JP5056591B2 - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP5056591B2
JP5056591B2 JP2008143113A JP2008143113A JP5056591B2 JP 5056591 B2 JP5056591 B2 JP 5056591B2 JP 2008143113 A JP2008143113 A JP 2008143113A JP 2008143113 A JP2008143113 A JP 2008143113A JP 5056591 B2 JP5056591 B2 JP 5056591B2
Authority
JP
Japan
Prior art keywords
disk
groove
grooves
toroidal
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008143113A
Other languages
Japanese (ja)
Other versions
JP2009287739A (en
JP2009287739A5 (en
Inventor
大樹 西井
尚 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008143113A priority Critical patent/JP5056591B2/en
Publication of JP2009287739A publication Critical patent/JP2009287739A/en
Publication of JP2009287739A5 publication Critical patent/JP2009287739A5/ja
Application granted granted Critical
Publication of JP5056591B2 publication Critical patent/JP5056591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

この発明は、例えば自動車用の自動変速機として、或はポンプ等の各種産業機械の運転速度を調節する為の変速装置として利用する、トロイダル型無段変速機の改良に関する。具体的には、各パワーローラの周面と各ディスクの軸方向片側面との転がり接触部のトラクション係数の向上を図るべく、これら各パワーローラの周面と各ディスクの軸方向片側面とのうちの少なくとも一方の面に多数の凹溝(微細溝)を設ける構造で、耐久性の確保とトラクション係数の確保との両立を図るものである。   The present invention relates to an improvement in a toroidal continuously variable transmission that is used, for example, as an automatic transmission for automobiles or as a transmission for adjusting the operating speed of various industrial machines such as pumps. Specifically, in order to improve the traction coefficient of the rolling contact portion between the circumferential surface of each power roller and one axial side surface of each disk, the circumferential surface of each power roller and one axial side surface of each disk With a structure in which a large number of concave grooves (fine grooves) are provided on at least one of these surfaces, both ensuring durability and ensuring traction coefficient are achieved.

自動車用変速装置としてトロイダル型無段変速機を使用する事が、一部で実施されて周知である。図8、9は、現在実施されている(ハーフ)トロイダル型無段変速機の基本構成を示している。このトロイダル型無段変速機は、ダブルキャビティ型と呼ばれるもので、1対の入力側ディスク1、1を入力回転軸2に対し、それぞれがトロイド曲面(断面円弧形の凹面)であって特許請求の範囲に記載した軸方向片側面に相当する入力側内側面3、3同士を、互いに対向させた状態で、互いに同心に、且つ、同期した回転を自在に支持している。   The use of a toroidal type continuously variable transmission as an automobile transmission is partly implemented and well known. 8 and 9 show the basic configuration of a (half) toroidal continuously variable transmission currently being implemented. This toroidal-type continuously variable transmission is called a double-cavity type, and a pair of input-side discs 1 and 1 with respect to the input rotary shaft 2 are each a toroidal curved surface (concave arc-shaped concave surface) and patented. The input side inner side surfaces 3 and 3 corresponding to one side surface in the axial direction described in the claims are opposed to each other, and are supported concentrically and freely in synchronization with each other.

又、上記入力回転軸2の中間部周囲に、中間部外周面に出力歯車4を固設した出力筒5を、この入力回転軸2に対する回転を自在に支持している。又、この出力筒5の両端部に出力側ディスク6、6を、スプライン係合により、この出力筒5と同期した回転自在に支持している。この状態で、それぞれがトロイド曲面であって特許請求の範囲に記載した軸方向片側面に相当する、上記両出力側ディスク6、6の出力側内側面7、7が、上記両入力側内側面3、3に対向する。   An output cylinder 5 having an output gear 4 fixed to the outer peripheral surface of the intermediate portion is supported around the intermediate portion of the input rotary shaft 2 so as to freely rotate with respect to the input rotary shaft 2. Further, output side disks 6 and 6 are supported at both ends of the output cylinder 5 so as to be rotatable in synchronization with the output cylinder 5 by spline engagement. In this state, each of the output side inner surfaces 7 and 7 of the output side disks 6 and 6, each of which is a toroidal curved surface and corresponding to one axial side surface recited in the claims, is the both input side inner side surfaces. 3 and 3 are opposed.

又、上記入力回転軸2の周囲で上記入力側、出力側両内側面3、7同士の間部分(キャビティ)に、それぞれの周面を球状凸面としたパワーローラ8、8を、2個ずつ配置している。これら各パワーローラ8、8は、それぞれトラニオン9、9の内側面に、基半部と先半部とが偏心した支持軸10、10と複数の転がり軸受とを介して、これら各支持軸10、10の先半部回りの回転、及び、これら各支持軸10、10の基半部を中心とする若干の揺動変位自在に支持されている。又、上記各トラニオン9、9は、それぞれの長さ方向(図8の表裏方向、図9の上下方向)両端部にこれら各トラニオン9、9毎に互いに同心に設けられた、傾転軸11、11を中心として揺動変位自在である。   Further, two power rollers 8 and 8 each having a spherical convex surface on each of the peripheral surfaces (cavities) between the input side and output side inner side surfaces 3 and 7 around the input rotation shaft 2 are provided. It is arranged. The power rollers 8 and 8 are respectively connected to the inner surfaces of the trunnions 9 and 9 via support shafts 10 and 10 whose base half and tip half are eccentric and a plurality of rolling bearings. 10 is supported in such a manner that it can be rotated about the front half of the front half and a small amount of swinging about the base half of each of the support shafts 10 and 10. Each trunnion 9, 9 is provided with a tilting shaft 11 provided concentrically with each other for each trunnion 9, 9 at both ends in the length direction (front and back direction in FIG. 8, vertical direction in FIG. 9). , 11 can be swung freely.

これら各トラニオン9、9を揺動(傾斜)させる動作は、油圧式のアクチュエータ12、12により、これら各トラニオン9、9を上記各傾転軸11、11の軸方向に変位させる事により行なう。即ち、変速時には、上記各アクチュエータ12、12への圧油の給排により、上記各トラニオン9、9を上記各傾転軸11、11の軸方向に変位させる。この結果、上記各パワーローラ8、8の周面と上記入力側、出力側各内側面3、7との転がり接触部(トラクション部)の接線方向に作用する力の方向が変化する(サイドスリップが発生する)ので、上記各トラニオン9、9が上記各傾転軸11、11を中心として揺動変位する。   The operation of swinging (tilting) the trunnions 9 and 9 is performed by displacing the trunnions 9 and 9 in the axial directions of the tilt shafts 11 and 11 by hydraulic actuators 12 and 12. That is, at the time of shifting, the trunnions 9 and 9 are displaced in the axial direction of the tilt shafts 11 and 11 by supplying and discharging pressure oil to and from the actuators 12 and 12. As a result, the direction of the force acting in the tangential direction of the rolling contact portion (traction portion) between the peripheral surface of each of the power rollers 8 and 8 and each of the input side and output side inner surfaces 3 and 7 changes (side slip). Therefore, the trunnions 9 and 9 are oscillated and displaced about the tilt shafts 11 and 11, respectively.

上述の様なトロイダル型無段変速機の運転時には、駆動軸13により一方(図8の左方)の入力側ディスク1を、ローディングカム式の押圧装置14を介して回転駆動する。この結果、前記入力回転軸2の両端部に支持された1対の入力側ディスク1、1が、互いに近付く方向に押圧されつつ同期して回転する。そして、この回転が、上記各パワーローラ8、8を介して前記両出力側ディスク6、6に伝わり、前記出力歯車4から取り出される。   During operation of the toroidal-type continuously variable transmission as described above, one input side disk 1 (left side in FIG. 8) is rotationally driven by a drive shaft 13 via a loading cam type pressing device 14. As a result, the pair of input-side disks 1 and 1 supported at both ends of the input rotation shaft 2 rotate synchronously while being pressed in a direction approaching each other. Then, this rotation is transmitted to the output side disks 6 and 6 through the power rollers 8 and 8 and is taken out from the output gear 4.

