JP5953961B2 - Toroidal continuously variable transmission and manufacturing method thereof - Google Patents

Toroidal continuously variable transmission and manufacturing method thereof Download PDF

Info

Publication number
JP5953961B2
JP5953961B2 JP2012133453A JP2012133453A JP5953961B2 JP 5953961 B2 JP5953961 B2 JP 5953961B2 JP 2012133453 A JP2012133453 A JP 2012133453A JP 2012133453 A JP2012133453 A JP 2012133453A JP 5953961 B2 JP5953961 B2 JP 5953961B2
Authority
JP
Japan
Prior art keywords
outer ring
support beam
trunnion
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012133453A
Other languages
Japanese (ja)
Other versions
JP2013256996A (en
JP2013256996A5 (en
Inventor
将司 横山
将司 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012133453A priority Critical patent/JP5953961B2/en
Priority to CN201380002551.5A priority patent/CN103732948B/en
Priority to PCT/JP2013/066387 priority patent/WO2013187488A1/en
Publication of JP2013256996A publication Critical patent/JP2013256996A/en
Publication of JP2013256996A5 publication Critical patent/JP2013256996A5/ja
Application granted granted Critical
Publication of JP5953961B2 publication Critical patent/JP5953961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、例えば車両(自動車)用の自動変速機、建設機械(建機)用の自動変速機、航空機(固定翼機、回転翼機、飛行船等)等で使用されるジェネレータ(発電機)用の自動変速機、ポンプ等の各種産業機械の運転速度を調節する為の自動変速機として利用する、ハーフトロイダル型のトロイダル型無段変速機の改良に関する。   The present invention relates to a generator (generator) used in, for example, an automatic transmission for a vehicle (automobile), an automatic transmission for a construction machine (construction machine), an aircraft (a fixed wing aircraft, a rotary wing aircraft, an airship, etc.), etc. The present invention relates to improvement of a half toroidal toroidal continuously variable transmission that is used as an automatic transmission for adjusting the operating speed of various industrial machines such as automatic transmissions and pumps.

自動車用変速装置としてハーフトロイダル型のトロイダル型無段変速機を使用する事が、特許文献1〜4等の多くの刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献5等、やはり多くの刊行物に記載されて、従来から広く知られている。図11〜12は、これら各特許文献に記載されて従来から広く知られているトロイダル型無段変速機の第1例を示している。この従来構造の第1例の場合、入力回転軸1の両端寄り部分の周囲に1対の入力ディスク2、2を、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で、前記入力回転軸1と同期した回転を可能に支持している。又、この入力回転軸1の中間部周囲に出力筒3を、この入力回転軸1に対する回転を可能に支持している。又、この出力筒3の外周面には、軸方向中央部に出力歯車4を固設すると共に、軸方向両端部に1対の出力ディスク5、5を、スプライン係合により、前記出力筒3と同期した回転を可能に支持している。又、この状態で、それぞれがトロイド曲面である、前記両出力ディスク5、5の内側面を、前記両入力ディスク2、2の内側面に対向させている。   The use of a half-toroidal toroidal continuously variable transmission as a transmission for an automobile is described in many publications such as Patent Documents 1 to 4 and partially implemented, and is well known. Further, a structure in which a toroidal type continuously variable transmission and a planetary gear mechanism are combined to widen the adjustment range of the gear ratio is also described in many publications such as Patent Document 5 and has been widely known. FIGS. 11 to 12 show a first example of a toroidal type continuously variable transmission that is described in each of these patent documents and has been widely known. In the case of the first example of this conventional structure, a pair of input disks 2 and 2 are disposed around the portions near both ends of the input rotation shaft 1 in a state where the inner surfaces, each of which is a toroidal curved surface, face each other. The rotation synchronized with the rotating shaft 1 is supported. An output tube 3 is supported around the intermediate portion of the input rotary shaft 1 so as to be rotatable with respect to the input rotary shaft 1. Further, on the outer peripheral surface of the output cylinder 3, an output gear 4 is fixed at the center in the axial direction, and a pair of output disks 5 and 5 are connected to both ends in the axial direction by spline engagement. Supports the rotation synchronized with. In this state, the inner surfaces of the output disks 5 and 5, each of which is a toroidal curved surface, are opposed to the inner surfaces of the input disks 2 and 2.

又、前記両入力ディスク2、2と前記両出力ディスク5、5との間に、それぞれの周面を球状凸面とした複数個のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、それぞれトラニオン7、7に回転自在に支持されており、これら各トラニオン7、7は、それぞれ前記各ディスク2、5の中心軸に対し捩れの位置にある傾転軸8、8を中心とする揺動変位自在に支持されている。即ち、これら各トラニオン7、7は、それぞれの軸方向両端部に互いに同心に設けられた1対の傾転軸8、8と、これら各傾転軸8、8同士の間に存在する支持梁部9、9とを備えており、これら各傾転軸8、8が、支持板10、10に対し、ラジアルニードル軸受11、11を介して枢支されている。   Further, a plurality of power rollers 6, 6 each having a spherical convex surface are sandwiched between the input disks 2, 2 and the output disks 5, 5. The power rollers 6 and 6 are rotatably supported by trunnions 7 and 7, respectively. The trunnions 7 and 7 are tilted with respect to the central axes of the disks 2 and 5, respectively. The shafts 8 and 8 are supported so as to be swingable and displaceable. That is, each of the trunnions 7 and 7 includes a pair of tilting shafts 8 and 8 provided concentrically with each other at both axial ends, and a supporting beam existing between the tilting shafts 8 and 8. These tilting shafts 8 and 8 are pivotally supported with respect to the support plates 10 and 10 via radial needle bearings 11 and 11, respectively.

又、前記各パワーローラ6、6は、前記各トラニオン7、7を構成する支持梁部9、9の内側面に、基半部と先半部とが互いに偏心した支持軸12、12と、複数の転がり軸受とを介して、これら各支持軸12、12の先半部回りの回転、及び、これら各支持軸12、12の基半部を中心とする若干の揺動変位可能に支持されている。この様な各パワーローラ6、6の外側面と、前記各トラニオン7、7を構成する支持梁部9、9の内側面との間には、それぞれが前記複数の転がり軸受の一部である、スラスト玉軸受13、13と、スラストニードル軸受14、14とを、前記各パワーローラ6、6の側から順番に設けている。このうちのスラスト玉軸受13、13は、前記各パワーローラ6、6に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ6、6の回転を許容するものである。これら各スラスト玉軸受13、13は、前記各パワーローラ6、6の外側面に形成された内輪軌道15と、外輪16の内側面に形成された外輪軌道17との間に複数個の玉18、18を、転動可能に設けて成る。又、前記各スラストニードル軸受14、14は、前記各パワーローラ6、6から前記各スラスト玉軸受13、13を構成する外輪16、16に加わるスラスト荷重を支承しつつ、これら各外輪16、16及び前記各支持軸12、12の先半部が、これら各支持軸12、12の基半部を中心に揺動する事を許容するものである。   Each of the power rollers 6 and 6 includes support shafts 12 and 12 in which the base half portion and the tip half portion are eccentric to each other on the inner surface of the support beam portions 9 and 9 constituting the trunnions 7 and 7, respectively. Via a plurality of rolling bearings, the support shafts 12 and 12 are supported so as to be able to rotate around the front half of each of the support shafts 12 and 12 and to be slightly oscillated and displaced around the base half of each of the support shafts 12 and 12. ing. Between the outer side surfaces of the power rollers 6 and 6 and the inner side surfaces of the support beam portions 9 and 9 constituting the trunnions 7 and 7, each is a part of the plurality of rolling bearings. The thrust ball bearings 13 and 13 and the thrust needle bearings 14 and 14 are provided in order from the power rollers 6 and 6 side. Of these, the thrust ball bearings 13, 13 allow the power rollers 6, 6 to rotate while supporting a load in the thrust direction applied to the power rollers 6, 6. Each of these thrust ball bearings 13, 13 has a plurality of balls 18 between an inner ring raceway 15 formed on the outer side surface of each of the power rollers 6, 6 and an outer ring raceway 17 formed on the inner side surface of the outer ring 16. , 18 are provided to be able to roll. The thrust needle roller bearings 14, 14 support thrust loads applied to the outer rings 16, 16 constituting the thrust ball bearings 13, 13 from the power rollers 6, 6. The front half of each of the support shafts 12 and 12 is allowed to swing around the base half of each of the support shafts 12 and 12.

上述の様なトロイダル型無段変速機の運転時には、駆動軸19により一方(図11の左方)の入力ディスク2を、押圧装置20を介して回転駆動する。この結果、前記入力回転軸1の両端部に支持された1対の入力ディスク2、2が、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ6、6を介して前記両出力ディスク5、5に伝わり、前記出力歯車4から取り出される。前記入力回転軸1とこの出力歯車4との間の変速比を変える場合は、油圧式のアクチュエータ21、21により前記各トラニオン7、7を前記各傾転軸8、8の軸方向に変位させる。この結果、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化する(転がり接触部にサイドスリップが発生する)。そして、この力の向きの変化に伴って前記各トラニオン7、7が、自身の傾転軸8、8を中心に揺動し、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との接触位置が変化する。これら各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向外寄り部分と、前記両出力ディスク5、5の内側面の径方向内寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が増速側になる。これに対して、前記各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向内寄り部分と、前記両出力ディスク5、5の内側面の径方向外寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が減速側になる。   During operation of the toroidal-type continuously variable transmission as described above, one input disk 2 (left side in FIG. 11) is rotationally driven by the drive shaft 19 via the pressing device 20. As a result, the pair of input disks 2 and 2 supported at both ends of the input rotating shaft 1 rotate synchronously while being pressed in a direction approaching each other. The rotation is transmitted to the output disks 5 and 5 through the power rollers 6 and 6 and is taken out from the output gear 4. When changing the gear ratio between the input rotary shaft 1 and the output gear 4, the trunnions 7, 7 are displaced in the axial direction of the tilt shafts 8, 8 by hydraulic actuators 21, 21. . As a result, the direction of the tangential force acting on the rolling contact portion (traction portion) between the peripheral surface of each of the power rollers 6 and 6 and the inner surface of each of the disks 2 and 5 changes (in the rolling contact portion). Side slip occurs). As the direction of the force changes, the trunnions 7 and 7 swing around their tilting shafts 8 and 8, and the peripheral surfaces of the power rollers 6 and 6 and the disks 2 and 8. The contact position with the inner surface of 5 changes. The circumferential surfaces of the power rollers 6 and 6 are in rolling contact with the radially outer portions of the inner surfaces of the input disks 2 and 2 and the radially inner portions of the inner surfaces of the output disks 5 and 5. By doing so, the gear ratio between the input rotary shaft 1 and the output gear 4 is increased. On the other hand, the peripheral surfaces of the power rollers 6 and 6 are arranged radially inwardly on the inner side surfaces of the input disks 2 and 2 and radially outwardly on the inner side surfaces of the output disks 5 and 5. If it is brought into rolling contact with the portion, the gear ratio between the input rotary shaft 1 and the output gear 4 becomes the deceleration side.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、前記入力、出力各ディスク2、5と前記各パワーローラ6、6とが、前記押圧装置20が発生する押圧力に基づいて弾性変形する。そして、この弾性変形に伴って、前記入力、出力各ディスク2、5が軸方向に変位する。又、前記押圧装置20が発生する押圧力は、前記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材2、5、6の弾性変形量も多くなる。従って、前記トルクの変動に拘らず、前記入力、出力各ディスク2、5の内側面と前記各パワーローラ6、6の周面との接触状態を適正に維持する為に、前記各トラニオン7、7に対してこれら各パワーローラ6、6を、前記各ディスク2、5の軸方向に変位させる機構が必要になる。上述した従来構造の第1例の場合には、前記各パワーローラ6、6を支持した前記各支持軸12、12の先半部を、同じく基半部を中心として揺動変位させる事により、前記各パワーローラ6、6を前記軸方向に変位させる様にしている。   When the toroidal type continuously variable transmission as described above is operated, the members used for power transmission, that is, the input and output disks 2 and 5 and the power rollers 6 and 6 are connected to the pressing device 20. It is elastically deformed based on the pressing force generated. In accordance with this elastic deformation, the input and output disks 2 and 5 are displaced in the axial direction. The pressing force generated by the pressing device 20 increases as the torque transmitted by the toroidal continuously variable transmission increases, and the amount of elastic deformation of the members 2, 5, 6 increases accordingly. Accordingly, in order to properly maintain the contact state between the inner surface of each of the input and output disks 2 and 5 and the peripheral surface of each of the power rollers 6 and 6 regardless of the fluctuation of the torque, the trunnions 7 and 7 7, a mechanism for displacing the power rollers 6 and 6 in the axial direction of the disks 2 and 5 is required. In the case of the above-described first example of the conventional structure, the tip half of each of the support shafts 12 and 12 that support the power rollers 6 and 6 is also oscillated and displaced about the base half as well. The power rollers 6 and 6 are displaced in the axial direction.

上述の様な従来構造の第1例の場合、前記各パワーローラ6、6を前記軸方向に変位させる為の構造が複雑で、部品製作、部品管理、組立作業が何れも面倒になり、コストが嵩む事が避けられない。この様な問題を解決する為の技術として前記特許文献3には、図13〜18に示す様な構造が記載されている。尚、この従来構造の第2例の特徴は、トラニオン7aに対してパワーローラ6aを、入力、出力各ディスク2、5(図11参照)の軸方向の変位を可能に支持する部分の構造にあり、トロイダル型無段変速機全体としての基本的構造及び作用は、前述の図11〜12に示した従来構造の第1例と同様である。   In the case of the first example of the conventional structure as described above, the structure for displacing each of the power rollers 6 and 6 in the axial direction is complicated, and parts manufacturing, parts management, and assembly work are all troublesome and costly. It is inevitable that the volume increases. As a technique for solving such a problem, Patent Document 3 describes a structure as shown in FIGS. The feature of the second example of this conventional structure is that the power roller 6a is supported with respect to the trunnion 7a so as to support the axial displacement of the input and output disks 2 and 5 (see FIG. 11). The basic structure and operation of the toroidal type continuously variable transmission as a whole are the same as those of the first example of the conventional structure shown in FIGS.

前記従来構造の第2例を構成するトラニオン7aは、両端部に互いに同心に設けられた1対の傾転軸8a、8bと、これら両傾転軸8a、8b同士の間に存在し、少なくとも入力、出力各ディスク2、5の径方向(図14、17、18の上下方向)に関する内側(図14、17、18の上側)の側面を円筒状凸面22とした、支持梁部23とを備える。前記両傾転軸8a、8bは、それぞれラジアルニードル軸受11a、11aを介して、支持板10、10(図12参照)に、揺動及び軸方向の変位を可能に支持する。   The trunnion 7a constituting the second example of the conventional structure exists between a pair of tilting shafts 8a and 8b concentrically provided at both ends, and between these tilting shafts 8a and 8b, and at least A support beam portion 23 having a cylindrical convex surface 22 on the inner side (upper side in FIGS. 14, 17 and 18) of the input and output disks 2 and 5 in the radial direction (the vertical direction in FIGS. 14, 17 and 18). Prepare. The two tilting shafts 8a and 8b are supported on the support plates 10 and 10 (see FIG. 12) via radial needle bearings 11a and 11a, respectively, so as to be swingable and axially displaceable.

