JP5126206B2 - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP5126206B2
JP5126206B2 JP2009267177A JP2009267177A JP5126206B2 JP 5126206 B2 JP5126206 B2 JP 5126206B2 JP 2009267177 A JP2009267177 A JP 2009267177A JP 2009267177 A JP2009267177 A JP 2009267177A JP 5126206 B2 JP5126206 B2 JP 5126206B2
Authority
JP
Japan
Prior art keywords
outer ring
concave
cylindrical convex
continuously variable
support beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009267177A
Other languages
Japanese (ja)
Other versions
JP2011112109A (en
Inventor
大樹 西井
俊彦 佐藤
英司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009267177A priority Critical patent/JP5126206B2/en
Priority to US12/953,881 priority patent/US8876654B2/en
Priority to DE102010052596.0A priority patent/DE102010052596B4/en
Publication of JP2011112109A publication Critical patent/JP2011112109A/en
Application granted granted Critical
Publication of JP5126206B2 publication Critical patent/JP5126206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、自動車用の自動変速機として利用するトロイダル型無段変速機の改良に関する。具体的には、トラニオンに対するパワーローラの変位を円滑に行わせて、高い伝達効率を確保でき、しかも、優れた耐久性を確保できる構造の実現を図るものである。   The present invention relates to an improvement of a toroidal type continuously variable transmission used as an automatic transmission for an automobile. Specifically, the power roller is smoothly displaced with respect to the trunnion so as to achieve a structure capable of ensuring high transmission efficiency and ensuring excellent durability.

自動車用変速装置としてトロイダル型無段変速機を使用する事が多くの刊行物に記載され、且つ、一部で実施されて周知である。特に、特許文献1には、各種構造のトロイダル型無段変速機が記載されている。図5に、この特許文献1に記載されており、現在実施されているトロイダル型無段変速機の基本構成を示している。先ず、この従来構造の第1例に就いて、簡単に説明する。1対の入力側ディスク1a、1bを入力回転軸2に対し、それぞれがトロイド曲面(断面円弧形の凹面)であって特許請求の範囲に記載した軸方向片側面に相当する入力側内側面3、3同士を互いに対向させた状態で、互いに同心に、且つ、同期した回転を自在に支持している。   The use of toroidal continuously variable transmissions as automotive transmissions has been described in many publications and is partly implemented and well known. In particular, Patent Document 1 describes a toroidal continuously variable transmission having various structures. FIG. 5 shows a basic configuration of a toroidal type continuously variable transmission which is described in Patent Document 1 and is currently being implemented. First, the first example of this conventional structure will be briefly described. A pair of input side disks 1a and 1b with respect to the input rotation shaft 2, each of which is a toroidal curved surface (concave arc-shaped concave surface) and corresponding to one axial side surface recited in the claims. In a state where the three and three are opposed to each other, concentric and synchronized rotation is supported freely.

又、上記入力回転軸2の中間部周囲に、中間部外周面に出力歯車4を固設した出力筒5を、この入力回転軸2に対する回転を自在に支持している。又、この出力筒5の両端部に出力側ディスク6、6を、スプライン係合により、この出力筒5と同期した回転自在に支持している。この状態で、それぞれがトロイド曲面であって特許請求の範囲に記載した軸方向片側面に相当する、上記両出力側ディスク6、6の出力側内側面7、7が、上記両入力側内側面3、3に対向する。   An output cylinder 5 having an output gear 4 fixed to the outer peripheral surface of the intermediate portion is supported around the intermediate portion of the input rotary shaft 2 so as to freely rotate with respect to the input rotary shaft 2. Further, output side disks 6 and 6 are supported at both ends of the output cylinder 5 so as to be rotatable in synchronization with the output cylinder 5 by spline engagement. In this state, each of the output side inner surfaces 7 and 7 of the output side disks 6 and 6, each of which is a toroidal curved surface and corresponding to one axial side surface recited in the claims, is the both input side inner side surfaces. 3 and 3 are opposed.

又、上記入力回転軸2の周囲で上記入力側、出力側両内側面3、7同士の間部分(キャビティ)に、それぞれの周面を球状凸面としたパワーローラ8、8を、2個ずつ配置している。これら各パワーローラ8、8は、それぞれトラニオン9、9の内側面に、基半部と先半部とが偏心した支持軸10、10と複数の転がり軸受とを介して、これら各支持軸10、10の先半部回りの回転、及び、これら各支持軸10、10の基半部を中心とする若干の揺動変位自在に支持されている。   Further, two power rollers 8 and 8 each having a spherical convex surface on each of the peripheral surfaces (cavities) between the input side and output side inner side surfaces 3 and 7 around the input rotation shaft 2 are provided. It is arranged. The power rollers 8 and 8 are respectively connected to the inner surfaces of the trunnions 9 and 9 via support shafts 10 and 10 whose base half and tip half are eccentric and a plurality of rolling bearings. 10 is supported in such a manner that it can be rotated about the front half of the front half and a small amount of swinging about the base half of each of the support shafts 10 and 10.

又、上記各トラニオン9、9は、それぞれの長さ方向(図5の表裏方向)両端部にこれら各トラニオン9、9毎に互いに同心に設けられた傾転軸を中心として揺動変位自在である。これら各トラニオン9、9を揺動(傾斜)させる動作は、油圧式のアクチュエータにより、これら各トラニオン9、9を上記各傾転軸の軸方向に変位させる事により行う。変速時には、上記各アクチュエータへの圧油の給排により、上記各トラニオン9、9を上記各傾転軸の軸方向に変位させる。この結果、上記各パワーローラ8、8の周面と上記入力側、出力側各内側面3、7との接触部(トラクション部)の接線方向に作用する力の方向が変化する(サイドスリップが発生する)ので、上記各トラニオン9、9が上記各傾転軸を中心として揺動変位する。   The trunnions 9 and 9 are swingable and displaceable about the tilting shafts provided concentrically for each trunnion 9 and 9 at both ends in the length direction (front and back direction in FIG. 5). is there. The operation of swinging (tilting) each of the trunnions 9 and 9 is performed by displacing each of the trunnions 9 and 9 in the axial direction of each of the tilt shafts by a hydraulic actuator. At the time of shifting, the trunnions 9 and 9 are displaced in the axial direction of the tilt shafts by supplying and discharging pressure oil to and from the actuators. As a result, the direction of the force acting in the tangential direction of the contact portion (traction portion) between the peripheral surface of each of the power rollers 8 and 8 and each of the input side and output side inner surfaces 3 and 7 changes (side slip occurs). Therefore, the trunnions 9, 9 are oscillated and displaced about the tilt axes.

上述の様なトロイダル型無段変速機の運転時には、駆動軸11により一方(図5の左方)の入力側ディスク1aを、ローディングカム式の押圧装置12を介して回転駆動する。この結果、前記入力回転軸2の両端部に支持された1対の入力側ディスク1a、1bが、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、上記各パワーローラ8、8を介して前記両出力側ディスク6、6に伝わり、前記出力歯車4から取り出される。   During operation of the toroidal type continuously variable transmission as described above, one input side disk 1a is rotated by the drive shaft 11 via a loading cam type pressing device 12. As a result, the pair of input-side disks 1a and 1b supported at both ends of the input rotation shaft 2 rotate synchronously while being pressed toward each other. Then, this rotation is transmitted to the output side disks 6 and 6 through the power rollers 8 and 8 and is taken out from the output gear 4.

