JP5488416B2 - Manufacturing method of outer ring for toroidal type continuously variable transmission - Google Patents

Manufacturing method of outer ring for toroidal type continuously variable transmission Download PDF

Info

Publication number
JP5488416B2
JP5488416B2 JP2010254923A JP2010254923A JP5488416B2 JP 5488416 B2 JP5488416 B2 JP 5488416B2 JP 2010254923 A JP2010254923 A JP 2010254923A JP 2010254923 A JP2010254923 A JP 2010254923A JP 5488416 B2 JP5488416 B2 JP 5488416B2
Authority
JP
Japan
Prior art keywords
outer ring
center
continuously variable
cylindrical convex
type continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010254923A
Other languages
Japanese (ja)
Other versions
JP2012107644A (en
Inventor
将司 横山
俊彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010254923A priority Critical patent/JP5488416B2/en
Publication of JP2012107644A publication Critical patent/JP2012107644A/en
Application granted granted Critical
Publication of JP5488416B2 publication Critical patent/JP5488416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

この発明は、自動車用の自動変速機として利用するトロイダル型無段変速機に組み込まれる外輪の製造方法の改良に関する。具体的には、トラニオンに対するパワーローラの変位を円滑に行わせて、高い伝達効率を確保でき、しかも、優れた耐久性を確保できる構造を実現する為の外輪を、能率良く製造できる製造方法を提供するものである。   The present invention relates to an improvement in a method for manufacturing an outer ring incorporated in a toroidal type continuously variable transmission used as an automatic transmission for an automobile. Specifically, a manufacturing method that can efficiently manufacture an outer ring for realizing a structure that can smoothly displace the power roller with respect to the trunnion to ensure high transmission efficiency and ensure excellent durability. It is to provide.

[従来技術の説明]
自動車用変速装置としてトロイダル型無段変速機を使用する事が多くの刊行物に記載され、且つ、一部で実施されて周知である。特に、特許文献1には、各種構造のトロイダル型無段変速機が記載されている。図12に、この特許文献1に記載されており、現在実施されているトロイダル型無段変速機の基本構成を示している。先ず、この従来構造の第1例に就いて、簡単に説明する。1対の入力ディスク1a、1bを入力回転軸2に対し、それぞれがトロイド曲面(断面円弧形の凹面)である入力側内側面3、3同士を互いに対向させた状態で、互いに同心に、且つ、同期した回転を自在に支持している。
[Description of prior art]
The use of toroidal continuously variable transmissions as automotive transmissions has been described in many publications and is partly implemented and well known. In particular, Patent Document 1 describes a toroidal continuously variable transmission having various structures. FIG. 12 shows a basic configuration of a toroidal type continuously variable transmission which is described in Patent Document 1 and is currently being implemented. First, the first example of this conventional structure will be briefly described. A pair of input disks 1a and 1b are concentric with each other with the input side inner surfaces 3 and 3 facing each other with respect to the input rotating shaft 2 and the input side inner surfaces 3 and 3 being toroidal curved surfaces (concave arc-shaped concave surfaces). In addition, it supports the synchronized rotation freely.

又、前記入力回転軸2の中間部周囲に、中間部外周面に出力歯車4を固設した出力筒5を、この入力回転軸2に対する回転を自在に支持している。又、この出力筒5の両端部に出力ディスク6、6を、スプライン係合により、この出力筒5と同期した回転自在に支持している。この状態で、それぞれがトロイド曲面である、前記両出力ディスク6、6の出力側内側面7、7が、前記両入力側内側面3、3に対向する。   An output cylinder 5 having an output gear 4 fixed on the outer peripheral surface of the intermediate portion is supported around the intermediate portion of the input rotary shaft 2 so as to freely rotate with respect to the input rotary shaft 2. Further, output disks 6 and 6 are supported at both ends of the output cylinder 5 so as to be rotatable in synchronization with the output cylinder 5 by spline engagement. In this state, the output-side inner surfaces 7 of the output disks 6 and 6, each of which is a toroidal curved surface, face the input-side inner surfaces 3 and 3.

又、前記入力回転軸2の周囲で前記入力側、出力側両内側面3、7同士の間部分(キャビティ)に、それぞれの周面を球状凸面としたパワーローラ8、8を、2個ずつ配置している。これら各パワーローラ8、8は、それぞれトラニオン9、9の内側面に、基半部と先半部とが偏心した支持軸10、10と複数の転がり軸受とを介して、これら各支持軸10、10の先半部周りの回転、及び、これら各支持軸10、10の基半部を中心とする若干の揺動変位自在に支持されている。   In addition, two power rollers 8 and 8 each having a spherical convex surface in the peripheral portion (cavity) between the input side and output side inner side surfaces 3 and 7 around the input rotation shaft 2 are provided. It is arranged. The power rollers 8 and 8 are respectively connected to the inner surfaces of the trunnions 9 and 9 via support shafts 10 and 10 whose base half and tip half are eccentric and a plurality of rolling bearings. 10 is supported so as to be freely rotatable and slightly displaceable around the base half of each of the support shafts 10 and 10.

又、前記各トラニオン9、9は、それぞれの長さ方向(図12の表裏方向)両端部にこれら各トラニオン9、9毎に互いに同心に設けられた傾転軸を中心として揺動変位自在である。これら各トラニオン9、9を揺動(傾斜)させる動作は、油圧式のアクチュエータにより、これら各トラニオン9、9を前記各傾転軸の軸方向に変位させる事により行う。変速時には、前記各アクチュエータへの圧油の給排により、前記各トラニオン9、9を前記各傾転軸の軸方向に変位させる。この結果、前記各パワーローラ8、8の周面と前記入力側、出力側各内側面3、7との接触部(トラクション部)の接線方向に作用する力の方向が変化する(サイドスリップが発生する)ので、前記各トラニオン9、9が前記各傾転軸を中心として揺動変位する。   The trunnions 9 and 9 are swingable and displaceable about the tilting shafts provided concentrically for each trunnion 9 and 9 at both ends in the length direction (front and back direction in FIG. 12). is there. The operation of swinging (tilting) each of the trunnions 9 and 9 is performed by displacing each of the trunnions 9 and 9 in the axial direction of each of the tilting shafts by a hydraulic actuator. At the time of shifting, the trunnions 9 and 9 are displaced in the axial direction of the tilt shafts by supplying and discharging pressure oil to and from the actuators. As a result, the direction of the force acting in the tangential direction of the contact portion (traction portion) between the peripheral surface of each of the power rollers 8 and 8 and each of the input side and output side inner surfaces 3 and 7 changes (side slip occurs). Therefore, the trunnions 9 are oscillated and displaced about the tilt axes.

上述の様なトロイダル型無段変速機の運転時には、駆動軸11により一方(図12の左方)の入力ディスク1aを、ローディングカム式の押圧装置12を介して回転駆動する。この結果、前記入力回転軸2の両端部に支持された1対の入力ディスク1a、1bが、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ8、8を介して前記両出力ディスク6、6に伝わり、前記出力歯車4から取り出される。   During operation of the toroidal type continuously variable transmission as described above, one input disk 1a (left side in FIG. 12) is rotationally driven by the drive shaft 11 via the loading cam type pressing device 12. As a result, the pair of input disks 1a and 1b supported at both ends of the input rotation shaft 2 rotate synchronously while being pressed toward each other. This rotation is transmitted to the output disks 6 and 6 through the power rollers 8 and 8 and is taken out from the output gear 4.

前記入力回転軸2と前記出力歯車4との回転速度の比を変える場合で、先ず入力回転軸2と出力歯車4との間で減速を行う場合には、前記各トラニオン9、9を図12に示す位置に揺動させ、前記各パワーローラ8、8の周面を、前記各入力ディスク1a、1bの入力側内側面3、3の中心寄り部分と前記両出力ディスク6、6の出力側内側面7、7の外周寄り部分とにそれぞれ当接させる。反対に、増速を行う場合には、前記各トラニオン9、9を図12と反対方向に揺動させ、前記各パワーローラ8、8の周面を、前記両入力ディスク1a、1bの入力側内側面3、3の外周寄り部分と前記両出力ディスク6、6の出力側内側面7、7の中心寄り部分とにそれぞれ当接させる。前記各トラニオン9、9の揺動角度を中間にすれば、前記入力回転軸2と前記出力歯車4との間で、中間の速度比(変速比)を得られる。   When the ratio of the rotational speeds of the input rotary shaft 2 and the output gear 4 is changed, and when the deceleration is first performed between the input rotary shaft 2 and the output gear 4, the respective trunnions 9, 9 are shown in FIG. The peripheral surfaces of the power rollers 8 and 8 are swung to the positions shown in FIG. 4 and the portions near the center of the input side inner surfaces 3 and 3 of the input disks 1a and 1b and the output sides of the output disks 6 and 6, respectively. The inner side surfaces 7 and 7 are brought into contact with the outer peripheral portion. On the other hand, when increasing the speed, the trunnions 9 and 9 are swung in the direction opposite to that shown in FIG. 12, and the peripheral surfaces of the power rollers 8 and 8 are moved to the input sides of the input disks 1a and 1b. It is made to contact | abut to the outer peripheral part of the inner side surfaces 3 and 3 and the center side part of the output side inner side surfaces 7 and 7 of the said output discs 6 and 6, respectively. An intermediate speed ratio (transmission ratio) can be obtained between the input rotary shaft 2 and the output gear 4 by setting the swing angles of the trunnions 9 and 9 to an intermediate position.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、入力側、出力側各ディスク1a、1b、6と前記各パワーローラ8、8とが、前記押圧装置12が発生する押圧力(推力)に基づいて弾性変形する。そして、この弾性変形に伴って、前記各ディスク1a、1b、6が軸方向に変位する。又、前記押圧装置12が発生する押圧力は、前記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材の弾性変形量も多くなる。従って、前記トルクの変動に拘らず、前記入力側、出力側各側面3、7と前記各パワーローラ8、8の周面との接触状態を適正に維持する為に、これら各パワーローラ8、8を前記各トラニオン9、9に対し、前記各ディスク1a、1b、6の軸方向に変位させる機構が必要になる。図12に記載した従来構造の第1例の場合には、前記各パワーローラ8、8を支持した前記各支持軸10、10の先半部を、同じく基半部を中心として揺動変位させる事により、前記各パワーローラ8、8を前記軸方向に変位させる様にしている。   During operation of the toroidal type continuously variable transmission as described above, the members used for power transmission, that is, the input side and output side disks 1a, 1b, 6 and the power rollers 8, 8 are It is elastically deformed based on the pressing force (thrust) generated by the pressing device 12. Then, along with this elastic deformation, the disks 1a, 1b, 6 are displaced in the axial direction. Further, the pressing force generated by the pressing device 12 increases as the torque transmitted by the toroidal continuously variable transmission increases, and the amount of elastic deformation of each member increases accordingly. Accordingly, in order to properly maintain the contact state between the side surfaces 3 and 7 on the input side and the output side and the peripheral surfaces of the power rollers 8 and 8 regardless of the fluctuation of the torque, 8 is required to displace the disc 8 in the axial direction of the discs 1a, 1b, 6 with respect to the trunnions 9, 9. In the case of the first example of the conventional structure shown in FIG. 12, the tip half of each of the support shafts 10 and 10 that support the power rollers 8 and 8 is similarly oscillated and displaced about the base half. Thus, the power rollers 8, 8 are displaced in the axial direction.

