WO2012035849A1 - Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device - Google Patents

Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device Download PDF

Info

Publication number
WO2012035849A1
WO2012035849A1 PCT/JP2011/065157 JP2011065157W WO2012035849A1 WO 2012035849 A1 WO2012035849 A1 WO 2012035849A1 JP 2011065157 W JP2011065157 W JP 2011065157W WO 2012035849 A1 WO2012035849 A1 WO 2012035849A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
antiglare
antiglare layer
layer
mass
Prior art date
Application number
PCT/JP2011/065157
Other languages
French (fr)
Japanese (ja)
Inventor
岡野 賢
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012533898A priority Critical patent/JP5799954B2/en
Priority to KR1020137005953A priority patent/KR20130049202A/en
Publication of WO2012035849A1 publication Critical patent/WO2012035849A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/14Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose characterised by containing special compounding ingredients
    • B32B23/18Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/408Matt, dull surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/706Anisotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to a novel antiglare film, a method for producing an antiglare film, a polarizing plate using the antiglare film, and a liquid crystal display device using the polarizing plate.
  • CTR cathode ray tube display
  • LCD liquid crystal displays
  • plasma displays touch panel input devices
  • organic or inorganic EL (electroluminescence) displays FEDs (field emission displays), etc.
  • EL electroluminescence
  • FEDs field emission displays
  • a film (antiglare film) having an antiglare layer for reducing reflection is provided on the display surface.
  • Anti-glare treatment includes surface roughening by chemical etching or the like, surface unevenness by a transfer method using a mold, etc., and surface unevenness by dispersing fine particles in the resin layer. Some have been granted.
  • Patent Document 1 the total haze is 1 to 30%, the internal haze is 0 to 1%, and the average reflectance at 5 ° incidence in the wavelength range of 450 to 650 nm is 0.001 to 2.5%.
  • An antiglare film is disclosed.
  • the invention described in Patent Document 1 is a technique in which a polymer component (cellulose acetate propionate) is contained in a cured resin, and surface irregularities are formed by spinodal decomposition when the coating film is dried.
  • Patent Document 2 has one or more antiglare hard coat layers on a transparent film, the internal haze of the antiglare hard coat layer is 0.5% or less, and the surface haze / internal haze is 2.0 or more.
  • An anti-glare hard coat film is disclosed.
  • the invention described in Patent Document 2 uses surface separation by spinodal decomposition of two types of resins (resin A; for example, dipentaerythritol hexaacrylate, and resin B; for example, a methacrylate copolymer) to provide surface unevenness. It is a technology to form.
  • resin A for example, dipentaerythritol hexaacrylate
  • resin B for example, a methacrylate copolymer
  • Patent Document 3 a low-haze antiglare film in a transfer method using a mold is disclosed in Patent Document 3.
  • irregularities are formed by hitting fine particles against a polished metal surface, a mold is produced by electroless nickel plating on the irregular surface, and the irregular surface of the mold is transferred to a transparent resin film.
  • it is a manufacturing method of the glare-proof film which forms an unevenness
  • examples of the method for forming the protrusion shape include a method in which resins having different SP values (solubility parameters) are mixed to form surface irregularities (for example, see Patent Document 4 and Patent Document 5). .
  • film strength can be obtained sufficiently by simply forming a regular protrusion shape on the antiglare layer, such as a method of forming protrusions on the surface by pressing a mold, a method of spinodal decomposition or adding fine particles.
  • a regular protrusion shape such as a method of forming protrusions on the surface by pressing a mold, a method of spinodal decomposition or adding fine particles.
  • the scratch resistance and chemical resistance performance after the weather resistance test was insufficient.
  • the present invention has been made in view of the above problems, and the coating strength of the antiglare layer is improved, and it has excellent film strength such as scratch resistance and chemical resistance even after a weather resistance test assuming outdoor use.
  • the antiglare film having optical properties such as prevention of reflection of external light and reflected images and image quality excellent in contrast, a method for producing the antiglare film, and an excellent polarizing plate and liquid crystal using the same
  • An object is to provide a display device.
  • An antiglare film according to one embodiment of the present invention is an antiglare film having an antiglare layer on a base film, and the antiglare layer has a protrusion shape having no period in the longitudinal direction, The protrusion shape is irregularly arranged on the base film, and the arithmetic average roughness Ra (JIS B0601: 1994) of the antiglare layer is 25 to 300 nm.
  • the coating strength of the antiglare layer is improved, it has excellent film strength such as scratch resistance and chemical resistance even after a weather resistance test assuming outdoor use, and it reflects external light and reflected images. It is possible to obtain an antiglare film having optical properties such as prevention of blurring and image quality excellent in contrast.
  • the arithmetic average roughness Ra (JIS B0601: 1994) of the antiglare layer is preferably 25 to 130 nm from the viewpoint of obtaining the above effect more reliably.
  • the arithmetic average roughness Ra JIS B0601: 1994
  • the arithmetic average roughness Ra JIS B0601: 1994
  • the haze due to internal scattering of the antiglare layer is 0.60 to 1.0%, it is preferable in that the above effect can be exhibited more satisfactorily.
  • the antiglare film according to the present embodiment is difficult to obtain the objective effect of the present invention and causes a decrease in contrast due to an increase in internal haze, inorganic fine particles and organic fine particles, and actinic radiation curable resin It is preferable that substantially no resin that is incompatible with the actinic radiation curable resin is contained.
  • the tan ⁇ in the film width direction of the base film has the following relationship: 0.5 ⁇ tan ⁇ ⁇ 40 / tan ⁇ peak ⁇ 0.24 (Where tan ⁇ peak represents the maximum value of tan ⁇ measured from 25 ° C. to 210 ° C., and tan ⁇ ⁇ 40 represents the value of tan ⁇ at a temperature of ⁇ 40 ° C. when tan ⁇ peak was exhibited.) It is preferable to have. With such a configuration, an antiglare film having film strength such as particularly excellent scratch resistance and chemical resistance can be obtained.
  • an antiglare layer containing an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 30 to 2500 mPa ⁇ s is at least applied.
  • Production of an antiglare film characterized by being formed through a drying step and a curing step, and being processed under the condition that the temperature of the decreasing rate drying section in the drying step is maintained within a range of 90 to 140 ° C. A method is preferred.
  • the polarizing plate according to another embodiment of the present invention is a polarizing plate characterized by using the antiglare film on one surface. According to such a configuration, the coating strength of the antiglare layer is improved, the film has excellent film strength such as scratch resistance and chemical resistance even after a weather resistance test assuming outdoor use, and external light or a reflected image.
  • Anti-glare film with optical properties such as anti-reflection and high contrast image quality can be used. For example, when applied to a liquid crystal display device, the liquid crystal display device has high image quality and high durability. A polarizing plate that can be obtained is obtained.
  • the liquid crystal display device is a liquid crystal display device including the polarizing plate in at least one of the liquid crystal cells. According to such a configuration, since the above-described excellent polarizing plate is used, it is possible to realize high image quality and high durability of the liquid crystal display device. Furthermore, by using the polarizing plate on the rear side of the liquid crystal cell, it is possible to suppress the occurrence of moire fringes.
  • the antiglare layer is produced under the condition that the projection shape forming the surface unevenness of the antiglare layer has a period in the longitudinal direction and is formed in an irregular state, and further the arithmetic average roughness
  • the coating strength of the antiglare layer is improved, and film strength such as excellent scratch resistance and chemical resistance can be obtained even after a weather resistance test assuming outdoor use.
  • an antiglare film having optical characteristics such as prevention of reflection of external light and reflected images and image quality excellent in contrast, a method for producing the antiglare film, and a polarizing plate and a liquid crystal display device using the same be able to.
  • the present invention it is possible to obtain an excellent antiglare film having high film strength without unevenness even under a high temperature and high humidity environment. Furthermore, by using the antiglare film, it is possible to provide a very excellent polarizing plate and liquid crystal display device that is excellent in unevenness and visibility, and does not cause eye fatigue even when viewed for a long time.
  • the antiglare film referred to in the present invention is a layer that blurs the outline of reflected images and external light on the surface of the base film, and is used when an image display device such as a liquid crystal display, an organic EL display, or a plasma display is used. It is a film that prevents the reflection of external light and reflected images.
  • the antiglare film of the present invention is composed of at least an antiglare layer and a base film, and the antiglare layer has a protrusion shape that forms surface irregularities, and the protrusion shape does not have a period in the longitudinal direction, and is irregular. It is characterized by the irregular shape of the protrusions having irregular shapes.
  • the anti-glare layer of the anti-glare film of the present invention has “irregularly shaped protrusions that do not have a period in the longitudinal direction”. It refers to protrusions of various shapes whose sizes are not fixed. For this reason, for example, when a concavo-convex structure is formed in the longitudinal direction with a roll shape having a diameter of about 5 cm, a protrusion shape having a period in the longitudinal direction formed by a surface transfer roll having a period of about 15 cm is included. Absent.
  • protrusions having different widths and heights shown in FIG. 1 are exemplified as irregularly shaped protrusions.
  • the “irregular arrangement” means that the irregularly-protruding protrusions are not regularly arranged (for example, at regular intervals), but are irregularly arranged at random intervals, It may be isotropic or anisotropic.
  • the antiglare film of the present invention is characterized in that the haze caused by internal scattering of the antiglare layer (hereinafter also referred to as internal haze) is 0 to 1.0%.
  • internal haze the haze caused by internal scattering of the antiglare layer
  • the internal haze is 0.60 to 1.0%.
  • the internal haze can be measured by the following procedure.
  • a few drops of silicone oil are dropped on the front and back surfaces of the antiglare film and sandwiched between two glass plates (micro slide glass product number S 9111, manufactured by MATSUNAMI) having a thickness of 1 mm from the front and back.
  • An anti-glare film sandwiched between front and back glass is optically brought into close contact with two glass plates, and in this state, haze (Ha) is measured according to JIS-K7105 and JIS-K7136.
  • several drops of silicone oil are dropped between two glass plates and sandwiched to measure glass haze (Hb).
  • internal haze (Hi) is computable by drawing glass haze (Hb) from the haze (Ha) which pinched
  • the surface haze (the haze due to the surface scattering of the film) is preferably 0.50 to 20%.
  • the surface haze is obtained by subtracting the internal haze from the total haze.
  • the total haze is preferably 0.50% to 20%.
  • the anti-glare film of the present invention has another feature that the arithmetic average roughness Ra (JIS B0601: 1994) of the anti-glare layer is 25 to 300 nm.
  • the arithmetic average roughness Ra is more preferably 25 to 130 nm, and particularly preferably 65 to 130 nm.
  • the height of the protrusion shape is preferably 20 nm to 4 ⁇ m.
  • the width of the protrusion shape is 50 nm to 300 ⁇ m, preferably 50 nm to 100 ⁇ m.
  • the height and width of the protrusion shape can be obtained from cross-sectional observation. In order to make it easier to understand, FIG.
  • the center line a is drawn on the cross-sectional observation image, and the distance between the two intersections of the lines b and c and the center line a forming the mountain ridge is defined as the protrusion size width t and did. Further, the distance from the summit to the center line a is obtained as the height h of the protrusion size.
  • the 10-point average roughness Rz of the antiglare layer of the antiglare film of the present invention is preferably 10 times or less the centerline average roughness Ra, and the average mountain valley distance Sm is preferably 5 to 150 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the standard deviation of the height of the convex part from the deepest part is preferably 0.5 ⁇ m or less, the standard deviation of the mean mountain-valley distance Sm with respect to the center line is 20 ⁇ m or less, and the surface with an inclination angle of 0 to 5 degrees is preferably 10% or more.
  • the arithmetic average roughness Ra, Sm, Rz is a value measured by an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO, New View 5030 manufactured by Zygo) according to JIS B0601: 1994. is there.
  • the kurtosis (Rku) of the antiglare layer is preferably 3 or less.
  • the kurtosis (Rku) is a parameter that defines the shape of the concavo-convex convex portion. The larger the kurtosis (Rku) value, the more the concavo-convex convex portion becomes more sharp like a needle. It will be a different shape. If the kurtosis (Rku) exceeds 3, white blurring tends to occur.
  • the kurtosis (Rku) of the antiglare layer is more preferably 1.5 to 2.8. Further, the absolute value of the degree of distortion (Rsk) of the surface is preferably 1 or less.
  • the skewness (Rsk) is a parameter indicating the ratio of the convex portion and the concave portion to the average surface of the concavo-convex shape, and the concavo-convex shape becomes a positively large value when there are many convex portions with respect to the average surface, If there are many concave portions with respect to the average surface, the value becomes negatively large.
  • the absolute value of the skewness (Rsk) exceeds 1, white blur tends to occur.
  • the absolute value of the skewness (Rsk) is preferably 0.01 to 0.5.
  • the kurtosis (Rku) and the skewness (Rsk) can be measured using the optical interference type surface roughness meter.
  • the surface shape is, for example, controlled at a high temperature for the treatment temperature of the rate-decreasing drying section in the drying process of the antiglare layer coating composition, It can be obtained by a method in which a convection of the resin is generated, a non-uniform state is formed on the surface of the antiglare layer, and the coating is formed by curing in this non-uniform surface state.
  • the coating film By forming the coating film by such a method, the film strength of the antiglare layer is improved.
  • the method of controlling the treatment temperature in the decreasing rate drying section in the drying process of the antiglare layer coating composition is preferable in terms of excellent productivity.
  • the antiglare layer according to the present invention contains an actinic radiation curable resin, that is, a resin that is cured through a crosslinking reaction when irradiated with an actinic ray (also referred to as an actinic energy ray) such as an ultraviolet ray or an electron beam.
  • an actinic radiation curable resin that is, a resin that is cured through a crosslinking reaction when irradiated with an actinic ray (also referred to as an actinic energy ray) such as an ultraviolet ray or an electron beam.
  • an actinic radiation curable resin that is, a resin that is cured through a crosslinking reaction when irradiated with an actinic ray (also referred to as an actinic energy ray) such as an ultraviolet ray or an electron beam.
  • a layer is preferred.
  • an actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams.
  • Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but the resin that is cured by ultraviolet irradiation is excellent in mechanical film strength (abrasion resistance, pencil hardness). preferable.
  • the ultraviolet curable resin examples include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray.
  • a curable epoxy resin or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • polyfunctional acrylate monomer examples include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • the active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton, but three or more in the same molecule.
  • a compound having an ethylenically unsaturated group and one or more isocyanurate rings is preferred. Specific examples include tris (acryloyloxyethyl) isocyanurate.
  • Adekaoptomer N series (manufactured by ADEKA Corporation); Sun Rad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (Sanyo) Aronix M-6100, M-8030, M-8060, Aronix M-215, Aronix M-315, Aronix M-313, Aronix M-327 (manufactured by Toagosei Co., Ltd.); NK -Ester A-TMM-3L, NK-ester AD-TMP, NK-ester ATM-35E, NK ester A-DOG, NK ester A-IBD-2E, A-9300, A-9300-1CL (Shin Nakamura Chemical Co., Ltd.) Co., Ltd.); light acrylate TMP-A, PE-3A (Kyoeisha Chemical) and the like.
  • the viscosity at 25 ° C. of the actinic radiation curable resin composition (consisting of the actinic radiation curable resin and an additive other than the solvent) in which the actinic radiation curable resin is used alone or in combination of two or more is preferably 30 mPa ⁇ s or more, It is 2500 mPa ⁇ s or less.
  • the viscosity of the resin composition is 30 mPa ⁇ s or more, a monomer having a high functionality can be used, and sufficiently high curability is obtained. If the viscosity is 2500 mPa ⁇ s or less, in the drying step. Sufficient fluidity of the resin composition is easily obtained.
  • the said viscosity is the value measured on 25 degreeC conditions using the B-type viscosity meter.
  • monofunctional acrylate may be used.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, cyclohexyl acrylate, maleimide acrylate, N-acryloyloxyethyl hexahydrophthalimide, and the like.
  • Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., Toagosei Co., Ltd., etc.
  • monofunctional acrylate 80: 20 to 99: 2 in terms of mass ratio of polyfunctional acrylate and monofunctional acrylate.
  • the antiglare layer of the present invention does not substantially contain a resin that is incompatible with the actinic radiation curable resin, it is difficult to obtain the object effect of the present invention, and internal haze This is preferable because the increase causes a decrease in contrast.
  • incompatible means that each of the resins constituting the molten mixture has a single peak when the melting temperature Tm or the glass transition point Tg of the molten mixture of two or more resins is measured and observed. Means what is observed. Further, it means that each phase is substantially observed in transmission electron microscope observation. On the other hand, “compatible” means that one or less peaks of the molten mixture are observed when the melting temperature Tm or the glass transition point Tg of the molten mixture of the same or two or more resins is measured and observed. Say.
  • examples of the resin that is incompatible with the actinic ray curable tree include resins and polyester resins obtained by polymerizing or copolymerizing (meth) acrylic or acrylic monomers, and will be described later.
  • the thermoplastic acrylic resin used in a base film, a cellulose ester resin, etc. are mentioned.
  • “Substantially free of incompatible resin” means that the content in the antiglare layer is 0.01% by mass or less excluding the extract component from the base film.
  • the antiglare layer preferably contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin.
  • Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof. In particular, it is not limited to these.
  • photopolymerization initiators Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure 184, Irgacure 907, Irgacure 651, etc., manufactured by BASF Japan.
  • the antiglare layer preferably does not substantially contain fine particles such as inorganic fine particles and organic fine particles because the object effect of the present invention is difficult to obtain and the contrast is lowered due to an increase in internal haze.
  • substantially not containing fine particles means that the content of fine particles contained in the antiglare layer is 0.01% by mass or less.
  • the antiglare layer may contain a conductive agent in order to impart antistatic properties.
  • a preferable conductive agent is a ⁇ -conjugated conductive polymer.
  • An ionic liquid is also preferably used as the conductive compound.
  • the antiglare layer contains a silicone-based surfactant, a fluorine-based surfactant, or a nonionic surfactant such as polyoxyether, an anionic surfactant, and a fluorine-siloxane graft compound. May be.
  • the fluorine-siloxane graft compound is a copolymer compound obtained by grafting polysiloxane containing siloxane and / or organosiloxane alone and / or organopolysiloxane to at least a fluorine resin.
  • a fluorine-siloxane graft compound can be prepared by a method as described in Examples described later.
  • examples of commercially available products include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Chemical Industry Co., Ltd. These components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution.
  • the anti-glare layer is prepared by diluting the above-described components forming the anti-glare layer with a solvent as an anti-glare layer composition (also referred to as an anti-glare layer coating composition). It is preferable to provide an antiglare layer by coating, drying and curing on the base film.
  • Solvents include ketones (such as methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone), esters (such as methyl acetate, ethyl acetate, butyl acetate, propyl acetate, propylene glycol monomethyl ether acetate), alcohols (ethanol, methanol, butanoic acid) -Nyl, n-propyl alcohol, isopropyl alcohol, diacetone alcohol), hydrocarbons (toluene, xylene, benzene, cyclohexane), glycol ethers (propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethylene glycol monopropyl ether, etc.) Etc.) can be preferably used.
  • ketones such as methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone
  • esters
  • esters, ketones, glycol ethers or alcohols are preferred.
  • the solvent of the antiglare layer coating composition In the process of forming the antiglare layer while evaporating, convection of the resin is likely to occur, and as a result, irregular surface roughness is likely to appear in the antiglare layer, and the arithmetic average roughness Ra is controlled. It is preferable because it is easy to do.
  • the coating amount of the antiglare layer is suitably 0.1 to 40 ⁇ m as a wet film thickness, and preferably 0.5 to 30 ⁇ m.
  • the dry film thickness is from 0.1 to 30 ⁇ m, preferably from 1 to 20 ⁇ m, particularly preferably from 6 to 15 ⁇ m.
  • an antiglare layer composition for forming an antiglare layer is applied, dried after application, irradiated with actinic radiation (also referred to as UV curing treatment), and further heated after UV curing as necessary. It can be formed by processing.
  • the heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher.
  • Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature of the decreasing rate drying section is 90 ° C or higher and 140 ° C or lower.
  • the temperature of the rate-decreasing drying section is 90 ° C or higher and 140 ° C or lower.
  • the drying process changes from a constant state to a gradually decreasing state when drying starts.
  • the decreasing section is called the decreasing rate drying section.
  • the constant rate drying section the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • the antiglare layer may further contain an ultraviolet absorber described in the base film described later.
  • the antiglare layer is preferably composed of two or more layers, and the antiglare layer in contact with the base film preferably contains the ultraviolet absorber.
  • the film thickness of the antiglare layer in contact with the base film is preferably in the range of 0.05 to 2 ⁇ m.
  • Two or more layers may be formed as a simultaneous multilayer.
  • the simultaneous multi-layering means that two or more anti-glare layers are applied on a wet substrate on a substrate without passing through a drying step to form the anti-glare layer.
  • the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
  • the antiglare film of the present invention has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it is not only difficult to be scratched in the polarizing plate forming step of the liquid crystal display device, but also used for outdoor applications, and is a surface protective film for large liquid crystal display devices and liquid crystal display devices for digital signage. Excellent mechanical properties when used.
  • the pencil hardness is determined by JIS K5400 using a test pencil specified by JIS S 6006 under the condition of a weight of 500 g after conditioning the prepared antiglare film at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more. It is a value measured according to the pencil hardness evaluation method specified. Next, the base film will be described.
  • the base film is preferably easy to manufacture, easily adheres to the antiglare layer, and is optically isotropic. Moreover, in this invention, a base film is used as a polarizing plate protective film.
  • cellulose ester-based films such as triacetyl cellulose film, cellulose acetate propionate film, cellulose diacetate film, and cellulose acetate butyrate film, polyethylene terephthalate, polyethylene Polyester film such as naphthalate, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, Syndiotactic polystyrene film, norbornene resin film, polymethylpente Films, polyether ketone films, polyether ketone imide film, a polyamide film, a fluorine resin film, nylon film, can be used cycloolefin polymer film, a polymethyl methacrylate film or an acrylic film or the like.
  • polyester film such as naphthalate, polycarbonate film, polyarylate film, polysulfone (including polyether
  • cellulose ester films for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UE, KC4UE, and KC12UR (above, Konica Minolta Opto Co., Ltd., Polycarbonate Film)
  • An olefin polymer film and a polyester film are preferable, and in the present invention, the cellulose ester film is preferable from the viewpoint of easy production of the above-described protruding shape by the antiglare layer, productivity, and cost.
  • the refractive index of the base film is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65.
  • the refractive index is measured by the method of JIS K7142 using an upe refractometer 2T manufactured by Atago Co., Ltd.
  • the tan ⁇ measured by changing the temperature from 25 ° C. to 210 ° C. at a humidity of 55% RH in the width direction of the film has the following relationship. Is preferable from the standpoint of exhibiting good.
  • tan ⁇ peak is the maximum value obtained by measuring the tan ⁇ value by changing the temperature from 25 ° C. to 210 ° C.
  • tan ⁇ ⁇ 40 is the value of tan ⁇ at a temperature of ⁇ 40 ° C. when tan ⁇ peak is indicated.
  • the object effect of the present invention is more effectively exhibited by setting tan ⁇ in the film width direction of the base film, that is, the balance between the storage elastic modulus and the loss elastic modulus with respect to the temperature within the above range.
  • the tan ⁇ can be measured, for example, by using a sample that has been conditioned for 24 hours in an atmosphere of 23 ° C. and 55% RH and increasing the humidity at 55% RH under the following conditions or setting the temperature. it can.
  • Measuring device RSA III manufactured by TI Instruments Sample: width 5 mm, length 50 mm (gap set to 20 mm) Measurement conditions: Tensile mode Measurement temperature: 25-210 ° C Temperature rising condition: 5 ° C / min Frequency: 1Hz (Cellulose ester film) Next, it demonstrates in detail about a cellulose-ester film preferable as a base film.
  • the cellulose ester film is not particularly limited as long as it has the above characteristics, but the cellulose ester resin (hereinafter also referred to as cellulose ester) is preferably a lower fatty acid ester of cellulose.
  • the lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms.
  • mixed fatty acid esters such as cellulose acetate butyrate can be used.
  • the lower fatty acid esters of cellulose particularly preferably used are cellulose diacetate, cellulose triacetate, and cellulose acetate propionate. These cellulose esters can be used alone or in combination.
  • Cellulose diacetate preferably has an average degree of acetylation (amount of bound acetic acid) of 51.0% to 56.0%.
  • Commercially available products include Daicel L20, L30, L40, and L50, and Eastman Chemical's Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S.
  • the cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
  • the cellulose triacetate has an acetyl group substitution degree of 2.80 to 2.95, a number average molecular weight (Mn) of 125,000 or more and less than 155000, a weight average molecular weight (Mw) of 265,000 or more and less than 310,000, Mw / Mn Triacetate A having a acetyl group substitution degree of 2.75 to 2.90, a number average molecular weight (Mn) of 155,000 or more and less than 180,000, Mw of 290000 or more and less than 360,000, Mw / Mn preferably contains cellulose triacetate B which is 1.8 to 2.0.
  • a preferred cellulose ester other than cellulose triacetate has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y, It is a cellulose ester containing the cellulose ester which satisfy
  • cellulose acetate propionate is preferably used, and among them, 1.9 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 0.9 are preferable.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw) of cellulose ester can be measured using high performance liquid chromatography.
  • the measurement conditions are as follows.
  • Acrylic resin includes methacrylic resin.
  • the acrylic resin is not particularly limited, but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer.
  • n-Butyl acrylate is particularly preferably used.
  • the weight average molecular weight (Mw) is preferably 80,000 to 500,000, and more preferably 110,000 to 500,000.
  • the weight average molecular weight of the acrylic resin can be measured by gel permeation chromatography including the measurement conditions.
  • a manufacturing method of an acrylic resin You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • alkyl mercaptan Commercial products can also be used.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned.
  • Two or more acrylic resins can be used in combination.
  • the acrylic resin may be a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound.
  • a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer.
  • -A shell-type graft copolymer is preferred.
  • the total mass of the acrylic resin and the cellulose ester resin in the base film is preferably 55% by mass or more of the base film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the base film may be configured to contain resins and additives other than thermoplastic acrylic resins and cellulose ester resins.
  • the base film may contain acrylic particles because it is excellent in improving brittleness.
  • An acrylic particle represents the acrylic component which exists in the state of particle
  • the acrylic particles are not particularly limited, but are preferably multi-layered acrylic granular composites.
  • Examples of commercially available acrylic granular composites that are multi-layer structured polymers include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paralloid” manufactured by Kureha Chemical Co., Ltd., Rohm and “Acryloid” manufactured by Haas, “Staffyroid” manufactured by Ganz Kasei Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., and the like can be used alone or in combination of two or more.
  • the refractive index of the mixture of the acrylic resin and the cellulose ester resin is close to the refractive index of the acrylic particles in order to obtain a highly transparent film.
  • the refractive index difference between the acrylic particles and the acrylic resin is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • Acrylic fine particles are in a range of 0.5: 100 to 30: 100 in terms of the content of acrylic fine particles: acrylic resin and cellulose ester resin with respect to the total mass of acrylic resin and cellulose ester resin constituting the film.
  • the base film according to the present embodiment includes, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silica It is preferable to contain matting agents such as inorganic fine particles such as aluminum oxide, magnesium silicate, and calcium phosphate, and a crosslinked polymer.
  • matting agents such as inorganic fine particles such as aluminum oxide, magnesium silicate, and calcium phosphate, and a crosslinked polymer.
  • silicon dioxide is preferably used because it can reduce the haze of the film.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
  • a plasticizer can also be used in combination with the base film in order to improve the fluidity and flexibility of the composition.
  • the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy. Of these, polyester and phthalate plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • the polyester plasticizer is preferably an aromatic terminal ester plasticizer.
  • the aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms. As long as it has an adipic acid residue and a phthalic acid residue as the structure of such a compound, when an ester compound is produced, it may be reacted as an acid anhydride or esterified product of dicarboxylic acid.
  • benzene monocarboxylic acid component examples include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can be used as a 1 type, or 2 or more types of mixture, respectively.
  • alkylene glycol component having 2 to 12 carbon atoms examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1, 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol 1 , 6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl 1,3-hexan
  • the aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000.
  • the acid value is 1.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the base film.
  • Specific examples include the following compounds (2-1 to 2-6, and 2-20 to 2-23), but are not limited thereto.
  • the base film may contain a sugar ester compound.
  • the sugar ester compound is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide or oligosaccharide.
  • a general formula (1) The compound etc. which are represented by these can be mention
  • R 1 to R 8 represent a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, and R 1 to R 8 May be the same or different.
  • the compounds represented by the general formula (1) are shown below in more detail (compound 1-1 to compound 1-23), but are not limited thereto.
  • the base film preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
  • UV absorbers with a molecular weight of 400 or more are difficult to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. Can do.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, and TINUVIN 928 manufactured by BASF Japan Ltd. can be preferably used.
  • antioxidants can be added to the base film in order to improve the thermal decomposability and thermal colorability during the molding process. It is also possible to add an antistatic agent to give the base film antistatic performance.
  • a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
  • Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
  • the base film is preferably a “film that does not cause ductile fracture”.
  • the ductile fracture is a fracture caused by applying a stress larger than the strength of a certain material, and is defined as a fracture accompanied by significant elongation or drawing of the material until the final fracture.
  • the fracture surface is characterized by numerous indentations called dimples.
  • the base film is required to withstand use in a higher temperature environment, and the base film can be judged to exhibit sufficient heat resistance when the tension softening point is 105 ° C. to 145 ° C. 110 ° C. to 130 ° C. is particularly preferable.
  • a Tensilon tester (ORIENTEC Co., RTC-1225A) is used to cut out the optical film at 120 mm (length) ⁇ 10 mm (width) and pull it with a tension of 10 N.
  • the temperature can be continuously increased at a temperature increase rate of 30 ° C./min, and the temperature at 9 N can be measured three times, and the average value can be obtained.
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
  • the dimensional change rate (%) is preferably less than 0.5%, and more preferably less than 0.3%.
  • the base film preferably has a defect of 5 ⁇ m or more in diameter in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object.
  • the defect is a change in the surface shape, such as transfer of a roll flaw or an abrasion
  • the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the coating agent may not be formed uniformly, resulting in defects (coating defects).
  • the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign substance in the film forming stock solution, or a foreign substance mixed in the film forming process. This refers to the foreign matter (foreign matter defect) in the film.
  • the base film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS-K7127-1999.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
  • the thickness of the base film is preferably 20 ⁇ m or more. More preferably, it is 30 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 ⁇ m from the viewpoint of applicability, foaming, solvent drying, and the like.
  • the thickness of the film can be appropriately selected depending on the application.
  • the base film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roll, calender roll, drum, belt, coating substrate in solution casting, transport roll, etc.) during film formation. It is also effective to reduce the diffusion and reflection of light on the film surface by reducing the refractive index of the acrylic resin.
  • a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, or the like can be used.
  • melt casting film forming method From the viewpoint of suppressing the residual solvent using a cellulose ester resin or an acrylic resin for dissolution, a method of producing by a melt casting film forming method is preferable.
  • Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like.
  • the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained.
  • solution casting by casting is preferred.
  • a method of extruding and forming a film forming material on a drum or an endless belt after the film forming material is heated to express its fluidity is also included as a melt casting film forming method.
  • Organic solvent useful for forming the dope when the base film is produced by the solution casting method can be used without limitation as long as it dissolves acrylic resin, cellulose ester resin, and other additives at the same time. .
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the dope composition is dissolved in%.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • the base film can be produced by a solution casting method.
  • a step of preparing a dope by dissolving a resin and an additive in a solvent a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , A step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • the concentration of cellulose ester in the dope, and the concentration of cellulose ester resin / acrylic resin is preferably higher because the drying load after casting on the metal support can be reduced. The load increases, and the filtration accuracy deteriorates.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 ⁇ 4m.
  • the surface temperature of the metal support in the casting step is set to ⁇ 50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0. 0.1 mass% or less, particularly preferably 0 to 0.01 mass% or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the film can be sequentially or simultaneously stretched in the longitudinal direction (MD direction) and the width direction (TD direction) of the film.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.0 to 2.0 times in the MD direction and 1.07 to 2.0 times in the TD direction, respectively. It is preferably performed in the range of 1.0 to 1.5 times and 1.07 to 2.0 times in the TD direction.
  • a method in which peripheral speed differences are applied to a plurality of rolls and a roll peripheral speed difference is used to stretch in the MD direction both ends of the web are fixed with clips and pins, and the distance between the clips and pins is increased in the traveling direction.
  • a method of stretching in the MD direction a method of stretching in the transverse direction and stretching in the TD direction, a method of stretching in the MD / TD direction simultaneously and stretching in both the MD / TD directions, and the like.
  • a tenter it may be a pin tenter or a clip tenter.
  • the film transport tension in the film forming process such as in the tenter depends on the temperature, but is preferably 120 N / m to 200 N / m, and more preferably 140 N / m to 200 N / m. 140 N / m to 160 N / m is most preferable.
  • the glass transition temperature of the substrate film is Tg, (Tg-30) to (Tg + 100) ° C., more preferably (Tg-20) to (Tg + 80) ° C., and more preferably (Tg-5) to (T Tg + 20) ° C.
  • the Tg of the base film can be controlled by the type of material constituting the film and the ratio of the constituting materials.
  • the Tg when the film is dried is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
  • the glass transition temperature is preferably 190 ° C. or lower, more preferably 170 ° C. or lower.
  • the Tg of the film can be determined by the method described in JIS K7121.
  • the surface is preferably roughened. Roughening the film surface is preferable because it improves not only the slipperiness but also the surface processability, particularly the adhesion of the antiglare layer.
  • the base film may be formed by a melt film forming method.
  • the melt film-forming method refers to heating and melting a composition containing an additive such as a resin and a plasticizer to a temperature exhibiting fluidity, and then casting a melt containing a fluid cellulose ester.
  • the molding method for heating and melting can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like.
  • the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and formed into a strand from a die. It can be done by extrusion, water cooling or air cooling and cutting.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
  • the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die.
  • the film is nipped by a cooling roll and an elastic touch roll, and solidified on the cooling roll.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film.
  • a well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
  • the elastic touch roll is also called a pinching rotator.
  • As the elastic touch roll a commercially available one can be used.
  • the film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roll.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
  • the end Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding.
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • grip part of the clip of both ends of a film is cut out and reused.
  • the film thickness of the substrate film in the present embodiment is not particularly limited, but 10 to 200 ⁇ m is used. In particular, the film thickness is particularly preferably 10 to 100 ⁇ m. More preferably, it is 20 to 60 ⁇ m.
  • the base film according to the present invention has a width of 1 to 4 m. Particularly, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
  • the arithmetic average roughness Ra of the base film is preferably 2.0 nm to 4.0 nm, more preferably 2.5 nm to 3.5 nm.
  • the antiglare film according to the present invention can be provided with functional layers such as a backcoat layer and an antireflection layer.
  • the antiglare film according to the present invention is a back coat for preventing sticking when a curl or antiglare film is stored in a roll on the surface opposite to the side on which the antiglare layer of the base film is provided.
  • a layer may be provided.
  • the back coat layer preferably contains fine particles for the above purpose, and the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined silicic acid. Mention may be made of calcium, tin oxide, indium oxide, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Moreover, it is preferable to contain a solvent in order to disperse the fine particles and to dissolve a binder described later to form a coating composition. As the solvent, the solvent described in the functional layer is preferable.
  • the particles contained in the back coat layer are preferably 0.1 to 50% by mass with respect to the binder. When the back coat layer is provided, the increase in haze is preferably 1.5% or less, and 0.5% or less. In addition, it is preferable to use a cellulose ester resin such as diacetyl cellulose as the binder.
  • the antiglare film according to the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the antiglare layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is preferably composed of a low refractive index layer having a refractive index lower than that of the support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support).
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • the layer structure of the antireflection film the following structure is conceivable, but is not limited thereto.
  • the low refractive index layer essential for the antireflection film preferably contains silica-based fine particles, and the refractive index is lower than the refractive index of the substrate film as a support, measured at 23 ° C. and a wavelength of 550 nm. The range of 1.30 to 1.45 is preferable.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and most preferably 30 nm to 0.2 ⁇ m.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1)
  • hydrolyzate thereof a hydrolyzate thereof
  • polycondensate thereof a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
  • a solvent and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added.
  • the refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 0.1 ⁇ m.
  • the means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like.
  • Metal oxide The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S
  • a metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used.
  • at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium tin oxide (ITO), antimony doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.
  • the average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, and is particularly preferably 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased.
  • the shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the metal oxide fine particles may be surface-treated with an organic compound.
  • an organic compound By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the amount of surface modification with a preferable organic compound is 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass with respect to the metal oxide particles.
  • the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined.
  • the high refractive index layer may contain a ⁇ -conjugated conductive polymer.
  • the ⁇ -conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a ⁇ -conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
  • the ⁇ -conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group.
  • a functional group such as a group, a hydroxy group, or a cyano group may be introduced.
  • the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 ⁇ and PF 6 ⁇ , CF 3 SO 2 ⁇ , and the like. , (CF 3 SO 2 ) 2 N ⁇ , CF 3 CO 2 —, etc.
  • the ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
  • the polarizing plate of the present invention using the antiglare film according to the present invention will be described.
  • the polarizing plate can be produced by a general method.
  • the back surface side of the antiglare film according to the present invention is subjected to alkali saponification treatment, and a fully saponified polyvinyl alcohol aqueous solution is formed on at least one surface of a polarizing film prepared by immersing and stretching the treated antiglare film in an iodine solution. It is preferable to stick together.
  • the antiglare film may be used on the other surface, or another polarizing plate protective film may be used.
  • an optical compensation film (retardation film) having a retardation of in-plane retardation Ro of 590 nm, 20 to 70 nm, and Rt of 70 to 400 nm may be used to obtain a polarizing plate capable of widening the viewing angle. it can.
  • an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal.
  • polarizing plate protective films preferably used include KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-2, KC4FR-2, KC4FR-2, KC8FR-2 KC4UE (Konica Minolta Opto Co., Ltd.) etc. are mentioned.
  • the polarizing film which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction.
  • a typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film.
  • iodine is dyed on a system film
  • a dichroic dye is dyed, but it is not limited to this.
  • As the polarizing film a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound.
  • a polarizing film having a thickness of 5 to 30 ⁇ m, preferably 8 to 15 ⁇ m is preferably used.
  • one side of the antiglare film according to the present invention is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
  • the pressure-sensitive adhesive layer used on one side of the protective film to be bonded to the substrate of the liquid crystal cell is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
  • the adhesive layer include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers.
  • a film such as a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like can be formed and cured using a polymer such as the above.
  • the acrylic copolymer can be preferably used because it is most easy to control the physical properties of the adhesive and is excellent in transparency, weather resistance, durability and the like.
  • Liquid crystal display device By incorporating the polarizing plate of the present invention produced using the antiglare film according to the present invention into a display device, various liquid crystal display devices having excellent visibility can be produced.
  • the antiglare film according to the present invention is incorporated in a polarizing plate, and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), It is preferably used in liquid crystal display devices of various driving systems such as IPS type and OCB type.
  • FIG. 8 shows a liquid crystal cell of a liquid crystal display device according to an embodiment of the present invention.
  • a liquid crystal display device excellent in visibility can be provided.
  • it is excellent in preventing the occurrence of moire fringes when used on the rear side (backlight side) of the liquid crystal cell of the liquid crystal display device.
  • Example 1 ⁇ Preparation of base film 1> (Preparation of ester compound 1) 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with thermometer, stirrer, and slow cooling tube The flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream. The ester compound 1 was obtained by carrying out a dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The acid value was 0.10 mg KOH / g, and the number average molecular weight was 450.
  • Aerosil R812 manufactured by Nippon Aerosil Co., Ltd., average particle size of primary particles: 7 nm
  • the above was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution.
  • the mixture was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
  • the belt was cast evenly on a stainless steel band support using a belt casting apparatus.
  • the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off.
  • the cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and stretched 1.3 times in the TD direction (film width direction) with a tenter, and the MD direction draw ratio was 1.01 times. While stretching, the film was dried at a drying temperature of 160 ° C. The residual solvent amount at the start of drying was 20%. Then, after drying for 15 minutes while transporting the inside of a drying device at 120 ° C.
  • the base film 1 was obtained.
  • the residual solvent amount of the base film was 0.2%, the film thickness was 40 ⁇ m, and the number of turns was 3900 m.
  • anti-glare layer composition 1 filtered through a polypropylene filter having a pore diameter of 0.4 ⁇ m is applied on the base film 1 produced above using an extrusion coater, and a constant rate drying zone temperature of 95 ° C., a reduced rate drying zone temperature. After drying at 95 ° C., while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, using an ultraviolet lamp, the illuminance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.25 J / cm 2. The coating layer was cured to form an antiglare layer having a dry film thickness of 6 ⁇ m.
  • an antiglare film 1 After forming the antiglare layer, it was wound up to produce an antiglare film 1. As a result of observing the surface of the antiglare layer of the antiglare film 1 with an optical interference surface roughness meter (New View 5030, manufactured by Zygo Corporation), irregular projection shapes irregularly in the longitudinal direction and the width direction as shown in FIG. It was found that they are arranged in
  • Anti-glare layer composition 1 The following antiglare layer composition 1 was stirred and mixed with a disper to obtain an antiglare layer composition 1.
  • Radical polymerizable fluororesin (A): Cephalal coated CF-803 (hydroxyl value 60, average molecular weight 15,000; manufactured by Central Glass Co., Ltd.)
  • Single-end radical polymerizable polysiloxane (B): Silaplane FM-0721 (Number average molecular weight 5,000; manufactured by Chisso Corporation)
  • Radical polymerization initiator Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
  • Curing agent Sumidur N3200 (hexuremethylene diisocyanate biuret type prepolymer; manufactured by Sumika Bayer Urethane Co., Ltd.) (Synthesis of radical polymerizable fluororesin)
  • Antiglare films 2 to 8 were produced in the same manner as the antiglare film 1 except that the conditions for changing the temperature of the decreasing rate drying section were changed as shown in Table 1 in the production of the antiglare film 1.
  • Anti-glare layer composition 2 The following antiglare layer composition 2 was stirred and mixed with a disper to obtain an antiglare layer composition 2.
  • Actinic radiation curable resin ⁇ 70 parts by mass of ditrimethylolpropane tetraacrylate (NK ester AD-TMP, manufactured by Shin-Nakamura Chemical Co., Ltd.) -30 parts by mass of ethoxylated pentaerythritol tetraacrylate (NK ester ATM-35E, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Photopolymerization initiator ⁇ Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent) ⁇ Fluoro-siloxane graft compound (35% by mass) 2 parts by mass (solvent) -Propylene glycol monomethyl ether 10 parts by mass-Methyl acetate 55 parts by mass-Methyl ethyl ketone 55 parts by mass Only the
  • Antiglare films 10 to 15 were produced in the same manner as in the antiglare film 7 except that the conditions for changing the temperature of the decreasing rate drying section in the production of the antiglare film 7 were changed as shown in Table 1.
  • the antiglare layer composition 2 was changed to the antiglare layer composition 3 prepared with reference to Example 1 of JP-A-2006-106290, and the drying temperature was further changed to JP-A-2006.
  • An antiglare layer was produced in the same manner except that the temperature was set at 70 ° C. as in Example 1 of JP-106290A.
  • a thermosetting fluorine-containing compound coating solution manufactured by Nissan Chemical Co., Ltd., LR-202B, solid content 1 mass%) is dried to a film thickness of 100 nm. Then, it was cured by drying at 90 ° C. for 5 minutes to produce an antiglare film 16.
  • Anti-glare layer composition 3 The following antiglare layer composition 3 was stirred and mixed with a disper to obtain an antiglare layer composition 3.
  • Cyclomer P (ACA) 320 unsaturated group-containing acrylic resin mixture, Daicel Chemical Industries, Ltd.
  • DPHA dipentaerythritol hexaacrylate
  • CAP-482-20 0.9 parts by mass (photopolymerization initiator)
  • Irgacure 184 manufactured by BASF Japan
  • solvent solvent
  • the antiglare layer composition 2 was changed to the antiglare layer composition 4 prepared with reference to Example 1 of JP2008-225195A, and the drying temperature was changed to JP2008.
  • An antiglare film 17 was produced in the same manner as the antiglare film 1 except that the temperature was set to 70 ° C., which was the same as that in Example 1 of the -225195 publication.
  • Anti-Glare Layer Composition 4 The following antiglare layer composition 4 was stirred and mixed with a disper to obtain an antiglare layer composition 4.
  • Cyclomer P (ACA) 320 unsaturated group-containing acrylic resin mixture, Daicel Chemical Industries, Ltd.
  • DPHA dipentaerythritol hexaacrylate
  • Polymethyl methacrylate weight average molecular weight 480000; manufactured by Mitsubishi Rayon Co., Ltd., BR88
  • Irgacure 184 manufactured by BASF Japan
  • solvent ⁇ Methyl ethyl ketone 0.1 mass part ⁇ 1-butanol 5.4 mass parts ⁇ 1-methoxy-2-propanol 1.89 mass parts Only the actinic radiation curable resin of the antiglare layer composition 4 is stirred and mixed with a disper to obtain an antiglare layer composition 4.
  • Cyclomer P (ACA) 320 unsaturated group-containing acrylic resin mixture, Daicel Chemical Industries, Ltd.
  • DPHA dip
  • the antiglare layer composition 2 was changed to the antiglare layer composition 5 prepared with reference to Example 3 of JP-A-2007-58204, and the drying temperature was further changed to JP-A-2007.
  • An antiglare film 18 was produced in the same manner as the antiglare film 1 except that the temperature was changed to 80 ° C., which was the same as that in Example 3 of the -58204 publication.
  • Anti-Glare Layer Composition 5 The following antiglare layer composition 5 was stirred and mixed with a disper to obtain an antiglare layer composition 5.
  • (Actinic radiation curable resin) ⁇ Dipentaerythritol hexaacrylate (DPHA, Daicel) Cytec Co., Ltd.) 92 parts by mass (incompatible resin) -Methacrylate copolymer (Saftmer ST3600, Mitsubishi Chemical Corporation 15 parts by mass (photopolymerization initiator) ⁇ Irgacure 184 (manufactured by BASF Japan) 4 parts by mass (solvent) -Ethanol 45 parts by mass-Toluene 15 parts by mass Only the actinic radiation curable resin of the antiglare layer composition 5 was stirred and mixed with a disper and measured using a B-type viscometer at 25 ° C. The resin viscosity was 6000 mPa ⁇ s. In Table 1, the methacrylate copolymer was indicated as MACP
  • Example 1 of JP-A-2006-53371 An uneven roll was produced with reference to Example 1 of JP-A-2006-53371.
  • the antiglare layer composition 1 is applied on the base film 1 and then dried at 60 ° C. Further, the surface of the antiglare layer is uneven. Was pressed to bring the antiglare layer and the roll into close contact. In this close contact state, while purging with nitrogen so that the oxygen concentration is 1.0 volume% or less, the illuminance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.25 J / cm 2 using an ultraviolet lamp. The coating layer was cured to form an antiglare layer having a dry film thickness of 6 ⁇ m. After forming the antiglare layer, it was wound up to produce an antiglare film 19.
  • the anti-glare film 20 was changed in the same manner except that the anti-glare layer composition 1 was changed to the following anti-glare layer composition 6 and the temperature at which the drying rate was decreased to 110 ° C. Was made.
  • Anti-Glare Layer Composition 6 The following antiglare layer composition 6 was stirred and mixed with a disper to obtain an antiglare layer composition 6.
  • Actinic radiation curable resin ⁇ 80 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) -Isocyanuric acid EO-modified diacrylate 20 parts by mass (Aronix M-215, manufactured by Toagosei Co., Ltd.)
  • Photopolymerization initiator ⁇ Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent) ⁇ Fluoro-siloxane graft compound (35% by mass) 2 parts by mass (solvent) -Propylene glycol monomethyl ether 10 parts by mass-Methyl acetate 55 parts by mass-Methyl ethyl ketone 55 parts by mass ⁇ Pre
  • Anti-Glare Layer Composition 7 The following antiglare layer composition 7 was stirred and mixed with a disper to obtain an antiglare layer composition 7.
  • Photopolymerization initiator ⁇ Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent) ⁇ Fluoro-siloxane graft compound (35% by mass) 2 parts by mass (solvent) ⁇ Propylene glycol monomethyl ether 10 mass parts ⁇ Methyl acetate 55 mass parts ⁇ Methyl ethyl ketone 55 mass parts (Evaluation of antiglare film)
  • the obtained antiglare films 1 to 21 the
  • ⁇ Weather resistance test> The antiglare films 1 to 21 produced above were cut out in a size of 10 cm ⁇ 10 cm, stored for 100 hours in an environment of ozone 10 ppm, 30 ° C., 60% RH, assuming outdoor use, and cycle thermo ( ⁇ 500 cycles were carried out at 40 ° C. for 45 minutes and then 110 ° C. for 45 minutes alternately, and further irradiated with light for 165 hours with a light resistance tester (I Super UV Tester, manufactured by Iwasaki Electric Co., Ltd.). The antiglare film after the weather resistance test was evaluated for scratch resistance, chemical resistance, antiglare property and contrast. The obtained results are shown in Table 1.
  • The outline of the fluorescent lamp is slightly recognized but is not bothering
  • The outline of the fluorescent lamp is recognized but acceptable
  • The outline of the fluorescent lamp is known and the reflection is recognized
  • The outline of the fluorescent lamp is clear I understand and am concerned about the reflection e. Contrast (high definition) A sample was placed on the color filter, and observed with an optical microscope by transmitted light from the back surface (color filter side), and the clearness of the contour of the image was visually evaluated.
  • FIG. 4 shows an outline of the apparatus
  • FIG. 5 shows an actual observation example. Judgment criteria are as follows.
  • the antiglare film of the present invention in which the arithmetic average roughness Ra of the antiglare layer is 25 to 300 nm and the internal haze of the antiglare layer is 0 to 1.0% is weather resistant. Even after testing, the film has excellent film strength such as scratch resistance and chemical resistance, and excellent optical properties such as antiglare and contrast. Among them, the antiglare film of the present invention having an arithmetic average roughness Ra of 25 to 130 nm has good film strength, and the antiglare film of the present invention having an arithmetic average roughness Ra of 65 to 130 nm is It can be seen that the film has particularly excellent film strength.
  • an antiglare layer containing an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 30 to 2500 mPa ⁇ s is formed through at least a coating step, a drying step and a curing step, and the drying step
  • the arithmetic average roughness Ra and the internal haze of the antiglare layer can be easily controlled within the range of the present invention, And since the objective effect of this invention is acquired favorably, it turns out that it is preferable.
  • the antiglare layer of the antiglare film of the present invention does not substantially contain an incompatible resin with respect to fine particles or actinic radiation curable resin, and the above characteristics are obtained. It is preferable that the anti-glare layer of the dazzling film does not substantially contain an incompatible resin with respect to the fine particles and the actinic radiation curable resin.
  • Example 2 In preparation of the anti-glare film 1, the cellulose triacetate A1 and the ester compound 1 of the base film 1 were changed as described in Table 2 to prepare base films 2 and 3. Next, anti-glare films 22 and 23 were produced in the same manner except that an anti-glare layer was provided on these substrates.
  • the cellulose triacetate B1 shown in Table 2 has an acetyl substitution degree of 2.85 and a number average molecular weight of 120,000.
  • the ester compound B is a compound synthesized by the following method. Further, tan ⁇ in the width direction of the base films 1 to 3 was measured by the following method.
  • ester compound B > 251 g of 1,2-propylene glycol, 370 g of adipic acid, 122 g of benzoic acid, and 0.09 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a quick cooling tube. The temperature is gradually raised with stirring until it reaches 230 ° C. in an air stream. Ester compound B was obtained by carrying out dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The acid value was 0.55 and the number average molecular weight was 500.
  • Measuring device RSA III manufactured by TI Instruments Sample: width 5 mm, length 50 mm (gap set to 20 mm) Measurement conditions: Tensile mode Measurement temperature: 25-210 ° C Temperature rising condition: 5 ° C / min Frequency: 1Hz (Evaluation of anti-glare film) The internal haze of the produced antiglare films 22 and 23 was measured in the same manner as in Example 1. The obtained results are shown in Table 2.
  • the base film in which the tan ⁇ in the width direction is 0.5 ⁇ tan ⁇ ⁇ 40 / tan ⁇ peak ⁇ 0.24 is used as the antiglare film according to the present invention. It can be seen that the film has particularly excellent film strength such as scratch resistance and chemical resistance.
  • Example 3 Preparation of Polarizing Plate 101> (Alkaline saponification treatment) Anti-glare film 1 is attached to one surface of polarizing film 3, and protective film 4 made of Konica Minolta Tack KC4FR-2 (manufactured by Konica Minolta Opto Co., Ltd.) is attached to the other surface of polarizing film 3, A polarizing plate 101 was produced (see FIG. 6 for the configuration).
  • the obtained PVA film was continuously processed in the order of pre-swelling, dyeing, uniaxial stretching by a wet method, fixing treatment, drying, and heat treatment to produce a polarizing film. That is, the PVA film was preliminarily swollen in water at a temperature of 30 ° C. for 30 seconds, and immersed in an aqueous solution having an iodine concentration of 0.4 g / liter and a potassium iodide concentration of 40 g / liter at a temperature of 35 ° C. for 3 minutes.
  • the film was uniaxially stretched 6 times in a 50% aqueous solution with a boric acid concentration of 4% under the condition that the tension applied to the film was 700 N / m, and the potassium iodide concentration was 40 g / liter and the boric acid concentration was 40 g / liter. Then, it was immersed in an aqueous solution having a zinc chloride concentration of 10 g / liter and a temperature of 30 ° C. for 5 minutes for fixing. Thereafter, the PVA film was taken out, dried with hot air at a temperature of 40 ° C., and further heat-treated at a temperature of 100 ° C. for 5 minutes.
  • the obtained polarizing film had an average thickness of 13 ⁇ m, a polarizing performance of a transmittance of 43.0%, a polarization degree of 99.5%, and a dichroic ratio of 40.1.
  • a polarizing plate 101 was produced by bonding the polarizing film 13, the protective film 14, and the antiglare film 10 according to the following steps 1 to 4.
  • Step 1 The polarizing film 3 described above was immersed in a storage tank of a polyvinyl alcohol adhesive solution having a solid content of 2% by mass for 1 to 2 seconds.
  • Process 2 The alkali saponification process was implemented on the anti-glare film 10 and the protective film 14 which stuck the peelable protective film (product made from PET) on the anti-glare layer on the following conditions. Next, excess adhesive adhered to the polarizing film 13 immersed in the polyvinyl alcohol adhesive solution in Step 1 is gently removed, and the polarizing film 13 is sandwiched between the antiglare film 10 and the protective film 4 as shown in FIG. And laminated.
  • Step 3 The laminate was bonded at a speed of about 2 m / min at a pressure of 20 to 30 N / cm 2 with two rotating rollers. At this time, it was carried out with care to prevent bubbles from entering.
  • Step 4 The sample prepared in Step 3 was dried in a dryer at a temperature of 100 ° C. for 5 minutes to prepare a polarizing plate. After producing the polarizing plate, a protective film for the antiglare layer was applied.
  • Step 5 A commercially available acrylic pressure-sensitive adhesive is applied to the protective film 14 of the polarizing plate prepared in Step 4 so that the thickness after drying is 25 ⁇ m, and dried in an oven at 110 ° C. for 5 minutes to form the pressure-sensitive adhesive layer 5. Then, a peelable protective film was attached to the adhesive layer 15. This polarized light was cut (punched) to produce a polarizing plate 101.
  • Polarizers 102 to 119 were produced in the same manner except that the antiglare film 1 was changed to the antiglare films 2 to 19 in the production of the polarizer 101.
  • Liquid crystal display devices 402 to 419 were similarly manufactured except that the polarizing plate 101 was changed to the polarizing plates 102 to 119 in manufacturing the liquid crystal display device 401, respectively.
  • A I don't care about the reflection of the nearest fluorescent lamp, and I can clearly read characters with a font size of 8 or less.
  • B The reflection of a nearby fluorescent lamp is a little anxious, but I don't care about the distance. Can manage to read characters with a font size of 8 or less.
  • C It is difficult to read characters with a font size of 8 or less due to the distraction of distant fluorescent lights.
  • the polarizing plate and the liquid crystal display device using the antiglare film of the present invention are excellent in visibility and unevenness, and are very excellent without any fatigue of eyes even when viewed for a long time. It was.
  • Example 4 ⁇ Production of Liquid Crystal Display Device 420> As shown in FIG. 7, the polarizing plate 101 produced in Example 3 was peeled off from the peelable protective film of the pressure-sensitive adhesive layer 15 and bonded to both the viewing side and the rear side through the glass of the liquid crystal cell. A liquid crystal panel 320 was produced. Next, the liquid crystal panel 320 was set on a liquid crystal television, and a liquid crystal display device 420 was manufactured.
  • Liquid crystal display devices 421 to 438 were produced in the same manner except that the polarizing plate 101 was changed to the polarizing plates 102 to 119 in the production of the liquid crystal display device 420.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is an antiglare film having improved coated film strength of the anti-glare layer, having film strength (such as excellent scratch resistance and chemical resistance even after weathering tests intended to simulate outdoor use), and having optical characteristics allowing achievement of contrast-rich image quality and reflection prevention of outside light or reflection images. Also disclosed are a manufacturing method of said antiglare film, an excellent polarizing and liquid crystal display device using said antiglare film. The disclosed antiglare film has an antiglare layer on a substrate film. The antiglare layer is aperiodic in the length direction and is arranged irregularly on the substrate film as irregularly shaped protrusions. The arithmetic average roughness Ra of the antiglare layer (JIS B0601: 1994) is 25-300nm, and the haze due to internal scattering of the antiglare layer is 0-1.0%.