又、前記円筒状凸面22の中心軸イは、図14、17に示す様に、前記両傾転軸8a、8bの中心軸ロと平行で、これら両傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側(図14、17、18の下側)に存在する。又、前記支持梁部23とパワーローラ6aの外側面との間に設けるスラスト玉軸受13aを構成する外輪16aの外側面に、部分円筒面状の凹部24を、この外側面を径方向に横切る状態で設けている。そして、この凹部24と、前記支持梁部23の円筒状凸面22とを係合させ、前記トラニオン7aに対して前記外輪16aを、前記各ディスク2、5の軸方向に関する揺動変位を可能に支持している。   Further, as shown in FIGS. 14 and 17, the center axis A of the cylindrical convex surface 22 is parallel to the center axis B of the both tilt axes 8a and 8b, and the center axis B of the both tilt axes 8a and 8b. Rather than the outer side (the lower side of FIGS. 14, 17, 18) in the radial direction of the disks 2, 5. Further, a concave portion 24 having a partially cylindrical surface is radially crossed on the outer surface of the outer ring 16a constituting the thrust ball bearing 13a provided between the support beam portion 23 and the outer surface of the power roller 6a. It is provided in the state. And this recessed part 24 and the cylindrical convex surface 22 of the said support beam part 23 are engaged, and the said outer ring 16a is rockable displacement about the axial direction of each said disks 2 and 5 with respect to the said trunnion 7a. I support it.

又、前記外輪16aの内側面中央部に支持軸12aを、この外輪16aと一体に固設して、前記パワーローラ6aをこの支持軸12aの周囲に、ラジアルニードル軸受25を介して、回転自在に支持している。更に、前記トラニオン7aの内側面のうち、前記支持梁部23の両端部と1対の傾転軸8a、8bとの連続部に、互いに対向する1対の段差面26、26を設けている。そして、これら両段差面26、26と、前記スラスト玉軸受13aを構成する外輪16aの外周面とを、当接若しくは近接対向させて、前記パワーローラ6aからこの外輪16aに加わるトラクション力を、何れかの段差面26、26で支承可能としている。   Further, a support shaft 12a is fixed to the center of the inner surface of the outer ring 16a integrally with the outer ring 16a, and the power roller 6a is rotatable around the support shaft 12a via a radial needle bearing 25. I support it. Furthermore, a pair of stepped surfaces 26 and 26 facing each other are provided on the inner surface of the trunnion 7a at a continuous portion between both end portions of the support beam portion 23 and the pair of tilting shafts 8a and 8b. . Then, these stepped surfaces 26, 26 and the outer peripheral surface of the outer ring 16a constituting the thrust ball bearing 13a are brought into contact with or in close proximity to each other, and any traction force applied from the power roller 6a to the outer ring 16a is selected. These step surfaces 26 and 26 can be supported.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、前記パワーローラ6aを前記各ディスク2、5の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ6aの周面と前記各ディスク2、5との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、入力、出力各ディスク2、5、各パワーローラ6a等の弾性変形に基づき、これら各パワーローラ6aをこれら各ディスク2、5の軸方向に変位させる必要が生じると、これら各パワーローラ6aを回転自在に支持している前記スラスト玉軸受13aの外輪16aが、外側面に設けた部分円筒面状の凹部24と支持梁部23の円筒状凸面22との当接面を滑らせつつ、この円筒状凸面22の中心軸イを中心として揺動変位する。この揺動変位に基づき、前記各パワーローラ6aの周面のうちで、前記各ディスク2、5の軸方向片側面と転がり接触する部分が、これら各ディスク2、5の軸方向に変位し、前記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 6a is displaced in the axial direction of each of the disks 2 and 5, and the amount of elastic deformation of each constituent member is increased. Regardless of the change, a structure capable of appropriately maintaining the contact state between the peripheral surface of the power roller 6a and the disks 2 and 5 can be configured simply and at low cost.
That is, during operation of the toroidal continuously variable transmission, the power rollers 6a are displaced in the axial direction of the disks 2 and 5 based on elastic deformation of the input and output disks 2 and 5 and the power rollers 6a. When necessary, the outer ring 16a of the thrust ball bearing 13a that rotatably supports each of the power rollers 6a is provided with a concave portion 24 having a partial cylindrical surface provided on the outer surface and a cylindrical convex surface 22 of the support beam portion 23. The sliding surface of the cylindrical convex surface 22 is oscillated and displaced about the central axis a. Based on this oscillating displacement, a portion of the peripheral surface of each power roller 6a that is in rolling contact with one axial side surface of each disk 2, 5 is displaced in the axial direction of each disk 2, 5; The contact state is properly maintained.

前述した通り、前記円筒状凸面22の中心軸イは、変速動作の際に各トラニオン7aの揺動中心となる傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側に存在する。従って、前記円筒状凸面22の中心軸イを中心とする揺動変位の半径は、前記変速動作の際の揺動半径よりも大きく、前記両入力ディスク2、2と前記両出力ディスク5、5との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis A of the cylindrical convex surface 22 is larger in diameter than the central axes B of the tilting shafts 8a and 8b, which are the oscillation centers of the trunnions 7a during the shifting operation. Exists with respect to the direction. Therefore, the radius of the rocking displacement about the central axis A of the cylindrical convex surface 22 is larger than the rocking radius at the time of the speed change operation, and both the input disks 2 and 2 and the both output disks 5, 5 Has little effect on the change in the transmission ratio between (and can be neglected or remain within an easily modifiable range).

図13〜18に示した従来構造の第2例の場合、図11〜12に示した同第1例に比べて、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易いが、変速動作を安定させる面からは、改良の余地がある。この理由は、前記各支持梁部23を中心とする前記各外輪16aの揺動変位を円滑に行わせる為、これら各支持梁部23の両端部分に1対ずつ設けた、前記各段差面26、26同士の間隔Dを、前記各外輪16aの外径dよりも少し大きく(D>d)する為である。これら各外輪16a、及び、この外輪16aと同心に支持された前記各パワーローラ6aは、前記間隔Dと前記外径dとの差(D−d)分だけ、前記各支持梁部23の軸方向に変位可能になる。   Compared to the first example shown in FIGS. 11 to 12, the second example of the conventional structure shown in FIGS. 13 to 18 makes it easier to manufacture parts, manage parts, and assemble, thereby reducing costs. Although easy to achieve, there is room for improvement in terms of stabilizing the shifting operation. The reason for this is that each step surface 26 is provided in a pair at each end of each support beam 23 so that the outer ring 16a can be smoothly moved and displaced about each support beam 23. , 26 to make the distance D between the outer rings 16a slightly larger than the outer diameter d (D> d). The outer rollers 16a and the power rollers 6a supported concentrically with the outer ring 16a have shafts of the support beam portions 23 corresponding to a difference (D−d) between the distance D and the outer diameter d. Displaceable in the direction.

一方、トロイダル型無段変速機を搭載した車両の運転時、前記各パワーローラ6aには前記各ディスク2、5から、例えば加速時と減速時(エンジンブレーキの作動時)とで逆方向の力(トロイダル型無段変速機の技術分野で周知の「2Ft」)が加わる。そして、この力2Ftにより、前記各パワーローラ6aが、前記各外輪16aと共に、前記各支持梁部23の軸方向に変位する。この変位の方向は、前述した各アクチュエータ21、21による各トラニオン7、7(図12参照)の変位方向と同じであり、変位量が0.1mm程度であっても、変速動作が開始される可能性を生じる。そして、この様な原因で変速動作が開始された場合には、運転動作とは直接関連しない変速動作となり、何れ修正されるにしても、運転者に違和感を与える。特に、トロイダル型無段変速機が伝達するトルクが低い状態で、上述の様な、運転者が意図しない変速が行われると、運転者に与える違和感が大きくなり易い。   On the other hand, during operation of a vehicle equipped with a toroidal-type continuously variable transmission, each power roller 6a receives a force in the opposite direction from each of the disks 2 and 5, for example, during acceleration and deceleration (when the engine brake is activated). ("2Ft", well known in the technical field of toroidal continuously variable transmissions). Then, the force 2Ft causes the power rollers 6a to be displaced in the axial direction of the support beam portions 23 together with the outer rings 16a. The direction of this displacement is the same as the displacement direction of each trunnion 7 and 7 (see FIG. 12) by each actuator 21 and 21 described above, and the shifting operation is started even if the displacement is about 0.1 mm. Create a possibility. When the shifting operation is started for such a reason, the shifting operation is not directly related to the driving operation, and the driver feels uncomfortable regardless of any correction. In particular, when a shift that is not intended by the driver as described above is performed in a state where the torque transmitted by the toroidal-type continuously variable transmission is low, a sense of discomfort given to the driver tends to increase.

上述の様にして生じる、運転動作とは直接関連しない変速動作の発生を抑える為には、前記間隔Dと前記外径dとの差(D−d)を僅少に(例えば数十μm程度に)抑える事が考えられる。但し、ハーフトロイダル型のトロイダル型無段変速機の運転時には、トラクション部から前記各パワーローラ6a、前記各外輪16aを介して前記各支持梁部23に加わるスラスト荷重により、前記各トラニオン7aが、図19に誇張して示す様に、前記各外輪16aを設置した側が凹となる方向に弾性変形する。そして、この弾性変形の結果、前記各トラニオン7a毎に1対ずつ設けた段差面26、26同士の間隔が縮まる。この様な状態でも、これら両段差面26、26同士の間隔Dが前記各外輪16aの外径d以下にならない様にする為には、通常状態(前記各トラニオン7aが弾性変形していない状態)での、前記間隔Dと前記外径dとの差を或る程度確保する必要がある。この結果、特に違和感が大きくなり易い、低トルクでの運転時に、上述の様な、運転動作とは直接関連しない変速動作が発生し易くなる。特に、前記特許文献5に記載されている様に、トロイダル型無段変速機と、遊星歯車式の変速機と、クラッチ装置とを組み合わせ、このクラッチ装置により低速モードと高速モードとを切り換える無段変速装置の場合、これら両モードの切り換えに伴って、加速状態のまま、前記トロイダル型無段変速機を通過するトルクの方向が逆転する。この為、上述した様な、運転動作とは直接関連しない変速動作が発生して、運転者に違和感を与え易い。   In order to suppress the occurrence of the speed change operation that is not directly related to the driving operation as described above, the difference (D−d) between the distance D and the outer diameter d is made small (for example, about several tens of μm). ) Can be suppressed. However, during operation of the half-toroidal toroidal continuously variable transmission, each trunnion 7a is caused by a thrust load applied from the traction portion to each support beam portion 23 via each power roller 6a and each outer ring 16a. As exaggeratedly shown in FIG. 19, the side where the outer rings 16a are installed is elastically deformed in the direction of being recessed. As a result of this elastic deformation, the distance between the step surfaces 26, 26 provided in pairs for each trunnion 7a is reduced. Even in such a state, in order to prevent the distance D between the two step surfaces 26 and 26 from becoming smaller than the outer diameter d of each outer ring 16a, the normal state (the state where each trunnion 7a is not elastically deformed). It is necessary to ensure a certain difference between the distance D and the outer diameter d. As a result, a shift operation that is not directly related to the driving operation as described above is likely to occur particularly during driving at a low torque, which tends to increase the sense of discomfort. In particular, as described in Patent Document 5, a toroidal continuously variable transmission, a planetary gear type transmission, and a clutch device are combined, and the clutch device is used to switch between a low speed mode and a high speed mode. In the case of the transmission, the direction of the torque passing through the toroidal type continuously variable transmission is reversed in the acceleration state as the two modes are switched. For this reason, as described above, a shifting operation not directly related to the driving operation occurs, and it is easy for the driver to feel uncomfortable.

一方、前記特許文献3には、支持梁部側に設けた円筒状凸面の一部に係止したアンカ駒と、外輪側の凹部の内面に形成したアンカ溝とを係合させる事により、前記力2Ftを支承する構造が記載されている。但し、この様な構造の場合には、前記アンカ駒を前記支持梁部に、前記力2Ftを支承できる程度の強度及び剛性を確保して支持固定する事が難しく、低コスト化と十分な信頼性確保とを図りにくい。又、円筒状凸面と凹部との互いに整合する部分に形成された、それぞれが断面円弧形である転動溝同士の間に複数個の玉を掛け渡して、前記力2Ftを支承する構造も記載されている。但し、この様な構造の場合には、この力2Ftが大きくなり、前記各玉の転動面と前記各転動溝との転がり接触部の面圧が上昇すると、これら各転動溝の内面に圧痕が形成され、各トラニオンに対して各内輪が揺動変位する際に振動が発生する可能性がある。更には、支持梁部の外周面に形成した、軸方向両側面が互いに平行な突条と、外輪側の凹部の内面に形成した凹溝とを係合させる事により、前記力2Ftを支承する構造も記載されている。但し、この様な構造の場合には、前記突条と前記凹溝との係合部の隙間を小さくすべく、この突条の両側面同士の間隔を高精度に仕上げる為の研磨加工時に、これら両側面に研磨焼けに伴う損傷が発生し易い。即ち、この研磨加工は、回転させた砥石を、前記突条の両側面に押し当てる事により行う。この時、加工面であるこの突条の両側面同士が平行、言い換えれば、これら両側面が前記砥石の回転軸に対し垂直である為、これら両側面の温度が上昇し前記研磨焼けが発生し易い。又、この砥石の回転軸の軸方向と押し付け方向とが平行となる為、これら両側面及び前記円筒状凸面に同時に研磨加工を施す事ができず、加工効率が悪く、トラニオン全体の製造コストが上昇する。   On the other hand, in Patent Document 3, the anchor piece locked to a part of the cylindrical convex surface provided on the support beam part side and the anchor groove formed on the inner surface of the concave part on the outer ring side are engaged with each other. A structure for supporting a force 2Ft is described. However, in the case of such a structure, it is difficult to support and fix the anchor piece to the support beam portion with sufficient strength and rigidity to support the force 2Ft, and it is possible to reduce the cost and to provide sufficient reliability. It is difficult to ensure safety. There is also a structure for supporting the force 2Ft by forming a plurality of balls between the rolling grooves each having an arcuate cross section formed in a portion where the cylindrical convex surface and the concave portion are aligned with each other. Have been described. However, in the case of such a structure, when the force 2Ft increases and the surface pressure of the rolling contact portion between the rolling surface of each ball and each rolling groove increases, the inner surface of each rolling groove is increased. Indentations are formed on the inner ring, and vibration may occur when the inner rings swing and displace with respect to the trunnions. Furthermore, the force 2Ft is supported by engaging a protrusion formed on the outer peripheral surface of the support beam portion with both axial side surfaces parallel to each other and a groove formed on the inner surface of the outer ring side recess. The structure is also described. However, in the case of such a structure, in order to reduce the gap of the engaging portion between the ridge and the concave groove, during polishing processing to finish the gap between both side surfaces of the ridge with high accuracy, Damages due to polishing burn are likely to occur on both side surfaces. That is, this polishing process is performed by pressing the rotated grindstone against both side surfaces of the ridge. At this time, both side surfaces of this protrusion, which is the machining surface, are parallel to each other, in other words, because both side surfaces are perpendicular to the rotation axis of the grindstone, the temperature of both side surfaces rises and the polishing burn occurs. easy. In addition, since the axial direction of the rotating shaft of the grindstone and the pressing direction are parallel to each other, it is impossible to polish both side surfaces and the cylindrical convex surface at the same time, the processing efficiency is poor, and the manufacturing cost of the entire trunnion To rise.

