 アッペ屈折率計2Tを用いてJIS K7142の方法で測定する。 Any base film having the above properties may be used. For example, cellulose ester-based films such as triacetyl cellulose film, cellulose acetate propionate film, cellulose diacetate film, and cellulose acetate butyrate film, polyethylene terephthalate, polyethylene Polyester film such as naphthalate, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, Syndiotactic polystyrene film, norbornene resin film, polymethylpente Films, polyether ketone films, polyether ketone imide film, a polyamide film, a fluorine resin film, nylon film, can be used cycloolefin polymer film, a polymethylmethacrylate film, or an acrylic film. Among these, cellulose ester films (for example, Konica Minoltac KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UE, KC4UE, and KC12UR (above, manufactured by Konica Minolta Opto, Polycarbonate Co., Ltd.) An olefin polymer film and a polyester film are preferable, and in the present embodiment, the cellulose ester film is preferable from the viewpoint of ease of obtaining the above-described protruding shape with an antiglare layer, productivity, and cost. The refractive index of the base film is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65. The refractive index is measured by the method of JIS K7142 using an upe refractometer 2T manufactured by Atago Co., Ltd.
 次に、基材フィルムとして好ましいセルロースエステルフィルムについてより詳細に説明する。 Next, a cellulose ester film preferable as a base film will be described in more detail.
 (セルロースエステルフィルム)
 セルロースエステルフィルムは、上記基材フィルムとしての特徴を有するものであれば特に限定はされないが、セルロースエステル樹脂(以下、セルロースエステルともいう。)は、セルロースの低級脂肪酸エステルであることが好ましい。セルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が6以下の脂肪酸を意味し、例えば、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート等や、セルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることができる。
(Cellulose ester film)
The cellulose ester film is not particularly limited as long as it has the characteristics as the base film, but the cellulose ester resin (hereinafter also referred to as cellulose ester) is preferably a lower fatty acid ester of cellulose. The lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms. For example, cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, etc. Further, mixed fatty acid esters such as cellulose acetate butyrate can be used.
 上記記載の中でも、特に好ましく用いられるセルロースの低級脂肪酸エステルはセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネートである。これらのセルロースエステルは単独或いは混合して用いることができる。 Among the above descriptions, the lower fatty acid esters of cellulose particularly preferably used are cellulose diacetate, cellulose triacetate, and cellulose acetate propionate. These cellulose esters can be used alone or in combination.
 セルロースジアセテートは、平均酢化度(結合酢酸量)51.0~56.0%が好ましく用いられる。また、市販品としては、ダイセル社L20、L30、L40、L50、イーストマンケミカル社のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60Sが挙げられる。 Cellulose diacetate preferably has an average degree of acetylation (amount of bound acetic acid) of 51.0 to 56.0%. Commercially available products include Daicel L20, L30, L40, and L50, and Eastman Chemical's Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S.
 セルローストリアセテートは、平均酢化度(結合酢酸量)54.0~62.5%のものが好ましく用いられ、更に好ましいのは、平均酢化度が58.0~62.5%のセルローストリアセテートである。 The cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
 平均酢化度が小さいと寸法変化が大きく、また偏光板の偏光度が低下する。平均酢化度が大きいと溶剤に対する溶解度が低下し生産性が下がる。 If the average degree of acetylation is small, the dimensional change is large, and the polarization degree of the polarizing plate decreases. When the average degree of acetylation is large, the solubility in a solvent is lowered and the productivity is lowered.
 セルローストリアセテートとしては、アセチル基置換度が、2.80~2.95であって数平均分子量(Mn)が125000以上155000未満、重量平均分子量(Mw)は、265000以上310000未満、Mw/Mnが1.9~2.1であるセルローストリアセテートA、アセチル基置換度が2.75~2.90であって数平均分子量(Mn)が155000以上180000未満、Mwは290000以上360000未満、Mw/Mnは、1.8~2.0であるセルローストリアセテートBを含有することが好ましい。さらに、セルローストリアセテートAとセルローストリアセテートBを併用する場合には、質量比でセルローストリアセテートA:セルローストリアセテートB=100:0~20:80までの範囲であることが好ましい。セルローストリアセテート以外で好ましいセルロースエステルは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロースエステルである。
 式(I) 2.6≦X+Y≦3.0
 式(II) 0≦X≦2.5
The cellulose triacetate has an acetyl group substitution degree of 2.80 to 2.95, a number average molecular weight (Mn) of 125,000 or more and less than 155000, a weight average molecular weight (Mw) of 265,000 or more and less than 310,000, and Mw / Mn of Cellulose triacetate A of 1.9 to 2.1, acetyl group substitution degree of 2.75 to 2.90, number average molecular weight (Mn) of 155,000 to less than 180,000, Mw of 290000 to less than 360,000, Mw / Mn Preferably contains cellulose triacetate B which is 1.8 to 2.0. Further, when cellulose triacetate A and cellulose triacetate B are used in combination, the mass ratio is preferably in the range of cellulose triacetate A: cellulose triacetate B = 100: 0 to 20:80. A preferred cellulose ester other than cellulose triacetate has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y, It is a cellulose ester containing the cellulose ester which satisfy | fills (I) and (II) simultaneously.
Formula (I) 2.6 ≦ X + Y ≦ 3.0
Formula (II) 0 ≦ X ≦ 2.5
 特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。 In particular, cellulose acetate propionate is preferably used, and among them, 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9 are preferable.
 セルロースエステルの数平均分子量(Mn)及び分子量分布(Mw)は、高速液体クロマトグラフィーを用い測定できる。測定条件は以下の通りである。 The number average molecular weight (Mn) and molecular weight distribution (Mw) of cellulose ester can be measured using high performance liquid chromatography. The measurement conditions are as follows.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G
(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G
(Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw = 1000,000 to 500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 (セルロースエステル樹脂・熱可塑性アクリル樹脂含有フィルム)
 基材フィルムとしては、熱可塑性アクリル樹脂とセルロースエステル樹脂とを含有し、熱可塑性アクリル樹脂とセルロースエステル樹脂の含有質量比が、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5~50:50であるフィルムを用いても良い。
(Cellulose ester resin / thermoplastic acrylic resin-containing film)
The base film contains a thermoplastic acrylic resin and a cellulose ester resin, and the mass ratio of the thermoplastic acrylic resin to the cellulose ester resin is thermoplastic acrylic resin: cellulose ester resin = 95: 5 to 50:50. A certain film may be used.
 アクリル樹脂には、メタクリル樹脂も含まれる。アクリル樹脂としては、特に制限されるものではないが、メチルメタクリレート単位50~99質量%、及びこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは二種以上の単量体を併用して用いることができる。 Acrylic resin includes methacrylic resin. The acrylic resin is not particularly limited but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more monomers.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。また、重量平均分子量(Mw)は80000~500000であることが好ましく、更に好ましくは、110000~500000の範囲内である。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used. Further, the weight average molecular weight (Mw) is preferably 80,000 to 500,000, and more preferably 110,000 to 500,000.
 アクリル樹脂の重量平均分子量は、測定条件含めて、ゲルパーミエーションクロマトグラフィーにより測定することができる。アクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30~100℃、塊状又は溶液重合では80~160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。また、市販品も使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は二種以上を併用することもできる。また、アクリル樹脂には、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体に(メタ)アクリル系樹脂がグラフトされたグラフト共重合体を用いてもよい。前記グラフト共重合体は、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体がコア(core)を構成し、その周辺に前記(メタ)アクリル系樹脂がシェル(shell)を構成するコア-シェルタイプのグラフト共重合体であることが好ましい。 The weight average molecular weight of the acrylic resin can be measured by gel permeation chromatography including the measurement conditions. There is no restriction | limiting in particular as a manufacturing method of an acrylic resin, You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. The polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent. Commercial products can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. . Two or more acrylic resins can be used in combination. The acrylic resin may be a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound. In the graft copolymer, a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer. -A shell-type graft copolymer is preferred.
 基材フィルムにおけるアクリル樹脂とセルロースエステル樹脂の総質量は、基材フィルムの55質量%以上であることが好ましく、更に好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。基材フィルムは、熱可塑性アクリル樹脂、セルロースエステル樹脂以外の樹脂や添加剤を含有して構成されていても良い。 The total mass of the acrylic resin and the cellulose ester resin in the base film is preferably 55% by mass or more of the base film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. The base film may be configured to contain resins and additives other than thermoplastic acrylic resins and cellulose ester resins.
 (アクリル粒子)
 基材フィルムは、脆性の改善に優れる点から、アクリル粒子を含有しても良い。アクリル粒子とは、前記熱可塑性アクリル樹脂及びセルロースエステル樹脂を相溶状態で含有する基材フィルム中に粒子の状態(非相溶状態ともいう。)で存在するアクリル成分を表す。
(Acrylic particles)
The base film may contain acrylic particles because it is excellent in improving brittleness. An acrylic particle represents the acrylic component which exists in the state of particle | grains (it is also called an incompatible state) in the base film which contains the said thermoplastic acrylic resin and cellulose-ester resin in a compatible state.
 アクリル粒子は特に限定されるものではないが、多層構造アクリル系粒状複合体であることが好ましい。多層構造重合体であるアクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレン”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”及びクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし二種以上を用いることができる。基材フィルムにアクリル粒子を添加する場合は、アクリル樹脂とセルロースエステル樹脂との混合物の屈折率とアクリル粒子の屈折率が近いことが、透明性が高いフィルムを得る点では好ましい。具体的には、アクリル粒子とアクリル樹脂の屈折率差が0.05以下であることが好ましく、より好ましくは0.02以下、とりわけ0.01以下であることが好ましい。 The acrylic particles are not particularly limited, but are preferably multi-layered acrylic granular composites. Examples of commercially available acrylic granular composites that are multi-layer structured polymers include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paralloid” manufactured by Kureha Chemical Co., Ltd., Rohm and Examples include “Acryloid” manufactured by Haas, “Staffyroid” manufactured by Gantz Kasei Kogyo, and “Parapet SA” manufactured by Kuraray, and these may be used alone or in combination of two or more. When adding acrylic particles to the base film, it is preferable that the refractive index of the mixture of the acrylic resin and the cellulose ester resin is close to the refractive index of the acrylic particles in order to obtain a highly transparent film. Specifically, the refractive index difference between the acrylic particles and the acrylic resin is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
 アクリル微粒子は、該フィルムを構成するアクリル樹脂とセルロースエステル樹脂の総質量に対して、含有質量比でアクリル微粒子:アクリル樹脂とセルロースエステル樹脂総質量=0.5:100~30:100の範囲で含有させることで、目的効果がより良く発揮される点から好ましく、更に好ましくは、アクリル微粒子:アクリル樹脂とセルロースエステル樹脂の総質量=1.0:100~15:100の範囲である。 Acrylic fine particles are in a range of 0.5: 100 to 30: 100 in terms of the content of acrylic fine particles: acrylic resin and cellulose ester resin with respect to the total mass of acrylic resin and cellulose ester resin constituting the film. The content is preferably from the viewpoint that the intended effect is better exhibited, and more preferably, the total mass of acrylic fine particles: acrylic resin and cellulose ester resin = 1.0: 100 to 15: 100.
 〔微粒子〕
 基材フィルムは、取扱性を向上させる為、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などのマット剤を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さくできるので好ましく用いられる。
[Fine particles]
In order to improve the handling property, the base film is, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate. It is preferable to contain inorganic fine particles such as calcium phosphate and a matting agent such as a crosslinked polymer. Among these, silicon dioxide is preferably used because it can reduce the haze of the film.
 微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmであり、特に好ましくは、5~12nmである。 The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
 (その他の添加剤)
 基材フィルムには、組成物の流動性や柔軟性を向上するために、可塑剤を併用することもできる。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れる。用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。
(Other additives)
A plasticizer can also be used in combination with the base film in order to improve the fluidity and flexibility of the composition. Examples of the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy. Of these, polyester and phthalate plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。またポリエステル系可塑剤の好ましくは、芳香族末端エステル系可塑剤である。芳香族末端エステル系可塑剤としては、フタル酸、アジピン酸、少なくとも一種のベンゼンモノカルボン酸及び少なくとも一種の炭素数2~12のアルキレングリコールとを反応させた構造を有するエステル化合物が好ましく、最終的な化合物の構造としてアジピン酸残基及びフタル酸残基を有していればよく、エステル化合物を製造する際には、ジカルボン酸の酸無水物又はエステル化物として反応させてもよい。 The polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol. . Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like. The polyester plasticizer is preferably an aromatic terminal ester plasticizer. The aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms. As long as it has an adipic acid residue and a phthalic acid residue as the structure of such a compound, when an ester compound is produced, it may be reacted as an acid anhydride or esterified product of dicarboxylic acid.
 ベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、安息香酸であることが最も好ましい。また、これらはそれぞれ一種又は二種以上の混合物として使用することができる。 Examples of the benzene monocarboxylic acid component include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can each be used as a 1 type, or 2 or more types of mixture.
 炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が挙げられる。これらの中では特に1,2-プロピレングリコールが好ましい。これらのグリコールは、一種又は二種以上の混合物として使用してもよい。 Examples of the alkylene glycol component having 2 to 12 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1, 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol 1 , 6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl 1,3-hexanediol 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecane diol. Of these, 1,2-propylene glycol is particularly preferred. These glycols may be used as one kind or a mixture of two or more kinds.
 芳香族末端エステル系可塑剤は、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは350~3000の範囲である。また酸価は、1.5mgKOH/g以下、ヒドロキシ基価(水酸基価)は25mgKOH/g以下、より好ましくは酸価0.5mgKOH/g以下、ヒドロキシ基価(水酸基価)は15mgKOH/g以下のものである。 The aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000. The acid value is 1.5 mgKOH / g or less, the hydroxy group value (hydroxyl value) is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxy group value (hydroxyl value) is 15 mgKOH / g or less. Is.
 可塑剤は、基材フィルム100質量部に対して、0.5~30質量部を添加するのが好ましい。具体的には、以下に示す化合物(B-1~B-10)などが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-I000001
 
Figure JPOXMLDOC01-appb-I000002
The plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the base film. Specific examples thereof include, but are not limited to, compounds (B-1 to B-10) shown below.
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
 さらに、基材フィルムには、糖エステル化合物が含有されていても良い。糖エステル化合物とは、下記単糖、二糖、三糖又はオリゴ糖などの糖のOH基のすべてもしくは一部をエステル化した化合物であり、より具体的な例示としては、一般式(1)で表される化合物などをあげることができる。 Furthermore, the base film may contain a sugar ester compound. The sugar ester compound is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide or oligosaccharide. As a more specific example, a general formula (1) The compound etc. which are represented by these can be mention | raise | lifted.
Figure JPOXMLDOC01-appb-I000003
(式中、R~Rは、置換又は無置換の炭素数2~22のアルキルカルボニル基、或いは、置換又は無置換の炭素数2~22のアリールカルボニル基を表し、R~Rは、同じであっても、異なっていてもよい。)
Figure JPOXMLDOC01-appb-I000003
(Wherein R 1 to R 8 represent a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, and R 1 to R 8 May be the same or different.)
 以下に一般式(1)で示される化合物をより具体的(化合物1-1~化合物1-23)に示すが、これらに限定はされない。なお、下表中のRは、R~Rのいずれかを表す。また、下表中の「平均置換度」は、R~Rの置換度を示す。例えば、平均置換度が6.0であれば、R~Rのうち、下記のRの何れかで置換されている個数が、平均6個であることを示す。そして、一般式(1)で示される化合物におけるR~Rは、Rに置換されたもの以外は、無置換、すなわち、水素原子が結合されている。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
The compounds represented by the general formula (1) are shown below in more detail (compound 1-1 to compound 1-23), but are not limited thereto. In the table below, R represents any one of R 1 to R 8 . The “average degree of substitution” in the table below indicates the degree of substitution of R 1 to R 8 . For example, an average degree of substitution of 6.0 indicates that the number of R 1 to R 8 that are substituted with any of the following R is 6 on average. R 1 to R 8 in the compound represented by the general formula (1) are unsubstituted except for those substituted with R, that is, a hydrogen atom is bonded.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 基材フィルムは、紫外線吸収剤を含有することも好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。 The base film preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
 なお、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。 Among UV absorbers, UV absorbers with a molecular weight of 400 or more are difficult to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. Can do.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、さらには2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは二種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine Examples include hybrid systems having both structures, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 これらは、市販品を用いてもよく、例えば、BASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類を好ましく使用できる。さらに、基材フィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、基材フィルムに帯電防止性能を与えることも可能である。 These may be commercially available products, and for example, TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, and TINUVIN 928 manufactured by BASF Japan Ltd. can be preferably used. Furthermore, various antioxidants can also be added to the base film in order to improve the thermal decomposability and thermal colorability during molding. It is also possible to add an antistatic agent to give the base film antistatic performance.
 基材フィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる一種、あるいは二種以上の混合物を挙げることができる。 For the base film, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used. Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphate esters, halogen-containing condensed phosphonate esters, halogen-containing phosphite esters, and the like.
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。 Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
 基材フィルムは、より高温の環境下での使用に耐えられることが求められており、基材フィルムの張力軟化点が、105~145℃であれば、十分な耐熱性を示すものと判断でき好ましく、特に110~130℃が好ましい。 The base film is required to withstand use in a higher temperature environment, and if the tension softening point of the base film is 105 to 145 ° C., it can be judged that the base film exhibits sufficient heat resistance. 110 to 130 ° C. is particularly preferable.
 張力軟化点の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/分の昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。 As a specific method for measuring the tension softening point, for example, a Tensilon tester (ORIENTEC Co., RTC-1225A) is used to cut out the optical film at 120 mm (length) × 10 mm (width) and pull it with a tension of 10 N. However, the temperature can be continuously increased at a rate of temperature increase of 30 ° C./min, and the temperature at 9 N can be measured three times, and the average value can be obtained.
 尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。 The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
 液晶表示装置の偏光板用保護フィルムとして基材フィルムが用いられる場合は、吸湿による寸法変化によりムラや位相差値の変化が発生してしまい、コントラストの低下や色むらといった問題を発生させる。特に屋外で使用される液晶表示装置に用いられる偏光板保護フィルムであれば、上記の問題は顕著となる。このため、寸法変化率(%)は0.5%未満が好ましく、更に、0.3%未満であることが好ましい。基材フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。 When a substrate film is used as a protective film for a polarizing plate of a liquid crystal display device, unevenness or a change in retardation value occurs due to a dimensional change due to moisture absorption, causing problems such as a decrease in contrast and uneven color. In particular, the above problem becomes significant when the polarizing plate protective film is used in a liquid crystal display device used outdoors. For this reason, the dimensional change rate (%) is preferably less than 0.5%, and more preferably less than 0.3%. The base film preferably has a defect of 5 μm or more in diameter in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less. Here, the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。 The range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. When the defect is a change in the surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。 In addition, when observing with reflected light, if the size of the defect is not clear, aluminum or platinum is vapor-deposited on the surface for observation. In order to obtain a film having excellent quality expressed by such a defect frequency with high productivity, it is necessary to filter the polymer solution with high precision immediately before casting, to increase the cleanliness around the casting machine, It is effective to set drying conditions after rolling stepwise and to dry efficiently while suppressing foaming.
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。 When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
 また、目視で確認できない場合でも、該フィルム上にハードコート層などを形成したときに、塗剤が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。 Also, even when visual confirmation is not possible, when a hard coat layer or the like is formed on the film, the coating agent may not be formed uniformly, resulting in defects (coating defects). Here, the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign substance in the film forming stock solution, or a foreign substance mixed in the film forming process. This refers to the foreign matter (foreign matter defect) in the film.
 また、基材フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。基材フィルムの厚さは、10μm以上であることが好ましい。より好ましくは20μm以上である。厚さの上限は特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は250μm程度である。なお、フィルムの厚さは用途により適宜選定することができる。 Further, the base film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS-K7127-1999. The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming. The thickness of the base film is preferably 10 μm or more. More preferably, it is 20 μm or more. The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 μm from the viewpoint of applicability, foaming, solvent drying, and the like. In addition, the thickness of a film can be suitably selected according to a use.
 基材フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。また、製膜時のフィルム接触部(冷却ロール、カレンダーロール、ドラム、ベルト、溶液製膜における塗布基材、搬送ロールなど)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることや、アクリル樹脂の屈折率を小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。 The base film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roll, calender roll, drum, belt, coating substrate in solution casting, transport roll, etc.) during film formation. It is also effective to reduce the diffusion and reflection of light on the film surface by reducing the refractive index of the acrylic resin.