上記入力回転軸2と上記出力歯車4との回転速度の比を変える場合で、先ず入力回転軸2と出力歯車4との間で減速を行う場合には、上記各トラニオン9、9を図5に示す位置に揺動させ、上記各パワーローラ8、8の周面を、上記各入力側ディスク1a、1bの入力側内側面3、3の中心寄り部分と上記両出力側ディスク6、6の出力側内側面7、7の外周寄り部分とにそれぞれ当接させる。反対に、増速を行う場合には、上記各トラニオン9、9を図5と反対方向に揺動させ、上記各パワーローラ8、8の周面を、上記両入力側ディスク1a、1bの入力側内側面3、3の外周寄り部分と上記両出力側ディスク6、6の出力側内側面7、7の中心寄り部分とにそれぞれ当接させる。上記各トラニオン9、9の揺動角度を中間にすれば、上記入力回転軸2と出力歯車4との間で、中間の速度比(変速比)を得られる。   When the ratio of the rotational speed between the input rotary shaft 2 and the output gear 4 is changed, and when deceleration is first performed between the input rotary shaft 2 and the output gear 4, the trunnions 9 and 9 are shown in FIG. The power rollers 8 and 8 are swung to the positions shown in FIG. 3 so that the peripheral surfaces of the input-side discs 1a and 1b and the output-side discs 6 and 6 It is made to contact | abut to the outer peripheral side part of the output side inner surfaces 7 and 7, respectively. On the contrary, when the speed is increased, the trunnions 9 and 9 are swung in the direction opposite to that shown in FIG. 5, and the peripheral surfaces of the power rollers 8 and 8 are input to the input disks 1a and 1b. It is made to contact | abut to the outer periphery side part of the side inner side surfaces 3 and 3 and the center side part of the output side inner side surfaces 7 and 7 of the said output side discs 6 and 6, respectively. An intermediate speed ratio (transmission ratio) can be obtained between the input rotary shaft 2 and the output gear 4 by setting the swing angles of the trunnions 9 and 9 to an intermediate position.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、入力側、出力側各ディスク1a、1b、6と上記各パワーローラ8、8とが、前記押圧装置12が発生する押圧力(推力)に基づいて弾性変形する。そして、この弾性変形に伴って、上記各ディスク1a、1b、6が軸方向に変位する。又、上記押圧装置12が発生する押圧力は、上記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って上記各部材の弾性変形量も多くなる。従って、上記トルクの変動に拘らず、上記入力側、出力側各側面3、7と上記各パワーローラ8、8の周面との接触状態を適正に維持する為に、これら各パワーローラ8、8を上記各トラニオン9、9に対し、上記各ディスク1a、1b、6の軸方向に変位させる機構が必要になる。図5に記載した従来構造の第1例の場合には、上記各パワーローラ8、8を支持した前記各支持軸10、10の先半部を、同じく基半部を中心として揺動変位させる事により、上記各パワーローラ8、8を上記軸方向に変位させる様にしている。   During operation of the toroidal type continuously variable transmission as described above, the members used for power transmission, that is, the input side and output side disks 1a, 1b, 6 and the power rollers 8, 8 are It is elastically deformed based on the pressing force (thrust) generated by the pressing device 12. And along with this elastic deformation, each said disk 1a, 1b, 6 is displaced to an axial direction. Further, the pressing force generated by the pressing device 12 increases as the torque transmitted by the toroidal continuously variable transmission increases, and the amount of elastic deformation of each member increases accordingly. Accordingly, in order to properly maintain the contact state between the input and output side surfaces 3 and 7 and the peripheral surfaces of the power rollers 8 and 8 irrespective of the torque fluctuation, 8 is required to displace the disc 8 in the axial direction of the discs 1a, 1b, 6 with respect to the trunnions 9, 9. In the case of the first example of the conventional structure shown in FIG. 5, the first half of each of the support shafts 10 and 10 that support the power rollers 8 and 8 is also oscillated and displaced about the base half. Thus, the power rollers 8, 8 are displaced in the axial direction.

この様な従来構造の第1例の場合、上記各パワーローラ8、8を上記軸方向に変位させる為の構造が複雑で、部品製作、部品管理、組立作業が何れも面倒になり、コストが嵩む事が避けられない。この様な問題を解決する為の技術として前記特許文献1には、図6〜11に示す様な構造が記載されている。本発明は、この図6〜11に示した従来構造の第2例を改良するものであるから、次に、この従来構造の第2例に就いて説明する。この従来構造の第2例の特徴は、トラニオン9aに対してパワーローラ8aを、入力側、出力側各ディスク1a、1b、6(図5参照)の軸方向の変位を可能に支持する部分の構造にあり、トロイダル型無段変速機全体としての構造及び作用は、前述の図5に示した従来構造の第1例と同様である。   In the case of the first example of such a conventional structure, the structure for displacing each of the power rollers 8 and 8 in the axial direction is complicated, and parts production, parts management, and assembly work are both troublesome and costly. It is inevitable that it is bulky. As a technique for solving such a problem, Patent Document 1 describes a structure as shown in FIGS. Since the present invention improves the second example of the conventional structure shown in FIGS. 6 to 11, the second example of the conventional structure will be described next. The feature of the second example of this conventional structure is that the power roller 8a is supported by the trunnion 9a so that the axial displacement of each of the input side and output side disks 1a, 1b, 6 (see FIG. 5) is possible. The overall structure and operation of the toroidal type continuously variable transmission are the same as those of the first example of the conventional structure shown in FIG.

上記従来構造の第2例を構成するトラニオン9aは、両端部に互いに同心に設けられた1対の傾転軸13、13と、これら両傾転軸13、13同士の間に存在し、少なくとも上記入力側、出力側両ディスク1a、1b、6の径方向(図7、9〜11の上下方向)に関する内側(図7、9〜11の上側)の側面を円筒状凸面14とした、支持梁部15とを備える。上記両傾転軸13、13は、それぞれラジアルニードル軸受16、16を介して、ヨーク(周知構造である為、図示せず)或いは揺動フレームの支持板部(特許文献1の図71、72の符号13、14参照)に、揺動を可能に支持する。   The trunnion 9a constituting the second example of the conventional structure exists between a pair of tilting shafts 13 and 13 provided concentrically with each other at both ends, and between these tilting shafts 13 and 13, and at least A support having a cylindrical convex surface 14 on the inner side (upper side in FIGS. 7 and 9 to 11) in the radial direction (the vertical direction in FIGS. 7 and 9 to 11) of both the input side and output side disks 1 a, 1 b and 6. And a beam portion 15. Both the tilting shafts 13 and 13 are respectively connected to a yoke (not shown in the drawing because it has a well-known structure) or a support plate portion of a swing frame (FIGS. 71 and 72 of Patent Document 1) via radial needle bearings 16 and 16, respectively. Are supported so as to be able to swing.