この様な従来構造の第1例の場合、前記各パワーローラ8、8を前記軸方向に変位させる為の構造が複雑で、部品製作、部品管理、組立作業が何れも面倒になり、コストが嵩む事が避けられない。この様な問題を解決する為の技術として前記特許文献1には、図13〜16に示す様な構造が記載されている。この従来構造の第2例の特徴は、トラニオン9aに対してパワーローラ8aを、入力側、出力側各ディスク1a、1b、6(図12参照)の軸方向の変位を可能に支持する部分の構造にあり、トロイダル型無段変速機全体としての構造及び作用は、前述の図12に示した従来構造の第1例と同様である。   In the case of the first example of such a conventional structure, the structure for displacing each of the power rollers 8 and 8 in the axial direction is complicated, and parts production, parts management, and assembly work are both troublesome and costly. It is inevitable that it is bulky. As a technique for solving such a problem, Patent Document 1 describes a structure as shown in FIGS. A feature of the second example of this conventional structure is that the power roller 8a is supported on the trunnion 9a so that the input side and output side disks 1a, 1b, 6 (see FIG. 12) can be displaced in the axial direction. The overall structure and operation of the toroidal-type continuously variable transmission are the same as those of the first example of the conventional structure shown in FIG.

前記従来構造の第2例を構成するトラニオン9aは、両端部に互いに同心に設けられた1対の傾転軸13、13と、これら両傾転軸13、13同士の間に存在し、少なくとも前記入力側、出力側両ディスク1a、1b、6の径方向(図14〜16の上下方向)に関する内側(図14〜16の上側)の側面を円筒状凸面14とした、支持梁部15とを備える。前記両傾転軸13、13は、それぞれラジアルニードル軸受16、16を介して、ヨーク(周知構造である為、図示せず)或いは揺動フレームの支持板部(特許文献1の図71、72の符号13、14参照)に、揺動を可能に支持する。   The trunnion 9a constituting the second example of the conventional structure exists between a pair of tilting shafts 13 and 13 provided concentrically with each other at both ends, and between these tilting shafts 13 and 13, and at least A support beam 15 having a cylindrical convex surface 14 on the inner side (upper side in FIGS. 14 to 16) in the radial direction (up and down direction in FIGS. 14 to 16) of both the input side and output side disks 1a, 1b, 6; Is provided. The tilting shafts 13 and 13 are respectively connected to yokes (not shown because of a well-known structure) or swinging frame support plate portions (FIGS. 71 and 72 of Patent Document 1) via radial needle bearings 16 and 16, respectively. Are supported so as to be able to swing.

又、前記円筒状凸面14の中心軸イは、図14、15に示す様に、前記両傾転軸13、13の中心軸ロと平行で、これら両傾転軸13、13の中心軸ロよりも、前記各ディスク1a、1b、6の径方向に関して外側(図14〜16の下側)に存在する。又、前記支持梁部15と前記パワーローラ8aの外側面との間に設けるスラスト玉軸受17を構成する外輪18の外側面に、部分円筒面状の凹部19を、この外側面を径方向に横切る状態で設けている。そして、この凹部19と、前記支持梁部15の円筒状凸面14とを係合させ、前記トラニオン9aに対して前記外輪18を、前記各ディスク1a、1b、6の軸方向に関する揺動変位を可能に支持している。前記凹部19の断面形状の曲率半径r19は前記円筒状凸面14の断面形状の曲率半径r14以上(r19≧r14)として、これら凹部19と円筒状凸面14とを、全面若しくはこの凹部19の底部近傍部分で、直接当接させている。 Further, as shown in FIGS. 14 and 15, the central axis A of the cylindrical convex surface 14 is parallel to the central axis B of the both tilting shafts 13, 13, and the central axis B of the both tilting shafts 13, 13 is. Rather than the outer side (the lower side of FIGS. 14 to 16) in the radial direction of each of the disks 1 a, 1 b, 6. Further, a concave portion 19 having a partial cylindrical surface is formed on the outer surface of the outer ring 18 constituting the thrust ball bearing 17 provided between the support beam portion 15 and the outer surface of the power roller 8a. It is provided in a crossing state. And this recessed part 19 and the cylindrical convex surface 14 of the said support beam part 15 are engaged, The rocking | fluctuation displacement regarding the axial direction of each said disk 1a, 1b, 6 is made for the said outer ring 18 with respect to the said trunnion 9a. I support it as possible. Examples curvature radius r 19 of the cross-sectional shape of the recess 19 the radius of curvature r 14 or more of the cross-sectional shape of the cylindrical convex surface 14 (r 19 ≧ r 14), the recesses 19 and the cylindrical convex surfaces 14, the entire surface or the recess It is made to contact | abut directly in the bottom vicinity part of 19. FIG.

又、前記外輪18の内側面中央部に支持軸10aを、この外輪18と一体に固設して、前記パワーローラ8aをこの支持軸10aの周囲に、ラジアルニードル軸受20を介して、回転自在に支持している。又、前記外輪18及び前記支持軸10aの内部に、前記スラスト玉軸受17及び前記ラジアルニードル軸受20に潤滑油を供給する為の下流側給油路21を、前記支持梁部15の内部に、この下流側給油路21に繋がる上流側給油路22を、それぞれ設けている。尚、この下流側球油路21が、特許請求の範囲に記載した中心孔に相当する。これら両給油路21、22は、前記凹部19の中央部に形成した凹孔31を介して、前記外輪18の揺動変位に拘らず互いに連通する様にし、更に、前記支持梁部15の外部に、前記上流側給油路22に繋がる給油パイプ23を設けている。この給油パイプ23の上流側端部は、前記トラニオン9aの端部に設けた、同期ケーブルを架け渡す為のプーリ24の内径側に開口させ、このプーリ24の内径側を通じて、潤滑油の供給を可能にしている。   A support shaft 10a is fixed to the center of the inner surface of the outer ring 18 integrally with the outer ring 18, and the power roller 8a is rotatable around the support shaft 10a via a radial needle bearing 20. I support it. Further, a downstream oil supply passage 21 for supplying lubricating oil to the thrust ball bearing 17 and the radial needle bearing 20 is provided inside the outer ring 18 and the support shaft 10a. An upstream oil supply passage 22 connected to the downstream oil supply passage 21 is provided. The downstream spherical oil passage 21 corresponds to the center hole described in the claims. These oil supply passages 21 and 22 communicate with each other regardless of the rocking displacement of the outer ring 18 through a recessed hole 31 formed in the central portion of the recessed portion 19, and further, the outside of the support beam portion 15. In addition, an oil supply pipe 23 connected to the upstream oil supply path 22 is provided. The upstream end of the oil supply pipe 23 is opened to the inner diameter side of the pulley 24 provided at the end of the trunnion 9 a for bridging the synchronous cable, and the lubricating oil is supplied through the inner diameter side of the pulley 24. It is possible.

更に、前記トラニオン9aの内側面のうち、前記支持梁部15の両端部と前記両傾転軸13、13との連続部に、互いに対向する1対の段差面25、25を設けている。そして、これら両段差面25、25と、前記スラスト玉軸受17を構成する外輪18の外周面とを、当接若しくは近接対向させて、前記パワーローラ8aからこの外輪18に加わるトラクション力を、前記両段差面25、25のうち何れかで支承可能としている。   Further, a pair of stepped surfaces 25 and 25 facing each other are provided on the inner surface of the trunnion 9a at a continuous portion between both end portions of the support beam portion 15 and the tilting shafts 13 and 13. Then, these stepped surfaces 25, 25 and the outer peripheral surface of the outer ring 18 constituting the thrust ball bearing 17 are brought into contact with or in close proximity to each other, and the traction force applied from the power roller 8a to the outer ring 18 is It can be supported by either of the step surfaces 25, 25.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、前記パワーローラ8aを前記各ディスク1a、1b、6の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ8aの周面と前記各ディスク1a、1b、6との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、入力側、出力側各ディスク1a、1b、6、各パワーローラ8aの弾性変形に基づき、これら各パワーローラ8aをこれら各ディスク1a、1b、6の軸方向に変位させる必要が生じると、これら各パワーローラ8aを回転自在に支持している前記スラスト玉軸受17の外輪18が、外側面に設けた部分円筒面状の凹部19と前記支持梁部15の円筒状凸面14との当接面を滑らせつつ、この円筒状凸面14の中心軸イを中心として揺動変位する。この揺動変位に基づき、前記各パワーローラ8aの周面のうちで、前記各ディスク1a、1b、6の軸方向片側面と転がり接触する部分が、これら各ディスク1a、1b、6の軸方向に変位し、前記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 8a is displaced in the axial direction of each of the disks 1a, 1b, 6 so as to elastically deform the constituent members. A structure that can properly maintain the contact state between the peripheral surface of the power roller 8a and each of the disks 1a, 1b, 6 regardless of the amount can be configured easily and at low cost.
That is, during operation of the toroidal type continuously variable transmission, each of the power rollers 8a is connected to each of the disks 1a, 1b, 6 based on the elastic deformation of the input side, output side disks 1a, 1b, 6, and each power roller 8a. When it is necessary to displace axially, the outer ring 18 of the thrust ball bearing 17 that rotatably supports each of the power rollers 8a is provided with a concave portion 19 having a partially cylindrical surface provided on the outer surface and the supporting beam portion. While sliding the contact surface with the 15 cylindrical convex surface 14, the cylindrical convex surface 14 is oscillated and displaced about the central axis a. Based on this oscillating displacement, a portion of the peripheral surface of each power roller 8a that is in rolling contact with one axial side surface of each disk 1a, 1b, 6 is the axial direction of each disk 1a, 1b, 6. To maintain the contact state appropriately.