 (基材フィルムの製膜)
 基材フィルムの製膜方法としては、インフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できる。
(Formation of base film)
As a method for forming the base film, a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, or the like can be used.
 セルロースエステル樹脂やアクリル樹脂を溶解に用いた溶媒の残留抑制の点からは溶融流延製膜法で作製する方法が好ましい。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。また、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点からは流延法による溶液製膜が好ましい。また、フィルム形成材料が加熱されて、その流動性を発現させた後、ドラム上又はエンドレスベルト上に押出し製膜する方法も溶融流延製膜法として含まれる。 From the viewpoint of suppressing the residual solvent using a cellulose ester resin or an acrylic resin for dissolution, a method of producing by a melt casting film forming method is preferable. Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained. From the viewpoints of suppressing coloring, suppressing defects of foreign matters, and suppressing optical defects such as die lines, solution casting by casting is preferred. Moreover, after the film-forming material is heated to exhibit its fluidity, a method of extrusion film formation on a drum or an endless belt is also included as a melt casting film formation method.
 〔有機溶媒〕
 基材フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、アクリル樹脂、セルロースエステル樹脂、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
[Organic solvent]
The organic solvent useful for forming the dope when the base film is produced by the solution casting method can be used without limitation as long as it dissolves acrylic resin, cellulose ester resin, and other additives simultaneously. .
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのアクリル樹脂、セルロースエステル樹脂の溶解を促進する役割もある。特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の三種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy, and when the proportion of alcohol is small, the acrylic resin and cellulose ester resin dissolve in a non-chlorine organic solvent system. There is also a role to promote. In particular, in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, at least 15 to 45 mass% in total of at least three kinds of acrylic resin, cellulose ester resin, and acrylic particles are used. A dissolved dope composition is preferred. Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 〔溶液流延法〕
 基材フィルムは、溶液流延法によって製造することができる。溶液流延法では、樹脂及び添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸又は幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
[Solution casting method]
The base film can be produced by a solution casting method. In the solution casting method, a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , Peeling from the metal support, stretching or maintaining the width, further drying, and winding the finished film.
 ドープ中のセルロースエステル、及びセルロースエステル樹脂・アクリル樹脂の濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The concentration of cellulose ester in the dope, and the concentration of cellulose ester resin / acrylic resin is preferably higher because the drying load after casting on a metal support can be reduced. Will increase the filtration accuracy. The concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass. The metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
 キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。 The cast width can be 1 ~ 4m. The surface temperature of the metal support in the casting step is set to −50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。 A preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。 When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .
 特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 In particular, it is preferable to perform drying efficiently by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.
 セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%又は60~130質量%であり、特に好ましくは、20~30質量%又は70~120質量%である。 In order for the cellulose ester film to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
 残留溶媒量は下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
The amount of residual solvent is defined by the following formula.
Residual solvent amount (% by mass) = {(MN) / N} × 100
なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
 また、セルロースエステルフィルム或いはセルロースエステル樹脂・アクリル樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。 Further, in the drying step of the cellulose ester film or the cellulose ester resin / acrylic resin film, it is preferable that the web is peeled off from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0. 0.1 mass% or less, particularly preferably 0 to 0.01 mass% or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
 〔延伸工程〕
 延伸工程では、フィルムの長手方向(MD方向)、及び幅手方向(TD方向)に対して、逐次又は同時に延伸することができる。互いに直交する二軸方向の延伸倍率は、それぞれ最終的にはMD方向に1.0~2.0倍、TD方向に1.07~2.0倍の範囲とすることが好ましく、MD方向に1.0~1.5倍、TD方向に1.07~2.0倍の範囲で行うことが好ましい。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用してMD方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げてMD方向に延伸する方法、同様に横方向に広げてTD方向に延伸する方法、或いはMD/TD方向同時に広げてMD/TD両方向に延伸する方法などが挙げられる。製膜工程のこれらの幅保持或いは幅手方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
[Stretching process]
In the stretching step, the film can be sequentially or simultaneously stretched in the longitudinal direction (MD direction) and the width direction (TD direction) of the film. The draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.0 to 2.0 times in the MD direction and 1.07 to 2.0 times in the TD direction, respectively. It is preferably performed in the range of 1.0 to 1.5 times and 1.07 to 2.0 times in the TD direction. For example, a method in which peripheral speed differences are applied to a plurality of rolls and a roll peripheral speed difference is used to stretch in the MD direction, both ends of the web are fixed with clips and pins, and the distance between the clips and pins is increased in the traveling direction. And a method of stretching in the MD direction, a method of stretching in the transverse direction and stretching in the TD direction, a method of stretching in the MD / TD direction simultaneously and stretching in both the MD / TD directions, and the like. These width maintenance or width direction stretching in the film forming step is preferably performed by a tenter, and may be a pin tenter or a clip tenter.
 テンター内などの製膜工程でのフィルム搬送張力は温度にもよるが、120~200N/mが好ましく、140~200N/mがさらに好ましい。140~160N/mが最も好ましい。 The film transport tension in the film forming process such as in the tenter depends on the temperature, but is preferably 120 to 200 N / m, more preferably 140 to 200 N / m. 140 to 160 N / m is most preferable.
 延伸する際は、基材フィルムのガラス転移温度をTgとすると(Tg-30)~(Tg+100)℃、より好ましくは(Tg-20)~(Tg+80)℃、さらに好ましく(Tg-5)~(Tg+20)℃である。 When stretching, assuming that the glass transition temperature of the substrate film is Tg, (Tg-30) to (Tg + 100) ° C., more preferably (Tg-20) to (Tg + 80) ° C., and more preferably (Tg-5) to (T Tg + 20) ° C.
 基材フィルムのTgは、フィルムを構成する材料種及び構成する材料の比率によって制御することができる。本実施形態の用途においてはフィルムの乾燥時のTgは110℃以上が好ましく、さらに120℃以上が好ましい。特に好ましくは150℃以上である。 The Tg of the base film can be controlled by the type of material constituting the film and the ratio of the constituting materials. In the application of the present embodiment, the Tg when the film is dried is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
 従ってガラス転移温度は190℃以下、より好ましくは170℃以下であることが好ましい。このとき、フィルムのTgはJIS K7121に記載の方法などによって求めることができる。 Therefore, the glass transition temperature is preferably 190 ° C. or lower, more preferably 170 ° C. or lower. At this time, the Tg of the film can be determined by the method described in JIS K7121.
 延伸する際の温度は150℃以上、延伸倍率は1.15倍以上にすると、表面が適度に粗れる為、好ましい。フィルム表面を粗らすことは、滑り性を向上させるのみでなく、表面加工性、特に防眩層の密着性が向上するため好ましい。 When the stretching temperature is 150 ° C. or more and the stretching ratio is 1.15 times or more, the surface is suitably roughened, which is preferable. Roughening the film surface is preferable because it improves not only the slipperiness but also the surface processability, particularly the adhesion of the antiglare layer.
 〔溶融製膜法〕
 基材フィルムは、溶融製膜法によって製膜しても良い。溶融製膜法は、樹脂及び可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースエステルを含む溶融物を流延することをいう。
[Melting method]
The base film may be formed by a melt film forming method. The melt film-forming method refers to heating and melting a composition containing an additive such as a resin and a plasticizer to a temperature exhibiting fluidity, and then casting a melt containing a fluid cellulose ester.
 加熱溶融する成形法は、更に詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの成形法の中では、機械的強度及び表面精度などの点から、溶融押出し法が好ましい。溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。 The molding method for heating and melting can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these molding methods, the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出し機に供給し一軸や二軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることによりできる。 Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder using a feeder, kneaded using a single or twin screw extruder, and extruded from a die into a strand. It can be done by water cooling or air cooling and cutting.
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。 Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
 粒子や酸化防止剤等少量の添加剤は、均一に混合するため、こと前に混合しておくことが好ましい。 A small amount of additives such as particles and antioxidants are preferably mixed before mixing in order to mix uniformly.
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、二軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. Of course, the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
 上記ペレットを一軸や二軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップされ、冷却ロール上で固化させる。 Using a single-screw or twin-screw type extruder, the melting temperature when extruding is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T-die. The film is cast and the film is nipped by a cooling roll and an elastic touch roll, and solidified on the cooling roll.
 供給ホッパーから押出し機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere.
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably carried out stably by introducing a gear pump. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. The stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
 可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。 Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。 The film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film. A well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
 弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。 The elastic touch roll is also called a pinching rotator. As the elastic touch roll, a commercially available one can be used.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 また、上記のようにして得られたフィルムは、冷却ロールに接する工程を通過後、前記延伸操作により延伸することが好ましい。 Moreover, it is preferable that the film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roll.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg~Tg+60℃の温度範囲で行われることが好ましい。 As the stretching method, a known roll stretching machine or tenter can be preferably used. The stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除されて、再利用される。 Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing. In addition, since the film has deform | transformed and cannot use as a product normally, the holding | grip part of the clip of both ends of a film is cut out and reused.
 (基材フィルムの物性)
 本実施形態における基材フィルムの膜厚は、特に限定はされないが10~200μmが用いられる。特に膜厚は、10~100μmであることが特に好ましい。更に好ましくは20~60μmである。
(Physical properties of base film)
The film thickness of the substrate film in the present embodiment is not particularly limited, but 10 to 200 μm is used. In particular, the film thickness is particularly preferably 10 to 100 μm. More preferably, it is 20 to 60 μm.
 本実施形態に係る基材フィルムは、幅1~4mのものが用いられる。特に幅1.4~4mのものが好ましく用いられ、特に好ましくは、1.6~3mである。4mを超えると搬送が困難となる。 The base film according to this embodiment has a width of 1 to 4 m. In particular, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
 また、基材フィルムの算術平均粗さRaは、好ましくは2.0~4.0nm、より好ましくは2.5~3.5nmである。 Further, the arithmetic average roughness Ra of the base film is preferably 2.0 to 4.0 nm, more preferably 2.5 to 3.5 nm.
 <機能性層>
 本実施形態に係る防眩性フィルムは、バックコート層、反射防止層等の機能性層を設けることができる。
<Functional layer>
The antiglare film according to the present embodiment can be provided with functional layers such as a backcoat layer and an antireflection layer.
 (バックコート層)
 本実施形態に係る防眩性フィルムは、基材フィルムの防眩層を設けた側と反対側の面に、カールや防眩性フィルムを巻き状で保管した際のくっつき防止の為に、バックコート層を設けてもよい。
(Back coat layer)
The anti-glare film according to the present embodiment is a back surface for preventing sticking when a curl or anti-glare film is stored in a roll on the surface opposite to the side on which the anti-glare layer of the base film is provided. A coat layer may be provided.
 バックコート層は、上記目的のため、微粒子を含有することが好ましく、微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。また、前記微粒子を分散する目的や後述するバインダーを溶解して塗布組成物とするために、溶剤を含有することが好ましい。溶剤としては、防眩層で説明した溶剤が好ましい。バックコート層に含まれる粒子は、バインダーに対して0.1~50質量%が好ましい。バックコート層を設けた場合のヘイズの増加は1.5%以下であることが好ましく、0.5%以下である。またバインダーとして、ジアセチルセルロース等のセルロースエステル樹脂を用いることが好ましい。 The back coat layer preferably contains fine particles for the above purpose, and the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined silicic acid. Mention may be made of calcium, tin oxide, indium oxide, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Moreover, it is preferable to contain a solvent in order to disperse the fine particles and to dissolve a binder described later to form a coating composition. As the solvent, the solvents described in the antiglare layer are preferable. The particles contained in the back coat layer are preferably 0.1 to 50% by mass with respect to the binder. When the back coat layer is provided, the increase in haze is preferably 1.5% or less, and 0.5% or less. Further, it is preferable to use a cellulose ester resin such as diacetyl cellulose as the binder.
 (反射防止層)
 本実施形態に係る防眩性フィルムは、防眩層上に直接又は他の層を介して反射防止層である低屈折率層を設けることで、低屈折率層と防眩層との密着性に優れ、更に低屈折率層の斑点ムラの発生を良好に抑制でき、優れた外観が得られる点から、防眩性反射防止フィルムに本実施形態に係る防眩性フィルムを用いることが好ましい。低屈折率層からなる反射防止層は、低屈折率層のみの単層構成でもよいが、多層でも良い。具体的には、支持体よりも屈折率の高い高屈折率層と、支持体よりも屈折率の低い低屈折率層を組み合わせて構成したりできる。また、支持体側から屈折率の異なる3層を、中屈折率層(支持体又は防眩層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されても良い。更に、二層以上の高屈折率層と二層以上の低屈折率層とを交互に積層した四層以上の層構成の反射防止層も好ましく用いられる。反射防止層の好ましい層構成の例を下記に示す。ここで/は積層配置されていることを示している。
(Antireflection layer)
The antiglare film according to the present embodiment is provided with a low refractive index layer which is an antireflection layer directly or via another layer on the antiglare layer, so that the adhesion between the low refractive index layer and the antiglare layer is improved. In addition, it is preferable to use the antiglare film according to the present embodiment for the antiglare antireflection film from the viewpoint that the occurrence of spotted unevenness in the low refractive index layer can be satisfactorily suppressed and an excellent appearance can be obtained. The antireflection layer composed of the low refractive index layer may have a single layer configuration consisting of only the low refractive index layer, but may also be a multilayer. Specifically, a high refractive index layer having a higher refractive index than the support and a low refractive index layer having a lower refractive index than the support can be combined. Further, three layers having different refractive indexes from the support side are divided into a medium refractive index layer (a layer having a higher refractive index than the support or the antiglare layer and a lower refractive index than the high refractive index layer) / high refractive index layer / low. You may laminate | stack in order of a refractive index layer. Further, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used. An example of a preferable layer configuration of the antireflection layer is shown below. Here, / indicates that the layers are arranged in layers.
  基材フィルム/防眩層/低屈折率層
  基材フィルム/防眩層/高屈折率層/低屈折率層
  基材フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層
 汚れや指紋のふき取りが容易となるように、最表面の低屈折率層の上に、更に防汚層を設けることもできる。防汚層としては、含フッ素有機化合物が好ましく用いられる。
Base film / Anti-glare layer / Low refractive index layer Base film / Anti-glare layer / High refractive index layer / Low refractive index layer Base film / Anti-glare layer / Medium refractive index layer / High refractive index layer / Low refractive index Layer An antifouling layer may be further provided on the outermost low refractive index layer so that dirt and fingerprints can be easily wiped off. As the antifouling layer, fluorine-containing organic compounds are preferably used.
 光学干渉により反射率を低減できるものであれば、特にこれらの層構成のみに限定されるものではない。また、上記層構成では、適宜中間層を設けてもよく、例えば導電性ポリマー微粒子(例えば架橋カチオン微粒子)又は金属酸化物微粒子(例えば、SnO、ITO等)を含む帯電防止層等は好ましい。 As long as the reflectance can be reduced by optical interference, it is not limited to these layer configurations. In the above layer structure, an intermediate layer may be provided as appropriate. For example, an antistatic layer containing conductive polymer fine particles (for example, crosslinked cation fine particles) or metal oxide fine particles (for example, SnO 2 , ITO) is preferable.
 〈低屈折率層〉
 低屈折率層では、基材フィルムの屈折率より低い層を形成し、該屈折率は23℃、波長550nm測定で、屈折率が1.30~1.45の範囲であることが好ましい。
<Low refractive index layer>
In the low refractive index layer, a layer lower than the refractive index of the base film is formed, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
 また、低屈折率層の膜厚は、特に限定されるものではないが、5nm~0.5μmであることが好ましく、10nm~0.3μmであることが更に好ましく、30nm~0.2μmであることが最も好ましい。また、低屈折率層は、中空球状シリカ系微粒子を用いることが屈折率調整や機械強度の点から好ましい。 The thickness of the low refractive index layer is not particularly limited, but is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and more preferably 30 nm to 0.2 μm. Most preferred. The low refractive index layer preferably uses hollow spherical silica-based fine particles from the viewpoint of refractive index adjustment and mechanical strength.
 (中空球状シリカ系微粒子)
 中空球状微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、又は(II)内部に空洞を有し、かつ内容物が溶媒、気体又は多孔質物質で充填された空洞粒子である。なお、低屈折率層には(I)複合粒子又は(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
(Hollow spherical silica-based fine particles)
The hollow spherical fine particles are (I) composite particles comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) having a cavity inside, and the content is a solvent, gas or porous Cavity particles filled with a substance. Note that the low refractive index layer only needs to contain either (I) composite particles or (II) hollow particles, or both.
 なお、空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体又は多孔質物質等の内容物で充填されている。このような中空球状微粒子の平均粒子径が5~300nm、好ましくは10~200nmの範囲にあることが望ましい。使用される中空球状微粒子は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3~1/10の範囲にあることが望ましい。これらの中空球状微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。 Note that the cavity particles are particles having a cavity inside, and the cavity is surrounded by a particle wall. The cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow spherical fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm. The hollow spherical fine particles used are appropriately selected according to the thickness of the transparent film to be formed, and are in the range of 2/3 to 1/10 of the film thickness of the transparent film such as the low refractive index layer to be formed. Is desirable. These hollow spherical fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), and ketone alcohol (for example, diacetone alcohol) are preferable.
 複合粒子の被覆層の厚さ又は空洞粒子の粒子壁の厚さは、1~20nm、好ましくは2~15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部に進入して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持出来ないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。 The thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably 1 to 20 nm, preferably 2 to 15 nm. In the case of composite particles, if the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and it is easy to use a silicate monomer or oligomer having a low polymerization degree, which is a coating liquid component described later. The inside of the composite particles may enter and the internal porosity may decrease, and the low refractive index effect may not be sufficiently obtained. When the thickness of the coating layer exceeds 20 nm, the silicic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficiently obtained. It may not be possible. In the case of hollow particles, if the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index may not be sufficiently exhibited. is there.
 複合粒子の被覆層又は空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF、NaF、NaAlF、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等との一種又は二種以上を挙げることができる。このような多孔質粒子では、シリカをSiOで表し、シリカ以外の無機化合物を酸化物換算(MOX)で表したときのモル比MOX/SiOが、0.0001~1.0、好ましくは0.001~0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiOが0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MOX/SiOが、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、更に屈折率が低いものを得ることが難しいことがある。このような多孔質粒子の細孔容積は、0.1~1.5ml/g、好ましくは0.2~1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。このような中空球状微粒子は、以下の第1~第3工程から製造できる。 The coating layer of the composite particles or the particle wall of the hollow particles is preferably composed mainly of silica. Moreover, components other than silica may be contained, and specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3. , MoO 3 , ZnO 2 , WO 3 and the like. Examples of the porous particles constituting the composite particles include those made of silica, those made of silica and an inorganic compound other than silica, and those made of CaF 2 , NaF, NaAlF 6 , MgF, and the like. Among these, porous particles made of a composite oxide of silica and an inorganic compound other than silica are particularly preferable. Examples of inorganic compounds other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3. 1 type or 2 types or more can be mentioned. In such porous particles, the molar ratio MOX / SiO 2 when the silica is represented by SiO 2 and the inorganic compound other than silica is represented by oxide (MOX) is 0.0001 to 1.0, preferably It is desirable to be in the range of 0.001 to 0.3. It is difficult to obtain a porous particle having a molar ratio MOX / SiO 2 of less than 0.0001. Even if it is obtained, particles having a small pore volume and a low refractive index cannot be obtained. Further, when the molar ratio MOX / SiO 2 of the porous particles exceeds 1.0, the ratio of silica decreases, so that the pore volume increases and it may be difficult to obtain a material having a lower refractive index. . The pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml / g, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 ml / g, particles having a sufficiently reduced refractive index cannot be obtained. If the pore volume exceeds 1.5 ml / g, the strength of the fine particles is lowered, and the strength of the resulting coating may be lowered. is there. In addition, the pore volume of such porous particles can be determined by a mercury intrusion method. Such hollow spherical fine particles can be produced from the following first to third steps.
 第1工程:多孔質粒子前駆体の調製
 第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、又は、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
First Step: Preparation of Porous Particle Precursor In the first step, an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a silica raw material and an inorganic compound raw material other than silica are prepared in advance. A mixed aqueous solution is prepared, and this aqueous solution is gradually added to an aqueous alkaline solution having a pH of 10 or more while stirring according to the composite ratio of the target composite oxide to prepare a porous particle precursor.
 シリカ原料としては、アルカリ金属、アンモニウム又は有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩又は有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。 As the silica raw material, alkali metal, ammonium or organic base silicate is used. Sodium silicate (water glass) or potassium silicate is used as the alkali metal silicate. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound, or the like to a silicate solution.