又、上記円筒状凸面14の中心軸イは、図7、10に示す様に、上記両傾転軸13、13の中心軸ロと平行で、これら両傾転軸13、13の中心軸ロよりも、上記各ディスク1a、1b、6の径方向に関して外側(図7、9〜11の下側)に存在する。又、上記支持梁部15とパワーローラ8aの外側面との間に設けるスラスト玉軸受17を構成する外輪18の外側面に、部分円筒面状の凹部19を、この外側面を径方向に横切る状態で設けている。そして、この凹部19と、上記支持梁部15の円筒状凸面14とを係合させ、上記トラニオン9aに対して上記外輪18を、上記各ディスク1a、1b、6の軸方向に関する揺動変位を可能に支持している。上記凹部19の断面形状の曲率半径r19は上記円筒状凸面14の断面形状の曲率半径r14以上(r19≧r14)として、これら凹部19と円筒状凸面14とを、全面若しくはこの凹部19の底部近傍部分で、直接当接させている。 Further, as shown in FIGS. 7 and 10, the central axis A of the cylindrical convex surface 14 is parallel to the central axis B of the both tilting shafts 13 and 13, and the central axis B of the both tilting shafts 13 and 13 is. Rather than the outer side (the lower side of FIGS. 7 and 9 to 11) in the radial direction of the disks 1 a, 1 b and 6. Further, a concave portion 19 having a partially cylindrical surface is formed across the outer surface in the radial direction on the outer surface of the outer ring 18 constituting the thrust ball bearing 17 provided between the support beam portion 15 and the outer surface of the power roller 8a. It is provided in the state. And this recessed part 19 and the cylindrical convex surface 14 of the said support beam part 15 are engaged, The rocking | displacement displacement regarding the axial direction of each said disk 1a, 1b, 6 is carried out for the said outer ring 18 with respect to the said trunnion 9a. I support it as possible. As the recess the radius of curvature r 19 of the cross-sectional shape of 19 the radius of curvature r 14 or more of the cross-sectional shape of the cylindrical convex surface 14 (r 19 ≧ r 14), the recesses 19 and the cylindrical convex surfaces 14, the entire surface or the recess It is made to contact | abut directly in the bottom vicinity part of 19. FIG.

又、上記外輪18の内側面中央部に支持軸10aを、この外輪18と一体に固設して、上記パワーローラ8aをこの支持軸10aの周囲に、ラジアルニードル軸受20を介して、回転自在に支持している。又、上記外輪18及び上記支持軸10aの内部に、上記スラスト玉軸受17及び上記ラジアルニードル軸受20に潤滑油を供給する為の下流側給油路21を、上記支持梁部15の内部に、この下流側給油路21に繋がる上流側給油路22を、それぞれ設けている。これら両給油路21、22は、上記凹部19の中央部に形成した凹孔31を介して、この外輪18の揺動変位に拘らず互いに連通する様にし、更に、上記支持梁部15の外部に、上記上流側給油路22に繋がる給油パイプ23を設けている。この給油パイプ23の上流側端部は、上記トラニオン9aの端部に設けた、同期ケーブルを架け渡す為のプーリ24の内径側に開口させ、このプーリ24の内径側を通じて、潤滑油の供給を可能にしている。   Further, a support shaft 10a is fixed to the center of the inner surface of the outer ring 18 integrally with the outer ring 18, and the power roller 8a is rotatable around the support shaft 10a via a radial needle bearing 20. I support it. Further, a downstream oil supply passage 21 for supplying lubricating oil to the thrust ball bearing 17 and the radial needle bearing 20 is provided inside the outer ring 18 and the support shaft 10a. An upstream oil supply passage 22 connected to the downstream oil supply passage 21 is provided. These oil supply passages 21 and 22 communicate with each other regardless of the rocking displacement of the outer ring 18 through a concave hole 31 formed in the central portion of the concave portion 19, and further, outside the support beam portion 15. In addition, an oil supply pipe 23 connected to the upstream oil supply path 22 is provided. The upstream end portion of the oil supply pipe 23 is opened to the inner diameter side of the pulley 24 provided at the end portion of the trunnion 9 a for bridging the synchronous cable, and the lubricating oil is supplied through the inner diameter side of the pulley 24. Making it possible.

更に、上記トラニオン9aの内側面のうち、上記支持梁部15の両端部と1対の傾転軸13、13との連続部に、互いに対向する1対の段差面25、25を設けている。そして、これら両段差面25、25と、前記スラスト玉軸受17を構成する外輪18の外周面とを、当接若しくは近接対向させて、前記パワーローラ8aからこの外輪18に加わるトラクション力を、何れかの段差面25、25で支承可能としている。   Furthermore, a pair of stepped surfaces 25 and 25 facing each other are provided on the inner surface of the trunnion 9a at a continuous portion between both ends of the support beam 15 and the pair of tilting shafts 13 and 13. . Then, these stepped surfaces 25, 25 and the outer peripheral surface of the outer ring 18 constituting the thrust ball bearing 17 are brought into contact with or in close proximity to each other, and any traction force applied to the outer ring 18 from the power roller 8a is selected. These steps 25 and 25 can be supported.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、上記パワーローラ8aを前記各ディスク1a、1b、6の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ8aの周面と上記各ディスク1a、1b、6との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、入力側、出力側各ディスク1a、1b、6、各パワーローラ8aの弾性変形に基づき、これら各パワーローラ8aをこれら各ディスク1a、1b、6の軸方向に変位させる必要が生じると、これら各パワーローラ8aを回転自在に支持している前記スラスト玉軸受17の外輪18が、外側面に設けた部分円筒面状の凹部19と支持梁部15の円筒状凸面14との当接面を滑らせつつ、この円筒状凸面14の中心軸イを中心として揺動変位する。この揺動変位に基づき、上記各パワーローラ8aの周面のうちで、上記各ディスク1a、1b、6の軸方向片側面と転がり接触する部分が、これら各ディスク1a、1b、6の軸方向に変位し、上記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 8a is displaced in the axial direction of each of the disks 1a, 1b, 6 so as to elastically deform the constituent members. A structure that can appropriately maintain the contact state between the peripheral surface of the power roller 8a and each of the disks 1a, 1b, 6 regardless of the amount can be configured easily and at low cost.
That is, during operation of the toroidal type continuously variable transmission, each of the power rollers 8a is connected to each of the disks 1a, 1b, 6 based on the elastic deformation of the input side, output side disks 1a, 1b, 6, and each power roller 8a. When it is necessary to displace axially, the outer ring 18 of the thrust ball bearing 17 that rotatably supports the power rollers 8a is provided with a concave portion 19 and a supporting beam portion 15 provided on the outer surface of the cylindrical portion. While sliding the contact surface with the cylindrical convex surface 14, the cylindrical convex surface 14 is oscillated and displaced about the central axis a. Based on this oscillating displacement, the portion of the peripheral surface of each power roller 8a that is in rolling contact with the one axial side surface of each disk 1a, 1b, 6 is the axial direction of each disk 1a, 1b, 6. To maintain the above contact state properly.

前述した通り、上記円筒状凸面14の中心軸イは、変速動作の際に各トラニオン9aの揺動中心となる傾転軸13、13の中心軸ロよりも、上記各ディスク1a、1b、6の径方向に関して外側に存在する。従って、上記円筒状凸面14の中心軸イを中心とする揺動変位の揺動半径は、上記変速動作の際の揺動半径よりも大きく、上記入力側ディスク1a、1bと出力側ディスク6との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis A of the cylindrical convex surface 14 is greater than the central axes B of the tilting shafts 13 and 13 that become the oscillation centers of the trunnions 9a during the shifting operation. It exists outside in the radial direction. Therefore, the rocking radius of the rocking displacement centered on the central axis A of the cylindrical convex surface 14 is larger than the rocking radius at the time of the shifting operation, and the input side disks 1a and 1b and the output side disk 6 Has little effect on the change in transmission ratio during the period (can be neglected or remain within an easily modifiable range).