[先発明の説明]
図20〜27は、未公開ではあるが、上述の様な事情に鑑みて開発され、特願2012−21944によって開示された、トロイダル型無段変速機に関する先発明の構造を示している。尚、この先発明の構造の特徴は、変速動作を安定させるべく、トラニオン7bの支持梁部23aに対し、スラスト玉軸受13a(例えば図17〜18参照)を構成する外輪16bを、この支持梁部23aに対する揺動変位を可能に支持しつつ、この支持梁部23aの軸方向に変位しない様にする為の構造にある。その他の部分の構造及び作用は、前述した従来構造の第2例と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、先発明の構造の特徴部分及び先に説明しなかった部分を中心に説明する。
[Description of Prior Invention]
20 to 27 show the structure of the prior invention relating to the toroidal type continuously variable transmission, which has been unpublished but was developed in view of the above-described circumstances and disclosed in Japanese Patent Application No. 2012-21944. The structure of the present invention is characterized in that an outer ring 16b constituting a thrust ball bearing 13a (see, for example, FIGS. 17 to 18) is provided with respect to the support beam portion 23a of the trunnion 7b to stabilize the speed change operation. The structure is to prevent the displacement of the support beam portion 23a in the axial direction while supporting the swing displacement with respect to 23a. Since the structure and operation of the other parts are the same as those of the second example of the conventional structure described above, the illustration and description of the equivalent parts are omitted or simplified. The explanation will focus on the missing part.

前記外輪16bは、この外輪16bの外側面に設けられた凹部24と前記支持梁部23aの円筒状凸面22とを係合させる事により前記トラニオン7bに対し、入力、出力各ディスク2、5(図11参照)の軸方向に関する揺動変位を可能に支持している。又、前記凹部24の内面に、前記支持梁部23aを中心とする周方向に形成された凹溝27と、この支持梁部23aの外周面に形成された突条28とを係合させる事により、この支持梁部23aの軸方向の変位を制限している。以上の構成に関しては、前述の特許文献3に記載された構造と同様である。   The outer ring 16b engages a recess 24 provided on the outer surface of the outer ring 16b with a cylindrical convex surface 22 of the support beam portion 23a to input and output discs 2, 5 ( The swinging displacement in the axial direction (see FIG. 11) is supported. Further, a concave groove 27 formed in the circumferential direction centering on the support beam portion 23a and a ridge 28 formed on the outer peripheral surface of the support beam portion 23a are engaged with the inner surface of the concave portion 24. Thus, the axial displacement of the support beam portion 23a is limited. The above configuration is the same as the structure described in Patent Document 3 described above.

特に、前記先発明の構造の場合には、前記凹溝27を、開口部の幅が広く底部の幅が狭いテーパ溝としている。図示の例の場合、この凹溝27の両内側面の断面形状を、図23の(B)及び図25に示す様に、直線としている。尚、これら両内側面の延長線と前記凹部24との成す角度θ{図23の(B)参照}は、45度程度(40〜50度)としている。又、前記凹溝27の底部は、図25に示す様に、この凹溝27の両内側面の延長線及びこれら両側面同士を滑らかに連続させる円弧面よりも凹んだ逃げ凹部43として、これら両内側面の仕上加工の容易化を図っている。前記凹部24と前記凹溝27とは、同時に(途中で加工装置を変更する事なく=途中でチャッキングを行わずに)加工(切削加工及び研削加工)している。特に、仕上の為の研削加工は、前記凹部24と前記凹溝27とを、一体型の総型砥石で研削する事により行う。これにより、これら凹部24と凹溝27との位置精度(同軸度)を確保している。   In particular, in the case of the structure of the previous invention, the concave groove 27 is a tapered groove having a wide opening and a narrow bottom. In the case of the illustrated example, the cross-sectional shape of both inner side surfaces of the concave groove 27 is a straight line as shown in FIG. 23B and FIG. Note that the angle θ {see FIG. 23B) formed by the extension lines of these inner side surfaces and the recess 24 is about 45 degrees (40 to 50 degrees). Further, as shown in FIG. 25, the bottom of the concave groove 27 is an extension line of both inner side surfaces of the concave groove 27 and a relief concave portion 43 that is recessed from an arc surface that smoothly connects both side surfaces. The finishing of both inner surfaces is facilitated. The concave portion 24 and the concave groove 27 are processed (cutting and grinding) at the same time (without changing the processing device on the way = without performing chucking on the way). In particular, the grinding process for finishing is performed by grinding the concave portion 24 and the concave groove 27 with an integrated grindstone. Thereby, the positional accuracy (coaxiality) between the concave portion 24 and the concave groove 27 is ensured.

又、前記突条28を、基部の幅が広く先端部の幅が狭いテーパ突条としている。前記先発明の構造の場合、この突条28の両外側面を、図23の(A)及び図25に示す様に、前記凹溝27の両内側面に向けて突出する方向に湾曲した、部分円弧としている。そして、この部分円弧の曲率半径Rを、2mm以上としている。又、前記支持梁部23aの外周面のうちで前記突条28を軸方向両側から挟む部分は、この支持梁部23aの円筒状凸面22よりも凹んだ逃げ凹部34、34として、前記突条28の両外側面の仕上加工の容易化を図っている。この突条28の両外側面及び前記円筒状凸面22に就いても、前記凹部24及び前記凹溝27の場合と同様に、同時に加工している。特に、仕上の為の研削加工は、これら突条28の両外側面と円筒状凸面22とを、一体型の総型砥石で研削する事により行う。これにより、これら突条28の両外側面と前記円筒状凸面22との位置精度を確保している。   The protrusion 28 is a tapered protrusion with a wide base and a narrow tip. In the case of the structure of the previous invention, both outer side surfaces of the protrusion 28 are curved in a direction protruding toward both inner side surfaces of the concave groove 27 as shown in FIG. It is a partial arc. The radius of curvature R of this partial arc is 2 mm or more. Further, portions of the outer peripheral surface of the support beam portion 23a that sandwich the protrusion 28 from both axial sides are relief recesses 34 and 34 that are recessed from the cylindrical convex surface 22 of the support beam portion 23a. This facilitates finishing of both outer side surfaces of 28. As with the case of the concave portion 24 and the concave groove 27, the outer side surfaces of the protrusion 28 and the cylindrical convex surface 22 are simultaneously processed. In particular, the grinding process for finishing is performed by grinding both outer side surfaces of the ridges 28 and the cylindrical convex surface 22 with an integrated grindstone. Thereby, the positional accuracy of both the outer side surfaces of the protrusions 28 and the cylindrical convex surface 22 is ensured.

上述の様な先発明の構造の場合、前記突条28の両外側面の断面形状を凸円弧とする事により、この突条28の両外側面と前記凹溝27の両内側面との加工誤差に拘らず、これら突条28の両外側面と凹溝27の両内側面との擦れ合い部の摩耗を抑える事ができる。即ち、これら突条28の両外側面と凹溝27の両内側面とを断面形状が直線状の平坦面とすれば、これら各側面同士の当接部の面圧を低く抑えられるが、この場合には、加工誤差により、互いに対向する前記突条28の外側面と凹溝27の内側面とを完全に平行とする事は難しい。これら両側面同士が平行でないと、これら両側面同士の擦れ合い部での接触が不均一となり(前記突条28乃至前記凹溝27の端部に応力が集中し)、却って摩耗が発生し易くなる。そこで、前記両突条28の両外側面の断面形状を凸円弧とするが、この凸円弧である前記部分円弧の曲率半径Rは、2mm以上確保する事が望ましい。下記の表1及び図26は、前記部分円弧の曲率半径Rが、前記突条28の両外側面と前記凹溝27の両内側面との擦れ合い部の摩耗量に及ぼす影響に就いて示している。このうちの図26の縦軸は、摩耗による隙間の増加量(単位mm)を前記曲率半径Rにより除して無次元化した値を示している。この曲率半径Rは、小さい程、許容できる前記突条28の両外側面及び前記凹溝27の両内側面の加工誤差の大きさは大きくなる。但し、これら表1と図26とから分かる様に、前記部分円弧の曲率半径Rを2mm未満とすると、前記擦れ合い部の摩耗量が急激に大きくなる。そこで、この曲率半径Rを2mm以上確保すれば、前記擦れ合い部の摩耗を十分に低く抑えつつ、前記加工誤差を或る程度許容する事ができる。   In the case of the structure of the prior invention as described above, the cross-sectional shape of both outer surfaces of the protrusion 28 is a convex arc, so that both outer surfaces of the protrusion 28 and both inner surfaces of the groove 27 are processed. Regardless of the error, it is possible to suppress wear of the rubbing portion between both outer side surfaces of the protrusions 28 and both inner side surfaces of the groove 27. That is, if the outer side surfaces of the ridges 28 and the inner side surfaces of the concave grooves 27 are flat surfaces having a linear cross-sectional shape, the surface pressure at the contact portion between these side surfaces can be kept low. In this case, it is difficult to make the outer surface of the protrusion 28 and the inner surface of the groove 27 facing each other completely parallel due to processing errors. If these two side surfaces are not parallel to each other, the contact at the rubbing portion between these two side surfaces becomes uneven (stress concentrates at the ends of the ridges 28 to the concave grooves 27), and wear tends to occur. Become. Therefore, the cross-sectional shape of both outer side surfaces of the two protrusions 28 is a convex arc, and it is desirable to secure a radius of curvature R of the partial arc that is the convex arc of 2 mm or more. Table 1 and FIG. 26 below show the effect of the radius of curvature R of the partial arc on the amount of wear at the rubbed portion between both outer side surfaces of the protrusion 28 and both inner side surfaces of the concave groove 27. ing. The vertical axis in FIG. 26 indicates a dimensionless value obtained by dividing the increase amount (unit: mm) of the gap due to wear by the radius of curvature R. The smaller the radius of curvature R is, the larger the allowable processing error of both outer side surfaces of the protrusion 28 and both inner side surfaces of the concave groove 27 is. However, as can be seen from Table 1 and FIG. 26, when the radius of curvature R of the partial arc is less than 2 mm, the wear amount of the rubbing portion increases rapidly. Therefore, if the curvature radius R is secured to 2 mm or more, the machining error can be allowed to some extent while keeping the wear of the rubbing portion sufficiently low.

Figure 0005953961
Figure 0005953961

前記凹溝27の幅寸法は、前記突条28の幅寸法よりも僅かに大きくしている。尚、この場合の幅寸法の大小関係は、前記支持梁部23aの径方向に関する位置が互いに一致し、前記円筒状凸面22と前記凹部24とを当接させた状態で互いに整合する部分同士の幅寸法の比較で言う。前記両幅寸法の大小関係を上述の様に規制する事により、前記円筒状凸面22と前記凹部24とを当接させた状態で、前記突条28が前記凹溝27に食い込まず、前記支持梁部23aに対する前記外輪16bの揺動変位が円滑に行われる様にしている。又、前記トラニオン7bに支持したパワーローラ6a(例えば図17〜18参照)がトルクを伝達せず、前記支持梁部23aと前記外輪16bとが弾性変形していない状態で、この支持梁部23aの軸方向に関して、前記凹溝27の幅を前記突条28の幅よりも、それぞれこの支持梁部23aの径方向に関する位置が互いに一致する部分で、図25に△Wで示した分だけ大きくしている。言い換えれば、前記支持梁部23aと前記外輪16bとが弾性変形していない状態で、この外輪16bがこの支持梁部23aに対し、この支持梁部23aの軸方向に変位できる量を、前記△Wだけに制限している。   The width dimension of the concave groove 27 is slightly larger than the width dimension of the protrusion 28. In this case, the size relationship between the width dimensions is such that the positions of the support beam portions 23a in the radial direction match each other, and the portions that are aligned with each other in a state where the cylindrical convex surface 22 and the concave portion 24 are in contact with each other. Say by comparison of width dimensions. By restricting the size relationship between the two width dimensions as described above, the protrusion 28 does not bite into the concave groove 27 while the cylindrical convex surface 22 and the concave portion 24 are in contact with each other, and the support The swinging displacement of the outer ring 16b with respect to the beam portion 23a is performed smoothly. Further, the power beam 6a (see, for example, FIGS. 17 to 18) supported by the trunnion 7b does not transmit torque, and the support beam portion 23a and the outer ring 16b are not elastically deformed. With respect to the axial direction, the width of the concave groove 27 is larger than the width of the protrusion 28 by a portion indicated by ΔW in FIG. doing. In other words, in a state in which the support beam portion 23a and the outer ring 16b are not elastically deformed, an amount by which the outer ring 16b can be displaced in the axial direction of the support beam portion 23a with respect to the support beam portion 23a is Limited to W only.

但し、前記凹溝27の幅を前記突条28の幅よりも大きくする程度(△W)は、製造誤差に拘らず、これら両幅の大小関係が逆転しない範囲で、できる限り小さく抑えている。具体的には、前記外輪16bが前記支持梁部23aに対して、この支持梁部23aの軸方向に変位可能な量であるがたつき(径方向に関する位置が互いに一致する部分での幅の差)を0.050mm以下としている。この幅の差を0.050mm以下に抑えれば、アクチュエータ21(図12参照)の動きと関係なく前記パワーローラ6aが前記トラニオン7bの軸方向に変位する量を僅少に抑えられる。そして、トロイダル型無段変速機によるトルクの伝達方向が逆転する際に、意図しない変速動作が行われる事を防止して、運転者に違和感を与える事を防止できる。   However, the extent to which the width of the concave groove 27 is made larger than the width of the protrusion 28 (ΔW) is kept as small as possible within the range in which the magnitude relationship between the two widths does not reverse regardless of the manufacturing error. . Specifically, the outer ring 16b is an amount that can be displaced in the axial direction of the support beam portion 23a with respect to the support beam portion 23a. Difference) is set to 0.050 mm or less. If this width difference is suppressed to 0.050 mm or less, the amount of displacement of the power roller 6a in the axial direction of the trunnion 7b can be suppressed to a small extent regardless of the movement of the actuator 21 (see FIG. 12). And when the transmission direction of the torque by the toroidal-type continuously variable transmission is reversed, it is possible to prevent an unintended shift operation from being performed and to prevent the driver from feeling uncomfortable.