 また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩又はアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。 In addition, alkali-soluble inorganic compounds are used as raw materials for inorganic compounds other than silica. Specifically, an oxo acid of an element selected from Al, B, Ti, Zr, Sn, Ce, P, Sb, Mo, Zn, W, etc., an alkali metal salt or alkaline earth metal salt of the oxo acid, ammonium And salts and quaternary ammonium salts. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, and sodium phosphate are suitable.
 これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO、Al、TiO又はZrO等の無機酸化物又はこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。 Although the pH value of the mixed aqueous solution changes simultaneously with the addition of these aqueous solutions, an operation for controlling the pH value within a predetermined range is not particularly required. The aqueous solution finally has a pH value determined by the type of inorganic oxide and the mixing ratio thereof. There is no restriction | limiting in particular in the addition rate of the aqueous solution at this time. Further, in the production of composite oxide particles, a dispersion of seed particles can be used as a starting material. The seed particles are not particularly limited, but inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 or ZrO 2 or fine particles of these composite oxides are used. Usually, these sols are used. Can do. Furthermore, the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion. When using a seed particle dispersion, the pH of the seed particle dispersion is adjusted to 10 or higher, and then an aqueous solution of the compound is added to the above-mentioned alkaline aqueous solution while stirring. Also in this case, it is not always necessary to control the pH of the dispersion. When seed particles are used in this way, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.
 上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、又は、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。 The silica raw material and inorganic compound raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into fine particles, or seed particles. It grows on the top and particle growth occurs. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.
 第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOX)に換算し、MOX/SiOのモル比が、0.05~2.0、好ましくは0.2~2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOX/SiOのモル比は、0.25~2.0の範囲内にあることが望ましい。 The composite ratio of silica and an inorganic compound other than silica in the first step is that the inorganic compound relative to silica is converted to oxide (MOX), and the molar ratio of MOX / SiO 2 is 0.05 to 2.0, preferably It is desirable to be within the range of 0.2 to 2.0. Within this range, the pore volume of the porous particles increases as the proportion of silica decreases. However, even when the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small. When preparing hollow particles, the molar ratio of MOX / SiO 2 is preferably in the range of 0.25 to 2.0.
 第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
 第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、又は、陽イオン交換樹脂と接触させてイオン交換除去する。
Second step: Removal of inorganic compound other than silica from porous particles In the second step, inorganic compounds other than silica (elements other than silicon and oxygen) are obtained from the porous particle precursor obtained in the first step. At least a portion is selectively removed. As a specific removal method, the inorganic compound in the porous particle precursor is dissolved and removed using a mineral acid or an organic acid, or is contacted with a cation exchange resin for ion exchange removal.
 なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。 The porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded through oxygen. By removing the inorganic compound (elements other than silicon and oxygen) from the porous particle precursor in this way, porous particles having a larger porosity and a larger pore volume can be obtained. Further, if the amount of removing the inorganic oxide (elements other than silicon and oxygen) from the porous particle precursor is increased, the hollow particles can be prepared.
 また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液又は加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5~15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。 In addition, prior to removing inorganic compounds other than silica from the porous particle precursor, fluorine-substituted, obtained by dealkalizing an alkali metal salt of silica into the porous particle precursor dispersion obtained in the first step. It is preferable to add a silicic acid solution containing an alkyl group-containing silane compound or a hydrolyzable organosilicon compound to form a silica protective film. The thickness of the silica protective film may be 0.5 to 15 nm. Even if the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove inorganic compounds other than silica described above from the porous particle precursor.
 このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。 By forming such a silica protective film, inorganic compounds other than silica can be removed from the porous particle precursor while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later is formed without reducing the pore volume. Can do. Note that when the amount of the inorganic compound to be removed is small, the particles are not broken, and thus it is not always necessary to form a protective film.
 また、空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。 Further, when preparing hollow particles, it is desirable to form this silica protective film. When preparing the hollow particles, the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content. When a coating layer to be described later is formed on the precursor, the formed coating layer becomes a particle wall to form hollow particles.
 上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2又は3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 The amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. If the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than silica from the porous particle precursor. The hydrolyzable organosilicon compound used for forming the silica protective film includes a general formula RnSi (OR ′) 4-n [R, R ′: hydrocarbon such as alkyl group, aryl group, vinyl group, acrylic group, etc. An alkoxysilane represented by a group, n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as fluorine-substituted tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
 添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。 As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed. The produced silicic acid polymer is deposited on the surface of the inorganic oxide particles. At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.
 多孔質粒子前駆体の分散媒が、水単独、又は有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。 When the dispersion medium of the porous particle precursor is water alone or the ratio of water to the organic solvent is high, a silica protective film can be formed using a silicic acid solution. When a silicic acid solution is used, a predetermined amount of the silicic acid solution is added to the dispersion, and at the same time an alkali is added to deposit the silicic acid solution on the surface of the porous particles. In addition, you may produce a silica protective film together using a silicic acid liquid and the said alkoxysilane.
 第3工程:シリカ被覆層の形成
 第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物又はケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物又はケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
Third step: Formation of silica coating layer In the third step, the porous particle dispersion prepared in the second step (in the case of hollow particles, the hollow particle precursor dispersion) contains a fluorine-substituted alkyl group-containing silane compound. By adding a hydrolyzable organosilicon compound or silicic acid solution, the surface of the particles is coated with a polymer such as a hydrolyzable organosilicon compound or silicic acid solution to form a silica coating layer.
 シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2又は3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 Examples of the hydrolyzable organosilicon compound used for forming the silica coating layer include the general formula RnSi (OR ′) 4-n [R, R ′: alkyl group, aryl group, vinyl group, acrylic group as described above. Etc., and alkoxysilanes represented by n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
 添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。 As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilanes, pure water, and alcohol is used as a dispersion of the porous particles (in the case of hollow particles, hollow particle precursor). In addition, the silicic acid polymer produced by hydrolyzing alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, hollow particle precursors). At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.
 多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、又は有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。 When the dispersion medium of the porous particles (cavity particle precursor in the case of hollow particles) is water alone or a mixed solvent with an organic solvent and the mixed solvent has a high ratio of water to the organic solvent, a silicate solution You may form a coating layer using. The silicic acid solution is an aqueous solution of a low silicic acid polymer obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.
 ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物又はケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1~20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1~20nmの範囲となるような量で、有機珪素化合物又はケイ酸液は添加される。 The silicic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursors), and at the same time, alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors). ) Deposit on the surface. In addition, you may use a silicic acid liquid for the coating layer formation in combination with the said alkoxysilane. The amount of the organosilicon compound or silicic acid solution used for forming the coating layer may be such that the surface of the colloidal particles can be sufficiently covered, and the finally obtained silica coating layer has a thickness of 1 to 20 nm. In such an amount, it is added in a dispersion of porous particles (in the case of hollow particles, hollow particle precursor) in a dispersion. When the silica protective film is formed, the organosilicon compound or the silicate solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.
 次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体又は多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。 Next, the particle dispersion having the coating layer formed thereon is heat-treated. By the heat treatment, in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained. In the case of the hollow particle precursor, the formed coating layer is densified to form hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.
 このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80~300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。 The heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C. When the heat treatment temperature is less than 80 ° C., the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time. Further, when the heat treatment temperature exceeds 300 ° C. for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained.
 このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。また、市販の上記SiO微粒子を用いることができる。市販の粒子の具体例としては、触媒化成工業社製P-4等が挙げられる。 The refractive index of the inorganic fine particles thus obtained is as low as less than 1.42. Such inorganic fine particles are presumed to have a low refractive index because the porosity inside the porous particles is maintained or the inside is hollow. Further, it is possible to use commercially available the SiO 2 particles. Specific examples of commercially available particles include P-4 manufactured by Catalyst Chemical Industry Co., Ltd.
 外殻層を有し、内部が多孔質又は空洞である中空球状シリカ系微粒子Aの低屈折率層塗布液中の含量(質量)は、10~80質量%が好ましく、更に好ましくは20~60質量%である。 The content (mass) of the hollow spherical silica-based fine particles A having an outer shell layer, which is porous or hollow, in the low refractive index layer coating solution is preferably 10 to 80% by mass, more preferably 20 to 60% by mass. % By mass.
 (テトラアルコキシシラン化合物又はその加水分解物)
 低屈折率層には、ゾルゲル素材としてテトラアルコキシシラン化合物又はその加水分解物が含有されることが好ましい。低屈折率層用の素材として、前記無機珪素酸化物以外に有機基を有する珪素酸化物を用いることも好ましい。これらは一般にゾルゲル素材と呼ばれるが、金属アルコレート、オルガノアルコキシ金属化合物及びその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。特にテトラアルコキシシラン及びその加水分解物が好ましい。
(Tetraalkoxysilane compound or hydrolyzate thereof)
The low refractive index layer preferably contains a tetraalkoxysilane compound or a hydrolyzate thereof as a sol-gel material. As the material for the low refractive index layer, it is also preferable to use a silicon oxide having an organic group in addition to the inorganic silicon oxide. These are generally called sol-gel materials, but metal alcoholates, organoalkoxy metal compounds and hydrolysates thereof can be used. In particular, alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. Tetraalkoxysilane and its hydrolyzate are particularly preferable.
 また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ-グリシジルオキシプロピルトリアルコキシシラン、γ-グリシジルオキシプロピルメチルジアルコキシシラン、β-(3,4-エポキジシクロヘキシル)エチルトリアルコキシシラン、γ-メタクリロイルオキシプロピルトリアルコキシシラン、γ-アミノプロピルトリアルコキシシラン、γ-メルカプトプロピルトリアルコキシシラン、γ-クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ-1,1,2,2-テトラデシル)トリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。 In addition, organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, γ-glycidyloxypropyltrialkoxysilane, γ-glycidyloxypropylmethyl dialkoxysilane, β- (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, γ-methacryloyloxypropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, γ-chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds ( For example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, etc.). In particular, the use of a fluorine-containing silane compound is preferable in terms of lowering the refractive index of the layer and imparting water and oil repellency.
 上記テトラアルコキシシランを加水分解する際には、前記無機微粒子を混合することが膜強度を高める上で好ましい。低屈折率層は、前記珪素酸化物と下記シランカップリング剤を含むことが好ましい。 When hydrolyzing the tetraalkoxysilane, it is preferable to mix the inorganic fine particles in order to increase the film strength. The low refractive index layer preferably contains the silicon oxide and the following silane coupling agent.
 具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリアセトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、γ-グリシジルオキシプロピルトリメトキシシラン、γ-グリシジルオキシプロピルトリエトキシシラン、γ-(β-グリシジルオキシエトキシ)プロピルトリメトキシシラン、β-(3,4-エポシシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、γ-アクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン及びβ-シアノエチルトリエトキシシランが挙げられる。 Specific examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane. Methoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxy Cypropyltriethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane Γ-acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.
 また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ-グリシジルオキシプロピルメチルジエトキシシラン、γ-グリシジルオキシプロピルメチルジメトキシシラン、γ-グリシジルオキシプロピルフェニルジエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。 Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethyl Kishishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.
 これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ-アクリロイルオキシプロピルトリメトキシシラン及びγ-メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ-アクリロイルオキシプロピルトリメトキシシラン及びγ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン及びγ-メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。 Of these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxy are those having a disubstituted alkyl group with respect to silicon. Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxy Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.
 シランカップリング剤の具体例としては、信越化学工業株式会社製KBM-303、KBM-403、KBM-402、KBM-403、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-603、KBE-603、KBM-903、KBE-903、KBE-9103、KBM-802、KBM-803等が挙げられる。 Specific examples of the silane coupling agent include KBM-303, KBM-403, KBM-402, KBM-403, KBM-1403, KBM-502, KBM-503, KBE-502, KBE- manufactured by Shin-Etsu Chemical Co., Ltd. 503, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9103, KBM-802, KBM-803 and the like.
 二種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n-プロピル、オルトケイ酸i-プロピル、オルトケイ酸n-ブチル、オルトケイ酸sec-ブチル、オルトケイ酸t-ブチル)及びその加水分解物が挙げられる。 Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and hydrolysates thereof.
 また低屈折率層は、5~50質量%の量のポリマーを含むこともできる。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。ポリマーの量は、低屈折率層の全量の10~30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマー又は(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時又は塗布後に、重合反応により形成することが好ましい。上記(1)~(3)のうちの二つ又は全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、又は(1)~(3)全ての組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。 The low refractive index layer can also contain a polymer in an amount of 5 to 50% by mass. The polymer has a function of adhering fine particles and maintaining the structure of a low refractive index layer including voids. The amount of the polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids. The amount of the polymer is preferably 10 to 30% by mass with respect to the total amount of the low refractive index layer. In order to adhere the fine particles with the polymer, (1) the polymer is bonded to the surface treatment agent of the fine particles, (2) the fine particles are used as a core, and a polymer shell is formed around the fine particles. It is preferable to use a polymer as the binder. The polymer to be bonded to the surface treating agent (1) is preferably the shell polymer (2) or the binder polymer (3). The polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer. The polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and by polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to implement a combination of two or all of the above (1) to (3), and to implement a combination of (1) and (3), or (1) to (3) all combinations. Particularly preferred. (1) Surface treatment, (2) shell, and (3) binder will be described sequentially.
 (1)表面処理
 微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類できる。化学的表面処理のみ、又は物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子がSiOからなる場合は、前述のシランカップリング剤による表面処理が特に有効に実施できる。
(1) Surface treatment It is preferable that the fine particles (particularly inorganic fine particles) are subjected to a surface treatment to improve the affinity with the polymer. The surface treatment can be classified into physical surface treatment such as plasma discharge treatment and corona discharge treatment, and chemical surface treatment using a coupling agent. It is preferable to carry out by chemical surface treatment alone or a combination of physical surface treatment and chemical surface treatment. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. When the fine particles are made of SiO 2, the surface treatment with the above-described silane coupling agent can be carried out particularly effectively.
 カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、又はこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。 The surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and leaving the dispersion at a temperature from room temperature to 60 ° C. for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid), organic acids (for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.
 (2)シェル
 シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖又は側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステル又はポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸又はポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35~80質量%のフッ素原子を含むことが好ましく、45~75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸又はメタクリル酸とのエステルが挙げられる。
(2) Shell The polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain. A polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred. Polyacrylic acid esters or polymethacrylic acid esters are preferred, and esters of fluorine-substituted alcohols with polyacrylic acid or polymethacrylic acid are most preferred. The refractive index of the shell polymer decreases as the content of fluorine atoms in the polymer increases. In order to reduce the refractive index of the low refractive index layer, the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms. The polymer containing a fluorine atom is preferably synthesized by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom. Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Examples thereof include esters of fluorinated vinyl ethers and fluorine-substituted alcohols with acrylic acid or methacrylic acid.
 シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α-メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N-tertブチルアクリルアミド、N-シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。 The polymer forming the shell may be a copolymer comprising a repeating unit containing a fluorine atom and a repeating unit not containing a fluorine atom. The repeating unit containing no fluorine atom is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer containing no fluorine atom. Examples of ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene and its derivatives (for example, styrene, divinylbenzene, vinyl toluene, α-methyl styrene), vinyl ether ( For example, methyl vinyl ether), vinyl esters (for example, vinyl acetate, vinyl propionate, vinyl cinnamate), acrylamide (for example, N-tertbutylacrylamide, N-cyclohexylacrylic) Amides), methacrylamide and acrylonitrile.
 後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5~90体積%含まれていることが好ましく、15~80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。 When the binder polymer (3) described later is used in combination, a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking. The shell polymer may have crystallinity. When the glass transition temperature (Tg) of the shell polymer is higher than the temperature at the time of forming the low refractive index layer, it is easy to maintain microvoids in the low refractive index layer. However, if Tg is higher than the temperature at which the low refractive index layer is formed, the fine particles are not fused, and the low refractive index layer may not be formed as a continuous layer (resulting in a decrease in strength). In that case, it is desirable to use a binder polymer (3) described later in combination, and form the low refractive index layer as a continuous layer with the binder polymer. By forming a polymer shell around the fine particles, core-shell fine particles are obtained. The core-shell fine particles preferably contain 5 to 90% by volume, more preferably 15 to 80% by volume of a core composed of inorganic fine particles. Two or more kinds of core-shell fine particles may be used in combination. Further, inorganic fine particles having no shell and core-shell particles may be used in combination.
 (3)バインダー
 バインダーポリマーは、飽和炭化水素又はポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。二以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4-ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。二以上のエチレン性不飽和基を有するモノマーの代わり又はそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシ基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシジメチルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン及び2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4-ジクロロベンゾフェノン及びp-クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
(3) Binder The binder polymer is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain. The binder polymer is preferably crosslinked. The polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups. Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol). Tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives For example, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloyl ethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg divinyl sulfone), acrylamide (eg methylene bisacrylamide) and methacrylamide Can be mentioned. The polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound. Instead of or in addition to the monomer having two or more ethylenically unsaturated groups, a crosslinked structure may be introduced into the binder polymer by the reaction of a crosslinkable group. Examples of crosslinkable functional groups include isocyanate groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carbonyl groups, hydrazine groups, carboxy groups, methylol groups, and active methylene groups. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. The cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group. As the polymerization initiator used for the polymerization reaction and the crosslinking reaction of the binder polymer, a thermal polymerization initiator or a photopolymerization initiator is used, and the photopolymerization initiator is more preferable. Examples of photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone. Examples of benzoins include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Examples of benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
 バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時又は塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。 The binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time as or after the coating of the low refractive index layer, by a polymerization reaction (further crosslinking reaction if necessary). Even if a small amount of polymer (for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) is added to the coating solution for the low refractive index layer Good.
 また、低屈折率層が、熱又は電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう。)の架橋からなる低屈折率層であってもよい。 Further, the low refractive index layer may be a low refractive index layer formed by crosslinking a fluorine-containing resin that is crosslinked by heat or ionizing radiation (hereinafter also referred to as “fluorine-containing resin before crosslinking”).
 架橋前の含フッ素樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることができる。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM-2020(ダイキン製)等)、完全又は部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシ基やヒドロキシ基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう一つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入できることが特開平10-25388号、同10-147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシ、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。 Preferred examples of the fluorine-containing resin before crosslinking include a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group. Specific examples of the fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxole, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (produced by Osaka Organic Chemical), M-2020 (produced by Daikin), etc.), fully or partially fluorinated vinyl ethers, etc. Is mentioned. Examples of the monomer for imparting a crosslinkable group include glycidyl methacrylate, vinyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, vinyl glycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule. , Vinyl monomers having a carboxy group, a hydroxy group, an amino group, a sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.). The latter can introduce a crosslinked structure by adding a compound having a group that reacts with a functional group in the polymer and one or more reactive groups after copolymerization, as disclosed in JP-A-10-25388 and 10-147739. In the issue. Examples of the crosslinkable group include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxy, methylol, and active methylene group. When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, it is a thermosetting type. In the case of crosslinking by irradiation with light (preferably ultraviolet rays, electron beams, etc.) by a combination of an ethylenically unsaturated group and a photo radical generator, or an epoxy group and a photo acid generator, the ionizing radiation curable type is used.
 また、上記モノマーに加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α-メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N-tertブチルアクリルアミド、N-シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。 Further, in addition to the above monomers, a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking. The monomer that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methyl styrene, etc.), vinyl ethers (methyl vinyl ether) Etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamides (N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides, Ronitoriru derivatives and the like can be mentioned. In addition, it is also preferable to introduce a polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties. For example, polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.
 架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20~70モル%、より好ましくは40~70モル%、架橋性基付与のためのモノマーが好ましくは1~20モル%、より好ましくは5~20モル%、併用されるその他のモノマーが好ましくは10~70モル%、より好ましくは10~50モル%の割合である。 The proportion of each monomer used to form the fluorinated copolymer before cross-linking is preferably 20 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer, The amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.
 含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることができる。 The fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means of solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization or the like.
 架橋前の含フッ素樹脂は、市販されており使用することができる。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。 Fluorine-containing resin before crosslinking is commercially available and can be used. Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opstar (JSR), etc. Can be mentioned.
 架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03~0.15の範囲、水に対する接触角が90~120度の範囲にあることが好ましい。 The low refractive index layer comprising a crosslinked fluorine-containing resin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.