上述の様な従来構造の第2例を実施する場合に、図11の(A)に示す様に、上記凹部19の断面形状の曲率半径r19を、上記円筒状凸面14の断面形状の曲率半径r14よりも大きく(r19>r14)する事が一般的である。この理由は、これら両曲率半径r19、r14を互いに等しく(r19=r14)すると、上記凹部19の内面と上記円筒状凸面14とが、互いに対向する部分の全面に亙り当接し、この当接部に潤滑油を送り込み難くなる為である。上記凹部19の内面と上記円筒状凸面14とは、大きな面圧で当接した状態のまま、互いに揺動変位する為、上記当接部への潤滑油の送り込みが不良になると、金属接触に基づく過大な摩耗を発生し易くなる。 When the second example of the conventional structure as described above is implemented, as shown in FIG. 11A, the curvature radius r 19 of the sectional shape of the concave portion 19 is set to the curvature of the sectional shape of the cylindrical convex surface 14. Generally, it is larger than the radius r 14 (r 19 > r 14 ). The reason for this is that when both the radii of curvature r 19 and r 14 are equal to each other (r 19 = r 14 ), the inner surface of the concave portion 19 and the cylindrical convex surface 14 come into contact with the entire surface of the portions facing each other, This is because it becomes difficult to feed the lubricating oil into the contact portion. Since the inner surface of the concave portion 19 and the cylindrical convex surface 14 are oscillated and displaced with each other in a state where they are in contact with each other with a large surface pressure, if the lubricating oil is poorly fed to the contact portions, metal contact will occur. It becomes easy to generate excessive wear based on it.

但し、上記円筒状凸面14の断面形状の曲率半径r14よりも大きく(r19>r14)した場合にも、次の(1)(2)の様な問題を生じる。
(1) 上記凹部19の内面と上記円筒状凸面14とが局部的に摩耗し易い。
(2) 前記スラスト玉軸受17の耐久性を確保しにくい。
このうちの(1) の問題が生じる理由は、上記凹部19の内面と上記円筒状凸面14とが、図11の(A)に示す様に、この凹部19の底部若しくは底部近傍のみで、ほぼ線接触に近い状態で接触し、接触部の面圧が高くなる為である。
However, when large (r 19> r 14) than the radius of curvature r 14 of the cross-sectional shape of the cylindrical convex 14 also produces the following (1) such problem (2).
(1) The inner surface of the concave portion 19 and the cylindrical convex surface 14 are likely to be locally worn.
(2) It is difficult to ensure the durability of the thrust ball bearing 17.
Of these, the problem (1) occurs because the inner surface of the concave portion 19 and the cylindrical convex surface 14 are almost only at the bottom or near the bottom of the concave portion 19 as shown in FIG. This is because the contact is made in a state close to line contact, and the contact surface pressure becomes high.

又、上記(2) の問題が生じる理由は、前記パワーローラ8aから上記スラスト玉軸受17に加わる大きなスラスト荷重に基づき、前記外輪18が、その内側面側を部分凸円筒とする方向に弾性変形する為である。トロイダル型無段変速機の技術分野で周知の様に、本発明の対象となるハーフトロイダル型のトロイダル型無段変速機の運転時に上記スラスト玉軸受17には、上記パワーローラ8aから大きなスラスト荷重が加わる。そして、このスラスト荷重に基づいて上記スラスト玉軸受17を構成する外輪18が、図11の(B)に誇張して示す様に、上記凹部19の内面を上記円筒状凸面14に倣わせる(これら両面をほぼ全面に亙り当接させる)方向に弾性変形する。そして、この弾性変形に伴って、上記外輪18の内側面に設けた外輪軌道28と、上記パワーローラ8aの外側面に設けた内輪軌道27との距離が、上記外輪18の円周方向に関して不同になる。そして、これら両軌道28、27の距離の相違に伴って、これら両軌道28、27と各玉26、26(図12参照)の転動面との転がり接触部の面圧が、上記外輪18の円周方向に関して著しく不同になる。具体的には、図12にα、αで示した、トラニオン9aの長さ方向(支持梁部15の軸方向)反対側2箇所位置で、上記両軌道28、27と各玉26、26の転動面との転がり接触部の面圧が過大になる。この結果、これら両軌道28、27の転がり疲れ寿命が、上記長さ方向反対側2箇所位置で著しく短くなり、トロイダル型無段変速機の耐久性確保の上で障害になる。   The reason why the problem (2) occurs is that the outer ring 18 is elastically deformed in a direction in which the inner side surface thereof is a partially convex cylinder based on a large thrust load applied to the thrust ball bearing 17 from the power roller 8a. It is to do. As is well known in the technical field of toroidal-type continuously variable transmissions, the thrust ball bearing 17 receives a large thrust load from the power roller 8a when the half-toroidal toroidal-type continuously variable transmission subject to the present invention is operated. Will be added. Based on this thrust load, the outer ring 18 constituting the thrust ball bearing 17 causes the inner surface of the concave portion 19 to follow the cylindrical convex surface 14 as shown exaggeratedly in FIG. These two surfaces are elastically deformed in a direction in which both surfaces are almost entirely contacted. With this elastic deformation, the distance between the outer ring raceway 28 provided on the inner side surface of the outer ring 18 and the inner ring raceway 27 provided on the outer side surface of the power roller 8a is not the same in the circumferential direction of the outer ring 18. become. With the difference in distance between the two tracks 28 and 27, the surface pressure of the rolling contact portion between the tracks 28 and 27 and the rolling surfaces of the balls 26 and 26 (see FIG. 12) is changed to the outer ring 18 described above. It becomes remarkably different with respect to the circumferential direction. Specifically, at the two positions opposite to the length direction of the trunnion 9a (the axial direction of the support beam portion 15) indicated by α and α in FIG. The surface pressure of the rolling contact portion with the rolling surface becomes excessive. As a result, the rolling fatigue life of both the tracks 28 and 27 is remarkably shortened at two positions on the opposite side in the longitudinal direction, which is an obstacle to ensuring the durability of the toroidal continuously variable transmission.

特開2008−25821号公報JP 2008-25821 A

本発明は、上述の様な事情に鑑みて、スラスト玉軸受を構成する外輪の外側面に形成した凹部の内面と、トラニオンを構成する支持梁部に設けた円筒状凸面との接触面積を確保して、これら両面の摩耗を抑え、しかも、上記外輪の弾性変形を抑えて、上記スラスト玉軸受の耐久性を確保し、トロイダル型無段変速機全体としての耐久性を向上させるべく発明したものである。   In view of the circumstances as described above, the present invention secures a contact area between the inner surface of the concave portion formed on the outer surface of the outer ring constituting the thrust ball bearing and the cylindrical convex surface provided on the support beam portion constituting the trunnion. The invention was invented to suppress wear on both sides and to suppress the elastic deformation of the outer ring to ensure the durability of the thrust ball bearing and to improve the durability of the toroidal continuously variable transmission as a whole. It is.