上記入力回転軸2と上記出力歯車4との回転速度の比を変える場合で、先ず入力回転軸2と出力歯車4との間で減速を行なう場合には、上記各トラニオン9、9を図8に示す位置に揺動させ、上記各パワーローラ8、8の周面を、上記各入力側ディスク1、1の入力側内側面3、3の中心寄り部分と上記両出力側ディスク6、6の出力側内側面7、7の外周寄り部分とにそれぞれ当接させる。反対に、増速を行なう場合には、上記各トラニオン9、9を図8と反対方向に揺動させ、上記各パワーローラ8、8の周面を、上記両入力側ディスク1、1の入力側内側面3、3の外周寄り部分と上記両出力側ディスク6、6の出力側内側面7、7の中心寄り部分とにそれぞれ当接させる。上記各トラニオン9、9の揺動角度を中間にすれば、上記入力回転軸2と出力歯車4との間で、中間の変速比を得られる。   When the ratio of the rotational speed between the input rotary shaft 2 and the output gear 4 is changed, and when deceleration is first performed between the input rotary shaft 2 and the output gear 4, the trunnions 9, 9 are shown in FIG. The power rollers 8 and 8 are swung to the positions shown in FIG. 3 so that the peripheral surfaces of the input-side discs 1 and 1 near the center of the input-side discs 1 and 3 and the output-side discs 6 and 6 It is made to contact | abut to the outer peripheral side part of the output side inner surfaces 7 and 7, respectively. On the contrary, when the speed is increased, the trunnions 9 and 9 are swung in the direction opposite to that shown in FIG. 8, and the peripheral surfaces of the power rollers 8 and 8 are input to the input disks 1 and 2. It is made to contact | abut to the outer periphery side part of the side inner side surfaces 3 and 3 and the center side part of the output side inner side surfaces 7 and 7 of the said output side disks 6 and 6, respectively. If the swing angles of the trunnions 9 and 9 are set in the middle, an intermediate gear ratio can be obtained between the input rotary shaft 2 and the output gear 4.

上述の様なトロイダル型無段変速機の運転時、入力側、出力側各ディスク1、6の入力側、出力側各内側面3、7と各パワーローラ8、8の周面との転がり接触部(トラクション部)では、トラクションオイルを介して動力が伝達される。この様にして動力伝達を行なう場合に、このトラクションオイルの摩擦係数(トラクション係数)の値は決まっている。従って、上記転がり接触部で大きなトルクを伝達する為には、この転がり接触部に大きな押し付け力を付与する必要がある。但し、この様に大きな押し付け力を付与する場合、上記入力側、出力側各ディスク1、6や各パワーローラ8、8の耐久性が低下する可能性がある。又、これら各ディスク1、6や各パワーローラ8、8の強度を確保すべく、これら各部材1、6、8が大型化する可能性もあり、装置の小型化を図る面からは好ましくない。   During operation of the toroidal type continuously variable transmission as described above, the rolling contact between the input side and output side inner surfaces 3 and 7 of the input and output disks 1 and 6 and the peripheral surfaces of the power rollers 8 and 8 is performed. In the section (traction section), power is transmitted through the traction oil. When power is transmitted in this way, the value of the friction coefficient (traction coefficient) of the traction oil is determined. Therefore, in order to transmit a large torque at the rolling contact portion, it is necessary to apply a large pressing force to the rolling contact portion. However, when such a large pressing force is applied, the durability of the input side and output side disks 1 and 6 and the power rollers 8 and 8 may be reduced. Further, in order to secure the strength of each of the disks 1 and 6 and the power rollers 8 and 8, the members 1, 6, and 8 may be increased in size, which is not preferable from the viewpoint of reducing the size of the apparatus. .

一方、上述の様な不都合を防止すべく、例えば特許文献1〜4には、各ディスク1、6の軸方向片側面、或は、各パワーローラ8の周面(トラクション面)に、深さが0.1μm〜8μm程度の多数の凹溝を、当該面全体に亙って形成する技術が記載されている。この様な技術を採用すれば、転がり接触部のトラクション係数の向上を図れ、この様な凹溝を形成していない構造に比べて、小さな押圧力で大きなトルクを伝達できると考えられる。但し、これら各凹溝の形状によっては、上記トラクション係数の向上を図れる程度(向上代)が小さくなったり、十分な耐久性(耐力)を確保できなくなる事が、本発明者の実験により分かった。又、上記各凹溝の加工方法(形成方法)によっても、これら各凹溝を形成した面の表面粗さを表す各種性状(表面性状規格)に応じて、トラクション係数の確保や耐久性の確保の面から評価できる項目とできない項目がある事も分かった。   On the other hand, in order to prevent the above-described inconveniences, for example, Patent Documents 1 to 4 disclose that the depth on the one side surface in the axial direction of each disk 1 or 6 or the peripheral surface (traction surface) of each power roller 8 is described. Describes a technique for forming a large number of concave grooves of about 0.1 μm to 8 μm over the entire surface. By adopting such a technique, it is considered that the traction coefficient of the rolling contact portion can be improved, and a large torque can be transmitted with a small pressing force as compared with a structure in which such a concave groove is not formed. However, it has been found by experiments of the present inventors that the degree (improvement allowance) for improving the traction coefficient is reduced or sufficient durability (proof stress) cannot be secured depending on the shape of each of the concave grooves. . In addition, the processing method (formation method) for each of the grooves also ensures the traction coefficient and the durability according to various properties (surface property standards) representing the surface roughness of the surface on which the grooves are formed. It was also found that there are items that can be evaluated and items that cannot be evaluated.

尚、特許文献5には、フルトロイダル型無段変速機を構成するディスク並びにローラのトラクション面に、平坦部と窪みとからなる三角形状の微細な凹凸を形成すると共に、その表面粗さを規制する技術が記載されている。具体的には、−5≦Rsk (スキューネス)≦0、0.01μm ≦Ra(算術平均高さ)≦0.12μm に規制する。但し、この様に規制しても、十分なトラクション係数の向上や耐久性の確保を図れないと考えられる。   In Patent Document 5, a triangular concavo-convex formed of a flat portion and a depression is formed on the traction surface of a disk and a roller constituting a full toroidal continuously variable transmission, and the surface roughness is regulated. The technology to do is described. Specifically, -5 ≦ Rsk (skewness) ≦ 0, 0.01 μm ≦ Ra (arithmetic average height) ≦ 0.12 μm. However, it is considered that even if such regulation is performed, it is not possible to sufficiently improve the traction coefficient and ensure the durability.

特開2002−39306号公報JP 2002-39306 A 特開2003−207009号公報JP 2003-207909 A 特開2003−278869号公報JP 2003-278869 A 特開2003−343675号公報JP 2003-343675 A 特開2005−90633号公報JP 2005-90633 A

本発明は、上述の様な事情に鑑みて、各パワーローラの周面と各ディスクの軸方向片側面との転がり接触部のトラクション係数の向上を図るべく、これら各パワーローラの周面と各ディスクの軸方向片側面とのうちの少なくとも一方の面に多数の凹溝(微細溝)を設ける構造で、これら各凹溝を形成した面の表面粗さに関係する各種性状を詳細に設定する事により、耐久性の確保とトラクション係数の確保との両立を図れる構造を実現するものである。   In view of the circumstances as described above, the present invention aims to improve the traction coefficient of the rolling contact portion between the peripheral surface of each power roller and one axial side surface of each disk, A structure in which a large number of concave grooves (fine grooves) are provided on at least one of the sides in the axial direction of the disk, and various properties related to the surface roughness of the surface on which each concave groove is formed are set in detail. In this way, a structure that can achieve both durability and traction coefficient is realized.

本発明のトロイダル型無段変速機は、前述した様な従来から知られているトロイダル型無段変速機と同様に、少なくとも1対のディスクと、複数のパワーローラとを備える。
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持されたものである。
又、上記各パワーローラは、軸方向に関して上記各ディスクの軸方向片側面同士の間位置の円周方向に関して複数個所に設けられて、球状凸面としたそれぞれの周面を、上記各ディスクの軸方向片側面にそれぞれ当接させたものである。
そして、上記各パワーローラの周面と上記各ディスクの軸方向片側面とのうちの少なくとも一方の面に、深さが例えば8μm以下、より好ましくは5μm以下、更に好ましくは2.3〜4.0μmである、多数の凹溝を形成している。
The toroidal type continuously variable transmission of the present invention includes at least a pair of disks and a plurality of power rollers, as in the conventional toroidal type continuously variable transmission as described above.
Each of these disks is supported concentrically and freely in relative rotation in a state in which the respective one side surfaces in the axial direction, each of which is a toroidal curved surface having an arc cross section, are opposed to each other.
Each of the power rollers is provided at a plurality of locations in the circumferential direction between the axial side surfaces of each of the disks with respect to the axial direction. Each one is in contact with one side of the direction.
The depth of at least one of the peripheral surface of each power roller and one axial side surface of each disk is, for example, 8 μm or less, more preferably 5 μm or less, and even more preferably 2.3-4. A large number of concave grooves of 0 μm are formed.