Description

防眩性フィルム、防眩性フィルムの製造方法、偏光板及び液晶表示装置Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
 本発明は、新規の防眩性フィルム、防眩性フィルムの製造方法、前記防眩性フィルムを用いた偏光板および前記偏光板を用いた液晶表示装置に関する。 The present invention relates to a novel antiglare film, a method for producing an antiglare film, a polarizing plate using the antiglare film, and a liquid crystal display device using the polarizing plate.
 近年、陰極管表示装置(CRT)ディスプレイ、液晶ディスプレイ、プラズマディスプレイ、タッチパネル式入力装置、有機又は無機EL(エレクトロルミネッセンス)ディスプレイ、FED(フィールドエミッションディスプレイ)などのディスプレイにおいて、蛍光灯や太陽光などの外部光源がディスプレイ表面に映り込むと、この反射光が邪魔で画面が見えにくくなり、視認性が著しく劣化するため、各種ディスプレイには、表面に反射した像の輪郭をぼかすことにより、反射像の映り込みを低減する防眩層を有したフィルム(防眩性フィルム)がディスプレイ表面に設けている。 In recent years, in displays such as cathode ray tube display (CRT) displays, liquid crystal displays, plasma displays, touch panel input devices, organic or inorganic EL (electroluminescence) displays, FEDs (field emission displays), etc. When an external light source is reflected on the display surface, the reflected light becomes obstructive and the screen becomes difficult to see, and the visibility is significantly deteriorated. For various displays, the outline of the reflected image is blurred on the surface. A film (antiglare film) having an antiglare layer for reducing reflection is provided on the display surface.
 防眩処理には、化学エッチングなどで粗面化処理して表面凹凸を付与したもの、金型による転写方式などで表面凹凸を付与したもの、樹脂層中に微粒子を分散含有させて表面凹凸を付与したものがある。 Anti-glare treatment includes surface roughening by chemical etching or the like, surface unevenness by a transfer method using a mold, etc., and surface unevenness by dispersing fine particles in the resin layer. Some have been granted.
 これら防眩処理の中では、樹脂層中に微粒子を分散含有させる方法が、表面凹凸を簡単に付与できるので、一般に用いられている。 Among these anti-glare treatments, a method in which fine particles are dispersed and contained in the resin layer is generally used because surface irregularities can be easily imparted.
 しかしながら、微粒子を分散含有させて表面凹凸を形成する防眩性フィルムでは、微粒子は凝集し易く、表面の表面凹凸を制御することが困難であり、表面凹凸の設計自由度が制約されていた。また、微粒子の凝集によりムラなどが生じ、外観不良となる問題があった。また、微粒子と防眩層を形成する樹脂との屈折率が異なるため、両者の屈折率の違いによる内部散乱に起因したヘイズ(内部ヘイズ)が発生し、フィルムとしての全体ヘイズが上がり、表示全体が白味を帯び、コントラストの低下を招く問題があった。よって、近年、低内部ヘイズの防眩性フィルムが検討されている(例えば、特許文献1、2)。 However, in the anti-glare film in which fine particles are dispersed and formed to form surface irregularities, the fine particles are likely to aggregate and it is difficult to control the surface irregularities on the surface, and the degree of freedom in designing the surface irregularities is restricted. In addition, there is a problem that unevenness occurs due to aggregation of fine particles, resulting in poor appearance. In addition, since the refractive index of the fine particles and the resin forming the anti-glare layer are different, haze (internal haze) due to internal scattering due to the difference in refractive index between the two occurs, increasing the overall haze as a film, and the entire display However, there is a problem in that it becomes white and causes a decrease in contrast. Therefore, in recent years, anti-glare films having a low internal haze have been studied (for example, Patent Documents 1 and 2).
 特許文献1は、全ヘイズが1~30%であり、内部ヘイズが0~1%であり、かつ波長450~650nmの領域での5°入射における平均反射率が0.001~2.5%である防眩性フィルムを開示している。また、特許文献1記載の発明は、硬化樹脂にポリマー成分(セルロースアセテートプロピオネート)を含有させ、塗膜乾燥時のスピノーダル分解によって、表面凹凸を形成させる技術である。 In Patent Document 1, the total haze is 1 to 30%, the internal haze is 0 to 1%, and the average reflectance at 5 ° incidence in the wavelength range of 450 to 650 nm is 0.001 to 2.5%. An antiglare film is disclosed. The invention described in Patent Document 1 is a technique in which a polymer component (cellulose acetate propionate) is contained in a cured resin, and surface irregularities are formed by spinodal decomposition when the coating film is dried.
 一方、特許文献2は、透明フィルム上に1層以上の防眩ハードコート層を有し、防眩ハードコート層の内部ヘイズが0.5%以下、かつ表面ヘイズ/内部ヘイズが2.0以上である防眩ハードコートフィルムを開示している。特許文献2記載の発明は、2種類の樹脂(樹脂A;例えば、ジペンタエリスリトールヘキサアクリレート、及び樹脂B;例えば、メタアクリレート共重合ポリマー)のスピノーダル分解による相分離を利用して、表面凹凸を形成させる技術である。 On the other hand, Patent Document 2 has one or more antiglare hard coat layers on a transparent film, the internal haze of the antiglare hard coat layer is 0.5% or less, and the surface haze / internal haze is 2.0 or more. An anti-glare hard coat film is disclosed. The invention described in Patent Document 2 uses surface separation by spinodal decomposition of two types of resins (resin A; for example, dipentaerythritol hexaacrylate, and resin B; for example, a methacrylate copolymer) to provide surface unevenness. It is a technology to form.
 また、金型による転写方式での低ヘイズの防眩性フィルムについては、特許文献3に開示されている。特許文献3は、研磨された金属表面に微粒子をぶつけることで凹凸を形成し、その凹凸面に無電解ニッケルメッキを施して金型を作製し、該金型の凹凸面を透明樹脂フィルムに転写し、透明樹脂フィルムに凹凸を形成する防眩フィルムの製造方法である。 Further, a low-haze antiglare film in a transfer method using a mold is disclosed in Patent Document 3. In Patent Document 3, irregularities are formed by hitting fine particles against a polished metal surface, a mold is produced by electroless nickel plating on the irregular surface, and the irregular surface of the mold is transferred to a transparent resin film. And it is a manufacturing method of the glare-proof film which forms an unevenness | corrugation in a transparent resin film.
 これら技術はいずれも、外光や反射像の映り込みを防止し、コントラストに優れた画質が得られることが記載されている。 Both of these technologies are described as being able to prevent reflection of external light and reflected images and obtain an image with excellent contrast.
 また、上記以外にも、突起形状を形成させる方法は、SP値(溶解度パラメーター)が異なる樹脂を混ぜて、表面凹凸を形成させる方法(例えば、特許文献4、特許文献5参照)などが挙げられる。 In addition to the above, examples of the method for forming the protrusion shape include a method in which resins having different SP values (solubility parameters) are mixed to form surface irregularities (for example, see Patent Document 4 and Patent Document 5). .
特開2006-106290号公報JP 2006-106290 A 特開2007-58204号公報JP 2007-58204 A 特開2006-53371号公報JP 2006-53371 A 特開2007-182519号公報JP 2007-182519 A 特開2009-13384号公報JP 2009-13384 A
 しかしながら、特許文献3の金型転写による表面凹凸を形成する方法では、製造工程に転写工程が必要であり、工程が増えるとともに生産設備も必要となり、高コスト化に繋がる問題があり、量産性も低かった。また、このように人工的に規則性の配列を行った場合、必然的に反射光が干渉を起こし、虹色化を起こすという問題もあった。 However, in the method of forming surface irregularities by mold transfer in Patent Document 3, a transfer process is necessary in the manufacturing process, and the number of processes is increased and production equipment is required, leading to a problem that leads to high cost and mass productivity. It was low. In addition, when the regular arrangement is artificially performed as described above, there is a problem in that reflected light inevitably causes interference and causes iridescence.
 また、特許文献1や2に記載されているような、スピノーダル分解により、規則的な相分離を利用して表面凹凸を形成する防眩性フィルムでは、相分離の制御が難しく、原料のロット、ポリマー組成などのわずかな変化により、相分離構造のサイズが大きく変化してしまうため、安定した表面凹凸を形成する事が困難であった。 Moreover, in the anti-glare film which forms surface unevenness using regular phase separation by spinodal decomposition as described in Patent Documents 1 and 2, it is difficult to control phase separation, A slight change in the polymer composition or the like greatly changes the size of the phase separation structure, making it difficult to form stable surface irregularities.
 また、鋳型を押し当てて表面に突起を形成させる方法、スピノーダル分解や微粒子を添加して形成させる方法など、単に防眩層に規則的な突起形状を形成するだけでは、膜強度が十分に得られず、耐候性試験後の耐傷性や耐薬品性の性能が不十分であった。 In addition, film strength can be obtained sufficiently by simply forming a regular protrusion shape on the antiglare layer, such as a method of forming protrusions on the surface by pressing a mold, a method of spinodal decomposition or adding fine particles. However, the scratch resistance and chemical resistance performance after the weather resistance test was insufficient.
 さらに、上述したような従来技術は、外光や反射像の映り込みの防止やコントラストに優れた画質が、ある程度得られるものの、デジタルサイネージ等の屋外使用を想定した耐候性試験後には、耐傷性や耐薬品性の低下といった膜強度の劣化が顕著であった。 Furthermore, although the above-described conventional techniques can provide a certain level of image quality that prevents external light and reflected images from being reflected and is excellent in contrast, after the weather resistance test assuming outdoor use such as digital signage, scratch resistance Degradation of film strength such as deterioration of chemical resistance was remarkable.
 本発明は、上記課題に鑑みてなされたものであって、防眩層の塗膜強度が向上され、屋外使用を想定した耐候性試験後も優れた耐傷性や耐薬品性といった膜強度を有し、かつ外光や反射像の映り込み防止やコントラストに優れた画質が得られるといった光学特性も有する防眩性フィルム、防眩性フィルムの製造方法、並びにそれを用いた優れた偏光板および液晶表示装置の提供を目的とする。 The present invention has been made in view of the above problems, and the coating strength of the antiglare layer is improved, and it has excellent film strength such as scratch resistance and chemical resistance even after a weather resistance test assuming outdoor use. In addition, the antiglare film having optical properties such as prevention of reflection of external light and reflected images and image quality excellent in contrast, a method for producing the antiglare film, and an excellent polarizing plate and liquid crystal using the same An object is to provide a display device.
 本発明者は、鋭意検討した結果、下記構成を有する防眩性フィルムによって、前記課題が解決することを見出し、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of intensive studies, the present inventor has found that the above-mentioned problem can be solved by an antiglare film having the following constitution, and has further completed the present invention based on such findings.
 本発明の一態様に係る防眩性フィルムは、基材フィルム上に防眩層を有する防眩性フィルムであって、該防眩層が長手方向に周期を持たない突起形状を有し、該突起形状が不規則な形状で基材フィルム上に不規則に配置されており、かつ防眩層の算術平均粗さRa(JIS B0601:1994)が25~300nmであること、および防眩層の内部散乱に起因するヘイズが0~1.0%であることを特徴とする、防眩性フィルムである。 An antiglare film according to one embodiment of the present invention is an antiglare film having an antiglare layer on a base film, and the antiglare layer has a protrusion shape having no period in the longitudinal direction, The protrusion shape is irregularly arranged on the base film, and the arithmetic average roughness Ra (JIS B0601: 1994) of the antiglare layer is 25 to 300 nm. An anti-glare film characterized by having a haze due to internal scattering of 0 to 1.0%.
 このような構成により、防眩層の塗膜強度が向上し、屋外使用を想定した耐候性試験後も優れた耐傷性や耐薬品性といった膜強度を有し、かつ外光や反射像の映り込み防止やコントラストに優れた画質が得られるといった光学特性も有する防眩性フィルムを得ることができる。 With such a configuration, the coating strength of the antiglare layer is improved, it has excellent film strength such as scratch resistance and chemical resistance even after a weather resistance test assuming outdoor use, and it reflects external light and reflected images. It is possible to obtain an antiglare film having optical properties such as prevention of blurring and image quality excellent in contrast.
 本実施形態に係る防眩性フィルムは、前記防眩層の算術平均粗さRa(JIS B0601:1994)が25~130nmであることが、より前記効果が確実に得られる点で好ましい。 In the antiglare film according to the present embodiment, the arithmetic average roughness Ra (JIS B0601: 1994) of the antiglare layer is preferably 25 to 130 nm from the viewpoint of obtaining the above effect more reliably.
 さらに、前記防眩層の算術平均粗さRa(JIS B0601:1994)が65~130nmであればなお望ましい。 Furthermore, it is more desirable that the arithmetic average roughness Ra (JIS B0601: 1994) of the antiglare layer is 65 to 130 nm.
 また、前記防眩層の内部散乱に起因するヘイズが0.60~1.0%であれば、より前記効果が良好に発揮される点において好ましい。 In addition, if the haze due to internal scattering of the antiglare layer is 0.60 to 1.0%, it is preferable in that the above effect can be exhibited more satisfactorily.
 さらに、本実施形態に係る防眩性フィルムは、本発明の目的効果が得られにくい事や、内部ヘイズの上昇によりコントラストの低下を招く事から、無機微粒子及び有機微粒子、並びに活性線硬化型樹脂を含有し、該活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有しないことが好ましい。 Furthermore, since the antiglare film according to the present embodiment is difficult to obtain the objective effect of the present invention and causes a decrease in contrast due to an increase in internal haze, inorganic fine particles and organic fine particles, and actinic radiation curable resin It is preferable that substantially no resin that is incompatible with the actinic radiation curable resin is contained.
 また、本実施形態に係る防眩性フィルムにおいて、前記基材フィルムのフィルム幅手方向のtanδが、下記の関係:
 0.5≧tanδ-40/tanδpeak≧0.24
(式中、tanδpeakは、25℃~210℃のtanδ値を測定した最大値を示し、tanδ-40は、tanδpeakを示した時の温度-40℃でのtanδの値を示す。)
を有することが好ましい。このような構成により、特に優れた耐傷性および耐薬品性といった膜強度を有する防眩性フィルムを得ることができる。
Moreover, in the antiglare film according to the present embodiment, the tan δ in the film width direction of the base film has the following relationship:
0.5 ≧ tan δ −40 / tan δ peak ≧ 0.24
(Where tan δ peak represents the maximum value of tan δ measured from 25 ° C. to 210 ° C., and tan δ −40 represents the value of tan δ at a temperature of −40 ° C. when tan δ peak was exhibited.)
It is preferable to have. With such a configuration, an antiglare film having film strength such as particularly excellent scratch resistance and chemical resistance can be obtained.
 また、本実施形態に係る防眩性フィルムの製造方法であって、25℃における粘度が30~2500mPa・sの範囲内にある活性線硬化型樹脂を含有する防眩層を、少なくとも塗布工程、乾燥工程及び硬化工程を経由して形成し、かつ前記乾燥工程における減率乾燥区間の温度を90~140℃の範囲内に維持した条件下で処理することを特徴とする防眩性フィルムの製造方法であることが好ましい。 Further, in the method for producing an antiglare film according to the present embodiment, an antiglare layer containing an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 30 to 2500 mPa · s is at least applied. Production of an antiglare film, characterized by being formed through a drying step and a curing step, and being processed under the condition that the temperature of the decreasing rate drying section in the drying step is maintained within a range of 90 to 140 ° C. A method is preferred.
 また、本発明の他の一態様に係る偏光板は、前記防眩性フィルムを一方の面に用いたことを特徴とする偏光板である。このような構成によれば、防眩層の塗膜強度が向上し、屋外使用を想定した耐候性試験後も優れた耐傷性や耐薬品性といった膜強度を有し、かつ外光や反射像の映り込み防止やコントラストに優れた画質が得られるといった光学特性も有する防眩性フィルムを用いるので、例えば、液晶表示装置に適用した際に、液晶表示装置の高画質化・高耐久化を実現できる偏光板が得られる。 The polarizing plate according to another embodiment of the present invention is a polarizing plate characterized by using the antiglare film on one surface. According to such a configuration, the coating strength of the antiglare layer is improved, the film has excellent film strength such as scratch resistance and chemical resistance even after a weather resistance test assuming outdoor use, and external light or a reflected image. Anti-glare film with optical properties such as anti-reflection and high contrast image quality can be used. For example, when applied to a liquid crystal display device, the liquid crystal display device has high image quality and high durability. A polarizing plate that can be obtained is obtained.
 また、本発明の他の一態様に係る液晶表示装置は、前記偏光板を液晶セルの少なくとも一方に有することを特徴とする液晶表示装置である。このような構成によれば、上述したような優れた偏光板を用いるので、液晶表示装置の高画質化・高耐久化を実現できる。さらに、前記偏光板を液晶セルのリヤ側に用いることにより、モアレ縞の発生をも抑制することができる。 The liquid crystal display device according to another embodiment of the present invention is a liquid crystal display device including the polarizing plate in at least one of the liquid crystal cells. According to such a configuration, since the above-described excellent polarizing plate is used, it is possible to realize high image quality and high durability of the liquid crystal display device. Furthermore, by using the polarizing plate on the rear side of the liquid crystal cell, it is possible to suppress the occurrence of moire fringes.
 本発明によれば、防眩層の表面凹凸を形成する突起形状が長手方向に周期を持たず、且つ、不規則な状態で形成される条件で、防眩層を作製し、更に算術平均粗さRaと内部ヘイズを特定範囲に制御する事で、防眩層の塗膜強度が向上し、屋外使用を想定した耐候性試験後も優れた耐傷性や耐薬品性といった膜強度が得られ、かつ外光や反射像の映り込み防止やコントラストに優れた画質が得られるといった光学特性も有する防眩性フィルム、防眩性フィルムの製造方法、及びそれを用い偏光板、液晶表示装置を提供することができる。 According to the present invention, the antiglare layer is produced under the condition that the projection shape forming the surface unevenness of the antiglare layer has a period in the longitudinal direction and is formed in an irregular state, and further the arithmetic average roughness By controlling the Ra and internal haze to a specific range, the coating strength of the antiglare layer is improved, and film strength such as excellent scratch resistance and chemical resistance can be obtained even after a weather resistance test assuming outdoor use. In addition, an antiglare film having optical characteristics such as prevention of reflection of external light and reflected images and image quality excellent in contrast, a method for producing the antiglare film, and a polarizing plate and a liquid crystal display device using the same be able to.
 よって、本発明により、高温・高湿環境下でもムラなどがなく膜強度が高い優れた防眩性フィルムを得ることができる。さらに、前記防眩性フィルムを用いることにより、ムラ及び視認性に優れ、長時間見ていても目の疲れなどがない、非常に優れた偏光板および液晶表示装置を提供することができる。 Therefore, according to the present invention, it is possible to obtain an excellent antiglare film having high film strength without unevenness even under a high temperature and high humidity environment. Furthermore, by using the antiglare film, it is possible to provide a very excellent polarizing plate and liquid crystal display device that is excellent in unevenness and visibility, and does not cause eye fatigue even when viewed for a long time.
本発明の一実施態様に係る防眩層の不規則な突起を示す概略図である。It is the schematic which shows the irregular protrusion of the glare-proof layer which concerns on one embodiment of this invention. 突起の説明図である。It is explanatory drawing of protrusion. 防眩性フィルムの防眩層表面の光学干渉式表面粗さ計の観察図である。It is an observation figure of the optical interference type surface roughness meter of the anti-glare layer surface of an anti-glare film. 実施例で用いた高精細鮮明度を測定する装置の概略図である。It is the schematic of the apparatus which measures the high-definition definition used in the Example. 高精細鮮明度測定装置で観察した試料の写真の例である。It is an example of the photograph of the sample observed with the high-definition definition apparatus. 実施例で作成した偏光板の断面図である。It is sectional drawing of the polarizing plate created in the Example. 実施例で作成した液晶パネルの断面図である。It is sectional drawing of the liquid crystal panel created in the Example. 液晶表示装置の液晶セルの概略図である。It is the schematic of the liquid crystal cell of a liquid crystal display device.
 <防眩性フィルム>
 本発明でいう防眩性フィルムとは、基材フィルムの表面に反射した像や外光の輪郭をぼかす層を設けることで、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイといった画像表示装置等の使用時に、外光や反射像の映り込みが気にならないようにしたフィルムの事である。
<Anti-glare film>
The antiglare film referred to in the present invention is a layer that blurs the outline of reflected images and external light on the surface of the base film, and is used when an image display device such as a liquid crystal display, an organic EL display, or a plasma display is used. It is a film that prevents the reflection of external light and reflected images.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
 (表面形状)
 本発明の防眩性フィルムは、少なくとも防眩層と基材フィルムから構成され、防眩層が表面凹凸を形成する突起形状を有し、その突起形状が長手方向に周期を持たず、不規則な形状の突起であり、その配置も不規則な配置であることを特徴とする。
(Surface shape)
The antiglare film of the present invention is composed of at least an antiglare layer and a base film, and the antiglare layer has a protrusion shape that forms surface irregularities, and the protrusion shape does not have a period in the longitudinal direction, and is irregular. It is characterized by the irregular shape of the protrusions having irregular shapes.
 本発明の防眩性フィルムの防眩層が有する「長手方向に周期を持たない不規則な形状の突起」とは、表面凹凸が型押しにより形成された長手方向に周期を持たず、形も大きさも定まらない様々な形状の突起をさす。このため、例えば5cm程度の直径を持つロール形状で長手方向に凹凸構造を形成した場合に、15cm程度の周期を有するような表面転写ロールにより形成された長手方向に周期を持つ突起形状は含まれない。 The anti-glare layer of the anti-glare film of the present invention has “irregularly shaped protrusions that do not have a period in the longitudinal direction”. It refers to protrusions of various shapes whose sizes are not fixed. For this reason, for example, when a concavo-convex structure is formed in the longitudinal direction with a roll shape having a diameter of about 5 cm, a protrusion shape having a period in the longitudinal direction formed by a surface transfer roll having a period of about 15 cm is included. Absent.
 具体的には、これらに限定はされないが、例えば、図1に示す幅も高さも異なる突起が、不規則な形状の突起として例示される。また、「不規則な配置」とは、前記不規則な傾向の突起が規則的に(例えば、等間隔などで)配置されているのではなく、ランダムな間隔で不規則に配置されており、等方的であっても、異方的であってもよいことをさす。 Specifically, although not limited thereto, for example, protrusions having different widths and heights shown in FIG. 1 are exemplified as irregularly shaped protrusions. The “irregular arrangement” means that the irregularly-protruding protrusions are not regularly arranged (for example, at regular intervals), but are irregularly arranged at random intervals, It may be isotropic or anisotropic.
 本発明の防眩性フィルムは、防眩層の内部散乱に起因するヘイズ(以後、内部ヘイズとも記載する)が0~1.0%であることを一つの特徴としている。前記した突起形状を形成する際、前記範囲の内部ヘイズにコントロールし、かつ突起形状の算術平均粗さRaを後述する範囲に制御することで、本発明の目的効果が良好に発揮される。好ましくは、内部ヘイズは0.60~1.0%である。内部ヘイズは以下の手順で測定することができる。防眩性フィルムの表面および裏面にシリコーンオイルを数滴滴下し、厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)2枚で、裏表より挟む。表裏をガラスで挟み込んだ防眩性フィルムを、完全に2枚のガラス板と光学的に密着させ、この状態でヘイズ(Ha)をJIS-K7105及びJIS-K7136に準じて測定する。次に、ガラス板2枚の間にシリコーンオイルのみ数滴滴下して挟みこんでガラスヘイズ(Hb)を測定する。そして、防眩性フィルムをガラスで挟み込んだヘイズ(Ha)から、ガラスヘイズ(Hb)を引きく事で、内部ヘイズ(Hi)は算出できる。また、表面ヘイズ(フィルムの表面散乱に起因するヘイズ)は0.50~20%であることが好ましい。表面ヘイズは、全ヘイズから内部ヘイズを引くことで求められる。全ヘイズは0.50%~20%である事が好ましい。 The antiglare film of the present invention is characterized in that the haze caused by internal scattering of the antiglare layer (hereinafter also referred to as internal haze) is 0 to 1.0%. When forming the projection shape described above, by controlling the internal haze within the above range and controlling the arithmetic average roughness Ra of the projection shape within the range described later, the object and effects of the present invention can be exhibited well. Preferably, the internal haze is 0.60 to 1.0%. The internal haze can be measured by the following procedure. A few drops of silicone oil are dropped on the front and back surfaces of the antiglare film and sandwiched between two glass plates (micro slide glass product number S 9111, manufactured by MATSUNAMI) having a thickness of 1 mm from the front and back. An anti-glare film sandwiched between front and back glass is optically brought into close contact with two glass plates, and in this state, haze (Ha) is measured according to JIS-K7105 and JIS-K7136. Next, several drops of silicone oil are dropped between two glass plates and sandwiched to measure glass haze (Hb). And internal haze (Hi) is computable by drawing glass haze (Hb) from the haze (Ha) which pinched | interposed the glare-proof film with glass. Further, the surface haze (the haze due to the surface scattering of the film) is preferably 0.50 to 20%. The surface haze is obtained by subtracting the internal haze from the total haze. The total haze is preferably 0.50% to 20%.
 本発明の防眩性フィルムは、防眩層の算術平均粗さRa(JIS B0601:1994)が25~300nmで有る事をもう一つの特徴としている。算術平均粗さRaは、更に好ましくは25~130nmnmであり、特に好ましくは65~130nmである。前記範囲の算術平均粗さRaとするため突起形状の高さは、20nm~4μm、が好ましい。また突起形状の幅は50nm~300μm、好ましくは、50nm~100μmである。上記突起形状の高さ、及び幅は断面観察から求めることができる。よりわかりやすくするために、図2に突起の説明図を示した。図2に示されているように、断面観察の画像に中心線aを引き、山の麓を形成する線b、cと中心線aとの2つの交点の距離を、突起サイズの幅tとした。また、山頂と中心線aまでの距離を突起サイズの高さhとして求められる。 The anti-glare film of the present invention has another feature that the arithmetic average roughness Ra (JIS B0601: 1994) of the anti-glare layer is 25 to 300 nm. The arithmetic average roughness Ra is more preferably 25 to 130 nm, and particularly preferably 65 to 130 nm. In order to obtain the arithmetic average roughness Ra within the above range, the height of the protrusion shape is preferably 20 nm to 4 μm. The width of the protrusion shape is 50 nm to 300 μm, preferably 50 nm to 100 μm. The height and width of the protrusion shape can be obtained from cross-sectional observation. In order to make it easier to understand, FIG. 2 shows an explanatory view of the protrusion. As shown in FIG. 2, the center line a is drawn on the cross-sectional observation image, and the distance between the two intersections of the lines b and c and the center line a forming the mountain ridge is defined as the protrusion size width t and did. Further, the distance from the summit to the center line a is obtained as the height h of the protrusion size.
 本発明の防眩性フィルムの防眩層の10点平均粗さRzは、中心線平均粗さRaの10倍以下、平均山谷距離Smは5~150μmが好ましく、より好ましくは20~100μm、凹凸最深部からの凸部高さの標準偏差は0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0~5度の面は10%以上が好ましい。このように設計することで、白呆け抑制効果が得られる。前記した算術平均粗さRa、Sm、Rzは、JIS B0601:1994に準じて光学干渉式表面粗さ計(たとえば、RST/PLUS、WYKO社製、Zygo社製 New View 5030)で測定した値である。 The 10-point average roughness Rz of the antiglare layer of the antiglare film of the present invention is preferably 10 times or less the centerline average roughness Ra, and the average mountain valley distance Sm is preferably 5 to 150 μm, more preferably 20 to 100 μm. The standard deviation of the height of the convex part from the deepest part is preferably 0.5 μm or less, the standard deviation of the mean mountain-valley distance Sm with respect to the center line is 20 μm or less, and the surface with an inclination angle of 0 to 5 degrees is preferably 10% or more. By designing in this way, an effect of suppressing white sensation can be obtained. The arithmetic average roughness Ra, Sm, Rz is a value measured by an optical interference surface roughness meter (for example, RST / PLUS, manufactured by WYKO, New View 5030 manufactured by Zygo) according to JIS B0601: 1994. is there.
 また、防眩層の尖度(Rku)は3以下が好ましい。尖度(Rku)とは、凹凸形状の凸状部分の形状を規定するパラメータであり、この尖度(Rku)の値が大きい程、凹凸形状の凸状部分の形状は、針のように尖った形状であることとなる。尖度(Rku)3を超えるものは、白ボケが発生しやすい。防眩層の尖度(Rku)は、更に好ましくは1.5~2.8である。また、表面の歪度(Rsk)の絶対値は1以下であることが好ましい。前記歪度(Rsk)は、凹凸形状の平均面に対する凸状部分と凹状部分との割合を示すパラメータであり、凹凸形状が、平均面に対して凸状部分が多いとプラスに大きな値となり、平均面に対して凹状部分が多いとマイナスに大きな値となる。歪度(Rsk)の絶対値が1を超えるものは、白ボケが発生しやすい。歪度(Rsk)の絶対値は、好ましくは0.01~0.5である。なお、尖度(Rku)及び歪度(Rsk)は、上記光学干渉式表面粗さ計を用いて計測できる。 The kurtosis (Rku) of the antiglare layer is preferably 3 or less. The kurtosis (Rku) is a parameter that defines the shape of the concavo-convex convex portion. The larger the kurtosis (Rku) value, the more the concavo-convex convex portion becomes more sharp like a needle. It will be a different shape. If the kurtosis (Rku) exceeds 3, white blurring tends to occur. The kurtosis (Rku) of the antiglare layer is more preferably 1.5 to 2.8. Further, the absolute value of the degree of distortion (Rsk) of the surface is preferably 1 or less. The skewness (Rsk) is a parameter indicating the ratio of the convex portion and the concave portion to the average surface of the concavo-convex shape, and the concavo-convex shape becomes a positively large value when there are many convex portions with respect to the average surface, If there are many concave portions with respect to the average surface, the value becomes negatively large. When the absolute value of the skewness (Rsk) exceeds 1, white blur tends to occur. The absolute value of the skewness (Rsk) is preferably 0.01 to 0.5. The kurtosis (Rku) and the skewness (Rsk) can be measured using the optical interference type surface roughness meter.
 なお、上述したような特徴を有する防眩層は、詳細については後述するが、上記表面形状は、例えば、防眩層塗布組成物の乾燥工程における減率乾燥区間の処理温度を高温制御し、樹脂の塗膜対流を発生させ、防眩層表面に不均一な状態を作り、この不均一な表面状態で硬化し、塗膜を形成する方法などによって得ることができる。このような方法で塗膜を形成することで、防眩層の膜強度が向上する。また、防眩層塗布組成物の乾燥工程における減率乾燥区間の処理温度を高温条件に制御する方法は、本発明の目的効果に加えて、生産性にも優れる点で好ましい。 In addition, although the antiglare layer having the characteristics as described above will be described in detail later, the surface shape is, for example, controlled at a high temperature for the treatment temperature of the rate-decreasing drying section in the drying process of the antiglare layer coating composition, It can be obtained by a method in which a convection of the resin is generated, a non-uniform state is formed on the surface of the antiglare layer, and the coating is formed by curing in this non-uniform surface state. By forming the coating film by such a method, the film strength of the antiglare layer is improved. In addition to the objective effect of the present invention, the method of controlling the treatment temperature in the decreasing rate drying section in the drying process of the antiglare layer coating composition is preferable in terms of excellent productivity.
 (防眩層)
 本発明に係る防眩層は活性線硬化樹脂を含有すること、すなわち、紫外線や電子線のような活性線(活性エネルギー線ともいう)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層であることが好ましい。
(Anti-glare layer)
The antiglare layer according to the present invention contains an actinic radiation curable resin, that is, a resin that is cured through a crosslinking reaction when irradiated with an actinic ray (also referred to as an actinic energy ray) such as an ultraviolet ray or an electron beam. A layer is preferred.
 活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。 As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams. The
 活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。 Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but the resin that is cured by ultraviolet irradiation is excellent in mechanical film strength (abrasion resistance, pencil hardness). preferable.
 紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。 Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray. A curable epoxy resin or the like is preferably used. Of these, ultraviolet curable acrylate resins are preferred.
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、およびジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基またはメタクロイルオキシ基を有する化合物である。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリ/テトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、活性エネルギー線硬化型のイソシアヌレート誘導体等が好ましく挙げられる。 As the ultraviolet curable acrylate resin, polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule. Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tri / tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, pentaerythritol tetraacrylate, glycerol triacrylate relay , Dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, etc. isocyanurate derivatives of the active energy ray-curable are preferably exemplified.