本発明のトロイダル型無段変速機は、前述の特許文献1に記載されて従来から知られているトロイダル型無段変速機と同様に、少なくとも1対のディスクと、複数のトラニオンと、複数のパワーローラとを備える。
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持されている。
又、上記各トラニオンは、軸方向に関して上記各ディスクの軸方向片側面同士の間位置の円周方向に関して複数個所に、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心とする揺動変位を自在に設けられている。
この様な上記各トラニオンは、両端部に互いに同心に設けられた上記1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも上記両ディスクの径方向に関する内側の側面を、上記両傾転軸の中心軸と平行でこの傾転軸の中心軸よりも上記両ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部とを備える。
又、上記各パワーローラは、上記各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、上記両ディスクの軸方向片側面にそれぞれ当接させている。
又、上記各スラスト転がり軸受は、この支持梁部と上記各パワーローラの外側面との間に設けられたもので、この支持梁部側に設けられた外輪と、この外輪の内側面に設けられた外輪軌道と上記パワーローラの外側面に設けられた内輪軌道との間に転動自在に設けられた複数個の転動体とを備える。そして、上記外輪は、この外輪の外側面に設けられた凹部と上記支持梁部の円筒状凸面とを係合させる事により上記各トラニオンに対し、上記両ディスクの軸方向に関する揺動変位を可能に支持している。
The toroidal type continuously variable transmission of the present invention is similar to the conventional toroidal type continuously variable transmission described in Patent Document 1 described above, and includes at least a pair of disks, a plurality of trunnions, and a plurality of trunnions. A power roller.
Each of these disks is supported concentrically and freely in relative rotation with the axial one side surfaces facing each other, each of which is a toroidal curved surface having an arcuate cross section.
Each trunnion is centered on a tilting shaft that is twisted with respect to the central axis of each disc at a plurality of locations in the circumferential direction between the axial side surfaces of each disc in the axial direction. The oscillating displacement is freely provided.
Each such trunnion exists between the pair of tilting shafts concentrically provided at both ends, and between the two tilting shafts, and at least the inner side surface in the radial direction of the two disks. And a support beam portion having a cylindrical convex surface having a central axis that is parallel to the central axis of the two tilting axes and that is present outside the central axis of the tilting axes with respect to the radial direction of the two disks.
Each of the power rollers is rotatably supported on the inner surface of each trunnion via a thrust rolling bearing, and each circumferential surface formed as a spherical convex surface is in contact with one axial side surface of both disks. Touching.
Each thrust rolling bearing is provided between the support beam and the outer surface of each power roller. The outer ring is provided on the support beam and the inner surface of the outer ring. And a plurality of rolling elements provided between the outer ring raceway and the inner ring raceway provided on the outer surface of the power roller. The outer ring can be displaced in the axial direction of the two discs with respect to each trunnion by engaging a concave portion provided on the outer surface of the outer ring with a cylindrical convex surface of the support beam. I support it.

特に、本発明のトロイダル型無段変速機に於いては、上記外輪の外側面に設けられた凹部を、幅方向両側部分に設けられ、断面形状の曲率半径が上記円筒状凸面の曲率半径よりも大きな1対の側方凹曲面部を備えたゴシックアーチ状の断面形状を有するものとしている。そして、上記外輪の外側面に設けられた凹部と上記支持梁部の円筒状凸面とを、上記両側方凹曲面部で当接させている。
この様な本発明のトロイダル型無段変速機を実施する場合に好ましくは、請求項2に記載した発明の様に、上記両側方凹曲面部同士の間に、断面形状の曲率半径が円筒状凸面の曲率半径よりも小さな中央凹曲面部を存在させる。そして、上記両側方凹曲面部の中央側端縁とこの中央凹曲面部の両側縁とを滑らかに連続させる。
尚、上記パワーローラから上記外輪に加わるトラクション力を支承する為の構造は特に問わない。但し、この構造を簡素に構成するには、前述した従来構造の第2例の場合と同様に、上記各トラニオンの内側面のうち、上記支持梁部の両端部と上記両傾転軸との連続部に、互いに対向する1対の段差面を設ける。そして、上記外輪をこれら両段差面同士の間部分に、上記パワーローラからこの外輪に加わるトラクション力を何れかの段差面で支承可能な状態に係合させる。
In particular, in the toroidal continuously variable transmission according to the present invention, the concave portions provided on the outer surface of the outer ring are provided on both side portions in the width direction, and the curvature radius of the cross-sectional shape is greater than the curvature radius of the cylindrical convex surface. Also, it has a Gothic arch-like cross-sectional shape with a large pair of side concave curved surface portions. And the recessed part provided in the outer surface of the said outer ring | wheel and the cylindrical convex surface of the said support beam part are made to contact | abut on the said both side concave curved surface part.
When implementing such a toroidal type continuously variable transmission according to the present invention, it is preferable that the curvature radius of the cross-sectional shape is cylindrical between the both side concave curved surface portions as in the invention described in claim 2. A central concave curved surface portion smaller than the radius of curvature of the convex surface is present. And the center side edge of the said both side concave curved surface part and the both side edges of this central concave curved surface part are made to continue smoothly.
In addition, the structure for supporting the traction force applied to the outer ring from the power roller is not particularly limited. However, in order to simply configure this structure, as in the case of the second example of the conventional structure described above, of the inner surface of each trunnion, the both ends of the support beam and the both tilting shafts A pair of step surfaces facing each other are provided in the continuous portion. Then, the outer ring is engaged with a portion between these step surfaces so that the traction force applied to the outer ring from the power roller can be supported by any step surface.

上述の様に構成する本発明によれば、十分な耐久性を有するトロイダル型無段変速機を実現できる。
即ち、本発明のトロイダル型無段変速機の場合には、スラスト玉軸受を構成する外輪の外側面に形成した凹部を、1対の側方凹曲面部を備えた、断面形状がゴシックアーチ状としている為、この凹部の内面とトラニオンを構成する支持梁部に設けた円筒状凸面とが、これら両面の円周方向に関して2箇所位置で当接する。この為、これら両面の接触面積を確保して、これら両面の摩耗を抑える事ができる。
又、上記両面を、これら両面の円周方向に離隔した2箇所位置で当接させている為、上記外輪に大きなスラスト荷重が加わった場合にも、この外輪が、上記凹部の開口幅を狭くする方向に弾性変形する事を抑えられる。従って、この外輪の内側面に設けた外輪軌道と、パワーローラの外側面に設けた内輪軌道との間隔が、これら両軌道の円周方向に関して不同になる程度を抑えられる。この為、これら両軌道と各玉の転動面との転がり接触部の面圧が、部分的に過大になる事を防止できる。この結果、上記スラスト玉軸受の耐久性、延てはこのスラスト玉軸受を組み込んだトロイダル型無段変速機の耐久性を確保できる。
According to the present invention configured as described above, a toroidal type continuously variable transmission having sufficient durability can be realized.
That is, in the case of the toroidal-type continuously variable transmission according to the present invention, the recess formed in the outer surface of the outer ring constituting the thrust ball bearing is provided with a pair of side concave curved surface portions, and the cross-sectional shape is a Gothic arch shape. Therefore, the inner surface of the recess and the cylindrical convex surface provided on the support beam portion constituting the trunnion abut at two positions in the circumferential direction of both surfaces. For this reason, the contact area of these both surfaces can be ensured and abrasion of these both surfaces can be suppressed.
Further, since the both surfaces are brought into contact with each other at two positions that are separated from each other in the circumferential direction, even when a large thrust load is applied to the outer ring, the outer ring narrows the opening width of the recess. It is possible to suppress elastic deformation in the direction of the movement. Therefore, the extent to which the distance between the outer ring raceway provided on the inner side surface of the outer ring and the inner ring raceway provided on the outer side surface of the power roller is not the same in the circumferential direction of both raceways can be suppressed. For this reason, it can prevent that the surface pressure of the rolling contact part of these both track | trucks and the rolling surface of each ball | bowl is partly excessive. As a result, it is possible to ensure the durability of the thrust ball bearing, and thus the durability of the toroidal continuously variable transmission incorporating the thrust ball bearing.