特に、本発明のトロイダル型無段変速機に於いては、上記各凹溝を形成した面の表面粗さを、当該部材の径方向に関する測定値で、Rsk (スキューネス)<0、Rku (クルトシス)<4、0.4μm<Rp(最大山高さ)<2.0μm、0.12μm <Ra(算術平均高さ)<2.0μm に規制する。更に好ましくは、−1.375<Rsk <−0.324、1.515<Rku <3.504、0.589μm<Rp(最大山高さ)<1.268μm、0.524μm <Ra<1.228μm に規制する。尚、表面粗さを表すこれら各種性状(Rsk、Rku、Rp、Ra)は、「JIS B0601:2001」に規定されている表面性状規格である。
又、この様な本発明のトロイダル型無段変速機を実施する場合により好ましくは、請求項2に記載した様に、上記各凹溝を、互いに交叉する状態で形成する。又、これと共に、上記各凹溝を、これら各凹溝が形成された面の法線方向から見て、これら各凹溝が形成された部材の円周方向に対し角をなす様にする。言い換えれば、上記各凹溝が形成された面(片側面、周面)に表れる、これら各凹溝が形成された当該部材の中心軸をその中心とした仮想同心円と上記凹溝とを、角をなす様にする(角度を有する様にする)。そして、このなす角を、45度以下とする。
In particular, in the toroidal-type continuously variable transmission according to the present invention, the surface roughness of the surface on which each of the concave grooves is formed is measured with respect to the radial direction of the member, and Rsk (skewness) <0, Rku (kurtosis). ) <4, 0.4 μm <Rp (maximum peak height) <2.0 μm, 0.12 μm <Ra (arithmetic average height) <2.0 μm. More preferably, −1.375 <Rsk <−0.324, 1.515 <Rku <3.504, 0.589 μm <Rp (maximum peak height) <1.268 μm, 0.524 μm <Ra <1.228 μm. To regulate. These various properties (Rsk, Rku, Rp, Ra) representing the surface roughness are surface property standards defined in “JIS B0601: 2001”.
Further, when implementing such a toroidal type continuously variable transmission according to the present invention, preferably, as described in claim 2, the grooves are formed so as to cross each other. At the same time, the grooves are formed so as to form an angle with respect to the circumferential direction of the member on which the grooves are formed, when viewed from the normal direction of the surface on which the grooves are formed. In other words, an imaginary concentric circle centered on the central axis of the member on which each groove is formed, which appears on the surface (one side surface, circumferential surface) on which each groove is formed, and the groove are (Make it have an angle). The angle formed is 45 degrees or less.

尚、上記なす角は、当該部材の径方向外側に比べ同じく内側で大きくする事(外径側の角度<内径側の角度)が好ましい。この様に構成すれば、この凹溝を、これら各凹溝を形成すべき部材(ディスク、パワーローラ)を定速で回転させつつ、これら各凹溝を形成する為の加工具(溝加工用の切削工具、或いは砥石)を被加工面に当接させた状態で、この加工具をこれら各凹溝を形成すべき部材の径方向(並びに軸方向)に定速で変位(揺動若しくは移動)させる事により形成できる。この理由は、上記加工具により加工される部分の周速が、径方向外側程内側に比べて速くなり、速くなる分、上記円周方向に対する角が小さくなる為である。但し、上記なす角が45度を越えると、上記凹溝を形成すべき部材の回転速度に対する、上記加工具の変位速度を徒に大きくしなければならなくなり、上記各凹溝を形成する作業が面倒になる。そこで、これら各凹溝の形成し易さを確保する面から、上述の様になす角を45度以下とする。   The angle formed above is preferably larger on the inner side than on the outer side in the radial direction of the member (the angle on the outer diameter side <the angle on the inner diameter side). If constituted in this way, this concave groove is a tool for forming these concave grooves (for groove processing) while rotating the members (disk, power roller) to be formed with these concave grooves at a constant speed. With this cutting tool or grindstone abutting on the work surface, the tool is displaced (oscillated or moved) at a constant speed in the radial direction (and axial direction) of the member in which each concave groove is to be formed. ). This is because the peripheral speed of the portion processed by the processing tool becomes faster as compared to the inner side in the radially outer side, and the angle with respect to the circumferential direction becomes smaller as the speed increases. However, if the angle formed exceeds 45 degrees, the displacement speed of the processing tool must be increased with respect to the rotational speed of the member that should form the concave grooves, and the work of forming the concave grooves is difficult. It becomes troublesome. Therefore, the angle formed as described above is set to 45 degrees or less from the viewpoint of ensuring the ease of forming these concave grooves.

上述の様に構成する本発明のトロイダル型無段変速機によれば、トラクション係数の向上を図る為の多数の凹溝を形成した構造で、このトラクション係数の確保と耐久性の確保との両立を図れる。
即ち、上記各凹溝を形成した面の表面粗さを、当該部材の径方向に関する測定値で、Rsk(スキューネス)<0、Rku(クルトシス)<4、0.4μm<Rp(最大山高さ)<2.0μm、0.12μm <Ra(算術平均高さ)<2.0μm に規制している。このうちのRsk (スキューネス)は、粗さ曲線の偏り(ゆがみ)度であるが、このRsk (スキューネス)を0よりも小さく(負の値に)する事により、粗さ曲線の振幅を高さ方向に偏らせ(深い凹部を存在させ)、上記各凹溝の存在に基づくトラクション係数の向上を図れる。尚、上記Rsk (スキューネス)が0以上になると、上記粗さ曲線の振幅が深さ方向に偏る事になり(高い凸部が存在する事になり)、金属接触が生じ易くなる可能性がある(耐久性を十分に図れなくなる可能性がある)。
According to the toroidal-type continuously variable transmission of the present invention configured as described above, a structure in which a large number of concave grooves are formed to improve the traction coefficient, and both ensuring the traction coefficient and ensuring durability are achieved. Can be planned.
That is, the surface roughness of the surface on which each of the concave grooves is formed is a measured value in the radial direction of the member, and Rsk (skewness) <0, Rku (kurtosis) <4, 0.4 μm <Rp (maximum peak height) <2.0 μm, 0.12 μm <Ra (arithmetic mean height) <2.0 μm Of these, Rsk (skewness) is the degree of deviation (distortion) of the roughness curve. By making this Rsk (skewness) smaller than 0 (to a negative value), the amplitude of the roughness curve is increased. It is possible to improve the traction coefficient based on the presence of each of the concave grooves by biasing in the direction (existing deep concave portions). When the Rsk (skewness) is 0 or more, the amplitude of the roughness curve is biased in the depth direction (there is a high convex portion), and metal contact may easily occur. (Durability may not be sufficient).

又、上記Rku (クルトシス)は、粗さ曲線の尖り(とがり)度であるが、このRku (クルトシス)を4よりも小さくする事により、粗さ曲線の高さ方向に関する鋭さを緩和させ、転がり接触部(トラクション部)での金属接触を抑え、耐久性の確保を図り易くできる。尚、上記Rku (クルトシス)が4以上になると、上記粗さ曲線の高さ方向に関する鋭さが過度になり、転がり接触部(トラクション部)で金属接触を生じ易くなり、耐久性を十分に確保できなくなる。   The above Rku (kurtosis) is the degree of sharpness of the roughness curve. By making this Rku (kurtosis) smaller than 4, the sharpness in the height direction of the roughness curve is alleviated and rolling. It is possible to suppress metal contact at the contact portion (traction portion) and easily ensure durability. In addition, when the Rku (Cultosis) is 4 or more, the sharpness in the height direction of the roughness curve becomes excessive, metal contact is likely to occur at the rolling contact portion (traction portion), and sufficient durability can be secured. Disappear.