前述した通り、前記円筒状凸面14の中心軸イは、変速動作の際に前記各トラニオン9aの揺動中心となる前記両傾転軸13、13の中心軸ロよりも、前記各ディスク1a、1b、6の径方向に関して外側に存在する。従って、前記円筒状凸面14の中心軸イを中心とする揺動変位の揺動半径は、前記変速動作の際の揺動半径よりも大きく、前記入力ディスク1a、1bと前記出力ディスク6との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis (a) of the cylindrical convex surface (14) is greater than the central axes (B) of the two tilting shafts (13, 13) that are the swing centers of the trunnions (9a) during the shifting operation. It exists outside in the radial direction of 1b and 6. Therefore, the rocking radius of the rocking displacement centered on the central axis A of the cylindrical convex surface 14 is larger than the rocking radius at the time of the speed change operation, and the input disks 1a and 1b and the output disk 6 There is little effect on the change in the transmission ratio during this period (it can be ignored or can be easily corrected).

上述の様な従来構造の第2例を実施する場合に、図16の(A)に示す様に、前記凹部19の断面形状の曲率半径r19を、前記円筒状凸面14の断面形状の曲率半径r14よりも大きく(r19>r14)する事が一般的である。この理由は、これら両曲率半径r19、r14を互いに等しく(r19=r14)すると、前記凹部19の内面と前記円筒状凸面14とが、互いに対向する部分の全面に亙り当接し、この当接部に潤滑油を送り込み難くなる為である。前記凹部19の内面と前記円筒状凸面14とは、大きな面圧で当接した状態のまま、互いに揺動変位する為、前記当接部への潤滑油の送り込みが不良になると、金属接触に基づく過大な摩耗を発生し易くなる。 When the second example of the conventional structure as described above is implemented, as shown in FIG. 16A, the curvature radius r 19 of the cross-sectional shape of the concave portion 19 is set to the curvature of the cross-sectional shape of the cylindrical convex surface 14. Generally, it is larger than the radius r 14 (r 19 > r 14 ). The reason for this is that when both the radii of curvature r 19 and r 14 are equal to each other (r 19 = r 14 ), the inner surface of the concave portion 19 and the cylindrical convex surface 14 come into contact with the entire surface of the portions facing each other, This is because it becomes difficult to feed the lubricating oil into the contact portion. The inner surface of the concave portion 19 and the cylindrical convex surface 14 are oscillated and displaced while being in contact with each other with a large surface pressure. It becomes easy to generate excessive wear based on it.

但し、前記円筒状凸面14の断面形状の曲率半径r14よりも大きく(r19>r14)した場合にも、次の(1)(2)の様な問題を生じる。
(1) 前記凹部19の内面と前記円筒状凸面14とが局部的に摩耗し易い。
(2) 前記スラスト玉軸受17の耐久性を確保しにくい。
このうちの(1) の問題が生じる理由は、前記凹部19の内面と前記円筒状凸面14とが、図16の(A)に示す様に、この凹部19の底部若しくは底部近傍のみで、ほぼ線接触に近い状態で接触し、接触部の面圧が高くなる為である。
However, when larger than the radius of curvature r 14 of the cross-sectional shape of the cylindrical convex surface 14 (r 19> r 14) also produces the following (1) such problem (2).
(1) The inner surface of the concave portion 19 and the cylindrical convex surface 14 are likely to be locally worn.
(2) It is difficult to ensure the durability of the thrust ball bearing 17.
Of these, the problem (1) occurs because the inner surface of the concave portion 19 and the cylindrical convex surface 14 are almost only at the bottom or near the bottom of the concave portion 19 as shown in FIG. This is because the contact is made in a state close to line contact, and the contact surface pressure becomes high.

又、前記(2) の問題が生じる理由は、前記パワーローラ8aから前記スラスト玉軸受17に加わる大きなスラスト荷重に基づき、前記外輪18が、その内側面側を部分凸円筒とする方向に弾性変形する為である。トロイダル型無段変速機の技術分野で周知の様に、本発明の対象となるハーフトロイダル型のトロイダル型無段変速機の運転時に前記スラスト玉軸受17には、前記パワーローラ8aから大きなスラスト荷重が加わる。そして、このスラスト荷重に基づいて前記スラスト玉軸受17を構成する外輪18が、図16の(B)に誇張して示す様に、前記凹部19の内面を前記円筒状凸面14に倣わせる(これら両面をほぼ全面に亙り当接させる)方向に弾性変形する。そして、この弾性変形に伴って、前記外輪18の内側面に設けた外輪軌道28と、前記パワーローラ8aの外側面に設けた内輪軌道27との距離が、前記外輪18の円周方向に関して不同になる。そして、これら両軌道28、27の距離の相違に伴って、これら両軌道28、27と各玉26、26(図12参照)の転動面との転がり接触部の面圧が、前記外輪18の円周方向に関して著しく不同になる。具体的には、前記トラニオン9aの長さ方向(前記支持梁部15の軸方向)反対側2箇所位置で、前記両軌道28、27と前記各玉26、26の転動面との転がり接触部の面圧が過大になる。この結果、これら両軌道28、27の転がり疲れ寿命が、前記長さ方向反対側2箇所位置で著しく短くなり、トロイダル型無段変速機の耐久性確保の上で障害になる。   The reason for the occurrence of the problem (2) is that the outer ring 18 is elastically deformed in a direction in which the inner side surface thereof is a partially convex cylinder based on a large thrust load applied to the thrust ball bearing 17 from the power roller 8a. It is to do. As is well known in the technical field of toroidal-type continuously variable transmissions, a large thrust load is applied to the thrust ball bearing 17 from the power roller 8a when the half-toroidal toroidal-type continuously variable transmission subject to the present invention is operated. Will be added. Based on this thrust load, the outer ring 18 constituting the thrust ball bearing 17 causes the inner surface of the concave portion 19 to follow the cylindrical convex surface 14 as shown exaggeratedly in FIG. These two surfaces are elastically deformed in a direction in which both surfaces are almost entirely contacted. With this elastic deformation, the distance between the outer ring raceway 28 provided on the inner side surface of the outer ring 18 and the inner ring raceway 27 provided on the outer side surface of the power roller 8a is not the same in the circumferential direction of the outer ring 18. become. As the distance between the two tracks 28 and 27 is different, the surface pressure of the rolling contact portion between the tracks 28 and 27 and the rolling surfaces of the balls 26 and 26 (see FIG. 12) is changed to the outer ring 18. It becomes remarkably different with respect to the circumferential direction. Specifically, at two positions opposite to the length direction of the trunnion 9a (the axial direction of the support beam portion 15), the rolling contact between the raceways 28 and 27 and the rolling surfaces of the balls 26 and 26 occurs. The surface pressure of the part becomes excessive. As a result, the rolling fatigue life of both the tracks 28 and 27 is remarkably shortened at two positions on the opposite side in the length direction, which is an obstacle to ensuring the durability of the toroidal continuously variable transmission.

[先発明の説明]
上述の様な事情に鑑みて、スラスト玉軸受を構成する外輪の外側面に形成した凹部の内面と、トラニオンを構成する支持梁部に設けた円筒状凸面との接触面積を確保して、これら両面の摩耗を抑え、しかも、前記外輪の弾性変形を抑えて、前記スラスト玉軸受の耐久性を確保し、トロイダル型無段変速機全体としての耐久性を向上させる構造として、特願2009−267177に開示された発明がある。本発明の製造方法は、この先発明に係るトロイダル型無段変速機に組み込む外輪の製造方法に関するものであるから、先ず、前記先発明に係るトロイダル型無段変速機の構造及び作用に就いて、図17〜20により説明する。
[Description of Prior Invention]
In view of the circumstances as described above, the contact area between the inner surface of the concave portion formed on the outer surface of the outer ring constituting the thrust ball bearing and the cylindrical convex surface provided on the support beam portion constituting the trunnion is secured, and these Japanese Patent Application No. 2009-267177 is a structure that suppresses wear on both sides and suppresses elastic deformation of the outer ring to ensure the durability of the thrust ball bearing and improve the durability of the entire toroidal continuously variable transmission. There is an invention disclosed in. Since the manufacturing method of the present invention relates to a method for manufacturing an outer ring incorporated in the toroidal type continuously variable transmission according to the previous invention, first, regarding the structure and operation of the toroidal type continuously variable transmission according to the previous invention, This will be described with reference to FIGS.

前記先発明に係る構造では、外輪18aの外側面に、この外輪18aの径方向に貫通する(両端部がこの外輪18aの外周面の径方向反対位置に開口する)状態で形成した凹部19aの内面を、単一円筒面ではなく、1対の側方凹曲面部29、29と中央凹曲面部30とを滑らかに連続させた、ゴシックアーチ状の断面形状を有するものとしている。このうち、前記両側方凹曲面部29、29は、前記凹部19aの幅方向両側部分に設けられており、断面形状の曲率半径r29が、トラニオン9aを構成する支持梁部15の円筒状凸面14の外周面の曲率半径r14よりも大きい(r29>r14)。これに対して、前記中央凹曲面部30は、前記凹部19aの幅方向中央部に設けられており、断面形状の曲率半径r30が、前記円筒状凸面14の外周面の曲率半径r14よりも小さい(r30<r14)。それぞれが上述の様な曲率半径r29、r30を有する、前記両側方凹曲面部29、29と前記中央凹曲面部30とは、これら両側方凹曲面部29、29のこの中央側端縁とこの中央凹曲面部の両側縁30とで互いの接線を共有する状態により、滑らかに連続している。 In the structure according to the previous invention, the concave portion 19a formed in a state of penetrating the outer surface of the outer ring 18a in the radial direction of the outer ring 18a (both ends open at positions radially opposite to the outer peripheral surface of the outer ring 18a). The inner surface is not a single cylindrical surface, but has a Gothic arch-like cross-sectional shape in which a pair of side concave curved surface portions 29, 29 and a central concave curved surface portion 30 are smoothly continuous. Of these, the two sides concave surface portion 29 and 29, wherein is provided in the width direction both side portions of the recess 19a, the radius of curvature r 29 of the cross-sectional shape, a cylindrical convex surface of the supporting beam portion 15 constituting the trunnions 9a larger than the radius of curvature r 14 of the outer peripheral surface of 14 (r 29> r 14) . In contrast, the central concave surface portion 30 is provided in the widthwise central portion of the concave portion 19a, the radius of curvature r 30 of the cross-sectional shape, than the radius of curvature r 14 of the outer circumferential surface of the cylindrical convex surface 14 Is also small (r 30 <r 14 ). The both side concave curved surface portions 29 and 29 and the central concave curved surface portion 30, each having the curvature radii r 29 and r 30 as described above, are the center side edges of the both side concave curved surface portions 29 and 29. And the both side edges 30 of the central concave curved surface portion share a tangent line with each other so that they are smoothly continuous.