又、請求項2に記載した発明の様に、両側方凹曲面部の中央側端縁と中央凹曲面部の両側縁とを滑らかに連続させれば、上記凹部の内面と上記支持梁部の円筒状凸面との押し付け合いに伴って、上記両側方凹曲面部同士の間に互いに離れる方向の大きな力が加わった場合でも、上記凹部の底部若しくはその近傍に加わる応力を低減できる。この結果、上記外輪に亀裂等の損傷が発生する事を防止できる。   Further, as in the invention described in claim 2, if the central side edge of the both side concave curved surface portion and the both side edges of the central concave curved surface portion are smoothly continuous, the inner surface of the concave portion and the support beam portion Even when a large force in a direction away from each other is applied between the concave curved surfaces on both sides along with the pressing with the cylindrical convex surface, the stress applied to the bottom portion of the concave portion or the vicinity thereof can be reduced. As a result, it is possible to prevent the outer ring from being damaged such as a crack.

本発明の実施の形態の1例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向内側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows an example of embodiment of this invention from the radial inside of each disk. 図1の拡大X−X断面図。The expanded XX sectional drawing of FIG. スラスト玉軸受を構成する外輪を取り出し、図1と反対側から見た状態で示す斜視図。The perspective view shown in the state which took out the outer ring | wheel which comprises a thrust ball bearing, and was seen from the opposite side to FIG. 図2からスラスト玉軸受を構成する外輪を取り出した状態で示す図。The figure shown in the state which took out the outer ring | wheel which comprises a thrust ball bearing from FIG. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows the 2nd example of the conventional structure from the radial direction outer side of each disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 図7の上方から見た平面図。The top view seen from the upper part of FIG. 図7の右方から見た側面図。The side view seen from the right side of FIG. 図8のY−Y断面図。YY sectional drawing of FIG. 図7のZ−Z断面に相当する図で、パワーローラからスラスト玉軸受にスラスト荷重が加わる前の状態を示す図(A)と、スラスト荷重が加わった後の状態を示す図(B)。FIG. 8 is a view corresponding to the ZZ cross section of FIG. 7, and shows a state before a thrust load is applied from the power roller to the thrust ball bearing, and a view after the thrust load is applied (B). 外輪の弾性変形に伴って転がり接触部の面圧が高くなる部分を示す為、パワーローラ及びプーリを除いて図8と同方向から見た図。FIG. 9 is a view seen from the same direction as FIG. 8 except for the power roller and the pulley in order to show a portion where the surface pressure of the rolling contact portion increases with elastic deformation of the outer ring.

図1〜4は、本発明の実施の形態の1例を示している。尚、本例を含めて本発明の特徴は、外輪18aの外側面に、この外輪18aの直径方向に亙って形成した凹部19aの内面の形状を工夫する事により、この外輪18a及びこの外輪18aを含んで構成するスラスト玉軸受17aの耐久性を確保する点にある。その他の部分の構造及び作用は、前述の図6〜11に示した従来構造の第2例と同様であるから、同等部分には同一符号を付して重複する説明を省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   1 to 4 show an example of an embodiment of the present invention. The feature of the present invention including this example is that the outer ring 18a and the outer ring 18a and the outer ring are formed by devising the shape of the inner surface of the recess 19a formed on the outer surface of the outer ring 18a over the diameter direction of the outer ring 18a. The durability of the thrust ball bearing 17a including 18a is ensured. Since the structure and operation of the other parts are the same as those of the second example of the conventional structure shown in FIGS. 6 to 11 described above, the same parts are denoted by the same reference numerals, and redundant description is omitted or simplified. The description will focus on the features of this example.

本例の構造では、上記凹部19aの内面を、単一円筒面ではなく、1対の側方凹曲面部29、29と中央凹曲面部30とを滑らかに連続させた、ゴシックアーチ状の断面形状を有するものとしている。このうち、上記両側方凹曲面部29、29は、上記凹部19aの幅方向両側部分に設けられており、断面形状の曲率半径r29が、トラニオン9aを構成する支持梁部15の円筒状凸面14の外周面の曲率半径r14よりも大きい(r29>r14)。これに対して、上記中央凹曲面部30は、上記凹部19aの幅方向中央部に設けられており、断面形状の曲率半径r30が、上記円筒状凸面14の外周面の曲率半径r14よりも小さい(r30<r14)。それぞれが上述の様な曲率半径r29、r30を有する、上記両側方凹曲面部29、29と上記中央凹曲面部30とは、これら両側方凹曲面部29、29のこの中央側端縁とこの中央凹曲面部の両側縁30とで互いの接線を共有する状態により、滑らかに連続している。 In the structure of this example, the inner surface of the concave portion 19a is not a single cylindrical surface, but a pair of side concave curved surface portions 29, 29 and a central concave curved surface portion 30 that are smoothly continuous with a Gothic arch-shaped cross section. It has a shape. Among these, the both sides concave portions 29 and 29 are provided in the width direction both sides of the recess 19a, the radius of curvature r 29 of the cross-sectional shape, a cylindrical convex surface of the supporting beam portion 15 constituting the trunnions 9a larger than the radius of curvature r 14 of the outer peripheral surface of 14 (r 29> r 14) . In contrast, the central concave surface portion 30 is provided in the widthwise central portion of the recess 19a, the radius of curvature r 30 of the cross-sectional shape, than the radius of curvature r 14 of the outer peripheral surface of the cylindrical convex surface 14 Is also small (r 30 <r 14 ). The both side concave curved surface portions 29, 29 and the central concave curved surface portion 30, each having the curvature radii r 29 , r 30 as described above, are the center side edges of the both side concave curved surface portions 29, 29. And the both side edges 30 of the central concave curved surface portion share a tangent line with each other so that they are smoothly continuous.

上記外輪18aと上記トラニオン9aとは、この外輪18a側の凹部19aにこのトラニオン9a側の支持梁部15を内嵌する状態に組み合わせる。この様に組み合わせた状態で、この支持梁部15の円筒状凸面14と上記両側方凹曲面部29、29とが、この支持梁部15の円周方向2箇所位置で当接する。これら両当接部に関する中心角θは、上記各曲率半径r29、r30、r14の比に基づいて任意に調節できる。この中心角θが大きくなる程、上記外輪18aが前述の図11の(B)に示す様に弾性変形するのを阻止する効果が大きくなる。但し、上記中心角θが大きくなる程、上記両側方凹曲面部29、29同士の間隔を拡げる方向に加わる力が大きくなり、上記凹部19aの底部乃至はその近傍部分に加わる引っ張り応力が大きくなる。逆に、上記中心角θを小さくする程、上記両側方凹曲面部29、29同士の間隔を拡げる方向に加わる力を抑え、上記凹部19aの底部乃至はその近傍部分に加わる引っ張り応力を小さくできる。但し、上記中心角θを小さくする程、上記外輪18aが前述の図11の(B)に示す様に弾性変形するのを阻止する効果が小さくなる。そこで、上記中心角θを、上記外輪18aの弾性変形を抑え、上記凹部19aの底部乃至はその近傍部分に加わる引っ張り応力が過大にならない範囲で、適正に規制する。具体的には、上記中心角θが90度±30度の範囲に収まる様に、上記各曲率半径r29、r30、r14の比を定める。 The outer ring 18a and the trunnion 9a are combined in a state in which the support beam portion 15 on the trunnion 9a side is fitted in the recess 19a on the outer ring 18a side. In such a combined state, the cylindrical convex surface 14 of the support beam portion 15 and the both side concave curved surface portions 29 and 29 abut at two positions in the circumferential direction of the support beam portion 15. The central angle θ relating to both the abutting portions can be arbitrarily adjusted based on the ratio of the respective curvature radii r 29 , r 30 and r 14 . As the central angle θ increases, the effect of preventing the outer ring 18a from elastically deforming as shown in FIG. However, the greater the central angle θ, the greater the force applied in the direction of widening the gap between the both side concave curved surface portions 29, 29, and the greater the tensile stress applied to the bottom of the recess 19a or the vicinity thereof. . Conversely, the smaller the central angle θ, the smaller the force applied in the direction of widening the gap between the both side concave curved surface portions 29, 29, and the smaller the tensile stress applied to the bottom portion of the concave portion 19a or the vicinity thereof. . However, the smaller the central angle θ, the smaller the effect of preventing the outer ring 18a from elastically deforming as shown in FIG. Therefore, the central angle θ is appropriately regulated within a range in which the elastic deformation of the outer ring 18a is suppressed and the tensile stress applied to the bottom portion of the concave portion 19a or the vicinity thereof is not excessive. Specifically, the ratios of the respective radii of curvature r 29 , r 30 , r 14 are determined so that the central angle θ falls within the range of 90 ° ± 30 °.