 活性エネルギー線硬化型のイソシアヌレート誘導体としては、イソシアヌル酸骨格に1個以上のエチレン性不飽和基が結合した構造を有する化合物であればよく、特に制限はないが、同一分子内に3個以上のエチレン性不飽和基及び1個以上のイソシアヌレート環を有する化合物が好ましい。具体的には、トリス(アクリロイルオキシエチル)イソシアヌレート等が挙げられる。 The active energy ray-curable isocyanurate derivative is not particularly limited as long as it is a compound having a structure in which one or more ethylenically unsaturated groups are bonded to the isocyanuric acid skeleton, but three or more in the same molecule. A compound having an ethylenically unsaturated group and one or more isocyanurate rings is preferred. Specific examples include tris (acryloyloxyethyl) isocyanurate.
 これらの市販品としては、アデカオプトマーNシリーズ((株)ADEKA製);サンラッドH-601、RC-750、RC-700、RC-600、RC-500、RC-611、RC-612(三洋化成工業(株)製);アロニックスM-6100、M-8030、M-8060、アロニックスM-215、アロニックスM-315、アロニックスM-313、アロニックスM-327(東亞合成(株)製);NK-エステルA-TMM-3L、NK-エステルAD-TMP、NK-エステルATM-35E、NKエステルA-DOG、NKエステルA-IBD-2E、A-9300、A-9300-1CL(新中村化学工業(株));ライトアクリレートTMP-A、PE-3A(共栄社化学)などが挙げられる。 As these commercial products, Adekaoptomer N series (manufactured by ADEKA Corporation); Sun Rad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (Sanyo) Aronix M-6100, M-8030, M-8060, Aronix M-215, Aronix M-315, Aronix M-313, Aronix M-327 (manufactured by Toagosei Co., Ltd.); NK -Ester A-TMM-3L, NK-ester AD-TMP, NK-ester ATM-35E, NK ester A-DOG, NK ester A-IBD-2E, A-9300, A-9300-1CL (Shin Nakamura Chemical Co., Ltd.) Co., Ltd.); light acrylate TMP-A, PE-3A (Kyoeisha Chemical) and the like.
 また、上記活性線硬化樹脂を単独または2種以上混合した活性線硬化型樹脂組成物(活性線硬化樹脂と溶剤以外の添加剤からなる)の25℃における粘度は、好ましくは30mPa・s以上、2500mPa・s以下である。このような低粘度の樹脂組成物を用いることで、前述した突起形状と算術平均粗さRaが得られやすい。また、樹脂組成物の粘度が30mPa・s以上の粘度であれば高官能数のモノマーを用いることが出来て、十分高い硬化性が得られ、2500mPa・s以下の粘度であれば、乾燥工程において樹脂組成物の十分な流動性が得られやすい。 Further, the viscosity at 25 ° C. of the actinic radiation curable resin composition (consisting of the actinic radiation curable resin and an additive other than the solvent) in which the actinic radiation curable resin is used alone or in combination of two or more is preferably 30 mPa · s or more, It is 2500 mPa · s or less. By using such a low-viscosity resin composition, the above-described protrusion shape and arithmetic average roughness Ra are easily obtained. Moreover, if the viscosity of the resin composition is 30 mPa · s or more, a monomer having a high functionality can be used, and sufficiently high curability is obtained. If the viscosity is 2500 mPa · s or less, in the drying step. Sufficient fluidity of the resin composition is easily obtained.
 なお、上記粘度は、B型粘度計を用いて25℃の条件にて測定した値である。 In addition, the said viscosity is the value measured on 25 degreeC conditions using the B-type viscosity meter.
 また、単官能アクリレートを用いても良い。単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレート、マレイミドアクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミドなどが挙げられる。このような単官能アクリレートは、日本化成工業株式会社、新中村化学工業株式会社、大阪有機化学工業株式会社、東亞合成株式会社等から入手できる。 In addition, monofunctional acrylate may be used. Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, cyclohexyl acrylate, maleimide acrylate, N-acryloyloxyethyl hexahydrophthalimide, and the like. Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., Toagosei Co., Ltd., etc.
 単官能アクリレートを用いる場合には、多官能アクリレートと単官能アクリレートの含有質量比で、多官能アクリレート:単官能アクリレート=80:20~99:2で含有する事が好ましい。 In the case of using a monofunctional acrylate, it is preferable to contain polyfunctional acrylate: monofunctional acrylate = 80: 20 to 99: 2 in terms of mass ratio of polyfunctional acrylate and monofunctional acrylate.
 また、本発明の防眩層は、前記活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有していないことが、本発明の目的効果が得られにくい事や、内部ヘイズの上昇によりコントラストの低下を招く事から、好ましい。 Further, the antiglare layer of the present invention does not substantially contain a resin that is incompatible with the actinic radiation curable resin, it is difficult to obtain the object effect of the present invention, and internal haze This is preferable because the increase causes a decrease in contrast.
 なお、本発明において、「非相溶性」とは、二種類以上の樹脂の溶融混合物の融解温度Tm又はガラス転移点Tgを測定・観察したときに、当該溶融混合物を構成する樹脂それぞれ単独のピークが観察されるものをいう。また、透過型電子顕微鏡観察においてそれぞれの相が実質的に観察されるものをいう。一方、「相溶性」とは、同種又は二種類以上の樹脂の溶融混合物の融解温度Tm又はガラス転移点Tgを測定・観察したときに、当該溶融混合物のピークが1個以下観察されるものをいう。 In the present invention, “incompatible” means that each of the resins constituting the molten mixture has a single peak when the melting temperature Tm or the glass transition point Tg of the molten mixture of two or more resins is measured and observed. Means what is observed. Further, it means that each phase is substantially observed in transmission electron microscope observation. On the other hand, “compatible” means that one or less peaks of the molten mixture are observed when the melting temperature Tm or the glass transition point Tg of the molten mixture of the same or two or more resins is measured and observed. Say.
 本発明において、活性線硬化型樹に対し非相溶性である樹脂としては、(メタ)アクリル系やアクリル系の単量体を重合又は共重合して得られる樹脂やポリエステル樹脂、更に、後述する基材フィルムにおいて用いられる熱可塑性アクリル樹脂、セルロースエステル樹脂などが挙げられる。 In the present invention, examples of the resin that is incompatible with the actinic ray curable tree include resins and polyester resins obtained by polymerizing or copolymerizing (meth) acrylic or acrylic monomers, and will be described later. The thermoplastic acrylic resin used in a base film, a cellulose ester resin, etc. are mentioned.
 非相溶性樹脂を実質的に含有しないとは、防眩層中の含有量が、基材フィルムからの抽出物成分を除き、0.01質量%以下をいう。 “Substantially free of incompatible resin” means that the content in the antiglare layer is 0.01% by mass or less excluding the extract component from the base film.
 また、防眩層には活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂=20:100~0.01:100で含有することが好ましい。光重合開始剤としては、具体的には、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等および、これらの誘導体を挙げることができるが、特にこれらに限定されるものではない。 In addition, the antiglare layer preferably contains a photopolymerization initiator in order to accelerate the curing of the actinic radiation curable resin. The amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active ray curable resin = 20: 100 to 0.01: 100. Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, α-amyloxime ester, thioxanthone, and derivatives thereof. In particular, it is not limited to these.
 このような光重合開始剤は市販品を用いてもよく、例えば、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。 Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure 184, Irgacure 907, Irgacure 651, etc., manufactured by BASF Japan.
 また防眩層は、本発明の目的効果が得られにくい事や、内部ヘイズの上昇によりコントラストの低下を招く事から、無機微粒子や有機微粒子といった微粒子を実質的に含有しないことが好ましい。なお、本発明において、微粒子を実質的に含有しないとは、防眩層中に含まれる微粒子の含有量が、0.01質量%以下を言う。また防眩層には、帯電防止性を付与するために導電剤が含まれていても良い。好ましい導電剤としてはπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。 Further, the antiglare layer preferably does not substantially contain fine particles such as inorganic fine particles and organic fine particles because the object effect of the present invention is difficult to obtain and the contrast is lowered due to an increase in internal haze. In the present invention, “substantially not containing fine particles” means that the content of fine particles contained in the antiglare layer is 0.01% by mass or less. Further, the antiglare layer may contain a conductive agent in order to impart antistatic properties. A preferable conductive agent is a π-conjugated conductive polymer. An ionic liquid is also preferably used as the conductive compound.
 防眩層には、塗布性の観点から、シリコーン系界面活性剤、フッ素系界面活性剤或いはポリオキシエーテル等の非イオン性界面活性剤、アニオン界面活性剤、及びフッ素-シロキサングラフト化合物を含有させても良い。 From the viewpoint of coating properties, the antiglare layer contains a silicone-based surfactant, a fluorine-based surfactant, or a nonionic surfactant such as polyoxyether, an anionic surfactant, and a fluorine-siloxane graft compound. May be.
 フッ素-シロキサングラフト化合物とは、少なくともフッ素系樹脂に、シロキサン及び/またはオルガノシロキサン単体を含むポリシロキサン及び/またはオルガノポリシロキサンをグラフト化させて得られる共重合体の化合物をいう。このようなフッ素-シロキサングラフト化合物は、後述の実施例に記載されているような方法で調製することができる。あるいは、市販品としては、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。またこれら成分は、塗布液中の固形分成分に対し、0.01~3質量%の範囲で添加することが好ましい。 The fluorine-siloxane graft compound is a copolymer compound obtained by grafting polysiloxane containing siloxane and / or organosiloxane alone and / or organopolysiloxane to at least a fluorine resin. Such a fluorine-siloxane graft compound can be prepared by a method as described in Examples described later. Alternatively, examples of commercially available products include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Chemical Industry Co., Ltd. These components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution.
 防眩層は、上記した防眩層を形成する成分を、溶剤で希釈して防眩層組成物(または防眩層塗布組成物とも言う)として、この防眩層組成物を以下の方法で基材フィルム上に塗布、乾燥、硬化して防眩層を設けることが好ましい。 The anti-glare layer is prepared by diluting the above-described components forming the anti-glare layer with a solvent as an anti-glare layer composition (also referred to as an anti-glare layer coating composition). It is preferable to provide an antiglare layer by coating, drying and curing on the base film.
 溶剤としては、ケトン類(メチルエチルケトン、アセトン、シクロヘキサノン、メチルイソブチルケトンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテートなど)、アルコール類(エタノール、メタノール、ブタノ―ル、n-プロピルアルコール、イソプロピルアルコール、ジアセトンアルコール)、炭化水素類(トルエン、キシレン、ベンゼン、シクロヘキサン)、グリコールエーテル類(プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテルなど)などを好ましく用いる事が出来る。また、これら溶剤の中でもエステル類、ケトン類、グリコールエーテル類或いはアルコール類が好ましい。前記活性線硬化樹脂100質量部に対して、20~200質量部の範囲でこれら好ましい溶剤を用いることで、防眩層塗布組成物を基材フィルムに塗布後、防眩層塗布組成物の溶剤が蒸発しながら、防眩層を形成していく過程で、樹脂の対流が生じやすく、その結果、防眩層で、不規則な表面粗れが発現しやすく、前記算術平均粗さRaに制御しやすいため好ましい。 Solvents include ketones (such as methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone), esters (such as methyl acetate, ethyl acetate, butyl acetate, propyl acetate, propylene glycol monomethyl ether acetate), alcohols (ethanol, methanol, butanoic acid) -Nyl, n-propyl alcohol, isopropyl alcohol, diacetone alcohol), hydrocarbons (toluene, xylene, benzene, cyclohexane), glycol ethers (propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethylene glycol monopropyl ether, etc.) Etc.) can be preferably used. Of these solvents, esters, ketones, glycol ethers or alcohols are preferred. By using these preferred solvents in the range of 20 to 200 parts by mass with respect to 100 parts by mass of the actinic radiation curable resin, after applying the antiglare layer coating composition to the base film, the solvent of the antiglare layer coating composition In the process of forming the antiglare layer while evaporating, convection of the resin is likely to occur, and as a result, irregular surface roughness is likely to appear in the antiglare layer, and the arithmetic average roughness Ra is controlled. It is preferable because it is easy to do.
 防眩層の塗布量はウェット膜厚として0.1~40μmが適当で、好ましくは、0.5~30μmである。また、ドライ膜厚としては平均膜厚0.1~30μm、好ましくは1~20μm、特に好ましくは6~15μmである。 The coating amount of the antiglare layer is suitably 0.1 to 40 μm as a wet film thickness, and preferably 0.5 to 30 μm. The dry film thickness is from 0.1 to 30 μm, preferably from 1 to 20 μm, particularly preferably from 6 to 15 μm.
 防眩層の塗布方法は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等の公知の方法を用いる事が出来る。これら塗布方法を用いて防眩層を形成する防眩層組成物を塗布し、塗布後、乾燥し、活性線を照射(UV硬化処理とも言う)し、更に必要に応じて、UV硬化後に加熱処理することで形成できる。UV硬化後の加熱処理温度としては80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化後の加熱処理を行うことで、鉛筆硬度に優れた防眩層を得ることができる。 As a method for applying the antiglare layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used. Using these coating methods, an antiglare layer composition for forming an antiglare layer is applied, dried after application, irradiated with actinic radiation (also referred to as UV curing treatment), and further heated after UV curing as necessary. It can be formed by processing. The heat treatment temperature after UV curing is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after UV curing at such a high temperature, an antiglare layer having excellent pencil hardness can be obtained.
 乾燥は、減率乾燥区間の温度を90℃以上の高温処理で行うことが好ましい。更に好ましくは、減率乾燥区間の温度は90℃以上、140℃以下である。減率乾燥区間の温度を高温処理とすることで、防眩層の形成時に塗膜樹脂中で対流が生じるため、その結果、防眩層表面に不規則な表面粗れが発現しやすく、前記算術平均粗さRaに制御しやすいため好ましい。 Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature of the decreasing rate drying section is 90 ° C or higher and 140 ° C or lower. By setting the temperature of the rate-decreasing drying section to a high temperature treatment, convection occurs in the coating resin during formation of the antiglare layer, and as a result, irregular surface roughness is likely to appear on the antiglare layer surface, The arithmetic average roughness Ra is preferable because it is easy to control.
 一般に乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。恒率乾燥区間においては流入する熱量はすべて塗膜表面の溶媒蒸発に費やされており、塗膜表面の溶媒が少なくなると蒸発面が表面から内部に移動して減率乾燥区間に入る。これ以降は塗膜表面の温度が上昇し熱風温度に近づいていくため、活性線硬化型樹脂組成物の温度が上昇し、樹脂粘度が低下して流動性が増すと考えられる。 In general, it is known that the drying process changes from a constant state to a gradually decreasing state when drying starts. The decreasing section is called the decreasing rate drying section. In the constant rate drying section, the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cm、好ましくは50~300mJ/cmである。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 50 to 1000 mJ / cm 2 , preferably 50 to 300 mJ / cm 2 .
 活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。 When irradiating actinic rays, it is preferably performed while applying tension in the transport direction of the film, more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
 また防眩層は、後述する基材フィルムで説明する紫外線吸収剤をさらに含有しても良い。紫外線吸収剤を含有する場合のフィルムの構成としては、防眩層が2層以上で構成され、かつ基材フィルムと接する防眩層に紫外線吸収剤を含有することが好ましい。 Further, the antiglare layer may further contain an ultraviolet absorber described in the base film described later. As a structure of the film in the case of containing an ultraviolet absorber, the antiglare layer is preferably composed of two or more layers, and the antiglare layer in contact with the base film preferably contains the ultraviolet absorber.
 紫外線吸収剤の含有量としては質量比で、紫外線吸収剤:防眩層構成樹脂=0.01:100~10:100で含有することが好ましい。2層以上設ける場合、基材フィルムと接する防眩層の膜厚は、0.05~2μmの範囲であることが好ましい。2層以上の積層は同時重層で形成しても良い。同時重層とは、乾燥工程を経ずに基材上に2層以上の防眩層をwet on wetで塗布して、防眩層を形成することである。第1防眩層の上に乾燥工程を経ずに、第2防眩層をwet on wetで積層するには、押し出しコーターにより逐次重層するか、若しくは複数のスリットを有するスロットダイにて同時重層を行えばよい。 As the content of the ultraviolet absorber, it is preferable that it is contained in a mass ratio of ultraviolet absorber: antiglare layer constituting resin = 0.01: 100 to 10: 100. When two or more layers are provided, the film thickness of the antiglare layer in contact with the base film is preferably in the range of 0.05 to 2 μm. Two or more layers may be formed as a simultaneous multilayer. The simultaneous multi-layering means that two or more anti-glare layers are applied on a wet substrate on a substrate without passing through a drying step to form the anti-glare layer. In order to laminate the second anti-glare layer on the first anti-glare layer without using a drying process, the layers are stacked one after another with an extrusion coater or simultaneously with a slot die having a plurality of slits. Can be done.
 なお、本発明での防眩性フィルムは、硬度の指標で有る鉛筆硬度がH以上、より好ましくは3H以上である。3H以上であれば、液晶表示装置の偏光板化工程で、傷が付きにくいばかりではなく、屋外用途で用いられることが多い、大型の液晶表示装置や、デジタルサイネージ用液晶表示装置の表面保護フィルムとして用いた際も優れた機械特性を示す。鉛筆硬度は、作製した防眩性フィルムを温度23℃、相対湿度55%の条件で2時間以上調湿した後、加重500g条件でJIS S 6006が規定する試験用鉛筆を用いて、JIS K5400が規定する鉛筆硬度評価方法に従い測定した値である。次いで、基材フィルムについて説明する。 The antiglare film of the present invention has a pencil hardness, which is an index of hardness, of H or higher, more preferably 3H or higher. If it is 3H or more, it is not only difficult to be scratched in the polarizing plate forming step of the liquid crystal display device, but also used for outdoor applications, and is a surface protective film for large liquid crystal display devices and liquid crystal display devices for digital signage. Excellent mechanical properties when used. The pencil hardness is determined by JIS K5400 using a test pencil specified by JIS S 6006 under the condition of a weight of 500 g after conditioning the prepared antiglare film at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more. It is a value measured according to the pencil hardness evaluation method specified. Next, the base film will be described.
 <基材フィルム>
 基材フィルムは製造が容易であること、防眩層と接着し易いこと、光学的に等方性であることが好ましい。また、本発明では基材フィルムを偏光板保護フィルムとして使用する。
<Base film>
The base film is preferably easy to manufacture, easily adheres to the antiglare layer, and is optically isotropic. Moreover, in this invention, a base film is used as a polarizing plate protective film.
 上記性質を有した基材フィルムであれば何れでもよく、例えば、トリアセチルセルロースフィルム、セルロースアセテートプロピオネートフィルム、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム等のセルロースエステル系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリメチルメタクリレートフィルムまたはアクリルフィルム等を使用することができる。 Any base film having the above properties may be used. For example, cellulose ester-based films such as triacetyl cellulose film, cellulose acetate propionate film, cellulose diacetate film, and cellulose acetate butyrate film, polyethylene terephthalate, polyethylene Polyester film such as naphthalate, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, Syndiotactic polystyrene film, norbornene resin film, polymethylpente Films, polyether ketone films, polyether ketone imide film, a polyamide film, a fluorine resin film, nylon film, can be used cycloolefin polymer film, a polymethyl methacrylate film or an acrylic film or the like.
 これらの内、セルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC4UE、およびKC12UR(以上、コニカミノルタオプト(株)製))、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム、ポリエステルフィルムが好ましく、本発明においては、セルロースエステルフィルムが防眩層で上記した突形状が得られやすい事、製造性、コスト面から好ましい。 Among these, cellulose ester films (for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UE, KC4UE, and KC12UR (above, Konica Minolta Opto Co., Ltd., Polycarbonate Film) An olefin polymer film and a polyester film are preferable, and in the present invention, the cellulose ester film is preferable from the viewpoint of easy production of the above-described protruding shape by the antiglare layer, productivity, and cost.
 基材フィルムの屈折率は、1.30~1.70であることが好ましく、1.40~1.65であることがより好ましい。屈折率は、アタゴ社製 アッペ屈折率計2Tを用いてJIS K7142の方法で測定する。 The refractive index of the base film is preferably 1.30 to 1.70, and more preferably 1.40 to 1.65. The refractive index is measured by the method of JIS K7142 using an upe refractometer 2T manufactured by Atago Co., Ltd.
 また、基材フィルムは、フィルム幅手方向の、湿度55%RHで25℃から210℃まで温度変化させて測定したtanδが下記の関係を有することが、過酷な耐久試験で本発明の目的効果を良好に発揮する点から好ましい。 Further, the tan δ measured by changing the temperature from 25 ° C. to 210 ° C. at a humidity of 55% RH in the width direction of the film has the following relationship. Is preferable from the standpoint of exhibiting good.
 0.5≧tanδ-40/tanδpeak≧0.24
 ここでtanδpeakとは、25℃から210℃まで温度変化させてtanδ値を測定した最大値、tanδ-40とは、tanδpeakを示した時の温度-40℃でのtanδの値をいう。
0.5 ≧ tan δ −40 / tan δ peak ≧ 0.24
Here, tan δ peak is the maximum value obtained by measuring the tan δ value by changing the temperature from 25 ° C. to 210 ° C., and tan δ −40 is the value of tan δ at a temperature of −40 ° C. when tan δ peak is indicated.
 基材フィルムのフィルム幅手方向のtanδ、即ち温度に対する貯蔵弾性率と損失弾性率のバランスを上記のような範囲とすることで、本発明の目的効果がより良く発揮される。tanδの測定は、例えば、試料をあらかじめ23℃55%RHの雰囲気下24時間調湿したものを使用し、湿度55%RH、下記条件で昇温させながら、または温度設定して測定することができる。 The object effect of the present invention is more effectively exhibited by setting tan δ in the film width direction of the base film, that is, the balance between the storage elastic modulus and the loss elastic modulus with respect to the temperature within the above range. The tan δ can be measured, for example, by using a sample that has been conditioned for 24 hours in an atmosphere of 23 ° C. and 55% RH and increasing the humidity at 55% RH under the following conditions or setting the temperature. it can.
 測定装置:ティーエイインスツルメント社製 RSAIII
 試料:幅5mm、長さ50mm(ギャップ20mmに設定)
 測定条件:引張モード
 測定温度:25~210℃
 昇温条件:5℃/min
 周波数:1Hz
 (セルロースエステルフィルム)
 次に基材フィルムとして好ましい、セルロースエステルフィルムについてより詳細に説明する。
Measuring device: RSA III manufactured by TI Instruments
Sample: width 5 mm, length 50 mm (gap set to 20 mm)
Measurement conditions: Tensile mode Measurement temperature: 25-210 ° C
Temperature rising condition: 5 ° C / min
Frequency: 1Hz
(Cellulose ester film)
Next, it demonstrates in detail about a cellulose-ester film preferable as a base film.
 セルロースエステルフィルムは上記特徴を有するものであれば特に限定はされないが、セルロースエステル樹脂(以下、セルロースエステルともいう)は、セルロースの低級脂肪酸エステルであることが好ましい。セルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が6以下の脂肪酸を意味し、例えば、セルロースアセテート、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート等や、セルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることができる。 The cellulose ester film is not particularly limited as long as it has the above characteristics, but the cellulose ester resin (hereinafter also referred to as cellulose ester) is preferably a lower fatty acid ester of cellulose. The lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms. For example, cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, etc. Further, mixed fatty acid esters such as cellulose acetate butyrate can be used.
 上記記載の中でも、特に好ましく用いられるセルロースの低級脂肪酸エステルはセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネートである。これらのセルロースエステルは単独或いは混合して用いることができる。 Among the above descriptions, the lower fatty acid esters of cellulose particularly preferably used are cellulose diacetate, cellulose triacetate, and cellulose acetate propionate. These cellulose esters can be used alone or in combination.
 セルロースジアセテートは、平均酢化度(結合酢酸量)51.0%~56.0%が好ましく用いられる。また、市販品としては、ダイセル社L20、L30、L40、L50、イーストマンケミカル社のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60Sが挙げられる。 Cellulose diacetate preferably has an average degree of acetylation (amount of bound acetic acid) of 51.0% to 56.0%. Commercially available products include Daicel L20, L30, L40, and L50, and Eastman Chemical's Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S.
 セルローストリアセテートは、平均酢化度(結合酢酸量)54.0~62.5%のものが好ましく用いられ、更に好ましいのは、平均酢化度が58.0~62.5%のセルローストリアセテートである。 The cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
 平均酢化度が小さいと寸法変化が大きく、また偏光板の偏光度が低下する。平均酢化度が大きいと溶剤に対する溶解度が低下し生産性が下がる。 If the average degree of acetylation is small, the dimensional change is large, and the polarization degree of the polarizing plate decreases. When the average degree of acetylation is large, the solubility in a solvent is lowered and the productivity is lowered.
 セルローストリアセテートとしては、アセチル基置換度が、2.80~2.95であって数平均分子量(Mn)が125000以上、155000未満、重量平均分子量(Mw)は、265000以上310000未満、Mw/Mnが1.9~2.1であるセルローストリアセテートA、アセチル基置換度が2.75~2.90であって数平均分子量(Mn)が155000以上、180000未満、Mwは290000以上360000未満、Mw/Mnは、1.8~2.0であるセルローストリアセテートBを含有することが好ましい。 The cellulose triacetate has an acetyl group substitution degree of 2.80 to 2.95, a number average molecular weight (Mn) of 125,000 or more and less than 155000, a weight average molecular weight (Mw) of 265,000 or more and less than 310,000, Mw / Mn Triacetate A having a acetyl group substitution degree of 2.75 to 2.90, a number average molecular weight (Mn) of 155,000 or more and less than 180,000, Mw of 290000 or more and less than 360,000, Mw / Mn preferably contains cellulose triacetate B which is 1.8 to 2.0.
 さらに、セルローストリアセテートAとセルローストリアセテートBを併用する場合には、質量比でセルローストリアセテートA:セルローストリアセテートB=100:0~20:80までの範囲であることが好ましい。セルローストリアセテート以外で好ましいセルロースエステルは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)および(II)を同時に満たすセルロースエステルを含むセルロースエステルである。 Furthermore, when cellulose triacetate A and cellulose triacetate B are used in combination, the mass ratio is preferably in the range of cellulose triacetate A: cellulose triacetate B = 100: 0 to 20:80. A preferred cellulose ester other than cellulose triacetate has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y, It is a cellulose ester containing the cellulose ester which satisfy | fills (I) and (II) simultaneously.
 式(I) 2.6≦X+Y≦3.0
 式(II) 0≦X≦2.5
 特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。
Formula (I) 2.6 ≦ X + Y ≦ 3.0
Formula (II) 0 ≦ X ≦ 2.5
In particular, cellulose acetate propionate is preferably used, and among them, 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9 are preferable.
 セルロースエステルの数平均分子量(Mn)および分子量分布(Mw)は、高速液体クロマトグラフィーを用い測定できる。測定条件は以下の通りである。 The number average molecular weight (Mn) and molecular weight distribution (Mw) of cellulose ester can be measured using high performance liquid chromatography. The measurement conditions are as follows.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G
(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)
 Mw=1000000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G
(Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation)
A calibration curve with 13 samples from Mw = 1000000 to 500 was used. The 13 samples are preferably used at approximately equal intervals.
 (セルロースエステル樹脂・熱可塑性アクリル樹脂含有フィルム)
 また、基材フィルムは、熱可塑性アクリル樹脂とセルロースエステル樹脂とを含有し、熱可塑性アクリル樹脂とセルロースエステル樹脂の含有質量比が、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5~50:50であるフィルムを用いても良い。
(Cellulose ester resin / thermoplastic acrylic resin-containing film)
The base film contains a thermoplastic acrylic resin and a cellulose ester resin, and the mass ratio of the thermoplastic acrylic resin and the cellulose ester resin is thermoplastic acrylic resin: cellulose ester resin = 95: 5 to 50:50. You may use the film which is.
 アクリル樹脂には、メタクリル樹脂も含まれる。アクリル樹脂としては、特に制限されるものではないが、メチルメタクリレート単位50~99質量%、およびこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。 Acrylic resin includes methacrylic resin. The acrylic resin is not particularly limited, but is preferably composed of 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Unsaturated group-containing divalent carboxylic acids such as saturated acid, maleic acid, fumaric acid and itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, Examples thereof include maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like, and these can be used alone or in combination of two or more monomers.
 これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。また、重量平均分子量(Mw)は80000~500000であることが好ましく、更に好ましくは、110000~500000の範囲内である。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used. Further, the weight average molecular weight (Mw) is preferably 80,000 to 500,000, and more preferably 110,000 to 500,000.
 アクリル樹脂の重量平均分子量は、測定条件含めて、ゲルパーミエーションクロマトグラフィーにより測定することができる。アクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30~100℃、塊状または溶液重合では80~160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。また、市販品も使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。また、アクリル樹脂には、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体に(メタ)アクリル系樹脂がグラフトされたグラフト共重合体を用いてもよい。前記グラフト共重合体は、(メタ)アクリル系ゴムと芳香族ビニル化合物の共重合体がコア(core)を構成し、その周辺に前記(メタ)アクリル系樹脂がシェル(shell)を構成するコア-シェルタイプのグラフト共重合体であることが好ましい。 The weight average molecular weight of the acrylic resin can be measured by gel permeation chromatography including the measurement conditions. There is no restriction | limiting in particular as a manufacturing method of an acrylic resin, You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. The polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent. Commercial products can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. . Two or more acrylic resins can be used in combination. The acrylic resin may be a graft copolymer obtained by grafting a (meth) acrylic resin to a copolymer of (meth) acrylic rubber and an aromatic vinyl compound. In the graft copolymer, a copolymer of (meth) acrylic rubber and an aromatic vinyl compound forms a core, and the (meth) acrylic resin forms a shell around the copolymer. -A shell-type graft copolymer is preferred.
 基材フィルムにおけるアクリル樹脂とセルロースエステル樹脂の総質量は、基材フィルムの55質量%以上であることが好ましく、更に好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。基材フィルムは、熱可塑性アクリル樹脂、セルロースエステル樹脂以外の樹脂や添加剤を含有して構成されていても良い。 The total mass of the acrylic resin and the cellulose ester resin in the base film is preferably 55% by mass or more of the base film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. The base film may be configured to contain resins and additives other than thermoplastic acrylic resins and cellulose ester resins.
 (アクリル粒子)
 基材フィルムは脆性の改善に優れる点から、アクリル粒子を含有しても良い。アクリル粒子とは、前記熱可塑性アクリル樹脂及びセルロースエステル樹脂を相溶状態で含有する基材フィルム中に粒子の状態(非相溶状態ともいう)で存在するアクリル成分を表す。
(Acrylic particles)
The base film may contain acrylic particles because it is excellent in improving brittleness. An acrylic particle represents the acrylic component which exists in the state of particle | grains (it is also called an incompatible state) in the base film containing the said thermoplastic acrylic resin and cellulose-ester resin in a compatible state.
 アクリル粒子は特に限定されるものではないが、多層構造アクリル系粒状複合体であることが好ましい。多層構造重合体であるアクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレン”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”およびクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし2種以上を用いることができる。基材フィルムにアクリル粒子を添加する場合は、アクリル樹脂とセルロースエステル樹脂との混合物の屈折率とアクリル粒子の屈折率が近いことが、透明性が高いフィルムを得る点では好ましい。具体的には、アクリル粒子とアクリル樹脂の屈折率差が0.05以下であることが好ましく、より好ましくは0.02以下、とりわけ0.01以下であることが好ましい。 The acrylic particles are not particularly limited, but are preferably multi-layered acrylic granular composites. Examples of commercially available acrylic granular composites that are multi-layer structured polymers include, for example, “Metablene” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paralloid” manufactured by Kureha Chemical Co., Ltd., Rohm and “Acryloid” manufactured by Haas, “Staffyroid” manufactured by Ganz Kasei Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., and the like can be used alone or in combination of two or more. When adding acrylic particles to the base film, it is preferable that the refractive index of the mixture of the acrylic resin and the cellulose ester resin is close to the refractive index of the acrylic particles in order to obtain a highly transparent film. Specifically, the refractive index difference between the acrylic particles and the acrylic resin is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