 (カチオン重合性化合物)
 低屈折率層は、バインダーとしてカチオン重合性化合物を含有しても良い。カチオン重合性化合物としては、エネルギー活性線照射や熱によってカチオン重合を起こして樹脂化するものであればいずれも使用できる。具体的には、エポキシ基、環状エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル化合物、ビニルオキソ基等が挙げられる。中でもエポキシ基やビニルエーテル基などの官能基を有する化合物が本実施形態においては、好適に用いられる。エポキシ基又はビニルエーテル基を有するカチオン重合性化合物としては、例えば、フェニルグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ビニルシクロヘキセンジオキサイド、リモネンジオキサイド、3,4-エポキシシクロヘキシルメチル-3′,4′-エポキシシクロヘキサンカルボキシレート、ビス-(6-メチル-3,4-エポキシシクロヘキシル)アジペート、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル等が挙げられる。
(Cationically polymerizable compound)
The low refractive index layer may contain a cationically polymerizable compound as a binder. Any cationically polymerizable compound can be used as long as it undergoes cationic polymerization by irradiation with energy active rays or heat to form a resin. Specific examples include an epoxy group, a cyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester compound, and a vinyloxo group. Among them, a compound having a functional group such as an epoxy group or a vinyl ether group is preferably used in the present embodiment. Examples of the cationically polymerizable compound having an epoxy group or a vinyl ether group include phenyl glycidyl ether, ethylene glycol diglycidyl ether, glycerin diglycidyl ether, vinylcyclohexene dioxide, limonene dioxide, 3,4-epoxycyclohexylmethyl-3 ′. , 4'-epoxycyclohexanecarboxylate, bis- (6-methyl-3,4-epoxycyclohexyl) adipate, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, 1 , 4-cyclohexanedimethanol divinyl ether and the like.
 また、オキセタン化合物も挙げることができる。オキセタン化合物としては、分子中に少なくとも一個のオキセタン環を有する化合物であればよい。 Also, oxetane compounds can be mentioned. The oxetane compound may be a compound having at least one oxetane ring in the molecule.
 更に、必要に応じて水素結合形成基を有するモノマーを含む(共)重合体で、主鎖や側鎖にオキセタニル基を有する数平均分子量が2万以上の反応性ポリマーなども使用できる。上記したカチオン重合性化合物は、低屈折層塗布組成物中では固形分中の15質量%以上70質量%未満であることが、低屈折率層塗布組成物の安定性の点から、好ましい。 Furthermore, if necessary, a (co) polymer containing a monomer having a hydrogen bond forming group and a reactive polymer having an oxetanyl group in the main chain or side chain and having a number average molecular weight of 20,000 or more can also be used. From the viewpoint of stability of the low refractive index layer coating composition, the above cationic polymerizable compound is preferably 15% by mass or more and less than 70% by mass in the solid content in the low refractive layer coating composition.
 (カチオン重合促進剤)
 カチオン重合性化合物の重合を促進する化合物として、公知の酸や光酸発生剤を挙げることができる。光酸発生剤としては、カチオン重合の光開始剤、色素類の光消色剤、光変色剤、或いは、マイクロレジスト等に使用されている公知の化合物及びそれらの混合物等が挙げられる。具体的には、例えば、オニウム化合物、有機ハロゲン化合物、ジスルホン化合物が挙げられ、好ましくは、オニウム化合物である。オニウム化合物としては、以下の各式に示されるジアゾニウム塩、スルホニウム塩、ヨードニウム塩などが好適に使用される。
(Cationic polymerization accelerator)
Examples of the compound that accelerates the polymerization of the cationic polymerizable compound include known acids and photoacid generators. Examples of the photoacid generator include a cationic polymerization photoinitiator, a dye photodecoloring agent, a photochromic agent, a known compound used in a microresist, and a mixture thereof. Specific examples include onium compounds, organic halogen compounds, and disulfone compounds, and onium compounds are preferable. As the onium compound, diazonium salts, sulfonium salts, iodonium salts and the like represented by the following formulas are preferably used.
  ArN
 (R)
 (R)
 式中、Arはアリール基を表し、Rはアリール基又は炭素数1~20のアルキル基を表し、一分子内にRが複数回現れる場合は、それぞれ同一でも異なっていてもよく、Zは非塩基性でかつ非求核性の陰イオンを表す。
ArN 2 + Z ,
(R) 3 S + Z ,
(R) 2 I + Z
In the formula, Ar represents an aryl group, R represents an alkyl group having an aryl group or having 1 to 20 carbon atoms, when appearing more than R are times in one molecule may be different from each other in the same, Z - is Represents a non-basic and non-nucleophilic anion.
 上記各式において、Ar又はRで表されるアリール基も、典型的にはフェニルやナフチルであり、これらは適当な基で置換されていてもよい。また、Zで表される陰イオンとして具体的には、テトラフルオロボレートイオン(BF )、テトラキス(ペンタフルオロフェニル)ボレートイオン(B(C )、ヘキサフルオロホスフェートイオン(PF )、ヘキサフルオロアーセネートイオン(AsF )、ヘキサフルオロアンチモネートイオン(SbF )、ヘキサクロロアンチモネートイオン(SbCl )、硫酸水素イオン(HSO )、過塩素酸イオン(ClO )などが挙げられる。 In each of the above formulas, the aryl group represented by Ar or R is also typically phenyl or naphthyl, and these may be substituted with an appropriate group. Specific examples of the anion represented by Z include tetrafluoroborate ion (BF 4 ), tetrakis (pentafluorophenyl) borate ion (B (C 6 F 5 ) 4 ), hexafluorophosphate ion. (PF 6 ), hexafluoroarsenate ion (AsF 6 ), hexafluoroantimonate ion (SbF 6 ), hexachloroantimonate ion (SbCl 6 ), hydrogen sulfate ion (HSO 4 ), perchloric acid Ions (ClO 4 ) and the like.
 その他のオニウム化合物としては、アンモニウム塩、イミニウム塩、ホスホニウム塩、アルソニウム塩、セレノニウム塩、ホウ素塩等が挙げられる。 Other onium compounds include ammonium salts, iminium salts, phosphonium salts, arsonium salts, selenonium salts, boron salts and the like.
 中でも、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が、化合物の素材安定性等の点から好ましい。 Of these, diazonium salts, iodonium salts, sulfonium salts, and iminium salts are preferable from the viewpoint of the material stability of the compound.
 これら化合物の多くは市販されているので、そのような市販品を用いることができる。市販の開始剤としては、例えば、ダウケミカル日本(株)から販売されている“サイラキュアUVI-6990”(商品名)、各々(株)ADEKAから販売されている“アデカオプトマーSP-150”(商品名)、“アデカオプトマーSP-300”(商品名)、ローディアジャパン(株)から販売されている“RHODORSIL PHOTOINITIAOR2074”(商品名)などが挙げられる。 Since many of these compounds are commercially available, such commercially available products can be used. Commercially available initiators include, for example, “Syracure UVI-6990” (trade name) sold by Dow Chemical Japan Co., Ltd., and “Adekaoptomer SP-150” (trade name) sold by ADEKA Co., Ltd. Product name), “Adekaoptomer SP-300” (product name), “RHODORSIL PHOTOINITIAOR 2074” (product name) sold by Rhodia Japan Co., Ltd., and the like.
 酸としては、塩酸、硫酸、硝酸、リン酸等の無機酸、又は酢酸、ギ酸、メタンスルホン酸、トリフロロメタンスルホン酸、パラトルエンスルホン酸等の有機酸等のブレンステッド酸、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジオクテート、トリイソプロポキシアルミニウム、テトラブトキシジルコニウム、テトラブトキシチタネート等のルイス酸が挙げられる。 As the acid, Bronsted acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like, or organic acid such as acetic acid, formic acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, dibutyltin dilaurate, Examples thereof include Lewis acids such as dibutyltin diacetate, dibutyltin dioctate, triisopropoxyaluminum, tetrabutoxyzirconium, and tetrabutoxytitanate.
 ピロメリット酸、無水ピロメリット酸、トリメリット酸、無水トリメリット酸、フタル酸、無水フタル酸などの芳香族多価カルボン酸又はその無水物やマレイン酸、無水マレイン酸、コハク酸、無水コハク酸などの脂肪族多価カルボン酸又はその無水物なども挙げられる。 Aromatic polycarboxylic acids such as pyromellitic acid, pyromellitic anhydride, trimellitic acid, trimellitic anhydride, phthalic acid, phthalic anhydride, or anhydrides thereof, maleic acid, maleic anhydride, succinic acid, succinic anhydride Aliphatic polyvalent carboxylic acid or anhydride thereof such as
 酸としては、一種のみを用いてもよいし、二種以上を併用してもよい。これらの酸や光酸発生剤は、カチオン重合性化合物100質量部に対して、0.1~20質量部の割合が好ましく、より好ましくは0.5~15質量部の割合で添加することである。添加量が上記範囲において、硬化性組成物の安定性、重合反応性等から好ましい。 As the acid, only one kind may be used, or two or more kinds may be used in combination. These acids and photoacid generators are preferably added in an amount of 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, with respect to 100 parts by mass of the cationic polymerizable compound. is there. When the addition amount is in the above range, it is preferable from the viewpoint of stability of the curable composition, polymerization reactivity, and the like.
 (ラジカル重合性化合物)
 また、低屈折率層は、バインダーとしてラジカル重合性化合物を含有することもできる。ラジカル重合性基としては、(メタ)アクリロイル基、ビニルオキシ基、スチリル基、アリル基等のエチレン性不飽和基等が挙げられ、中でも、(メタ)アクリロイル基を有する化合物が好ましい。また、ラジカル重合性化合物としては、分子内に二個以上のラジカル重合性基を含有する多官能モノマーを含有することが好ましい。多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ラジカル重合性化合物の添加量は、低屈折層塗布組成物中では固形分中の15質量%以上70質量%未満であることが、低屈折層塗布組成物の安定性の点から、好ましい。
(Radically polymerizable compound)
The low refractive index layer can also contain a radical polymerizable compound as a binder. Examples of the radical polymerizable group include ethylenically unsaturated groups such as a (meth) acryloyl group, a vinyloxy group, a styryl group, and an allyl group, and among them, a compound having a (meth) acryloyl group is preferable. The radical polymerizable compound preferably contains a polyfunctional monomer containing two or more radical polymerizable groups in the molecule. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. The addition amount of the radical polymerizable compound is preferably 15% by mass or more and less than 70% by mass in the solid content in the low refractive layer coating composition from the viewpoint of the stability of the low refractive layer coating composition.
 (ラジカル重合促進剤)
 ラジカル重合性化合物の硬化促進のために、光重合開始剤をラジカル重合性化合物と併用して用いることが好ましい。光重合開始剤とラジカル重合性化合物とを併用して用いる場合には、光重合開始剤とラジカル重合性化合物とを質量比で20:100~0.01:100含有することが好ましい。
(Radical polymerization accelerator)
In order to accelerate the curing of the radical polymerizable compound, it is preferable to use a photopolymerization initiator in combination with the radical polymerizable compound. When a photopolymerization initiator and a radical polymerizable compound are used in combination, the photopolymerization initiator and the radical polymerizable compound are preferably contained in a mass ratio of 20: 100 to 0.01: 100.
 光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。 Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.
 低屈折率層は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法を用いて、低屈折率層を形成する上記塗布組成物を塗布し、塗布後、加熱乾燥し、必要に応じて硬化処理することで形成される。 The low refractive index layer is a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, a known method such as an inkjet method, and the above coating composition for forming the low refractive index layer is applied, and after coating, It is formed by heat drying and curing treatment as necessary.
 塗布量は、ウェット膜厚として、0.05~100μmが適当で、好ましくは、0.1~50μmである。また、ドライ膜厚が上記膜厚となるように塗布組成物の固形分濃度は調整される。 The coating amount is suitably 0.05 to 100 μm, preferably 0.1 to 50 μm, as the wet film thickness. Further, the solid content concentration of the coating composition is adjusted so that the dry film thickness becomes the above film thickness.
 また、低屈折率層を形成後、温度50~160℃で加熱処理を行う工程を含んでもよい。加熱処理の期間は、設定される温度によって適宜決定すればよく、例えば50℃であれば、好ましくは3日間以上30日間未満の期間、160℃であれば10分間以上1日間以下の範囲が好ましい。硬化方法としては、加熱することによって熱硬化させる方法、紫外線等の光照射によって硬化させる方法などが挙げられる。熱硬化させる場合は、加熱温度は50~300℃が好ましく、好ましくは60~250℃、更に好ましくは80~150℃である。光照射によって硬化させる場合は、照射光の露光量は10mJ/cm~1J/cmであることが好ましく、100~500mJ/cmがより好ましい。 Further, it may include a step of performing heat treatment at a temperature of 50 to 160 ° C. after forming the low refractive index layer. The period of the heat treatment may be appropriately determined depending on the set temperature. For example, if it is 50 ° C., preferably it is a period of 3 days or more and less than 30 days, and if it is 160 ° C., a range of 10 minutes or more and 1 day or less is preferable. . Examples of the curing method include a method of thermosetting by heating, a method of curing by irradiation with light such as ultraviolet rays, and the like. In the case of thermosetting, the heating temperature is preferably 50 to 300 ° C, preferably 60 to 250 ° C, more preferably 80 to 150 ° C. In the case of curing by light irradiation, the exposure amount of the irradiation light is preferably 10 mJ / cm 2 to 1 J / cm 2 , and more preferably 100 to 500 mJ / cm 2 .
 ここで、照射される光の波長域としては特に限定されないが、紫外線領域の波長を有する光が好ましく用いられる。具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 Here, the wavelength range of the irradiated light is not particularly limited, but light having a wavelength in the ultraviolet region is preferably used. Specifically, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 〈高屈折率層及び中屈折率層〉
 高屈折率層及び中屈折率層には、金属酸化物微粒子が含有されることが好ましい。金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあってもよい。また、これらの混合物でもよい。中でも有機チタン化合物、酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも一種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。
<High refractive index layer and medium refractive index layer>
The high refractive index layer and the middle refractive index layer preferably contain metal oxide fine particles. The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. Among them, the main component is at least one metal oxide fine particle selected from organic titanium compounds, zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate. It is particularly preferable to use as In particular, it is preferable to contain zinc antimonate particles.
 これら金属酸化物微粒子の一次粒子の平均粒子径は10~200nmの範囲であり、10~150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。 The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 to 200 nm, particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
 高屈折率層の屈折率は、具体的には、基材フィルムの屈折率より高く、23℃、波長550nm測定で、1.5~2.3の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、金属酸化物微粒子の屈折率は1.80~2.60であることが好ましく、1.85~2.50であることが更に好ましい。 Specifically, the refractive index of the high refractive index layer is preferably higher than the refractive index of the base film, and is preferably in the range of 1.5 to 2.3 when measured at 23 ° C. and a wavelength of 550 nm. The means for adjusting the refractive index of the high refractive index layer is that the kind and addition amount of the metal oxide fine particles are dominant, so that the refractive index of the metal oxide fine particles is preferably 1.80 to 2.60. More preferably, it is 1.85 to 2.50.
 中屈折率層の屈折率は、基材フィルムの屈折率と高屈折率層の屈折率との中間の値となるように調整する。具体的には中屈折率層の屈折率は、1.55~1.80であることが好ましい。 The refractive index of the middle refractive index layer is adjusted to be an intermediate value between the refractive index of the base film and the refractive index of the high refractive index layer. Specifically, the refractive index of the middle refractive index layer is preferably 1.55 to 1.80.
 高屈折率層及び中屈折率層の厚さは、5nm~1μmであることが好ましく、10nm~0.2μmであることが更に好ましく、30~100nmであることが最も好ましい。 The thickness of the high refractive index layer and the middle refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 to 100 nm.
 高屈折率層及び中屈折率層は、微粒子として金属酸化物粒子を含み、更にバインダーポリマーを含むことが好ましい。 The high refractive index layer and the medium refractive index layer preferably contain metal oxide particles as fine particles, and further contain a binder polymer.
 高屈折率層及び中屈折率層のバインダーポリマーとしては架橋ポリマーが好ましい。架橋ポリマーの例として、二個以上のエチレン性不飽和基を有するモノマーが最も好ましいが、その例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4-ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。ポリマーの重合反応は、光重合反応又は熱重合反応を用いることができる。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる後述する熱重合開始剤、及び光重合開始剤が挙げられる。 As the binder polymer of the high refractive index layer and the medium refractive index layer, a crosslinked polymer is preferable. As an example of the crosslinked polymer, a monomer having two or more ethylenically unsaturated groups is most preferable, and examples thereof include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate). 1,4-dichlorohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) ) Acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate Relate), vinylbenzene and its derivatives (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinylsulfone (eg, divinylsulfone), acrylamide (eg, , Methylenebisacrylamide) and methacrylamide. For the polymerization reaction of the polymer, a photopolymerization reaction or a thermal polymerization reaction can be used. A photopolymerization reaction is particularly preferable. A polymerization initiator is preferably used for the polymerization reaction. For example, the thermal polymerization initiator mentioned later used in order to form the binder polymer of a hard-coat layer, and a photoinitiator are mentioned.
 重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2~10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(又はオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。 A commercially available polymerization initiator may be used as the polymerization initiator. In addition to the polymerization initiator, a polymerization accelerator may be used. The addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to 10% by mass of the total amount of monomers. The coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Moreover, it may heat after the photopolymerization reaction after application | coating, and may additionally process the thermosetting reaction of the formed polymer.
 中及び高屈折率層は、上記した中及び高屈折率層を形成する成分を、溶剤で希釈して塗布層組成物として、防眩層上に塗布、乾燥、硬化して設けることができる。硬化の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射光量は20mJ/cm~1J/cmが好ましく、更に好ましくは、100~500mJ/cmである。 The middle and high refractive index layers can be provided by coating, drying and curing on the antiglare layer as a coating layer composition by diluting the above-described components forming the middle and high refractive index layers with a solvent. As a light source for curing, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The amount of irradiation light is preferably 20 mJ / cm 2 to 1 J / cm 2, more preferably 100 to 500 mJ / cm 2 .
 (反射防止層の反射率)
 防眩性反射防止フィルムの反射防止層は、450~650nmにおける平均反射率が、1.5%以下が好ましく、特に好ましくは1.2%以下である。また、この範囲における最低反射率は0.00~0.5%にあることが好ましい。
(Reflectivity of antireflection layer)
The antireflection layer of the antiglare antireflection film has an average reflectance at 450 to 650 nm of preferably 1.5% or less, particularly preferably 1.2% or less. Further, the minimum reflectance in this range is preferably 0.00 to 0.5%.
 反射防止層の屈折率と膜厚は、分光反射率の測定より計算して算出することができる。また、作製した反射防止層を有する防眩性反射防止フィルムの反射光学特性は、分光光度計を用い、5度正反射の条件にて反射率を測定することができる。この測定法において、反射防止層が塗布されていない側の裏面を粗面化した後、黒色のスプレーで光吸収処理を行う、或いは黒色アクリル板の貼り付け等して光吸収処理を行ってから、フィルム裏面光の反射を防止して、反射率が測定できる。測定に際しては、透過率550nmにおける透過率を分光光度計を用いて空気を参照として測定を行う。 The refractive index and film thickness of the antireflection layer can be calculated and calculated by measuring the spectral reflectance. Moreover, the reflection optical characteristic of the anti-glare antireflection film having the antireflection layer thus produced can be measured for reflectance under the condition of regular reflection at 5 degrees using a spectrophotometer. In this measurement method, after roughening the back surface on the side where the antireflection layer is not applied, the light absorption treatment is performed with a black spray, or the light absorption treatment is performed by attaching a black acrylic plate or the like. The reflectance can be measured by preventing reflection of the back light of the film. In the measurement, the transmittance at a transmittance of 550 nm is measured using a spectrophotometer with reference to air.
 また、本実施形態に係る防眩性反射防止フィルムは、可視光の波長領域において平坦な形状の反射スペクトルを有することが好ましい。また反射色相は、反射防止層の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、画像表示装置等の表面に使用する場合は、ニュートラルな色調が好まれる。この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で0.17≦x≦0.27、0.07≦y≦0.17である。また、xy平面上の(x、y)=(0.31、0.31)の距離Δxyが、0.05以下となる範囲がより色味がないニュートラルに近いため好ましく、0.03以下が更に好ましい。色調は、各層の屈折率より、反射率、反射光の色味を考慮して膜厚を常法に従って計算できる。 Further, the antiglare antireflection film according to this embodiment preferably has a flat reflection spectrum in the wavelength region of visible light. Reflective hues are often colored red and blue due to the high reflectance in the short-wavelength and long-wavelength regions in the visible light region due to the design of the antireflection layer. In contrast, when used on the surface of an image display device or the like, a neutral color tone is preferred. In this case, generally preferred reflection hue ranges are 0.17 ≦ x ≦ 0.27 and 0.07 ≦ y ≦ 0.17 on the XYZ color system (CIE1931 color system). Further, the range in which the distance Δxy of (x, y) = (0.31, 0.31) on the xy plane is 0.05 or less is preferable because it is closer to neutral with no color, and 0.03 or less is preferable. Further preferred. The color tone can be calculated from the refractive index of each layer in accordance with a conventional method in consideration of the reflectance and the color of reflected light.