上述の様に構成する本例の構造によれば、十分な耐久性を有するトロイダル型無段変速機を実現できる。
即ち、本発明のトロイダル型無段変速機の場合には、前記スラスト玉軸受17aを構成する上記外輪18aの外側面に形成した凹部19aの内面と上記支持梁部15に設けた円筒状凸面14とを、これら両面の円周方向に関して2箇所位置で当接させている。この為、上記凹部19aの内面と上記円筒状凸面14との接触面積を確保して、これら両面の接触部の面圧を低く抑え、これら両面の摩耗を抑える事ができる。
According to the structure of the present example configured as described above, a toroidal continuously variable transmission having sufficient durability can be realized.
That is, in the case of the toroidal continuously variable transmission according to the present invention, the inner surface of the recess 19a formed on the outer surface of the outer ring 18a constituting the thrust ball bearing 17a and the cylindrical convex surface 14 provided on the support beam portion 15. Are brought into contact with each other at two positions in the circumferential direction of both surfaces. For this reason, the contact area of the inner surface of the concave portion 19a and the cylindrical convex surface 14 can be secured, the surface pressure of the contact portions on both surfaces can be kept low, and the wear on both surfaces can be suppressed.

又、上記凹部19aの内面と上記円筒状凸面14とを、上記支持梁部15の円周方向に離隔した2箇所位置で当接させている為、上記外輪18aに大きなスラスト荷重が加わった場合にも、この外輪18aが、前述の図11の(B)に示す様に、内側面側が凸円筒面となる様に弾性変形する事を抑えられる。言い換えれば、上記外輪18aの内側面の高さが、周方向に関して変化しない状態にできる。従って、この外輪18aの内側面に設けた外輪軌道28と、パワーローラ8aの外側面に設けた内輪軌道27との間隔を、これら両軌道28、27の円周方向に関して、実質的に一定にできる(不同になる程度を抑えられる)。この為、上記両軌道28、27と各玉26、26の転動面との転がり接触部の面圧が、部分的に過大になる事を防止できる。この結果、上記スラスト玉軸受17aの耐久性、延てはこのスラスト玉軸受17aを組み込んだトロイダル型無段変速機の耐久性を確保できる。   Also, since the inner surface of the concave portion 19a and the cylindrical convex surface 14 are brought into contact with each other at two positions separated in the circumferential direction of the support beam portion 15, a large thrust load is applied to the outer ring 18a. In addition, the outer ring 18a can be prevented from being elastically deformed so that the inner side becomes a convex cylindrical surface as shown in FIG. 11B. In other words, the height of the inner surface of the outer ring 18a can be kept unchanged in the circumferential direction. Accordingly, the distance between the outer ring raceway 28 provided on the inner side surface of the outer ring 18a and the inner ring raceway 27 provided on the outer side surface of the power roller 8a is substantially constant with respect to the circumferential direction of the both raceways 28 and 27. Yes (to reduce the degree of disparity) For this reason, it can prevent that the surface pressure of the rolling contact part of both the said tracks 28 and 27 and the rolling surface of each ball | bowl 26 and 26 becomes partially excessive. As a result, it is possible to ensure the durability of the thrust ball bearing 17a, and hence the durability of the toroidal type continuously variable transmission incorporating the thrust ball bearing 17a.

更に本例の構造の場合には、前記両側方凹曲面部29、29の中央側端縁と前記中央凹曲面部30の両側縁とを滑らかに連続させているので、上記支持梁部15の円筒状凸面14との押し付け合いに伴って、上記両側方凹曲面部29、29同士の間に互いに離れる方向の大きな力が加わった場合でも、上記凹部19aの底部若しくはその近傍に加わる引っ張り応力を低減できる。この結果、上記外輪18aに亀裂等の損傷が発生する事を防止できる。又、上記中央凹曲面部30を設ける事で、上記凹部19aの底部若しくはその近傍に加わる引っ張り応力を低減できる分、上記外輪18aの損傷防止性能を同じとした場合に、前記中心角θを大きくする事が可能になる。そして、この中心角θを大きくする事により、上記外輪18aの弾性変形を抑える効果を大きくできる。   Furthermore, in the case of the structure of this example, the center side edges of the both side concave curved surface portions 29, 29 and the both side edges of the central concave curved surface portion 30 are smoothly continuous. Even when a large force in the direction away from each other is applied between the both side concave curved surface portions 29, 29 due to the pressing with the cylindrical convex surface 14, a tensile stress applied to the bottom portion of the concave portion 19a or the vicinity thereof is applied. Can be reduced. As a result, it is possible to prevent the outer ring 18a from being damaged such as a crack. Further, by providing the central concave curved surface portion 30, the central angle θ can be increased when the damage prevention performance of the outer ring 18a is the same as the tensile stress applied to the bottom of the concave portion 19a or the vicinity thereof can be reduced. It becomes possible to do. And the effect which suppresses the elastic deformation of the said outer ring | wheel 18a can be enlarged by enlarging this center angle (theta).

1a、1b 入力側ディスク
2 入力回転軸
3 入力側内側面
4 出力歯車
5 出力筒
6 出力側ディスク
7 出力側内側面
8、8a パワーローラ
9、9a トラニオン
10、10a 支持軸
11 駆動軸
12 押圧装置
13 傾転軸
14 円筒状凸面
15 支持梁部
16 ラジアルニードル軸受
17、17a スラスト玉軸受
18、18a 外輪
19、19a 凹部
20 ラジアルニードル軸受
21 下流側給油路
22 上流側給油路
23 給油パイプ
24 プーリ
25 段差面
26 玉
27 内輪軌道
28 外輪軌道
29 側方凹曲面部
30 中央凹曲面部
31 凹孔
DESCRIPTION OF SYMBOLS 1a, 1b Input side disk 2 Input rotating shaft 3 Input side inner surface 4 Output gear 5 Output cylinder 6 Output side disk 7 Output side inner surface 8, 8a Power roller 9, 9a Trunnion 10, 10a Support shaft 11 Drive shaft 12 Press device DESCRIPTION OF SYMBOLS 13 Inclination shaft 14 Cylindrical convex surface 15 Support beam part 16 Radial needle bearing 17, 17a Thrust ball bearing 18, 18a Outer ring 19, 19a Concave part 20 Radial needle bearing 21 Downstream oil supply path 22 Upstream oil supply path 23 Oil supply pipe 24 Pulley 25 Stepped surface 26 Ball 27 Inner ring track 28 Outer ring track 29 Side concave curved surface portion 30 Central concave curved surface portion 31 Concave hole