 アクリル微粒子は、該フィルムを構成するアクリル樹脂とセルロースエステル樹脂の総質量に対して、含有質量比でアクリル微粒子:アクリル樹脂とセルロースエステル樹脂総質量=0.5:100~30:100の範囲で含有させることで、目的効果がより良く発揮される点から好ましく、更に好ましくは、アクリル微粒子:アクリル樹脂とセルロースエステル樹脂の総質量=1.0:100~15:100の範囲である。 Acrylic fine particles are in a range of 0.5: 100 to 30: 100 in terms of the content of acrylic fine particles: acrylic resin and cellulose ester resin with respect to the total mass of acrylic resin and cellulose ester resin constituting the film. The content is preferably from the viewpoint that the intended effect is better exhibited, and more preferably, the total mass of acrylic fine particles: acrylic resin and cellulose ester resin = 1.0: 100 to 15: 100.
 〔微粒子〕
 本実施形態に係る基材フィルムには、取扱性を向上させる為、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などのマット剤を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さくできるので好ましく用いられる。
[Fine particles]
In order to improve the handleability, the base film according to the present embodiment includes, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, silica It is preferable to contain matting agents such as inorganic fine particles such as aluminum oxide, magnesium silicate, and calcium phosphate, and a crosslinked polymer. Among these, silicon dioxide is preferably used because it can reduce the haze of the film.
 微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmであり、特に好ましくは、5~12nmである。 The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
 (その他の添加剤)
 基材フィルムには、組成物の流動性や柔軟性を向上するために、可塑剤を併用することもできる。可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れる。用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。
(Other additives)
A plasticizer can also be used in combination with the base film in order to improve the fluidity and flexibility of the composition. Examples of the plasticizer include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy. Of these, polyester and phthalate plasticizers are preferably used. Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate. It can be applied to a wide range of uses by selecting or using these plasticizers according to the use.
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。またポリエステル系可塑剤の好ましくは、芳香族末端エステル系可塑剤である。芳香族末端エステル系可塑剤としては、フタル酸、アジピン酸、少なくとも一種のベンゼンモノカルボン酸および少なくとも一種の炭素数2~12のアルキレングリコールとを反応させた構造を有するエステル化合物が好ましく、最終的な化合物の構造としてアジピン酸残基およびフタル酸残基を有していればよく、エステル化合物を製造する際には、ジカルボン酸の酸無水物またはエステル化物として反応させてもよい。 The polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol. . Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like. The polyester plasticizer is preferably an aromatic terminal ester plasticizer. The aromatic terminal ester plasticizer is preferably an ester compound having a structure obtained by reacting phthalic acid, adipic acid, at least one benzene monocarboxylic acid and at least one alkylene glycol having 2 to 12 carbon atoms. As long as it has an adipic acid residue and a phthalic acid residue as the structure of such a compound, when an ester compound is produced, it may be reacted as an acid anhydride or esterified product of dicarboxylic acid.
 ベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、安息香酸であることが最も好ましい。また、これらはそれぞれ1種または2種以上の混合物として使用することができる。 Examples of the benzene monocarboxylic acid component include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like. Most preferred is benzoic acid. Moreover, these can be used as a 1 type, or 2 or more types of mixture, respectively.
 炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が挙げられる。これらの中では特に1,2-プロピレングリコールが好ましい。これらのグリコールは、1種または2種以上の混合物として使用してもよい。 Examples of the alkylene glycol component having 2 to 12 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1, 3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol 1 , 6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl 1,3-hexanediol 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecane diol. Of these, 1,2-propylene glycol is particularly preferred. These glycols may be used as one kind or a mixture of two or more kinds.
 芳香族末端エステル系可塑剤は、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは350~3000の範囲である。また酸価は、1.5mgKOH/g以下、水酸基価は25mgKOH/g以下、より好ましくは酸価0.5mgKOH/g以下、水酸基価は15mgKOH/g以下のものである。 The aromatic terminal ester plasticizer may be either an oligoester type or a polyester type, and the molecular weight is preferably in the range of 100 to 10,000, but is preferably in the range of 350 to 3000. The acid value is 1.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.5 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.
 可塑剤は基材フィルム100質量部に対して、0.5~30質量部を添加するのが好ましい。具体的には以下に示す化合物(2-1~2-6、および2-20~2-23)などが挙げられるがこれらに限定されない。 The plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the base film. Specific examples include the following compounds (2-1 to 2-6, and 2-20 to 2-23), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 更に、基材フィルムには、糖エステル化合物が含有されていても良い。糖エステル化合物とは、下記単糖、二糖、三糖またはオリゴ糖などの糖のOH基のすべてもしくは一部をエステル化した化合物であり、より具体的な例示としては、一般式(1)で表される化合物などをあげる事ができる。 Furthermore, the base film may contain a sugar ester compound. The sugar ester compound is a compound obtained by esterifying all or part of the OH group of a sugar such as the following monosaccharide, disaccharide, trisaccharide or oligosaccharide. As a more specific example, a general formula (1) The compound etc. which are represented by these can be mention | raise | lifted.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、置換又は無置換の炭素数2~22のアルキルカルボニル基、或いは、置換又は無置換の炭素数2~22のアリールカルボニル基を表し、R~Rは、同じであっても、異なっていてもよい。)
 以下に一般式(1)で示される化合物をより具体的(化合物1-1~化合物1-23)に示すが、これらに限定はされない。
(Wherein R 1 to R 8 represent a substituted or unsubstituted alkylcarbonyl group having 2 to 22 carbon atoms, or a substituted or unsubstituted arylcarbonyl group having 2 to 22 carbon atoms, and R 1 to R 8 May be the same or different.)
The compounds represented by the general formula (1) are shown below in more detail (compound 1-1 to compound 1-23), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 基材フィルムは、紫外線吸収剤を含有することも好ましく、用いられる紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系またはサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。 The base film preferably contains an ultraviolet absorber, and examples of the ultraviolet absorber used include benzotriazole, 2-hydroxybenzophenone, and salicylic acid phenyl ester. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
 なお、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる。 Among UV absorbers, UV absorbers with a molecular weight of 400 or more are difficult to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that the weather resistance can be effectively improved with a relatively small amount of addition. Can do.
 分子量が400以上の紫外線吸収剤としては、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、さらには2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1, 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis ( Hindered amines such as 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid Bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] Such as til] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine A hybrid system having both structures can be mentioned, and these can be used alone or in combination of two or more. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 これらは、市販品を用いてもよく、例えば、BASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類を好ましく使用できる。 These may be commercially available products, and for example, TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, and TINUVIN 928 manufactured by BASF Japan Ltd. can be preferably used.
 さらに、基材フィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また帯電防止剤を加えて、基材フィルムに帯電防止性能を与えることも可能である。 Furthermore, various antioxidants can be added to the base film in order to improve the thermal decomposability and thermal colorability during the molding process. It is also possible to add an antistatic agent to give the base film antistatic performance.
 基材フィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。ここで用いられるリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。 For the base film, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used. Phosphorus flame retardants used here include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated alkyl phosphorus. Examples thereof include one or a mixture of two or more selected from acid esters, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, halogen-containing phosphites, and the like.
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。基材フィルムは、「延性破壊が起こらないフィルム」であることが好ましい。ここで、延性破壊とは、ある材料が有する強度よりも、大きな応力が作用することで生じる破断のことであり、最終破断までに材料の著しい伸びや絞りを伴う破壊と定義される。その破面には、ディンプルと呼ばれる窪みが無数に形成される特徴がある。 Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate. The base film is preferably a “film that does not cause ductile fracture”. Here, the ductile fracture is a fracture caused by applying a stress larger than the strength of a certain material, and is defined as a fracture accompanied by significant elongation or drawing of the material until the final fracture. The fracture surface is characterized by numerous indentations called dimples.
 基材フィルムはより高温の環境下での使用に耐えられることが求められており、基材フィルムは張力軟化点が、105℃~145℃であれば、十分な耐熱性を示すものと判断でき好ましく、特に110℃~130℃が好ましい。 The base film is required to withstand use in a higher temperature environment, and the base film can be judged to exhibit sufficient heat resistance when the tension softening point is 105 ° C. to 145 ° C. 110 ° C. to 130 ° C. is particularly preferable.
 張力軟化点の具体的な測定方法としては、例えば、テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、光学フィルムを120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均値により求めることができる。 As a specific method for measuring the tension softening point, for example, a Tensilon tester (ORIENTEC Co., RTC-1225A) is used to cut out the optical film at 120 mm (length) × 10 mm (width) and pull it with a tension of 10 N. However, the temperature can be continuously increased at a temperature increase rate of 30 ° C./min, and the temperature at 9 N can be measured three times, and the average value can be obtained.
 尚、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。 The glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min. Point glass transition temperature (Tmg).
 液晶表示装置の偏光板用保護フィルムとして基材フィルムが用いられる場合は、吸湿による寸法変化によりムラや位相差値の変化が発生してしまい、コントラストの低下や色むらといった問題を発生させる。特に屋外で使用される液晶表示装置に用いられる偏光板保護フィルムであれば、上記の問題は顕著となる。このため、寸法変化率(%)は0.5%未満が好ましく、更に、0.3%未満であることが好ましい。基材フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。 When a substrate film is used as a protective film for a polarizing plate of a liquid crystal display device, unevenness or a change in retardation value occurs due to a dimensional change due to moisture absorption, causing problems such as a decrease in contrast and uneven color. In particular, the above problem becomes significant when the polarizing plate protective film is used in a liquid crystal display device used outdoors. For this reason, the dimensional change rate (%) is preferably less than 0.5%, and more preferably less than 0.3%. The base film preferably has a defect of 5 μm or more in diameter in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less. Here, the diameter of the defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope by the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。 The range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. When the defect is a change in the surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。 In addition, when observing with reflected light, if the size of the defect is not clear, aluminum or platinum is vapor-deposited on the surface for observation. In order to obtain a film having excellent quality expressed by such a defect frequency with high productivity, it is necessary to filter the polymer solution with high precision immediately before casting, to increase the cleanliness around the casting machine, It is effective to set drying conditions after rolling stepwise and to dry efficiently while suppressing foaming.
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。 When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
 また、目視で確認できない場合でも、該フィルム上にハードコート層などを形成したときに、塗剤が均一に形成できず欠点(塗布抜け)となる場合がある。ここで、欠点とは、溶液製膜の乾燥工程において溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)を言う。 Also, even when visual confirmation is not possible, when a hard coat layer or the like is formed on the film, the coating agent may not be formed uniformly, resulting in defects (coating defects). Here, the defect is a void in the film (foaming defect) generated due to the rapid evaporation of the solvent in the drying process of the solution casting, a foreign substance in the film forming stock solution, or a foreign substance mixed in the film forming process. This refers to the foreign matter (foreign matter defect) in the film.
 また、基材フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。 Further, the base film preferably has a breaking elongation in at least one direction of 10% or more, more preferably 20% or more in the measurement based on JIS-K7127-1999.
 破断伸度の上限は特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには異物や発泡に起因するフィルム中の欠点を抑制することが有効である。 The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress defects in the film caused by foreign matter and foaming.
 基材フィルムの厚みは、20μm以上であることが好ましい。より好ましくは30μm以上である。 The thickness of the base film is preferably 20 μm or more. More preferably, it is 30 μm or more.
 厚みの上限は特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は250μm程度である。なお、フィルムの厚みは用途により適宜選定することができる。 The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 250 μm from the viewpoint of applicability, foaming, solvent drying, and the like. The thickness of the film can be appropriately selected depending on the application.
 基材フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。また、製膜時のフィルム接触部(冷却ロール、カレンダーロール、ドラム、ベルト、溶液製膜における塗布基材、搬送ロールなど)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることや、アクリル樹脂の屈折率を小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。 The base film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roll, calender roll, drum, belt, coating substrate in solution casting, transport roll, etc.) during film formation. It is also effective to reduce the diffusion and reflection of light on the film surface by reducing the refractive index of the acrylic resin.
 (基材フィルムの製膜)
 次に、基材フィルムの製膜方法の例を説明するが、これに限定されるものではない。基材フィルムの製膜方法としては、インフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できる。
(Formation of base film)
Next, although the example of the film forming method of a base film is demonstrated, it is not limited to this. As a method for forming the base film, a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, a hot press method, or the like can be used.
 セルロースエステル樹脂やアクリル樹脂を溶解に用いた溶媒の残留抑制の点からは溶融流延製膜法で作製する方法が好ましい。溶融流延によって形成される方法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるフィルムが得られる、溶融押出し法が好ましい。また、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点からは流延法による溶液製膜が好ましい。また、フィルム形成材料が加熱されて、その流動性を発現させた後、ドラム上またはエンドレスベルト上に押出し製膜する方法も溶融流延製膜法として含まれる。 From the viewpoint of suppressing the residual solvent using a cellulose ester resin or an acrylic resin for dissolution, a method of producing by a melt casting film forming method is preferable. Methods formed by melt casting can be classified into melt extrusion molding methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method is preferable, in which a film having excellent mechanical strength and surface accuracy can be obtained. From the viewpoints of suppressing coloring, suppressing defects of foreign matters, and suppressing optical defects such as die lines, solution casting by casting is preferred. Further, a method of extruding and forming a film forming material on a drum or an endless belt after the film forming material is heated to express its fluidity is also included as a melt casting film forming method.
 〔有機溶媒〕
 基材フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、アクリル樹脂、セルロースエステル樹脂、その他の添加剤を同時に溶解するものであれば制限なく用いることが出来る。
[Organic solvent]
The organic solvent useful for forming the dope when the base film is produced by the solution casting method can be used without limitation as long as it dissolves acrylic resin, cellulose ester resin, and other additives at the same time. .
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることが出来、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのアクリル樹脂、セルロースエステル樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels and peeling from the metal support becomes easy, and when the proportion of alcohol is small, the acrylic resin and cellulose ester resin dissolve in a non-chlorine organic solvent system. There is also a role to promote.
 特に、メチレンクロライド、及び炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。 In particular, in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, at least 15 to 45 mass in total of at least three kinds of acrylic resin, cellulose ester resin, and acrylic particles are used. It is preferable that the dope composition is dissolved in%.
 炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることが出来る。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 〔溶液流延法〕
 基材フィルムは、溶液流延法によって製造する事が出来る。溶液流延法では、樹脂および添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。
[Solution casting method]
The base film can be produced by a solution casting method. In the solution casting method, a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , A step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
 ドープ中のセルロースエステル、およびセルロースエステル樹脂・アクリル樹脂の濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The concentration of cellulose ester in the dope, and the concentration of cellulose ester resin / acrylic resin is preferably higher because the drying load after casting on the metal support can be reduced. The load increases, and the filtration accuracy deteriorates. The concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass. The metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
 キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。 The cast width can be 1 ~ 4m. The surface temperature of the metal support in the casting step is set to −50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。 A preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。 When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .
 特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 Particularly, it is preferable to efficiently dry by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.
 セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。 In order for the cellulose ester film to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
 残留溶媒量は下記式で定義される。 The amount of residual solvent is defined by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
 また、セルロースエステルフィルム或いはセルロースエステル樹脂・アクリル樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。 Further, in the drying step of the cellulose ester film or the cellulose ester resin / acrylic resin film, it is preferable that the web is peeled off from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0. 0.1 mass% or less, particularly preferably 0 to 0.01 mass% or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
 〔延伸工程〕
 延伸工程では、フィルムの長手方向(MD方向)、及び幅手方向(TD方向)に対して、逐次または同時に延伸することができる。互いに直交する2軸方向の延伸倍率は、それぞれ最終的にはMD方向に1.0~2.0倍、TD方向に1.07~2.0倍の範囲とすることが好ましく、MD方向に1.0~1.5倍、TD方向に1.07~2.0倍の範囲で行うことが好ましい。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用してMD方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げてMD方向に延伸する方法、同様に横方向に広げてTD方向に延伸する方法、或いはMD/TD方向同時に広げてMD/TD両方向に延伸する方法などが挙げられる。
[Stretching process]
In the stretching step, the film can be sequentially or simultaneously stretched in the longitudinal direction (MD direction) and the width direction (TD direction) of the film. The draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.0 to 2.0 times in the MD direction and 1.07 to 2.0 times in the TD direction, respectively. It is preferably performed in the range of 1.0 to 1.5 times and 1.07 to 2.0 times in the TD direction. For example, a method in which peripheral speed differences are applied to a plurality of rolls and a roll peripheral speed difference is used to stretch in the MD direction, both ends of the web are fixed with clips and pins, and the distance between the clips and pins is increased in the traveling direction. And a method of stretching in the MD direction, a method of stretching in the transverse direction and stretching in the TD direction, a method of stretching in the MD / TD direction simultaneously and stretching in both the MD / TD directions, and the like.
 製膜工程のこれらの幅保持或いは幅手方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。 It is preferable to perform the width maintenance or the stretching in the width direction in the film forming process by a tenter, and it may be a pin tenter or a clip tenter.
 テンター内などの製膜工程でのフィルム搬送張力は温度にもよるが、120N/m~200N/mが好ましく、140N/m~200N/mがさらに好ましい。140N/m~160N/mが最も好ましい。 The film transport tension in the film forming process such as in the tenter depends on the temperature, but is preferably 120 N / m to 200 N / m, and more preferably 140 N / m to 200 N / m. 140 N / m to 160 N / m is most preferable.
 延伸する際は、基材フィルムのガラス転移温度をTgとすると(Tg-30)~(Tg+100)℃、より好ましくは(Tg-20)~(Tg+80)℃、さらに好ましく(Tg-5)~(Tg+20)℃である。 When stretching, assuming that the glass transition temperature of the substrate film is Tg, (Tg-30) to (Tg + 100) ° C., more preferably (Tg-20) to (Tg + 80) ° C., and more preferably (Tg-5) to (T Tg + 20) ° C.
 基材フィルムのTgは、フィルムを構成する材料種及び構成する材料の比率によって制御することができる。本発明の用途においてはフィルムの乾燥時のTgは110℃以上が好ましく、さらに120℃以上が好ましい。特に好ましくは150℃以上である。 The Tg of the base film can be controlled by the type of material constituting the film and the ratio of the constituting materials. In the application of the present invention, the Tg when the film is dried is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. Especially preferably, it is 150 degreeC or more.
 従ってガラス転移温度は190℃以下、より好ましくは170℃以下であることが好ましい。このとき、フィルムのTgはJIS K7121に記載の方法などによって求めることができる。 Therefore, the glass transition temperature is preferably 190 ° C. or lower, more preferably 170 ° C. or lower. At this time, the Tg of the film can be determined by the method described in JIS K7121.
 延伸する際の温度は150℃以上、延伸倍率は1.15倍以上にすると、表面が適度に粗れる為好ましい。フィルム表面を粗らす事は、滑り性を向上させるのみでなく、表面加工性、特に防眩層の密着性が向上するため好ましい。 When the stretching temperature is 150 ° C. or more and the stretching ratio is 1.15 times or more, the surface is preferably roughened. Roughening the film surface is preferable because it improves not only the slipperiness but also the surface processability, particularly the adhesion of the antiglare layer.
 〔溶融製膜法〕
 基材フィルムは、溶融製膜法によって製膜しても良い。溶融製膜法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースエステルを含む溶融物を流延することをいう。
[Melting method]
The base film may be formed by a melt film forming method. The melt film-forming method refers to heating and melting a composition containing an additive such as a resin and a plasticizer to a temperature exhibiting fluidity, and then casting a melt containing a fluid cellulose ester.
 加熱溶融する成形法は、更に詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの成形法の中では、機械的強度および表面精度などの点から、溶融押出し法が好ましい。溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。 The molding method for heating and melting can be further classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these molding methods, the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。 Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder, and formed into a strand from a die. It can be done by extrusion, water cooling or air cooling and cutting.
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。 Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
 粒子や酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 A small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. Of course, the raw material powder can be directly fed to the extruder by a feeder without being pelletized to form a film as it is.
 上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップされ、冷却ロール上で固化させる。 Using a single-screw or twin-screw type extruder, the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die. The film is nipped by a cooling roll and an elastic touch roll, and solidified on the cooling roll.
 供給ホッパーから押出し機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。 When introducing from the supply hopper to the extruder, it is preferable to prevent oxidative decomposition or the like under vacuum or reduced pressure or in an inert gas atmosphere.
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably carried out stably by introducing a gear pump. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. The stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
 可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。 Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。 The film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film. A well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
 弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。 The elastic touch roll is also called a pinching rotator. As the elastic touch roll, a commercially available one can be used.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 また、上記のようにして得られたフィルムは、冷却ロールに接する工程を通過後、前記延伸操作により延伸することが好ましい。 Moreover, it is preferable that the film obtained as described above is stretched by the stretching operation after passing through the step of contacting the cooling roll.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg~Tg+60℃の温度範囲で行われることが好ましい。 As the stretching method, a known roll stretching machine or tenter can be preferably used. The stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除されて、再利用される。 Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing. In addition, since the film has deform | transformed and cannot use as a product normally, the holding | grip part of the clip of both ends of a film is cut out and reused.
 (基材フィルムの物性)
 本実施形態における基材フィルムの膜厚は、特に限定はされないが10~200μmが用いられる。特に膜厚は10~100μmであることが特に好ましい。更に好ましくは20~60μmである。
(Physical properties of base film)
The film thickness of the substrate film in the present embodiment is not particularly limited, but 10 to 200 μm is used. In particular, the film thickness is particularly preferably 10 to 100 μm. More preferably, it is 20 to 60 μm.
 本発明に係る基材フィルムは、幅1~4mのものが用いられる。特に幅1.4~4mのものが好ましく用いられ、特に好ましくは1.6~3mである。4mを超えると搬送が困難となる。 The base film according to the present invention has a width of 1 to 4 m. Particularly, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
 また、基材フィルムの算術平均粗さRaは、好ましくは2.0nm~4.0nm、より好ましくは2.5nm~3.5nmである。 In addition, the arithmetic average roughness Ra of the base film is preferably 2.0 nm to 4.0 nm, more preferably 2.5 nm to 3.5 nm.
 <機能性層>
 本発明に係る防眩性フィルムは、バックコート層、反射防止層等の機能性層を設けることができる。
<Functional layer>
The antiglare film according to the present invention can be provided with functional layers such as a backcoat layer and an antireflection layer.
 (バックコート層)
 本発明に係る防眩性フィルムは、基材フィルムの防眩層を設けた側と反対側の面に、カールや防眩性フィルムを巻き状で保管した際のくっつき防止の為に、バックコート層を設けてもよい。
(Back coat layer)
The antiglare film according to the present invention is a back coat for preventing sticking when a curl or antiglare film is stored in a roll on the surface opposite to the side on which the antiglare layer of the base film is provided. A layer may be provided.
 バックコート層は、上記目的のため、微粒子を含有する事が好ましく、微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムを挙げることができる。また、前記微粒子を分散する目的や後述するバインダーを溶解して塗布組成物とするために、溶剤を含有する事が好ましい。溶剤としては、機能性層で説明した溶剤が好ましい。バックコート層に含まれる粒子は、バインダーに対して0.1~50質量%が好ましい。バックコート層を設けた場合のヘイズの増加は1.5%以下であることが好ましく、0.5%以下である。またバインダーとして、ジアセチルセルロース等のセルロースエステル樹脂を用いる事が好ましい。 The back coat layer preferably contains fine particles for the above purpose, and the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined silicic acid. Mention may be made of calcium, tin oxide, indium oxide, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. Moreover, it is preferable to contain a solvent in order to disperse the fine particles and to dissolve a binder described later to form a coating composition. As the solvent, the solvent described in the functional layer is preferable. The particles contained in the back coat layer are preferably 0.1 to 50% by mass with respect to the binder. When the back coat layer is provided, the increase in haze is preferably 1.5% or less, and 0.5% or less. In addition, it is preferable to use a cellulose ester resin such as diacetyl cellulose as the binder.
 (反射防止層)
 本発明に係る防眩性フィルムは、防眩層の上層に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。
(Antireflection layer)
The antiglare film according to the present invention can be used as an antireflection film having an external light antireflection function by coating an antireflection layer on the antiglare layer.
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の低い低屈折率層、もしくは支持体よりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。または、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。 The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is preferably composed of a low refractive index layer having a refractive index lower than that of the support, or a combination of a high refractive index layer having a refractive index higher than that of the support and a low refractive index layer. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used. As the layer structure of the antireflection film, the following structure is conceivable, but is not limited thereto.