前記外輪18aと前記トラニオン9aとは、この外輪18a側の凹部19aにこのトラニオン9a側の支持梁部15を内嵌する状態に組み合わせる。この様に組み合わせた状態で、この支持梁部15の円筒状凸面14と前記両側方凹曲面部29、29とが、この支持梁部15の外周面に関する円周方向2箇所位置で当接する。これら両当接部に関する中心角θは、前記各曲率半径r29、r30、r14の比に基づいて任意に調節できる。この中心角θが大きくなる程、前記外輪18aが前述の図16の(B)に示す様に弾性変形するのを阻止する効果が大きくなる。但し、前記中心角θが大きくなる程、前記両側方凹曲面部29、29同士の間隔を拡げる方向に加わる力が大きくなり、前記凹部19aの底部乃至はその近傍部分に加わる引っ張り応力が大きくなる。逆に、前記中心角θを小さくする程、前記両側方凹曲面部29、29同士の間隔を拡げる方向に加わる力を抑え、前記凹部19aの底部乃至はその近傍部分に加わる引っ張り応力を小さくできる。但し、前記中心角θを小さくする程、前記外輪18aが前述の図16の(B)に示す様に弾性変形するのを阻止する効果が小さくなる。そこで、前記中心角θを、前記外輪18aの弾性変形を抑え、前記凹部19aの底部乃至はその近傍部分に加わる引っ張り応力が過大にならない範囲で、適正に規制する。具体的には、前記中心角θが90度±30度の範囲に収まる様に、前記各曲率半径r29、r30、r14の比を定める。 The outer ring 18a and the trunnion 9a are combined in a state in which the support beam portion 15 on the trunnion 9a side is fitted in the recess 19a on the outer ring 18a side. In such a combined state, the cylindrical convex surface 14 of the support beam portion 15 and the both side concave curved surface portions 29 and 29 abut at two positions in the circumferential direction with respect to the outer peripheral surface of the support beam portion 15. The central angle θ relating to both the abutting portions can be arbitrarily adjusted based on the ratio of the respective curvature radii r 29 , r 30 , r 14 . As the central angle θ increases, the effect of preventing the outer ring 18a from elastically deforming as shown in FIG. However, the greater the central angle θ, the greater the force applied in the direction of widening the gap between the two side concave curved surface portions 29, 29, and the greater the tensile stress applied to the bottom of the recess 19a or the vicinity thereof. . Conversely, the smaller the central angle θ, the smaller the force applied in the direction of widening the gap between the both side concave curved surface portions 29, 29, and the smaller the tensile stress applied to the bottom portion of the concave portion 19a or the vicinity thereof. . However, the smaller the central angle θ, the smaller the effect of preventing the outer ring 18a from elastically deforming as shown in FIG. Therefore, the central angle θ is appropriately regulated within a range in which the elastic deformation of the outer ring 18a is suppressed and the tensile stress applied to the bottom portion or the vicinity thereof is not excessive. Specifically, the ratios of the respective radii of curvature r 29 , r 30 , r 14 are determined so that the central angle θ falls within the range of 90 ° ± 30 °.

上述の様に構成する先発明に係る構造によれば、十分な耐久性を有するトロイダル型無段変速機を実現できる。
即ち、先発明のトロイダル型無段変速機の場合には、スラスト玉軸受17aを構成する前記外輪18aの外側面に形成した凹部19aの内面と前記支持梁部15に設けた円筒状凸面14とを、これら両面の円周方向に関して2箇所位置で当接させている。この為、前記凹部19aの内面と前記円筒状凸面14との接触面積を確保して、これら両面の接触部の面圧を低く抑え、これら両面の摩耗を抑える事ができる。
With the structure according to the prior invention configured as described above, a toroidal continuously variable transmission having sufficient durability can be realized.
That is, in the case of the toroidal type continuously variable transmission of the previous invention, the inner surface of the concave portion 19a formed on the outer surface of the outer ring 18a constituting the thrust ball bearing 17a and the cylindrical convex surface 14 provided on the support beam portion 15; Are brought into contact with each other at two positions in the circumferential direction of both surfaces. For this reason, the contact area of the inner surface of the concave portion 19a and the cylindrical convex surface 14 can be secured, the surface pressure of the contact portions on both surfaces can be kept low, and wear on both surfaces can be suppressed.

又、前記凹部19aの内面と前記円筒状凸面14とを、前記支持梁部15の円周方向に離隔した2箇所位置で当接させている為、前記外輪18aに大きなスラスト荷重が加わった場合にも、この外輪18aが、前述の図16の(B)に示す様に、内側面側が凸円筒面となる様に弾性変形する事を抑えられる。言い換えれば、前記外輪18aの内側面の高さが、周方向に関して変化しない状態にできる。従って、この外輪18aの内側面に設けた外輪軌道28と、前記パワーローラ8aの外側面に設けた内輪軌道27との間隔を、これら両軌道28、27の円周方向に関して、実質的に一定にできる(不同になる程度を抑えられる)。この為、前記両軌道28、27と前記各玉26、26の転動面との転がり接触部の面圧が、部分的に過大になる事を防止できる。この結果、前記スラスト玉軸受17aの耐久性、延いてはこのスラスト玉軸受17aを組み込んだトロイダル型無段変速機の耐久性を確保できる。   Further, since the inner surface of the concave portion 19a and the cylindrical convex surface 14 are brought into contact with each other at two positions separated in the circumferential direction of the support beam portion 15, a large thrust load is applied to the outer ring 18a. In addition, it is possible to suppress the outer ring 18a from being elastically deformed so that the inner side becomes a convex cylindrical surface as shown in FIG. In other words, the height of the inner surface of the outer ring 18a can be kept unchanged in the circumferential direction. Therefore, the distance between the outer ring raceway 28 provided on the inner side surface of the outer ring 18a and the inner ring raceway 27 provided on the outer side surface of the power roller 8a is substantially constant with respect to the circumferential direction of the both raceways 28 and 27. Can be reduced (the degree of disagreement can be suppressed). For this reason, it can prevent that the surface pressure of the rolling contact part of both the said tracks 28 and 27 and the rolling surface of each said balls 26 and 26 becomes partially excessive. As a result, it is possible to ensure the durability of the thrust ball bearing 17a, and thus the durability of the toroidal type continuously variable transmission incorporating the thrust ball bearing 17a.

更に、先発明に係る構造の場合には、前記両側方凹曲面部29、29の中央側端縁と前記中央凹曲面部30の両側縁とを滑らかに連続させているので、前記支持梁部15の円筒状凸面14との押し付け合いに伴って、前記両側方凹曲面部29、29同士の間に互いに離れる方向の大きな力が加わった場合でも、前記凹部19aの底部若しくはその近傍に加わる引っ張り応力を低減できる。この結果、前記外輪18aに亀裂等の損傷が発生する事を防止できる。又、前記中央凹曲面部30を設ける事で、前記凹部19aの底部若しくはその近傍に加わる引っ張り応力を低減できる分、前記外輪18aの損傷防止性能を同じとした場合に、前記中心角θを大きくする事が可能になる。そして、この中心角θを大きくする事により、前記外輪18aの弾性変形を抑える効果を大きくできる。   Further, in the case of the structure according to the previous invention, the center side edge of the both side concave curved surface portions 29, 29 and the both side edges of the central concave curved surface portion 30 are smoothly continuous. Even when a large force in a direction away from each other is applied between the both side concave curved surface portions 29, 29 in accordance with the pressing with the 15 cylindrical convex surfaces 14, the tensile force applied to the bottom portion of the concave portion 19a or the vicinity thereof Stress can be reduced. As a result, it is possible to prevent the outer ring 18a from being damaged such as a crack. Further, by providing the central concave curved surface portion 30, the central angle θ can be increased when the damage prevention performance of the outer ring 18a is the same as the tensile stress applied to the bottom of the concave portion 19a or the vicinity thereof can be reduced. It becomes possible to do. And the effect which suppresses the elastic deformation of the said outer ring | wheel 18a can be enlarged by enlarging this center angle (theta).

上述の様に、先発明に係る構造は、トラニオンに対するパワーローラの変位を円滑に行わせて、高い伝達効率を確保でき、しかも、優れた耐久性を確保する面から、大きな効果がある。但し、この為の構造を構成する、前記外輪18aの製造コストを抑える面から、問題がある。即ち、前述の図16の(A)に示した従来構造の様に、外輪18の外側面に、全幅に亙って曲率半径が一定である、内面が部分凹円筒面状である凹部19を形成するのであれば、一般的な回転工具を使用する事で、工業的手法によりこの凹部19を容易に形成できる。一方、ゴシックアーチ状の断面形状を有する前記凹部19aを形成するのは、外周面の断面形状を同形状とした(母線形状が同じで凹凸が逆である)砥石による研削加工によったり、或は、ワイヤカット放電加工による事が一般的手法としては考えられる。但し、これらの方法は、何れも加工能率が悪く、前記外輪18aの製造コストが嵩む原因となる。   As described above, the structure according to the previous invention has a great effect in terms of ensuring high transmission efficiency by smoothly displacing the power roller with respect to the trunnion and ensuring excellent durability. However, there is a problem in terms of reducing the manufacturing cost of the outer ring 18a constituting the structure for this purpose. That is, as in the conventional structure shown in FIG. 16A, the concave portion 19 having a constant radius of curvature over the entire width and a partially concave cylindrical surface is formed on the outer surface of the outer ring 18. If it forms, this recessed part 19 can be easily formed by an industrial method by using a general rotary tool. On the other hand, the concave portion 19a having a Gothic arch-like cross-sectional shape is formed by grinding with a grindstone in which the cross-sectional shape of the outer peripheral surface is the same shape (the bus bar shape is the same and the concavities and convexities are reversed), or As a general method, wire-cut electric discharge machining is considered. However, any of these methods has a low processing efficiency, which increases the manufacturing cost of the outer ring 18a.

特に、この外輪18aは、内側面のうちで前記支持軸10aを囲む部分に形成した前記外輪軌道28を、焼き入れ硬化させる必要がある。そして、この焼き入れ硬化の為の熱処理に伴って、前記外輪18aの外径寄り部分が、図21に矢印α、αで示す方向に変形する傾向になる。この変形の方向及び量は、焼き入れ条件等、種々の条件で異なり、仕上加工時の取り代のばらつきが多くなる為、上述の様な砥石による研削加工やワイヤカット放電加工では、加工能率の低下、延いては製造コストの増大が著しくなり易い。   In particular, the outer ring 18a needs to quench and harden the outer ring raceway 28 formed in a portion of the inner surface surrounding the support shaft 10a. Then, with the heat treatment for quench hardening, the portion near the outer diameter of the outer ring 18a tends to be deformed in the directions indicated by arrows α and α in FIG. The direction and amount of this deformation vary depending on various conditions such as quenching conditions, and the variation in the machining allowance during finishing processing increases. Decreasing and, in turn, manufacturing costs are likely to increase significantly.