又、上記Rp(最大山高さ)は、粗さ曲線の山高さの最大値であるが、このRp(最大山高さ)を0.4〜2.0μm とする事により、上記各凹溝の高さが過度に高くなる事を防止して、これら各凹溝の存在に基づくトラクション係数の向上と、耐久性確保とを図れる。尚、上記Rp(最大山高さ)が0.4μm未満の場合には、上記各凹溝が浅くなり過ぎて、これら各凹溝の存在に基づくトラクション係数の向上を十分に図れなくなる。又、上記Rp(最大山高さ)が2.0μmを超えた場合には、上記各凹溝が過度に深くなり過ぎて、これら各凹溝を形成した部材の耐久性の確保を十分に図れなくなる。   The Rp (maximum peak height) is the maximum peak height of the roughness curve. By setting the Rp (maximum peak height) to 0.4 to 2.0 μm, the height of each concave groove is Therefore, the traction coefficient can be improved and the durability can be ensured based on the presence of these grooves. If the Rp (maximum peak height) is less than 0.4 μm, the grooves are too shallow, and the traction coefficient based on the presence of the grooves cannot be sufficiently improved. Further, when the Rp (maximum peak height) exceeds 2.0 μm, the grooves are excessively deep, and it is not possible to sufficiently ensure the durability of the members formed with the grooves. .

又、上記Ra(算術平均高さ)は、基準長さ内での粗さ曲線の高さの絶対値の平均値であるが、このRa(算術平均高さ)を0.12〜2.0μm とする事により、上記各凹溝に必要な深さを確保しつつ、これら各凹溝を形成した面(トラクション面)のうちでこれら各凹溝から外れた部分の粗さを抑えられ(平滑にでき)、この部分での金属接触を抑えられると共に、トラクション係数の向上を図れる。尚、上記Ra(算術平均高さ)が0.12μm 未満の場合には、上記各凹溝が浅くなり過ぎて、これら各凹溝の存在に基づくトラクション係数の向上を十分に図れなくなる。又、上記Ra(算術平均高さ)が2.0μm を超えた場合には、上記各凹溝から外れた部分が粗くなり、この部分での金属接触を生じ易くなり、耐久性を十分に確保できなくなる。   The Ra (arithmetic average height) is an average value of the absolute values of the height of the roughness curve within the reference length, and this Ra (arithmetic average height) is 0.12 to 2.0 μm. In this way, while ensuring the necessary depth for each of the grooves, the surface of the surface (traction surface) on which the grooves are formed (the traction surface) can suppress the roughness of the portions that are removed from the grooves (smooth). In addition, the metal contact at this portion can be suppressed and the traction coefficient can be improved. When the Ra (arithmetic average height) is less than 0.12 μm, the grooves are too shallow, and the traction coefficient based on the presence of the grooves cannot be sufficiently improved. Also, when Ra (arithmetic mean height) exceeds 2.0 μm, the part removed from the above-mentioned concave grooves becomes rough, and metal contact at this part is likely to occur, and sufficient durability is ensured. become unable.

図1、2は、本発明の実施の形態の1例を示している。尚、本例の特徴は、トラクション係数の向上を図る為の多数の凹溝15、15を形成する構造で、耐久性の確保とトラクション係数の確保との両立を図るべく、これら各凹溝15、15を形成した面(ディスク16の軸方向片側面17、後述するパワーローラ8の周面18)の表面粗さを規制する点にある。その他の部分の構造及び作用は、前述の図8、9に示した従来構造と同様であるから、重複する図示並びに説明を省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   1 and 2 show an example of an embodiment of the present invention. The feature of this example is a structure in which a large number of concave grooves 15 and 15 for improving the traction coefficient are formed. In order to achieve both of ensuring durability and ensuring the traction coefficient, each of these concave grooves 15 is provided. , 15 (the axial side surface 17 of the disk 16 and the peripheral surface 18 of the power roller 8 described later) are restricted in surface roughness. Since the structure and operation of other parts are the same as those of the conventional structure shown in FIGS. 8 and 9, the overlapping illustrations and explanations will be omitted or simplified, and the following description will focus on the characteristic parts of this example.

本例の場合、図1、2に示す様に、トロイダル型無段変速機を構成する各ディスク16の軸方向片側面17{図1(a)並びに図2の表面、図1(b)の上面で、図8の入力側内側面3、出力側内側面7に相当}に、例えば8μm以下、より好ましくは5μm以下、更に好ましくは2.3〜4.0μmの深さを有する多数の凹溝15、15を、互いに交叉する状態で、当該片側面17の全体に亙り形成している。尚、これら図1、2(並びに後述する図3〜5)は、これら各凹溝15、15の形成状態を分かり易くする為に、これら各凹溝15、15を誇張して模式的に{凹溝15、15の溝幅、溝ピッチP を実際の関係よりも大きく}描いている。   In the case of this example, as shown in FIGS. 1 and 2, the axial side surface 17 of each disk 16 constituting the toroidal-type continuously variable transmission {the surface of FIG. 1 (a), FIG. 2 and FIG. 1 (b) In the upper surface, corresponding to the input side inner surface 3 and the output side inner surface 7 in FIG. The grooves 15 and 15 are formed over the entire one side surface 17 so as to cross each other. 1 and 2 (and FIGS. 3 to 5 to be described later), in order to make it easy to understand the formation state of each of the grooves 15, 15, the grooves 15, 15 are exaggerated and schematically represented by { The groove width and groove pitch P of the grooves 15, 15 are drawn larger than the actual relationship}.

又、本例の場合、上記各凹溝15、15を、上記軸方向片側面17の法線方向から見て{図1(b)の目線のマーク参照}、上記ディスク16の円周方向に対し角α、β(図2参照)をなす様に形成している。言い換えれば、上記軸方向片側面17に表れる、上記ディスク16の中心軸をその中心とした仮想同心円Xと上記各凹溝15、15とが、角α、βをなす様にしている(角度を有している)。そして、このなす角α、βを、上記ディスク16の径方向外側(外径側)に比べて同じく内側(内径側)で大きくしている。   Further, in the case of this example, each of the concave grooves 15, 15 is viewed in the normal direction of the one axial side surface 17 {see the mark of the line of sight in FIG. They are formed so as to form angles α and β (see FIG. 2). In other words, the virtual concentric circle X centered on the central axis of the disk 16 that appears on the one side surface 17 in the axial direction and the concave grooves 15 and 15 form the angles α and β (the angle is changed). Have). The angles α and β formed are larger on the inner side (inner diameter side) than on the outer side in the radial direction (outer diameter side) of the disk 16.

即ち、上記ディスク16を展開して表す図2に示す様に、上記各凹溝15、15と、上記ディスク16の円周方向に対応する仮想同心円Xとのなす角α、βを、外径側の角αに比べて内径側の角βが大きくなる様に(α<βとなる様に)している。尚、この図2の展開図は、上記ディスク16の片側面17である凹曲面を、平面に展開した状態で表した図{例えると、地球儀の表面(地表)をメルカトル図法により平面の世界地図で表した如き図}であり、仮想同心円Xが図2で紙面の左右方向に互いに平行に表される(仮想同心円Xが世界地図の緯度線に対応する)。そして、この様な展開図である図2に表された上記なす角α、βが、上記片側面17の法線方向から見た状態でのなす角α、βに対応し、このなす角α、βをα<βの関係を満たす様に規制している。   That is, as shown in FIG. 2 in which the disk 16 is developed, angles α and β formed by the concave grooves 15 and 15 and a virtual concentric circle X corresponding to the circumferential direction of the disk 16 are defined as outer diameters. The angle β on the inner diameter side is made larger than the angle α on the side (so that α <β). 2 is a diagram showing a concave curved surface, which is one side surface 17 of the disk 16, in a state of being developed on a plane {for example, the surface of the globe (the ground surface) is a planar world map by Mercator projection. The virtual concentric circles X are represented in parallel with each other in the horizontal direction of the page in FIG. 2 (the virtual concentric circles X correspond to the latitude lines of the world map). Then, the angles α and β formed in FIG. 2, which is such a development view, correspond to the angles α and β when viewed from the normal direction of the one side surface 17, and the angle α , Β is regulated to satisfy the relationship of α <β.