 基材フィルム/防眩層/低屈折率層
 基材フィルム/防眩層/中屈折率層/低屈折率層
 基材フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層
 基材フィルム/防眩層/高屈折率層(導電性層)/低屈折率層
 (低屈折率層)
 反射防止フィルムには必須である低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、支持体である基材フィルムの屈折率より低く、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。
Base film / Anti-glare layer / Low refractive index layer Base film / Anti-glare layer / Medium refractive index layer / Low refractive index layer Base film / Anti-glare layer / Medium refractive index layer / High refractive index layer / Low refractive index Layer Base film / Anti-glare layer / High refractive index layer (conductive layer) / Low refractive index layer (Low refractive index layer)
The low refractive index layer essential for the antireflection film preferably contains silica-based fine particles, and the refractive index is lower than the refractive index of the substrate film as a support, measured at 23 ° C. and a wavelength of 550 nm. The range of 1.30 to 1.45 is preferable.
 低屈折率層の膜厚は、5nm~0.5μmであることが好ましく、10nm~0.3μmであることが更に好ましく、30nm~0.2μmであることが最も好ましい。 The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and most preferably 30 nm to 0.2 μm.
 低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。 The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, the particles having the outer shell layer and having a porous or hollow interior are preferably hollow silica-based fine particles.
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。 Note that the composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1), a hydrolyzate thereof, or a polycondensate thereof.
 一般式(OSi-1):Si(OR)
 前記一般式で表される有機珪素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
General formula (OSi-1): Si (OR) 4
In the organosilicon compound represented by the above general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
 他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。 In addition, a solvent, and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added.
 (高屈折率層)
 高屈折率層の屈折率は、23℃、波長550nm測定で、屈折率を1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmが好ましく、10nm~0.2μmであることが更に好ましく、30nm~0.1μmであることが最も好ましい。屈折率を調整する手段は、金属酸化物微粒子等を添加することで達成できる。金属酸化また、用いる金属酸化物微粒子の屈折率は1.80~2.60であるものが好ましく、1.85~2.50であるものが更に好ましい。
(High refractive index layer)
The refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm. The thickness of the high refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like. Metal oxide The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
 金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。 The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium tin oxide (ITO), antimony doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.
 これら金属酸化物微粒子の一次粒子の平均粒子径は10nm~200nmの範囲であり、10~150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。 The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, and is particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
 金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%~5質量%、より好ましくは0.5質量%~3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。また高屈折率層は、π共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。 The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . Therefore, the amount of surface modification with a preferable organic compound is 0.1% by mass to 5% by mass, more preferably 0.5% by mass to 3% by mass with respect to the metal oxide particles. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined. The high refractive index layer may contain a π-conjugated conductive polymer. The π-conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a π-conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.
 π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。 The π-conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group. A functional group such as a group, a hydroxy group, or a cyano group may be introduced.
 また、イオン性化合物を含有しても良い。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系の陰イオンとからなる化合物等が挙げられる。該ポリマーとバインダーの比率はポリマー100質量部に対して、バインダーが10~400質量部が好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100~200質量部である。 Moreover, you may contain an ionic compound. Examples of the ionic compound include imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based cations and inorganic ion-based compounds such as BF 4 and PF 6 , CF 3 SO 2 −, and the like. , (CF 3 SO 2 ) 2 N , CF 3 CO 2 —, etc. The ratio of the polymer to the binder is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the polymer, and particularly preferably 100 to 200 parts by mass of the binder with respect to 100 parts by mass of the polymer.
 <偏光板>
 本発明に係る防眩性フィルムを用いた本発明の偏光板について述べる。偏光板は一般的な方法で作製することができる。本発明に係る防眩性フィルムの裏面側をアルカリ鹸化処理し、処理した防眩性フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。
<Polarizing plate>
The polarizing plate of the present invention using the antiglare film according to the present invention will be described. The polarizing plate can be produced by a general method. The back surface side of the antiglare film according to the present invention is subjected to alkali saponification treatment, and a fully saponified polyvinyl alcohol aqueous solution is formed on at least one surface of a polarizing film prepared by immersing and stretching the treated antiglare film in an iodine solution. It is preferable to stick together.
 もう一方の面に該防眩性フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明に係る防眩性フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは、前述した基材フィルムであるセルローストリアセテートフィルムや熱可塑性アクリル樹脂とセルロースエステル樹脂を含有し、該熱可塑性アクリル樹脂と該セルロースエステル樹脂の含有質量比が、熱可塑性アクリル樹脂:セルロースエステル樹脂=95:5~50:50である保護フィルムを用いることが好ましい。構成の詳細は前述の通りであり、具体的には、リターデーションRoが590nmで0~5nm、Rtが-20~+20nmの無配向フィルムが一例として挙げられる。 The antiglare film may be used on the other surface, or another polarizing plate protective film may be used. The polarizing plate protective film used on the other surface of the antiglare film according to the present invention contains the cellulose triacetate film or thermoplastic acrylic resin and cellulose ester resin as the base film described above, and the heat It is preferable to use a protective film in which the mass ratio of the plastic acrylic resin to the cellulose ester resin is thermoplastic acrylic resin: cellulose ester resin = 95: 5 to 50:50. Details of the configuration are as described above, and specific examples include a non-oriented film having a retardation Ro of 590 nm and 0 to 5 nm and an Rt of −20 to +20 nm.
 また、他に面内リターデーションRoが590nmで、20~70nm、Rtが70~400nmの位相差を有する光学補償フィルム(位相差フィルム)を用いて、視野角拡大可能な偏光板とすることもできる。または、更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方性層を有している光学補償フィルムを用いることが好ましい。また、好ましく用いられる市販の偏光板保護フィルムとしては、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が挙げられる。 In addition, an optical compensation film (retardation film) having a retardation of in-plane retardation Ro of 590 nm, 20 to 70 nm, and Rt of 70 to 400 nm may be used to obtain a polarizing plate capable of widening the viewing angle. it can. Alternatively, it is preferable to use an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal. Also, commercially available polarizing plate protective films preferably used include KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-2, KC4FR-2, KC4FR-2, KC8FR-2 KC4UE (Konica Minolta Opto Co., Ltd.) etc. are mentioned.
 偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5~30μm、好ましくは8~15μmの偏光膜が好ましく用いられる。 The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are ones in which iodine is dyed on a system film and ones in which a dichroic dye is dyed, but it is not limited to this. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. A polarizing film having a thickness of 5 to 30 μm, preferably 8 to 15 μm is preferably used.
 該偏光膜の面上に、本発明に係る防眩性フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。 On the surface of the polarizing film, one side of the antiglare film according to the present invention is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
 (粘着層)
 液晶セルの基板と貼り合わせるために保護フィルムの片面に用いられる粘着剤層は、光学的に透明であることはもとより、適度な粘弾性や粘着特性を示すものが好ましい。
(Adhesive layer)
The pressure-sensitive adhesive layer used on one side of the protective film to be bonded to the substrate of the liquid crystal cell is preferably optically transparent and exhibits moderate viscoelasticity and adhesive properties.
 具体的な粘着層としては、例えばアクリル系共重合体やエポキシ系樹脂、ポリウレタン、シリコーン系ポリマー、ポリエーテル、ブチラール系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、合成ゴムなどの接着剤もしくは粘着剤等のポリマーを用いて、乾燥法、化学硬化法、熱硬化法、熱熔融法、光硬化法等により膜形成させ、硬化せしめることができる。なかでも、アクリル系共重合体は、最も粘着物性を制御しやすく、かつ透明性や耐候性、耐久性などに優れていて好ましく用いることができる。 Specific examples of the adhesive layer include adhesives or adhesives such as acrylic copolymers, epoxy resins, polyurethane, silicone polymers, polyethers, butyral resins, polyamide resins, polyvinyl alcohol resins, and synthetic rubbers. A film such as a drying method, a chemical curing method, a thermal curing method, a thermal melting method, a photocuring method, or the like can be formed and cured using a polymer such as the above. Among them, the acrylic copolymer can be preferably used because it is most easy to control the physical properties of the adhesive and is excellent in transparency, weather resistance, durability and the like.
 <液晶表示装置>
 本発明に係る防眩性フィルムを用いて作製した本発明の偏光板を表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができる。
<Liquid crystal display device>
By incorporating the polarizing plate of the present invention produced using the antiglare film according to the present invention into a display device, various liquid crystal display devices having excellent visibility can be produced.
 本発明に係る防眩性フィルムは偏光板に組み込まれ、反射型、透過型、半透過型液晶表示装置またはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。また、本発明の一実施形態に係る液晶表示装置の液晶セルを図8に示す。本発明の偏光板を、液晶セルの少なくとも一方に有することで、視認性に優れた液晶表示装置を提供できる。さらに、図7に示すように液晶表示装置の液晶セルのリヤ側(バックライト側)に用いることで、モアレ縞の発生防止にも優れる。 The antiglare film according to the present invention is incorporated in a polarizing plate, and is a reflective type, transmissive type, transflective liquid crystal display device or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), It is preferably used in liquid crystal display devices of various driving systems such as IPS type and OCB type. FIG. 8 shows a liquid crystal cell of a liquid crystal display device according to an embodiment of the present invention. By having the polarizing plate of the present invention in at least one of the liquid crystal cells, a liquid crystal display device excellent in visibility can be provided. Furthermore, as shown in FIG. 7, it is excellent in preventing the occurrence of moire fringes when used on the rear side (backlight side) of the liquid crystal cell of the liquid crystal display device.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 <基材フィルム1の作製>
 (エステル化合物1の調製)
 1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物1を得た。酸価0.10mgKOH/g、数平均分子量450であった。
Example 1
<Preparation of base film 1>
(Preparation of ester compound 1)
251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with thermometer, stirrer, and slow cooling tube The flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream. The ester compound 1 was obtained by carrying out a dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The acid value was 0.10 mg KOH / g, and the number average molecular weight was 450.
 (二酸化珪素分散液の調製)
・アエロジルR812(日本アエロジル(株)製、一次粒子の平均径7nm)                           10質量部
・エタノール                      90質量部
 以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を作製した。微粒子分散希釈液濾過器(アドバンテック東洋(株):ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)で濾過した。
(Preparation of silicon dioxide dispersion)
Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd., average particle size of primary particles: 7 nm) 10 parts by mass / ethanol 90 parts by mass The above was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution. The mixture was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N).
 〈基材フィルム1の作製〉
 (ドープ組成物)
・セルローストリアセテートA1             90質量部
(リンター綿から合成されたセルローストリアセテート、アセチル基置換度2.88、Mn=140000)
・エステル化合物1                   10質量部
・チヌビン928(BASFジャパン(株)製)     2.5質量部
・二酸化珪素分散希釈液                  4質量部
・メチレンクロライド                 432質量部
・エタノール                      38質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。
<Preparation of base film 1>
(Dope composition)
・ 90 parts by mass of cellulose triacetate A1 (cellulose triacetate synthesized from linter cotton, acetyl group substitution degree 2.88, Mn = 14000)
-Ester compound 1 10 parts by mass-Tinuvin 928 (manufactured by BASF Japan Ltd.) 2.5 parts by mass-Silicon dioxide dispersion diluent 4 parts by mass-Methylene chloride 432 parts by mass-Ethanol 38 parts by mass The solution was completely dissolved while being heated and stirred, and Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope solution.
 次に、ベルト流延装置を用い、ステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶剤を蒸発させ、ステンレスバンド支持体上から剥離した。セルロースエステルフィルムのウェブを35℃で溶剤を蒸発させ、1.65m幅にスリットし、テンターでTD方向(フィルムの幅手方向)に1.3倍、MD方向の延伸倍率は1.01倍で延伸しながら、160℃の乾燥温度で乾燥させた。乾燥を始めたときの残留溶剤量は20%であった。その後、120℃の乾燥装置内を多数のロールで搬送させながら15分間乾燥させた後、1.49m幅にスリットし、フィルム両端に幅15mm、高さ10μmのナーリング加工を施し、巻芯に巻き取り、基材フィルム1を得た。基材フィルムの残留溶剤量は0.2%であり、膜厚は40μm、巻数は3900mであった。 Next, the belt was cast evenly on a stainless steel band support using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off. The cellulose ester film web was evaporated at 35 ° C., slit to 1.65 m width, and stretched 1.3 times in the TD direction (film width direction) with a tenter, and the MD direction draw ratio was 1.01 times. While stretching, the film was dried at a drying temperature of 160 ° C. The residual solvent amount at the start of drying was 20%. Then, after drying for 15 minutes while transporting the inside of a drying device at 120 ° C. with a number of rolls, slitting to a width of 1.49 m, applying a knurling process with a width of 15 mm and a height of 10 μm at both ends of the film, and winding it around a winding core The base film 1 was obtained. The residual solvent amount of the base film was 0.2%, the film thickness was 40 μm, and the number of turns was 3900 m.
 <防眩性フィルム1の作製>
 上記作製した基材フィルム1上に孔径0.4μmのポリプロピレン製フィルターで濾過した下記防眩層組成物1を、押出しコーターを用いて塗布し、恒率乾燥区間温度95℃、減率乾燥区間温度95℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.25J/cmとして塗布層を硬化させ、ドライ膜厚6μmの防眩層を形成した。防眩層を形成後、巻き取り、防眩性フィルム1を作製した。防眩性フィルム1の防眩層表面を光学干渉式表面粗さ計(Zygo社製 New View 5030)で観察した結果、図3のように不規則な突起形状が不規則に長手方向及び幅方向に配列していることが分かった。
<Preparation of antiglare film 1>
The following anti-glare layer composition 1 filtered through a polypropylene filter having a pore diameter of 0.4 μm is applied on the base film 1 produced above using an extrusion coater, and a constant rate drying zone temperature of 95 ° C., a reduced rate drying zone temperature. After drying at 95 ° C., while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, using an ultraviolet lamp, the illuminance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.25 J / cm 2. The coating layer was cured to form an antiglare layer having a dry film thickness of 6 μm. After forming the antiglare layer, it was wound up to produce an antiglare film 1. As a result of observing the surface of the antiglare layer of the antiglare film 1 with an optical interference surface roughness meter (New View 5030, manufactured by Zygo Corporation), irregular projection shapes irregularly in the longitudinal direction and the width direction as shown in FIG. It was found that they are arranged in
 [防眩層組成物1]
 下記防眩層組成物1をディスパーにて撹拌混合し、防眩層組成物1を得た。
[Anti-glare layer composition 1]
The following antiglare layer composition 1 was stirred and mixed with a disper to obtain an antiglare layer composition 1.
 〈フッ素-シロキサングラフト化合物の調製〉
 フッ素-シロキサングラフト化合物の調製に用いた素材の市販品名を示す。
・ラジカル重合性フッ素樹脂(A):セフラルコートCF-803(水酸基価60、平均分子量15,000;セントラル硝子(株)製)
・片末端ラジカル重合性ポリシロキサン(B):サイラプレーンFM-0721
(数平均分子量5,000;チッソ(株)製)
・ラジカル重合開始剤:パーブチルO(t-ブチルパーオキシ-2-エチルヘキサノエート;日本油脂(株)製)
・硬化剤:スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;住化バイエルウレタン(株)製)
 (ラジカル重合性フッ素樹脂の合成)
 機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、セフラルコートCF-803(1554質量部)、キシレン(233質量部)、及び2-イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱した。80℃で2時間反応し、サンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂を得た。
<Preparation of fluorine-siloxane graft compound>
The commercial name of the material used for the preparation of the fluorine-siloxane graft compound is shown.
Radical polymerizable fluororesin (A): Cephalal coated CF-803 (hydroxyl value 60, average molecular weight 15,000; manufactured by Central Glass Co., Ltd.)
Single-end radical polymerizable polysiloxane (B): Silaplane FM-0721
(Number average molecular weight 5,000; manufactured by Chisso Corporation)
・ Radical polymerization initiator: Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
Curing agent: Sumidur N3200 (hexuremethylene diisocyanate biuret type prepolymer; manufactured by Sumika Bayer Urethane Co., Ltd.)
(Synthesis of radical polymerizable fluororesin)
A glass reactor equipped with a mechanical stirrer, a thermometer, a condenser and a dry nitrogen gas inlet was added to cefal coat CF-803 (1554 parts by mass), xylene (233 parts by mass), and 2-isocyanatoethyl methacrylate (6 3 parts by mass) and heated to 80 ° C. in a dry nitrogen atmosphere. After reacting at 80 ° C. for 2 hours and confirming that the absorption of isocyanate disappeared by the infrared absorption spectrum of the sampled material, the reaction mixture was taken out to obtain 50% by mass of a radically polymerizable fluororesin via a urethane bond. .
 (フッ素-シロキサングラフト化合物の調製)
 機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(26.1質量部)、キシレン(19.5質量部)、酢酸n-ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n-ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2-ヒドロキシエチルメタクリレート(1.8質量部)、FM-0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1部)を追加し、さらに90℃で5時間保持することによって、重量平均分子量が171,000である35質量%フッ素-シロキサングラフト化合物の溶液を得た。重量平均分子量はGPCにより求めた。また、フッ素-シロキサングラフト化合物の質量%はHPLC(液体クロマトグラフィー)により求めた。
(活性線硬化型樹脂)
・ペンタエリスリトールトリ/テトラアクリレート     90質量部
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
・4-ヒドロキシブチルアクリレート           10質量部
 (日本化成工業(株)製)
(光重合開始剤)
・イルガキュア184(BASFジャパン(株)製)     5質量部
(レベリング剤)
・フッ素-シロキサングラフト化合物(35質量%)     2質量部
(溶剤)
・プロピレングリコールモノメチルエーテル        10質量部
・酢酸メチル                      55質量部
・メチルエチルケトン                  55質量部
 上記防眩層組成物1の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、440mPa・sであった。
(Preparation of fluorine-siloxane graft compound)
In a glass reactor equipped with a mechanical stirrer, thermometer, condenser and dry nitrogen gas inlet, the above synthesized radical polymerizable fluororesin (26.1 parts by mass), xylene (19.5 parts by mass), acetic acid n-butyl (16.3 parts by mass), methyl methacrylate (2.4 parts by mass), n-butyl methacrylate (1.8 parts by mass), lauryl methacrylate (1.8 parts by mass), 2-hydroxyethyl methacrylate (1 8 parts by mass), FM-0721 (5.2 parts by mass), and perbutyl O (0.1 parts by mass) were heated to 90 ° C. in a nitrogen atmosphere, and held at 90 ° C. for 2 hours. Perbutyl O (0.1 part) was added, and the mixture was further maintained at 90 ° C. for 5 hours to obtain a 35 mass% fluorine-siloxane graft compound solution having a weight average molecular weight of 171,000. The weight average molecular weight was determined by GPC. The mass% of the fluorine-siloxane graft compound was determined by HPLC (liquid chromatography).
(Actinic radiation curable resin)
・ Pentaerythritol tri / tetraacrylate 90 parts by mass (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
・ 10 parts by mass of 4-hydroxybutyl acrylate (manufactured by Nippon Kasei Kogyo Co., Ltd.)
(Photopolymerization initiator)
・ Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
・ Fluoro-siloxane graft compound (35% by mass) 2 parts by mass (solvent)
-Propylene glycol monomethyl ether 10 parts by mass-Methyl acetate 55 parts by mass-Methyl ethyl ketone 55 parts by mass Only the actinic radiation curable resin of the above antiglare layer composition 1 is stirred and mixed with a disper, and B-type at 25 ° C. When measured using a viscometer, the resin viscosity was 440 mPa · s.
 <防眩性フィルム2~8の作製>
 防眩性フィルム1の作製において、減率乾燥区間の温度を表1に記載したように条件変更した以外は、防眩性フィルム1と同様にして、防眩性フィルム2~8を作製した。
<Preparation of antiglare films 2 to 8>
Antiglare films 2 to 8 were produced in the same manner as the antiglare film 1 except that the conditions for changing the temperature of the decreasing rate drying section were changed as shown in Table 1 in the production of the antiglare film 1.
 <防眩性フィルム9の作製>
 防眩性フィルム1の作製において、防眩層組成物1を下記防眩層組成物2とし、かつ乾燥工程における減率乾燥区間の温度を100℃に変更した以外は、同様にして防眩性フィルム9を作製した。
<Preparation of antiglare film 9>
In the production of the antiglare film 1, the antiglare layer composition 1 was changed to the following antiglare layer composition 2 and the temperature of the decreasing rate drying section in the drying step was changed to 100 ° C. in the same manner. Film 9 was produced.
 [防眩層組成物2]
 下記防眩層組成物2をディスパーにて撹拌混合し、防眩層組成物2を得た。
(活性線硬化型樹脂)
・ジトリメチロールプロパンテトラアクリレート      70質量部
 (NKエステルAD-TMP、新中村化学工業(株)製)
・エトキシ化ペンタエリスリトールテトラアクリレート   30質量部
 (NKエステルATM-35E、新中村化学工業(株)製)
(光重合開始剤)
・イルガキュア184(BASFジャパン(株)製)     5質量部
(レベリング剤)
・フッ素-シロキサングラフト化合物(35質量%)     2質量部
(溶剤)
・プロピレングリコールモノメチルエーテル        10質量部
・酢酸メチル                      55質量部
・メチルエチルケトン                  55質量部
 上記防眩層組成物2の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、800mPa・sであった。
[Anti-glare layer composition 2]
The following antiglare layer composition 2 was stirred and mixed with a disper to obtain an antiglare layer composition 2.
(Actinic radiation curable resin)
・ 70 parts by mass of ditrimethylolpropane tetraacrylate (NK ester AD-TMP, manufactured by Shin-Nakamura Chemical Co., Ltd.)
-30 parts by mass of ethoxylated pentaerythritol tetraacrylate (NK ester ATM-35E, manufactured by Shin-Nakamura Chemical Co., Ltd.)
(Photopolymerization initiator)
・ Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
・ Fluoro-siloxane graft compound (35% by mass) 2 parts by mass (solvent)
-Propylene glycol monomethyl ether 10 parts by mass-Methyl acetate 55 parts by mass-Methyl ethyl ketone 55 parts by mass Only the actinic radiation curable resin of the above antiglare layer composition 2 is stirred and mixed with a disper, and the type B is obtained at 25 ° C. When measured using a viscometer, the resin viscosity was 800 mPa · s.
 <防眩性フィルム10~15の作製>
 防眩性フィルム7の作製において、減率乾燥区間の温度を表1に記載したように条件変更した以外は、防眩性フィルム7と同様にして、防眩性フィルム10~15を作製した。
<Preparation of antiglare films 10 to 15>
Antiglare films 10 to 15 were produced in the same manner as in the antiglare film 7 except that the conditions for changing the temperature of the decreasing rate drying section in the production of the antiglare film 7 were changed as shown in Table 1.
 <防眩性フィルム16の作製>
 防眩性フィルム7の作製において、防眩層組成物2を特開2006-106290号公報の実施例1を参考にして調整した防眩層組成物3に変更し、更に乾燥温度を特開2006-106290号公報の実施例1と同じ70℃とした以外は同様にして防眩層を作製した。次に、防眩層上に押出しコーターを用いて、熱硬化性含フッ素化合物塗工液(日産化学(株)製、LR-202B、固形分1質量%)を、乾燥後の膜厚が100nmとなるように塗布し、90℃で5分間乾燥させることで熱硬化させ、防眩性フィルム16を作製した。
<Preparation of antiglare film 16>
In the production of the antiglare film 7, the antiglare layer composition 2 was changed to the antiglare layer composition 3 prepared with reference to Example 1 of JP-A-2006-106290, and the drying temperature was further changed to JP-A-2006. An antiglare layer was produced in the same manner except that the temperature was set at 70 ° C. as in Example 1 of JP-106290A. Next, using an extrusion coater on the antiglare layer, a thermosetting fluorine-containing compound coating solution (manufactured by Nissan Chemical Co., Ltd., LR-202B, solid content 1 mass%) is dried to a film thickness of 100 nm. Then, it was cured by drying at 90 ° C. for 5 minutes to produce an antiglare film 16.
 [防眩層組成物3]
 下記防眩層組成物3をディスパーにて撹拌混合し、防眩層組成物3を得た。
(活性線硬化型樹脂)
・サイクロマーP(ACA)320(不飽和基含有アクリル樹脂混合物、
ダイセル化学工業(株)製)             5.04質量部
・ジペンタエリスリトールヘキサアクリレート
(DPHA、ダイセル・サイテック(株)製)      6.4質量部
(非相溶性樹脂)
・セルロースアセテートプロピオネート(CAP-482-20、
イーストマンケミカル社製)              0.9質量部
(光重合開始剤)
・イルガキュア184(BASFジャパン(株)製)   0.2質量部
(溶剤)
・メチルエチルケトン                  20質量部
・シクロヘキサノン                    5質量部
 上記防眩層組成物3の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、10600mPa・sであった。なお、表1でセルロースアセテートプロピオネートをCAPと示した。
[Anti-glare layer composition 3]
The following antiglare layer composition 3 was stirred and mixed with a disper to obtain an antiglare layer composition 3.
(Actinic radiation curable resin)
Cyclomer P (ACA) 320 (unsaturated group-containing acrylic resin mixture,
Daicel Chemical Industries, Ltd.) 5.04 parts by mass Dipentaerythritol hexaacrylate (DPHA, manufactured by Daicel Cytec Co., Ltd.) 6.4 parts by mass (incompatible resin)
Cellulose acetate propionate (CAP-482-20,
0.9 parts by mass (photopolymerization initiator)
・ Irgacure 184 (manufactured by BASF Japan) 0.2 parts by mass (solvent)
-Methyl ethyl ketone 20 parts by mass-Cyclohexanone 5 parts by mass Only the actinic radiation curable resin of the antiglare layer composition 3 was stirred and mixed with a disper and measured using a B-type viscometer at 25 ° C. The resin viscosity was 10600 mPa · s. In Table 1, cellulose acetate propionate is indicated as CAP.
 <防眩性フィルム17の作製>
 防眩性フィルム7の作製において、防眩層組成物2を特開2008-225195号公報の実施例1を参考にして調整した防眩層組成物4に変更し、更に乾燥温度を特開2008-225195号公報の実施例1と同じ70℃とした以外は防眩性フィルム1と同様にして、防眩性フィルム17を作製した。
<Preparation of antiglare film 17>
In the production of the antiglare film 7, the antiglare layer composition 2 was changed to the antiglare layer composition 4 prepared with reference to Example 1 of JP2008-225195A, and the drying temperature was changed to JP2008. An antiglare film 17 was produced in the same manner as the antiglare film 1 except that the temperature was set to 70 ° C., which was the same as that in Example 1 of the -225195 publication.
 [防眩層組成物4]
 下記防眩層組成物4をディスパーにて撹拌混合し、防眩層組成物4を得た。
(活性線硬化型樹脂)
・サイクロマーP(ACA)320(不飽和基含有アクリル樹脂混合物、
ダイセル化学工業(株)製)             5.65質量部
・ジペンタエリスリトールヘキサアクリレート(DPHA、
ダイセル・サイテック(株)製)            6.3質量部
(非相溶性樹脂)
・ポリメタクリル酸メチル(重量平均分子量480000;三菱レイヨン(株)製、BR88)                  0.9質量部
(光重合開始剤)
・イルガキュア184(BASFジャパン(株)製)   0.5質量部
(溶剤)
・メチルエチルケトン                 0.1質量部
・1-ブタノール                   5.4質量部
・1-メトキシ-2-プロパノール          1.89質量部
 上記防眩層組成物4の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、10500mPa・sであった。なお、表1でポリメタクリル酸メチルをPMMAと示した。
[Anti-Glare Layer Composition 4]
The following antiglare layer composition 4 was stirred and mixed with a disper to obtain an antiglare layer composition 4.
(Actinic radiation curable resin)
Cyclomer P (ACA) 320 (unsaturated group-containing acrylic resin mixture,
Daicel Chemical Industries, Ltd.) 5.65 parts by mass / dipentaerythritol hexaacrylate (DPHA,
6.3 parts by mass (incompatible resin)
Polymethyl methacrylate (weight average molecular weight 480000; manufactured by Mitsubishi Rayon Co., Ltd., BR88) 0.9 part by mass (photopolymerization initiator)
・ Irgacure 184 (manufactured by BASF Japan) 0.5 parts by mass (solvent)
・ Methyl ethyl ketone 0.1 mass part ・ 1-butanol 5.4 mass parts ・ 1-methoxy-2-propanol 1.89 mass parts Only the actinic radiation curable resin of the antiglare layer composition 4 is stirred and mixed with a disper. The resin viscosity was 10500 mPa · s when measured using a B-type viscometer at 25 ° C. In Table 1, polymethyl methacrylate was shown as PMMA.
 <防眩性フィルム18の作製>
 防眩性フィルム7の作製において、防眩層組成物2を特開2007-58204号公報の実施例3を参考にして調整した防眩層組成物5に変更し、更に乾燥温度を特開2007-58204号公報の実施例3と同じ80℃に変更した以外は防眩性フィルム1と同様にして、防眩性フィルム18を作製した。
<Preparation of antiglare film 18>
In the production of the antiglare film 7, the antiglare layer composition 2 was changed to the antiglare layer composition 5 prepared with reference to Example 3 of JP-A-2007-58204, and the drying temperature was further changed to JP-A-2007. An antiglare film 18 was produced in the same manner as the antiglare film 1 except that the temperature was changed to 80 ° C., which was the same as that in Example 3 of the -58204 publication.
 [防眩層組成物5]
 下記防眩層組成物5をディスパーにて撹拌混合し、防眩層組成物5を得た。
(活性線硬化型樹脂)
・ジペンタエリスリトールヘキサアクリレート(DPHA、ダイセル・
サイテック(株)製)                  92質量部
(非相溶性樹脂)
・メタアクリレート共重合ポリマー(サフトマーST3600,三菱化学株式会社                         15質量部
(光重合開始剤)
・イルガキュア184(BASFジャパン(株)製)     4質量部
(溶剤)
・エタノール                      45質量部
・トルエン                       15質量部
 上記防眩層組成物5の活性線硬化型樹脂だけをディスパーにて撹拌混合して、25℃の条件にてB型粘度計を用いて測定したところ、樹脂粘度は、6000mPa・sであった。なお、表1でメタアクリレート共重合ポリマーをMACPと示した。
[Anti-Glare Layer Composition 5]
The following antiglare layer composition 5 was stirred and mixed with a disper to obtain an antiglare layer composition 5.
(Actinic radiation curable resin)
・ Dipentaerythritol hexaacrylate (DPHA, Daicel)
Cytec Co., Ltd.) 92 parts by mass (incompatible resin)
-Methacrylate copolymer (Saftmer ST3600, Mitsubishi Chemical Corporation 15 parts by mass (photopolymerization initiator)
・ Irgacure 184 (manufactured by BASF Japan) 4 parts by mass (solvent)
-Ethanol 45 parts by mass-Toluene 15 parts by mass Only the actinic radiation curable resin of the antiglare layer composition 5 was stirred and mixed with a disper and measured using a B-type viscometer at 25 ° C. The resin viscosity was 6000 mPa · s. In Table 1, the methacrylate copolymer was indicated as MACP.
 <防眩性フィルム19の作製>
 特開2006-53371号公報の実施例1を参考にして凹凸付きロールを作製した。次に、特開2006-53371号公報の実施例1を参考にして、基材フィルム1上に防眩層組成物1を塗布後、60℃で乾燥し、更に防眩層表面にロールの凹凸を押し当て、防眩層とロールを密着させた。この密着した状態で、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.25J/cmとして塗布層を硬化させ、ドライ膜厚6μmの防眩層を形成した。防眩層を形成後、巻き取り、防眩性フィルム19を作製した。