この点に就いて、図27を参照しつつ説明する。この図27は、前述の特許文献5に記載されている様に、トロイダル型無段変速機と、遊星歯車式の変速機と、クラッチ装置とを組み合わせ、このクラッチ装置により低速モードと高速モードとを切り換える無段変速装置を搭載した車両の加速時に於ける、各部の状態を示している。図27の横軸は経過時間を、左側の縦軸はエンジンの回転数(回転速度)を、右側の縦軸は車速を、それぞれ表している。この様な図27中の鎖線αが車速を、実線βが前記両幅の差△Wを0.125mmとした場合のエンジン回転数を、破線γがこの差△Wを0.050mmとした場合のエンジン回転数を、それぞれ表している。尚、経過時間が41秒の時点で前記クラッチ装置を低速モード状態から高速モード状態に切り換えており、その結果、前記トロイダル型無段変速機によるトルクの伝達方向が逆転している。   This point will be described with reference to FIG. FIG. 27 shows a combination of a toroidal-type continuously variable transmission, a planetary gear type transmission, and a clutch device, as described in Patent Document 5 described above. The state of each part at the time of the acceleration of the vehicle carrying the continuously variable transmission which switches is shown. In FIG. 27, the horizontal axis represents elapsed time, the left vertical axis represents engine speed (rotational speed), and the right vertical axis represents vehicle speed. In FIG. 27, the chain line α indicates the vehicle speed, the solid line β indicates the engine speed when the width difference ΔW is 0.125 mm, and the broken line γ indicates the difference ΔW is 0.050 mm. Represents the engine speed. When the elapsed time is 41 seconds, the clutch device is switched from the low speed mode state to the high speed mode state. As a result, the direction of torque transmission by the toroidal continuously variable transmission is reversed.

上述の様な図27から明らかな通り、前記両幅の差△Wを0.125mmとした場合には、トロイダル型無段変速機の変速比が急変動し、その結果、エンジンの回転数が急上昇する。この理由は、前記トルクの伝達方向の逆転に伴って、前記外輪16bを介して前記支持梁部23aに支持された前記パワーローラ6aが、この支持梁部23aの軸方向に変位し、その結果、このパワーローラ6aの周面と入力、出力各ディスク2、5の軸方向側面(図11参照)とのトラクション部に作用する、接線方向の力の向きが変化する為である。この様な原因で、前記エンジンの回転数が急上昇すると、運転者に違和感を与える。これに対して、上述した先発明の構造の様に、前記両幅の差△Wを0.050mmとすれば、前記トルクの伝達方向が逆転する際にも、前記トロイダル型無段変速機の変速比が前記アクチュエータ21の動きと関係なく変化する事はなく、エンジンの回転数が急上昇する事もない為、運転者に違和感を与える事もない。   As is clear from FIG. 27 as described above, when the difference ΔW between the two widths is set to 0.125 mm, the transmission ratio of the toroidal continuously variable transmission fluctuates abruptly. Soars. This is because the power roller 6a supported by the support beam portion 23a via the outer ring 16b is displaced in the axial direction of the support beam portion 23a as the torque transmission direction is reversed. This is because the direction of the tangential force acting on the traction portion between the peripheral surface of the power roller 6a and the axial side surfaces of the input and output disks 2 and 5 (see FIG. 11) changes. For this reason, when the engine speed rapidly increases, the driver feels uncomfortable. On the other hand, when the difference ΔW between the two widths is 0.050 mm as in the structure of the above-described invention, the toroidal-type continuously variable transmission can be used even when the torque transmission direction is reversed. The gear ratio does not change regardless of the movement of the actuator 21, and the engine speed does not increase rapidly, so that the driver does not feel uncomfortable.

前記トロイダル型無段変速機により伝達されるトルクが大きくなり、その結果、前記パワーローラ6aから前記外輪16bを介して前記支持梁部23aに加わるスラスト荷重が大きくなると、この支持梁部23aが、前記外輪16bを設置した側が凹となる円弧状に弾性変形する。この結果、図24に矢印イで示す様に、前記突条28が前記凹溝27から抜け出る方向に変位し、この突条28の両外側面とこの凹溝27の両内側面との間の隙間が広がる傾向になる。但し、実際の広がり量は僅かである。そして、この隙間が広がる傾向になる事によって、前記パワーローラ6aがトルクを伝達せず、前記支持梁部23aと前記外輪16bとが弾性変形していない状態で、前記差△Wを僅少に(0.050mm以下に)抑えても、大きなトルクを伝達する際に、前記突条28が前記凹溝27の両内側面同士の間で挟みこまれる事はなく、前記支持梁部23aを中心とする前記外輪16bの揺動変位は、円滑に行われる。又、トロイダル型無段変速機が伝達するトルクが大きい状態では、多少の変速比の変動によりエンジンの回転数が変動した場合でも、運転者に与える違和感は、低トルク時に比べて低く抑えられる為、特に問題とはなり難い。   When the torque transmitted by the toroidal-type continuously variable transmission is increased, and as a result, the thrust load applied to the support beam portion 23a from the power roller 6a through the outer ring 16b is increased, the support beam portion 23a is The outer ring 16b is elastically deformed into a circular arc having a concave side. As a result, as shown by an arrow A in FIG. 24, the protrusion 28 is displaced in a direction of coming out of the groove 27, and between the outer side surfaces of the protrusion 28 and the inner surfaces of the groove 27. The gap tends to widen. However, the actual spread amount is slight. Then, since the gap tends to widen, the difference ΔW is slightly reduced in a state where the power roller 6a does not transmit torque and the support beam portion 23a and the outer ring 16b are not elastically deformed ( Even if it is suppressed to 0.050 mm or less), when transmitting a large torque, the protrusion 28 is not sandwiched between the inner surfaces of the concave groove 27, and the support beam portion 23a is the center. The swinging displacement of the outer ring 16b is smoothly performed. In addition, when the torque transmitted by the toroidal type continuously variable transmission is large, even if the engine speed changes due to a slight change in the gear ratio, the driver feels a sense of incongruity lower than when the torque is low. , Especially unlikely to be a problem.

又、前記先発明の構造の場合には、前記トラニオン7bの内部に形成した上流側潤滑油流路29と前記外輪16bの支持軸12aの内部に設けた下流側潤滑油流路30とを通じて、この外輪16bとパワーローラ6aとの間に設けた、前記スラスト玉軸受13a及びラジアルニードル軸受25(図17〜18参照)に潤滑油(トラクションオイル)を供給する様に構成している。前記支持梁部23aに対する前記外輪16bの揺動変位に拘らず、前記上流側潤滑油流路29の下流端開口と前記下流側潤滑油流路30の上流端開口とが連通したままとなる。この為に、この下流側潤滑油流路30の上流端開口に整合する、前記凹溝27の周方向中央部に、この凹溝27の幅寸法よりも大きな開口径を有する、円形の中央凹部31を形成している。又、前記上流側潤滑油流路29の下流端開口に整合する、前記突条28の周方向中央部に、切り欠き部32を形成している。トロイダル型無段変速機が伝達するトルクの変動に伴って、前記支持梁部23aに対して前記外輪16bが揺動変位した場合でも、前記上流側潤滑油流路29と前記下流側潤滑油流路30とは、前記切り欠き部32と前記中央凹部31とを介して連通したままとなる。この為、前記両潤滑油流路29、30を通じての、前記各軸受13a、25への潤滑油供給を、前記支持梁部23aを中心とする前記外輪16bの揺動変位に拘らず、安定して行える。   Further, in the case of the structure of the previous invention, through the upstream lubricating oil passage 29 formed in the trunnion 7b and the downstream lubricating oil passage 30 provided in the support shaft 12a of the outer ring 16b, Lubricating oil (traction oil) is supplied to the thrust ball bearing 13a and the radial needle bearing 25 (see FIGS. 17 to 18) provided between the outer ring 16b and the power roller 6a. Regardless of the rocking displacement of the outer ring 16b with respect to the support beam portion 23a, the downstream end opening of the upstream lubricating oil passage 29 and the upstream end opening of the downstream lubricating oil passage 30 remain in communication. For this purpose, a circular central recess having an opening diameter larger than the width dimension of the concave groove 27 at the central portion in the circumferential direction of the concave groove 27 aligned with the upstream end opening of the downstream lubricating oil passage 30. 31 is formed. In addition, a notch 32 is formed at the center in the circumferential direction of the protrusion 28, which is aligned with the downstream end opening of the upstream lubricating oil passage 29. Even when the outer ring 16b is oscillated and displaced with respect to the support beam portion 23a due to a change in torque transmitted by the toroidal-type continuously variable transmission, the upstream-side lubricating oil passage 29 and the downstream-side lubricating oil flow The passage 30 remains in communication with the notch 32 and the central recess 31. Therefore, the supply of the lubricating oil to the bearings 13a and 25 through both the lubricating oil flow paths 29 and 30 is stable regardless of the swinging displacement of the outer ring 16b centering on the support beam portion 23a. Can be done.

この様な先発明の構造の様に、前記差△Wを僅少に(0.050mm以下に)抑えるには、前記外輪16bの外側面に設けられた凹部24と、この凹部24の内面に形成された凹溝27との同軸度を良好に(0.015mm以下、好ましくは0.010mm以下、更に好ましくは0.005mm以下)確保する必要がある。この為に、先発明構造の場合には、上述した様に、前記凹部24と前記凹溝27とを、一体型の総型砥石で研削する事により仕上加工を施している。しかし、総型砥石は接触面積が大きく、回転抵抗が大きい為、仕上加工の効率が低下し、製造コストが増大する可能性がある。そこで、前記凹部24と前記凹溝27とを同時に(ワンチャックで)、それぞれ別の砥石で研削する事で仕上加工を行う事も考えられる。何れにしても、前記凹部24と前記凹溝27との同軸度を確保する為には、これら凹部24と凹溝27とに仕上加工を施す際の前記外輪16bのチャッキングを、高精度に行う必要がある。   In order to suppress the difference ΔW slightly (less than 0.050 mm) as in the structure of the previous invention, a recess 24 provided on the outer surface of the outer ring 16b and an inner surface of the recess 24 are formed. It is necessary to ensure good concentricity (0.015 mm or less, preferably 0.010 mm or less, more preferably 0.005 mm or less) with the concave groove 27 formed. For this reason, in the case of the structure of the prior invention, as described above, the recess 24 and the groove 27 are finished by grinding with an integrated grindstone. However, since the general-purpose grindstone has a large contact area and a large rotational resistance, the efficiency of the finishing process is lowered, and the manufacturing cost may be increased. Therefore, it is conceivable to perform finishing by grinding the concave portion 24 and the concave groove 27 simultaneously (with one chuck) with different grindstones. In any case, in order to ensure the coaxiality between the concave portion 24 and the concave groove 27, the chucking of the outer ring 16b when finishing the concave portion 24 and the concave groove 27 with high accuracy is performed. There is a need to do.

又、トロイダル無段変速機の変速比を変更する際には、互いに異なるキャビティに設置したトラニオン7、7(図11〜12参照)を逆方向(変速比の変化方向に関して互いに同方向)に、同じ角度だけ、互いに同期して揺動変位させる。この様な、前記各トラニオン7、7の揺動変位を高精度で一致させる(前記トロイダル型無段変速機の変速同期安定性を向上させる)為、各パワーローラ6、6(図11〜12参照)の組み込み位置を高精度に規制している。この為に、パワーローラユニット33(図13〜18参照)の各部の寸法及び形状を、(特に、同じトロイダル無段変速機に組み込まれる前記各パワーローラユニット33同士の間で)高精度に規制する必要がある。即ち、各トラニオン7a(7b)に対するパワーローラ6aの組立高さの誤差、これら各トラニオン7a(7b)の支持梁部23(23a)の軸方向に対する外輪16a(16b)の外輪軌道17の平行度、及び、同じく支持軸12aの直角度を、それぞれ凡そ0.010mm以下(0.015mm以下、好ましくは0.010mm以下、更に好ましくは0.005mm以下)に規制する必要がある。   In addition, when changing the transmission ratio of the toroidal continuously variable transmission, the trunnions 7 and 7 (see FIGS. 11 to 12) installed in different cavities in the opposite directions (the same direction with respect to the changing direction of the transmission ratio), Only the same angle is oscillated and displaced in synchronization with each other. In order to make the oscillating displacements of the trunnions 7 and 7 coincide with each other with high accuracy (to improve the shift synchronization stability of the toroidal continuously variable transmission), the power rollers 6 and 6 (FIGS. 11 to 12). )) Is regulated with high accuracy. For this reason, the size and shape of each part of the power roller unit 33 (see FIGS. 13 to 18) are regulated with high precision (particularly between the power roller units 33 incorporated in the same toroidal continuously variable transmission). There is a need to. That is, the error in the assembly height of the power roller 6a with respect to each trunnion 7a (7b), the parallelism of the outer ring raceway 17 of the outer ring 16a (16b) with respect to the axial direction of the support beam portion 23 (23a) of each trunnion 7a (7b) Similarly, it is necessary to regulate the perpendicularity of the support shaft 12a to about 0.010 mm or less (0.015 mm or less, preferably 0.010 mm or less, more preferably 0.005 mm or less).

更に、上述の様なトロイダル無段変速機に於いては、各トラニオンが揺動変位した場合に、パワーローラの周面が各ディスクの内側面の径方向外方に突出したり、外輪の外周縁やスラスト玉軸受を構成する玉を保持する保持器の外周縁が、各ディスクの内側面に接触しない様にする必要がある。この様な問題を解決する為、特許文献6には、トラニオンの端部に設けられた支持板部の先端部を傾斜縁とし、この傾斜縁と、ハウジング等に固定されたストッパとを、前記トラニオンが許容限度迄揺動変位した場合に当接させる事で、このトラニオンがそれ以上揺動変位するのを阻止するストッパ機構を設けた構造が記載されている。但し、前記特許文献6に記載の構造の場合、パワーローラの周面と各ディスクの内側面との転がり接触部と、前記傾斜縁と前記ストッパとの当接部との間に存在する部材(パワーローラ、スラスト玉軸受を構成する玉、外輪、及び、トラニオン)の点数が多く、距離も長い。従って、前記各ディスクに対するパワーローラの傾斜角度をより高精度に規制する面からは、改良の余地がある。   Further, in the toroidal continuously variable transmission as described above, when each trunnion is oscillated and displaced, the peripheral surface of the power roller protrudes radially outward of the inner surface of each disk, or the outer peripheral edge of the outer ring. In addition, it is necessary to prevent the outer peripheral edge of the cage that holds the balls constituting the thrust ball bearing from coming into contact with the inner surface of each disk. In order to solve such a problem, Patent Document 6 discloses that the tip of the support plate provided at the end of the trunnion is an inclined edge, and the inclined edge and a stopper fixed to a housing or the like are used as described above. A structure is described in which a stopper mechanism is provided that prevents the trunnion from further swinging displacement by being brought into contact when the trunnion is swung to an allowable limit. However, in the case of the structure described in Patent Document 6, a member (between the rolling contact portion between the peripheral surface of the power roller and the inner surface of each disk and the contact portion between the inclined edge and the stopper ( Power rollers, balls constituting the thrust ball bearing, outer ring, and trunnion) have a large number of points and a long distance. Therefore, there is room for improvement in terms of regulating the inclination angle of the power roller with respect to each disk with higher accuracy.