尚、図1(a)は、上記ディスク16の小径側から軸方向に見た状態を示しており、この図1(a)に表された角αa 、βa は、このディスク16を軸方向に見た状態での見掛け上の角となる。又、図1(b)は、上記ディスク16の径方向外側から見た状態を示しており、この図1(b)に表された角αb 、βb は、このディスク16を径方向に見た状態での見掛け上の角となる。そして、上記角α、αa 、αb 同士、並びに、角β、βa 、βb 同士は、上記ディスク16の径方向に対して同じ位置(片側面17の法線とディスク16の中心軸に直角に交わる仮想平面とのなす角がそれぞれθα、θβとなる位置)に対応する。 FIG. 1A shows a state of the disk 16 as viewed in the axial direction from the small diameter side. The angles α a and β a shown in FIG. It becomes an apparent corner when viewed in the direction. FIG. 1B shows the disk 16 viewed from the outside in the radial direction. The angles α b and β b shown in FIG. 1B indicate the disk 16 in the radial direction. This is the apparent corner when viewed. The angles α, α a , α b and the angles β, β a , β b are at the same position in the radial direction of the disk 16 (the normal of one side 17 and the center axis of the disk 16). Corresponds to the positions at which the angles formed with the virtual plane intersecting at right angles to θα and θβ, respectively.

この様な本例の場合、上記各凹溝15、15を、次の様に形成できる。即ち、上記ディスク16を定速で回転させつつ、上記各凹溝15、15を形成する為の加工具(精密加工バイト等の溝加工用切削工具、或いは超仕上げ用砥石等の研削工具)を、被加工面である上記片側面17に当接させた状態で、この加工具を上記ディスク16の径方向(並びに軸方向)に定速で揺動(又は被加工面に沿って移動)させる。そして、この様にディスク16を定速で回転させつつ上記加工具を定速で揺動若しくは移動させる事により、上記片側面17に上記各凹溝15、15を、この片側面17の法線方向から見て、上記ディスク16の円周方向に対するなす角(仮想同心円Xと各凹溝15、15とのなす角)が、このディスク16の外径側に比べ内径側で大きくなる状態で形成している。   In the case of this example, the concave grooves 15, 15 can be formed as follows. That is, a processing tool (groove cutting tool such as precision machining tool or grinding tool such as super finishing grindstone) for forming the concave grooves 15 and 15 while rotating the disk 16 at a constant speed. The tool is swung at a constant speed (or moved along the processing surface) in the radial direction (and the axial direction) of the disk 16 in a state where the processing tool is in contact with the one side surface 17 which is the processing surface. . Then, by rotating or moving the processing tool at a constant speed while rotating the disk 16 at a constant speed in this way, the concave grooves 15 and 15 are formed on the one side surface 17, and the normal line of the one side surface 17. When viewed from the direction, the angle formed by the disk 16 with respect to the circumferential direction (the angle formed by the virtual concentric circle X and each of the concave grooves 15, 15) is larger in the inner diameter side than in the outer diameter side of the disk 16. is doing.

尚、上記各凹溝15、15のピッチP やなす角α、βの大きさは、上記各ディスク16の回転速度、並びに、上記加工具の軸方向速度、径方向速度(揺動の角速度)を調節する事により、所望の値に規制できる。又、必要に応じて、上記各ディスク16の回転速度を変化させたり、上記加工具の変位速度を変化させる事もできる。但し、定速で加工を行なう方が、加工装置に回転速度を変化させる機構を設けなくて済む分、装置を簡素に構成でき、上記各凹溝15、15の形成に必要なコストの低減を図れる。又、これら各凹溝15、15の形成し易さを確保する面からは、上記なす角は45度以下に規制する。この理由は、45度を越えると、上記各凹溝15、15を形成すべき部材の回転速度に対する、上記加工具の変位速度を徒に大きくしなければならなくなり、上記各凹溝15、15を形成する作業が面倒になる為である。尚、上記各凹溝15、15を切削加工により形成する場合には、必要に応じて、加工後に研削加工を施し、被加工面に生じた、微小なバリを除去する。又、上記各凹溝15、15は、後述する様に、転造加工により形成する事もできる。   It should be noted that the pitches P and the angles α and β formed by the concave grooves 15 and 15 are the rotational speed of the disks 16 and the axial speed and radial speed (oscillating angular speed) of the processing tool. By adjusting, the desired value can be regulated. Further, if necessary, the rotational speed of each of the disks 16 can be changed, and the displacement speed of the processing tool can be changed. However, if the machining is performed at a constant speed, it is not necessary to provide a mechanism for changing the rotation speed in the machining apparatus, so that the apparatus can be configured simply and the cost required for forming the concave grooves 15 and 15 can be reduced. I can plan. In addition, the angle formed by the above-mentioned concave grooves 15 and 15 is restricted to 45 degrees or less from the aspect of ensuring the ease of formation. The reason for this is that if the angle exceeds 45 degrees, the displacement speed of the processing tool must be increased with respect to the rotational speed of the member on which the grooves 15 and 15 are to be formed. This is because the work of forming the is troublesome. In addition, when forming each said concave groove 15 and 15 by a cutting process, if necessary, it grinds after a process and removes the fine burr | flash produced on the to-be-processed surface. The concave grooves 15, 15 can also be formed by rolling as will be described later.

又、上記各凹溝15、15は、図1、2に示した様な道筋にのみ限定するものではなく、例えば図3に示す様に、ディスク16の中心軸(回転軸)をその中心とした同心円状(又はらせん状)に形成する事もできる。又、例えば図4、5に示す様に、各パワーローラ8の周面18に形成する事もできる。このうちの図4は、各凹溝15、15を、このパワーローラ8の円周方向に対し角をなす様に形成している。そして、このなす角を、このパワーローラ8の周面の法線方向から見て、上記パワーローラ8の径方向外側に比べて同じく内側で大きくしている。又、上記図5は、各凹溝15、15を、パワーローラ8の中心軸(回転軸)をその中心とした同心円状(又はらせん状)に形成している。   The concave grooves 15 and 15 are not limited to the path as shown in FIGS. 1 and 2, and for example, as shown in FIG. 3, the center axis (rotation axis) of the disk 16 is the center. It is also possible to form a concentric circle (or a spiral). For example, as shown in FIGS. 4 and 5, it can be formed on the peripheral surface 18 of each power roller 8. In FIG. 4, the concave grooves 15 are formed so as to form an angle with respect to the circumferential direction of the power roller 8. The angle formed is larger on the inner side than the outer side in the radial direction of the power roller 8 when viewed from the normal direction of the peripheral surface of the power roller 8. In FIG. 5, the concave grooves 15 are formed concentrically (or spirally) with the central axis (rotating shaft) of the power roller 8 as the center.

尚、上記各凹溝15、15は、上記各ディスク16と上記各パワーローラ8とのうちの両方の部材16、8のトラクション面(片側面17、周面18)に形成する事ができる他、何れか一方の部材にのみ形成する事もできる。即ち、それぞれに凹溝15、15を形成したディスク16とパワーローラ8とを組み合わせて使用する事ができる他、これら各凹溝15、15を形成した各ディスク16(又は各パワーローラ8)と、同じく形成していない(平滑面の)各パワーローラ8(又はディスク16)とを組み合わせて使用する事もできる。   The concave grooves 15 and 15 can be formed on the traction surfaces (one side surface 17 and the peripheral surface 18) of both the members 16 and 8 of the disk 16 and the power rollers 8. It can also be formed only on one of the members. That is, the disk 16 formed with the concave grooves 15 and 15 and the power roller 8 can be used in combination, and each disk 16 (or each power roller 8) formed with the respective concave grooves 15 and 15 Also, each power roller 8 (or disk 16) which is not formed (smooth surface) can be used in combination.

又、上記各凹溝15、15を両方の部材16、8のトラクション面(片側面17、周面18)に形成する場合には、上記各ディスク16同士の間(入力側ディスク1と出力側ディスク6との間)の変速比に拘わらず、上記各パワーローラ8の周面18と上記各ディスク16の軸方向片側面17との転がり接触部で、上記パワーローラ8に形成した凹溝15、15と上記各ディスク16に形成した各凹溝15、15とが、互いに角をなして(例えば5〜90度の角をなして)対向する様にする。この理由は、上記各パワーローラ8に形成した凹溝15、15と上記各ディスク16に形成した各凹溝15、15とが互いに平行に対向すると(例えば図3のディスク16と図5のパワーローラ8とを組み合わせて使用すると)、上記変速比によっては転がり接触部の実質的な面積(転がり接触部のうちで各凹溝15、15から外れた部分同士の接触面積の総和)が小さくなり、耐久性が低下する可能性がある為である。   When the concave grooves 15 and 15 are formed on the traction surfaces (one side surface 17 and the peripheral surface 18) of both the members 16 and 8, between the disks 16 (the input side disk 1 and the output side). The groove 15 formed in the power roller 8 at the rolling contact portion between the circumferential surface 18 of each power roller 8 and one axial side surface 17 of each disk 16 irrespective of the transmission ratio between the disk 6 and the disk 6. , 15 and the respective concave grooves 15, 15 formed in the respective disks 16 are opposed to each other at an angle (for example, an angle of 5 to 90 degrees). This is because the grooves 15 and 15 formed in each power roller 8 and the grooves 15 and 15 formed in each disk 16 face each other in parallel (for example, the disk 16 in FIG. 3 and the power in FIG. 5). Depending on the gear ratio, the substantial area of the rolling contact portion (the total contact area of the portions of the rolling contact portion that are out of the grooves 15, 15) may be reduced depending on the gear ratio. This is because the durability may decrease.