<Preparation of antiglare film 19>
An uneven roll was produced with reference to Example 1 of JP-A-2006-53371. Next, referring to Example 1 of Japanese Patent Application Laid-Open No. 2006-53371, the antiglare layer composition 1 is applied on the base film 1 and then dried at 60 ° C. Further, the surface of the antiglare layer is uneven. Was pressed to bring the antiglare layer and the roll into close contact. In this close contact state, while purging with nitrogen so that the oxygen concentration is 1.0 volume% or less, the illuminance of the irradiated part is 100 mW / cm 2 and the irradiation amount is 0.25 J / cm 2 using an ultraviolet lamp. The coating layer was cured to form an antiglare layer having a dry film thickness of 6 μm. After forming the antiglare layer, it was wound up to produce an antiglare film 19.
 <防眩性フィルム20の作製>
 防眩性フィルム1の作製において、防眩層組成物1を下記防眩層層組成物6に変更し、減率乾燥区間温度を110℃に変更した以外は同様にして、防眩性フィルム20を作製した。
<Preparation of antiglare film 20>
In the production of the anti-glare film 1, the anti-glare film 20 was changed in the same manner except that the anti-glare layer composition 1 was changed to the following anti-glare layer composition 6 and the temperature at which the drying rate was decreased to 110 ° C. Was made.
 [防眩層組成物6]
 下記防眩層組成物6をディスパーにて撹拌混合し、防眩層組成物6を得た。
(活性線硬化型樹脂)
・ペンタエリスリトールトリ/テトラアクリレート     80質量部
 (NKエステルA-TMM-3L、新中村化学工業(株)製)
・イソシアヌル酸EO変性ジアクリレート         20質量部
 (アロニックスM-215、東亞合成(株)製)
(光重合開始剤)
・イルガキュア184(BASFジャパン(株)製)     5質量部
(レベリング剤)
・フッ素-シロキサングラフト化合物(35質量%)     2質量部
(溶剤)
・プロピレングリコールモノメチルエーテル        10質量部
・酢酸メチル                      55質量部
・メチルエチルケトン                  55質量部
 <防眩性フィルム21の作製>
 防眩性フィルム1の作製において、防眩層組成物1を下記防眩層層組成物7に変更し、減率乾燥区間温度を110℃に変更した以外は同様にして、防眩性フィルム21を作製した。
[Anti-Glare Layer Composition 6]
The following antiglare layer composition 6 was stirred and mixed with a disper to obtain an antiglare layer composition 6.
(Actinic radiation curable resin)
・ 80 parts by mass of pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.)
-Isocyanuric acid EO-modified diacrylate 20 parts by mass (Aronix M-215, manufactured by Toagosei Co., Ltd.)
(Photopolymerization initiator)
・ Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
・ Fluoro-siloxane graft compound (35% by mass) 2 parts by mass (solvent)
-Propylene glycol monomethyl ether 10 parts by mass-Methyl acetate 55 parts by mass-Methyl ethyl ketone 55 parts by mass <Preparation of antiglare film 21>
In the production of the antiglare film 1, the antiglare film 21 was changed in the same manner except that the antiglare layer composition 1 was changed to the following antiglare layer layer composition 7 and the temperature at which the rate of decrease drying zone was changed to 110 ° C. Was made.
 [防眩層層組成物7]
 下記防眩層組成物7をディスパーにて撹拌混合し、防眩層組成物7を得た。
(活性線硬化型樹脂)
・トリメチロールプロパントリアクリレート        80質量部
 (ライトアクリレートTMP-A、共栄社化学(株)製)
・4-ヒドロキシブチルアクリレート           20質量部
 (4-HBA、大阪有機化学工業(株)製)
(光重合開始剤)
・イルガキュア184(BASFジャパン(株)製)     5質量部
(レベリング剤)
・フッ素-シロキサングラフト化合物(35質量%)     2質量部
(溶剤)
・プロピレングリコールモノメチルエーテル        10質量部
・酢酸メチル                      55質量部
・メチルエチルケトン                  55質量部
 (防眩性フィルムの評価)
 得られた防眩性フィルム1~21について、以下の項目を評価した。結果を表1に示す。
a.内部ヘイズ測定
 以下の測定により、上記作製した防眩性フィルム1~21の内部ヘイズ(Hi)を測定した。得られた結果を表1に示した。
(内部ヘイズ測定方法)
 防眩性フィルムの表裏面にシリコーンオイルを数滴滴下した。次にシリコーンオイルを滴下した防眩性フィルムを厚さ1mmのガラス板(ミクロスライドガラス品番S 9111、MATSUNAMI製)2枚で裏表より挟み、完全に2枚のガラス板と得られた防眩性フィルムを光学的に密着させた。この光学的に密着させ、表面ヘイズを除去したサンプルのヘイズ(Ha)を測定した。次いで、ガラス板2枚の間にシリコーンオイルのみを挟みこんでガラスヘイズ(Hb)測定した。Haから、Hbを引き、防眩性フィルムの内部ヘイズ(Hi)を算出した。
b.算術平均粗さRa測定
 上記作製した防眩性フィルム1~21の防眩層の算術平均粗さRaを光学干渉式表面粗さ計(RST/PLUS、WYKO社製)を用いて10回測定し、その測定結果の平均から各防眩性フィルムの算術平均粗さRaを求めた。
[Anti-Glare Layer Composition 7]
The following antiglare layer composition 7 was stirred and mixed with a disper to obtain an antiglare layer composition 7.
(Actinic radiation curable resin)
・ 80 parts by mass of trimethylolpropane triacrylate (Light acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd.)
・ 20 parts by mass of 4-hydroxybutyl acrylate (4-HBA, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
(Photopolymerization initiator)
・ Irgacure 184 (manufactured by BASF Japan) 5 parts by mass (leveling agent)
・ Fluoro-siloxane graft compound (35% by mass) 2 parts by mass (solvent)
・ Propylene glycol monomethyl ether 10 mass parts ・ Methyl acetate 55 mass parts ・ Methyl ethyl ketone 55 mass parts (Evaluation of antiglare film)
For the obtained antiglare films 1 to 21, the following items were evaluated. The results are shown in Table 1.
a. Internal haze measurement The internal haze (Hi) of the antiglare films 1 to 21 produced above was measured by the following measurement. The obtained results are shown in Table 1.
(Internal haze measurement method)
A few drops of silicone oil were dropped on the front and back surfaces of the antiglare film. Next, the antiglare film to which silicone oil was dropped was sandwiched between two glass plates (micro slide glass product number S 9111, manufactured by MATSUNAMI) having a thickness of 1 mm from the front and back, and the resulting antiglare property was obtained with two glass plates. The film was optically adhered. The haze (Ha) of this optically adhered sample from which surface haze was removed was measured. Next, glass haze (Hb) was measured by sandwiching only silicone oil between two glass plates. Hb was subtracted from Ha, and the internal haze (Hi) of the antiglare film was calculated.
b. Arithmetic Average Roughness Ra Measurement The arithmetic average roughness Ra of the antiglare layers of the antiglare films 1 to 21 produced above was measured 10 times using an optical interference surface roughness meter (RST / PLUS, manufactured by WYKO). The arithmetic average roughness Ra of each antiglare film was determined from the average of the measurement results.
 <耐候性試験>
 上記作製した防眩性フィルム1~21を、各10cm×10cmサイズで切り出し、屋外での使用を想定してオゾン10ppm、30℃、60%RHの環境下に100時間保管後、サイクルサーモ(-40℃・45分放置、次いで110℃・45分放置を交互)で500サイクル投入し、更に耐光試験機(アイスーパーUVテスター、岩崎電気株式会社製)にて、165時間光照射した。耐候性試験後の防眩性フィルムについて、耐擦傷性、耐薬品性、防眩性及びコントラストについて評価した。得られた結果を表1に示した。
<Weather resistance test>
The antiglare films 1 to 21 produced above were cut out in a size of 10 cm × 10 cm, stored for 100 hours in an environment of ozone 10 ppm, 30 ° C., 60% RH, assuming outdoor use, and cycle thermo (− 500 cycles were carried out at 40 ° C. for 45 minutes and then 110 ° C. for 45 minutes alternately, and further irradiated with light for 165 hours with a light resistance tester (I Super UV Tester, manufactured by Iwasaki Electric Co., Ltd.). The antiglare film after the weather resistance test was evaluated for scratch resistance, chemical resistance, antiglare property and contrast. The obtained results are shown in Table 1.
 b.耐擦傷性
 日本スチールウール株式会社製の品番#0000のスチールウール(SW)の上に、1000g/cmの荷重をかけて、耐久性試験後の防眩性フィルムの防眩層表面を10往復した。10往復後の1cm幅当たりに生じた傷の本数を測定し、以下の基準で耐擦傷性を評価した。傷の本数が、10本/cm幅以下が、実用上から好ましく、特に好ましくは5本/cm幅以下である。得られた結果を、下記の表1に示した。なお、スチールウールを往復させた装置は、新東科学株式会社摩擦摩耗試験機(トライボステーションTYPE:32、移動速度1000mm/min.)を使用した。
b. Scratch resistance The steel anti-glare layer surface of the anti-glare film after the durability test was applied 10 times on a steel wool (SW) of No. 0000 manufactured by Nippon Steel Wool Co., Ltd. under a load of 1000 g / cm 2. did. The number of scratches generated per 1 cm width after 10 reciprocations was measured, and the scratch resistance was evaluated according to the following criteria. The number of scratches is preferably 10 / cm width or less from the practical viewpoint, and particularly preferably 5 / cm width or less. The obtained results are shown in Table 1 below. In addition, the apparatus which reciprocated steel wool used the Shinto Kagaku Co., Ltd. friction abrasion tester (Tribo station TYPE: 32, moving speed 1000mm / min.).
 傷の本数
 ◎:5本/cm幅以下
 ○:6~10本/cm幅
 △:10~20本/cm幅
 ×:21本/cm幅以上
 c.耐薬品性
 耐久性試験後の防眩性フィルムの防眩層表面を、0.1N水酸化カリウム水溶液を染み込ませたベンコット(旭化成株式会社製、製品名M-3)を用いて、荷重1000g/cmをかけて、同一箇所を20往復擦った。更に10質量%硫酸水溶液を染み込ませたベンコットで、荷重1000g/cmをかけて、同一箇所を20往復擦った。これらアルカリと酸で擦った後の状態を観察し、以下の基準で評価した。なお、表面擦りは以下の装置を用いた。
表面擦り装置;新東科学株式会社摩擦摩耗試験機(トライボステーションTYPE:32、移動速度4000mm/min.)
 (評価基準)
 ◎:剥離無し
 ○:僅かな剥離が見られるレベル(実用上問題なし)
 △:剥離が見られる
 ×:擦った箇所が全て剥離している。
Number of scratches ◎: 5 / cm width or less ○: 6-10 / cm width △: 10-20 / cm width ×: 21 / cm width or more c. Chemical resistance The surface of the antiglare layer of the antiglare film after the durability test was subjected to a load of 1000 g / kg using Bencot (product name M-3, manufactured by Asahi Kasei Co., Ltd.) impregnated with 0.1N potassium hydroxide aqueous solution. over cm 2, it was rubbed back and forth 20 times the same place. Further, with a Bencot soaked with a 10% by mass sulfuric acid aqueous solution, a load of 1000 g / cm 2 was applied and the same portion was rubbed 20 times. The state after rubbing with these alkalis and acids was observed and evaluated according to the following criteria. The following apparatus was used for surface rubbing.
Surface rubbing apparatus; Shinto Kagaku Co., Ltd. friction and wear tester (Tribo Station TYPE: 32, moving speed 4000 mm / min.)
(Evaluation criteria)
◎: No peeling ○: Level where slight peeling is seen (no problem in practical use)
Δ: Peeling is observed ×: All rubbed parts are peeled off.
 d.防眩性
 耐久性試験後の防眩性フィルムについて目視による官能評価で防眩性を評価した。判定基準は以下の通り。
d. Antiglare property The antiglare property of the antiglare film after the durability test was evaluated by visual sensory evaluation. Judgment criteria are as follows.
 ◎:蛍光灯の輪郭が僅かに認められるがあまり気にならない
 ○:蛍光灯の輪郭が認められるが許容できる
 △:蛍光灯の輪郭が分かり、写り込みが認められる
 ×:蛍光灯の輪郭がはっきり分かり、写り込みが気になる
 e.コントラスト(高精細性)
 カラーフィルター上に試料を乗せ、裏面(カラーフィルター側)からの透過光により光学顕微鏡で観察し、画像の輪郭のクリア度を目視評価した。図4に装置の概略、図5に実際の観察例を示す。判定基準は以下の通り。
◎: The outline of the fluorescent lamp is slightly recognized but is not bothering ○: The outline of the fluorescent lamp is recognized but acceptable △: The outline of the fluorescent lamp is known and the reflection is recognized ×: The outline of the fluorescent lamp is clear I understand and am concerned about the reflection e. Contrast (high definition)
A sample was placed on the color filter, and observed with an optical microscope by transmitted light from the back surface (color filter side), and the clearness of the contour of the image was visually evaluated. FIG. 4 shows an outline of the apparatus, and FIG. 5 shows an actual observation example. Judgment criteria are as follows.
 ○:カラーフィルターの輪郭が鮮明に見える
 △:カラーフィルターの輪郭がボケる
 ×:カラーフィルターの輪郭がはっきりとボケる。高精細の実画像では鮮明度が劣化するレベル
○: The outline of the color filter looks clear Δ: The outline of the color filter is blurred ×: The outline of the color filter is clearly blurred Level that sharpness deteriorates in high-definition real images
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1の結果から判るように防眩層の算術平均粗さRaが25~300nmで、かつ防眩層の内部ヘイズが0~1.0%である本発明の防眩性フィルムは、耐候性試験後も優れた耐傷性や耐薬品性といった膜強度と、防眩性やコントラストといった光学特性に優れている。中でも算術平均粗さRaが、25~130nmである本発明の防眩性フィルムは、膜強度が良好であり、更に算術平均粗さRaが65~130nmである本発明の防眩性フィルムは、特に優れた膜強度を有する事がわかる。また、25℃における粘度が30~2500mPa・sの範囲内にある活性線硬化型樹脂を含有する防眩層を、少なくとも塗布工程、乾燥工程及び硬化工程を経由して形成し、かつ前記乾燥工程における減率乾燥区間の温度を90~140℃の範囲内に維持した条件下で処理することで、防眩層の算術平均粗さRaと内部ヘイズを本発明の範囲内に容易に制御でき、かつ本発明の目的効果が良好に得られるため、好ましい事がわかる。また、本発明の防眩性フィルムの防眩層は、微粒子や活性線硬化型樹脂に対して非相溶性樹脂を実質的に含有しないで、上記特性が得られているため、本発明の防眩性フィルムの防眩層は、微粒子や活性線硬化型樹脂に対して非相溶性樹脂を実質的に含有しない事が好ましい。 As can be seen from the results in Table 1, the antiglare film of the present invention in which the arithmetic average roughness Ra of the antiglare layer is 25 to 300 nm and the internal haze of the antiglare layer is 0 to 1.0% is weather resistant. Even after testing, the film has excellent film strength such as scratch resistance and chemical resistance, and excellent optical properties such as antiglare and contrast. Among them, the antiglare film of the present invention having an arithmetic average roughness Ra of 25 to 130 nm has good film strength, and the antiglare film of the present invention having an arithmetic average roughness Ra of 65 to 130 nm is It can be seen that the film has particularly excellent film strength. Further, an antiglare layer containing an actinic radiation curable resin having a viscosity at 25 ° C. in the range of 30 to 2500 mPa · s is formed through at least a coating step, a drying step and a curing step, and the drying step By processing under the condition of maintaining the temperature of the decreasing rate drying section in the range of 90 to 140 ° C., the arithmetic average roughness Ra and the internal haze of the antiglare layer can be easily controlled within the range of the present invention, And since the objective effect of this invention is acquired favorably, it turns out that it is preferable. In addition, the antiglare layer of the antiglare film of the present invention does not substantially contain an incompatible resin with respect to fine particles or actinic radiation curable resin, and the above characteristics are obtained. It is preferable that the anti-glare layer of the dazzling film does not substantially contain an incompatible resin with respect to the fine particles and the actinic radiation curable resin.
 実施例2
 防眩性フィルム1の作製において、基材フィルム1のセルローストリアセテートA1、及びエステル化合物1を表2に記載したように変更し、基材フィルム2及び3を作製した。次に、それら基材に防眩層を設けた以外は、同様にして防眩性フィルム22及び23を作製した。なお、表2に示したセルローストリアセテートB1は、アセチル置換度が2.85であり、数平均分子量が120000。エステル化合物Bは以下の方法で合成した化合物である。また、下記方法で基材フィルム1~3のフィルム幅手方向のtanδを測定した。
Example 2
In preparation of the anti-glare film 1, the cellulose triacetate A1 and the ester compound 1 of the base film 1 were changed as described in Table 2 to prepare base films 2 and 3. Next, anti-glare films 22 and 23 were produced in the same manner except that an anti-glare layer was provided on these substrates. The cellulose triacetate B1 shown in Table 2 has an acetyl substitution degree of 2.85 and a number average molecular weight of 120,000. The ester compound B is a compound synthesized by the following method. Further, tan δ in the width direction of the base films 1 to 3 was measured by the following method.
 〈エステル化合物Bの合成〉
 1,2-プロピレングリコール251g、アジピン酸370g、安息香酸122g、エステル化触媒としてテトライソプロピルチタネート0.09gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物Bを得た。酸価0.55、数平均分子量500であった。
<Synthesis of ester compound B>
251 g of 1,2-propylene glycol, 370 g of adipic acid, 122 g of benzoic acid, and 0.09 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a quick cooling tube. The temperature is gradually raised with stirring until it reaches 230 ° C. in an air stream. Ester compound B was obtained by carrying out dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The acid value was 0.55 and the number average molecular weight was 500.
 (tanδ測定)
 基材フィルムを23℃55%RHの雰囲気下で24時間調湿後、湿度55%RHの条件で、下記条件のように昇温させながら、または温度設定して、基材フィルムの動的粘弾性を測定し、tanδ-40/tanδpeakを求めた。
(Tan δ measurement)
After adjusting the humidity of the base film in an atmosphere of 23 ° C. and 55% RH for 24 hours, under the condition of humidity 55% RH, while raising the temperature as described below or setting the temperature, the dynamic viscosity of the base film is increased. Elasticity was measured and tan δ −40 / tan δ peak was determined.
 測定装置:ティーエイインスツルメント社製 RSAIII
 試料:幅5mm、長さ50mm(ギャップ20mmに設定)
 測定条件:引張モード
 測定温度:25~210℃
 昇温条件:5℃/min
 周波数:1Hz
 (防眩性フィルムの評価)
 上記作製した防眩性フィルム22及び23の内部ヘイズを実施例1と同様にして、測定した。得られた結果を表2に示した。
<耐候性試験・評価>
 上記作製した防眩性フィルム22及び23、実施例1で作製した防眩性フィルム1を、各10cm×10cmサイズで切り出し、オゾン10ppm、30℃、60%RHの環境下に200時間保管後、サイクルサーモ(-40℃・45分放置、次いで110℃・45分放置を交互)で750サイクル投入し、更に耐光試験機(アイスーパーUVテスター、岩崎電気株式会社製)にて、200時間光照射した。耐候性試験後の防眩性フィルムについて、実施例1と同様にして評価した。得られた結果を表2に示した。
Measuring device: RSA III manufactured by TI Instruments
Sample: width 5 mm, length 50 mm (gap set to 20 mm)
Measurement conditions: Tensile mode Measurement temperature: 25-210 ° C
Temperature rising condition: 5 ° C / min
Frequency: 1Hz
(Evaluation of anti-glare film)
The internal haze of the produced antiglare films 22 and 23 was measured in the same manner as in Example 1. The obtained results are shown in Table 2.
<Weather resistance test and evaluation>
The antiglare films 22 and 23 produced above and the antiglare film 1 produced in Example 1 were cut out in a size of 10 cm × 10 cm, and stored for 200 hours in an environment of ozone 10 ppm, 30 ° C., 60% RH, 750 cycles of cycle thermostat (-40 ° C for 45 minutes, then 110 ° C for 45 minutes alternately), and light irradiation for 200 hours with a light resistance tester (I Super UV Tester, Iwasaki Electric Co., Ltd.) did. The antiglare film after the weather resistance test was evaluated in the same manner as in Example 1. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2の結果から判るように、過酷な耐候性試験では、幅手方向のtanδが0.5≧tanδ-40/tanδpeak≧0.24である基材フィルムを本発明に係る防眩性フィルムに用いることで、特に優れた耐傷性や耐薬品性といった膜強度を有する事がわかる。 As can be seen from the results in Table 2, in a severe weather resistance test, the base film in which the tan δ in the width direction is 0.5 ≧ tan δ −40 / tan δ peak ≧ 0.24 is used as the antiglare film according to the present invention. It can be seen that the film has particularly excellent film strength such as scratch resistance and chemical resistance.
 実施例3
 <偏光板101の作製>
 (アルカリ鹸化処理)
 防眩性フィルム1を偏光膜3の一方の面に貼り付け、コニカミノルタタックKC4FR-2(コニカミノルタオプト(株)製)からなる保護フィルム4を偏光膜3の他方の面に貼り付けて、偏光板101を作製した(構成は図6参照)。
Example 3
<Preparation of Polarizing Plate 101>
(Alkaline saponification treatment)
Anti-glare film 1 is attached to one surface of polarizing film 3, and protective film 4 made of Konica Minolta Tack KC4FR-2 (manufactured by Konica Minolta Opto Co., Ltd.) is attached to the other surface of polarizing film 3, A polarizing plate 101 was produced (see FIG. 6 for the configuration).
 (a)偏光膜の作製
 けん化度99.95モル%、重合度2400のポリビニルアルコール(以下、PVAと略記する)100質量部に、グリセリン10質量部、及び水170質量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理してPVAフィルムを得た。得られたPVAフィルムは、平均厚みが25μm、水分率が4.4%、フィルム幅が3mであった。
(A) Production of Polarizing Film What was impregnated with 10 parts by mass of glycerin and 170 parts by mass of water in 100 parts by mass of polyvinyl alcohol (hereinafter abbreviated as PVA) having a saponification degree of 99.95 mol% and a polymerization degree of 2400. After melt-kneading and defoaming, it was melt-extruded from a T-die onto a metal roll to form a film. Then, it dried and heat-processed and obtained the PVA film. The obtained PVA film had an average thickness of 25 μm, a moisture content of 4.4%, and a film width of 3 m.
 次に、得られたPVAフィルムを、予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で、連続的に処理して、偏光膜を作製した。すなわち、PVAフィルムを温度30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの温度35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で、6倍に一軸延伸を行い、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの温度30℃の水溶液中に5分間浸漬して固定処理を行った。その後、PVAフィルムを取り出し、温度40℃で熱風乾燥し、更に温度100℃で5分間熱処理を行った。得られた偏光膜は、平均厚みが13μm、偏光性能については透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。 Next, the obtained PVA film was continuously processed in the order of pre-swelling, dyeing, uniaxial stretching by a wet method, fixing treatment, drying, and heat treatment to produce a polarizing film. That is, the PVA film was preliminarily swollen in water at a temperature of 30 ° C. for 30 seconds, and immersed in an aqueous solution having an iodine concentration of 0.4 g / liter and a potassium iodide concentration of 40 g / liter at a temperature of 35 ° C. for 3 minutes. Subsequently, the film was uniaxially stretched 6 times in a 50% aqueous solution with a boric acid concentration of 4% under the condition that the tension applied to the film was 700 N / m, and the potassium iodide concentration was 40 g / liter and the boric acid concentration was 40 g / liter. Then, it was immersed in an aqueous solution having a zinc chloride concentration of 10 g / liter and a temperature of 30 ° C. for 5 minutes for fixing. Thereafter, the PVA film was taken out, dried with hot air at a temperature of 40 ° C., and further heat-treated at a temperature of 100 ° C. for 5 minutes. The obtained polarizing film had an average thickness of 13 μm, a polarizing performance of a transmittance of 43.0%, a polarization degree of 99.5%, and a dichroic ratio of 40.1.
 (b)偏光板の作製
 下記工程1~4に従って、偏光膜13と、保護フィルム14と防眩性フィルム10を貼り合わせて偏光板101を作製した。
(B) Production of Polarizing Plate A polarizing plate 101 was produced by bonding the polarizing film 13, the protective film 14, and the antiglare film 10 according to the following steps 1 to 4.
 工程1:前述の偏光膜3を、固形分2質量%のポリビニルアルコール接着剤溶液の貯留槽中に1~2秒間浸漬した。 Step 1: The polarizing film 3 described above was immersed in a storage tank of a polyvinyl alcohol adhesive solution having a solid content of 2% by mass for 1 to 2 seconds.
 工程2:防眩層に剥離性の保護フィルム(PET製)を張り付けた防眩性フィルム10と保護フィルム14とを下記条件でアルカリ鹸化処理を実施した。次いで、工程1でポリビニルアルコール接着剤溶液に浸漬した偏光膜13に付着した過剰の接着剤を軽く取り除き、この偏光膜13を防眩性フィルム10と保護フィルム4とで図6のように挟み込んで、積層配置した。 Process 2: The alkali saponification process was implemented on the anti-glare film 10 and the protective film 14 which stuck the peelable protective film (product made from PET) on the anti-glare layer on the following conditions. Next, excess adhesive adhered to the polarizing film 13 immersed in the polyvinyl alcohol adhesive solution in Step 1 is gently removed, and the polarizing film 13 is sandwiched between the antiglare film 10 and the protective film 4 as shown in FIG. And laminated.
 (アルカリ鹸化処理)
  ケン化工程  2.5M-KOH  50℃  120秒
  水洗工程   水         30℃   60秒
  中和工程   10質量部HCl  30℃   45秒
  水洗工程   水         30℃   60秒
  ケン化処理後、水洗、中和、水洗の順に行い、次いで100℃で乾燥。
(Alkaline saponification treatment)
Saponification step 2.5M-KOH 50 ° C 120 seconds Water washing step Water 30 ° C 60 seconds Neutralization step 10 parts HCl 30 ° C 45 seconds Water washing step Water 30 ° C 60 seconds After saponification treatment, water washing, neutralization, water washing in this order And then dried at 100 ° C.
 工程3:積層物を2つの回転するローラにて20~30N/cmの圧力で約2m/minの速度で貼り合わせた。このとき、気泡が入らないように注意して実施した。 Step 3: The laminate was bonded at a speed of about 2 m / min at a pressure of 20 to 30 N / cm 2 with two rotating rollers. At this time, it was carried out with care to prevent bubbles from entering.
 工程4:工程3で作製した試料を、温度100℃の乾燥機中にて5分間乾燥処理し、偏光板を作製した。偏光板を作製後、防眩層の保護フィルムを■した。 Step 4: The sample prepared in Step 3 was dried in a dryer at a temperature of 100 ° C. for 5 minutes to prepare a polarizing plate. After producing the polarizing plate, a protective film for the antiglare layer was applied.
 工程5:工程4で作製した偏光板の保護フィルム14に市販のアクリル系粘着剤を乾燥後の厚みが25μmとなるように塗布し、110℃のオーブンで5分間乾燥して粘着層5を形成し、粘着層15に剥離性の保護フィルムを張り付けた。この偏光を裁断(打ち抜き)し、偏光板101を作製した。 Step 5: A commercially available acrylic pressure-sensitive adhesive is applied to the protective film 14 of the polarizing plate prepared in Step 4 so that the thickness after drying is 25 μm, and dried in an oven at 110 ° C. for 5 minutes to form the pressure-sensitive adhesive layer 5. Then, a peelable protective film was attached to the adhesive layer 15. This polarized light was cut (punched) to produce a polarizing plate 101.
 <偏光板102~119の作製>
 偏光板101の作製において、防眩性フィルム1を防眩性フィルム2~19に、それぞれ変更した以外は同様にして偏光板102~119を作製した。
<Preparation of polarizing plates 102 to 119>
Polarizers 102 to 119 were produced in the same manner except that the antiglare film 1 was changed to the antiglare films 2 to 19 in the production of the polarizer 101.
 <液晶表示装置401の作製>
 市販の液晶表示パネル(ソニー製:型名BRAVIA KDL-26J5)の偏光板を剥がし、視認側の偏光板に上記作製した偏光板101を防眩層が表となるようにして、粘着剤層5の剥離性保護フィルムを剥し、液晶セルガラスと偏光板101を貼合して、液晶パネル301を作製した。次に液晶パネル301を液晶テレビにセットし、液晶表示装置401を作製した。
<Production of Liquid Crystal Display Device 401>
Remove the polarizing plate of a commercially available liquid crystal display panel (manufactured by Sony: model name BRAVIA KDL-26J5), and apply the above-prepared polarizing plate 101 to the polarizing plate on the viewing side so that the antiglare layer is the front, and the adhesive layer 5 The peelable protective film was peeled off, and the liquid crystal cell glass and the polarizing plate 101 were bonded together to produce a liquid crystal panel 301. Next, the liquid crystal panel 301 was set on a liquid crystal television, and a liquid crystal display device 401 was manufactured.
 <液晶表示装置402~419の作製>
 液晶表示装置401の作製において、偏光板101を偏光板102~119に、それぞれ変更した以外は同様にして液晶表示装置402~419を作製した。
<Production of liquid crystal display devices 402 to 419>
Liquid crystal display devices 402 to 419 were similarly manufactured except that the polarizing plate 101 was changed to the polarizing plates 102 to 119 in manufacturing the liquid crystal display device 401, respectively.
 《評価》
(視認性評価)
 上記作製した液晶表示装置401~419について、床から80cmの高さの机上に配置した。次に、床から3mの高さの天井部に、昼色光直管蛍光灯(FLR40S・D/M-X パナソニック(株)製)40W×2本を1セットとして、1.5m間隔で10セット配置した。この場合、評価者が液晶表示パネルの表示面の正面にいるときに、評価者の頭上より後方に向けて天井部に蛍光灯がくるように配置した。次に、液晶表示装置401~416の視認性を以下の基準で評価した。
<Evaluation>
(Visibility evaluation)
The produced liquid crystal display devices 401 to 419 were placed on a desk 80 cm high from the floor. Next, on the ceiling 3m high from the floor, there are 10 sets of 40W x 2 daylight straight tube fluorescent lamps (FLR40S · D / MX Panasonic Corporation) at 1.5m intervals. Arranged. In this case, when the evaluator is in front of the display surface of the liquid crystal display panel, the fluorescent lamp is arranged so that the fluorescent lamp comes to the ceiling portion from the evaluator's overhead to the rear. Next, the visibility of the liquid crystal display devices 401 to 416 was evaluated according to the following criteria.
 A:最も近い蛍光灯の写り込みが気にならず、フォントの大きさ8以下の文字もはっきりと読める
 B:近くの蛍光灯の写り込みはやや気になるが、遠くは気にならず、フォントの大きさ8以下の文字もなんとかと読める
 C:遠くの蛍光灯の写り込みも気になり、フォントの大きさ8以下の文字を読むのは困難である
(ムラ評価)
 上記作製した各液晶表示装置について、60℃、90%RHの条件で100時間放置した後、23℃、55%RHに戻した。次に以下の基準でムラを評価した。
A: I don't care about the reflection of the nearest fluorescent lamp, and I can clearly read characters with a font size of 8 or less. B: The reflection of a nearby fluorescent lamp is a little anxious, but I don't care about the distance. Can manage to read characters with a font size of 8 or less. C: It is difficult to read characters with a font size of 8 or less due to the distraction of distant fluorescent lights.
About each produced said liquid crystal display device, after leaving for 100 hours on 60 degreeC and 90% RH conditions, it returned to 23 degreeC and 55% RH. Next, unevenness was evaluated according to the following criteria.
 ◎:ムラが全く認められない
 ○:わずかにムラが認められる
 △:細かなムラが認められる(実害性有り)
 ×:ムラが認められる
 以上の評価結果を表3に示す。
◎: Unevenness is not recognized at all ○: Slightly unevenness is recognized △: Fine unevenness is recognized (there is actual harm)
X: Unevenness is observed Table 3 shows the above evaluation results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表3の結果から判るように、本発明の防眩性フィルムを用いた偏光板及び液晶表示装置は、視認性及びムラに優れ、長時間見ていても目の疲れなどがなく、非常に優れたものであった。 As can be seen from the results in Table 3, the polarizing plate and the liquid crystal display device using the antiglare film of the present invention are excellent in visibility and unevenness, and are very excellent without any fatigue of eyes even when viewed for a long time. It was.
 実施例4
 <液晶表示装置420の作製>
 実施例3で作製した偏光板101を図7に示したように、粘着剤層15の剥離性保護フィルムを剥がし、液晶セルのガラスを介在して視認側とリヤ側の両方に貼合して、液晶パネル320を作製した。次に液晶パネル320を液晶テレビにセットし、液晶表示装置420を作製した。
Example 4
<Production of Liquid Crystal Display Device 420>
As shown in FIG. 7, the polarizing plate 101 produced in Example 3 was peeled off from the peelable protective film of the pressure-sensitive adhesive layer 15 and bonded to both the viewing side and the rear side through the glass of the liquid crystal cell. A liquid crystal panel 320 was produced. Next, the liquid crystal panel 320 was set on a liquid crystal television, and a liquid crystal display device 420 was manufactured.
 <液晶表示装置421~438の作製>
 液晶表示装置420の作製において、偏光板101を偏光板102~119に、それぞれ変更した以外は同様にして液晶表示装置421~438を作製した。
<Production of liquid crystal display devices 421 to 438>
Liquid crystal display devices 421 to 438 were produced in the same manner except that the polarizing plate 101 was changed to the polarizing plates 102 to 119 in the production of the liquid crystal display device 420.
 上記作製した液晶表示装置420~438について、モアレ縞の観察を目視にて行ったところ、本発明の偏光板を用いた液晶表示装置ではモアレ縞が観察されず、本発明の偏光板を用いていない液晶表示装置よりもモアレ縞の発生防止に優れていた。 When the liquid crystal display devices 420 to 438 produced above were visually observed for moire fringes, no moire fringes were observed in the liquid crystal display device using the polarizing plate of the present invention, and the polarizing plate of the present invention was used. The liquid crystal display device was superior in preventing the occurrence of moire fringes.
 a 中心線a
 b、c 山の麓を形成する線
 h 突起サイズの高さh(山頂と中心線aまでの距離)
 t 突起サイズの幅t(山の麓を形成する線b、cと中心線aとの2つの交点の距離)
 1 ハードコート層
 2 突起
 3 透過型光学顕微鏡
 4 試料
 5 カラーフィルター
 6 光源
 10 防眩性フィルム
 11 防眩層
 12 基材フィルム
 13 偏光膜
 14 保護フィルム
 15 粘着層
 16 液晶セル
 17 液晶
 18 配向膜
 19 カラーフィルター
 20 スペーサー
 101 偏光板
 320 液晶パネル
a Center line a
b, c Lines forming the foot of the mountain h Projection size height h (distance between the summit and the center line a)
t Protrusion size width t (distance between two intersections of lines b and c forming a mountain ridge and center line a)
DESCRIPTION OF SYMBOLS 1 Hard coat layer 2 Protrusion 3 Transmission optical microscope 4 Sample 5 Color filter 6 Light source 10 Anti-glare film 11 Anti-glare layer 12 Base film 13 Polarizing film 14 Protective film 15 Adhesive layer 16 Liquid crystal cell 17 Liquid crystal 18 Alignment film 19 Color Filter 20 Spacer 101 Polarizing plate 320 LCD panel