特開2003−214516号公報JP 2003-214516 A 特開2007−315595号公報JP 2007-315595 A 特開2008−25821号公報JP 2008-25821 A 特開2008−275088号公報JP 2008-275088 A 特開2004−169719号公報JP 2004-169719 A 実開平6−43404号公報Japanese Utility Model Publication No. 6-43404

本発明は、上述の様な事情に鑑み、部品製作、部品管理、組み立て作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられ、更に必要に応じて、各ディスクに対するパワーローラの傾斜角度を規制する事ができるトロイダル型無段変速機の構造及びその製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention makes it easy to manufacture parts, manage parts, and assemble, facilitate cost reduction, stabilize the speed change operation, and further, if necessary, each disk. Invented to realize a structure of a toroidal-type continuously variable transmission capable of regulating the inclination angle of the power roller with respect to the above and a manufacturing method thereof.

本発明の対象となるトロイダル型無段変速機は、少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受とを備える。
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を可能に支持している。
又、前記各トラニオンは、それぞれの両端部に互いに同心に設けられた1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、前記両傾転軸の中心軸と平行でこれら両傾転軸の中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部とを備える。そして、軸方向に関して前記各ディスクの軸方向側面同士の間位置の周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心とする揺動変位を自在に設けている。
又、前記各パワーローラは、前記各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させている。
又、前記各スラスト転がり軸受は、前記各トラニオンの支持梁部と前記各パワーローラの外側面との間に設けている。そして、これら各支持梁部側に設けられた外輪と、これら各外輪の内側面に設けられた外輪軌道と前記各パワーローラの外側面に設けられた内輪軌道との間に転動自在に、それぞれ複数個ずつ設けられた転動体とを備える。
又、前記外輪は、内側面中央部に支持軸を固設しており、この支持軸の周囲に、ラジアル転がり軸受を介して前記各パワーローラを回転自在に支持している。そして、前記各外輪の外側面に設けられた凹部と前記各支持梁部の円筒状凸面とを係合させる事によりこれら各外輪を、前記各トラニオンに対し、前記各ディスクの軸方向に関する揺動変位を可能に支持すると共に、前記凹部の内面に、前記支持梁部を中心とする周方向に形成された凹溝と、この支持梁部の外周面に形成された突条とを係合させる事により、この支持梁部の軸方向に関する、前記外輪の変位を制限している。
A toroidal-type continuously variable transmission that is an object of the present invention includes at least one pair of disks, a plurality of trunnions, the same number of power rollers as each of the trunnions, and the same number of thrust rolling bearings.
Each of these disks is supported concentrically with each other in such a manner that relative rotation is possible with the respective axial side surfaces facing each other, each of which is a toroidal curved surface having an arc cross section.
Each trunnion is present between a pair of tilting shafts concentrically provided at both ends of each of the trunnions, and at least an inner side surface in the radial direction of each disk. And a support beam portion having a cylindrical convex surface having a central axis that is parallel to the central axes of the two tilting axes and is located outside the central axes of the two tilting axes in the radial direction of each disk. Then, with respect to the axial direction, the rocking displacement about the tilting shaft that is twisted with respect to the central axis of each disk can be freely performed at a plurality of positions in the circumferential direction between the axial side surfaces of each disk. Provided.
Each power roller is rotatably supported on the inner side surface of each trunnion via a thrust rolling bearing, and each circumferential surface formed as a spherical convex surface is in contact with one axial side surface of each disk. Touching.
Each thrust rolling bearing is provided between the support beam portion of each trunnion and the outer surface of each power roller. And, the outer ring provided on each support beam portion side, the outer ring raceway provided on the inner side surface of each outer ring, and the inner ring raceway provided on the outer side surface of each power roller, can freely roll. A plurality of rolling elements each provided.
Further, the outer ring has a support shaft fixed at the center of the inner side surface, and the power rollers are rotatably supported around the support shaft through radial rolling bearings. Then, by engaging a concave portion provided on the outer side surface of each outer ring and a cylindrical convex surface of each supporting beam portion, each outer ring is swung with respect to each trunnion in the axial direction of each disk. While supporting the displacement, the inner surface of the concave portion is engaged with a concave groove formed in the circumferential direction around the support beam portion and a protrusion formed on the outer peripheral surface of the support beam portion. Thus, the displacement of the outer ring with respect to the axial direction of the support beam portion is limited.

特に、本発明のトロイダル型無段変速機に於いては、前記凹溝を、開口部の幅が広く底部の幅が狭いテーパ溝としている。又、前記突条を、基部の幅が広く先端部の幅が狭いテーパ突条としている。そして、前記各外輪の外側面外周縁部の少なくとも一部に段差部を設け、この段差部を基準面に位置決めを図った状態でチャックにより前記各外輪を把持し、前記凹部及び前記凹溝、前記外輪軌道、並びに、前記支持軸の外周面に同時に(途中で加工装置を変更する事なく=途中でチャッキングを行わずに)、研削加工或いはハードターニング仕上等の仕上加工を施している。   In particular, in the toroidal type continuously variable transmission of the present invention, the concave groove is a tapered groove having a wide opening and a narrow bottom. The protrusion is a tapered protrusion having a wide base and a narrow tip. Then, a step is provided on at least a part of the outer peripheral edge of the outer surface of each outer ring, and each outer ring is gripped by a chuck in a state in which the step is positioned with respect to a reference surface, and the recess and the groove, The outer ring raceway and the outer peripheral surface of the support shaft are simultaneously subjected to finishing processing such as grinding or hard turning finish (without changing the processing device in the middle = without chucking in the middle).

上述の様な本発明のトロイダル型無段変速機を実施する場合に、例えば請求項2に記載した発明の様に、前記段差部を、前記各外輪の外側面外周縁部に全周に亙って設ける。
この様な請求項2に記載した発明を実施する場合に好ましくは、請求項3に記載した発明の様に、前記各外輪の外側面に前記チャックの周方向の位置決めを図る為の位置決め凹部を設ける。
或いは、請求項4に記載した発明の様に、前記段差部を、前記各外輪の外側面外周縁部のうち、前記凹部を挟む幅方向両側部分に前記支持梁部の軸方向に設ける。
When implementing the toroidal continuously variable transmission of the present invention as described above, for example, as in the invention described in claim 2, the stepped portion is formed around the outer peripheral edge of the outer surface of each outer ring. Provide.
When the invention described in claim 2 is carried out, preferably, as in the invention described in claim 3, a positioning recess for positioning the chuck in the circumferential direction is provided on the outer surface of each outer ring. Provide.
Or like the invention described in Claim 4, the said level | step-difference part is provided in the axial direction of the said support beam part in the width direction both-sides part which pinches | interposes the said recessed part among the outer peripheral surface outer peripheral parts of each said outer ring | wheel.

又、本発明のトロイダル型無段変速機を実施する場合に好ましくは、請求項5に記載した発明の様に、前記各トラニオンが、前記両傾転軸を中心として許容限度迄揺動変位した場合に、前記各外輪の段差部が係合する位置に、この係合に基づいて前記各トラニオンがそれ以上揺動変位する事を阻止するストッパを設ける。   Preferably, when the toroidal continuously variable transmission according to the present invention is implemented, each trunnion is oscillated and displaced to an allowable limit around the two tilting axes as in the invention described in claim 5. In this case, a stopper is provided at a position where the step portion of each outer ring is engaged to prevent each trunnion from further swinging and displacement based on this engagement.

又、請求項6に記載した本発明のトロイダル型無段変速機の製造方法の場合には、上述の様なトロイダル型無段変速機を造るべく、前記各外輪の外側面外周縁部の少なくとも一部に段差部を設ける。そして、この段差部を基準面として位置決めを図った状態で前記各外輪をチャックにより把持し、前記凹部及び前記凹溝、前記外輪軌道、並びに、前記支持軸の外周面に同時に、研削加工或いは切削加工等の仕上加工を施す。
この様な請求項6に記載した発明を実施する場合に、例えば請求項7に記載した発明の様に、前記段差部を、前記各外輪の外側面外周縁部に全周に亙って設ける。
この様な請求項7に記載した発明を実施する場合に好ましくは、請求項8に記載した発明の様に、前記段差部を、前記各外輪の外側面外周縁部のうち、前記凹部を挟む幅方向両側部分に設ける。
或いは、請求項9に記載した発明の様に、前記段差部を、前記各外輪の外側面外周縁部のうち、前記凹部を挟む幅方向両側部分に前記支持梁部の軸方向に設ける。
Further, in the method of manufacturing the toroidal continuously variable transmission according to the present invention described in claim 6, at least the outer peripheral edge of the outer surface of each outer ring is formed in order to produce the toroidal continuously variable transmission as described above. A step is provided in part. Then, each outer ring is gripped by a chuck in a state where the stepped portion is positioned as a reference surface, and grinding or cutting is simultaneously performed on the concave portion and the concave groove, the outer ring raceway, and the outer peripheral surface of the support shaft. Finish processing such as processing.
When the invention described in claim 6 is carried out, as in the invention described in claim 7, for example, the stepped portion is provided on the outer peripheral edge of the outer surface of each outer ring over the entire circumference. .
In the case of carrying out the invention described in claim 7, preferably, as in the invention described in claim 8, the step portion is sandwiched between the outer peripheral edge portions of the outer rings of the outer rings. Provided on both sides in the width direction.
Or like the invention described in Claim 9, the said level | step-difference part is provided in the axial direction of the said support beam part in the width direction both-sides part which pinches | interposes the said recessed part among the outer peripheral surface outer peripheral parts of each said outer ring | wheel.

上述の様に構成する本発明のトロイダル型無段変速機及びその製造方法によれば、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられ、更に、必要に応じて、各ディスクに対するパワーローラの傾斜角度を規制する事ができる構造を実現できる。
このうちのコスト低廉化は前述の図13〜18に示した従来構造の第2例と、同じく加工の容易化は前述の図20〜27に示した先発明に係る構造と、それぞれ同様の理由により、図り易い。
According to the toroidal-type continuously variable transmission and the manufacturing method thereof of the present invention configured as described above, it is easy to manufacture parts, manage parts, and assemble work, facilitate cost reduction, and stabilize shifting operation. Furthermore, it is possible to realize a structure that can regulate the inclination angle of the power roller with respect to each disk as required.
Of these, the cost reduction is the same as the second example of the conventional structure shown in FIGS. 13 to 18 described above, and the ease of processing is the same as the structure according to the prior invention shown in FIGS. 20 to 27 described above. Therefore, it is easy to plan.

又、変速動作の安定化に就いても、基本的には、前記先発明に係る構造と同様の理由により図れる。更に、本発明の場合、各外輪の外側面外周縁部の一部に段差部を設けている。そして、この段差部を基準面として位置決めを図った状態で前記各外輪をチャックにより把持し、これら各外輪の凹部及び凹溝、外輪軌道、並びに、支持軸の外周面に研削加工やハードターニング仕上げ等の仕上加工を施している。この為、前記各外輪の各部の寸法及び形状(前記凹部及び凹溝の同軸度、トラニオンと外輪とパワーローラとを組み合わせて成るパワーローラユニット同士の間での組立高さの差、このトラニオンの支持梁部の軸方向に対する外輪軌道の平行度、並びに、同じく支持軸の直角度)を高精度に規制できる。この結果、前記凹溝の幅と突条の幅との差を僅少(0.050mm以下)に抑えられると共に、トロイダル型無段変速機内へのパワーローラの組み込み位置を高精度に規制できる。この面からも変速動作の安定化を図れる。   Also, stabilization of the speed change operation can be basically achieved for the same reason as in the structure according to the previous invention. Further, in the case of the present invention, a step portion is provided on a part of the outer peripheral edge portion of the outer surface of each outer ring. Then, the outer ring is gripped by a chuck in a state where positioning is performed with the stepped portion as a reference surface, and the outer ring surface of the recess and groove of the outer ring, the outer ring raceway, and the support shaft are ground and hard-turned. Finishing processing is given. For this reason, the size and shape of each part of each outer ring (the concentricity of the concave and concave grooves, the difference in assembly height between the power roller units formed by combining the trunnion, outer ring and power roller, The degree of parallelism of the outer ring raceway with respect to the axial direction of the support beam and the perpendicularity of the support shaft can be regulated with high accuracy. As a result, the difference between the width of the concave groove and the width of the protrusion can be suppressed to a small (0.050 mm or less), and the position where the power roller is incorporated in the toroidal continuously variable transmission can be regulated with high accuracy. From this aspect, the shifting operation can be stabilized.

又、請求項5に記載した発明によれば、パワーローラの周面が各ディスクの内側面の径方向外方に突出したり、前記各外輪の外周縁やスラスト玉軸受を構成する玉を保持する保持器の外周縁が、各ディスクの軸方向側面に接触するのを防止できる。特に、請求項5に記載した発明の構造の場合、パワーローラの周面と各ディスクとの内側面の転がり接触部と、トラニオンの揺動変位を規制するストッパとの間に存在する部材(パワーローラ、スラスト玉軸受を構成する玉、外輪)の点数が、前述した特許文献6に記載の構造と比べて少なく、距離も短い。従って、前記各ディスクに対するパワーローラの傾斜角度を、前記特許文献6に記載の構造と比較して、より精度良く規制できる。   According to the invention described in claim 5, the peripheral surface of the power roller protrudes radially outward of the inner surface of each disk, or holds the outer peripheral edge of each outer ring and the ball constituting the thrust ball bearing. It is possible to prevent the outer peripheral edge of the cage from coming into contact with the axial side surface of each disk. In particular, in the case of the structure of the invention described in claim 5, a member (power) that exists between the rolling contact portion between the peripheral surface of the power roller and the inner surface of each disk and a stopper that regulates the swing displacement of the trunnion. The number of points of the rollers, balls constituting the thrust ball bearing, and the outer ring) is small compared to the structure described in Patent Document 6 described above, and the distance is also short. Therefore, the inclination angle of the power roller with respect to each disk can be regulated more accurately than the structure described in Patent Document 6.