何れにしても、本例の場合には、上記各凹溝15、15を形成したトラクション面(片側面17、周面18)の表面粗さ(片側面17又は周面18に各凹溝15、15を形成した状態での表面粗さ)を、当該部材(ディスク16、パワーローラ8)の径方向に関する測定値で、Rsk (スキューネス)<0、Rku (クルトシス)<4、0.4μm<Rp(最大山高さ)<2.0μm、0.12μm <Ra(算術平均高さ)<2.0μm に規制している。尚、表面粗さを表すこれら各種性状(Rsk、Rku、Rp、Ra)は、「JIS B0601:2001」に規定されている表面性状規格である。以下に、上述の様な数値に規制するに至った点に就いて説明する。   In any case, in the case of this example, the surface roughness of the traction surface (one side surface 17, the peripheral surface 18) on which each of the concave grooves 15, 15 is formed (the one side surface 17 or the peripheral surface 18 is provided with each groove 15. , 15 is a measured value in the radial direction of the member (disk 16, power roller 8), and Rsk (skewness) <0, Rku (kurtosis) <4, 0.4 μm < Rp (maximum peak height) <2.0 μm, 0.12 μm <Ra (arithmetic average height) <2.0 μm. These various properties (Rsk, Rku, Rp, Ra) representing the surface roughness are surface property standards defined in “JIS B0601: 2001”. Below, the point which came to restrict | limit to the above numerical values is demonstrated.

即ち、本発明者は、下記の表1に示す様に、表面粗さの各種性状、並びに、凹溝の加工方法が異なる試料1〜13を製作し、実験により、それぞれのトラクション係数並びに寿命が好ましいか否かを判定した。尚、この表1の「トラクション係数」並びに「寿命」の欄では、「○」は好ましい結果が得られた事を、「×」は好ましくない事が得られた事を、「△」は十分ではないが実用上問題ない程度の結果が得られた事を、それぞれ示している。より具体的には、「トラクション係数」の欄では、従来の平滑面(凹溝なし)の構造と比較して、トラクション係数の向上率が、1%未満を「×」、1〜3%を「△」、4%以上を「○」とした。一方、「寿命」の欄では、内部起点で剥離(損傷)が生じたものを「○」とし、表面起点で剥離したものを「△」とした。従来の平滑面(凹溝なし)の構造で耐久性を十分確保できるものは、内部起点の剥離が生じるのに対して、表面起点の剥離が生じるものは、凹溝の形状の不適により金属接触が生じていると推定できる為である。   That is, as shown in Table 1 below, the present inventor manufactured samples 1 to 13 having different surface roughness characteristics and different groove processing methods, and the traction coefficient and life of each sample were experimentally determined. It was determined whether it was preferable. In the column of “Traction coefficient” and “Life” in Table 1, “◯” indicates that a favorable result is obtained, “×” indicates that an undesirable result is obtained, and “△” indicates that it is sufficient. Although it is not, it shows that the result of the grade which is not a problem practically was obtained, respectively. More specifically, in the column of “traction coefficient”, the improvement rate of the traction coefficient is less than 1% as compared with the structure of the conventional smooth surface (no groove), “x”, and 1 to 3%. “△”, 4% or more was “◯”. On the other hand, in the column of “life”, the case where peeling (damage) occurred at the internal origin was indicated as “◯”, and the case where peeling occurred at the surface origin was indicated as “Δ”. The conventional smooth surface structure (without grooves) that can ensure sufficient durability causes internal origin separation, whereas those that cause surface origin separation cause metal contact due to improper groove shape. This is because it can be estimated that this occurs.

Figure 0005056591
Figure 0005056591

尚、上記表1の表面粗さの各種性状は、下記の通りである。又、これら各種性状の測定は、テーラーホブソン(Taylor Hobson )株式会社製の「フォームタリサーフ シリーズ2(Form Talysurf Series2 :S6C-PGI )(2003年7月製造)」により行った。これら各種性状の定義に関しては、テーラーホブソン株式会社の表面形状、粗さ測定機の「パラメータの説明」や、株式会社ミツトヨの表面粗さ測定機の「表面粗さの定義とパラメータ解説」に詳しく記載されている。又、これら各種性状のうち「S (局部山頂の平均間隔)」、「Ry(最大高さ)」、「Sm(凹凸の平均間隔)」、「Rz(十点平均粗さ)」は、「JIS B0601:1994」の規格によるものである。
Ra:算術平均高さ
Rq:二乗平均平方根高さ
Rp:最大山高さ
Rv:最大谷深さ
Rt:最大断面高さ
Rt1:基準長さ内での最大断面高さ1
Rt2:基準長さ内での最大断面高さ2
Rt3:基準長さ内での最大断面高さ3
Rt4:基準長さ内での最大断面高さ4
Rt5:基準長さ内での最大断面高さ5
The various properties of the surface roughness in Table 1 are as follows. These various properties were measured by “Form Talysurf Series 2 (S6C-PGI) (manufactured in July 2003)” manufactured by Taylor Hobson Co., Ltd. For the definition of these various properties, see “Parameter Description” of the surface shape and roughness measuring machine of Taylor Hobson Co., Ltd. and “Definition of Surface Roughness and Explanation of Parameters” of Mitutoyo Corporation's Surface Roughness Measuring Machine. Are listed. Among these various properties, “S (average distance between local peaks)”, “Ry (maximum height)”, “Sm (average distance between irregularities)” and “Rz (ten-point average roughness)” are “ This is in accordance with the standard of JIS B0601: 1994.
Ra: arithmetic average height
Rq: root mean square height
Rp: Maximum mountain height
Rv: Maximum valley depth
Rt: Maximum section height
Rt1: Maximum section height within the standard length 1
Rt2: Maximum section height 2 within the standard length
Rt3: Maximum section height 3 within the standard length
Rt4: Maximum section height 4 within the standard length
Rt5: Maximum cross-section height within the standard length 5

Rsk:スキューネス
Rku:クルトシス
Delq(△q):二乗平均平方根傾斜
Lamq(λq):二乗平均平方根波長
S:局部山頂の平均間隔
Ry:最大高さ
RzDIN:評価長さ全体から求める十点平均粗さ
Rpm:平均山高さ
R3y:評価長さ全体から求める三位点最大高さ
R3z:評価長さ全体から求める三位点粗さ
Rk:有効負荷粗さ
Rsk: Skewness
Rku: Kurtosis
Delq (△ q): root mean square slope
Lamq (λq): root mean square wavelength
S: Average distance between local peaks
Ry: Maximum height
RzDIN: Ten-point average roughness obtained from the entire evaluation length
Rpm: Average mountain height
R3y: Maximum height of the third point determined from the entire evaluation length
R3z: Three-point roughness determined from the entire evaluation length
Rk: Effective load roughness

Rpk :初期摩耗高さ
Rvk :油溜深さ
Mr1 :負荷長さ率1
Mr2 :負荷長さ率2
Sm:凹凸の平均間隔(平均長さ)
Lo:展開長さ
Dela(△a):算術平均傾斜
Ra*Ry:(算術平均高さ)×(最大高さ)
Ra/Rz:(算術平均高さ)/(十点平均粗さ)
Rku /Rsk :(クルトシス)/(スキューネス)
Rv/Rku :(最大谷深さ)/(クルトシス)
Rpk: Initial wear height
Rvk: Oil sump depth
Mr1: Load length ratio 1
Mr2: Load length ratio 2
Sm: Average interval of unevenness (average length)
Lo: Expanded length
Dela (△ a): Arithmetic mean slope
Ra * Ry: (Arithmetic mean height) x (Maximum height)
Ra / Rz: (arithmetic average height) / (ten-point average roughness)
Rku / Rsk: (Kurtosis) / (Skness)
Rv / Rku: (Maximum valley depth) / (Cultosis)