Claims (11)

  1. 基材フィルム上に防眩層を有する防眩性フィルムであって、該防眩層が突起形状を有し、該突起形状が長手方向に周期を持たず不規則な形状で基材フィルム上に不規則に配置されており、かつ防眩層の算術平均粗さRaが25~300nmであること、および防眩層の内部散乱に起因するヘイズが0~1.0%であることを特徴とする、防眩性フィルム。 An antiglare film having an antiglare layer on a base film, wherein the antiglare layer has a protrusion shape, and the protrusion shape has an irregular shape without a period in the longitudinal direction. It is irregularly arranged, and the arithmetic average roughness Ra of the antiglare layer is 25 to 300 nm, and the haze caused by internal scattering of the antiglare layer is 0 to 1.0%. Anti-glare film.
  2. 前記防眩層の算術平均粗さRaが25~130nmであることを特徴とする、請求項1に記載の防眩性フィルム。 The antiglare film according to claim 1, wherein the antiglare layer has an arithmetic average roughness Ra of 25 to 130 nm.
  3. 前記防眩層の算術平均粗さRaが65~130nmであることを特徴とする、請求項1または2項に記載の防眩性フィルム。 The antiglare film according to claim 1 or 2, wherein the arithmetic average roughness Ra of the antiglare layer is 65 to 130 nm.
  4. 前記防眩層が実質的に無機微粒子又は有機微粒子を含有しないことを特徴とする、請求項1~3のいずれか1項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 3, wherein the antiglare layer contains substantially no inorganic fine particles or organic fine particles.
  5. 前記防眩層が、活性線硬化型樹脂を含有し、該活性線硬化型樹脂に対し非相溶性である樹脂を実質的に含有しないことを特徴とする、請求項1~4のいずれか1項に記載の防眩性フィルム。 The antiglare layer contains an actinic radiation curable resin and does not substantially contain a resin that is incompatible with the actinic radiation curable resin. The antiglare film according to item.
  6. 前記防眩層の内部散乱に起因するヘイズが0.60~1.0%であることを特徴とする、請求項1~5のいずれか1項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 5, wherein the haze resulting from internal scattering of the antiglare layer is 0.60 to 1.0%.
  7. 前記基材フィルムのフィルム幅手方向のtanδが、下記の関係を有することを特徴とする、請求項1~6のいずれか1項に記載の防眩性フィルム。
     0.5≧tanδ-40/tanδpeak≧0.24
    (式中、tanδpeakは、25℃~210℃のtanδ値を測定した最大値を示し、tanδ-40は、tanδpeakを示した時の温度-40℃でのtanδの値を示す。)
    7. The antiglare film according to claim 1, wherein tan δ in the film width direction of the base film has the following relationship.
    0.5 ≧ tan δ −40 / tan δ peak ≧ 0.24
    (Where tan δ peak represents the maximum value of tan δ measured from 25 ° C. to 210 ° C., and tan δ −40 represents the value of tan δ at a temperature of −40 ° C. when tan δ peak was exhibited.)
  8. 請求項1~7のいずれか1項に記載の防眩性フィルムを製造する防眩性フィルムの製造方法であって、25℃における粘度が30~2500mPa・sの範囲内にある活性線硬化型樹脂を含有する防眩層を、少なくとも塗布工程、乾燥工程及び硬化工程を経由して形成し、かつ前記乾燥工程における減率乾燥区間の温度を90~140℃の範囲内に維持した条件下で処理することを特徴とする防眩性フィルムの製造方法。 An anti-glare film production method for producing the anti-glare film according to any one of claims 1 to 7, wherein the viscosity at 25 ° C is in the range of 30 to 2500 mPa · s. Under the condition that the antiglare layer containing the resin is formed through at least the coating process, the drying process and the curing process, and the temperature of the decreasing rate drying section in the drying process is maintained within the range of 90 to 140 ° C. The manufacturing method of the anti-glare film characterized by processing.
  9. 請求項1~7のいずれか1項に記載の防眩性フィルムを一方の面に用いたことを特徴とする偏光板。 A polarizing plate comprising the antiglare film according to any one of claims 1 to 7 on one surface.
  10. 請求項9に記載の偏光板を液晶セルの少なくとも一方に有することを特徴とする液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to claim 9 in at least one of the liquid crystal cells.
  11. 請求項9に記載の偏光板を液晶セルのリヤ側に用いることを特徴とする請求項10に記載の液晶表示装置。 The liquid crystal display device according to claim 10, wherein the polarizing plate according to claim 9 is used on the rear side of the liquid crystal cell.
PCT/JP2011/065157 2010-09-14 2011-07-01 Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device WO2012035849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012533898A JP5799954B2 (en) 2010-09-14 2011-07-01 Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
KR1020137005953A KR20130049202A (en) 2010-09-14 2011-07-01 Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-205824 2010-09-14
JP2010205824 2010-09-14