本発明の実施の形態の第1例を関して、外輪を取り出して示す断面図(A)と、(A)の下方から見た状態で示す斜視図(B)。Sectional drawing (A) which takes out and shows an outer ring | wheel regarding the 1st example of embodiment of this invention, and a perspective view (B) shown in the state seen from the downward direction of (A). 同じく、外輪の外側面外周縁部に形成した段差面に、仕上加工を施す方法の2例を示す断面図。Similarly, sectional drawing which shows two examples of the method of giving a finishing process to the level | step difference surface formed in the outer peripheral surface outer peripheral part of an outer ring | wheel. 同じく、前記外輪の凹部及び凹溝、外輪軌道、並びに、支持軸の外周面に仕上加工を施す状態を示す断面図。Similarly, sectional drawing which shows the state which finishes the recessed part and recessed groove of the said outer ring | wheel, an outer ring track | orbit, and the outer peripheral surface of a support shaft. 同じく、前記外輪の外側面に形成した位置決め凹部の4例を示す斜視図。Similarly, the perspective view which shows four examples of the positioning recessed part formed in the outer surface of the said outer ring | wheel. 同じく、パワーローラの傾斜角度を規制するストッパの構造を説明する為の断面図。Similarly, sectional drawing for demonstrating the structure of the stopper which controls the inclination-angle of a power roller. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同じく外輪の外側面に、凹部、凹溝、及び、段差面を形成する方法を説明する為の斜視図。Similarly, the perspective view for demonstrating the method of forming a recessed part, a ditch | groove, and a level | step difference surface in the outer surface of an outer ring | wheel. 同じく外輪をチャックにより把持する行程を、途中状態で示す斜視図(A)と、把持した状態で示す断面図(B)。Similarly, a perspective view (A) showing the process of gripping the outer ring with the chuck in the middle state and a cross-sectional view (B) showing the gripped state. 同じく、外輪の凹部及び凹溝に一体型の総型砥石により仕上加工を施す状態を示す斜視図。Similarly, the perspective view which shows the state which finishes a recessed part and a ditch | groove of an outer ring | wheel with an integral type grindstone. 同じく、外輪の凹部に仕上加工を施す状態を示す斜視図(A)と、凹溝に仕上加工を施す状態を示す斜視図(B)。Similarly, the perspective view (B) which shows the state which performs a finishing process to the recessed part of an outer ring | wheel, and the state which performs a finishing process to a ditch | groove. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 図11のa−a断面図。FIG. 12 is a cross-sectional view taken along line aa in FIG. 11. 従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows the 2nd example of the conventional structure from the radial direction outer side of each disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 図14の上方から見た平面図。The top view seen from the upper part of FIG. 図15の右方から見た側面図。The side view seen from the right side of FIG. 図15のb−b断面図。Bb sectional drawing of FIG. 図14のc−c断面図。Cc sectional drawing of FIG. パワーローラから加わるスラスト荷重に基づいてトラニオンが弾性変形した状態を誇張して示す、図17と同方向から見た断面図。FIG. 18 is a cross-sectional view seen from the same direction as FIG. 17, exaggeratingly showing a state where the trunnion is elastically deformed based on a thrust load applied from a power roller. 先発明に係る構造を、トラニオンとスラスト転がり軸受用外輪とを取り出した状態で示す断面図。Sectional drawing which shows the structure which concerns on a prior invention in the state which took out the trunnion and the outer ring | wheel for thrust rolling bearings. 同じくトラニオンを取り出して各ディスクの径方向内側から見た状態で示す斜視図。The perspective view similarly shown in the state which took out the trunnion and was seen from the radial inside of each disk. 同じくスラスト転がり軸受用外輪を取り出して各ディスクの径方向外側から見た状態で示す斜視図。The perspective view similarly shown in the state which took out the outer ring | wheel for thrust rolling bearings and was seen from the radial direction outer side of each disk. 同じく、トラニオン側に形成した突条の断面形状を示す図(A)と、外輪側に形成した凹溝の断面形状を示す図(B)。Similarly, the figure (A) which shows the cross-sectional shape of the protrusion formed in the trunnion side, and the figure (B) which shows the cross-sectional shape of the ditch | groove formed in the outer ring | wheel side. 前記突条と前記凹溝との係合状態を示す断面図。Sectional drawing which shows the engagement state of the said protrusion and the said ditch | groove. これら突条と凹溝との係合部の隙間の概念を説明する為の部分断面図。The fragmentary sectional view for demonstrating the concept of the clearance gap of the engaging part of these protrusions and a ditch | groove. 突条の側面の断面形状の曲率半径が、これら突条と凹溝との係合部の摩耗に及ぼす影響を示す線図。The diagram which shows the influence which the curvature radius of the cross-sectional shape of the side surface of a protrusion exerts on the abrasion of the engaging part of these protrusions and a ditch | groove. 前記突条と前記凹溝との係合部の隙間の大きさが、トロイダル型無段変速機を通過するトルクが反転する瞬間に変速比の急激な変動に結び付く状況を説明する為の線図。A diagram for explaining a situation in which the size of the gap between the engagement portion between the protrusion and the concave groove leads to a sudden change in the gear ratio at the moment when the torque passing through the toroidal continuously variable transmission is reversed. .

[実施の形態の第1例]
図1〜5は、請求項1〜3、5〜7に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、変速動作を安定させるべく、パワーローラユニット33aの各部の寸法及び形状を適切に規制でき、且つ、入力、出力各ディスク2、5(図11参照)に対するパワーローラ6aの傾斜角度を適切に規制できる様にする点にある。その他の部分の構造及び作用は、前述の図20〜25に示した先発明に係る構造と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
FIGS. 1-5 has shown the 1st example of embodiment of this invention corresponding to Claims 1-3, 5-7. The feature of this example is that the size and shape of each part of the power roller unit 33a can be appropriately regulated to stabilize the speed change operation, and the power roller 6a for each of the input and output disks 2, 5 (see FIG. 11). It is in the point which makes it possible to appropriately regulate the inclination angle of. Since the structure and operation of other parts are the same as the structure according to the prior invention shown in FIGS. 20 to 25 described above, the illustration and description of the equivalent parts are omitted or simplified. The explanation is centered.

前記パワーローラユニット33aを構成する外輪16cは、この外輪16cの外側面に設けられた凹部24とトラニオン7bの支持梁部23aの円筒状凸面22とを係合させる事により、このトラニオン7bに対し、前記入力、出力各ディスク2、5の軸方向に関する揺動変位を可能に支持している。又、前記凹部24の内面に、前記支持梁部23aを中心とする周方向に、開口部の幅が広く底部の幅が狭いテーパ溝である凹溝27を、前記支持梁部23aの外周面に、基部の幅が広く先端部の幅が狭いテーパ突条である突条28(図21、23〜25参照)を、それぞれ形成している。そして、前記凹溝27とこの突条28とを係合させる事により、前記外輪16cの前記支持梁部23aの軸方向に関する変位を制限している。以上の構成に関しては、前述の先発明に係る構造と同様である。   The outer ring 16c constituting the power roller unit 33a is engaged with the trunnion 7b by engaging the concave portion 24 provided on the outer surface of the outer ring 16c with the cylindrical convex surface 22 of the support beam portion 23a of the trunnion 7b. The input and output disks 2 and 5 are supported so as to be capable of swinging in the axial direction. A concave groove 27, which is a tapered groove having a wide opening and a narrow bottom, is formed on the inner surface of the concave portion 24 in the circumferential direction around the support beam portion 23a. In addition, ridges 28 (see FIGS. 21, 23 to 25), which are tapered ridges having a wide base and a narrow tip, are formed. And the displacement about the axial direction of the said support beam part 23a of the said outer ring | wheel 16c is restrict | limited by engaging the said groove 27 and this protrusion 28. FIG. The above configuration is the same as the structure according to the previous invention.

特に、本例の場合、前記外輪16cの外側面外周縁部に、全周に亙って段差部34を設けている。この段差部34は、後述する様に、前記外輪16cの各部分に仕上加工を施す際の基準面となる。又、前記パワーローラユニット33aをトロイダル型無段変速機内に組み付けた状態で前記トラニオン7bが、1対の傾転軸8a、8b(図20参照)を中心として許容限度迄揺動変位した場合に、前記外輪16cの段差部34が係合(当接)する部分に、ストッパ35の接触面36、36を設けている。これにより、前記トラニオン7bの傾斜角度を一定範囲に制限している。即ち、前記ストッパ35をトロイダル型無段変速機のケーシング等の固定の部分に、前記トラニオン7bが前記許容限度迄揺動した場合に、前記ストッパ35の接触面36、36が、前記外輪16cの段差部34と係合(当接)する様に支持固定している。   In particular, in the case of this example, a stepped portion 34 is provided on the outer peripheral edge of the outer ring 16c over the entire circumference. As will be described later, the stepped portion 34 serves as a reference surface when finishing each portion of the outer ring 16c. Further, when the trunnion 7b is oscillated and displaced to a permissible limit around the pair of tilting shafts 8a and 8b (see FIG. 20) with the power roller unit 33a assembled in the toroidal continuously variable transmission. The contact surfaces 36, 36 of the stopper 35 are provided at the portion where the stepped portion 34 of the outer ring 16c is engaged (contacted). Thereby, the inclination angle of the trunnion 7b is limited to a certain range. In other words, when the trunnion 7b is swung to the allowable limit when the stopper 35 is fixed to a fixed part such as a casing of a toroidal-type continuously variable transmission, the contact surfaces 36, 36 of the stopper 35 are formed on the outer ring 16c. It is supported and fixed so as to engage (contact) the stepped portion 34.

この様なトロイダル型無段変速機の外輪16cは、次の様にして造る。即ち、中炭素鋼、軸受鋼等の金属材料に切削加工や熱処理等を施す事により、前記外輪16cを造る。本例の場合、この外輪16cの外側面に前記凹部24及び前記凹溝27を、同時に切削加工により形成し、熱処理を施した後、前記外輪16cの外側面外周縁部を全周に亙って切削する事で前記段差部34を形成する。次に、この段差部34を構成する径方向段差面45及び軸方向段差面46と、前記外輪16cの外周面とに、研削加工或いはハードターニング仕上げ等の仕上加工を施す。この様な仕上加工を行う場合、図2の(A)に示す様に、支持軸12aの内部に設けた下流側潤滑油流路30の開口と、この支持軸12aの先端面に設けた凹孔37とに、1対の抑え治具38、38の円すい状の先端部をそれぞれ挿入し、前記外輪16cを狭持する。この状態で、これら両抑え治具38、38を回転する事によりこの外輪16cを回転し、前記段差部34の径方向段差面45及び軸方向段差面46と、この外輪16cの外周面とを、一体型の総型砥石39により研削する(或いは工具により旋削する)事で、前記段差部34の径方向段差面45及び軸方向段差面46と、前記外輪16cの外周面とに仕上加工を施す(前記支持軸12aの回転中心軸に対する前記径方向段差面45の直角度を、同じく前記軸方向段差面46及び前記外輪16cの外周面の平行度を、それぞれ向上させる)。本例の場合、前記段差部34及び前記支持軸12aの外周面との仕上加工の真円度の悪化を防止する為、前記下流側潤滑油流路30の開口部内周縁に2段階の面取り部40a、40bを設けている。但し、前記段差部34の仕上加工の真円度を確保できる場合には、単一の面取り部とする事もできる。或いは、図2の(B)に示す様に、前記外輪16cの内側面{図2の(B)の左側面}をバックアップ治具44により抑えると共に、前記支持軸12aの外周面をチャック41により把持した状態で、前記バックアップ治具44及びこのチャック41を回転する事により前記外輪16cを回転し、前記段差部34及び前記外輪16cの外周面に仕上加工を施す事もできる。   The outer ring 16c of such a toroidal-type continuously variable transmission is manufactured as follows. That is, the outer ring 16c is made by subjecting a metal material such as medium carbon steel or bearing steel to cutting or heat treatment. In the case of this example, the concave portion 24 and the concave groove 27 are simultaneously formed on the outer surface of the outer ring 16c by cutting, and after heat treatment, the outer peripheral edge of the outer surface of the outer ring 16c is spread over the entire circumference. The step 34 is formed by cutting. Next, finishing processing such as grinding or hard turning is performed on the radial step surface 45 and the axial step surface 46 constituting the step portion 34 and the outer peripheral surface of the outer ring 16c. When performing such finishing, as shown in FIG. 2A, the opening of the downstream lubricating oil passage 30 provided in the support shaft 12a and the recess provided in the tip surface of the support shaft 12a. The conical tip portions of the pair of holding jigs 38, 38 are inserted into the holes 37, respectively, and the outer ring 16c is sandwiched. In this state, by rotating these holding jigs 38, 38, the outer ring 16c is rotated, and the radial step surface 45 and the axial step surface 46 of the stepped portion 34 and the outer peripheral surface of the outer ring 16c are connected. Then, by grinding with an integrated grindstone 39 (or turning with a tool), the radial step surface 45 and the axial step surface 46 of the step portion 34 and the outer peripheral surface of the outer ring 16c are finished. (The right angle of the radial step surface 45 with respect to the rotation center axis of the support shaft 12a is also improved, and the parallelism of the axial step surface 46 and the outer peripheral surface of the outer ring 16c is also improved). In the case of this example, in order to prevent the roundness of the finishing process between the stepped portion 34 and the outer peripheral surface of the support shaft 12a from being deteriorated, a two-step chamfered portion is provided on the inner peripheral edge of the opening of the downstream-side lubricating oil passage 30. 40a and 40b are provided. However, when the roundness of the finishing process of the stepped portion 34 can be ensured, a single chamfered portion can be used. Alternatively, as shown in FIG. 2B, the inner surface of the outer ring 16c (the left side surface of FIG. 2B) is suppressed by the backup jig 44, and the outer peripheral surface of the support shaft 12a is held by the chuck 41. The outer ring 16c can be rotated by rotating the backup jig 44 and the chuck 41 in the gripped state, and the stepped portion 34 and the outer peripheral surface of the outer ring 16c can be finished.