特開2008−25821号公報JP 2008-25821 A

本発明は、上述の様な事情に鑑みて、トラニオンに対するパワーローラの変位を円滑に行わせて、高い伝達効率を確保でき、しかも、優れた耐久性を確保できる構造を実現する為の外輪を、能率良く製造できる製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides an outer ring for realizing a structure capable of smoothly performing displacement of the power roller with respect to the trunnion, ensuring high transmission efficiency, and ensuring excellent durability. Invented to realize a production method capable of producing efficiently.

本発明の製造方法の対象となるトロイダル型無段変速機用外輪は、支持梁部の円筒状凸面と係合させる事によりトラニオンに対し、揺動変位を可能に支持すると共にパワーローラを回転自在に支持すべく、外側面に径方向に貫通する凹部を、内側面の中央部に支持軸を、この支持軸の中心部に外側面側に開口する中心孔を、それぞれ設けて成る。前記凹部は、幅方向両側部分に設けられ、断面形状の曲率半径が前記円筒状凸面の曲率半径よりも大きな1対の側方凹曲面部を備えたゴシックアーチ状の断面形状を有する。そして、前記支持軸の周囲にラジアル軸受を介して配置されるパワーローラの内側面に形成したスラスト内輪軌道と、内側面に形成したスラスト外輪軌道との間に、複数の転動体を設置した状態で使用される。   The outer ring for the toroidal type continuously variable transmission, which is the object of the manufacturing method of the present invention, supports the trunnion so as to be able to swing and displace the power roller while being engaged with the cylindrical convex surface of the support beam. In order to support, a concave portion penetrating in the radial direction is provided on the outer side surface, a support shaft is provided in the central portion of the inner side surface, and a central hole opening on the outer side side is provided in the central portion of the support shaft. The concave portion is provided on both sides in the width direction and has a Gothic arch-shaped cross-sectional shape including a pair of side concave curved surface portions having a radius of curvature of the cross-sectional shape larger than that of the cylindrical convex surface. And a state in which a plurality of rolling elements are installed between the thrust inner ring raceway formed on the inner side surface of the power roller disposed around the support shaft via the radial bearing and the thrust outer ring raceway formed on the inner side surface Used in.

この様なトロイダル型無段変速機用外輪を造る為の本発明の製造方法は、前記凹部のうちで前記支持梁部の円筒状凸面と当接する、断面形状がゴシックアーチ状の部分のうちの、少なくとも前記支持梁部の円筒状凸面と当接する部分を、金型の加工面の表面形状を転写する塑性加工により形成する。
これと同時に、前記凹部の内面に位置して前記外側面の中心となる、前記中心孔の開口部に中央部基準面を、前記ゴシックアーチ状の部分を加工する金型のうちの他の部分に設けた第二の加工面を押し付けてこの第二の加工面の形状を転写する塑性加工により形成する。
その後、前記ゴシックアーチ状の部分と前記中央部基準面とを基準として、前記外輪軌道及び前記支持軸の外周面に仕上加工を施す。
The manufacturing method of the present invention for producing such an outer ring for a toroidal-type continuously variable transmission includes a portion of the concave portion in contact with the cylindrical convex surface of the support beam portion and having a cross-sectional shape of a Gothic arch-shaped portion. At least a portion of the support beam that contacts the cylindrical convex surface is formed by plastic processing that transfers the surface shape of the processing surface of the mold.
At the same time, the central part reference surface is formed in the opening of the central hole and the other part of the mold for processing the Gothic arch-shaped part is located at the inner surface of the recess and becomes the center of the outer surface. It is formed by plastic working that presses the second working surface provided on the surface and transfers the shape of the second working surface.
Thereafter, the outer ring raceway and the outer peripheral surface of the support shaft are finished with reference to the Gothic arch-shaped portion and the center reference surface.

上述の様な本発明のトロイダル型無段変速機用外輪の製造方法を実施する場合に好ましくは、請求項2に記載した発明の様に、前記凹部の内面のうちで、前記支持梁部の円筒状凸面と当接する部分を他の部分よりも突出させた中間素材を形成した後、この他の部分よりも突出した部分、及び、前記中心孔の開口部にのみ、前記金型の加工面を押し付ける。   Preferably, when the outer ring for a toroidal-type continuously variable transmission according to the present invention as described above is carried out, among the inner surfaces of the recess, the support beam portion is preferably formed as in the invention described in claim 2. After forming the intermediate material in which the portion that contacts the cylindrical convex surface is protruded from the other portion, only the portion protruding from the other portion and the opening of the center hole are processed surfaces of the mold Press.

上述の様に構成する本発明のトロイダル型無段変速機用外輪の製造方法によれば、トラニオンに対するパワーローラの変位を円滑に行わせて、高い伝達効率を確保でき、しかも、優れた耐久性を確保できる構造を実現する為の外輪を、能率良く製造できる。
即ち、凹部のうちで前記支持梁部の円筒状凸面と当接する部分、及び、中心孔の開口部の中央部基準面の塑性加工は、金型の加工面を中間素材のうちの加工すべき部分に押し付けてこの加工面の形状をこれら加工すべき部分に転写する事により、容易且つ迅速に行える。前記金型の加工面は高精度に加工する必要があるが、1個の金型を造れば、多数の外輪を加工できる為、この加工面の加工が面倒であっても、トロイダル型無段変速機用外輪を製造する事に関する能率が低下し、このトロイダル型無段変速機用外輪の製造コストが嵩む事にはならない。
According to the method for manufacturing an outer ring for a toroidal continuously variable transmission of the present invention configured as described above, the power roller can be smoothly displaced with respect to the trunnion to ensure high transmission efficiency, and excellent durability. The outer ring for realizing the structure that can secure the efficiency can be efficiently manufactured.
That is, the plastic working of the concave portion of the support beam portion that contacts the cylindrical convex surface and the center reference surface of the opening of the center hole should be performed on the die working surface of the intermediate material. By pressing against the part and transferring the shape of the processed surface to the part to be processed, this can be done easily and quickly. The processing surface of the mold needs to be processed with high precision, but if one mold is made, a large number of outer rings can be processed, so even if the processing of the processing surface is troublesome, the toroidal type steplessly The efficiency relating to the production of the outer ring for the transmission is reduced, and the production cost of the outer ring for the toroidal type continuously variable transmission does not increase.

又、前記凹部のうちで前記支持梁部の円筒状凸面と当接する部分、及び、中心孔の開口部の中央部基準面部分を塑性加工により仕上げた状態では、これら両部分の表面精度及び互いの位置関係の精度が十分に高くなる。この為、これら両部分を基準として、外輪軌道及び支持軸の外周面に仕上加工を施せば、これら外輪軌道及び支持軸の外周面を十分な精度で、能率良く仕上げられる。
又、請求項2に記載した様に、前記凹部の内面のうちで、他の部分よりも突出した部分にのみ、前記金型の加工面を押し付ければ、加工面積を小さく抑えて、この金型やプレス装置の負荷を軽減できるだけでなく、被加工物である前記外輪中の残留応力を低減できる。
Further, in a state where the portion of the concave portion that contacts the cylindrical convex surface of the support beam portion and the central reference surface portion of the opening portion of the center hole are finished by plastic working, the surface accuracy of these both portions and the mutual accuracy of each portion are determined. The positional relationship accuracy is sufficiently high. For this reason, if the outer ring surface of the outer ring raceway and the support shaft are finished with these two parts as a reference, the outer ring raceway and the outer circumference surface of the support shaft can be finished with sufficient accuracy and efficiency.
In addition, as described in claim 2, if the processing surface of the mold is pressed only to the portion of the inner surface of the recess that protrudes from the other portion, the processing area can be kept small, Not only can the load on the mold and the pressing device be reduced, but also the residual stress in the outer ring as the workpiece can be reduced.

本発明の実施の形態の第1例を説明する為、外輪を外側面から見た状態で示す斜視図。The perspective view shown in the state which looked at the outer ring | wheel from the outer surface in order to demonstrate the 1st example of embodiment of this invention. 同じく外輪単体で示す断面図。Sectional drawing similarly shown with a single outer ring. 同じくトラニオンと組み合わせた状態で示す断面図。Sectional drawing shown in the state similarly combined with the trunnion. 凹部のうちで支持梁部の円筒状凸面と当接する部分、及び、中心孔の開口部の中央部基準面部分を塑性加工した後、外輪軌道及び支持軸の外周面に仕上げ加工を施す為、加工装置の保持部に装着する途中の状態を示す斜視図。In order to finish the outer ring raceway and the outer peripheral surface of the support shaft after plastic working the portion of the concave portion that contacts the cylindrical convex surface of the support beam portion and the central portion reference surface portion of the opening of the center hole, The perspective view which shows the state in the middle of mounting | wearing with the holding | maintenance part of a processing apparatus. 同じく装着した状態を示す断面図。Sectional drawing which shows the state mounted | worn similarly. 装着後、支持軸の外周面に仕上加工を施す状態を示す斜視図。The perspective view which shows the state which finishes the outer peripheral surface of a support shaft after mounting | wearing. 同じく外輪軌道に仕上加工を施す状態を示す斜視図。The perspective view which shows the state which similarly finishes an outer ring track. これら仕上加工を精度良く行う為に考慮すべき寸法を説明する為の断面図。Sectional drawing for demonstrating the dimension which should be considered in order to perform these finishing processes accurately. 仕上加工後の外輪をトラニオンに組み付けてパワーローラユニットとした状態を示す斜視図。The perspective view which shows the state which assembled | attached the outer ring | wheel after finishing to a trunnion, and was set as the power roller unit. 更にパワーローラを組み付けた状態を示す斜視図。Furthermore, the perspective view which shows the state which assembled | attached the power roller. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows the 2nd example of the conventional structure from the radial direction outer side of each disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 同じく断面図。Similarly sectional drawing. パワーローラからスラスト玉軸受にスラスト荷重が加わる前の状態を示す状態(A)と、スラスト荷重が加わった後の状態(B)とを示す、図14のX−X断面図。XX sectional drawing of FIG. 14 which shows the state (A) which shows the state before a thrust load is applied to a thrust ball bearing from a power roller, and the state (B) after a thrust load is applied. 先発明に係る構造の1例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向内側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows an example of the structure which concerns on a prior invention from the radial direction inner side of each disk. 図17の拡大Y−Y断面図。FIG. 18 is an enlarged YY sectional view of FIG. 17. スラスト玉軸受を構成する外輪を取り出し、図17と反対側から見た状態で示す斜視図。The perspective view shown in the state which took out the outer ring | wheel which comprises a thrust ball bearing, and was seen from the opposite side to FIG. 図18からスラスト玉軸受を構成する外輪を取り出した状態で示す断面図。Sectional drawing shown in the state which took out the outer ring | wheel which comprises a thrust ball bearing from FIG. 外輪軌道の熱処理に伴って外輪が変形する状態を説明する為の断面図。Sectional drawing for demonstrating the state which an outer ring deform | transforms with the heat processing of an outer ring track.