 <偏光板>
 本実施形態に係る防眩性フィルムを用いた本実施形態に係る偏光板について述べる。本実施形態に係る偏光板は、本実施形態に係る防眩性フィルムが具備されているものである。このような偏光板は、前記防眩性フィルムを備えるので、視認性の向上とモアレ縞の低減とを両立したものである。前記偏光板は、例えば、偏光膜と、前記偏光膜の表面上に配置された透明保護フィルム(偏光板保護フィルム)とを備え、前記透明保護フィルムが、本実施形態に係る防眩性フィルムであるものが挙げられる。より具体的には、図4に示すように、偏光板10は、偏光膜14の、視認される側の表面上に、防眩層12が外側となり、基材フィルム13が内側となるように、防眩性フィルム11が配置されるものが挙げられる。また、偏光板10は、偏光膜14の、視認側表面とは反対側の表面上に、光学フィルム15が配置され、その外側に、他の部材に貼り付け可能な貼着剤層16が配置されたものが挙げられる。なお、光学フィルム15としては、特に限定されないが、例えば、後述する偏光板保護フィルム等が挙げられる。
<Polarizing plate>
The polarizing plate according to this embodiment using the antiglare film according to this embodiment will be described. The polarizing plate according to the present embodiment is provided with the antiglare film according to the present embodiment. Since such a polarizing plate includes the antiglare film, it improves both visibility and reduces moire fringes. The polarizing plate includes, for example, a polarizing film and a transparent protective film (polarizing plate protective film) disposed on the surface of the polarizing film, and the transparent protective film is an antiglare film according to this embodiment. Some are listed. More specifically, as shown in FIG. 4, the polarizing plate 10 has an antiglare layer 12 on the outer side and a base film 13 on the inner surface of the polarizing film 14 on the visible side. The thing by which the anti-glare film 11 is arrange | positioned is mentioned. In the polarizing plate 10, the optical film 15 is disposed on the surface of the polarizing film 14 opposite to the surface on the viewing side, and the adhesive layer 16 that can be attached to other members is disposed outside the polarizing film 14. The thing which was done is mentioned. In addition, although it does not specifically limit as the optical film 15, For example, the polarizing plate protective film etc. which are mentioned later are mentioned.
 また、偏光板は一般的な方法で作製することができる。本実施形態に係る防眩性フィルムの裏面側をアルカリ鹸化処理し、処理した防眩性フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。 Moreover, the polarizing plate can be produced by a general method. The back surface side of the antiglare film according to the present embodiment is subjected to alkali saponification treatment, and the processed antiglare film is immersed and stretched in an iodine solution, and at least one surface of the polarizing film is completely saponified polyvinyl alcohol. It is preferable to bond using an aqueous solution.
 もう一方の面に該防眩性フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本実施形態に係る防眩性フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは、前述した基材フィルムであるセルローストリアセテートフィルムや熱可塑性アクリル樹脂とセルロースエステル樹脂を含有し、該熱可塑性アクリル樹脂と該セルロースエステル樹脂の含有質量比が、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5~50:50である保護フィルムを用いることが好ましい。構成の詳細は前述の通りであり、具体的には、リターデーションRoが590nmで0~5nm、Rtが-20~+20nmの無配向フィルムが一例として挙げられる。 The antiglare film may be used on the other surface, or another polarizing plate protective film may be used. For the antiglare film according to the present embodiment, the polarizing plate protective film used on the other surface contains a cellulose triacetate film or a thermoplastic acrylic resin and a cellulose ester resin as the base film described above, It is preferable to use a protective film in which the mass ratio of the thermoplastic acrylic resin to the cellulose ester resin is thermoplastic acrylic resin: cellulose ester resin = 95: 5 to 50:50. Details of the configuration are as described above, and specific examples include a non-oriented film having a retardation Ro of 590 nm and 0 to 5 nm and an Rt of −20 to +20 nm.
 また、他に面内リターデーションRoが590nmで、20~70nm、Rtが70~400nmの位相差を有する光学補償フィルム(位相差フィルム)を用いて、視野角拡大可能な偏光板とすることもできる。又は、更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方性層を有している光学補償フィルムを用いることが好ましい。また、好ましく用いられる市販の偏光板保護フィルムとしては、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が挙げられる。 In addition, an optical compensation film (retardation film) having a retardation of in-plane retardation Ro of 590 nm, 20 to 70 nm, and Rt of 70 to 400 nm may be used to obtain a polarizing plate capable of widening the viewing angle. it can. Alternatively, it is preferable to use an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal. Also, commercially available polarizing plate protective films preferably used include KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-2, KC4FR-2, KC4FR-2, KC8FR-2 KC4UE (Konica Minolta Opto Co., Ltd.) etc. are mentioned.
 偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子である。すなわち、偏光膜は、入射光を偏光に変えて射出する光学素子である。現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5~30μm、好ましくは8~15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本実施形態に係る防眩性フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。 A polarizing film, which is a main component of a polarizing plate, is an element that allows only light having a polarization plane in a certain direction to pass through. That is, the polarizing film is an optical element that emits incident light by converting it into polarized light. A typical polarizing film currently known is a polyvinyl alcohol polarizing film, which includes a polyvinyl alcohol film stained with iodine and a dichroic dye stained, but is not limited to this. It is not something. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. A polarizing film having a thickness of 5 to 30 μm, preferably 8 to 15 μm is preferably used. On the surface of the polarizing film, one side of the antiglare film according to the present embodiment is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
 (粘着層)
 液晶セルの基板と貼り合わせるために保護フィルムの片面に用いられる粘着剤層は、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。
(Adhesive layer)
The pressure-sensitive adhesive layer used on one side of the protective film to be bonded to the substrate of the liquid crystal cell is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
 具体的な粘着層としては、例えばアクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴムなどの接着剤もしくは粘着剤等のポリマーを用いて、乾燥法、化学硬化法、熱硬化法、熱熔融法、光硬化法等により膜形成させ、硬化せしめることができる。なかでも、アクリル系共重合体は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていて好ましく用いることができる。 Specific examples of the adhesive layer include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers. A film such as a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like can be formed and cured using a polymer such as the above. Among them, the acrylic copolymer can be preferably used because it is most easy to control the physical properties of the adhesive and is excellent in transparency, weather resistance, durability and the like.
 <画像表示装置>
 本実施形態に係る防眩性フィルムは、画像表示装置に使用することで、視認性に優れた性能が発揮される。画像表示装置としては、反射型、透過型、半透過型液晶表示装置又は、TN型、STN型、OCB型、VA型、IPS型、ECB型等の各種駆動方式の液晶表示装置、有機エレクトルミネッセンス素子を有する表示装置やプラズマディスプレイ等が挙がられる。
<Image display device>
The antiglare film according to the present embodiment exhibits excellent performance when used in an image display device. As an image display device, a reflection type, a transmission type, a semi-transmission type liquid crystal display device, a liquid crystal display device of various drive systems such as a TN type, STN type, OCB type, VA type, IPS type, ECB type, etc., organic electroluminescence Examples include a display device having an element and a plasma display.
 これら画像表示装置の中でも液晶表示装置の偏光板に本実施形態に係る防眩性フィルムを用いることで、視認性に優れる点から好ましい。本実施形態に係る偏光板を図4に示す。また、図5に示すような液晶パネルを備える液晶表示装置の液晶セル(図6)のリヤ側(バックライト側)に本実施形態に係る防眩性フィルムから構成される偏光板を用いることで、モアレ縞の発生防止に優れる点で好ましい。 Among these image display devices, the use of the antiglare film according to the present embodiment for the polarizing plate of a liquid crystal display device is preferable from the viewpoint of excellent visibility. A polarizing plate according to this embodiment is shown in FIG. Moreover, by using the polarizing plate comprised from the anti-glare film which concerns on this embodiment on the rear side (backlight side) of a liquid crystal cell (FIG. 6) of a liquid crystal display device provided with a liquid crystal panel as shown in FIG. In view of excellent prevention of occurrence of moire fringes.
 すなわち、本実施形態に係る画像形成装置は、本実施形態に係る防眩性フィルムが具備されているものである。このような画像形成装置は、前記防眩性フィルムを備えるので、視認性の向上とモアレ縞の低減とを両立したものである。前記画像形成装置は、例えば、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板のうち少なくとも一方が、前述の本実施形態に係る偏光板であるものが挙げられる。より具体的には、図5に示すように、液晶パネル20は、液晶セル21の、リア(バックライト)側(視認側表面とは反対側)の表面上に、防眩性フィルム25が外側となるように、偏光板28が配置されるものが挙げられる。また、液晶パネル20は、液晶セル21の、視認側の表面上に、前記偏光板28とは別の偏光板27が配置されたものが挙げられる。前記偏光板27としては、例えば、防眩性フィルムの代わりに、クリアハードコートフィルム24を備える偏光板等が挙げられる。 That is, the image forming apparatus according to the present embodiment is provided with the antiglare film according to the present embodiment. Since such an image forming apparatus is provided with the antiglare film, it improves both visibility and reduces moire fringes. Examples of the image forming apparatus include a liquid crystal cell and at least one of two polarizing plates arranged so as to sandwich the liquid crystal cell is the polarizing plate according to the above-described embodiment. More specifically, as shown in FIG. 5, the liquid crystal panel 20 has an anti-glare film 25 on the surface of the liquid crystal cell 21 on the rear (backlight) side (opposite to the viewing side surface). In such a case, a polarizing plate 28 is disposed. The liquid crystal panel 20 includes a liquid crystal cell 21 in which a polarizing plate 27 different from the polarizing plate 28 is disposed on the surface on the viewing side. Examples of the polarizing plate 27 include a polarizing plate including a clear hard coat film 24 instead of an antiglare film.
 なお、液晶セルとは、一対の電極間に液晶物質が充填されたものであり、この電極に電圧を印加することで、液晶の配向状態が変化され、透過光量が制御される。具体的には、液晶セル30は、図6に示すように、配向膜32とカラーフィルタ33とガラス基板34とを積層した積層体2枚を、スペーサ35を介して、配向膜32が内側になるように配置し、配向膜32間に、液晶31を充填したもの等が挙げられる。また、液晶セル30は、液晶31に電圧を印加するための透明電極を、配向膜32とカラーフィルタ33との間に配置してもよい。 Note that the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes. By applying a voltage to this electrode, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled. Specifically, as shown in FIG. 6, the liquid crystal cell 30 includes two stacked bodies in which an alignment film 32, a color filter 33, and a glass substrate 34 are stacked. The liquid crystal 31 is disposed between the alignment films 32 and the like. In the liquid crystal cell 30, a transparent electrode for applying a voltage to the liquid crystal 31 may be disposed between the alignment film 32 and the color filter 33.
 また、本実施形態に係る防眩性フィルムは、タッチパネル用部材に用いてもよい。本実施形態に係るタッチパネル部材は、本実施形態に係る防眩性フィルムが具備されているものである。このようなタッチパネル用部材は、前記防眩性フィルムを備えるので、視認性の向上とモアレ縞の低減とを両立したものである。具体的には、図7に示すような、導電性膜付き防眩性フィルム等が挙げられる。この導電性膜付き防眩性フィルム40は、タッチパネル用部材であり、基材フィルム41の表面上に、防眩層42を備える防眩性フィルムを備える。その防眩性フィルムは、基材フィルム41の両面に防眩層42を備える。そして、導電性膜付き防眩性フィルム40は、この防眩性フィルムの一表面上に、透明導電性薄膜(ITO層)43を備える。 Further, the antiglare film according to the present embodiment may be used for a touch panel member. The touch panel member according to the present embodiment is provided with the antiglare film according to the present embodiment. Since such a member for touch panels is provided with the said anti-glare film, it is compatible with the improvement of visibility and the reduction of moire fringes. Specifically, an anti-glare film with a conductive film as shown in FIG. The antiglare film 40 with a conductive film is a member for a touch panel, and includes an antiglare film including an antiglare layer 42 on the surface of the base film 41. The antiglare film includes an antiglare layer 42 on both surfaces of the base film 41. And the anti-glare film 40 with a conductive film is equipped with the transparent conductive thin film (ITO layer) 43 on one surface of this anti-glare film.
 このように、タッチパネル付き画像表示装置のタッチパネル用部材に本実施形態に係る防眩性フィルムを用いた場合、視認性やペン入力に対する耐久性(摺動による傷等)にも優れる点で好ましい。 As described above, when the antiglare film according to the present embodiment is used for the touch panel member of the image display device with a touch panel, it is preferable in view of excellent visibility and durability against pen input (such as scratches caused by sliding).
 <タッチパネル>
 本実施形態に係る防眩性フィルムをタッチパネル付き画像表示装置に用いた場合の一例を示す。
<Touch panel>
An example at the time of using the anti-glare film which concerns on this embodiment for the image display apparatus with a touch panel is shown.
 図8は、本実施形態に係る防眩性フィルムをタッチパネルに用い抵抗膜方式タッチパネル付き液晶表示装置50の概略図である。導電性防眩性フィルム(導電性膜付き防眩性フィルム)40を透明導電性薄膜52が形成されたガラス基板53と、透明導電性薄膜同士が向き合うように対向させ、透明導電性薄膜間にスペーサ51を介することによって、一定の間隔をあけることにより、抵抗膜方式のタッチパネルを構成することができる。導電性防眩性フィルム40、及びガラス基板53の端部には不図示の電極が配置されている。抵抗膜方式のタッチパネルは、ユーザが導電性防眩性フィルム40を指やペン等で押下することにより、導電性防眩性フィルム40の透明導電性薄膜が、ガラス基板53上の透明導電性薄膜52と接触する。この接触を端部の電極を介して電気的に検出することにより、押下された位置が検出される仕組みである。ガラス基板53の透明導電性薄膜52上には、必要に応じてドット状のスペーサ51が配置される。また、タッチパネルを液晶表示装置(LCD)54上に搭載することにより、タッチパネル付き画像表示装置50を構成することができる。 FIG. 8 is a schematic view of a liquid crystal display device 50 with a resistive touch panel using the antiglare film according to the present embodiment as a touch panel. The conductive antiglare film (antiglare film with conductive film) 40 is opposed to the glass substrate 53 on which the transparent conductive thin film 52 is formed so that the transparent conductive thin films face each other, and between the transparent conductive thin films By using the spacer 51, a resistive film type touch panel can be configured with a certain interval. Electrodes (not shown) are arranged at the ends of the conductive antiglare film 40 and the glass substrate 53. The resistive film type touch panel is such that the transparent conductive thin film of the conductive antiglare film 40 is formed on the glass substrate 53 when the user presses the conductive antiglare film 40 with a finger or a pen. 52. This is a mechanism in which the pressed position is detected by electrically detecting this contact through the electrode at the end. On the transparent conductive thin film 52 of the glass substrate 53, dot-shaped spacers 51 are disposed as necessary. Further, by mounting the touch panel on the liquid crystal display device (LCD) 54, the image display device 50 with a touch panel can be configured.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、基材フィルム上に防眩層を有する防眩性フィルムであって、
 当該防眩層の表面の算術平均粗さRa(nm)と、下記定義式で定義される相関長Ic(μm)とが、下記関係式(1)を満たすことを特徴とする防眩性フィルムである。
  関係式(1):0 ≦ Ic ≦ 21-8×exp((215-Ra)/40)-13×exp((215-Ra)/400)
  定義式:相関長Ic = 二乗平均平方根粗さRq(μm)/二乗平均平方根傾斜Δq×21/2
One aspect of the present invention is an antiglare film having an antiglare layer on a base film,
The antiglare film characterized in that the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and the correlation length Ic (μm) defined by the following formula satisfy the following relational expression (1): It is.
Relational expression (1): 0 ≦ Ic ≦ 21−8 × exp ((215−Ra) / 40) −13 × exp ((215−Ra) / 400)
Definition formula: Correlation length Ic = root mean square roughness Rq (μm) / root mean square slope Δq × 2 1/2
 このような構成によれば、視認性の向上とモアレ縞の低減の両立を達成できる防眩性フィルムを提供することができる。 According to such a configuration, it is possible to provide an antiglare film capable of achieving both improvement in visibility and reduction in moire fringes.
 また、前記防眩性フィルムにおいて、前記防眩層の表面の算術平均粗さRa(nm)と、前記相関長Ic(μm)とが、下記関係式(2)を満たすことが好ましい。
  関係式(2):0 ≦ Ic ≦ 17-6×exp((225-Ra)/40)-11×exp((225-Ra)/400)
In the antiglare film, the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and the correlation length Ic (μm) preferably satisfy the following relational expression (2).
Relational expression (2): 0 ≦ Ic ≦ 17−6 × exp ((225−Ra) / 40) −11 × exp ((225−Ra) / 400)
 このような構成によれば、モアレ縞の発生をより低減できる。よって、モアレ縞の問題をより解消できる。 According to such a configuration, the generation of moire fringes can be further reduced. Therefore, the problem of moire fringes can be solved more.
 また、前記防眩性フィルムにおいて、前記防眩層の表面の算術平均粗さRaが、350~1300nmの範囲内であることが好ましい。 In the antiglare film, the arithmetic average roughness Ra of the surface of the antiglare layer is preferably in the range of 350 to 1300 nm.
 このような構成によれば、モアレ縞の発生をより低減できる。よって、モアレ縞の問題をより解消できる。 According to such a configuration, the generation of moire fringes can be further reduced. Therefore, the problem of moire fringes can be solved more.
 また、前記防眩性フィルムにおいて、前記防眩層の内部散乱に起因するヘイズが、0~0.5%の範囲内であることが好ましい。 In the antiglare film, the haze resulting from internal scattering of the antiglare layer is preferably in the range of 0 to 0.5%.
 このような構成によれば、視認性をより高めることができる。 According to such a configuration, visibility can be further improved.
 また、前記防眩性フィルムにおいて、前記防眩層が、25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂を含有していることが好ましい。 In the antiglare film, the antiglare layer preferably contains an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa · s.
 このような構成によれば、防眩層の表面形状が、所望の形状により近いものとなる。よって、視認性の向上とモアレ縞の低減の両立をより図ることができる。 According to such a configuration, the surface shape of the antiglare layer becomes closer to the desired shape. Therefore, both improvement in visibility and reduction in moire fringes can be achieved.
 また、前記防眩性フィルムにおいて、前記防眩層が、微粒子を含有し、前記微粒子及び前記活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有していないことが好ましい。 In the antiglare film, it is preferable that the antiglare layer contains fine particles and does not substantially contain a resin that is incompatible with the fine particles and the actinic radiation curable resin.
 このような構成によれば、視認性をより高めることができる。 According to such a configuration, visibility can be further improved.
 また、前記防眩性フィルムにおいて、前記防眩層の表面が、長手方向に周期を持たない不規則な突起形状を有していることが好ましい。 In the antiglare film, it is preferable that the surface of the antiglare layer has an irregular protrusion shape having no period in the longitudinal direction.
 このような構成によれば、視認性をより高めることができる。 According to such a configuration, visibility can be further improved.
 また、本発明の他の一局面は、前記防眩性フィルムを製造する防眩性フィルムの製造方法であって、25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂と、エステル類、グリコールエーテル類、及びアルコール類からなる群から選ばれる少なくとも一種の溶剤とを含有する防眩層塗布組成物を、基材フィルム上に塗布する塗布工程と、減率乾燥区間の温度を90~160℃の範囲内に維持して、前記防眩層塗布組成物を乾燥させる乾燥工程と、乾燥させた前記防眩層塗布組成物を硬化させて、前記基材フィルム上に防眩層を形成する硬化工程とを備えることを特徴とする防眩性フィルムの製造方法である。 Another aspect of the present invention is a method for producing an antiglare film for producing the antiglare film, wherein the viscosity at 25 ° C. is in the range of 20 to 3000 mPa · s. And an antiglare layer coating composition containing at least one solvent selected from the group consisting of esters, glycol ethers, and alcohols, a coating step of coating on a base film, and a decreasing rate drying section Maintaining the temperature within a range of 90 to 160 ° C., drying the antiglare layer coating composition, and curing the dried antiglare layer coating composition to prevent the antiglare layer coating on the base film. It is a manufacturing method of the anti-glare film characterized by including the hardening process which forms a glare layer.
 このような構成によれば、視認性の向上とモアレ縞の低減の両立を達成できる防眩性フィルムの製造方法を提供することができる。 According to such a configuration, it is possible to provide a method for producing an antiglare film that can achieve both improvement in visibility and reduction in moire fringes.