前記段差部34及び前記外輪16cの外周面に仕上加工を施した後、位置決め治具47の軸方向端面を前記径方向段差面45に突き当てる事で前記支持軸12aの軸方向に関する位置決めを図った状態で、前記外輪16cの外周面をチャック41aにより把持する事で、この外輪16cの径方向に関する位置決め(芯出し)を図る。更に、本例の場合、前記外輪16cの外側面の径方向に離隔した2箇所位置に、前記チャック41aの周方向の位置決めを図る為の位置決め凹部42、42を設けている。この様な位置決め凹部42、42は、チャック41aの周方向の位置決めを図れれば良く、例えば図4に示す様な各種構造を採用できる。このうち、図4の(A)の場合には、前記段差部34の内周縁のうち、径方向反対側2箇所位置に径方向内方に凹んだ状態で、前記支持軸12aの軸方向に長い凹溝を設けている。又は、同図の(B)に示す様に、前記凹溝27を前記外輪16cの幅方向に亙って(この凹溝27をこの外輪16cの外側面の幅方向両端縁に開口する状態で)形成し、この凹溝27の幅方向両端部分を前記位置決め凹部42、42とする事もできる。或いは、同図の(C)に示す様に、前記外輪16cの外側面のうちの幅方向2箇所位置に、幅方向の凹溝を形成しても良い。更には、同図の(D)に示す様に、前記外輪16cの外側面のうちの幅方向2箇所位置にピン孔を設けても良い。何れにしても、この外輪16cの位置決め凹部42、42に、前記チャック41a側に設けた凸部を係合させる事で、このチャック41aの前記外輪16cの周方向に対する位置決めを図る。
そして、前記外輪16cの外周面を前記チャック41aにより把持した状態で、このチャック41aを回転する事により前記外輪16cを回転し、外輪軌道17を砥石39aで、前記支持軸12aの外周面を砥石39bで、それぞれ研削する事により前記外輪軌道17及び前記支持軸12aの外周面に仕上加工を施す。同時に、前記凹部24と前記凹溝27とを、一体型の総型砥石39cにより研削する事で、これら凹部24及び凹溝27に仕上加工を施す。
After finishing the outer circumferential surfaces of the stepped portion 34 and the outer ring 16c, the axial end surface of the positioning jig 47 is abutted against the radial stepped surface 45, thereby positioning the support shaft 12a in the axial direction. In this state, the outer peripheral surface of the outer ring 16c is gripped by the chuck 41a, thereby positioning (centering) the outer ring 16c in the radial direction. Further, in the case of this example, positioning recesses 42 and 42 for positioning the chuck 41a in the circumferential direction are provided at two positions spaced in the radial direction of the outer surface of the outer ring 16c. Such positioning recesses 42 and 42 may be positioned in the circumferential direction of the chuck 41a. For example, various structures as shown in FIG. 4 can be adopted. 4A, in the axial direction of the support shaft 12a, the inner peripheral edge of the step portion 34 is recessed radially inward at two positions opposite to the radial direction. A long groove is provided. Or, as shown in (B) of the figure, the concave groove 27 is extended in the width direction of the outer ring 16c (in a state where the concave groove 27 is opened at both edges in the width direction of the outer surface of the outer ring 16c). And both end portions in the width direction of the concave groove 27 can be used as the positioning concave portions 42, 42. Alternatively, as shown in FIG. 5C, a groove in the width direction may be formed at two positions in the width direction on the outer surface of the outer ring 16c. Furthermore, as shown in (D) of the figure, pin holes may be provided at two positions in the width direction on the outer surface of the outer ring 16c. In any case, the positioning recesses 42, 42 of the outer ring 16c are engaged with convex portions provided on the chuck 41a side, thereby positioning the chuck 41a in the circumferential direction of the outer ring 16c.
Then, in a state where the outer peripheral surface of the outer ring 16c is gripped by the chuck 41a, the outer ring 16c is rotated by rotating the chuck 41a, the outer ring raceway 17 is rotated by the grindstone 39a, and the outer peripheral surface of the support shaft 12a is moved by the grindstone. In 39b, the outer ring raceway 17 and the outer peripheral surface of the support shaft 12a are finished by grinding. At the same time, the concave portion 24 and the concave groove 27 are ground by an integrated grindstone 39c to finish the concave portion 24 and the concave groove 27.

本例のトロイダル型無段変速機の製造方法によれば、前記トロイダル型無段変速機の変速動作をより確実に安定させられる。即ち、本例の場合、前記外輪16cの外側面外周縁部に形成した段差部34の径方向段差面45及び軸方向段差面46を基準面として、前記凹部24及び前記凹溝27、前記外輪軌道17、並びに、前記支持軸12aの外周面に同時に(ワンチャックで)仕上加工を施している。この為、前記凹部24と前記凹溝27との同軸度を良好(凡そ0.010mm以下)にでき、前記外輪16cが前記トラニオン7bの支持梁部23aに対して、この支持梁部23aの軸方向に変位可能な量であるがたつきを僅少(0.050mm以下)に抑えられる。同様に、前記凹部24と前記外輪軌道17との平行度、この凹部24と前記支持軸12aとの直角度、並びに、前記各トラニオン7bに対する前記各パワーローラ6aの組立高さの誤差に関しても良好(凡そ0.010mm以下)にできる。この結果、前記トロイダル型無段変速機の変速動作をより確実に安定させられる。   According to the manufacturing method of the toroidal type continuously variable transmission of this example, the speed change operation of the toroidal type continuously variable transmission can be more reliably stabilized. That is, in the case of this example, the concave portion 24, the concave groove 27, the outer ring, with the radial step surface 45 and the axial step surface 46 of the step portion 34 formed on the outer peripheral edge of the outer ring 16c as reference surfaces. The track 17 and the outer peripheral surface of the support shaft 12a are simultaneously finished (with one chuck). For this reason, the concentricity between the concave portion 24 and the concave groove 27 can be made good (approximately 0.010 mm or less), and the outer ring 16c is in the axis of the support beam portion 23a with respect to the support beam portion 23a of the trunnion 7b. Although the amount can be displaced in the direction, rattling can be suppressed to a small amount (less than 0.050 mm). Similarly, the parallelism between the recess 24 and the outer ring raceway 17, the perpendicularity between the recess 24 and the support shaft 12a, and the error in the assembly height of the power rollers 6a with respect to the trunnions 7b are also good. (Approximately 0.010 mm or less). As a result, the speed change operation of the toroidal type continuously variable transmission can be more reliably stabilized.

又、本例の場合、前記トラニオン7bが前記両傾転軸8a、8bを中心として許容限度迄揺動した場合に、前記外輪16cの段差部34と、前記ストッパ35の接触面36、36とを当接させる事で、前記トラニオン7bがそれ以上揺動変位をするのを防止している。この為、前記パワーローラ6aの周面が前記各ディスク2、5の内側面の径方向外方に突出したり、前記外輪16cの外周縁やスラスト玉軸受13aを構成する保持器の外周縁が、各ディスク2、5(図11参照)の内側面に接触するのを防止できる。本例の場合、各パワーローラ6aとこれら各ディスク2、5の内側面との転がり接触部(トラクション部)と、前記ストッパ35との間に存在する部材(パワーローラ6a、スラスト玉軸受13aの玉、及び、外輪16c)が、前述した特許文献6に記載の構造と比べて少なく、距離も短い。従って、前記各ディスク2、5に対する前記各パワーローラ6aの傾斜角度をより精度良く規制できる。   Further, in the case of this example, when the trunnion 7b swings to the allowable limit around the two tilting shafts 8a, 8b, the stepped portion 34 of the outer ring 16c and the contact surfaces 36, 36 of the stopper 35 To prevent the trunnion 7b from further swinging displacement. For this reason, the peripheral surface of the power roller 6a protrudes radially outward of the inner surface of each of the disks 2, 5, or the outer peripheral edge of the outer ring 16c or the outer peripheral edge of the cage constituting the thrust ball bearing 13a, It can prevent contacting the inner surface of each disk 2 and 5 (refer FIG. 11). In the case of this example, members (power roller 6a, thrust ball bearing 13a) existing between the rolling contact portion (traction portion) between each power roller 6a and the inner surface of each disk 2, 5 and the stopper 35 are provided. The number of balls and outer rings 16c) is smaller and the distance is shorter than the structure described in Patent Document 6 described above. Therefore, the inclination angle of each power roller 6a with respect to each disk 2, 5 can be regulated with higher accuracy.

[実施の形態の第2例]
図6〜10は、請求項1〜2、4〜7、9に対応する、本発明の実施の形態の第2例を示している。本例の場合には、上述した実施の形態の第1例の場合と同様に、外輪16dの外側面外周縁部に全周に亙って設けた段差部34に加え、この外輪16dの外側面外周縁部のうちで凹部24を挟む幅方向両側部分に、この凹部24と係合するトラニオン7bの支持梁部23b(図5参照)の軸方向と平行に、左右1対の段差部34a、34aを設けている。この様な段差部34a、34aを形成する場合、図7に示す様に、凹部24及び凹溝27を形成するのと同時に(ワンチャックで)、切削加工(ミーリング加工)によって形成する。そして、前記外輪16dに熱処理を施す。その後、次述するチャック41bに設けた周方向突条48、48の端面を前記段差部34の径方向段差面45に突き当てる事で支持軸12aの軸方向に関する位置決めを、同じく梁部49、49と前記段差部34a、34aの軸方向段差面46a、46aとを係合させる事で前記外輪16dの周方向に関する位置決めを、それぞれ図った状態で、この外輪16dを前記チャック41bに向け、図8の(B)の右方に押し付ける。そして、前記外輪16dをこのチャック41bにより把持する事で、この外輪16dの径方向に関する位置決め(芯出し)を図る。この状態で、このチャック41bを回転し、前記外輪16dの外輪軌道17及び支持軸12aの外周面を砥石により研削する。これと同時に(前記チャック41bを交換する事なく)、前記凹部24及び前記凹溝27を、図9に示す様に、一体型の総型砥石39cにより研削する。或いは、図10の(A)に示す様に、前記凹部24を、砥石39dにより前記支持梁部23a(図20〜21参照)の軸方向に亙って研削した後、同図の(B)に示す様に、前記凹溝27を、砥石39eにより周方向に亙って研削する。
[Second Example of Embodiment]
FIGS. 6-10 has shown the 2nd example of embodiment of this invention corresponding to Claims 1-2, 4-7, and 9. FIG. In the case of this example, as in the case of the first example of the above-described embodiment, in addition to the step 34 provided on the outer peripheral edge of the outer ring 16d over the entire circumference, the outer ring 16d A pair of left and right step portions 34a parallel to the axial direction of the support beam portion 23b (see FIG. 5) of the trunnion 7b that engages with the concave portion 24, on both sides in the width direction sandwiching the concave portion 24 among the outer peripheral edge portions of the side surface. , 34a are provided. In the case of forming such stepped portions 34a and 34a, as shown in FIG. 7, the recess 24 and the groove 27 are formed simultaneously (with one chuck) and by cutting (milling). Then, the outer ring 16d is heat treated. Thereafter, positioning of the support shaft 12a in the axial direction by abutting the end surfaces of the circumferential protrusions 48, 48 provided on the chuck 41b described below against the radial step surface 45 of the step portion 34, and the beam portion 49, 49 is engaged with the axial step surfaces 46a, 46a of the stepped portions 34a, 34a to position the outer ring 16d in the circumferential direction, and the outer ring 16d faces the chuck 41b. Press to the right of 8 (B). The outer ring 16d is gripped by the chuck 41b, thereby positioning (centering) the outer ring 16d in the radial direction. In this state, the chuck 41b is rotated to grind the outer ring raceway 17 of the outer ring 16d and the outer peripheral surface of the support shaft 12a with a grindstone. At the same time (without exchanging the chuck 41b), the concave portion 24 and the concave groove 27 are ground with an integrated grindstone 39c as shown in FIG. Alternatively, as shown in FIG. 10A, the concave portion 24 is ground along the axial direction of the support beam portion 23a (see FIGS. 20 to 21) with a grindstone 39d, and then (B) in FIG. As shown in FIG. 3, the groove 27 is ground in the circumferential direction by a grindstone 39e.

本例の場合、前記段差部34a、34aを、前記外輪16dの外側面外周縁部のうち、前記凹部24を挟む幅方向両側部分に設けている。この為、上述した実施の形態の第1例の場合の様に、前記外輪16dの外側面に、チャックの周方向の位置決めを図る為の位置決め凹部42、42(図4参照)を設ける必要がない。又、前記両段差部34a、34aを、部分円筒面状である凹部24の中心軸と平行に設け、これら両段差部34a、34aと前記両梁部49、49との係合により、前記チャック41bの前記外輪16dの周方向に関する位置決めを図っている。この為、前記凹部24の内面に研削加工を施す際に、研削不良(黒皮残り)が発生し難い。尚、本例の場合、前記外輪16dの外側面外周縁部に全周に亙って設けた段差部34の径方向段差面45の代わりに、前記支持梁部23bの軸方向に設けた段差部34a、34aの径方向段差面45a、45aを、ストッパ35の接触面36、36(図5参照)と当接する面とする事もできる。
その他の部分の構成及び作用は、前記実施の形態の第1例と同様であるから、同等部分に関する図示並びに説明は省略する。
In the case of this example, the step portions 34a, 34a are provided on both sides in the width direction between which the concave portion 24 is sandwiched, of the outer peripheral edge of the outer ring 16d. Therefore, as in the case of the first example of the embodiment described above, it is necessary to provide positioning recesses 42 and 42 (see FIG. 4) for positioning the chuck in the circumferential direction on the outer surface of the outer ring 16d. Absent. Further, both the step portions 34a and 34a are provided in parallel with the central axis of the concave portion 24 having a partial cylindrical surface shape, and the engagement between the both step portions 34a and 34a and the beam portions 49 and 49 results in the chucking. Positioning in the circumferential direction of the outer ring 16d of 41b is intended. For this reason, when grinding the inner surface of the concave portion 24, poor grinding (remaining black skin) hardly occurs. In the case of this example, a step provided in the axial direction of the support beam portion 23b instead of the radial step surface 45 of the step portion 34 provided over the entire outer periphery of the outer ring 16d. The radial step surfaces 45a and 45a of the portions 34a and 34a may be surfaces that contact the contact surfaces 36 and 36 (see FIG. 5) of the stopper 35.
Since the configuration and operation of the other parts are the same as those in the first example of the embodiment, illustration and description regarding the equivalent parts are omitted.

1 入力回転軸
2 入力ディスク
3 出力筒
4 出力歯車
5 出力ディスク
6、6a パワーローラ
7、7a、7b トラニオン
8、8a、8b 傾転軸
9 支持梁部
10 支持板
11、11a ラジアルニードル軸受
12、12a 支持軸
13、13a スラスト玉軸受
14 スラストニードル軸受
15 内輪軌道
16、16a〜16d 外輪
17 外輪軌道
18 玉
19 駆動軸
20 押圧装置
21 アクチュエータ
22 円筒状凸面
23、23a、23b 支持梁部
24 凹部
25 ラジアルニードル軸受
26 段差面
27 凹溝
28 突条
29 上流側潤滑油流路
30 下流側潤滑油流路
31 中央凹部
32 切り欠き部
33、33a パワーローラユニット
34、34a 段差面
35 ストッパ
36 接触面
37 凹孔
38 抑え治具
39、39a〜39e 砥石
40a、40b 面取り部
41、41a、41b チャック
42 位置決め凹部
43 逃げ凹部
44 バックアップ治具
45、45a 径方向段差面
46、46a 軸方向段差面
47 位置決め治具
48 周方向突条
49 梁部
DESCRIPTION OF SYMBOLS 1 Input rotating shaft 2 Input disk 3 Output cylinder 4 Output gear 5 Output disk 6, 6a Power roller 7, 7a, 7b Trunnion 8, 8a, 8b Tilt shaft 9 Support beam part 10 Support plate 11, 11a Radial needle bearing 12, 12a Support shaft 13, 13a Thrust ball bearing 14 Thrust needle bearing 15 Inner ring raceway 16, 16a-16d Outer race 17 Outer raceway 18 Ball 19 Drive shaft 20 Pressing device 21 Actuator 22 Cylindrical convex surfaces 23, 23a, 23b Support beam portion 24 Recess portion 25 Radial needle bearing 26 Step surface 27 Concave groove 28 Projection 29 Upstream lubricating oil passage 30 Downstream lubricating oil passage 31 Central recess 32 Notch 33, 33a Power roller unit 34, 34a Step surface 35 Stopper 36 Contact surface 37 Recessed hole 38 Holding jig 39, 39a to 39e Stone 40a, 40b chamfer 41, 41a, 41b chuck 42 positioning recesses 43 escape recess 44 backup jig 45,45a radially stepped surface 46,46a axial step surface 47 positioning jig 48 circumferential ridges 49 beam portion