[実施の形態の第1例]
図1〜10は、本発明の実施の形態の第1例を示しており、このうちの図1〜2は、本発明の製造方法により造られるトロイダル型無段変速機用の外輪18bを示している。この外輪18bは、前述の先発明に係るトロイダル型無段変速機に組み込まれる外輪18a(図19〜20参照)と同様、外側面に、前記外輪18bの径方向に貫通する状態で形成した凹部19bの内面を、単一円筒面ではなく、1対の側方凹曲面部29a、29aと中央凹曲面部30aとを連続させた、ゴシックアーチ状の断面形状を有するものとしている。これら各凹曲面29a、30aの断面形状に関する曲率半径と、前記外輪18bを組み付けるべき、図3、9、10に示したトラニオン9bの支持梁部15aの円筒状凸面14aの断面形状の曲率半径との関係は、前記先発明の場合と同様である。
[First example of embodiment]
FIGS. 1-10 has shown the 1st example of embodiment of this invention, and FIGS. 1-2 of these shows the outer ring | wheel 18b for toroidal type continuously variable transmissions manufactured by the manufacturing method of this invention. ing. This outer ring 18b is a recess formed in the outer surface in a state penetrating in the radial direction of the outer ring 18b, like the outer ring 18a (see FIGS. 19 to 20) incorporated in the toroidal-type continuously variable transmission according to the previous invention. The inner surface of 19b is not a single cylindrical surface, but has a Gothic arch-like cross-sectional shape in which a pair of side concave curved surface portions 29a, 29a and a central concave curved surface portion 30a are continuous. The radius of curvature related to the cross-sectional shape of each of the concave curved surfaces 29a, 30a, and the radius of curvature of the cross-sectional shape of the cylindrical convex surface 14a of the support beam portion 15a of the trunnion 9b shown in FIGS. The relationship is the same as in the case of the previous invention.

特に、本発明の製造方法により造られる前記外輪18bの場合には、トロイダル型無段変速機を組み立てた状態で前記円筒状凸面14aと当接する、前記両側方凹曲面部29a、29a部分を、他の部分、即ち、前記中央凹曲面部30aよりも、少しだけ突出させている。従って、これら各凹曲面部29a、30a同士の間には、それぞれ段差部32、32が存在する。これら両段差部32、32の高さ、即ち、前記両側方凹曲面部29a、29aが前記中央凹曲面部30aよりも突出している量は、次述するこれら両側方凹曲面部29a、29aを、前記ゴシックアーチ形状を構成する非同心の部分円筒面形状とすべく、これら両側方凹曲面部29a、29aを金型で押圧して塑性変形させる際に、この金型がこれら両側方凹曲面部29a、29a以外の部分と干渉しない範囲で、できるだけ小さくする。一般的な乗用車用のトロイダル型無段変速機に組み込む、前記外輪18bの場合、前記両段差部32、32の高さは、例えば0.5〜2mm程度確保すれば足りる。   In particular, in the case of the outer ring 18b manufactured by the manufacturing method of the present invention, the both side concave curved surface portions 29a and 29a that are in contact with the cylindrical convex surface 14a in the assembled state of the toroidal type continuously variable transmission, It protrudes slightly from the other portion, that is, the central concave curved surface portion 30a. Accordingly, step portions 32 and 32 exist between the concave curved surface portions 29a and 30a, respectively. The height of these stepped portions 32, 32, that is, the amount by which the both side concave curved surface portions 29a, 29a protrude from the central concave curved surface portion 30a is determined by the following both side concave curved surface portions 29a, 29a. In order to obtain a non-concentric partial cylindrical surface shape constituting the Gothic arch shape, when the side concave curved surface portions 29a, 29a are pressed and plastically deformed by a mold, the mold is deformed on both side concave curved surfaces. It is made as small as possible within a range that does not interfere with the portions other than the portions 29a and 29a. In the case of the outer ring 18b incorporated in a general toroidal type continuously variable transmission for a passenger car, it is sufficient to secure the height of the step portions 32 and 32, for example, about 0.5 to 2 mm.

上述の様な各凹曲面部29a、30aを含む、前記外輪18bの外面形状は、素材となる金属材料(炭素鋼)製の素材を、鍛造加工により順次変形させ、図1〜2に記載した形状に近付ける事により得る。そして、本発明の特徴である、前記両側方凹曲面部29a、29aを、ゴシックアーチ形状を構成する非同心の部分円筒面形状とする直前の、中間素材とする。この中間素材を得るまでの工程は、金型による鍛造加工の分野で広く知られている方法と、基本的には同じである。各工程で使用する金型(パンチ及びダイス)の形状を、得るべき前記外輪18bに合わせて規制する事は勿論である。又、特許請求の範囲に記載した中心孔である、下流側給油路21は、前記中間素材を鍛造加工により形成した後、ボール盤等を使用した切削加工(ドリル加工)により形成する。尚、前記中間素材のうちで外輪軌道28となるべき部分は、高周波焼き入れ等の部分焼き入れにより、熱処理硬化させておく。   The outer surface shape of the outer ring 18b including the concave curved surface portions 29a and 30a as described above is described in FIGS. 1-2 by sequentially deforming a material made of a metal material (carbon steel) as a material by forging. Obtained by approaching the shape. And let the said both-sides concave curved surface part 29a and 29a which is the characteristics of this invention be an intermediate material just before making it the non-concentric partial cylindrical surface shape which comprises Gothic arch shape. The process until obtaining the intermediate material is basically the same as a method widely known in the field of forging by a mold. Of course, the shape of the mold (punch and die) used in each process is regulated according to the outer ring 18b to be obtained. The downstream oil supply passage 21 which is the center hole described in the claims is formed by cutting (drilling) using a drilling machine or the like after the intermediate material is formed by forging. The portion of the intermediate material that is to become the outer ring raceway 28 is heat-treated and hardened by partial quenching such as induction quenching.

上述の様な中間素材を、前記素材に鍛造加工と一部切削加工とを施す事により得た後、この中間素材の外側面側に仕上加工用の金型を押し付ける。この金型の加工面、即ち、この中間素材の一部に押し付けて表面形状をこの中間素材に転写する部分の形状は、次の(1)〜(3)の特徴を有する。
(1) 前記両側方凹曲面部29a、29a(図2の破線ハ、ハに沿った部分)を、ゴシックアーチ形状を構成する非同心の部分凹円筒面形状とすべく、この部分凹円筒面形状と凹凸が逆転した部分凸円筒面形状を、前記両側方凹曲面部29a、29aとなるべき部分に突き当てられる部分に設けている。
(2) 前記部分凸円筒面形状部分が、前記両側方凹曲面部29a、29aとなるべき部分に突き当てられた状態で、前記下流側給油路21の開口部(図2の破線ニに沿った部分)に突き当てられる部分に、この部分を部分円すい状凹面に塑性変形させる、外周面を円すい状若しくは部分円すい状の凸面とした凸部を設けている。
(3) 前記(2)に記載した凸部の中心軸と、前記(1)に記載した1対の部分凸円筒面形状部分との位置関係を、完成後の前記外輪18bに於ける、前記支持軸10aの中心軸と前記両側方凹曲面部29a、29aとの位置関係に一致させている。
After the intermediate material as described above is obtained by subjecting the material to forging and partial cutting, a finishing mold is pressed against the outer surface of the intermediate material. The shape of the processed surface of the mold, that is, the portion of the surface that is pressed against a part of the intermediate material to transfer the surface shape to the intermediate material has the following characteristics (1) to (3).
(1) In order to make the both side concave curved surface portions 29a and 29a (parts along the broken lines c and c in FIG. 2) into a non-concentric partial concave cylindrical surface shape constituting a Gothic arch shape, this partial concave cylindrical surface A partially convex cylindrical surface shape in which the shape and the unevenness are reversed is provided in a portion that abuts against the portion that should become the both side concave curved surface portions 29a and 29a.
(2) In the state where the partially convex cylindrical surface-shaped portion is abutted against the portions to be the both side concave curved surface portions 29a, 29a, the opening portion of the downstream oil supply passage 21 (along the broken line D in FIG. 2). In this case, a convex portion having a conical or partial conical convex surface is provided to plastically deform this portion into a partial conical concave surface.
(3) The positional relationship between the central axis of the convex portion described in (2) above and the pair of partially convex cylindrical surface-shaped portions described in (1) above is determined in the outer ring 18b after completion. It is made to correspond with the positional relationship of the center axis | shaft of the support shaft 10a, and the said both sides concave curved-surface part 29a, 29a.

表面形状が上述の(1)〜(3)の特徴を有するものである、前記金型を前記中間素材に押し付けて、前記両側方凹曲面部29a、29aを、ゴシックアーチ形状を構成する非同心の部分凹円筒面形状に塑性加工すると共に、前記下流側給油路21の開口部を部分円すい状凹面である、中央部基準面33に塑性変形させる。前記金型の各部の形状及び位置関係は、厳密に規制されているので、この金型の各部の形状を転写された、前記中間素材に関しても、前記両側方凹曲面部29a、29aと前記中央部基準面33との形状及び位置関係は、所望通り厳密に規制されたものとなる。この様にして得られたものが、外輪軌道28及び支持軸10aの外周面を除き、完成後の前記外輪18bと同じ表面性状及び寸法を有する、最終中間素材となる。尚、この最終中間素材のうち、前記支持軸10aの先端面の中央部には、例えば図1、4、5に示す様な円すい凹面状の受凹部39を、切削加工等により形成する。この受凹部39の形成作業は、例えば前記支持軸10aを旋盤等の回転高速機械のチャックに把持した状態で切削工具をこの支持軸10aの先端面に突き当てる事により行う。何れにしても、前記受凹部39は、厳密に、この支持軸10aの先端面中央部に位置させる。   The surface shape has the above-mentioned features (1) to (3), the mold is pressed against the intermediate material, and the both side concave curved surface portions 29a and 29a are non-concentric to form a Gothic arch shape. And plastically deforming the opening of the downstream oil supply passage 21 into a central reference surface 33, which is a partially conical concave surface. Since the shape and positional relationship of each part of the mold are strictly regulated, the both side concave curved surface parts 29a and 29a and the center are also transferred with respect to the intermediate material to which the shape of each part of the mold is transferred. The shape and positional relationship with the part reference surface 33 are strictly regulated as desired. What is obtained in this way is the final intermediate material having the same surface properties and dimensions as the outer ring 18b after completion, except for the outer ring raceway 28 and the outer peripheral surface of the support shaft 10a. Of the final intermediate material, a conical concave receiving portion 39 as shown in FIGS. 1, 4 and 5, for example, is formed in the central portion of the front end surface of the support shaft 10a by cutting or the like. The receiving recess 39 is formed, for example, by abutting a cutting tool against the tip surface of the support shaft 10a in a state where the support shaft 10a is held by a chuck of a rotary high-speed machine such as a lathe. In any case, the receiving recess 39 is strictly positioned at the center of the tip surface of the support shaft 10a.