 また、本発明の他の一局面は、前記防眩性フィルムが、具備されていることを特徴とする偏光板である。 Further, another aspect of the present invention is a polarizing plate characterized in that the antiglare film is provided.
 このような構成によれば、視認性の向上とモアレ縞の低減とを両立した偏光板が得られる。 According to such a configuration, a polarizing plate that achieves both improved visibility and reduced moire fringes can be obtained.
 また、本発明の他の一局面は、前記防眩性フィルムが、具備されていることを特徴とする画像表示装置である。 Further, another aspect of the present invention is an image display device including the antiglare film.
 このような構成によれば、視認性の向上とモアレ縞の低減とを両立した画像形成装置が得られる。 According to such a configuration, an image forming apparatus that achieves both improved visibility and reduced moire fringes can be obtained.
 また、本発明の他の一局面は、前記防眩性フィルムが、具備されていることを特徴とするタッチパネル用部材である。 Moreover, another aspect of the present invention is a member for a touch panel, characterized in that the antiglare film is provided.
 このような構成によれば、視認性の向上とモアレ縞の低減とを両立したタッチパネル部材が得られる。そして、このようなタッチパネル部材を用いて、タッチパネル液晶表示装置等を製造すると、視認性の向上とモアレ縞の低減とを両立したタッチパネル液晶表示装置が得られる。 According to such a configuration, a touch panel member that achieves both improved visibility and reduced moire fringes can be obtained. When a touch panel liquid crystal display device or the like is manufactured using such a touch panel member, a touch panel liquid crystal display device that achieves both improved visibility and reduced moire fringes can be obtained.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 <基材フィルム1の作製>
 (二酸化珪素分散液の調製)
 アエロジルR812(日本アエロジル(株)製、一次粒子の平均径7nm
)                           10質量部
 エタノール                      90質量部
 以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を作製した。微粒子分散希釈液濾過器(アドバンテック東洋(株):ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)で濾過した。
Example 1
<Preparation of base film 1>
(Preparation of silicon dioxide dispersion)
Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 7 nm)
10 parts by mass Ethanol 90 parts by mass The above was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution. The mixture was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
 〈基材フィルム1の作製〉
 (ドープ組成物)
 セルローストリアセテート               90質量部
 (Mn=148000、Mw=310000 アセチル基置換度2.92)
 芳香族末端エステル系可塑剤(2-4)         10質量部
 チヌビン900(BASFジャパン(株)製)     2.5質量部
 二酸化珪素分散希釈液                  4質量部
 メチレンクロライド                 432質量部
 エタノール                      38質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。
<Preparation of base film 1>
(Dope composition)
90 parts by mass of cellulose triacetate (Mn = 148000, Mw = 310000 acetyl group substitution degree 2.92)
Aromatic terminal ester plasticizer (2-4) 10 parts by weight Tinuvin 900 (manufactured by BASF Japan Ltd.) 2.5 parts by weight Silicon dioxide dispersion dilution 4 parts by weight Methylene chloride 432 parts by weight Ethanol 38 parts by weight The solution was put into a container, heated, stirred and completely dissolved, and Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope solution.
 次に、ベルト流延装置を用い、ステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶剤を蒸発させ、ステンレスバンド支持体上から剥離した。セルロースエステルフィルムのウェブを35℃で溶剤を蒸発させ、1.65m幅にスリットし、テンターでTD方向(フィルムの幅手方向)に1.3倍、MD方向の延伸倍率は1.01倍で延伸しながら、160℃の乾燥温度で乾燥させた。乾燥を始めたときの残留溶剤量は20%であった。その後、120℃の乾燥装置内を多数のロールで搬送させながら15分間乾燥させた後、1.49m幅にスリットし、フィルム両端に幅15mm、高さ10μmのナーリング加工を施し、巻芯に巻き取り、基材フィルム1を得た。基材フィルムの残留溶剤量は0.2%であり、膜厚は40μm、巻数は3900mであった。 Next, the belt was cast evenly on a stainless steel band support using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off. The cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and stretched 1.3 times in the TD direction (film width direction) with a tenter, and the MD direction draw ratio was 1.01 times. While stretching, the film was dried at a drying temperature of 160 ° C. The residual solvent amount at the start of drying was 20%. Then, after drying for 15 minutes while transporting the inside of a drying device at 120 ° C. with a number of rolls, slitting to a width of 1.49 m, applying a knurling process with a width of 15 mm and a height of 10 μm at both ends of the film, and winding it around a winding core The base film 1 was obtained. The residual solvent amount of the base film was 0.2%, the film thickness was 40 μm, and the number of turns was 3900 m.
 <防眩性フィルム1の作製>
 上記作製した基材フィルム1上に、孔径0.4μmのポリプロピレン製フィルターで濾過した下記防眩層塗布組成物1を、押出しコーターを用いて塗布し、恒率乾燥区間温度80℃、減率乾燥区間温度97℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.25J/cmとして塗布層を硬化させ、ドライ膜厚8μmの防眩層を形成した。
<Preparation of antiglare film 1>
The following anti-glare layer coating composition 1 filtered through a polypropylene filter having a pore diameter of 0.4 μm is applied on the base film 1 produced above using an extrusion coater, and a constant rate drying zone temperature of 80 ° C. is reduced at a reduced rate. After drying at a section temperature of 97 ° C., while purging with nitrogen so that the oxygen concentration becomes 1.0% by volume or less, the illuminance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp and the irradiation amount is 0.25 J / The coating layer was cured as cm 2 to form an antiglare layer having a dry film thickness of 8 μm.
 防眩層を形成後、ロール状に巻き取り、防眩性フィルム1を作製した。防眩性フィルム1の防眩層表面を光学干渉式表面粗さ計(Zygo社製 New View 5030)で観察した結果、図3のように不規則な突起形状が不規則に長手方向及び幅方向に配列していることが分かった。 After forming the antiglare layer, it was wound up into a roll to produce an antiglare film 1. As a result of observing the surface of the antiglare layer of the antiglare film 1 with an optical interference type surface roughness meter (New View 5030 manufactured by Zygo), irregular projection shapes irregularly in the longitudinal direction and the width direction as shown in FIG. It was found that they are arranged in
 [防眩層塗布組成物1]
 下記防眩層塗布組成物1をディスパーにて撹拌混合し、防眩層塗布組成物1を得た。
 (活性線硬化型樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(PETA)
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
                            100質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン社製)        5質量部
 (レベリング剤)
 ポリエーテル変性シリコーン(KF-889、信越化学工業社製)
                              2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル(PGME)  100質量部
[Anti-Glare Layer Coating Composition 1]
The following antiglare layer coating composition 1 was stirred and mixed with a disper to obtain an antiglare layer coating composition 1.
(Actinic radiation curable resin)
Pentaerythritol tri / tetraacrylate (PETA)
(NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
100 parts by mass (photopolymerization initiator)
Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass (solvent)
100 parts by mass of propylene glycol monomethyl ether (PGME)
 上記防眩層塗布組成物1の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、550mPa・sであった。 When only the actinic radiation curable resin of the antiglare layer coating composition 1 was stirred and mixed with a disper and measured using a B-type viscometer at 25 ° C., the resin viscosity was 550 mPa · s. It was.
 <防眩性フィルム2の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を下記防眩層塗布組成物2とした以外は同様にして、防眩性フィルム2を作製した。
<Preparation of antiglare film 2>
In the production of the antiglare film 1, an antiglare film 2 was produced in the same manner except that the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 2.
 [防眩層塗布組成物2]
 (活性線硬化型樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(PETA)
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
                            100質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン社製)        5質量部
 (レベリング剤)
 ポリエーテル変性シリコーン(KF-889、信越化学工業社製)
                              2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル(PGME)   60質量部
 メチルエチルケトン(MEK)              40質量部
[Anti-Glare Layer Coating Composition 2]
(Actinic radiation curable resin)
Pentaerythritol tri / tetraacrylate (PETA)
(NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
100 parts by mass (photopolymerization initiator)
Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass (solvent)
Propylene glycol monomethyl ether (PGME) 60 parts by weight Methyl ethyl ketone (MEK) 40 parts by weight
 <防眩性フィルム3の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を下記防眩層塗布組成物3とし、かつ乾燥工程における減率乾燥区間の温度を100℃に変更した以外は同様にして、防眩性フィルム3を作製した。
<Preparation of antiglare film 3>
In the production of the antiglare film 1, the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 3, and the temperature in the decreasing rate drying section in the drying step was changed to 100 ° C. in the same manner. A dazzling film 3 was produced.
 [防眩層塗布組成物3]
 (活性線硬化型樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(PETA)
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
                            100質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン社製)        5質量部
 (レベリング剤)
 ポリエーテル変性シリコーン(KF-889、信越化学工業社製)
                              2質量部
 (溶剤)
 メチルアルコール(MeOH)             100質量部
[Anti-glare layer coating composition 3]
(Actinic radiation curable resin)
Pentaerythritol tri / tetraacrylate (PETA)
(NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
100 parts by mass (photopolymerization initiator)
Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass (solvent)
100 parts by mass of methyl alcohol (MeOH)
 <防眩性フィルム4の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を下記防眩層塗布組成物4とした以外は同様にして、防眩性フィルム4を作製した。
<Preparation of antiglare film 4>
In the production of the antiglare film 1, an antiglare film 4 was produced in the same manner except that the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 4.
 [防眩層塗布組成物4]
 (活性線硬化型樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(PETA)
 (NKエステルA-TMM-3L、新中村化学工業(株)製)90質量部
 t-ブチルアクリレート(TBA、大阪有機化学工業(株)製)
                             10質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン社製)        5質量部
 (レベリング剤)
 ポリエーテル変性シリコーン(KF-889、信越化学工業社製)
                              2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル(PGME)  100質量部
[Anti-Glare Layer Coating Composition 4]
(Actinic radiation curable resin)
Pentaerythritol tri / tetraacrylate (PETA)
(NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 90 parts by mass t-butyl acrylate (TBA, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
10 parts by mass (photopolymerization initiator)
Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass (solvent)
100 parts by mass of propylene glycol monomethyl ether (PGME)
 <防眩性フィルム5の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を下記防眩層塗布組成物5とし、かつ乾燥工程における減率乾燥区間の温度を95℃に変更した以外は同様にして、防眩性フィルム5を作製した。
<Preparation of antiglare film 5>
In the production of the antiglare film 1, the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 5 and the temperature in the decreasing rate drying section in the drying step was changed to 95 ° C. in the same manner. A dazzling film 5 was produced.
 [防眩層塗布組成物5]
 (活性線硬化型樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(PETA)
 (NKエステルA-TMM-3L、新中村化学工業(株)製)80質量部
 4-ヒドロキシブチルアクリレート
 (4HBA、大阪有機化学工業(株)製)         20質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン社製)        5質量部
 (レベリング剤)
 ポリエーテル変性シリコーン(KF-889、信越化学工業社製)
                              2質量部
 (溶剤)
 メチルアルコール(MeOH)             100質量部
[Anti-Glare Layer Coating Composition 5]
(Actinic radiation curable resin)
Pentaerythritol tri / tetraacrylate (PETA)
(NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 80 parts by mass 4-hydroxybutyl acrylate (4HBA, manufactured by Osaka Organic Chemical Co., Ltd.) 20 parts by mass (photopolymerization initiator)
Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass (solvent)
100 parts by mass of methyl alcohol (MeOH)
 <防眩性フィルム6の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を下記防眩層塗布組成物6とし、かつ乾燥工程における減率乾燥区間の温度を100℃に変更した以外は同様にして、防眩性フィルム6を作製した。
<Preparation of antiglare film 6>
In the production of the anti-glare film 1, the anti-glare layer coating composition 1 was changed to the following anti-glare layer coating composition 6 and the temperature in the decreasing rate drying section in the drying step was changed to 100 ° C. in the same manner. A dazzling film 6 was produced.
 [防眩層塗布組成物6]
 (活性線硬化型樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(PETA)
 (NKエステルA-TMM-3L、新中村化学工業(株)製)90質量部
 ヒドロキシエチルアクリレート
 (HEA、大阪有機化学工業(株)製)          10質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン社製)        5質量部
 (レベリング剤)
 ポリエーテル変性シリコーン(KF-889、信越化学工業社製)
                              2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル(PGME)  100質量部
[Anti-glare layer coating composition 6]
(Actinic radiation curable resin)
Pentaerythritol tri / tetraacrylate (PETA)
(NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 90 parts by mass Hydroxyethyl acrylate (HEA, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 10 parts by mass (photopolymerization initiator)
Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass (solvent)
100 parts by mass of propylene glycol monomethyl ether (PGME)
 <防眩性フィルム7の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を防眩層塗布組成物2とし、かつ乾燥工程における減率乾燥区間の温度を87℃に変更した以外は同様にして、防眩性フィルム7を作製した。
<Preparation of antiglare film 7>
In the production of the antiglare film 1, the antiglare layer coating composition 1 is changed to the antiglare layer coating composition 2 and the temperature of the decreasing rate drying section in the drying step is changed to 87 ° C. in the same manner. Film 7 was produced.
 <防眩性フィルム8の作製>
 防眩性フィルム1の作製において、乾燥工程における減率乾燥区間の温度を88℃に変更した以外は同様にして、防眩性フィルム7を作製した。
<Preparation of antiglare film 8>
In the production of the antiglare film 1, an antiglare film 7 was produced in the same manner except that the temperature of the decreasing rate drying section in the drying step was changed to 88 ° C.
 <防眩性フィルム9の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を下記防眩層塗布組成物7とし、かつ乾燥工程における減率乾燥区間の温度を80℃に変更した以外は同様にして、防眩性フィルム9を作製した。
<Preparation of antiglare film 9>
In the production of the anti-glare film 1, the anti-glare layer coating composition 1 was changed to the following anti-glare layer coating composition 7 and the temperature of the rate-of-decreasing drying section in the drying process was changed to 80 ° C. in the same manner. A dazzling film 9 was produced.
 [防眩層塗布組成物7]
 (活性線硬化型樹脂)
 ジペンタエリスリトールペンタ/ヘキサアクリレート    80質量部
 (NKエステルA-DPH、新中村化学工業(株)製)
 アクリル酸イソステアリル(ISTA)          20質量部
 (大阪有機化学工業(株)製)
 (光重合開始剤)
 イルガキュア184(BASFジャパン社製)        5質量部
 (レベリング剤)
 ポリエーテル変性シリコーン(KF-889、信越化学工業社製)
                              2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル(PGME)   60質量部
 メチルエチルケトン(MEK)              40質量部
[Anti-Glare Layer Coating Composition 7]
(Actinic radiation curable resin)
80 parts by mass of dipentaerythritol penta / hexaacrylate (NK ester A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.)
20 parts by mass of isostearyl acrylate (ISTA) (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
Polyether-modified silicone (KF-889, manufactured by Shin-Etsu Chemical Co., Ltd.)
2 parts by mass (solvent)
Propylene glycol monomethyl ether (PGME) 60 parts by weight Methyl ethyl ketone (MEK) 40 parts by weight
 <防眩性フィルム10の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を下記防眩層塗布組成物8とし、かつ乾燥工程における減率乾燥区間の温度を80℃に変更した以外は、同様にして防眩性フィルム10を作製した。
<Preparation of antiglare film 10>
In the production of the antiglare film 1, the antiglare layer coating composition 1 was changed to the following antiglare layer coating composition 8 and the temperature in the decreasing rate drying section in the drying step was changed to 80 ° C. in the same manner. A dazzling film 10 was produced.
 [防眩層塗布組成物8]
 (活性線硬化型樹脂)
 ルシフラールNAG(日本ペイント(株)製)      100質量部
[Anti-Glare Layer Coating Composition 8]
(Actinic radiation curable resin)
Lucifral NAG (manufactured by Nippon Paint Co., Ltd.) 100 parts by mass
 <防眩性フィルム11の作製>
 防眩性フィルム1の作製において、防眩層塗布組成物1を特開2008-225195号公報の実施例1を参考にして調製した防眩層塗布組成物9に変更し、更に乾燥温度を特開2008-225195号公報の実施例1と同じ70℃とした以外は防眩性フィルム1と同様にして、防眩性フィルム11を作製した。
<Preparation of antiglare film 11>
In the preparation of the antiglare film 1, the antiglare layer coating composition 1 was changed to the antiglare layer coating composition 9 prepared with reference to Example 1 of JP-A-2008-225195, and the drying temperature was further specified. An antiglare film 11 was produced in the same manner as the antiglare film 1 except that the temperature was set at 70 ° C., which was the same as that in Example 1 of Kaikai 2008-225195.
 [防眩層塗布組成物9]
 下記防眩層塗布組成物9をディスパーにて撹拌混合し、防眩層塗布組成物9を得た。
[Anti-Glare Layer Coating Composition 9]
The following antiglare layer coating composition 9 was stirred and mixed with a disper to obtain an antiglare layer coating composition 9.
 (活性線硬化型樹脂)
 サイクロマーP(ACA)320
 (不飽和基含有アクリル樹脂混合物、ダイセル化学工業(株)製)
                             47質量部
 ジペンタエリスリトールヘキサアクリレート
 (DPHA、ダイセル・サイテック(株)製)       53質量部
 (非相溶性樹脂)
 ポリメタクリル酸メチル
 (重量平均分子量480000;三菱レイヨン(株)製、BR88)
                            7.5質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン(株)製)    4.2質量部
 (溶剤)
 メチルエチルケトン(MEK)            0.84質量部
 ブタノール                       45質量部
 プロピレングリコールモノメチルエーテル(PGME)  7.4質量部
(Actinic radiation curable resin)
Cyclomer P (ACA) 320
(Unsaturated group-containing acrylic resin mixture, manufactured by Daicel Chemical Industries, Ltd.)
47 parts by mass Dipentaerythritol hexaacrylate (DPHA, manufactured by Daicel Cytec Co., Ltd.) 53 parts by mass (incompatible resin)
Polymethyl methacrylate (weight average molecular weight 480000; manufactured by Mitsubishi Rayon Co., Ltd., BR88)
7.5 parts by mass (photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan Ltd.) 4.2 parts by mass (solvent)
Methyl ethyl ketone (MEK) 0.84 parts by mass Butanol 45 parts by mass Propylene glycol monomethyl ether (PGME) 7.4 parts by mass
 《ヘイズ及び算術平均粗さRa等の測定》
 上記作製した防眩性フィルム1~11について、ヘイズ測定を行い、内部ヘイズ(Hi)を求めた。また、算術平均粗さRa等についても下記条件で測定した。
<< Measurement of haze and arithmetic mean roughness Ra, etc. >>
The antiglare films 1 to 11 produced above were subjected to haze measurement to determine the internal haze (Hi). In addition, arithmetic average roughness Ra and the like were also measured under the following conditions.
 得られた内部ヘイズ(Hi)及び算術平均粗さRa等について、結果を表1に示した。 The results are shown in Table 1 for the obtained internal haze (Hi), arithmetic average roughness Ra, and the like.
 《内部ヘイズ(Hi)》
 各防眩性フィルムの表裏面にシリコーンオイルを数滴滴下した。次にシリコーンオイルを滴下した防眩性フィルムを厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)二枚で裏表より挟み、完全に二枚のガラス板と得られた防眩性フィルムを光学的に密着させた。この光学的に密着させ、表面ヘイズを除去したサンプルのヘイズ(Ha)を日本電色工業(株)製の測定機(NDH2000)を用いて測定した。
《Internal haze (Hi)》
A few drops of silicone oil were dropped on the front and back surfaces of each antiglare film. Next, the antiglare film to which silicone oil was dropped was sandwiched from two sides by two 1 mm thick glass plates (micro slide glass product number S9111, manufactured by MATSUNAMI), and two antiglare properties were obtained. The film was optically adhered. The haze (Ha) of the sample which was optically adhered and the surface haze was removed was measured using a measuring machine (NDH2000) manufactured by Nippon Denshoku Industries Co., Ltd.
 次いで、ガラス板二枚の間にシリコーンオイルのみを挟みこんでガラスヘイズ(Hb)測定した。Haから、Hbを引き、防眩性フィルムの内部ヘイズ(Hi)を算出した。 Next, glass haze (Hb) was measured by sandwiching only silicone oil between two glass plates. Hb was subtracted from Ha, and the internal haze (Hi) of the antiglare film was calculated.