Publications (1)

Publication Number Publication Date
WO2012035849A1 true WO2012035849A1 (en) 2012-03-22

Family

ID=45831329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065157 WO2012035849A1 (en) 2010-09-14 2011-07-01 Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device

Country Status (3)

Country Link
JP (1) JP5799954B2 (en)
KR (1) KR20130049202A (en)
WO (1) WO2012035849A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164843A1 (en) * 2011-05-27 2012-12-06 コニカミノルタアドバンストレイヤー株式会社 Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel
JP2014026123A (en) * 2012-07-26 2014-02-06 Dainippon Printing Co Ltd Optical laminate, polarizing plate and image display device
WO2014185345A1 (en) * 2013-05-14 2014-11-20 コニカミノルタ株式会社 Method for producing hard-coat film
WO2016093272A1 (en) * 2014-12-09 2016-06-16 大日本印刷株式会社 Liquid crystal display element, liquid crystal display device, and method for designing liquid crystal display element
WO2017110038A1 (en) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 Touch panel and display device using same
CN107850692A (en) * 2015-09-11 2018-03-27 株式会社Lg化学 Antireflection film and display device
JP2021117500A (en) * 2020-01-23 2021-08-10 住友化学株式会社 Optical laminate
WO2022054645A1 (en) * 2020-09-14 2022-03-17 大日本印刷株式会社 Matte article
US20220266573A1 (en) * 2019-11-13 2022-08-25 Skc Co., Ltd. Laminated film for bonding and light-transmitting laminate including same
US11447643B2 (en) * 2018-08-02 2022-09-20 Benq Materials Corporation Hard coating layered optical film, polarizer comprising the same, and image display comprising the hard coating layered optical film and/or the polarizer comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981205B2 (en) * 2017-11-24 2021-12-15 コニカミノルタ株式会社 Optical film and polarizing plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098742A (en) * 2005-10-04 2007-04-19 Konica Minolta Opto Inc Manufacturing method of uneven pattern film
WO2007108294A1 (en) * 2006-03-16 2007-09-27 Daicel Chemical Industries, Ltd. Anti-dazzling film
WO2008126528A1 (en) * 2007-03-12 2008-10-23 Konica Minolta Opto, Inc. Process for producing antiglare antireflection film, antiglare antireflection film, polarizer, and display
JP2008304651A (en) * 2007-06-07 2008-12-18 Oji Paper Co Ltd Method of manufacturing uneven pattern formed sheet, and uneven pattern formed sheet
JP2009175676A (en) * 2007-09-28 2009-08-06 Fujifilm Corp Optical film, polarizing plate and image display apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5175468B2 (en) * 2005-11-04 2013-04-03 富士フイルム株式会社 Optical film, polarizing plate and image display device
JP2010256850A (en) * 2009-03-30 2010-11-11 Nippon Paper Chemicals Co Ltd Antiglare hard coat film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098742A (en) * 2005-10-04 2007-04-19 Konica Minolta Opto Inc Manufacturing method of uneven pattern film
WO2007108294A1 (en) * 2006-03-16 2007-09-27 Daicel Chemical Industries, Ltd. Anti-dazzling film
WO2008126528A1 (en) * 2007-03-12 2008-10-23 Konica Minolta Opto, Inc. Process for producing antiglare antireflection film, antiglare antireflection film, polarizer, and display
JP2008304651A (en) * 2007-06-07 2008-12-18 Oji Paper Co Ltd Method of manufacturing uneven pattern formed sheet, and uneven pattern formed sheet
JP2009175676A (en) * 2007-09-28 2009-08-06 Fujifilm Corp Optical film, polarizing plate and image display apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164843A1 (en) * 2011-05-27 2012-12-06 コニカミノルタアドバンストレイヤー株式会社 Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel
JP2014026123A (en) * 2012-07-26 2014-02-06 Dainippon Printing Co Ltd Optical laminate, polarizing plate and image display device
WO2014185345A1 (en) * 2013-05-14 2014-11-20 コニカミノルタ株式会社 Method for producing hard-coat film
WO2016093272A1 (en) * 2014-12-09 2016-06-16 大日本印刷株式会社 Liquid crystal display element, liquid crystal display device, and method for designing liquid crystal display element
CN107003556B (en) * 2014-12-09 2020-09-11 大日本印刷株式会社 Liquid crystal display element, liquid crystal display device, and method for designing liquid crystal display element
CN107003556A (en) * 2014-12-09 2017-08-01 大日本印刷株式会社 The design method of liquid crystal display cells, liquid crystal display device and liquid crystal display cells
JPWO2016093272A1 (en) * 2014-12-09 2017-09-21 大日本印刷株式会社 Liquid crystal display element, liquid crystal display device, and liquid crystal display element design method
CN107850692B (en) * 2015-09-11 2020-06-16 株式会社Lg化学 Antireflection film and display device
US10690810B2 (en) 2015-09-11 2020-06-23 Lg Chem Ltd. Antireflection film and display device having hard coating layer with specified surface roughness and internal haze
CN107850692A (en) * 2015-09-11 2018-03-27 株式会社Lg化学 Antireflection film and display device
EP3299851A4 (en) * 2015-09-11 2018-08-08 LG Chem, Ltd. Anti-reflective film and display device
JPWO2017110038A1 (en) * 2015-12-25 2018-10-18 パナソニックIpマネジメント株式会社 Touch panel and display device using the same
CN107124900A (en) * 2015-12-25 2017-09-01 松下知识产权经营株式会社 Touch panel and the display device using the touch panel
WO2017110038A1 (en) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 Touch panel and display device using same
US11447643B2 (en) * 2018-08-02 2022-09-20 Benq Materials Corporation Hard coating layered optical film, polarizer comprising the same, and image display comprising the hard coating layered optical film and/or the polarizer comprising the same
US20220266573A1 (en) * 2019-11-13 2022-08-25 Skc Co., Ltd. Laminated film for bonding and light-transmitting laminate including same
JP2021117500A (en) * 2020-01-23 2021-08-10 住友化学株式会社 Optical laminate
WO2022054645A1 (en) * 2020-09-14 2022-03-17 大日本印刷株式会社 Matte article
JP2022061031A (en) * 2020-09-14 2022-04-15 大日本印刷株式会社 Matte article
JP7060155B2 (en) 2020-09-14 2022-04-26 大日本印刷株式会社 Matte goods
JP7088431B1 (en) 2020-09-14 2022-06-21 大日本印刷株式会社 Matte goods
JP2022109932A (en) * 2020-09-14 2022-07-28 大日本印刷株式会社 Matte article

Also Published As

Publication number Publication date
KR20130049202A (en) 2013-05-13
JP5799954B2 (en) 2015-10-28
JPWO2012035849A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5799954B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and liquid crystal display device
JP5751249B2 (en) Hard coat film, method for producing the same, polarizing plate, and liquid crystal display device
KR101618423B1 (en) Antiglare film, method for producing same, polarizing plate, image display device, member for touch panel
JP5423382B2 (en) Method for producing hard coat film
JP6048419B2 (en) Method for producing hard coat film and method for producing polarizing plate
JP5707856B2 (en) Method for producing antiglare film
US20120295040A1 (en) Hard coat film, polarizing plate and liquid crystal display device
JPWO2012124323A1 (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate, and image display device
KR101342183B1 (en) Polarizing plate and liquid crystal display device
JP5971121B2 (en) Manufacturing method of optical film
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
JP2013064821A (en) Hard coat film, polarizing plate and image display apparatus
JP5382118B2 (en) Polarizing plate and liquid crystal display device
JP5980465B2 (en) Polarizing plate and liquid crystal display device using the same
JP6048506B2 (en) Optical film
JP2006251163A (en) Antireflection film, polarizing plate, and image display apparatus using the same
JP2011118088A (en) Long polarizing plate and liquid crystal display device
JP2012068562A (en) Image display apparatus
JP2013088438A (en) Optical film, production method of the same, and image display device
JP5707855B2 (en) Method for producing hard coat film
JP2009198811A (en) Polarizing plate protecting film and polarizing plate using the same and image display
JP2014061643A (en) Production method of optical film
JP2012097218A (en) Cellulose ester, method for producing cellulose ester, and optical film containing the cellulose ester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012533898

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137005953

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824860

Country of ref document: EP

Kind code of ref document: A1