以上の準備が完了した後、前記両側方凹曲面部29a、29aと前記中央部基準面33とを基準として、前記外輪軌道28、及び、前記支持軸10aの外周面に仕上加工を施す。本例の場合、この仕上加工は、図4〜7の様にして行う。
先ず、図4→図5に示す様にして、前記最終中間素材を、工作機械の主軸の先端部に設けたチャック34に組み付ける。この際、前記両側方凹曲面部29a、29aと前記中央部基準面33とを基準として利用する事により、前記最終中間素材の位置決めを図る。具体的には、前記支持軸10aの中心軸と前記主軸の回転中心とを一致させると共に、この支持軸10aの軸方向に関する、前記最終中間素材の位置決めを図る。
After the above preparation is completed, the outer ring raceway 28 and the outer peripheral surface of the support shaft 10a are finished on the basis of the both side concave curved surface portions 29a, 29a and the central portion reference surface 33. In the case of this example, this finishing process is performed as shown in FIGS.
First, as shown in FIGS. 4 to 5, the final intermediate material is assembled to a chuck 34 provided at the tip of the spindle of the machine tool. At this time, the final intermediate material is positioned by using the both side concave curved surface portions 29a and 29a and the central portion reference surface 33 as a reference. Specifically, the center axis of the support shaft 10a is aligned with the center of rotation of the main shaft, and the final intermediate material is positioned in the axial direction of the support shaft 10a.

この為に、前記チャック34の前面の径方向反対側2個所位置に配置した1対のVブロック35、35同士の間に、外径を厳密に規制した円柱状のスペーサ36を掛け渡す。又、このスペーサ36の中央部を径方向に貫通する状態で形成したスライド孔37にがたつきなく挿通した位置決め用受ピン38の先端部に設けたテーパ面を、前記中央部基準面33に係合させる。又、前記主軸と同心に配置された位置決め用押ピン40の先端に形成したテーパ面を、前記受凹部39に係合させる。前記位置決め用受ピン38は、前記主軸及び前記位置決め用押ピン40と同心に配置されており、圧縮ばね41等の弾性部材により、或は流体圧式のアクチュエータ(図示せず)により、前記位置決め用押ピン40に向かう方向の弾力を付与されている。従って、この位置決め用押ピン40の先端面と前記受凹部39とを係合させ、更にこの位置決め用押ピン40により前記最終中間素材を、前記位置決め用受ピン38を押し込めつつ前記チャック34の先端面に向け押圧すれば、前記支持軸10aの中心軸と前記主軸の回転中心とを一致させると共に、この支持軸10aの軸方向に関する、前記最終中間素材の位置決めを図れる。この状態で、前記塑性加工によりこの最終中間素材に形成された、前記両側方凹曲面部29a、29aと前記スペーサ36の外周面とが当接する。   For this purpose, a columnar spacer 36 whose outer diameter is strictly regulated is spanned between a pair of V blocks 35 and 35 arranged at two positions on the front side of the chuck 34 in the radial direction. In addition, a taper surface provided at the tip of the positioning receiving pin 38 that is inserted into the slide hole 37 formed so as to penetrate the central portion of the spacer 36 in the radial direction without rattling is formed on the central portion reference surface 33. Engage. Further, a tapered surface formed at the tip of the positioning push pin 40 arranged concentrically with the main shaft is engaged with the receiving recess 39. The positioning receiving pin 38 is disposed concentrically with the main shaft and the positioning push pin 40, and is provided with an elastic member such as a compression spring 41 or a hydraulic actuator (not shown). Elasticity in the direction toward the push pin 40 is applied. Accordingly, the front end surface of the positioning push pin 40 and the receiving recess 39 are engaged, and the final intermediate material is pushed in by the positioning push pin 40 while the positioning receiving pin 38 is pushed in. By pressing toward the surface, the center axis of the support shaft 10a and the center of rotation of the main shaft can coincide with each other, and the final intermediate material can be positioned in the axial direction of the support shaft 10a. In this state, the both side concave curved surface portions 29a, 29a formed on the final intermediate material by the plastic working abut against the outer peripheral surface of the spacer 36.

そこで、図6〜7に示す様にして、前記外輪軌道28、及び、前記支持軸10aの外周面に仕上加工を施す。このうち、この支持軸10aの外周面の仕上加工は、前記主軸と共に前記最終中間素材を回転させつつ、図6に示す様に、切削工具42により前記支持軸10aの外周面を削り取る事により行う。又、前記外輪軌道28の仕上加工は、前記主軸と共に前記最終中間素材を回転させつつ、図7に示す様に、外周面の母線形状を、完成後の前記外輪軌道28の母線形状に一致させた(凹凸が逆である)砥石43を、この砥石43の中心軸周りに回転させつつ、この外輪軌道28とすべき部分に押し付ける事により行う。   Therefore, as shown in FIGS. 6 to 7, the outer ring raceway 28 and the outer peripheral surface of the support shaft 10a are finished. Among these, the finishing of the outer peripheral surface of the support shaft 10a is performed by scraping the outer peripheral surface of the support shaft 10a with a cutting tool 42 as shown in FIG. 6 while rotating the final intermediate material together with the main shaft. . Further, in the finishing process of the outer ring raceway 28, while rotating the final intermediate material together with the main shaft, as shown in FIG. 7, the bus bar shape of the outer peripheral surface is matched with the bus bar shape of the outer ring raceway 28 after completion. Further, the grindstone 43 (with the concavities and convexities being reversed) is rotated by rotating the grindstone 43 around the central axis of the grindstone 43 against the portion to be the outer ring raceway 28.

上述の様に構成する本例の製造方法の場合には、前記凹部19bのうちで前記支持梁部15aの円筒状凸面14aと当接する前記両側方凹曲面部29a、29a部分、及び、前記下流側給油路21の開口部の中央部基準面33部分の塑性加工を、金型の加工面を中間素材のうちの加工すべき部分に押し付ける事により、容易且つ迅速に行える。この為、前記トラニオン9bに対するパワーローラの変位を円滑に行わせて、高い伝達効率を確保でき、しかも、優れた耐久性を確保できる構造を実現する為の前記外輪18bを、能率良く製造できる。この結果、優れた性能を有するトロイダル型無段変速機の低廉化に寄与できる。   In the case of the manufacturing method of the present example configured as described above, the both side concave curved surface portions 29a and 29a contacting the cylindrical convex surface 14a of the support beam portion 15a in the concave portion 19b, and the downstream side Plastic processing of the center reference surface 33 portion of the opening of the side oil supply passage 21 can be performed easily and quickly by pressing the processing surface of the mold against the portion of the intermediate material to be processed. For this reason, the outer ring 18b for realizing a structure that can smoothly displace the power roller with respect to the trunnion 9b to ensure high transmission efficiency and ensure excellent durability can be efficiently manufactured. As a result, it is possible to contribute to lowering the cost of the toroidal continuously variable transmission having excellent performance.

特に、前記外輪18bは、単一のトロイダル型無段変速機に複数個設けられて、それぞれがパワーローラを回転自在に支持すると共に、変速比の変更時にこれら各パワーローラの傾転角を一致させる(同期安定性を確保する)為、各部の寸法を厳密に一致させる必要がある。例えば、図8に示した、スラスト玉軸受17(図12参照)を構成する前記外輪軌道28のピッチ円直径D、前記外輪18bの傾転中心から前記スラスト玉軸受17を構成する各玉26、26の中心までの高さH、前記支持軸10aの外径d、各部の対称性等は、厳密に規制する必要がある。本例の製造方法によれば、これら各寸法D、H、d及び各部の対称性を、比較的容易に、且つ、高精度に規制できる。尚、これら各部の対称性とは、前記ピッチ円直径Dの中心と、前記支持軸10aの外径dの中心と、前記両側方凹曲面部29a、29aと係合したスペーサ36の中心(支持梁部15aの中心軸、或いは、これら両側方凹曲面部29a、29aの幅方向中央位置でも同じ)とが一致する程度を言う。言い換えれば、前記支持軸10aの外周面に関する中心軸の延長線上から、前記ピッチ円直径Dの中心及び前記スペーサ36の中心がずれている程度を言う。これら各中心が一致するほど、言い換えれば前記対称性が良好であるほど、前記各パワーローラの同期安定性を良好にできる。   In particular, a plurality of outer rings 18b are provided in a single toroidal-type continuously variable transmission, each of which rotatably supports the power roller, and the tilt angles of the power rollers coincide with each other when the gear ratio is changed. In order to achieve this (to ensure synchronization stability), it is necessary to match the dimensions of each part strictly. For example, as shown in FIG. 8, the pitch circle diameter D of the outer ring raceway 28 constituting the thrust ball bearing 17 (see FIG. 12), each ball 26 constituting the thrust ball bearing 17 from the tilt center of the outer ring 18b, The height H to the center of 26, the outer diameter d of the support shaft 10a, the symmetry of each part, etc. need to be strictly regulated. According to the manufacturing method of this example, the dimensions D, H, d and the symmetry of each part can be regulated relatively easily and with high accuracy. It should be noted that the symmetry of each of these parts means that the center of the pitch circle diameter D, the center of the outer diameter d of the support shaft 10a, and the center of the spacer 36 engaged with the side concave curved surface parts 29a, 29a (support The degree to which the central axis of the beam portion 15a coincides with the same in the center position in the width direction of the both side concave curved surface portions 29a and 29a. In other words, it means the degree of deviation of the center of the pitch circle diameter D and the center of the spacer 36 from the extension line of the central axis with respect to the outer peripheral surface of the support shaft 10a. As these centers coincide, in other words, the better the symmetry, the better the synchronization stability of the power rollers.