 《算術平均粗さRa等の測定》
 各防眩性フィルムの防眩層の算術平均粗さRaを、光学干渉式表面粗さ計(Zygo社製 New View 5030)を用いて10回測定し、その測定結果の平均から各防眩性フィルムの算術平均粗さRaを求めた。
<< Measurement of arithmetic average roughness Ra, etc. >>
The arithmetic average roughness Ra of the antiglare layer of each antiglare film was measured 10 times using an optical interference type surface roughness meter (New View 5030 manufactured by Zygo), and each antiglare property was determined from the average of the measurement results. The arithmetic average roughness Ra of the film was determined.
 なお、二乗平均平方根粗さ(Rq)、二乗平均平方根傾斜(Δq)は、前述のようにして求めた。相関長は、前記定義式に基づき計算した。 The root mean square roughness (Rq) and root mean square slope (Δq) were determined as described above. The correlation length was calculated based on the definition formula.
 <偏光板の作製>
 耐久試験後の各防眩性フィルム1~11と下記偏光子と裏面側に下記手順で作製した光学フィルム1とを長手方向を合わせるようにロール・トゥ・ロールで貼り合わせて偏光板を各々作製した。偏光板の概略図を図4に示す。
<Preparation of polarizing plate>
Each anti-glare film 1 to 11 after the durability test, the following polarizer, and the optical film 1 prepared by the following procedure on the back side are bonded to each other with a roll-to-roll so that the longitudinal direction is aligned. did. A schematic diagram of the polarizing plate is shown in FIG.
 (光学フィルム1の作製)
 〈微粒子分散液1〉
 微粒子(アエロジル R972V 日本アエロジル(株)製)
                             11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
(Preparation of optical film 1)
<Fine particle dispersion 1>
Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.)
11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
 〈微粒子添加液1〉
 メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 メチレンクロライド                   99質量部
 微粒子分散液1                      5質量部
<Fine particle addition liquid 1>
The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion 1
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。 A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressure dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
 〈主ドープ液の組成〉
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 アセチル基置換度2.4のセルロースアセテート(Mn80000)
                            100質量部
 糖エステル化合物(1-23)              10質量部
 芳香族末端エステル系可塑剤(2-23)        2.5質量部
 紫外線吸収剤(チヌビン928(BASFジャパン(株)製))
                            2.3質量部
 微粒子添加液1                    1.0質量部
<Composition of main dope solution>
Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose acetate with an acetyl group substitution degree of 2.4 (Mn 80000)
100 parts by mass Sugar ester compound (1-23) 10 parts by mass Aromatic terminal ester plasticizer (2-23) 2.5 parts by mass UV absorber (Tinuvin 928 (manufactured by BASF Japan Ltd.))
2.3 parts by mass Particulate additive liquid 1 1.0 part by mass
 上記組成物を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。次いで、無端ベルト流延装置を用い、ドープ液を温度33℃、2000mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。 The above composition was put into a sealed container and dissolved with stirring to prepare a dope solution. Next, an endless belt casting apparatus was used to uniformly cast the dope solution on a stainless steel belt support at a temperature of 33 ° C. and a width of 2000 mm. The temperature of the stainless steel belt was controlled at 30 ° C.
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。 On the stainless steel belt support, the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
 その後170℃に設定されたテンターにより幅手方向に1.4倍の延伸を行い、次いで130℃に設定された乾燥ゾーンで30分間搬送させて乾燥を行い、両端部のトリミングを行い、かつ端部に幅1cm、高さ6μmのナーリングを有する膜厚40μmの光学フィルム1を作製し、幅1.49m、3900mで巻き取った。光学フィルム1の面内リターデーション値Roは50nm、厚さ方向リターデーションRtは130nmであった。 Thereafter, the film is stretched 1.4 times in the width direction by a tenter set at 170 ° C., then dried by being transported in a drying zone set at 130 ° C. for 30 minutes, trimmed at both ends, The optical film 1 having a film thickness of 40 μm having a knurling of 1 cm width and 6 μm height was prepared, and wound up with a width of 1.49 m and 3900 m. The in-plane retardation value Ro of the optical film 1 was 50 nm, and the thickness direction retardation Rt was 130 nm.
 〈偏光板の作製〉
 厚さ120μmのポリビニルアルコールフィルムを一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。次いで、下記工程1~5に従って偏光子と各防眩性フィルム1~11と裏面側に光学フィルム1を長手方向で合わせるようにして、ロール・トゥ・ロールで貼り合わせて各偏光板1~11を作製し、更に工程6で粘着層をそれぞれの偏光板1~11に貼り合わせた。
工程1:60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化した防眩性フィルム1~11と光学フィルム1を得た。
工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理した防眩性フィルム1~11と裏面側には光学フィルム1をのせて配置した。
工程4:工程3で積層したフィルムを圧力20~30N/cm2、搬送スピードは約2m/分で貼合した。
工程5:80℃の乾燥機中に工程4で作製した偏光子と各防眩性フィルム1~11と、光学フィルム1とを貼り合わせた試料を2分間乾燥し、ロール状に巻き取り偏光板1~11を各々作製した。
工程6:工程5で作製した各偏光板の光学フィルム1に市販のアクリル系粘着剤を乾燥後の厚さが25μmとなるようにそれぞれ塗布し、110℃のオーブンで5分間乾燥して粘着層を形成し、粘着層に剥離性の保護フィルムを張り付けた。この偏光を裁断(打ち抜き)し、偏光板1~11を作製した。
<Preparation of polarizing plate>
A 120 μm-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer. Then, according to the following steps 1 to 5, the polarizer, the anti-glare films 1 to 11 and the optical film 1 are aligned in the longitudinal direction on the back side, and bonded to each other by roll-to-roll. In step 6, the adhesive layer was bonded to each of the polarizing plates 1 to 11.
Step 1: An anti-glare film 1 to 11 and an optical film 1 that are immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to saponify the side to be bonded to a polarizer. Obtained.
Step 2: The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
Step 3: Excess adhesive adhered to the polarizer in Step 2 was gently wiped off, and the antiglare films 1 to 11 treated in Step 1 and the optical film 1 were placed on the back side.
Step 4: The films laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
Step 5: A sample obtained by bonding the polarizer prepared in Step 4 to each of the antiglare films 1 to 11 and the optical film 1 in a drier at 80 ° C. is dried for 2 minutes, wound into a roll, and polarizing plate 1 to 11 were produced.
Step 6: A commercially available acrylic pressure-sensitive adhesive is applied to the optical film 1 of each polarizing plate produced in Step 5 so that the thickness after drying is 25 μm, and is dried in an oven at 110 ° C. for 5 minutes. And a peelable protective film was attached to the adhesive layer. The polarized light was cut (punched) to produce polarizing plates 1 to 11.
 <液晶表示装置の作製>
 SONY製32型ディスプレイBRAVIA KDL-32EXの予め貼合されていたパネル前側の偏光板を剥がして、上記作製した各偏光板1~11の粘着層をそれぞれ液晶セルのガラス面の前面に貼合した。その際、その偏光板の貼合の向きは、防眩性フィルムの防眩層表面が、視認側となるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように行い、液晶表示装置1~11を各々作製した。
<Production of liquid crystal display device>
The polarizing plate on the front side of the panel, which had been previously bonded to the SONY 32-inch display BRAVIA KDL-32EX, was peeled off, and the adhesive layers of the respective polarizing plates 1 to 11 were bonded to the front surface of the glass surface of the liquid crystal cell. . At that time, the direction of bonding of the polarizing plate is such that the surface of the antiglare layer of the antiglare film is on the viewing side, and the absorption axis is in the same direction as the previously bonded polarizing plate. Thus, liquid crystal display devices 1 to 11 were produced.
 《液晶表示装置の評価》
 (視認性評価)
 上記作製した各液晶表示装置1~11について、80℃の条件で250時間放置した後、23℃、55%RHに戻し、視認性を評価した。評価者30人で画像の視認性の官能評価を行い、その平均点を求めた。10点が最も良好で、写り込みが少なく、鮮鋭性も高い。1点が最も劣る。7点以上が許容レベルである。
<Evaluation of liquid crystal display device>
(Visibility evaluation)
Each of the produced liquid crystal display devices 1 to 11 was allowed to stand at 80 ° C. for 250 hours and then returned to 23 ° C. and 55% RH to evaluate the visibility. Sensory evaluation of image visibility was performed by 30 evaluators, and the average score was obtained. Ten points are the best, there are few reflections, and sharpness is also high. One point is the worst. Seven or more points are acceptable levels.
 上記防眩性フィルム1~11についてのヘイズ及び算術平均粗さRa等測定結果及び液晶表示装置1~11についての視認性評価結果をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 summarizes the measurement results such as the haze and arithmetic average roughness Ra of the antiglare films 1 to 11 and the visibility evaluation results of the liquid crystal display devices 1 to 11.
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、防眩層が、微粒子や活性線硬化型樹脂に対して非相溶性である樹脂を実質的に含有せず、防眩層の表面の算術平均粗さ(Ra)と相関長とが、関係式(1)を満たし、かつ防眩層の内部ヘイズが0~1.0%である本実施形態に係る防眩性フィルムを用いて作製した偏光板を液晶表示装置に用いることで、視認性に優れることが判る。 As is apparent from the results shown in Table 1, the antiglare layer does not substantially contain a resin that is incompatible with the fine particles or the actinic radiation curable resin, and the arithmetic average roughness of the surface of the antiglare layer A polarizing plate produced using the antiglare film according to the present embodiment in which the thickness (Ra) and the correlation length satisfy the relational expression (1), and the internal haze of the antiglare layer is 0 to 1.0% It can be seen that the use of the liquid crystal display device is excellent in visibility.
 中でも、算術平均粗さRaが、350~1300nmである本実施形態に係る防眩性フィルムは、液晶表示装置に用いた際の視認性に特に優れている。 Among them, the antiglare film according to this embodiment having an arithmetic average roughness Ra of 350 to 1300 nm is particularly excellent in visibility when used in a liquid crystal display device.
 25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂をPGMEやEPGEといったグリコールエーテル類、或いはエタノールやメタノールといったアルコール類で希釈した防眩層塗布組成物を、少なくとも塗布工程、乾燥工程及び硬化工程を経由して形成され、かつ乾燥工程の減率乾燥区間温度を90~160℃に維持した条件下で処理することで、防眩層の算術平均粗さRaと内部ヘイズを本発明の範囲内に容易に制御でき、かつ本発明の目的効果が良好に得られることから、好ましいことがわかる。 An antiglare layer coating composition obtained by diluting an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa · s with glycol ethers such as PGME and EPGE, or alcohols such as ethanol and methanol, at least The arithmetic average roughness Ra and the internal haze of the antiglare layer are formed through the drying process and the curing process, and are processed under the condition that the drying rate of the drying process is maintained at 90 to 160 ° C. Can be easily controlled within the scope of the present invention, and the object and effects of the present invention can be obtained well.
 更に防眩層の内部ヘイズが0~0.5%である本発明の防眩性フィルムは、本発明の目的効果が良好に得られるため、好ましいことが判る。 Further, it can be seen that the antiglare film of the present invention in which the internal haze of the antiglare layer is 0 to 0.5% is preferable because the objective effect of the present invention can be obtained satisfactorily.
 本実施形態に係る防眩性フィルムについて、防眩層表面を光学干渉式表面粗さ計(Zygo社製 New View 5030)で観察した結果、防眩性フィルム1のように不規則な突起形状が不規則に長手方向及び幅方向に配列していた。 About the anti-glare film which concerns on this embodiment, as a result of observing the anti-glare layer surface with the optical interference type surface roughness meter (New View 5030 by Zygo), irregular protrusion shape like the anti-glare film 1 is shown. It was irregularly arranged in the longitudinal direction and the width direction.
 また、防眩性フィルム1~11について、JIS-S6006が規定する試験用鉛筆を用いて、JIS-K5400が規定する鉛筆硬度評価法に従い、500gのおもりを用いて各硬度の鉛筆で防眩層表面を5回繰り返し引っ掻き、鉛筆硬度を評価した結果、本実施形態に係る防眩性フィルムは全て3H以上であり、良好なハードコート性も有していた。 Further, for the antiglare films 1 to 11, an antiglare layer is formed with a pencil of each hardness using a 500 g weight according to a pencil hardness evaluation method specified by JIS-K5400 using a test pencil specified by JIS-S6006. As a result of scratching the surface 5 times and evaluating the pencil hardness, all of the antiglare films according to the present embodiment were 3H or more, and had good hard coat properties.
 実施例2
 <クリアハードコートフィルム1の作製>
 実施例1で作製した基材フィルム1上に孔径0.4μmのポリプロピレン製フィルターで濾過した下記クリアハードコート塗布組成物1を、マイクログラビアコーターを用いて塗布し、恒率乾燥区間温度80℃、減率乾燥区間温度80℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.25J/cmとして塗布層を硬化させ、ドライ膜厚5μmのクリアハードコート層を形成した。
Example 2
<Preparation of clear hard coat film 1>
The following clear hard coat coating composition 1 filtered through a polypropylene filter having a pore diameter of 0.4 μm was coated on the base film 1 prepared in Example 1 using a micro gravure coater, and a constant rate drying section temperature of 80 ° C., After drying at a reduced rate drying section temperature of 80 ° C., while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, the illuminance of the irradiated part is 100 mW / cm 2 using an ultraviolet lamp and the irradiation amount is 0 The coating layer was cured at .25 J / cm 2 to form a clear hard coat layer having a dry film thickness of 5 μm.
 クリアハードコート層を形成後、ロール状に巻き取り、クリアハードコートフィルム1を作製した。クリアハードコートフィルム1の全ヘイズを日本電色工業(株)製の測定機(NDH2000)を用いて測定した結果、0.3%であり、非常にクリア性に優れていた。 After forming the clear hard coat layer, it was wound up into a roll to produce a clear hard coat film 1. As a result of measuring the total haze of the clear hard coat film 1 using a measuring machine (NDH2000) manufactured by Nippon Denshoku Industries Co., Ltd., it was 0.3% and was very excellent in clearness.
 [クリアハードコート層塗布組成物1]
 下記クリアハードコート層塗布組成物1をディスパーにて撹拌混合し、クリアハードコート層塗布組成物1を得た。
[Clear hard coat layer coating composition 1]
The following clear hard coat layer coating composition 1 was stirred and mixed with a disper to obtain a clear hard coat layer coating composition 1.
 (活性線硬化型樹脂)
 ジペンタエリスリトールポリアクリレート        100質量部
 (NKエステルA-9550、新中村化学工業(株)製)
 (光重合開始剤)
 イルガキュア184(BASFジャパン社製)        5質量部
 (レベリング剤)
 アクリル共重合物(BYK-350、ビックケミー・ジャパン社製)
                              2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル(PGME)   10質量部
 メチルエチルケトン                   45質量部
 酢酸メチル                       45質量部
(Actinic radiation curable resin)
100 parts by mass of dipentaerythritol polyacrylate (NK ester A-9550, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
Irgacure 184 (BASF Japan) 5 parts by mass (leveling agent)
Acrylic copolymer (BYK-350, manufactured by Big Chemie Japan)
2 parts by mass (solvent)
Propylene glycol monomethyl ether (PGME) 10 parts by weight Methyl ethyl ketone 45 parts by weight Methyl acetate 45 parts by weight
 <偏光板の作製>
 クリアハードコートフィルム1と下記偏光子と裏面側に実施例1で作製した光学フィルム1とを長手方向を合わせるようにロール・トゥ・ロールで貼り合わせて偏光板100を作製した。
<Preparation of polarizing plate>
The clear hard coat film 1, the following polarizer, and the optical film 1 produced in Example 1 on the back side were bonded together with a roll-to-roll so that the longitudinal direction was matched, and the polarizing plate 100 was produced.
 〈偏光板の作製〉
 厚さ120μmのポリビニルアルコールフィルムを一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。次いで、工程1~5に従って偏光子とクリアハードコートフィルム1と裏面側に光学フィルム1を長手方向で合わせるようにして、ロール・トゥ・ロールで貼り合わせて偏光板を作製し、更に工程6で粘着層を貼り合わせた。
工程1:60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化しクリアハードコートフィルム1と光学フィルム1を得た。
工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理したクリアハードコートフィルム1と裏面側には光学フィルム1をのせて配置した。
工程4:工程3で積層したフィルムを圧力20~30N/cm、搬送スピードは約2m/分で貼合した。
工程5:80℃の乾燥機中に工程4で作製した偏光子とクリアハードコートフィルム1と、光学フィルム1とを貼り合わせた試料を2分間乾燥し、ロール状に巻き取り偏光板100を作製した。
工程6:工程5で作製した偏光板の保護フィルムに市販のアクリル系粘着剤を乾燥後の厚さが25μmとなるように塗布し、110℃のオーブンで5分間乾燥して粘着層を形成し、粘着層に剥離性の保護フィルムを張り付けた。この偏光を裁断(打ち抜き)し、偏光板100を作製した。
<Preparation of polarizing plate>
A 120 μm-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer. Next, in accordance with Steps 1 to 5, the polarizer, the clear hard coat film 1 and the optical film 1 are aligned with the back surface side in the longitudinal direction, and bonded together by roll-to-roll to produce a polarizing plate. The adhesive layer was bonded together.
Step 1: Soaked in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to saponify the side to be bonded to the polarizer to obtain a clear hard coat film 1 and an optical film 1 .
Step 2: The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
Step 3: Excess adhesive adhered to the polarizer in Step 2 was lightly wiped off, and the optical film 1 was placed on the clear hard coat film 1 treated in Step 1 and the back side.
Step 4: The films laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
Step 5: A sample obtained by bonding the polarizer, the clear hard coat film 1 and the optical film 1 prepared in Step 4 in a dryer at 80 ° C. is dried for 2 minutes, wound into a roll, and the polarizing plate 100 is produced. did.
Step 6: Apply a commercially available acrylic pressure-sensitive adhesive to the protective film of the polarizing plate prepared in Step 5 so that the thickness after drying is 25 μm, and dry in an oven at 110 ° C. for 5 minutes to form an adhesive layer. A peelable protective film was attached to the adhesive layer. This polarized light was cut (punched) to produce a polarizing plate 100.
 <液晶表示装置101の作製>
 実施例1で作製した偏光板1を図5に示したように、粘着剤層の剥離性保護フィルムを剥し、液晶セルのガラスを介在してリヤ側に貼合した。更に、上記作製した偏光板100の粘着剤層の剥離性保護フィルムを剥し、フロント側に貼合し、液晶パネル101を作製し、この液晶パネル101をSONY製ノート型PC VAIO TYPE Bのパネルを外してはめ込み、液晶表示装置101を作製した。
<Production of Liquid Crystal Display Device 101>
As shown in FIG. 5, the polarizing plate 1 produced in Example 1 was peeled off the peelable protective film of the pressure-sensitive adhesive layer, and was bonded to the rear side through the glass of the liquid crystal cell. Furthermore, the peelable protective film of the pressure-sensitive adhesive layer of the polarizing plate 100 produced above is peeled off and bonded to the front side to produce a liquid crystal panel 101. The liquid crystal panel 101 is attached to a panel made of SONY notebook PC VAIO TYPE B. The liquid crystal display device 101 was manufactured by removing and fitting.
 <液晶表示装置102~111の作製>
 液晶表示装置101の作製において、リヤ側の偏光板1を偏光板2~11に、それぞれ変更した以外は同様にして液晶表示装置102~111を作製した。
<Production of liquid crystal display devices 102 to 111>
Liquid crystal display devices 102 to 111 were manufactured in the same manner except that the polarizing plate 1 on the rear side was changed to polarizing plates 2 to 11 in the manufacture of the liquid crystal display device 101.
 上記作製した液晶表示装置101~111について、モアレ縞の観察を行い、以下の基準で評価した。 The manufactured liquid crystal display devices 101 to 111 were observed for moire fringes and evaluated according to the following criteria.
 《表示装置の評価》
 (モアレ縞評価)
 ××:モアレ縞の発生が明確に確認できる。
 ×: モアレ縞の存在が確認できる。実用上問題のあるレベル。
 △: ぼんやりであるがモアレ縞の存在が容易に確認できる。
 ○: 注視すると僅かにモアレ縞の存在が確認できる。
 ◎: モアレ縞の存在が全く確認できない。
<< Evaluation of display device >>
(Moire fringe evaluation)
XX: Generation of moire fringes can be clearly confirmed.
X: Presence of moiré fringes can be confirmed. A practically problematic level.
(Triangle | delta): Although it is dim, presence of a moire fringe can be confirmed easily.
○: The presence of moiré fringes can be confirmed slightly by gazing.
A: The presence of moiré fringes cannot be confirmed at all.