尚、試料1〜4は、溝加工を「超仕上げ」としている。このうちの試料1、2は、超仕上げ砥石によりトラクション面を平滑面に仕上げたのに対して、試料3、4では、この超仕上げ砥石の揺動速度を試料1、2に比べて下げる{ワーク回転速度に対する砥石のオシレーション速度(振幅速度)を通常より下げる}と共に、同じく粗い超仕上げ砥石を用いる事により、溝深さが0.5〜1.0μm程度の凹溝をランダム(不規則)に形成した。又、試料5、6の「転造」は、転造加工、即ち、先端Rが0.05〜0.2μm程度のフォームローラをばねにより定圧で被加工面(片側面17、周面18)に押し付ける事により、この面に凹溝を形成した。尚、この様な転造加工の場合には、位置制御でなく荷重制御で加工を行う為、通常の精度を有する加工機(例えば旋盤)で加工する事ができる。又、試料7〜11の「切削」は、切削加工、即ち、先端Rが0.05〜0.2μm程度の切削工具{セラミックス又はCBN(ダイヤモンド)のチップ}を2軸制御する事により、被加工面(片側面17、周面18)にらせん状に凹溝を形成した。尚、この様な切削加工の場合には、位置制御で加工する為、上記転造加工に比べ、精度の良い加工機、ワークの固定手段、位置検出等が必要になる。又、試料12、13の「研削」は、研削加工、即ち、総型ロータリードレスにより成形した砥石で、上記凹溝を同心円状に形成した。尚、上記試料1〜13のうちの試料3の表面粗さ曲線(プロファイルデータ)を図6に、同じく試料5の表面粗さ曲線(プロファイルデータ)を図7に、それぞれ示す。   In samples 1 to 4, the groove processing is “super-finish”. In Samples 1 and 2, the traction surface was smoothed with a superfinishing grindstone, whereas in Samples 3 and 4, the swing speed of the superfinishing grindstone was decreased compared to Samples 1 and { By lowering the oscillation speed (amplitude speed) of the grinding wheel relative to the workpiece rotation speed from the normal level} and using a rough super-finishing grindstone as well, the concave grooves having a groove depth of about 0.5 to 1.0 μm are random (irregular) ). The “rolling” of the samples 5 and 6 is a rolling process, that is, a processed surface (one side surface 17, a peripheral surface 18) with a foam roller having a tip R of about 0.05 to 0.2 μm at a constant pressure by a spring. A concave groove was formed on this surface by pressing against the surface. In the case of such rolling processing, processing is performed not by position control but by load control, so that it can be processed by a processing machine having a normal accuracy (for example, a lathe). In addition, the “cutting” of the samples 7 to 11 is performed by performing biaxial control of a cutting tool {ceramics or CBN (diamond) tip} having a tip R of about 0.05 to 0.2 μm. A concave groove was formed in a spiral shape on the processed surface (one side surface 17, peripheral surface 18). In the case of such cutting processing, since processing is performed by position control, it is necessary to have a processing machine, workpiece fixing means, position detection, and the like that are more accurate than the above rolling processing. Further, “grinding” of the samples 12 and 13 was a grinding stone formed by a grinding process, that is, a total rotary dress, and the concave grooves were formed concentrically. Of the samples 1 to 13, the surface roughness curve (profile data) of sample 3 is shown in FIG. 6, and the surface roughness curve (profile data) of sample 5 is shown in FIG.

又、「トラクション係数」及び「寿命」の実験(試験)は、それぞれ次の様に行った。即ち、油圧式の押圧装置により押し付け力の調節を制御自在としたトロイダル型無段変速機を、ダイナモ試験機により、一定のトルクを付与しつつ一定の速度で運転した。そして、「トラクション係数」の試験に関しては、上記押し付け力を、トラクション部の滑りに対して余裕のある値で運転を開始し、徐々に押し付け力を下げていく過程で、滑りが発生するか或は同期崩れが発生した時点のトラクション係数を算出し、評価した。尚、試験条件は下記の通りである。
入力トルク(Tin):350Nm
入力回転速度(Nin):2000min-1
減速比(Icvt):0.7、1.0、1.5
油温(Thin):85℃、100℃、120℃
In addition, experiments (tests) of “traction coefficient” and “life” were performed as follows. That is, a toroidal continuously variable transmission in which adjustment of the pressing force can be controlled by a hydraulic pressing device was operated at a constant speed while applying a constant torque by a dynamo tester. As for the “traction coefficient” test, slipping occurs in the process of starting the operation with a value with a sufficient margin against the sliding force of the traction section and gradually decreasing the pressing force. Calculated and evaluated the traction coefficient at the time when synchronization loss occurred. The test conditions are as follows.
Input torque (Tin): 350 Nm
Input rotation speed (Nin): 2000min -1
Reduction ratio (Icvt): 0.7, 1.0, 1.5
Oil temperature (Thin): 85 ° C, 100 ° C, 120 ° C

一方、「寿命」の試験に関しては、ローディングカム式の押圧装置により押し付け力を付与しつつ、下記の条件で運転を行い、トラクション面に剥離が発生する時間(剥離の状況)を評価した。尚、表面起点剥離では10〜40時間、内部起点剥離では70時間以上の耐久時間となる。
入力トルク(Tin):294Nm
入力回転速度(Nin):4000min-1
減速比(Icvt):1.938
トラクション係数:0.0505
On the other hand, regarding the “lifetime” test, an operation was performed under the following conditions while applying a pressing force with a loading cam type pressing device, and the time during which peeling occurred on the traction surface (the state of peeling) was evaluated. It should be noted that the durability is 10 to 40 hours for surface-origin separation and 70 hours or more for internal-origin separation.
Input torque (Tin): 294Nm
Input rotation speed (Nin): 4000min -1
Reduction ratio (Icvt): 1.938
Traction coefficient: 0.0505

前記表1から次の事が分かる。即ち、試料1、2は、トラクション係数の向上はなく、試料3、4は、トラクション係数の向上が十分ではない。この為、トラクション係数の面から考えると、試料5〜13が好ましい。又、寿命の面からは試料12、13が若干短くなる(満足な寿命を得られない)。そして、この様な結果とそれに対応する試料の表面粗さの各種性状とから、上記各凹溝15、15を形成したトラクション面(片側面17、周面18)の表面粗さを、Rsk (スキューネス)<0、Rku (クルトシス)<4、0.4μm<Rp(最大山高さ)<2.0μm、0.12μm <Ra(算術平均高さ)<2.0μm に規制する事が好ましい事が分かる(−1.375<Rsk<−0.324、1.515<Rku<3.504、0.589μm<Rp<1.268μm、0.524μm<Ra<1.228μmに規制する事が更に好ましい事も分かる)。尚、必要とされる寿命が短くて済む場合や、同じくトラクション係数が小さくても良い場合には、試料12、13や試料3、4に対応する数値を含む範囲に規制する事もできる。又、溝加工の方法との関係で数値を規制する事もできる。又、本例の場合は、表面粗さを表す上記各種性状のうち、Rsk 、Rku 、Rp 、Raを規制しているが、必要に応じてこれら以外の上記各種性状を用いる事もできる。この場合にも、好ましい試料である試料5〜11(必要に応じて試料3〜13)に対応する数値の範囲で規制する。 From Table 1, the following can be understood. That is, Samples 1 and 2 do not improve the traction coefficient, and Samples 3 and 4 do not sufficiently improve the traction coefficient. For this reason, in view of the traction coefficient, samples 5 to 13 are preferable. Further, from the viewpoint of the life , the samples 12 and 13 are slightly shortened (a satisfactory life cannot be obtained). Then, from such results and various properties of the surface roughness of the sample corresponding thereto, the surface roughness of the traction surface (one side surface 17, the peripheral surface 18) on which each of the concave grooves 15, 15 is formed is expressed as Rsk ( It is preferable to regulate to (skewness) <0, Rku (Cultosis) <4, 0.4 μm <Rp (maximum peak height) <2.0 μm, 0.12 μm <Ra (arithmetic average height) <2.0 μm. It can be seen that it is more preferable to regulate (−1.375 <Rsk <−0.324, 1.515 <Rku <3.504, 0.589 μm <Rp <1.268 μm, 0.524 μm <Ra <1.228 μm). I understand that too). In addition, when the required lifetime is short or when the traction coefficient may be small, the range including the numerical values corresponding to the samples 12 and 13 and the samples 3 and 4 can be regulated. Also, the numerical value can be regulated in relation to the groove processing method. In this example, Rsk, Rku, Rp, and Ra are regulated among the above-described various properties representing the surface roughness. However, the above-described various properties other than these can be used as necessary. In this case as well, regulation is performed within a range of numerical values corresponding to samples 5 to 11 (samples 3 to 13 as necessary) which are preferable samples.