尚、上述の様にして造った前記外輪18bは、図9に示す様に前記トラニオン9aの支持梁部15aと組み合わせ、更に、前記外輪軌道28上に、複数個の玉26、26(図12参照)を介してパワーローラ8aを配置する事により、前記スラスト玉軸受17を構成する。そして、図10に示す様なパワーローラユニットとする。   The outer ring 18b manufactured as described above is combined with the support beam portion 15a of the trunnion 9a as shown in FIG. 9, and a plurality of balls 26, 26 (see FIG. 12) are disposed on the outer ring raceway 28. The thrust ball bearing 17 is configured by arranging the power roller 8a via the reference). A power roller unit as shown in FIG.

[実施の形態の第2例]
図11は、本発明の実施の形態の第2例を示している。本例の場合には、外輪18cの外側面に形成した凹部19cの両側部分にそれぞれ形成した1対の側方凹曲面部29b、29bのうち、前記外輪18cの径方向中間部のみを、中央凹曲面部30b及びこれら両側方凹曲面部29b、29bのこの外輪18cの径方向両端部よりも突出させている。
この為本例の場合には、前記両側方凹曲面部29b、29bのうちで支持梁部15aの円筒状凸面14a(図3参照)と当接する部分を、ゴシックアーチ形状を構成する部分凹円筒面状に加工する際に要する力を、上述した実施の形態の第1例の場合に比べても、より一層低減できる。
その他の部分の構成及び作用は、上述した実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
[Second Example of Embodiment]
FIG. 11 shows a second example of the embodiment of the present invention. In the case of this example, of the pair of side concave curved surface portions 29b and 29b formed on both side portions of the concave portion 19c formed on the outer side surface of the outer ring 18c, only the intermediate portion in the radial direction of the outer ring 18c is The concave curved surface portion 30b and the both side concave curved surface portions 29b and 29b are protruded from both ends in the radial direction of the outer ring 18c.
For this reason, in the case of this example, a portion of the both side concave curved surface portions 29b and 29b that abuts on the cylindrical convex surface 14a (see FIG. 3) of the support beam portion 15a is a partially concave cylinder constituting a Gothic arch shape. The force required for processing into a planar shape can be further reduced compared to the case of the first example of the embodiment described above.
Since the configuration and operation of the other parts are the same as in the first example of the above-described embodiment, illustration and description regarding the equivalent parts are omitted.

1a、1b 入力ディスク
2 入力回転軸
3 入力側内側面
4 出力歯車
5 出力筒
6 出力ディスク
7 出力側内側面
8、8a パワーローラ
9、9a トラニオン
10、10a 支持軸
11 駆動軸
12 押圧装置
13 傾転軸
14、14a 円筒状凸面
15、15a 支持梁部
16 ラジアルニードル軸受
17、17a スラスト玉軸受
18、18a、18b、18c 外輪
19、19a、19b、19c 凹部
20 ラジアルニードル軸受
21 下流側給油路
22 上流側給油路
23 給油パイプ
24 プーリ
25 段差面
26 玉
27 内輪軌道
28 外輪軌道
29、29a、29b 側方凹曲面部
30、30a、30b 中央凹曲面部
31 凹孔
32 段差部
33 中央部基準面
34 チャック
35 Vブロック
36 スペーサ
37 スライド孔
38 位置決め用受ピン
39 受凹部
40 位置決め用押ピン
41 圧縮ばね
42 切削工具
43 砥石
DESCRIPTION OF SYMBOLS 1a, 1b Input disk 2 Input rotary shaft 3 Input side inner surface 4 Output gear 5 Output cylinder 6 Output disk 7 Output side inner surface 8, 8a Power roller 9, 9a Trunnion 10, 10a Support shaft 11 Drive shaft 12 Press device 13 Inclination Roller shaft 14, 14a Cylindrical convex surface 15, 15a Support beam 16 Radial needle bearing 17, 17a Thrust ball bearing 18, 18a, 18b, 18c Outer ring 19, 19a, 19b, 19c Recess 20 Radial needle bearing 21 Downstream oil supply path 22 Upstream oil supply passage 23 Oil supply pipe 24 Pulley 25 Stepped surface 26 Ball 27 Inner ring raceway 28 Outer ring raceway 29, 29a, 29b Side concave curved surface portion 30, 30a, 30b Central concave curved surface portion 31 Recessed hole 32 Stepped portion 33 Central portion reference surface 34 Chuck 35 V block 36 Spacer 37 Slide hole 38 Position Receiving pin 39 receiving recess 40 positioning push pin 41 compression spring 42 the cutting tool 43 whetstone because

Claims (2)

支持梁部の円筒状凸面と係合させる事によりトラニオンに対し揺動変位を可能に支持すと共にパワーローラを回転自在に支持すべく、外側面に径方向に貫通する凹部を、内側面の中央部に支持軸を、この支持軸の中心部に外側面側に開口する中心孔を、それぞれ設けて成り、前記凹部は、幅方向両側部分に設けられ、断面形状の曲率半径が前記円筒状凸面の曲率半径よりも大きな1対の側方凹曲面部を備えたゴシックアーチ状の断面形状を有するものであり、前記支持軸の周囲にラジアル軸受を介して配置されるパワーローラの内側面に形成したスラスト内輪軌道と、内側面に形成したスラスト外輪軌道との間に転動体を設置した状態で使用されるトロイダル型無段変速機用外輪の製造方法であって、前記凹部のうちで前記支持梁部の円筒状凸面と当接する、断面形状がゴシックアーチ状の部分のうちの、少なくとも前記支持梁部の円筒状凸面と当接する部分を、金型の加工面の表面形状を転写する塑性加工により加工すると同時に、前記凹部の内面に位置して前記外側面の中心となる、前記中心孔の開口部に中央部基準面を、前記ゴシックアーチ状の部分を加工する金型のうちの他の部分に設けた第二の加工面を押し付けてこの第二の加工面の形状を転写する塑性加工により形成した後、前記ゴシックアーチ状の部分と前記中央部基準面とを基準として、前記外輪軌道及び前記支持軸の外周面に仕上加工を施す事を特徴とする、トロイダル型無段変速機用外輪の製造方法。   By engaging with the cylindrical convex surface of the support beam, the trunnion is supported so that it can swing and displace, and the power roller can be supported rotatably. A support shaft is provided at the center, and a center hole is formed at the center of the support shaft. The recess is provided at both sides in the width direction, and the curvature radius of the cross-sectional shape is the cylindrical convex surface. Having a Gothic arch-like cross-sectional shape with a pair of side concave curved surface portions larger than the radius of curvature of the power roller, and formed on the inner surface of a power roller disposed around the support shaft via a radial bearing A method for producing an outer ring for a toroidal-type continuously variable transmission used with a rolling element installed between a thrust inner ring raceway and a thrust outer ring raceway formed on an inner surface, wherein the support is supported in the recess. Cylindrical shape of the beam At the same time as processing the portion of the support beam portion abutting with the cylindrical convex surface of the gothic arch shape in contact with the surface by plastic processing that transfers the surface shape of the processing surface of the mold, A central reference surface is provided in the other part of the mold for processing the Gothic arch-shaped part at the opening of the central hole, which is located on the inner surface of the recess and becomes the center of the outer surface. A second working surface is pressed to form the second working surface and the plastic working is performed, and then the outer ring raceway and the support shaft are formed on the basis of the gothic arch-shaped portion and the center reference surface. A method for producing an outer ring for a toroidal-type continuously variable transmission, characterized in that the outer peripheral surface is finished. 前記凹部の内面のうちで、前記支持梁部の円筒状凸面と当接する部分を他の部分よりも突出させた中間素材を形成した後、この他の部分よりも突出した部分、及び、前記中心孔の開口部にのみ、前記金型の加工面を押し付ける、請求項1に記載したトロイダル型無段変速機用外輪の製造方法。   Of the inner surface of the concave portion, after forming an intermediate material in which the portion that contacts the cylindrical convex surface of the support beam portion protrudes from the other portion, the portion protruding from the other portion, and the center The manufacturing method of the outer ring | wheel for toroidal type continuously variable transmissions of Claim 1 which presses the process surface of the said metal mold | die only to the opening part of a hole.
JP2010254923A 2010-11-15 2010-11-15 Manufacturing method of outer ring for toroidal type continuously variable transmission Active JP5488416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254923A JP5488416B2 (en) 2010-11-15 2010-11-15 Manufacturing method of outer ring for toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254923A JP5488416B2 (en) 2010-11-15 2010-11-15 Manufacturing method of outer ring for toroidal type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2012107644A JP2012107644A (en) 2012-06-07
JP5488416B2 true JP5488416B2 (en) 2014-05-14

Family

ID=46493481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254923A Active JP5488416B2 (en) 2010-11-15 2010-11-15 Manufacturing method of outer ring for toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5488416B2 (en)

Also Published As

Publication number Publication date
JP2012107644A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US9188206B2 (en) Toroidal continuously variable transmission
JP2002372114A (en) Frictional continuously variable transmission
US6637107B2 (en) Method of manufacturing disk for variator
JP4164680B2 (en) Toroidal type continuously variable transmission disk processing method
US20050187065A1 (en) Manufacturing method for variator part of torodidal-type continuously variable transmission, variator part of toroidal-type continuously variable transmission and toroidal-type continuously variable transmission
JP5488416B2 (en) Manufacturing method of outer ring for toroidal type continuously variable transmission
JP5056591B2 (en) Toroidal continuously variable transmission
JP5747723B2 (en) Trunnion of toroidal type continuously variable transmission and processing method thereof
US6074324A (en) Toroidal type continuously variable transmission
JP3951401B2 (en) Loading cam for toroidal type continuously variable transmission
JP3621027B2 (en) Method for manufacturing disc for variator
JP3783507B2 (en) Machining method of toroidal type continuously variable transmission disk
JPH11210760A (en) Power roller bearing of toroidal continuously variable transmission
US6176806B1 (en) Cam disk for toroidal type continuously variable transmission
JP3951499B2 (en) Power roller bearing for toroidal type continuously variable transmission
JP5126206B2 (en) Toroidal continuously variable transmission
JP5953961B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP3852188B2 (en) Method for manufacturing intermediate disk for toroidal continuously variable transmission
JP4062950B2 (en) Toroidal continuously variable transmission
JP4178220B2 (en) Manufacturing method of disc for variator of full toroidal type continuously variable transmission
US6374477B1 (en) Method for working input shaft for toroidal-type continuously variable transmission
JP3981515B2 (en) Method for manufacturing disc for variator
JP5381797B2 (en) Manufacturing method of toroidal type continuously variable transmission
JP4915287B2 (en) Toroidal continuously variable transmission
JP4075598B2 (en) Manufacturing method of toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5488416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150