 上記評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、本実施形態に係る防眩性フィルムから構成される偏光板を用いたリヤ側に用いた液晶表示装置は、モアレ縞が観察されず、モアレ縞の発生防止に優れていることが判る。 As is clear from the results shown in Table 2, the liquid crystal display device used on the rear side using the polarizing plate composed of the antiglare film according to the present embodiment has no moiré fringes observed. It can be seen that it is excellent in preventing occurrence.
 実施例3
 <導電性膜付き防眩性フィルム1の作製>
 防眩性フィルム1の作製において、両面に防眩層塗布層組成物1を塗設した以外は同様にして、両面防眩性フィルム1を作製した。
Example 3
<Preparation of antiglare film 1 with conductive film>
In the production of the antiglare film 1, a double-sided antiglare film 1 was produced in the same manner except that the antiglare layer coating layer composition 1 was coated on both sides.
 次いで、防眩層の片面に表面抵抗率が約200Ωである酸化インジウム錫(ITO)の透明導電性薄膜を、スパッタリング法を用いて設け、図7に示した導電性膜付き防眩性フィルム1を作製した。 Next, a transparent conductive thin film of indium tin oxide (ITO) having a surface resistivity of about 200Ω is provided on one side of the antiglare layer using a sputtering method, and the antiglare film 1 with a conductive film shown in FIG. Was made.
 <導電性膜付き防眩性フィルム2~11の作製>
 防眩性フィルム2~11の作製において、両面防眩性フィルム1と同じように、両面に防眩層を塗設した以外は同様にして、両面防眩性フィルム2~11を作製した。
<Preparation of antiglare films 2 to 11 with conductive film>
In the production of the antiglare films 2 to 11, double-sided antiglare films 2 to 11 were produced in the same manner as the double-sided antiglare film 1, except that an antiglare layer was coated on both sides.
 次いで、導電性膜付き防眩性フィルム1の作製と同様にして、両面に防眩層を設けた後、防眩層の片面に表面抵抗率が約200ΩであるITOの透明導電性薄膜を、スパッタリング法を用いて設け、導電性膜付き防眩性フィルム2~11を作製した。 Next, in the same manner as the production of the antiglare film 1 with a conductive film, after providing an antiglare layer on both sides, a transparent conductive thin film of ITO having a surface resistivity of about 200Ω on one side of the antiglare layer, The antiglare films 2 to 11 with a conductive film were prepared by using a sputtering method.
 <抵抗膜方式タッチパネル液晶表示装置201の作製>
 市販の抵抗膜方式タッチパネル液晶表示装置(型名:LCD-USB10XB-T、I-O DATA社製)の導電性膜付きフィルムを剥がし、上記作製した導電性膜付き防眩性フィルム1を図8のように貼合して、抵抗膜方式タッチパネル液晶表示装置201を作製した。
<Preparation of Resistive Touch Panel Liquid Crystal Display 201>
A film with a conductive film of a commercially available resistive film type touch panel liquid crystal display device (model name: LCD-USB10XB-T, manufactured by IO DATA Co.) is peeled off, and the antiglare film 1 with the conductive film produced above is shown in FIG. Thus, a resistive film type touch panel liquid crystal display device 201 was produced.
 <抵抗膜方式タッチパネル液晶表示装置202~211の作製>
 抵抗膜方式タッチパネル液晶表示装置1の作製において、導電性膜付き防眩性フィルム1を導電性膜付き防眩性フィルム2~11に変更した以外は同様にして抵抗膜方式タッチパネル液晶表示装置202~211を作製した。
<Preparation of resistive touch panel liquid crystal display devices 202-211>
The resistive film type touch panel liquid crystal display device 202 is manufactured in the same manner except that the antiglare film 1 with conductive film is changed to the antiglare films 2 to 11 with conductive film in the production of the resistive film type touch panel liquid crystal display device 1. 211 was produced.
 《表示装置の評価》
 実施例1と同様にして、抵抗膜方式タッチパネル液晶表示装置201~211の視認性を評価した。
<< Evaluation of display device >>
In the same manner as in Example 1, the visibility of the resistive touch panel liquid crystal display devices 201 to 211 was evaluated.
 (視認性評価)
 上記作製した抵抗膜方式タッチパネル液晶表示装置201~211について、80℃の条件で250時間放置した後、23℃、55%RHに戻し、視認性を評価した。
(Visibility evaluation)
The produced resistive film type touch panel liquid crystal display devices 201 to 211 were allowed to stand at 80 ° C. for 250 hours and then returned to 23 ° C. and 55% RH to evaluate the visibility.
 評価者30人で画像の視認性の官能評価を行い、その平均点を求めた。10点が最も良好で、写り込みが少なく、鮮鋭性も高い。1点が最も劣る。7点以上が許容レベルである。 The sensory evaluation of image visibility was performed by 30 evaluators, and the average score was obtained. Ten points are the best, there are few reflections, and sharpness is also high. One point is the worst. Seven or more points are acceptable levels.
 《フィルム評価》
 (耐ペン摺動性)
 導電性膜付き防眩性フィルム1~11については、以下の条件で耐ペン摺動性について評価した。得られた結果を表4に示した。
<Film evaluation>
(Pen sliding resistance)
The antiglare films 1 to 11 with conductive film were evaluated for pen sliding resistance under the following conditions. The results obtained are shown in Table 4.
 抵抗膜方式タッチパネル液晶表示装置に用いた各導電性膜付き防眩性フィルムの防眩層を先端部が0.08mmφのポリアセタール製のペンを使用し、荷重500g、ペン摺動速度100mm/秒で直線40mmを15万回往復し、往復後の防眩層の傷つき及び剥れを目視により評価した。 The anti-glare layer of each anti-glare film with a conductive film used in a resistive touch panel liquid crystal display device is a polyacetal pen with a tip of 0.08 mmφ, with a load of 500 g and a pen sliding speed of 100 mm / sec. The straight line 40 mm was reciprocated 150,000 times, and the anti-glare layer was scratched and peeled after the reciprocation.
 上記評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 表3に示した結果から明らかなように、本実施形態に係る導電性膜付き防眩性フィルム及び、当該フィルムを使用した抵抗膜方式タッチパネル液晶表示装置は、視認性及び耐ペン摺動性に優れていることが判る。 As is clear from the results shown in Table 3, the antiglare film with a conductive film according to the present embodiment and the resistive film type touch panel liquid crystal display device using the film have improved visibility and pen sliding resistance. It turns out that it is excellent.
 本発明によれば、視認性の向上とモアレ縞の低減の両立を達成できる防眩性フィルムとその製造方法が提供される。また、当該防眩性フィルムが具備された偏光板、画像表示装置、及びタッチパネル用部材が提供される。
 
ADVANTAGE OF THE INVENTION According to this invention, the anti-glare film which can achieve coexistence of a visibility improvement and the reduction of a moire fringe, and its manufacturing method are provided. Moreover, the polarizing plate provided with the said anti-glare film, an image display apparatus, and the member for touchscreens are provided.

Claims (11)

  1.  基材フィルム上に防眩層を有する防眩性フィルムであって、
     当該防眩層の表面の算術平均粗さRa(nm)と、下記定義式で定義される相関長Ic(μm)とが、下記関係式(1)を満たすことを特徴とする防眩性フィルム。
      関係式(1):0 ≦ Ic ≦ 21-8×exp((215-Ra)/40)-13×exp((215-Ra)/400)
      定義式:相関長Ic = 二乗平均平方根粗さRq(μm)/二乗平均平方根傾斜Δq×21/2
    An antiglare film having an antiglare layer on a base film,
    The antiglare film characterized in that the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and the correlation length Ic (μm) defined by the following formula satisfy the following relational expression (1): .
    Relational expression (1): 0 ≦ Ic ≦ 21−8 × exp ((215−Ra) / 40) −13 × exp ((215−Ra) / 400)
    Definition formula: Correlation length Ic = root mean square roughness Rq (μm) / root mean square slope Δq × 2 1/2
  2.  前記防眩層の表面の算術平均粗さRa(nm)と、前記相関長Ic(μm)とが、下記関係式(2)を満たすことを特徴とする請求項1に記載の防眩性フィルム。
      関係式(2):0 ≦ Ic ≦ 17-6×exp((225-Ra)/40)-11×exp((225-Ra)/400)
    The antiglare film according to claim 1, wherein the arithmetic average roughness Ra (nm) of the surface of the antiglare layer and the correlation length Ic (µm) satisfy the following relational expression (2). .
    Relational expression (2): 0 ≦ Ic ≦ 17−6 × exp ((225−Ra) / 40) −11 × exp ((225−Ra) / 400)
  3.  前記防眩層の表面の算術平均粗さRaが、350~1300nmの範囲内であることを特徴とする請求項1又は請求項2に記載の防眩性フィルム。 The antiglare film according to claim 1 or 2, wherein the arithmetic average roughness Ra of the surface of the antiglare layer is in the range of 350 to 1300 nm.
  4.  前記防眩層の内部散乱に起因するヘイズが、0~0.5%の範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 3, wherein haze caused by internal scattering of the antiglare layer is in the range of 0 to 0.5%.
  5.  前記防眩層が、25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂を含有していることを特徴とする請求項1から請求項4までのいずれか一項に記載の防眩性フィルム。 The antiglare layer contains an actinic radiation curable resin having a viscosity within a range of 20 to 3000 mPa · s at 25 ° C. The antiglare film as described.
  6.  前記防眩層が、微粒子を含有し、前記微粒子及び前記活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有していないことを特徴とする請求項5に記載の防眩性フィルム。 6. The antiglare property according to claim 5, wherein the antiglare layer contains fine particles and does not substantially contain a resin that is incompatible with the fine particles and the actinic radiation curable resin. the film.
  7.  前記防眩層の表面が、長手方向に周期を持たない不規則な突起形状を有していることを特徴とする請求項1から請求項6までのいずれか一項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 6, wherein a surface of the antiglare layer has an irregular protrusion shape having no period in the longitudinal direction. .
  8.  請求項1から請求項7までのいずれか一項に記載の防眩性フィルムを製造する防眩性フィルムの製造方法であって、
     25℃における粘度が20~3000mPa・sの範囲内にある活性線硬化型樹脂と、エステル類、グリコールエーテル類、及びアルコール類からなる群から選ばれる少なくとも一種の溶剤とを含有する防眩層塗布組成物を、基材フィルム上に塗布する塗布工程と、
     減率乾燥区間の温度を90~160℃の範囲内に維持して、前記防眩層塗布組成物を乾燥させる乾燥工程と、
     乾燥させた前記防眩層塗布組成物を硬化させて、前記基材フィルム上に防眩層を形成する硬化工程とを備えることを特徴とする防眩性フィルムの製造方法。
    An antiglare film manufacturing method for manufacturing the antiglare film according to any one of claims 1 to 7,
    Application of an antiglare layer comprising an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 20 to 3000 mPa · s and at least one solvent selected from the group consisting of esters, glycol ethers, and alcohols An application step of applying the composition onto a substrate film;
    A drying step of drying the antiglare layer coating composition while maintaining the temperature of the reduced rate drying section within a range of 90 to 160 ° C .;
    A method for producing an antiglare film, comprising: curing the dried antiglare layer coating composition to form an antiglare layer on the substrate film.
  9.  請求項1から請求項7までのいずれか一項に記載の防眩性フィルムが、具備されていることを特徴とする偏光板。 A polarizing plate comprising the antiglare film according to any one of claims 1 to 7.
  10.  請求項1から請求項7までのいずれか一項に記載の防眩性フィルムが、具備されていることを特徴とする画像表示装置。 An image display device comprising the antiglare film according to any one of claims 1 to 7.
  11.  請求項1から請求項7までのいずれか一項に記載の防眩性フィルムが、具備されていることを特徴とするタッチパネル用部材。 A touch panel member comprising the antiglare film according to any one of claims 1 to 7.
PCT/JP2012/003184 2011-05-27 2012-05-16 Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel WO2012164843A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280027125.2A CN103582829B (en) 2011-05-27 2012-05-16 Antiglare film, its manufacture method, polaroid, image display device and touch panel parts
KR1020137030580A KR101618423B1 (en) 2011-05-27 2012-05-16 Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel
JP2013517841A JP5935802B2 (en) 2011-05-27 2012-05-16 Method for producing antiglare film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-118816 2011-05-27
JP2011118816 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012164843A1 true WO2012164843A1 (en) 2012-12-06

Family

ID=47258721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003184 WO2012164843A1 (en) 2011-05-27 2012-05-16 Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel

Country Status (4)

Country Link
JP (1) JP5935802B2 (en)
KR (1) KR101618423B1 (en)
CN (1) CN103582829B (en)
WO (1) WO2012164843A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151420A (en) * 2014-02-12 2015-08-24 日立化成株式会社 Hard-coating resin composition for refractive index adjustment film, and hardened film and multilayer film using the same
TWI601925B (en) * 2015-06-26 2017-10-11 住華科技股份有限公司 Air feeding control apparatus and control method thereof
WO2018105213A1 (en) * 2016-12-06 2018-06-14 凸版印刷株式会社 Optical film, and optical barrier film, color conversion film, and backlight unit using optical film
JP2018185769A (en) * 2017-04-27 2018-11-22 大日本印刷株式会社 Surface member for touch panel, touch panel, display device, and selection method of surface member for touch panel
TWI677702B (en) * 2018-11-20 2019-11-21 友達光電股份有限公司 Anti-glare structure and method of manufacturing the same
JP2023066397A (en) * 2021-10-28 2023-05-15 大日本印刷株式会社 Anti-glare film and image display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6476582B2 (en) * 2014-04-23 2019-03-06 大日本印刷株式会社 LAMINATE MANUFACTURING METHOD, LAMINATE, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE
US9605086B2 (en) * 2015-03-26 2017-03-28 Fuji Xerox Co., Ltd. Resin composition and resin molded article
JP6388570B2 (en) 2015-09-29 2018-09-12 富士フイルム株式会社 Laminated film and method for producing the same, polarizing plate, liquid crystal panel, and liquid crystal display device
US11428847B2 (en) * 2017-05-15 2022-08-30 Nippon Electric Glass Co., Ltd. Transparent product and method for producing transparent product
CN114779517A (en) * 2022-02-28 2022-07-22 惠州华星光电显示有限公司 Polarizing plate and display module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006103070A (en) * 2004-10-01 2006-04-20 Daicel Chem Ind Ltd Anti-glaring film
WO2007108294A1 (en) * 2006-03-16 2007-09-27 Daicel Chemical Industries, Ltd. Anti-dazzling film
JP4155337B1 (en) * 2007-02-21 2008-09-24 ソニー株式会社 Anti-glare film, method for producing the same, and display device
JP2009175676A (en) * 2007-09-28 2009-08-06 Fujifilm Corp Optical film, polarizing plate and image display apparatus
JP2011100027A (en) * 2009-11-06 2011-05-19 Sony Corp Antiglare film and method for producing the same
WO2012035849A1 (en) * 2010-09-14 2012-03-22 コニカミノルタオプト株式会社 Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164890A (en) * 2003-12-02 2005-06-23 Konica Minolta Opto Inc Long-sized antiglare film, antiglare and antireflection film, polarizing plate, display device using those, and antiglare processing method
JP2007114563A (en) * 2005-10-21 2007-05-10 Konica Minolta Opto Inc Antiglare film, polarizing plate and display device
CN101410736A (en) * 2006-03-31 2009-04-15 柯尼卡美能达精密光学株式会社 Film for display, polarizing plate and method for producing the same, and liquid crystal display
JP2008180852A (en) * 2007-01-24 2008-08-07 Asahi Kasei Corp Anti-glare film
JP5056591B2 (en) * 2008-05-30 2012-10-24 日本精工株式会社 Toroidal continuously variable transmission
JP5603542B2 (en) * 2008-06-16 2014-10-08 三菱レイヨン株式会社 Prism sheet
JP2010060889A (en) * 2008-09-04 2010-03-18 Mitsubishi Rayon Co Ltd Lens sheet, planar light source apparatus and liquid crystal display
JP5398521B2 (en) * 2009-09-17 2014-01-29 三菱レイヨン株式会社 Matte sheet manufacturing method
JP2011081219A (en) * 2009-10-07 2011-04-21 Nitto Denko Corp Hard-coated antiglare film, and polarizing plate and image display including the same
JP5595010B2 (en) * 2009-10-30 2014-09-24 株式会社神戸製鋼所 Alloyed hot-dip galvanized high-tensile steel plate with excellent plating adhesion and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006103070A (en) * 2004-10-01 2006-04-20 Daicel Chem Ind Ltd Anti-glaring film
WO2007108294A1 (en) * 2006-03-16 2007-09-27 Daicel Chemical Industries, Ltd. Anti-dazzling film
JP4155337B1 (en) * 2007-02-21 2008-09-24 ソニー株式会社 Anti-glare film, method for producing the same, and display device
JP2009175676A (en) * 2007-09-28 2009-08-06 Fujifilm Corp Optical film, polarizing plate and image display apparatus
JP2011100027A (en) * 2009-11-06 2011-05-19 Sony Corp Antiglare film and method for producing the same
WO2012035849A1 (en) * 2010-09-14 2012-03-22 コニカミノルタオプト株式会社 Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151420A (en) * 2014-02-12 2015-08-24 日立化成株式会社 Hard-coating resin composition for refractive index adjustment film, and hardened film and multilayer film using the same
TWI601925B (en) * 2015-06-26 2017-10-11 住華科技股份有限公司 Air feeding control apparatus and control method thereof
WO2018105213A1 (en) * 2016-12-06 2018-06-14 凸版印刷株式会社 Optical film, and optical barrier film, color conversion film, and backlight unit using optical film
JPWO2018105213A1 (en) * 2016-12-06 2019-10-24 凸版印刷株式会社 Optical film, and optical barrier film, color conversion film and backlight unit using the same
US11397287B2 (en) 2016-12-06 2022-07-26 Toppan Printing Co., Ltd. Optical film, and optical barrier film, color conversion film and backlight unit using the optical film
JP2018185769A (en) * 2017-04-27 2018-11-22 大日本印刷株式会社 Surface member for touch panel, touch panel, display device, and selection method of surface member for touch panel
TWI677702B (en) * 2018-11-20 2019-11-21 友達光電股份有限公司 Anti-glare structure and method of manufacturing the same
JP2023066397A (en) * 2021-10-28 2023-05-15 大日本印刷株式会社 Anti-glare film and image display device
JP7347627B2 (en) 2021-10-28 2023-09-20 大日本印刷株式会社 Anti-glare film and image display device

Also Published As

Publication number Publication date
KR20140006985A (en) 2014-01-16
KR101618423B1 (en) 2016-05-04
CN103582829A (en) 2014-02-12
CN103582829B (en) 2015-12-02
JPWO2012164843A1 (en) 2015-02-23
JP5935802B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5935802B2 (en) Method for producing antiglare film
WO2012124323A1 (en) Anti-glare film, method for producing anti-glare film, anti-glare anti-reflection film, polarizing plate, and image display device
JP5598308B2 (en) Method for producing antireflection film
JP5408135B2 (en) Optical film, antireflection film, polarizing plate, and liquid crystal display device
KR101454054B1 (en) Optical film, polarizer and liquid crystal display
JP2012133079A (en) Hard coat film, production method of the same, antireflection film, polarizing plate and image display device
JP5751249B2 (en) Hard coat film, method for producing the same, polarizing plate, and liquid crystal display device
JP5799954B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
JP2007045142A (en) Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate
JP2007108725A (en) Optical film, antireflection film, polarizing plate using the same and display device
JP2013083795A (en) Antiglare film, antiglare film manufacturing method, polarizer and image display unit
JP5971121B2 (en) Manufacturing method of optical film
JP5996163B2 (en) Optical film manufacturing method, polarizing plate and image display device
WO2011055624A1 (en) Polarizing plate and liquid crystal display device
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
JP2012128064A (en) Antireflection film, polarizer and image display device
JP2010217504A (en) Antireflection film
JP2006251163A (en) Antireflection film, polarizing plate, and image display apparatus using the same
JP2007057612A (en) Nonglare antireflective film and manufacturing method therefor, polarizer using the same nonglare antireflective film, liquid crystal display device using the same polarizer, and liquid crystal display device
JP6048506B2 (en) Optical film
JP4905787B2 (en) Antiglare film, antireflection film, polarizing plate, image display device, and production method of antiglare film
JP2005275391A (en) Antireflection film and manufacturing method, polarizing plate, and liquid crystal display device using the same
JP2013088438A (en) Optical film, production method of the same, and image display device
JP2010008757A (en) Antidazzle antireflection film, polarizing plate and image display device
JP2005181519A (en) Antireflection film, polarizing plate and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12791977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517841

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137030580

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12791977

Country of ref document: EP

Kind code of ref document: A1