本発明の実施の形態の1例を、凹溝を誇張して示す図で、(a)はディスクの端面図、(b)は(a)の下方から見た図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which exaggerates and shows an example of embodiment of this invention, (a) is an end elevation of a disk, (b) is the figure seen from the downward direction of (a). ディスクを展開すると共に、一部の凹溝を省略して模式的に示す図。The figure which expand | deploys a disk and abbreviate | omits a part of ditch | groove and shows typically. 凹溝の形成状態の別例を示す、図1と同様の図。The figure similar to FIG. 1 which shows another example of the formation state of a ditch | groove. 凹溝を誇張して示す図で、(a)はパワーローラの端面図、(b)は(a)の下方から見た図。It is a figure which exaggerates and shows a ditch | groove, (a) is an end view of a power roller, (b) is the figure seen from the downward direction of (a). 凹溝の形成状態の別例を示す図4と同様の図。The figure similar to FIG. 4 which shows another example of the formation state of a ditch | groove. 実験に用いた試料3の表面粗さ曲線。The surface roughness curve of the sample 3 used for experiment. 同試料5の表面粗さ曲線。The surface roughness curve of the same sample 5. 本発明の対象となるトロイダル型無段変速機の1例を示す断面図。Sectional drawing which shows one example of the toroidal type continuously variable transmission used as the object of this invention. 図8のA−A断面に相当する図。The figure equivalent to the AA cross section of FIG.

符号の説明Explanation of symbols

1 入力側ディスク
2 入力回転軸
3 入力側内側面
4 出力歯車
5 出力筒
6 出力側ディスク
7 出力側内側面
8 パワーローラ
9 トラニオン
10 支持軸
11 傾転軸
12 アクチュエータ
13 駆動軸
14 押圧装置
15 凹溝
16 ディスク
17 軸方向片側面
18 周面
DESCRIPTION OF SYMBOLS 1 Input side disk 2 Input rotating shaft 3 Input side inner surface 4 Output gear 5 Output cylinder 6 Output side disk 7 Output side inner surface 8 Power roller 9 Trunnion 10 Support shaft 11 Tilt shaft 12 Actuator 13 Drive shaft 14 Press device 15 Concave Groove 16 Disc 17 Axial one side 18 Circumference

Claims (2)

それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持された少なくとも1対のディスクと、軸方向に関してこれら各ディスクの軸方向片側面同士の間位置の円周方向に関して複数個所に設けられて、球状凸面としたそれぞれの周面を、上記各ディスクの軸方向片側面にそれぞれ当接させた複数のパワーローラとを備え、これら各パワーローラの周面と上記各ディスクの軸方向片側面とのうちの少なくとも一方の面に多数の凹溝を形成したトロイダル型無段変速機に於いて、これら各凹溝を形成した面の表面粗さを、当該部材の径方向に関する測定値で、Rsk<0、Rku<4、0.4μm<Rp<2.0μm、0.12μm<Ra<2.0μmに規制した事を特徴とするトロイダル型無段変速機。   At least one pair of discs that are concentrically supported by each other in a state in which one side surfaces in the axial direction, each of which is a toroidal curved surface having an arc-shaped cross section, are opposed to each other and freely rotatable relative to each other, and each of these discs in the axial direction. A plurality of power rollers provided at a plurality of positions in the circumferential direction between the axial side surfaces of the disk, and each circumferential surface as a spherical convex surface is in contact with the axial one side surface of each disk; A toroidal continuously variable transmission in which a plurality of concave grooves are formed on at least one of the circumferential surface of each power roller and one axial side surface of each disk. The surface roughness of the formed surface was regulated to Rsk <0, Rku <4, 0.4 μm <Rp <2.0 μm, 0.12 μm <Ra <2.0 μm, as measured in the radial direction of the member. Toroidal stepless, featuring transmission. 各凹溝は、互いに交叉する状態で形成されており、これら各凹溝は、これら各凹溝が形成された面の法線方向から見て、これら各凹溝が形成された部材の円周方向に対し角をなしており、このなす角を、45度以下とした、請求項1に記載したトロイダル型無段変速機。   Each groove is formed in a state of crossing each other, and each groove is a circumference of the member in which each groove is formed when viewed from the normal direction of the surface on which each groove is formed. The toroidal-type continuously variable transmission according to claim 1, wherein an angle is formed with respect to the direction, and the formed angle is 45 degrees or less.
JP2008143113A 2008-05-30 2008-05-30 Toroidal continuously variable transmission Active JP5056591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008143113A JP5056591B2 (en) 2008-05-30 2008-05-30 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008143113A JP5056591B2 (en) 2008-05-30 2008-05-30 Toroidal continuously variable transmission

Publications (3)

Publication Number Publication Date
JP2009287739A JP2009287739A (en) 2009-12-10
JP2009287739A5 JP2009287739A5 (en) 2011-07-07
JP5056591B2 true JP5056591B2 (en) 2012-10-24

Family

ID=41457139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008143113A Active JP5056591B2 (en) 2008-05-30 2008-05-30 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5056591B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164843A1 (en) * 2011-05-27 2012-12-06 コニカミノルタアドバンストレイヤー株式会社 Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel
JP5942227B2 (en) * 2012-12-20 2016-06-29 ジヤトコ株式会社 Method for manufacturing hydraulic actuator device
JP5872712B2 (en) * 2012-12-20 2016-03-01 ジヤトコ株式会社 Hydraulic actuator device
JP2016084822A (en) * 2013-01-21 2016-05-19 ジヤトコ株式会社 Multi-disc transmission

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685088B2 (en) * 2001-04-27 2005-08-17 日産自動車株式会社 Toroidal continuously variable transmission for automobiles
JP4196636B2 (en) * 2002-10-17 2008-12-17 日産自動車株式会社 Method for manufacturing rolling element for traction drive
JP2004190737A (en) * 2002-12-10 2004-07-08 Nissan Motor Co Ltd Toroidal continuously variable transmission
JP4109170B2 (en) * 2003-08-20 2008-07-02 富士重工業株式会社 Contact member and manufacturing method thereof
JP4374225B2 (en) * 2003-09-17 2009-12-02 株式会社ジェイテクト Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JP2009287739A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US9188206B2 (en) Toroidal continuously variable transmission
JP3664058B2 (en) Rolling element for traction drive and manufacturing method thereof
EP1136724B1 (en) Toroidal-type continuously variable transmission for automobiles
US9714700B2 (en) CVT pulley with engineered surface
CN102076980B (en) Self-aligning roller bearing, bearing, and self-aligning roller bearing processing method
JP5056591B2 (en) Toroidal continuously variable transmission
EP1167819A2 (en) Toroidal continuously variable transmission
JP2006312973A (en) Loading cam apparatus, toroidal-type continuously variable transmission and friction transmission
JP4915288B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP3783507B2 (en) Machining method of toroidal type continuously variable transmission disk
JP4915287B2 (en) Toroidal continuously variable transmission
JP2005061494A (en) Method of manufacturing variator part for continuously variable transmission and variator part for continuously variable transmission
JP5381797B2 (en) Manufacturing method of toroidal type continuously variable transmission
EP1235002A2 (en) Traction drive rotary assembly
JP2009085332A (en) Toroidal type continuously variable transmission
JP2013202726A (en) Method of manufacturing toroidal continuously variable transmission
JP5126206B2 (en) Toroidal continuously variable transmission
JP5488416B2 (en) Manufacturing method of outer ring for toroidal type continuously variable transmission
WO2013187488A1 (en) Power roller unit, manufacturing method therefor, and half-toroidal continuously variable transmission
JP4470539B2 (en) Trunnion manufacturing method
JP6153498B2 (en) Toroidal continuously variable transmission
JP5803584B2 (en) Toroidal-type continuously variable transmission and processing method for parts thereof
JP2004190737A (en) Toroidal continuously variable transmission
JP2006349103A (en) Traction driving device and machining method for v pulley for the same
KR20080010574A (en) Structure for grinding the sheave surface of pulley for cvt

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5056591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150