Claims (9)

少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受とを備え、
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を可能に支持されたものであり、
前記各トラニオンは、それぞれの両端部に互いに同心に設けられた1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、前記両傾転軸の中心軸と平行でこれら両傾転軸の中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部とを備えたもので、軸方向に関して前記各ディスクの軸方向片側面同士の間位置の周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある前記各傾転軸を中心とする揺動変位を自在に設けられており、
前記各パワーローラは、前記各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させており、
前記各スラスト転がり軸受は、前記各トラニオンの支持梁部と前記各パワーローラの外側面との間に設けられたもので、これら各支持梁部側に設けられた外輪と、これら各外輪の内側面に設けられた外輪軌道と前記各パワーローラの外側面に設けられた内輪軌道との間に転動自在に、それぞれ複数個ずつ設けられた転動体とを備えたものであり、
前記各スラスト転がり軸受の外輪は、これら各外輪の内側面中央部に固設した支持軸の周囲に、ラジアル転がり軸受を介して前記各パワーローラを回転自在に支持しており、前記各外輪の外側面に設けられた凹部と前記各支持梁部の円筒状凸面とを係合させる事により、前記各トラニオンに対し、前記各ディスクの軸方向に関する揺動変位を可能に支持されると共に、前記凹部の内面に、前記支持梁部を中心とする周方向に形成された凹溝と、この支持梁部の外周面に形成された突条とを係合させる事により、この支持梁部の軸方向の変位を制限されているトロイダル型無段変速機に於いて、
前記凹溝が開口部の幅が広く底部の幅が狭いテーパ溝であり、前記突条が基部の幅が広く先端部の幅が狭いテーパ突条であって、前記各外輪の外側面外周縁部のうちの少なくとも一部に、前記凹部及び前記凹溝、前記外輪軌道、並びに、前記支持軸の外周面に同時に仕上加工を施す際の基準面となる段差部を設けている事を特徴とするトロイダル型無段変速機。
Comprising at least one pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, and the same number of thrust rolling bearings;
Each of these disks is supported to be capable of relative rotation concentrically with each other in a state in which each side surface in the axial direction is a toroidal curved surface having an arc cross section.
Each trunnion exists between a pair of tilting shafts provided concentrically with each other at both ends, and between the two tilting shafts, and at least the inner side surface in the radial direction of each of the disks, A support beam portion having a cylindrical convex surface, having a central axis that is parallel to the central axis of both tilting axes and that is present outside the central axes of these two tilting axes with respect to the radial direction of each disk. Oscillating displacement about the respective tilting shafts at twisted positions with respect to the central axis of each disk at a plurality of locations in the circumferential direction between the axial side surfaces of the respective disks with respect to the axial direction. It is provided freely,
Each of the power rollers is rotatably supported on the inner side surface of each trunnion via a thrust rolling bearing, and each circumferential surface having a spherical convex surface is brought into contact with one axial side surface of each disk. And
Each thrust rolling bearing is provided between the support beam portion of each trunnion and the outer surface of each power roller, and an outer ring provided on each support beam portion side, and an inner ring of each outer ring. A plurality of rolling elements are provided between the outer ring raceway provided on the side surface and the inner ring raceway provided on the outer side surface of each of the power rollers, respectively.
The outer ring of each of the thrust rolling bearings rotatably supports each of the power rollers via a radial rolling bearing around a support shaft fixed to the center of the inner surface of each of the outer rings. By engaging the concave portion provided on the outer side surface and the cylindrical convex surface of each of the support beam portions, the trunnion is supported so as to be capable of swinging displacement in the axial direction of each disk, and By engaging a concave groove formed in the circumferential direction centered on the support beam portion and a protrusion formed on the outer peripheral surface of the support beam portion with the inner surface of the recess, the shaft of the support beam portion is engaged. In the toroidal type continuously variable transmission in which the displacement in the direction is limited,
The concave groove is a tapered groove with a wide opening and a narrow bottom, and the ridge is a tapered ridge with a wide base and a narrow tip, and the outer peripheral edge of each outer ring. At least a part of the concave portion and the concave groove, the outer ring raceway, and a stepped portion that serves as a reference surface when simultaneously finishing the outer peripheral surface of the support shaft is provided. Toroidal-type continuously variable transmission.
前記段差部が、前記各外輪の外側面外周縁部に全周に亙って設けられている、請求項1に記載したトロイダル型無段変速機。   The toroidal continuously variable transmission according to claim 1, wherein the stepped portion is provided on the outer peripheral edge of the outer surface of each outer ring over the entire circumference. 前記各外輪の外側面に、前記チャックの周方向の位置決めを図る為の位置決め凹部を設けている、請求項2に記載したトロイダル型無段変速機。   The toroidal continuously variable transmission according to claim 2, wherein a positioning recess for positioning the chuck in the circumferential direction is provided on an outer surface of each outer ring. 前記段差部が、前記各外輪の外側面外周縁部のうち、前記凹部を挟む幅方向両側部分に前記支持梁部の軸方向に設けられている、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機。   The said level | step-difference part is any one of the Claims 1-2 provided in the axial direction of the said support beam part in the width direction both-sides part which pinches | interposes the said recessed part among the outer peripheral surface outer peripheral parts of each said outer ring | wheel. The toroidal type continuously variable transmission described in the item. 前記各トラニオンが、前記両傾転軸を中心として許容限度迄揺動変位した場合に前記各外輪の段差部が係合する位置に、この係合に基づいて前記各トラニオンがそれ以上揺動変位する事を阻止するストッパを設けた、請求項1〜4のうちの何れか1項に記載したトロイダル型無段変速機。   When each trunnion swings and displaces up to a permissible limit around the two tilting axes, each trunnion swings and displaces further on the basis of this engagement at the position where the step portion of each outer ring engages. The toroidal type continuously variable transmission according to any one of claims 1 to 4, further comprising a stopper that prevents the operation. 少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受とを備え、
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を可能に支持されたものであり、
前記各トラニオンは、それぞれの両端部に互いに同心に設けられた1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、前記両傾転軸の中心軸と平行でこれら両傾転軸の中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部とを備えたもので、軸方向に関して前記各ディスクの軸方向片側面同士の間位置の周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある前記各傾転軸を中心とする揺動変位を自在に設けられており、
前記各パワーローラは、前記各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させており、
前記各スラスト転がり軸受は、前記各トラニオンの支持梁部と前記各パワーローラの外側面との間に設けられたもので、これら各支持梁部側に設けられた外輪と、これら各外輪の内側面に設けられた外輪軌道と前記各パワーローラの外側面に設けられた内輪軌道との間に転動自在に、それぞれ複数個ずつ設けられた転動体とを備え、
前記各スラスト転がり軸受の外輪は、これら各外輪の内側面中央部に固設した支持軸の周囲に、ラジアル転がり軸受を介して前記各パワーローラを回転自在に支持しており、前記各外輪の外側面に設けられた凹部と前記各支持梁部の円筒状凸面とを係合させる事により、前記各トラニオンに対し、前記各ディスクの軸方向に関する揺動変位を可能に支持されると共に、前記凹部の内面に、前記支持梁部を中心とする周方向に形成され、開口部の幅が広く底部の幅が狭いテーパ溝である凹溝と、この支持梁部の外周面に形成され、基部の幅が広く先端部の幅が狭いテーパ突条である突条とを係合させる事により、この支持梁部の軸方向の変位を制限されているトロイダル型無段変速機の製造方法に於いて、
前記各外輪の外側面外周縁部の少なくとも一部に段差部を設け、この段差部を基準面として位置決めを図った状態で前記各外輪をチャックにより把持し、前記凹部及び前記凹溝、前記外輪軌道、並びに、前記支持軸の外周面に、同時に仕上加工を施す事を特徴とするトロイダル型無段変速機の製造方法。
Comprising at least one pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, and the same number of thrust rolling bearings;
Each of these disks is supported to be capable of relative rotation concentrically with each other in a state in which each side surface in the axial direction is a toroidal curved surface having an arc cross section.
Each trunnion exists between a pair of tilting shafts provided concentrically with each other at both ends, and between the two tilting shafts, and at least the inner side surface in the radial direction of each of the disks, A support beam portion having a cylindrical convex surface, having a central axis that is parallel to the central axis of both tilting axes and that is present outside the central axes of these two tilting axes with respect to the radial direction of each disk. Oscillating displacement about the respective tilting shafts at twisted positions with respect to the central axis of each disk at a plurality of locations in the circumferential direction between the axial side surfaces of the respective disks with respect to the axial direction. It is provided freely,
Each of the power rollers is rotatably supported on the inner side surface of each trunnion via a thrust rolling bearing, and each circumferential surface having a spherical convex surface is brought into contact with one axial side surface of each disk. And
Each thrust rolling bearing is provided between the support beam portion of each trunnion and the outer surface of each power roller, and an outer ring provided on each support beam portion side, and an inner ring of each outer ring. A plurality of rolling elements each provided in a freely rollable manner between an outer ring raceway provided on a side surface and an inner ring raceway provided on an outer side surface of each power roller;
The outer ring of each of the thrust rolling bearings rotatably supports each of the power rollers via a radial rolling bearing around a support shaft fixed to the center of the inner surface of each of the outer rings. By engaging the concave portion provided on the outer side surface and the cylindrical convex surface of each of the support beam portions, the trunnion is supported so as to be capable of swinging displacement in the axial direction of each disk, and Formed on the inner surface of the concave portion in the circumferential direction centering on the support beam portion, a concave groove which is a tapered groove having a wide opening and a narrow bottom portion, and an outer peripheral surface of the support beam portion, In the manufacturing method of the toroidal type continuously variable transmission in which the axial displacement of the support beam portion is limited by engaging with a projecting ridge which is a tapered ridge having a wide width and a narrow tip. And
A step portion is provided on at least a part of the outer peripheral edge of the outer surface of each outer ring, and each outer ring is gripped by a chuck in a state where the step portion is positioned as a reference surface, and the recess, the groove, and the outer ring A method for manufacturing a toroidal continuously variable transmission, characterized in that finishing is simultaneously performed on the track and the outer peripheral surface of the support shaft.
前記段差部を、前記各外輪の外側面外周縁部に全周に亙って設ける、請求項6に記載したトロイダル型無段変速機の製造方法。   The manufacturing method of the toroidal type continuously variable transmission according to claim 6, wherein the stepped portion is provided on the outer peripheral edge portion of the outer surface of each outer ring over the entire circumference. 前記チャックの周方向の位置決めを図る位置決め凹部を、前記各外輪の外側面に設ける、請求項7に記載したトロイダル型無段変速機の製造方法。   The manufacturing method of the toroidal type continuously variable transmission according to claim 7, wherein a positioning recess for positioning the chuck in the circumferential direction is provided on an outer surface of each outer ring. 前記段差部を、前記各外輪の外側面外周縁部のうち、前記凹部を挟む幅方向両側部分に前記支持梁部の軸方向に設ける、請求項6〜7のうちの何れか1項に記載したトロイダル型無段変速機の製造方法。   The said level | step-difference part is provided in any one of Claims 6-7 provided in the axial direction of the said support beam part in the width direction both-sides part which pinches | interposes the said recessed part among the outer peripheral surfaces outer peripheral parts of each said outer ring | wheel. Method for manufacturing a toroidal continuously variable transmission.
JP2012133453A 2012-06-13 2012-06-13 Toroidal continuously variable transmission and manufacturing method thereof Active JP5953961B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012133453A JP5953961B2 (en) 2012-06-13 2012-06-13 Toroidal continuously variable transmission and manufacturing method thereof
CN201380002551.5A CN103732948B (en) 2012-06-13 2013-06-13 Power roller unit, its manufacture method and semi-circular buncher
PCT/JP2013/066387 WO2013187488A1 (en) 2012-06-13 2013-06-13 Power roller unit, manufacturing method therefor, and half-toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133453A JP5953961B2 (en) 2012-06-13 2012-06-13 Toroidal continuously variable transmission and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2013256996A JP2013256996A (en) 2013-12-26
JP2013256996A5 JP2013256996A5 (en) 2015-07-30
JP5953961B2 true JP5953961B2 (en) 2016-07-20

Family

ID=49758306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133453A Active JP5953961B2 (en) 2012-06-13 2012-06-13 Toroidal continuously variable transmission and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP5953961B2 (en)
CN (1) CN103732948B (en)
WO (1) WO2013187488A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094022B (en) * 2012-02-03 2017-03-15 日本精工株式会社 Toroidal type stepless speed change device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711688B2 (en) * 1997-03-22 2005-11-02 マツダ株式会社 Toroidal continuously variable transmission
JP3463624B2 (en) * 1999-09-27 2003-11-05 日産自動車株式会社 Toroidal type continuously variable transmission
JP3930296B2 (en) * 2001-11-14 2007-06-13 株式会社ジェイテクト Method for manufacturing disc for variator
JP4905012B2 (en) * 2006-06-02 2012-03-28 日本精工株式会社 Toroidal continuously variable transmission
JP5569724B2 (en) * 2010-02-24 2014-08-13 日本精工株式会社 Toroidal continuously variable transmission
JP5077834B2 (en) * 2009-12-15 2012-11-21 日本精工株式会社 Toroidal continuously variable transmission
US8876654B2 (en) * 2009-11-25 2014-11-04 Nsk Ltd. Toroidal continuously variable transmission

Also Published As

Publication number Publication date
WO2013187488A1 (en) 2013-12-19
JP2013256996A (en) 2013-12-26
CN103732948A (en) 2014-04-16
CN103732948B (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP2011127631A (en) Toroidal type continuously variable transmission
JP5835361B2 (en) Toroidal continuously variable transmission
JP5953961B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP5747723B2 (en) Trunnion of toroidal type continuously variable transmission and processing method thereof
JP2008275088A (en) Toroidal type continuously variable transmission
JP2006308037A (en) Toroidal continuously variable transmission
JP5939015B2 (en) Toroidal continuously variable transmission
JP2008032084A (en) Toroidal continuously variable transmission
JP5895463B2 (en) Toroidal continuously variable transmission
JP5803584B2 (en) Toroidal-type continuously variable transmission and processing method for parts thereof
JP4915287B2 (en) Toroidal continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP5126206B2 (en) Toroidal continuously variable transmission
JP5830999B2 (en) Toroidal continuously variable transmission
JP5673205B2 (en) Toroidal continuously variable transmission
JP5082498B2 (en) Toroidal continuously variable transmission
JP6311451B2 (en) Power roller unit for toroidal type continuously variable transmission
JP5003140B2 (en) Toroidal continuously variable transmission
JP2000046062A (en) Tripod constant velocity universal joint and roller for it
JP4770673B2 (en) Toroidal continuously variable transmission
JP2020069567A (en) Main spindle device and machine tool
JP2008281150A (en) Toroidal type continuously variable transmission
JP4962153B2 (en) Toroidal continuously variable transmission
JP2012112483A (en) Toroidal type continuously variable transmission
JP2013024368A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5953961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150