Claims (2)

それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持された少なくとも1対のディスクと、軸方向に関してこれら各ディスクの軸方向片側面同士の間位置の円周方向に関して複数個所に、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心とする揺動変位を自在に設けられた複数のトラニオンと、これら各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、上記両ディスクの軸方向片側面にそれぞれ当接させた複数のパワーローラとを備え、
上記各トラニオンは、両端部に互いに同心に設けられた上記1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも上記両ディスクの径方向に関する内側の側面を、上記両傾転軸の中心軸と平行でこの傾転軸の中心軸よりも上記両ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部とを備えたものであり、
上記各スラスト転がり軸受は、この支持梁部と上記各パワーローラの外側面との間に設けられたもので、この支持梁部側に設けられた外輪と、この外輪の内側面に設けられた外輪軌道と上記パワーローラの外側面に設けられた内輪軌道との間に転動自在に設けられた複数個の転動体とを備えたものであって、上記外輪は、この外輪の外側面に設けられた凹部と上記支持梁部の円筒状凸面とを係合させる事により上記各トラニオンに対し、上記両ディスクの軸方向に関する揺動変位を可能に支持されているトロイダル型無段変速機に於いて、上記外輪の外側面に設けられた凹部は、幅方向両側部分に設けられ、断面形状の曲率半径が上記円筒状凸面の曲率半径よりも大きな1対の側方凹曲面部を備えたゴシックアーチ状の断面形状を有するものであり、上記外輪の外側面に設けられた凹部と上記支持梁部の円筒状凸面とが、上記両側方凹曲面部で当接している事を特徴とするトロイダル型無段変速機。
At least one pair of discs that are concentrically supported by each other in a state in which one side surfaces in the axial direction, each of which is a toroidal curved surface having an arc-shaped cross section, are opposed to each other so as to be freely rotatable relative to each other, and A plurality of trunnions provided freely at a plurality of locations in the circumferential direction between the side surfaces in the axial direction of the disc, with a swinging displacement centering on a tilting shaft located at a twisted position with respect to the central axis of each disk. And a plurality of powers that are rotatably supported on the inner side surfaces of the respective trunnions via thrust rolling bearings, and whose respective circumferential surfaces have spherical convex surfaces are in contact with one axial side surfaces of both disks. With rollers,
Each trunnion exists between the pair of tilting shafts concentrically provided at both ends and between the two tilting shafts, and at least the inner side surfaces in the radial direction of the two disks A support beam portion having a cylindrical convex surface, having a central axis that is parallel to the central axis of the tilting axis and is present outside the central axis of the tilting axis with respect to the radial direction of the two disks.
Each thrust rolling bearing is provided between the support beam portion and the outer surface of each power roller, and is provided on the outer ring provided on the support beam portion side and on the inner side surface of the outer ring. A plurality of rolling elements provided between the outer ring raceway and the inner ring raceway provided on the outer side surface of the power roller, the outer ring is provided on the outer side surface of the outer ring. A toroidal continuously variable transmission that is supported so as to be capable of swinging displacement in the axial direction of the two discs with respect to each trunnion by engaging the provided concave portion with the cylindrical convex surface of the support beam portion. However, the recesses provided on the outer side surface of the outer ring are provided on both sides in the width direction, and have a pair of side concave curved surface portions in which the curvature radius of the cross-sectional shape is larger than the curvature radius of the cylindrical convex surface. Having a Gothic arch-like cross-sectional shape There, a cylindrical convex surface of the recess and the support beam portion provided on the outer surface of the outer ring, the toroidal type continuously variable transmission, characterized in that in contact with the both sides concave portions.
両側方凹曲面部同士の間に、断面形状の曲率半径が円筒状凸面の曲率半径よりも小さな中央凹曲面部が存在し、上記両側方凹曲面部の中央側端縁と中央凹曲面部の両側縁とが滑らかに連続している、請求項1に記載したトロイダル型無段変速機。   There is a central concave curved surface portion between the concave concave surface portions on both sides where the radius of curvature of the cross-sectional shape is smaller than the radius of curvature of the cylindrical convex surface. The toroidal continuously variable transmission according to claim 1, wherein both side edges are smoothly continuous.
JP2009267177A 2009-11-25 2009-11-25 Toroidal continuously variable transmission Expired - Fee Related JP5126206B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009267177A JP5126206B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission
US12/953,881 US8876654B2 (en) 2009-11-25 2010-11-24 Toroidal continuously variable transmission
DE102010052596.0A DE102010052596B4 (en) 2009-11-25 2010-11-25 Stepless toroidal transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267177A JP5126206B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2011112109A JP2011112109A (en) 2011-06-09
JP5126206B2 true JP5126206B2 (en) 2013-01-23

Family

ID=44234607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267177A Expired - Fee Related JP5126206B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5126206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857473B2 (en) * 2011-06-28 2016-02-10 日本精工株式会社 Toroidal continuously variable transmission

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4428246A (en) * 1981-12-31 1984-01-31 Excelermatic Inc. Infinitely variable traction roller transmission
JP3541764B2 (en) * 1999-04-30 2004-07-14 日産自動車株式会社 Toroidal type continuously variable transmission
JP4432483B2 (en) * 2003-12-16 2010-03-17 日産自動車株式会社 Toroidal continuously variable transmission
JP4905012B2 (en) * 2006-06-02 2012-03-28 日本精工株式会社 Toroidal continuously variable transmission
JP4923935B2 (en) * 2006-10-13 2012-04-25 日本精工株式会社 Toroidal continuously variable transmission
JP5088303B2 (en) * 2007-11-27 2012-12-05 日本精工株式会社 Toroidal continuously variable transmission
JP4962350B2 (en) * 2008-02-27 2012-06-27 日本精工株式会社 Toroidal continuously variable transmission
JP4962358B2 (en) * 2008-03-06 2012-06-27 日本精工株式会社 Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JP2011112109A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4905012B2 (en) Toroidal continuously variable transmission
JP5088303B2 (en) Toroidal continuously variable transmission
JP5126206B2 (en) Toroidal continuously variable transmission
JP5007600B2 (en) Toroidal continuously variable transmission
EP2811204A1 (en) Toroidal-type continuously variable transmission
JP4962358B2 (en) Toroidal continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP4807033B2 (en) Half toroidal continuously variable transmission
JP2008032084A (en) Toroidal continuously variable transmission
JP6508380B2 (en) Power roller unit for toroidal type continuously variable transmission
JP5673205B2 (en) Toroidal continuously variable transmission
JP4587120B2 (en) Toroidal continuously variable transmission
JP2008082360A (en) Toroidal type continuously variable transmission
JP6311451B2 (en) Power roller unit for toroidal type continuously variable transmission
JP2006002882A (en) Toroidal continuously variable transmission
JP5834525B2 (en) Toroidal continuously variable transmission
JP2007107625A (en) Toroidal type continuously variable transmission
JP5862335B2 (en) Toroidal continuously variable transmission
JP4561126B2 (en) Toroidal continuously variable transmission
JP4915287B2 (en) Toroidal continuously variable transmission
JP5994582B2 (en) Toroidal continuously variable transmission
JP3709418B2 (en) Toroidal continuously variable transmission
JP4013369B2 (en) Toroidal type continuously variable transmission assembly method
JP2012117569A (en) Toroidal continuously variable transmission
JP2007146873A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees