WO2014185345A1 - Method for producing hard-coat film - Google Patents

Method for producing hard-coat film Download PDF

Info

Publication number
WO2014185345A1
WO2014185345A1 PCT/JP2014/062441 JP2014062441W WO2014185345A1 WO 2014185345 A1 WO2014185345 A1 WO 2014185345A1 JP 2014062441 W JP2014062441 W JP 2014062441W WO 2014185345 A1 WO2014185345 A1 WO 2014185345A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
film
light
resin
layer
Prior art date
Application number
PCT/JP2014/062441
Other languages
French (fr)
Japanese (ja)
Inventor
啓史 別宮
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014185345A1 publication Critical patent/WO2014185345A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a method for producing a hard coat film.
  • a hard coat film is used as a base for forming a conductive film or an antireflection film.
  • it is necessary to reduce the contact angle with water of the hard coat film so as not to repel the coating liquid mainly composed of water and alcohol.
  • a technique for reducing the contact angle at low cost by using corona treatment, UV treatment, plasma treatment, or the like is also used (see Patent Document 1).
  • the hard coat film is used on the outermost surface of the display device, and a touch panel or a cover glass is bonded to the surface of the hard coat film in a tablet terminal or a smartphone.
  • a low contact angle of the hard coat film is required for bonding.
  • the hard coat film is made into a polarizing plate in the manufacturing process of the display device. Therefore, a hard coat film whose contact angle has been reduced in advance by conventional corona treatment, UV treatment, plasma treatment, etc. is used. In such a case, there arises a problem that the contact angle has returned to its original value due to a change with time.
  • the contact angle is greatly affected by the leveling agent oriented on the surface of the hard coat. Since the leveling agent is essential for ensuring the applicability (control of surface roughness etc.) of the hard coat, it is difficult to change to another material in order to reduce the contact angle. In view of this, a technique of incorporating hydrophilic fine particles has been proposed as means for reducing the contact angle (see Patent Document 2).
  • an object of the present invention is to provide a method for producing a hard coat film that realizes a continuous low contact angle of the hard coat film without adding a new material.
  • a hard coat film having a hard coat layer containing a hard coat resin and a leveling agent formed on a resin film is irradiated with light containing light having a wavelength shorter than 200 nm, and an integrated light quantity of light having a wavelength shorter than 200 nm is 50 mJ / cm 2 or more.
  • the leveling agent on the surface layer of the hard coat layer is decomposed, and the hard coat resin on the surface layer of the hard coat layer has at least light with a wavelength shorter than 200 nm.
  • the present invention by irradiating light wavelength to the hard coat layer contains a light shorter than 200nm, such wavelength is integrated quantity of light shorter light than 200nm becomes 50 mJ / cm 2 or more 5000 mJ / cm 2 or less, The leveling agent on the surface layer of the hard coat layer is decomposed, and the contact angle with water of the hard coat layer is lowered. Moreover, decomposition
  • the numerical value range includes the values of the lower limit A and the upper limit B.
  • the hard coat film 10 is obtained by forming a hard coat layer 12 including a hard coat resin 12 a and a leveling agent 12 b on a resin film 11.
  • the leveling agent 12 b on the surface layer of the hard coat layer 12 is decomposed by irradiating the hard coat layer 12 with excimer light.
  • the hard coat resin 12a on the surface layer of the hard coat layer 12 absorbs at least part of light having a wavelength shorter than 200 nm (absorbs excimer light), and the hard coat resin 12a and the resin film 11 other than the surface layer are not decomposed.
  • the hard coat resin 12a and the resin film 11 other than the surface layer are not decomposed.
  • the leveling agent 12b on the surface layer of the hard coat layer 12 is decomposed, and the hard coat layer 12 is decomposed. Excessive decomposition of the hard coat resin 12a and the resin film 11 can be suppressed while reducing the water contact angle. Therefore, the continuous low contact angle of the hard coat film 10 can be realized without adding new materials such as hydrophilic fine particles.
  • wavelength wavelength light including light shorter than 200nm is integrated quantity of light shorter light than 200nm becomes 50 mJ / cm 2 or more 5000 mJ / cm 2 or less
  • wavelength of the integrated light quantity of light shorter than 200nm is 500 mJ / cm 2 or more 3500mJ / cm 2 or less.
  • the integrated light quantity of light with a wavelength shorter than 200 nm can be measured by a C8026 illuminometer manufactured by Hamamatsu Photonics.
  • excimer light is preferably used as light including light having a wavelength shorter than 200 nm, and the wavelength range of light included in the excimer light is preferably 100 to 230 nm.
  • the hard coat resin 12a is preferably an ultraviolet curable acrylate resin.
  • As the leveling agent 12b a fluorine-siloxane graft compound is preferable.
  • the hard coat resin is preferably an actinic ray curable resin from the viewpoint of excellent mechanical film strength (abrasion resistance, pencil hardness). That is, it is a layer mainly composed of a resin that is cured through a crosslinking reaction upon irradiation with active rays (also called active energy rays) such as ultraviolet rays and electron beams.
  • active rays also called active energy rays
  • the actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams.
  • the Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin curable by ultraviolet irradiation is particularly excellent in mechanical film strength (abrasion resistance, pencil hardness). It is preferable from the point.
  • the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable resin.
  • a curable epoxy resin or the like is preferably used, and among them, an ultraviolet curable acrylate resin or an ultraviolet curable urethane acrylate resin is preferable.
  • polyfunctional acrylate is preferable.
  • the polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule.
  • polyfunctional acrylate monomer examples include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate.
  • the ultraviolet curable urethane acrylate resin examples include, for example, a polyurethane obtained by reacting an alcohol, a polyol, and / or a hydroxyl group-containing compound such as a hydroxyl group-containing acrylate and an isocyanate or, if necessary, these reactions. It is obtained by esterifying a compound with (meth) acrylic acid. More specifically, it is an addition reaction product of polyisocyanate and an acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule.
  • polyisocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4 ′.
  • a compound having two isocyanate groups bonded to an alicyclic hydrocarbon such as aromatic isocyanate such as diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 1,4-cyclohexane diisocyanate (hereinafter referred to as alicyclic diisocyanate and A compound having two isocyanate groups bonded to an aliphatic hydrocarbon such as trimethylene diisocyanate and hexamethylene diisocyanate (hereinafter referred to as aliphatic diisocyanate).
  • aromatic isocyanate such as diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 1,4-cyclohexane diisocyanate
  • aliphatic diisocyanate A compound having two is
  • Phenylene diisocyanate aromatic diisocyanates such as toluene diisocyanate, and aromatic aliphatic diisocyanates such as xylylene diisocyanate.
  • aromatic diisocyanates can be used alone or in combination of two or more, preferably aliphatic diisocyanates and alicyclic diisocyanates. Of these, isophorone diisocyanate, norbornane diisocyanate, toluene diisocyanate and hexamethylene diisocyanate are preferred.
  • Examples of the acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule include trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth).
  • Examples include polyacrylates of polyvalent hydroxy group-containing compounds such as acrylates, adducts of these polyacrylates and ⁇ -caprolactone, adducts of these polyacrylates and alkylene oxides, and epoxy acrylates. It is done.
  • the acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule can be used alone or in combination of two or more.
  • acrylates having one hydroxy group and one or more (meth) acryloyl groups in one molecule acrylates having one hydroxy group and 3 to 5 (meth) acryloyl groups in one molecule are preferable.
  • examples of such acrylates include pentaerythritol triacrylate and dipentaerythritol pentaacrylate.
  • UV curable urethane acrylate resin examples include: Nippon Synthetic Chemical Industry Co., Ltd., Shikou UV-1700B, UV-6300B, UV-7600B, UV-7630B, UV-7630B, UV-7640B, Kyoeisha Chemical Co., Ltd. Company-made, UA-306H, UA-306T, UA-306I, UA-510H, Shin-Nakamura Chemical Co., Ltd., NK Oligo UA-1100H, NK Oligo UA-53H, NK Oligo UA-33H, NK Oligo UA-15HA Etc.
  • the viscosity of the actinic radiation curable resin can be measured using a B-type viscometer under the condition of 25 ° C. after stirring and mixing the resin with a disper.
  • a monofunctional acrylate may also be used.
  • Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate.
  • Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
  • monofunctional acrylate 80: 20 to 98: 2 in terms of the mass ratio of polyfunctional acrylate to monofunctional acrylate.
  • the hard coat layer preferably contains a photopolymerization initiator to accelerate the curing of the actinic radiation curable resin.
  • Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not something.
  • photopolymerization initiators Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
  • the hard coat layer may contain a conductive agent in order to impart antistatic properties.
  • Preferred conductive agents include metal oxide particles or ⁇ -conjugated conductive polymers.
  • An ionic liquid is also preferably used as the conductive compound.
  • the hard coat layer contains a leveling agent to smooth the surface.
  • a leveling agent silicone surfactants, fluorine surfactants, anionic surfactants, fluorine-siloxane graft compounds, fluorine compounds, acrylic copolymers, and the like can be used.
  • the leveling agent since the leveling agent has high lipophilicity, when it is oriented on the surface of the hard coat layer, the contact angle with water becomes large.
  • silicone surfactant examples include polyether-modified silicone, and the KF series manufactured by Shin-Etsu Chemical Co., Ltd. can be used.
  • acrylic copolymer examples include commercially available compounds such as BYK-350 and BYK-352 manufactured by BYK Japan.
  • fluorosurfactant examples include Megafac RS series, Megafac F-444 Megafac F-556 manufactured by DIC Corporation.
  • the fluorine-siloxane graft compound refers to a copolymer compound obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone to at least a fluorine-based resin.
  • Such a fluorine-siloxane graft compound can be prepared by a method as described in Examples described later.
  • examples of commercially available products include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Chemical Industry Co., Ltd.
  • a fluorine-type compound Daikin Industries Ltd.
  • OPTOOL DSX, OPTOOL DAC, etc. can be mentioned. These components are preferably added in the range of 0.005 parts by mass or more and 5 parts by mass or less with respect to the solid component in the hard coat composition.
  • the hard coat layer may further contain an ultraviolet absorber.
  • the ultraviolet absorber preferably has a transmittance of 10% or less at a wavelength of 370 nm, more preferably 5% or less, and still more preferably 2% or less.
  • Specific examples of the ultraviolet absorber are not particularly limited. For example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex salts, inorganic powders. Examples include the body.
  • 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6 -(Linear and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, and the like can be used.
  • Commercially available products may be used.
  • TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, and TINUVIN 328 manufactured by BASF Japan Ltd. can be preferably used.
  • Preferably used ultraviolet absorbers are benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers, and particularly preferably benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
  • a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as an ultraviolet absorber.
  • a polymer UV absorber can be preferably used, and a polymer type UV absorber is particularly preferably used.
  • TINUVIN 109 octyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazole-2-) manufactured by BASF Japan Ltd., which is a commercial product, is available.
  • TINUVIN 400 (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -manufactured by BASF Japan Ltd.- Reaction product of 5-hydroxyphenyl and oxirane
  • TINUVIN 460 (2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3-5 Triazine)
  • TINUVIN 405 (2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid ester Reaction products) and the like.
  • the hard coat layer is a component that forms the above-described hard coat layer, diluted with a solvent that swells or partially dissolves the film as a base material, and is applied onto the film by the following method as a hard coat layer composition. It is preferable to provide a hard coat layer by drying and curing.
  • ketones methyl ethyl ketone, acetone, etc.
  • acetate esters methyl acetate, ethyl acetate, butyl acetate, etc.
  • alcohols ethanol, methanol
  • propylene glycol monomethyl ether cyclohexanone, methyl isobutyl ketone, etc.
  • the coating amount of the hard coat layer is suitably in the range of 0.1 to 40 ⁇ m as wet film thickness, and preferably in the range of 0.5 to 30 ⁇ m.
  • the dry film thickness is in the range of an average film thickness of 0.01 to 20 ⁇ m, preferably in the range of 0.5 to 10 ⁇ m. More preferably, it is in the range of 0.5 to 5 ⁇ m.
  • a gravure coater As a method for applying the hard coat layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used.
  • the hard coat layer composition After applying the hard coat layer composition, it may be dried and cured by irradiation with active rays (also referred to as UV curing treatment), and if necessary, heat treatment may be performed after the UV curing treatment.
  • the heat treatment temperature after the UV curing treatment is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher.
  • Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature in the decreasing rate drying section is 90 ° C. or higher and 125 ° C. or lower.
  • the drying process changes from a constant state to a gradually decreasing state when drying starts.
  • the decreasing section is called the decreasing rate drying section.
  • the constant rate drying section the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
  • any light source that generates ultraviolet rays can be used without limitation.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 .
  • oxygen removal for example, replacement with an inert gas such as nitrogen purge
  • the cured state of the surface can be controlled by adjusting the removal amount of the oxygen concentration.
  • irradiating actinic radiation it is preferably performed while applying tension in the film transport direction, and more preferably while applying tension in the width direction.
  • the tension to be applied is preferably 30 to 300 N / m.
  • the method for applying the tension is not particularly limited, and the tension may be applied in the transport direction on the back roller, or the tension may be applied in the width direction or the biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
  • light including light having a wavelength shorter than 200 nm is irradiated.
  • an excimer light source or a low-pressure mercury lamp can be used.
  • Light having a wavelength shorter than 200 nm decomposes the leveling agent on the surface layer of the hard coat layer, and at least a part of light having a wavelength shorter than 200 nm is absorbed by the hard coat resin on the surface layer of the hard coat layer.
  • the contact angle with water of the hard coat layer can be lowered, and decomposition of the hard coat resin other than the surface layer and the resin film serving as the substrate can be suppressed. This reduction in contact angle is considered to be achieved by the decomposition of the leveling agent, and therefore hardly changes with time.
  • the wavelength range of the light contained in the excimer light be in the range of 100 nm to 230 nm. This is because if the wavelength is too short, the hard coat resin is deteriorated, and if the wavelength is too long, the leveling agent cannot be decomposed.
  • a xenon lamp can be used as the light source having such a wavelength.
  • Xe used in a xenon lamp is a rare gas, and since the atoms of the rare gas are chemically bonded to form no molecule, it is called an inert gas.
  • rare gas atoms excited atoms
  • Xe 2 * excimer light of 172 nm
  • Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. It is a similar very thin discharge called micro-discharge.
  • electrodeless electric field discharge is also known as a method for efficiently obtaining excimer light.
  • the electrodeless field discharge is a discharge due to capacitive coupling, and is also called an RF discharge.
  • the lamp, the electrode, and the arrangement thereof may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz.
  • a spatially and temporally uniform discharge can be obtained in this way.
  • the xenon lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength and thus has excellent luminous efficiency. With this high energy of 172 nm, the leveling agent on the surface layer of the hard coat layer can be decomposed in a short time.
  • the excimer lamp since the excimer lamp has high light generation efficiency, it can be turned on with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the irradiation object is suppressed. For this reason, it is also suitable for irradiation to a resin film that is easily affected by heat.
  • the resin film used in this embodiment may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • acrylic resin, polycarbonate resin, cycloolefin resin, polyester resin, polylactic acid resin, polyvinyl alcohol resin, cellulose resin, and the like can be used. Among these, it is preferable to use a cellulose resin in consideration of heat resistance.
  • Cellulosic resins used for the resin film include cellulose ethers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, cyanoethyl cellulose, triacetyl cellulose (TAC), diacetyl cellulose (DAC), cellulose acetate propionate (CAP). ), Cellulose esters such as cellulose acetate butyrate (CAB), cellulose acetate phthalate, cellulose acetate trimellitate, and cellulose nitrate, and cellulose esters are preferred.
  • aromatic carboxylic acid esters described in paragraph numbers [0010] to [0027] of JP-A No. 2002-179701 are used, and in particular, celluloses of paragraph numbers [0028] to [0036] of JP-A No. 2002-17979. Acylate is preferably used.
  • the cellulose used as the raw material for the cellulose resin is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, although the cellulose resin obtained from these can be used individually or in mixture of arbitrary ratios, it is preferable to use 50 mass% or more of cotton linters.
  • the molecular weight of the cellulose ester is preferably 70000-200000 in terms of number average molecular weight, more preferably 100000-200000.
  • the cellulose ester used in the present embodiment preferably has a weight average molecular weight of Mw, a number average molecular weight of Mn, and a Mw / Mn ratio of 1.4 to 3.0, more preferably 1.4 to 2. 3.
  • the average molecular weight and molecular weight distribution of cellulose ester can be measured using high performance liquid chromatography, the number average molecular weight (Mn) and the weight average molecular weight (Mw) are calculated using this, and the ratio is calculated. be able to. Measurement conditions are as follows.
  • the total acyl group substitution degree of cellulose ester is preferably 1.0 to 2.9, more preferably 1.5 to 2.9.
  • the total degree of acyl group substitution can be measured according to ASTM-D817-96.
  • the film of the present embodiment includes a plasticizer that imparts processability, flexibility, and moisture resistance to the film, an ultraviolet absorber that imparts an ultraviolet absorption function, fine particles (matting agent) that impart slipperiness to the film, and deterioration of the film. You may contain the antioxidant etc. which prevent this.
  • Plasticizer There is no particular limitation on the plasticizer used, but it has a functional group capable of interacting with the adhesive layer so as not to cause haze or bleed out or volatilization from the film. preferable.
  • Examples of such functional groups include hydroxyl groups, ether groups, carbonyl groups, ester groups, carboxylic acid residues, amino groups, imino groups, amide groups, imide groups, cyano groups, nitro groups, sulfonyl groups, sulfonic acid residues, Examples thereof include a phosphonyl group and a phosphonic acid residue, and a carbonyl group, an ester group and a phosphonyl group are preferred.
  • plasticizers examples include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol ester plasticizers, glycolate plasticizers. Agents, citrate plasticizers, fatty acid ester plasticizers, carboxylic acid ester plasticizers, polyester plasticizers, and the like can be preferably used. Particularly preferred are non-phosphate ester plasticizers such as polyhydric alcohol ester plasticizers, glycolate plasticizers, and polycarboxylic acid ester plasticizers.
  • the polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • the film of this embodiment may contain an ultraviolet absorber.
  • a layer having an ultraviolet absorbing function may be formed on the film.
  • the ultraviolet absorber having an ultraviolet absorbing function those having an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less and little absorption of visible light having a wavelength of 400 nm or more are preferably used.
  • Specific examples of preferably used ultraviolet absorbers include triazine compounds, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these. Further, a polymeric ultraviolet absorber described in JP-A-6-148430 is also preferably used.
  • fine particles such as a matting agent can be added in order to impart slipperiness.
  • the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
  • inorganic compounds include fine particles such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, and tin oxide. In this, it is preferable that it is a compound containing a silicon atom, and especially a silicon dioxide fine particle is preferable.
  • silicon dioxide fine particles include AEROSIL 200, 200V, 300, R972, R972V, R974, R202, R812, R805, OX50, and TT600 manufactured by Aerosil Co., Ltd.
  • organic compounds examples include acrylic resins, silicone resins, fluorine compound resins, and urethane resins.
  • Antioxidant are also referred to as deterioration inhibitors. When placed in a high humidity and high temperature state, the optical film may deteriorate. Antioxidants have the role of delaying or preventing the optical film from being decomposed by, for example, the residual solvent amount of halogen in the optical film or phosphoric acid of the phosphoric acid plasticizer, so it is contained in the optical film. It is preferable to do so.
  • a hindered phenol compound is preferably used, and in particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate] and triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] are preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
  • the hard coat film of this embodiment can be provided with other layers such as an antireflection layer and a conductive layer.
  • the hard coat film of this embodiment can be used as an antireflection film having an antireflection function for external light by coating an antireflection layer on the hard coat layer.
  • the antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference.
  • the antireflection layer is composed of a low refractive index layer having a lower refractive index than the protective film as the support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as the support.
  • it is.
  • it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support).
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • the layer structure the following structure is conceivable, but is not limited thereto.
  • the low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
  • the film thickness of the low refractive index layer is preferably in the range of 5 nm to 0.5 ⁇ m, more preferably in the range of 10 nm to 0.3 ⁇ m, and in the range of 30 nm to 0.2 ⁇ m. Most preferred.
  • the composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles.
  • the particles having the outer shell layer and porous or hollow inside are preferably hollow silica-based fine particles.
  • composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1) or a hydrolyzate thereof, or a polycondensate thereof.
  • OSi-1 organosilicon compound represented by the following general formula (OSi-1) or a hydrolyzate thereof, or a polycondensate thereof.
  • R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
  • a solvent and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added. Further, it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used.
  • fluorine-containing polymer examples include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units.
  • the refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm.
  • the thickness of the high refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 0.1 ⁇ m.
  • the means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like.
  • the metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
  • the kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from can be used.
  • a conductive layer may be formed on the hard coat layer.
  • a generally well-known conductive material can be used.
  • metal oxides such as indium oxide, tin oxide, indium tin oxide, gold, silver, and palladium can be used. These can be formed as a thin film on the hard coat film by vacuum deposition, sputtering, ion plating, solution coating, or the like.
  • the conductive layer can be formed using an organic conductive material that is a ⁇ -conjugated conductive polymer.
  • a conductive material that is excellent in transparency and conductivity, and that has a main component of any one of indium oxide, tin oxide, and indium tin oxide obtained at a relatively low cost can be suitably used.
  • the thickness of the conductive layer varies depending on the material to be applied, it cannot be said unconditionally.
  • the surface resistivity is 1000 ⁇ or less, preferably 500 ⁇ or less, and considering the economy, A range of 10 nm or more, preferably 20 nm or more and 80 nm or less, preferably 70 nm or less is suitable. In such a thin film, visible light interference fringes due to uneven thickness of the conductive layer are unlikely to occur.
  • the polarizing plate can be produced by a general method.
  • the hard coat layer side of the hard coat film of the present embodiment is bonded to at least one surface of a polarizing film produced by immersing and stretching in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • the other surface may use the hard coat film or the above-described film.
  • KC8UX, KC4UX, KC4UY, KC8UY, KC6UA, KC4UA, KC4UE, KC4CZ, KC8UCR, KC4FR manufactured by Konica Minolta Advanced Layer Co., Ltd.
  • Arton Film manufactured by JSR Corporation
  • the polarizing film which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction.
  • a typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film.
  • polarizing film a polyvinyl alcohol aqueous solution is formed and dyed by uniaxial stretching or dyeing, or after uniaxial stretching after dyeing, a film subjected to durability treatment with a boron compound is preferably used.
  • the thickness of the polarizing film is in the range of 5 to 30 ⁇ m, preferably in the range of 8 to 15 ⁇ m.
  • the polarizing plate is formed by bonding the hard coat surface of the hard coat film of the present embodiment on the surface of the polarizing film. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
  • KC4UAW thickness: 40 ⁇ m
  • KC4UAW thickness: 40 ⁇ m
  • ⁇ Hard Coat Layer Composition A> The materials were mixed at the following ratio, and filtered through a polypropylene filter having a pore diameter of 0.4 ⁇ m to prepare a hard coat layer composition A.
  • (Actinic radiation curable resin) Pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 55 parts by mass Trimethylolpropane triacrylate (A-TMPT, manufactured by Shin-Nakamura Chemical Co., Ltd.) 45 parts by mass
  • Photopolymerization initiator Irgacure 184 (manufactured by BASF Japan) 6 parts by mass (leveling agent) Fluorine-siloxane graft compound (35% by mass) 2 parts by mass (solvent)
  • Radical polymerizable fluororesin (A): Cefal coat CF-803 (hydroxy group number 60, number average molecular weight 15000; manufactured by Central Glass Co., Ltd.)
  • One-end radically polymerizable polysiloxane (B): Silaplane FM-0721 (number average molecular weight 5000; manufactured by Chisso Corporation)
  • Radical polymerization initiator Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
  • Curing agent Sumidur N3200 (biuret type prepolymer of hexamethylene diisocyanate; manufactured by Sumika Bayer Urethane Co., Ltd.)
  • ⁇ Hard Coat Layer Composition B> The materials were mixed at the following ratio, and filtered through a polypropylene filter having a pore size of 0.4 ⁇ m to prepare a hard coat layer composition B.
  • the hard coat layer composition A is applied using an extrusion coater, dried at a constant rate drying zone temperature of 50 ° C. and a reduced rate drying zone temperature of 50 ° C., and an oxygen concentration of 1.0 volume. % with a nitrogen purge so that the following atmosphere at 100 mW / cm 2 illuminance in the irradiated portion using an ultraviolet lamp to cure the coated layer to the amount of radiation as 0.2 J / cm 2, dry film thickness 2.5 ⁇ m A hard coat layer was formed. Subsequently, the hard coat layer was irradiated with excimer light under the following conditions using an excimer irradiation apparatus (MECL-M-1-200) manufactured by M.D.
  • MECL-M-1-200 excimer irradiation apparatus manufactured by M.D.
  • Example 2 A hard coat film of Example 2 was obtained in the same manner as in Example 1 except that the hard coat layer composition B was used instead of the hard coat layer composition A.
  • Example 3 The hard coat of Example 3 was used in the same manner as in Example 1 except that the hard coat layer composition B was used in place of the hard coat layer composition A, and the cumulative amount of light having a wavelength shorter than 200 nm was 500 mJ / cm 2. A film was obtained.
  • Example 4 The hard of Example 4 is the same as Example 1 except that the hard coat layer composition B is used in place of the hard coat layer composition A and the integrated light quantity of light having an wavelength shorter than 200 nm is 2000 mJ / cm 2. A coated film was obtained.
  • Example 5 The hard coat of Example 5 was used in the same manner as in Example 1 except that the hard coat layer composition B was used instead of the hard coat layer composition A, and the integrated light quantity of light having a wavelength shorter than 200 nm was 3500 mJ / cm 2. A film was obtained.
  • Comparative Example 1 A hard coat film of Comparative Example 1 was obtained in the same manner as in Example 1 except that no excimer light was irradiated.
  • Comparative example 2 A hard coat film of Comparative Example 2 was obtained in the same manner as in Example 1 except that the hard coat layer composition B was used in place of the hard coat layer composition A and no excimer light was irradiated.
  • Comparative Example 3 A hard coat film of Comparative Example 3 was obtained in the same manner as Example 1 except that corona treatment (discharge amount: 130 W / m 2 / min) was performed instead of excimer light irradiation.
  • Comparative example 4 A hard coat film of Comparative Example 4 was obtained in the same manner as in Example 1 except that UV treatment (300 mJ / cm 2 ) was performed instead of excimer light irradiation.
  • Comparative Example 5 The hard coat of Comparative Example 5 was made in the same manner as in Example 1 except that the hard coat layer composition B was used instead of the hard coat layer composition A, and the integrated light quantity of light having a wavelength shorter than 200 nm was 30 mJ / cm 2. A film was obtained.
  • Comparative Example 6 The hard coat film of Comparative Example 6 was prepared in the same manner as in Example 1 except that the hard coat layer composition B was used in place of the hard coat layer composition A, and the integrated light quantity at the time of excimer light irradiation was 6000 mJ / cm 2. Obtained.
  • the measuring method and evaluation criteria for water contact angle are as follows.
  • the hard coat film immediately after preparation was conditioned at a temperature of 23 ° C. and a relative humidity of 55% RH for 24 hours. Under this temperature and humidity, the contact angle of water on the surface of the hard coat layer with a contact angle meter CA-A (Kyowa Interface Chemistry) (Manufactured by Co., Ltd.), and the water droplet diameter was 1.0 mm. Further, the contact angle with water was measured in the same manner for the hard coat film two weeks after the production. If the contact angle with water was 65 ° or less immediately after the production and two weeks after the production, it was judged that there was no practical problem.
  • the steel wool test method and scratch resistance evaluation criteria are as follows.
  • the surface of the hard coat layer was reciprocated 10 times with steel wool applied with a load of 500 g / cm 2 (manufactured by Nippon Steel Wool Co., Ltd., # 0000). The occurrence of scratches was visually observed.
  • the integrated light quantity of light having a wavelength shorter than 200 nm is appropriately 50 to 5000 mJ / cm 2 .
  • the hard coat films of Examples 1 to 5 achieve a continuous low contact angle and scratch resistance.
  • the hard coat film of the present invention is used as a base for forming a conductive film, an antireflection film or the like, or is used on the outermost surface of a display device, and a touch panel or a cover glass is bonded to the surface of a tablet terminal or a smartphone. Can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

This method for producing a hard-coat film involves producing the film by: subjecting a hard-coat film, which is obtained by forming a hard-coat layer containing a hard-coat resin and a leveling agent on a resin film, to irradiation with light having a wavelength shorter than 200nm in a manner such that the cumulative amount of light having a wavelength shorter than 200nm is 50 mJ/cm2 to 5000 mJ/cm2, inclusive; and as a result, breaking down the leveling agent in the surface layer of the hard-coat layer, and causing the hard-coat resin in the surface layer of the hard-coat layer to absorb at least some of the light having a wavelength shorter than 200nm.

Description

ハードコートフィルムの製造方法Method for producing hard coat film
 本発明は、ハードコートフィルムの製造方法に関する。 The present invention relates to a method for producing a hard coat film.
 導電フィルムや反射防止フィルム等を形成する下地としてハードコートフィルムが用いられている。ハードコートフィルムにリコートするには水やアルコールを主体とする塗布液をはじかないようにハードコートフィルムの対水接触角を小さくする必要がある。一般的には鹸化して対水接触角を小さくした後、乾燥、巻き取りし、その後コーティングするため、コストが高くなるという問題がある。そのため、コロナ処理、UV処理、プラズマ処理等を用いることで安価に低接触角化する手法も用いられている(特許文献1参照)。 A hard coat film is used as a base for forming a conductive film or an antireflection film. In order to recoat the hard coat film, it is necessary to reduce the contact angle with water of the hard coat film so as not to repel the coating liquid mainly composed of water and alcohol. In general, after saponification to reduce the contact angle with water, drying, winding, and subsequent coating are required, which increases the cost. Therefore, a technique for reducing the contact angle at low cost by using corona treatment, UV treatment, plasma treatment, or the like is also used (see Patent Document 1).
 また、ハードコートフィルムは表示装置の最表面に用いられ、タブレット端末やスマートフォン等ではハードコートフィルムの表面にタッチパネルやカバーガラスが貼り合わせられている。ここでも、貼り合わせのためにハードコートフィルムの低接触角化が求められている。表示装置にハードコートフィルムを用いる場合、表示装置の製造工程でハードコーフィルムを偏光板化するため、これまでのコロナ処理、UV処理、プラズマ処理等で予め低接触角化したハードコートフィルムを用いた場合、経時変化で接触角が元に戻ってしまっているという問題が生じる。 Moreover, the hard coat film is used on the outermost surface of the display device, and a touch panel or a cover glass is bonded to the surface of the hard coat film in a tablet terminal or a smartphone. Here too, a low contact angle of the hard coat film is required for bonding. When a hard coat film is used in a display device, the hard coat film is made into a polarizing plate in the manufacturing process of the display device. Therefore, a hard coat film whose contact angle has been reduced in advance by conventional corona treatment, UV treatment, plasma treatment, etc. is used. In such a case, there arises a problem that the contact angle has returned to its original value due to a change with time.
 接触角はハードコートの表層に配向するレベリング剤に大きく影響される。レベリング剤はハードコートの塗布適性(表面粗さ等の制御)を確保するために必須であるため、低接触角化のために他の材料に変更することは難しい。そこで、低接触角化の手段として親水性の微粒子を含有させる手法が提案されている(特許文献2参照)。 The contact angle is greatly affected by the leveling agent oriented on the surface of the hard coat. Since the leveling agent is essential for ensuring the applicability (control of surface roughness etc.) of the hard coat, it is difficult to change to another material in order to reduce the contact angle. In view of this, a technique of incorporating hydrophilic fine particles has been proposed as means for reducing the contact angle (see Patent Document 2).
特開2007-161857号公報JP 2007-161857 A 特開2001-272503号公報JP 2001-272503 A
 しかしながら、ハードコートの低接触角化のためだけに親水性の微粒子のような新たな材料を追加すると、コストアップや透明性の低下の原因となるため好ましくない。 However, it is not preferable to add a new material such as hydrophilic fine particles only for the purpose of lowering the contact angle of the hard coat because it causes an increase in cost and a decrease in transparency.
 本発明の目的は、前記の事情に鑑み、新たな材料を追加せずに、ハードコートフィルムの持続的な低接触角化を実現するハードコートフィルムの製造方法を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a method for producing a hard coat film that realizes a continuous low contact angle of the hard coat film without adding a new material.
 本発明の上記目的は以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.ハードコート樹脂及びレベリング剤を含むハードコート層が樹脂フィルム上に形成されたハードコートフィルムへ、波長が200nmより短い光を含む光を、波長が200nmより短い光の積算光量が50mJ/cm以上5000mJ/cm以下となるように照射することで、前記ハードコート層の表層の前記レベリング剤を分解するとともに、前記ハードコート層の表層の前記ハードコート樹脂が前記波長が200nmより短い光の少なくとも一部を吸収することを特徴とするハードコートフィルムの製造方法。 1. A hard coat film having a hard coat layer containing a hard coat resin and a leveling agent formed on a resin film is irradiated with light containing light having a wavelength shorter than 200 nm, and an integrated light quantity of light having a wavelength shorter than 200 nm is 50 mJ / cm 2 or more. By irradiating to 5000 mJ / cm 2 or less, the leveling agent on the surface layer of the hard coat layer is decomposed, and the hard coat resin on the surface layer of the hard coat layer has at least light with a wavelength shorter than 200 nm. A method for producing a hard coat film, wherein a part of the hard coat film is absorbed.
 2.前記波長が200nmより短い光の積算光量が500mJ/cm以上3500mJ/cm以下であることを特徴とする前記1に記載のハードコートフィルムの製造方法。 2. 2. The method for producing a hard coat film according to 1 above, wherein an integrated light amount of light having a wavelength shorter than 200 nm is 500 mJ / cm 2 or more and 3500 mJ / cm 2 or less.
 3.前記波長が200nmより短い光を含む光がエキシマー光であることを特徴とする前記1または2に記載のハードコートフィルムの製造方法。 3. 3. The method for producing a hard coat film according to 1 or 2, wherein the light containing light having a wavelength shorter than 200 nm is excimer light.
 4.前記エキシマー光が含む光の波長の範囲が100nm以上230nm以下の範囲内であることを特徴とする前記3に記載のハードコートフィルムの製造方法。 4. 4. The method for producing a hard coat film as described in 3 above, wherein a wavelength range of light contained in the excimer light is in a range of 100 nm to 230 nm.
 5.前記ハードコート樹脂が紫外線硬化型アクリレート系樹脂であることを特徴とする前記1~4の何れかに記載のハードコートフィルムの製造方法。 5. 5. The method for producing a hard coat film as described in any one of 1 to 4 above, wherein the hard coat resin is an ultraviolet curable acrylate resin.
 6.前記レベリング剤がフッ素-シロキサングラフト化合物であることを特徴とする前記1~5の何れかに記載のハードコートフィルムの製造方法。 6. 6. The method for producing a hard coat film as described in any one of 1 to 5 above, wherein the leveling agent is a fluorine-siloxane graft compound.
 7.前記フィルムがセルロースエステルフィルムであることを特徴とする前記1~6の何れかに記載のハードコートフィルムの製造方法。 7. 7. The method for producing a hard coat film as described in any one of 1 to 6 above, wherein the film is a cellulose ester film.
 本発明によれば、ハードコート層に波長が200nmより短い光を含む光を、波長が200nmより短い光の積算光量が50mJ/cm以上5000mJ/cm以下となるように照射することにより、ハードコート層の表層のレベリング剤が分解され、ハードコート層の対水接触角が低下する。また、波長が200nmより短い光の少なくとも一部がハードコート樹脂により吸収されることによって、表層以外のハードコート樹脂や、基材となる樹脂フィルムの分解を抑制することができる。よって、親水性の微粒子等の新たな材料を追加せずに、ハードコートフィルムの持続的な低接触角化を実現することができる。 According to the present invention, by irradiating light wavelength to the hard coat layer contains a light shorter than 200nm, such wavelength is integrated quantity of light shorter light than 200nm becomes 50 mJ / cm 2 or more 5000 mJ / cm 2 or less, The leveling agent on the surface layer of the hard coat layer is decomposed, and the contact angle with water of the hard coat layer is lowered. Moreover, decomposition | disassembly of hard coat resin other than surface layer and the resin film used as a base material can be suppressed by absorbing at least a part of light having a wavelength shorter than 200 nm by the hard coat resin. Therefore, the continuous low contact angle of the hard coat film can be realized without adding new materials such as hydrophilic fine particles.
本発明の一実施形態のハードコートフィルムの構成を示す断面図である。It is sectional drawing which shows the structure of the hard coat film of one Embodiment of this invention.
 本発明の実施の一形態について、図面に基づいて説明すれば以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。 An embodiment of the present invention will be described below with reference to the drawings. In this specification, when the numerical range is expressed as A to B, the numerical value range includes the values of the lower limit A and the upper limit B.
 〔ハードコートフィルムの構成〕
 図1に示すように、ハードコートフィルム10は、ハードコート樹脂12a及びレベリング剤12bを含むハードコート層12が樹脂フィルム11上に形成されたものである。このハードコートフィルム10は、ハードコート層12へエキシマー光を照射することで、ハードコート層12の表層のレベリング剤12bが分解される。なお、ハードコート層12の表層のハードコート樹脂12aは波長が200nmより短い光の少なくとも一部を吸収し、(エキシマー光を吸収し)、表層以外のハードコート樹脂12aや樹脂フィルム11は分解されないようにする。
[Configuration of hard coat film]
As shown in FIG. 1, the hard coat film 10 is obtained by forming a hard coat layer 12 including a hard coat resin 12 a and a leveling agent 12 b on a resin film 11. In the hard coat film 10, the leveling agent 12 b on the surface layer of the hard coat layer 12 is decomposed by irradiating the hard coat layer 12 with excimer light. The hard coat resin 12a on the surface layer of the hard coat layer 12 absorbs at least part of light having a wavelength shorter than 200 nm (absorbs excimer light), and the hard coat resin 12a and the resin film 11 other than the surface layer are not decomposed. Like that.
 このように、ハードコート層12に波長が200nmより短い光を含む光を特定の積算光量となるように照射することにより、ハードコート層12の表層のレベリング剤12bが分解され、ハードコート層12の対水接触角を低下させながら、ハードコート樹脂12aや樹脂フィルム11の過剰な分解を抑制することができる。よって、親水性の微粒子等の新たな材料を追加せずに、ハードコートフィルム10の持続的な低接触角化を実現することができる。 In this way, by irradiating the hard coat layer 12 with light containing light having a wavelength shorter than 200 nm so as to have a specific integrated light amount, the leveling agent 12b on the surface layer of the hard coat layer 12 is decomposed, and the hard coat layer 12 is decomposed. Excessive decomposition of the hard coat resin 12a and the resin film 11 can be suppressed while reducing the water contact angle. Therefore, the continuous low contact angle of the hard coat film 10 can be realized without adding new materials such as hydrophilic fine particles.
 本発明の上記の目的を達成する為に、波長が200nmより短い光を含む光を波長が200nmより短い光の積算光量が50mJ/cm以上5000mJ/cm以下となるように照射する必要があり、波長が200nmより短い光の積算光量が500mJ/cm以上3500mJ/cm以下であることが好ましい。 To achieve the above object of the present invention, it must be irradiated as wavelength wavelength light including light shorter than 200nm is integrated quantity of light shorter light than 200nm becomes 50 mJ / cm 2 or more 5000 mJ / cm 2 or less There, it is preferable that wavelength of the integrated light quantity of light shorter than 200nm is 500 mJ / cm 2 or more 3500mJ / cm 2 or less.
 なお、波長が200nmより短い光の積算光量は、浜松ホトニクス社製C8026照度計等により計測することができる。 In addition, the integrated light quantity of light with a wavelength shorter than 200 nm can be measured by a C8026 illuminometer manufactured by Hamamatsu Photonics.
 ここで、波長が200nmより短い光を含む光は具体的には、エキシマー光が好ましく用いられ、エキシマー光が含む光の波長の範囲は100~230nmであることが好ましい。 Here, specifically, excimer light is preferably used as light including light having a wavelength shorter than 200 nm, and the wavelength range of light included in the excimer light is preferably 100 to 230 nm.
 また、ハードコート樹脂12aとしては、紫外線硬化型アクリレート系樹脂が好ましい。レベリング剤12bとしては、フッ素-シロキサングラフト化合物が好ましい。フィルム11としては、セルロースエステルフィルムが好ましい。 The hard coat resin 12a is preferably an ultraviolet curable acrylate resin. As the leveling agent 12b, a fluorine-siloxane graft compound is preferable. As the film 11, a cellulose ester film is preferable.
 〔各層の詳細について〕
 以下、ハードコートフィルムを構成する各層の詳細について説明する。
[Details of each layer]
Hereinafter, the detail of each layer which comprises a hard coat film is demonstrated.
 (ハードコート層)
 〈ハードコート樹脂〉
 ハードコート樹脂は、活性線硬化樹脂であることが機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。すなわち、紫外線や電子線のような活性線(活性エネルギー線ともいう。)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層である。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。活性線硬化樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が特に機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられ、中でも紫外線硬化型アクリレート系樹脂又は紫外線硬化型ウレタンアクリレート系樹脂が好ましい。
(Hard coat layer)
<Hard coat resin>
The hard coat resin is preferably an actinic ray curable resin from the viewpoint of excellent mechanical film strength (abrasion resistance, pencil hardness). That is, it is a layer mainly composed of a resin that is cured through a crosslinking reaction upon irradiation with active rays (also called active energy rays) such as ultraviolet rays and electron beams. As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and an actinic radiation curable resin layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams. The Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin curable by ultraviolet irradiation is particularly excellent in mechanical film strength (abrasion resistance, pencil hardness). It is preferable from the point. Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable resin. A curable epoxy resin or the like is preferably used, and among them, an ultraviolet curable acrylate resin or an ultraviolet curable urethane acrylate resin is preferable.
 紫外線硬化型アクリレート系樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基又はメタクロイルオキシ基を有する化合物である。多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリ/テトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、活性エネルギー線硬化型のイソシアヌレート誘導体等が好ましく挙げられる。 As the ultraviolet curable acrylate resin, polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups or methacryloyloxy groups in the molecule. Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tri / tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, pentaerythritol tetraacrylate, glycerol triacrylate relay , Dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol di Methacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetramethylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pen Pentaerythritol tetramethacrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate, etc. isocyanurate derivatives of the active energy ray-curable are preferably exemplified.
 紫外線硬化型ウレタンアクリレート系樹脂としては、例えば、アルコール、ポリオール、及び/又はヒドロキシ基含有アクリレート等のヒドロキシ基含有化合物類とイソシアネート類を反応させたり、又は必要によって、これらの反応によって得られたポリウレタン化合物を(メタ)アクリル酸でエステル化して得られる。より具体的には、ポリイソシアネートと1分子中に1つのヒドロキシ基及び1つ以上の(メタ)アクリロイル基を有するアクリレートとの付加反応物である。ポリイソシアネートとしては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート等の芳香族イソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、1,4-シクロヘキサンジイソシアネート等の脂環式炭化水素に結合したイソシアネート基を2個有する化合物(以下、脂環族ジイソシアネートと略す。)、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族炭化水素に結合したイソシアネート基を2個有する化合物(以下、脂肪族ジイソシアネートと略す。)フェニレンジイソシアネート、トルエンジイソシアネート等の芳香族ジイソシアネート、キシリレンジイソシアネート等の芳香脂肪族ジイソシアネートなどが挙げられる。これらポリイソシアネートは、単独で用いることも、2種以上を併用することもでき、好ましくは脂肪族ジイソシアネート、脂環族ジイソシアネートである。中でも、イソホロンジイソシアネート、ノルボルナンジイソシアネート、トルエンジイソシアネート及びヘキサメチレンジイソシアネートが好ましい。1分子中に1つのヒドロキシ基及び1つ以上の(メタ)アクリロイル基を有するアクリレートとしては、例えば、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の多価ヒドロキシ基含有化合物のポリアクリレート類が挙げられ、これらのポリアクリレート類とε-カプロラクトンとの付加物、これらのポリアクリレート類とアルキレンオキサイドとの付加物、エポキシアクリレート類などが挙げられる。1分子中に1つのヒドロキシ基及び1つ以上の(メタ)アクリロイル基を有するアクリレートは、単独で用いることも、2種以上を併用することもできる。 Examples of the ultraviolet curable urethane acrylate resin include, for example, a polyurethane obtained by reacting an alcohol, a polyol, and / or a hydroxyl group-containing compound such as a hydroxyl group-containing acrylate and an isocyanate or, if necessary, these reactions. It is obtained by esterifying a compound with (meth) acrylic acid. More specifically, it is an addition reaction product of polyisocyanate and an acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule. Examples of the polyisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4 ′. A compound having two isocyanate groups bonded to an alicyclic hydrocarbon such as aromatic isocyanate such as diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 1,4-cyclohexane diisocyanate (hereinafter referred to as alicyclic diisocyanate and A compound having two isocyanate groups bonded to an aliphatic hydrocarbon such as trimethylene diisocyanate and hexamethylene diisocyanate (hereinafter referred to as aliphatic diisocyanate). Abbreviated as sulphonate.) Phenylene diisocyanate, aromatic diisocyanates such as toluene diisocyanate, and aromatic aliphatic diisocyanates such as xylylene diisocyanate. These polyisocyanates can be used alone or in combination of two or more, preferably aliphatic diisocyanates and alicyclic diisocyanates. Of these, isophorone diisocyanate, norbornane diisocyanate, toluene diisocyanate and hexamethylene diisocyanate are preferred. Examples of the acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule include trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth). Examples include polyacrylates of polyvalent hydroxy group-containing compounds such as acrylates, adducts of these polyacrylates and ε-caprolactone, adducts of these polyacrylates and alkylene oxides, and epoxy acrylates. It is done. The acrylate having one hydroxy group and one or more (meth) acryloyl groups in one molecule can be used alone or in combination of two or more.
 また、1分子中に1つのヒドロキシ基及び1つ以上の(メタ)アクリロイル基を有するアクリレートのうち、1分子中に1つのヒドロキシ基及び3~5つの(メタ)アクリロイル基を有するアクリレートが好ましい。このようなアクリレートとしては、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等が挙げられる。 Further, among acrylates having one hydroxy group and one or more (meth) acryloyl groups in one molecule, acrylates having one hydroxy group and 3 to 5 (meth) acryloyl groups in one molecule are preferable. Examples of such acrylates include pentaerythritol triacrylate and dipentaerythritol pentaacrylate.
 紫外線硬化型ウレタンアクリレート系樹脂の具体的商品としては、日本合成化学工業株式会社製、紫光UV-1700B、同UV-6300B、同UV-7600B、同UV-7630B、同UV-7640B、共栄社化学株式会社製、UA-306H、UA-306T、UA-306I、UA-510H、新中村化学工業式会社製、NKオリゴ UA-1100H、NKオリゴ UA-53H、NKオリゴ UA-33H、NKオリゴ UA-15HAなどが挙げられる。 Specific products of the UV curable urethane acrylate resin include: Nippon Synthetic Chemical Industry Co., Ltd., Shikou UV-1700B, UV-6300B, UV-7600B, UV-7630B, UV-7630B, UV-7640B, Kyoeisha Chemical Co., Ltd. Company-made, UA-306H, UA-306T, UA-306I, UA-510H, Shin-Nakamura Chemical Co., Ltd., NK Oligo UA-1100H, NK Oligo UA-53H, NK Oligo UA-33H, NK Oligo UA-15HA Etc.
 活性線硬化型樹脂の粘度は、樹脂をディスパーにて撹拌混合し25℃の条件にてB型粘度計を用いて粘度測定を行うことができる。また、単官能アクリレートを用いても良い。 The viscosity of the actinic radiation curable resin can be measured using a B-type viscometer under the condition of 25 ° C. after stirring and mixing the resin with a disper. A monofunctional acrylate may also be used.
 単官能アクリレートとしては、イソボロニルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、イソステアリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、テトラヒドロフルフリルアクリレート、ベヘニルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、シクロヘキシルアクリレートなどが挙げられる。このような単官能アクリレートは、日本化成工業株式会社、新中村化学工業株式会社、大阪有機化学工業株式会社等から入手できる。 Monofunctional acrylates include isobornyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, isostearyl acrylate, benzyl acrylate, ethyl carbitol acrylate, phenoxyethyl acrylate, lauryl acrylate, isooctyl acrylate, tetrahydrofurfuryl acrylate, behenyl Examples thereof include acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and cyclohexyl acrylate. Such monofunctional acrylates can be obtained from Nippon Kasei Kogyo Co., Ltd., Shin-Nakamura Chemical Co., Ltd., Osaka Organic Chemical Co., Ltd., etc.
 単官能アクリレートを用いる場合には、多官能アクリレートと単官能アクリレートの含有質量比で、多官能アクリレート:単官能アクリレート=80:20~98:2の範囲で含有することが好ましい。 When a monofunctional acrylate is used, it is preferably contained in the range of polyfunctional acrylate: monofunctional acrylate = 80: 20 to 98: 2 in terms of the mass ratio of polyfunctional acrylate to monofunctional acrylate.
 〈光重合開始剤〉
 また、ハードコート層には活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂=20:100~0.01:100の範囲で含有することが好ましい。光重合開始剤としては、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及び、これらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
<Photopolymerization initiator>
The hard coat layer preferably contains a photopolymerization initiator to accelerate the curing of the actinic radiation curable resin. The amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: active ray curable resin = 20: 100 to 0.01: 100. Specific examples of the photopolymerization initiator include alkylphenone series, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto. It is not something.
 このような光重合開始剤は市販品を用いてもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。 Commercially available products may be used as such photopolymerization initiators, and preferred examples include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan.
 〈導電剤〉
 ハードコート層には、帯電防止性を付与するために導電剤が含まれていても良い。好ましい導電剤としては、金属酸化物粒子又はπ共役系導電性ポリマーが挙げられる。また、イオン液体も導電性化合物として好ましく用いられる。
<Conductive agent>
The hard coat layer may contain a conductive agent in order to impart antistatic properties. Preferred conductive agents include metal oxide particles or π-conjugated conductive polymers. An ionic liquid is also preferably used as the conductive compound.
 〈レベリング剤〉
 ハードコート層には、表面を平滑にするためにレベリング剤が含まれている。レベリング剤としては、シリコーン系界面活性剤、フッ素系界面活性剤、アニオン界面活性剤、及びフッ素-シロキサングラフト化合物、フッ素系化合物、アクリル共重合物などを用いることができる。一般的に、レベリング剤は親油性が高いので、ハードコート層の表層に配向した場合、対水接触角が大きくなる。
<Leveling agent>
The hard coat layer contains a leveling agent to smooth the surface. As the leveling agent, silicone surfactants, fluorine surfactants, anionic surfactants, fluorine-siloxane graft compounds, fluorine compounds, acrylic copolymers, and the like can be used. In general, since the leveling agent has high lipophilicity, when it is oriented on the surface of the hard coat layer, the contact angle with water becomes large.
 シリコーン系界面活性剤としては、ポリエーテル変性シリコーンなどを挙げることができ、上記信越化学工業社製のKFシリーズなどを挙げることができる。アクリル共重合物としては、ビックケミー・ジャパン社製のBYK-350、BYK-352などの市販品化合物を挙げることができる。フッ素系界面活性剤としては、DIC株式会社製のメガファック RSシリーズ、メガファックF-444メガファックF-556などを挙げることができる。フッ素-シロキサングラフト化合物とは、少なくともフッ素系樹脂に、シロキサン及び/又はオルガノシロキサン単体を含むポリシロキサン及び/又はオルガノポリシロキサンをグラフト化させて得られる共重合体の化合物をいう。このようなフッ素-シロキサングラフト化合物は、後述の実施例に記載されているような方法で調製することができる。あるいは、市販品としては、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等を挙げることができる。またフッ素系化合物としては、ダイキン工業株式会社製のオプツールDSX、オプツールDACなどを挙げることができる。これら成分は、ハードコート組成物中の固形分成分に対し、0.005質量部以上、5質量部以下の範囲で添加することが好ましい。 Examples of the silicone surfactant include polyether-modified silicone, and the KF series manufactured by Shin-Etsu Chemical Co., Ltd. can be used. Examples of the acrylic copolymer include commercially available compounds such as BYK-350 and BYK-352 manufactured by BYK Japan. Examples of the fluorosurfactant include Megafac RS series, Megafac F-444 Megafac F-556 manufactured by DIC Corporation. The fluorine-siloxane graft compound refers to a copolymer compound obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone to at least a fluorine-based resin. Such a fluorine-siloxane graft compound can be prepared by a method as described in Examples described later. Alternatively, examples of commercially available products include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Chemical Industry Co., Ltd. Moreover, as a fluorine-type compound, Daikin Industries Ltd. OPTOOL DSX, OPTOOL DAC, etc. can be mentioned. These components are preferably added in the range of 0.005 parts by mass or more and 5 parts by mass or less with respect to the solid component in the hard coat composition.
 〈紫外線吸収剤〉
 ハードコート層は、紫外線吸収剤をさらに含有しても良い。紫外線吸収剤の含有量としては質量比で、紫外線吸収剤:ハードコート樹脂=0.01:100~10:100の範囲で含有することが好ましい。紫外線吸収剤は400nm以下の紫外線を吸収することため、耐久性を向上させるができる。紫外線吸収剤は、特に波長370nmでの透過率が10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは2%以下である。紫外線吸収剤の具体例としては特に限定されないが、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
<Ultraviolet absorber>
The hard coat layer may further contain an ultraviolet absorber. The content of the ultraviolet absorber is preferably in a mass ratio of ultraviolet absorber: hard coat resin = 0.01: 100 to 10: 100. Since the ultraviolet absorber absorbs ultraviolet rays of 400 nm or less, durability can be improved. In particular, the ultraviolet absorber preferably has a transmittance of 10% or less at a wavelength of 370 nm, more preferably 5% or less, and still more preferably 2% or less. Specific examples of the ultraviolet absorber are not particularly limited. For example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex salts, inorganic powders. Examples include the body.
 より具体的には、例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等を用いることができる。これらは、市販品を用いてもよく、例えば、BASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328等のチヌビン類を好ましく使用できる。 More specifically, for example, 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazol-2-yl) -6 -(Linear and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, and the like can be used. Commercially available products may be used. For example, TINUVIN such as TINUVIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, and TINUVIN 328 manufactured by BASF Japan Ltd. can be preferably used.
 好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤などである。 Preferably used ultraviolet absorbers are benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers, and particularly preferably benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
 この他、1,3,5トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特にポリマータイプの紫外線吸収剤が好ましく用いられる。 In addition, a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as an ultraviolet absorber. As the UV absorber, a polymer UV absorber can be preferably used, and a polymer type UV absorber is particularly preferably used.
 ベンゾトリアゾール系紫外線吸収剤としては、市販品であるBASFジャパン社製のTINUVIN 109(オクチル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートと2-エチルヘキシル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートの混合物)、TINUVIN 928(2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール)などを用いることができる。トリアジン系紫外線吸収剤としては、市販品であるBASFジャパン社製のTINUVIN 400(2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルとオキシランとの反応生成物)、TINUVIN 460(2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン)、TINUVIN 405(2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物)などを用いることができる。 As the benzotriazole ultraviolet absorber, TINUVIN 109 (octyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazole-2-) manufactured by BASF Japan Ltd., which is a commercial product, is available. Yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate), TINUVIN 928 (2 -(2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol) and the like can be used. As the triazine-based ultraviolet absorber, commercially available TINUVIN 400 (2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -manufactured by BASF Japan Ltd.- Reaction product of 5-hydroxyphenyl and oxirane), TINUVIN 460 (2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) -1,3-5 Triazine), TINUVIN 405 (2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid ester Reaction products) and the like.
 〈溶剤〉
 ハードコート層は、上記したハードコート層を形成する成分を、基材となるフィルムを膨潤又は一部溶解をする溶剤で希釈してハードコート層組成物として、以下の方法でフィルム上に塗布、乾燥、硬化してハードコート層を設けることが好ましい。
<solvent>
The hard coat layer is a component that forms the above-described hard coat layer, diluted with a solvent that swells or partially dissolves the film as a base material, and is applied onto the film by the following method as a hard coat layer composition. It is preferable to provide a hard coat layer by drying and curing.
 溶剤としては、ケトン(メチルエチルケトン、アセトンなど)及び/又は酢酸エステル(酢酸メチル、酢酸エチル、酢酸ブチルなど)、アルコール(エタノール、メタノール)、プロピレングリコールモノメチルエーテル、シクロヘキサノン、メチルイソブチルケトンなどが好ましい。ハードコート層の塗布量はウェット膜厚として0.1~40μmの範囲が適当で、好ましくは0.5~30μmの範囲である。また、ドライ膜厚としては平均膜厚0.01~20μmの範囲、好ましくは0.5~10μmの範囲である。より好ましくは、0.5~5μmの範囲である。 As the solvent, ketones (methyl ethyl ketone, acetone, etc.) and / or acetate esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (ethanol, methanol), propylene glycol monomethyl ether, cyclohexanone, methyl isobutyl ketone, etc. are preferable. The coating amount of the hard coat layer is suitably in the range of 0.1 to 40 μm as wet film thickness, and preferably in the range of 0.5 to 30 μm. The dry film thickness is in the range of an average film thickness of 0.01 to 20 μm, preferably in the range of 0.5 to 10 μm. More preferably, it is in the range of 0.5 to 5 μm.
 ハードコート層の塗布方法は、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、及びインクジェット法等の公知の方法を用いることができる。 As a method for applying the hard coat layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used.
 〈ハードコート層形成方法〉
 ハードコート層組成物塗布後、乾燥し、活性線を照射して硬化(UV硬化処理ともいう。)し、更に必要に応じて、UV硬化処理後に加熱処理しても良い。UV硬化処理後の加熱処理温度としては80℃以上が好ましく、更に好ましくは100℃以上であり、特に好ましくは120℃以上である。このような高温でUV硬化処理後の加熱処理を行うことで、膜強度に優れたハードコート層を得ることができる。
<Hard coat layer forming method>
After applying the hard coat layer composition, it may be dried and cured by irradiation with active rays (also referred to as UV curing treatment), and if necessary, heat treatment may be performed after the UV curing treatment. The heat treatment temperature after the UV curing treatment is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. By performing the heat treatment after the UV curing treatment at such a high temperature, a hard coat layer having excellent film strength can be obtained.
 乾燥は、減率乾燥区間の温度を90℃以上の高温処理で行うことが好ましい。更に好ましくは、減率乾燥区間の温度は90℃以上、125℃以下である。 Drying is preferably performed by high-temperature treatment at a temperature of 90 ° C. or higher in the rate of drying section. More preferably, the temperature in the decreasing rate drying section is 90 ° C. or higher and 125 ° C. or lower.
 一般に乾燥プロセスは、乾燥が始まると、乾燥速度が一定の状態から徐々に減少する状態へと変化していくことが知られており、乾燥速度が一定の区間を恒率乾燥区間、乾燥速度が減少していく区間を減率乾燥区間と呼ぶ。恒率乾燥区間においては流入する熱量は全て塗膜表面の溶媒蒸発に費やされており、塗膜表面の溶媒が少なくなると蒸発面が表面から内部に移動して減率乾燥区間に入る。これ以降は塗膜表面の温度が上昇し熱風温度に近づいていくため、活性線硬化型樹脂組成物の温度が上昇し、樹脂粘度が低下して流動性が増すと考えられる。 In general, it is known that the drying process changes from a constant state to a gradually decreasing state when drying starts. The decreasing section is called the decreasing rate drying section. In the constant rate drying section, the amount of heat flowing in is all consumed for solvent evaporation on the coating film surface, and when the solvent on the coating film surface decreases, the evaporation surface moves from the surface to the inside and enters the decreasing rate drying section. Thereafter, the temperature of the coating film surface rises and approaches the hot air temperature, so that the temperature of the actinic radiation curable resin composition rises, the resin viscosity decreases, and the fluidity increases.
 UV硬化処理の光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。 As a light source for UV curing treatment, any light source that generates ultraviolet rays can be used without limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
 照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常50~1000mJ/cmの範囲、好ましくは50~300mJ/cmの範囲である。また、UV硬化処理では酸素による反応阻害を防止するため、酸素除去(例えば、窒素パージなどの不活性ガスによる置換)を行うこともできる。酸素濃度の除去量を調整することで、表面の硬化状態を制御できる。活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30~300N/mが好ましい。張力を付与する方法は特に限定されず、バックローラー上で搬送方向に張力を付与してもよく、テンターにて幅方向、又は2軸方向に張力を付与してもよい。これによって更に平面性の優れたフィルムを得ることができる。 Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually in the range of 50 to 1000 mJ / cm 2 , preferably in the range of 50 to 300 mJ / cm 2 . In the UV curing treatment, oxygen removal (for example, replacement with an inert gas such as nitrogen purge) can be performed to prevent reaction inhibition by oxygen. The cured state of the surface can be controlled by adjusting the removal amount of the oxygen concentration. When irradiating actinic radiation, it is preferably performed while applying tension in the film transport direction, and more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying the tension is not particularly limited, and the tension may be applied in the transport direction on the back roller, or the tension may be applied in the width direction or the biaxial direction by a tenter. Thereby, a film having further excellent flatness can be obtained.
 次に、ハードコート層を硬化させた後、波長が200nmより短い光を含む光を照射する。例えばエキシマー光源や低圧水銀ランプが挙げられる。波長が200nmより短い光は、ハードコート層の表層のレベリング剤を分解するとともに、波長が200nmより短い光の少なくとも一部はハードコート層の表層のハードコート樹脂で吸収される。その結果、ハードコート層の対水接触角を低接触角化することができるとともに、表層以外のハードコート樹脂や基材となる樹脂フィルムの分解を抑制することができる。この低接触角化はレベリング剤が分解されることによって達成されていると考えられるため、経時変化することはほとんどない。 Next, after the hard coat layer is cured, light including light having a wavelength shorter than 200 nm is irradiated. For example, an excimer light source or a low-pressure mercury lamp can be used. Light having a wavelength shorter than 200 nm decomposes the leveling agent on the surface layer of the hard coat layer, and at least a part of light having a wavelength shorter than 200 nm is absorbed by the hard coat resin on the surface layer of the hard coat layer. As a result, the contact angle with water of the hard coat layer can be lowered, and decomposition of the hard coat resin other than the surface layer and the resin film serving as the substrate can be suppressed. This reduction in contact angle is considered to be achieved by the decomposition of the leveling agent, and therefore hardly changes with time.
 波長が200nmより短い光を含む光として、エキシマー光を照射する場合、エキシマー光が含む光の波長の範囲が100nm以上230nm以下の範囲内であることが好ましい。波長が短すぎるとハードコート樹脂を劣化させてしまい、波長が長すぎるとレベリング剤を分解することができないからである。このような波長の光源としては、例えば、キセノンランプを用いることができる。 When irradiating excimer light as light containing light having a wavelength shorter than 200 nm, it is preferable that the wavelength range of the light contained in the excimer light be in the range of 100 nm to 230 nm. This is because if the wavelength is too short, the hard coat resin is deteriorated, and if the wavelength is too long, the leveling agent cannot be decomposed. As the light source having such a wavelength, for example, a xenon lamp can be used.
 キセノンランプに用いられるXeは希ガスであり、希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。Xeの場合は、
 e+Xe→e+Xe
 Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマー分子であるXe が基底状態に遷移するときに172nmのエキシマー光を発光する。
Xe used in a xenon lamp is a rare gas, and since the atoms of the rare gas are chemically bonded to form no molecule, it is called an inert gas. However, rare gas atoms (excited atoms) that have gained energy by discharge or the like can be combined with other atoms to form molecules. For Xe,
e + Xe → e + Xe *
Xe * + Xe + Xe → Xe 2 * + Xe
Thus, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer light of 172 nm is emitted.
 エキシマー光を得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマーランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる雷に似た非常に細いmicro dischargeと呼ばれる放電である。 In order to obtain excimer light, a method using dielectric barrier discharge is known. Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. It is a similar very thin discharge called micro-discharge.
 また、効率よくエキシマー光を得る方法としては、誘電体バリア放電以外には無電極電界放電も知られている。無電極電界放電とは、容量性結合による放電であり、別名RF放電とも呼ばれる。ランプと電極及びその配置は、基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られる。 In addition to the dielectric barrier discharge, electrodeless electric field discharge is also known as a method for efficiently obtaining excimer light. The electrodeless field discharge is a discharge due to capacitive coupling, and is also called an RF discharge. The lamp, the electrode, and the arrangement thereof may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. In the electrodeless field discharge, a spatially and temporally uniform discharge can be obtained in this way.
 そして、キセノンランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この172nmという高いエネルギーによって、短時間でハードコート層の表層のレベリング剤を分解することができる。 The xenon lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength and thus has excellent luminous efficiency. With this high energy of 172 nm, the leveling agent on the surface layer of the hard coat layer can be decomposed in a short time.
 また、エキシマーランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を有する。このため、熱の影響を受けやすい樹脂フィルムへの照射にも適している。 Also, since the excimer lamp has high light generation efficiency, it can be turned on with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the irradiation object is suppressed. For this reason, it is also suitable for irradiation to a resin film that is easily affected by heat.
 (フィルム)
 本実施形態で用いる樹脂フィルムは未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。例えば、アクリル系樹脂、ポリカーボネート系樹脂、シクロオレフィン系樹脂、ポリエステル系樹脂、ポリ乳酸系樹脂、ポリビニルアルコール系樹脂、セルロース系樹脂などを用いることができる。中でも、耐熱性を考慮して、セルロース系樹脂を用いることが好ましい。
(the film)
The resin film used in this embodiment may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression. For example, acrylic resin, polycarbonate resin, cycloolefin resin, polyester resin, polylactic acid resin, polyvinyl alcohol resin, cellulose resin, and the like can be used. Among these, it is preferable to use a cellulose resin in consideration of heat resistance.
 〈セルロース系樹脂〉
 樹脂フィルムに用いるセルロース系樹脂としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、シアノエチルセルロースなどのセルロースエーテル類と、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート(CAB)、セルロースアセテートフタレート、セルロースアセテートトリメリテート、硝酸セルロース等のセルロースエステル類が挙げられるが、好ましくはセルロースエステル類である。あるいは、特開2002-179701号公報の段落番号[0010]~[0027]記載の芳香族カルボン酸エステルが用いられ、特に特開2002-17979号公報の段落番号[0028]~[0036]のセルロースアシレートが好ましく用いられる。
<Cellulosic resin>
Cellulosic resins used for the resin film include cellulose ethers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, cyanoethyl cellulose, triacetyl cellulose (TAC), diacetyl cellulose (DAC), cellulose acetate propionate (CAP). ), Cellulose esters such as cellulose acetate butyrate (CAB), cellulose acetate phthalate, cellulose acetate trimellitate, and cellulose nitrate, and cellulose esters are preferred. Alternatively, aromatic carboxylic acid esters described in paragraph numbers [0010] to [0027] of JP-A No. 2002-179701 are used, and in particular, celluloses of paragraph numbers [0028] to [0036] of JP-A No. 2002-17979. Acylate is preferably used.
 セルロース系樹脂の原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。また、これらから得られたセルロース系樹脂は、それぞれを単独あるいは任意の割合で混合使用することができるが、綿花リンターを50質量%以上使用することが好ましい。 The cellulose used as the raw material for the cellulose resin is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, although the cellulose resin obtained from these can be used individually or in mixture of arbitrary ratios, it is preferable to use 50 mass% or more of cotton linters.
 セルロースエステルの分子量が大きいと弾性率が大きくなるが、分子量を上げ過ぎるとセルロースエステルの溶解液の粘度が高くなり過ぎるため生産性が低下する。セルロースエステルの分子量は数平均分子量で70000~200000のものが好ましく、100000~200000のものが更に好ましい。本実施形態で用いるセルロースエステルは、重量平均分子量をMwとし、数平均分子量をMnとして、Mw/Mn比が1.4~3.0であることが好ましく、更に好ましくは1.4~2.3である。 When the molecular weight of the cellulose ester is large, the elastic modulus is increased. However, when the molecular weight is excessively increased, the viscosity of the solution of the cellulose ester becomes too high, and the productivity is lowered. The molecular weight of the cellulose ester is preferably 70000-200000 in terms of number average molecular weight, more preferably 100000-200000. The cellulose ester used in the present embodiment preferably has a weight average molecular weight of Mw, a number average molecular weight of Mn, and a Mw / Mn ratio of 1.4 to 3.0, more preferably 1.4 to 2. 3.
 セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用いて測定することができるので、これを用いて数平均分子量(Mn)、重量平均分子量(Mw)を算出し、その比を計算することができる。なお、測定条件は以下の通りである。 Since the average molecular weight and molecular weight distribution of cellulose ester can be measured using high performance liquid chromatography, the number average molecular weight (Mn) and the weight average molecular weight (Mw) are calculated using this, and the ratio is calculated. be able to. Measurement conditions are as follows.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806,K805,K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1,000,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw = 1,000,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.
 セルロースエステルの総アシル基置換度は1.0~2.9のものが好ましく用いられ、更に好ましくは1.5~2.9である。総アシル基置換度はASTM-D817-96に準じて測定することができる。 The total acyl group substitution degree of cellulose ester is preferably 1.0 to 2.9, more preferably 1.5 to 2.9. The total degree of acyl group substitution can be measured according to ASTM-D817-96.
 〈添加剤〉
 本実施形態のフィルムには、フィルムに加工性・柔軟性・防湿性を付与する可塑剤、紫外線吸収機能を付与する紫外線吸収剤、フィルムに滑り性を付与する微粒子(マット剤)、フィルムの劣化を防止する酸化防止剤等を含有させてもよい。
<Additive>
The film of the present embodiment includes a plasticizer that imparts processability, flexibility, and moisture resistance to the film, an ultraviolet absorber that imparts an ultraviolet absorption function, fine particles (matting agent) that impart slipperiness to the film, and deterioration of the film. You may contain the antioxidant etc. which prevent this.
 《可塑剤》
 用いられる可塑剤しては特に限定はないが、フィルムにヘイズを発生させたり、フィルムからブリードアウトや揮発が生じないように、接着層と相互作用可能である官能基を有していることが好ましい。
《Plasticizer》
There is no particular limitation on the plasticizer used, but it has a functional group capable of interacting with the adhesive layer so as not to cause haze or bleed out or volatilization from the film. preferable.
 このような官能基としては、水酸基、エーテル基、カルボニル基、エステル基、カルボン酸残基、アミノ基、イミノ基、アミド基、イミド基、シアノ基、ニトロ基、スルホニル基、スルホン酸残基、ホスホニル基、ホスホン酸残基等が挙げられるが、好ましくはカルボニル基、エステル基、ホスホニル基である。 Examples of such functional groups include hydroxyl groups, ether groups, carbonyl groups, ester groups, carboxylic acid residues, amino groups, imino groups, amide groups, imide groups, cyano groups, nitro groups, sulfonyl groups, sulfonic acid residues, Examples thereof include a phosphonyl group and a phosphonic acid residue, and a carbonyl group, an ester group and a phosphonyl group are preferred.
 このような可塑剤の例として、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、多価アルコールエステル系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、カルボン酸エステル系可塑剤、ポリエステル系可塑剤などを好ましく用いることができる。特に好ましくは、多価アルコールエステル系可塑剤、グリコレート系可塑剤、多価カルボン酸エステル系可塑剤等の非リン酸エステル系可塑剤である。 Examples of such plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol ester plasticizers, glycolate plasticizers. Agents, citrate plasticizers, fatty acid ester plasticizers, carboxylic acid ester plasticizers, polyester plasticizers, and the like can be preferably used. Particularly preferred are non-phosphate ester plasticizers such as polyhydric alcohol ester plasticizers, glycolate plasticizers, and polycarboxylic acid ester plasticizers.
 多価アルコールエステルは、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなり、分子内に芳香環またはシクロアルキル環を有することが好ましい。 The polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
 《紫外線吸収剤》
 本実施形態のフィルムには、紫外線吸収剤を含有させてもよい。なお、フィルム上に紫外線吸収機能を持つ層を形成してもよい。
<Ultraviolet absorber>
The film of this embodiment may contain an ultraviolet absorber. A layer having an ultraviolet absorbing function may be formed on the film.
 紫外線吸収機能のある紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。好ましく用いられる紫外線吸収剤の具体例としては、例えばトリアジン系化合物、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などが挙げられるが、これらに限定されない。また、特開平6-148430号公報に記載の高分子紫外線吸収剤も好ましく用いられる。 As the ultraviolet absorber having an ultraviolet absorbing function, those having an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less and little absorption of visible light having a wavelength of 400 nm or more are preferably used. Specific examples of preferably used ultraviolet absorbers include triazine compounds, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these. Further, a polymeric ultraviolet absorber described in JP-A-6-148430 is also preferably used.
 《マット剤》
 本実施形態のフィルムには、滑り性を付与するためにマット剤等の微粒子を添加することができる。微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。
《Matting agent》
To the film of this embodiment, fine particles such as a matting agent can be added in order to impart slipperiness. Examples of the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
 無機化合物の例としては、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化錫等の微粒子が挙げられる。この中では、ケイ素原子を含有する化合物であることが好ましく、特に二酸化ケイ素微粒子が好ましい。二酸化ケイ素微粒子としては、例えばアエロジル(株)製のAEROSIL 200、200V、300、R972、R972V、R974、R202、R812、R805、OX50、TT600などが挙げられる。 Examples of inorganic compounds include fine particles such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, and tin oxide. In this, it is preferable that it is a compound containing a silicon atom, and especially a silicon dioxide fine particle is preferable. Examples of the silicon dioxide fine particles include AEROSIL 200, 200V, 300, R972, R972V, R974, R202, R812, R805, OX50, and TT600 manufactured by Aerosil Co., Ltd.
 有機化合物の例としては、アクリル樹脂、シリコーン樹脂、フッ素化合物樹脂、ウレタン樹脂等が挙げられる。 Examples of organic compounds include acrylic resins, silicone resins, fluorine compound resins, and urethane resins.
 《酸化防止剤》
 酸化防止剤は、劣化防止剤ともいわれる。高湿高温の状態に置かれた場合には、光学フィルムの劣化が起こる場合がある。酸化防止剤は、例えば、光学フィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等により光学フィルムが分解するのを遅らせたり、防いだりする役割を有するので、光学フィルム中に含有させるのが好ましい。
"Antioxidant"
Antioxidants are also referred to as deterioration inhibitors. When placed in a high humidity and high temperature state, the optical film may deteriorate. Antioxidants have the role of delaying or preventing the optical film from being decomposed by, for example, the residual solvent amount of halogen in the optical film or phosphoric acid of the phosphoric acid plasticizer, so it is contained in the optical film. It is preferable to do so.
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。 As such an antioxidant, a hindered phenol compound is preferably used, and in particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate] and triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] are preferred. Further, for example, hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di- A phosphorus processing stabilizer such as t-butylphenyl) phosphite may be used in combination.
 (その他の層)
 本実施形態のハードコートフィルムには、反射防止層や導電性層等、その他の層を設けることができる。
(Other layers)
The hard coat film of this embodiment can be provided with other layers such as an antireflection layer and a conductive layer.
 〈反射防止層〉
 本実施形態のハードコートフィルムは、ハードコート層上に反射防止層を塗設して、外光反射防止機能を有する反射防止フィルムとして用いることができる。
<Antireflection layer>
The hard coat film of this embodiment can be used as an antireflection film having an antireflection function for external light by coating an antireflection layer on the hard coat layer.
 反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体である保護フィルムよりも屈折率の低い低屈折率層、若しくは支持体である保護フィルムよりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが好ましい。特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。又は、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。層構成としては下記のような構成が考えられるが、これに限定されるものではない。
セルロースエステルフィルム/ハードコート層/低屈折率層
セルロースエステルフィルム/ハードコート層/高屈折率層/低屈折率層
セルロースエステルフィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
ハードコート層/セルロースエステルフィルム/ハードコート層/低屈折率層
ハードコート層/セルロースエステルフィルム/ハードコート層/高屈折率層/低屈折率層
ハードコート層/セルロースエステルフィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
低屈折率層/ハードコート層/セルロースエステルフィルム/ハードコート層/低屈折率層
The antireflection layer is preferably laminated in consideration of the refractive index, the film thickness, the number of layers, the layer order, and the like so that the reflectance is reduced by optical interference. The antireflection layer is composed of a low refractive index layer having a lower refractive index than the protective film as the support, or a combination of a high refractive index layer and a low refractive index layer having a higher refractive index than the protective film as the support. Preferably it is. Particularly preferably, it is an antireflection layer composed of three or more refractive index layers, and three layers having different refractive indexes from the support side are divided into medium refractive index layers (high refractive index layers having a higher refractive index than the support). Are preferably laminated in the order of a layer having a lower refractive index) / a high refractive index layer / a low refractive index layer. Alternatively, an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used. As the layer structure, the following structure is conceivable, but is not limited thereto.
Cellulose ester film / hard coat layer / low refractive index layer cellulose ester film / hard coat layer / high refractive index layer / low refractive index layer cellulose ester film / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index Layer hard coat layer / cellulose ester film / hard coat layer / low refractive index layer hard coat layer / cellulose ester film / hard coat layer / high refractive index layer / low refractive index layer hard coat layer / cellulose ester film / hard coat layer / Medium refractive index layer / high refractive index layer / low refractive index layer low refractive index layer / hard coat layer / cellulose ester film / hard coat layer / low refractive index layer
 《低屈折率層》
 低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、23℃、波長550nm測定で、1.30~1.45の範囲であることが好ましい。
<Low refractive index layer>
The low refractive index layer preferably contains silica-based fine particles, and the refractive index is preferably in the range of 1.30 to 1.45 when measured at 23 ° C. and wavelength of 550 nm.
 低屈折率層の膜厚は、5nm~0.5μmの範囲内であることが好ましく、10nm~0.3μmの範囲内であることが更に好ましく、30nm~0.2μmの範囲内であることが最も好ましい。 The film thickness of the low refractive index layer is preferably in the range of 5 nm to 0.5 μm, more preferably in the range of 10 nm to 0.3 μm, and in the range of 30 nm to 0.2 μm. Most preferred.
 低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質又は空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質又は空洞である粒子が、中空シリカ系微粒子であることが好ましい。 The composition for forming a low refractive index layer preferably contains at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. In particular, the particles having the outer shell layer and porous or hollow inside are preferably hollow silica-based fine particles.
 なお、低屈折率層形成用組成物には、下記一般式(OSi-1)で表される有機珪素化合物若しくはその加水分解物、あるいは、その重縮合物を併せて含有させても良い。 The composition for forming a low refractive index layer may contain an organosilicon compound represented by the following general formula (OSi-1) or a hydrolyzate thereof, or a polycondensate thereof.
 一般式(OSi-1):Si(OR)
 一般式で表される有機珪素化合物は、式中、Rは炭素数1~4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
General formula (OSi-1): Si (OR) 4
In the organosilicon compound represented by the general formula, R represents an alkyl group having 1 to 4 carbon atoms. Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
 他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。またフッ素原子を35~80質量%の範囲で含み、且つ架橋性若しくは重合性の官能基を含む含フッ素化合物を主としてなる熱硬化性及び/又は光硬化性を有する化合物を含有しても良い。具体的には含フッ素ポリマー、あるいは含フッ素ゾルゲル化合物などである。含フッ素ポリマーとしては、例えばパーフルオロアルキル基含有シラン化合物〔例えば(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン〕の加水分解物や脱水縮合物の他、含フッ素モノマー単位と架橋反応性単位とを構成単位とする含フッ素共重合体が挙げられる。その他、溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。 In addition, a solvent, and if necessary, a silane coupling agent, a curing agent, a surfactant and the like may be added. Further, it may contain a thermosetting and / or photocurable compound mainly containing a fluorine-containing compound containing a fluorine atom in a range of 35 to 80% by mass and containing a crosslinkable or polymerizable functional group. Specifically, a fluorine-containing polymer or a fluorine-containing sol-gel compound is used. Examples of the fluorine-containing polymer include hydrolysates and dehydration condensates of perfluoroalkyl group-containing silane compounds [eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane], and fluorine-containing monomers. Examples thereof include fluorine-containing copolymers having units and cross-linking reactive units as constituent units. In addition, you may add a solvent, a silane coupling agent, a hardening | curing agent, surfactant, etc. as needed.
 《高屈折率層》
 高屈折率層の屈折率は、23℃、波長550nm測定で、屈折率を1.4~2.2の範囲に調整することが好ましい。また、高屈折率層の厚さは5nm~1μmが好ましく、10nm~0.2μmであることが更に好ましく、30nm~0.1μmであることが最も好ましい。屈折率を調整する手段は、金属酸化物微粒子等を添加することで達成できる。 また用いる金属酸化物微粒子の屈折率は1.80~2.60であるものが好ましく、1.85~2.50であるものが更に好ましい。
《High refractive index layer》
The refractive index of the high refractive index layer is preferably adjusted to a range of 1.4 to 2.2 by measuring at 23 ° C. and a wavelength of 550 nm. The thickness of the high refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like. The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.
 金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができる。 The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from can be used.
 〈導電性層〉
 ハードコートフィルムには、ハードコート層上に導電性層を形成しても良い。設けられる導電性層としては、一般的に広く知られた導電性材料を用いることができる。例えば、酸化インジウム、酸化錫、酸化インジウム錫、金、銀、パラジウム等の金属酸化物を用いることができる。これらは、真空蒸着法、スパッタリング法、イオンプレーティング法、溶液塗布法等により、ハードコートフィルム上に薄膜として形成することができる。また、π共役系導電性ポリマーである有機導電性材料を用いて、導電性層を形成することも可能である。
<Conductive layer>
In the hard coat film, a conductive layer may be formed on the hard coat layer. As the conductive layer provided, a generally well-known conductive material can be used. For example, metal oxides such as indium oxide, tin oxide, indium tin oxide, gold, silver, and palladium can be used. These can be formed as a thin film on the hard coat film by vacuum deposition, sputtering, ion plating, solution coating, or the like. Alternatively, the conductive layer can be formed using an organic conductive material that is a π-conjugated conductive polymer.
 特に、透明性、導電性に優れ、比較的低コストに得られる酸化インジウム、酸化錫又は酸化インジウム錫のいずれかを主成分とした導電性材料を好適に使用することができる。導電性層の厚さは、適用する材料によっても異なるため一概には言えないが、表面抵抗率で1000Ω以下、好ましくは500Ω以下になるような厚さであって、経済性をも考慮すると、10nm以上、好ましくは20nm以上、80nm以下、好ましくは70nm以下の範囲が好適である。このような薄膜においては導電性層の厚さムラに起因する可視光の干渉縞は発生しにくい。 In particular, a conductive material that is excellent in transparency and conductivity, and that has a main component of any one of indium oxide, tin oxide, and indium tin oxide obtained at a relatively low cost can be suitably used. Although the thickness of the conductive layer varies depending on the material to be applied, it cannot be said unconditionally. However, the surface resistivity is 1000Ω or less, preferably 500Ω or less, and considering the economy, A range of 10 nm or more, preferably 20 nm or more and 80 nm or less, preferably 70 nm or less is suitable. In such a thin film, visible light interference fringes due to uneven thickness of the conductive layer are unlikely to occur.
 〔偏光板〕
 本実施形態のハードコートフィルムを用いた偏光板について述べる。偏光板は一般的な方法で作製することができる。
〔Polarizer〕
A polarizing plate using the hard coat film of this embodiment will be described. The polarizing plate can be produced by a general method.
 例えば、本実施形態のハードコートフィルムのハードコート層側を、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面は、該ハードコートフィルムを用いても、上述したフィルムを用いてもよい。また、市販品である、KC8UX、KC4UX、KC4UY、KC8UY、KC6UA、KC4UA、KC4UE、KC4CZ、KC8UCR、KC4FR(コニカミノルタアドバンストレイヤー(株)製)、アートンフィルム(JSR(株)製)、ゼオノアフィルム(日本ゼオン(株)製)等を用いることができる。 For example, it is preferable that the hard coat layer side of the hard coat film of the present embodiment is bonded to at least one surface of a polarizing film produced by immersing and stretching in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. The other surface may use the hard coat film or the above-described film. In addition, commercially available products such as KC8UX, KC4UX, KC4UY, KC8UY, KC6UA, KC4UA, KC4UE, KC4CZ, KC8UCR, KC4FR (manufactured by Konica Minolta Advanced Layer Co., Ltd.), Arton Film (manufactured by JSR Corporation), Zeor Film Nippon Zeon Co., Ltd.) can be used.
 偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるが、これのみに限定されるものではない。 The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are those in which iodine is dyed on a system film and those in which dichroic dye is dyed, but it is not limited to this.
 偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられる。偏光膜の膜厚は5~30μmの範囲、好ましくは8~15μmの範囲である。 For the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxial stretching or dyeing, or after uniaxial stretching after dyeing, a film subjected to durability treatment with a boron compound is preferably used. The thickness of the polarizing film is in the range of 5 to 30 μm, preferably in the range of 8 to 15 μm.
 該偏光膜の面上に、本実施形態のハードコートフィルムのハードコート面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。 The polarizing plate is formed by bonding the hard coat surface of the hard coat film of the present embodiment on the surface of the polarizing film. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like.
 〔実施例〕
 以下、本発明の具体例を実施例として説明する。また、本発明との比較のため、比較例についても併せて説明する。なお、本発明は、以下の実施例に限定されるものではない。なお、以下での説明において、「部」あるいは「%」の表示は、特に断りがない限り、「質量部」あるいは「質量%」を表すものとする。
〔Example〕
Hereinafter, specific examples of the present invention will be described as examples. For comparison with the present invention, comparative examples will also be described. The present invention is not limited to the following examples. In the following description, “parts” or “%” indicates “parts by mass” or “mass%” unless otherwise specified.
 <フィルム>
 ハードコートフィルムの基材となるフィルムとして、コニカミノルタ(株)製のトリアセチルセルロースフィルムであるKC4UAW(厚み40μm)を用意した。
<Film>
KC4UAW (thickness: 40 μm), which is a triacetylcellulose film manufactured by Konica Minolta, Inc., was prepared as a film serving as a base material for the hard coat film.
 <ハードコート層組成物A>
 下記の比率で材料を混合し、孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層組成物Aを調製した。
 (活性線硬化樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(NKエステルA-TMM-3L、新中村化学工業(株)製)            55質量部
 トリメチロールプロパントリアクリレート(A-TMPT、新中村化学工業(株)製)                       45質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン(株)製)      6質量部
 (レベリング剤)
 フッ素-シロキサングラフト化合物(35質量%)      2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル         20質量部
 酢酸メチル                       30質量部
 メチルエチルケトン                   70質量部
<Hard Coat Layer Composition A>
The materials were mixed at the following ratio, and filtered through a polypropylene filter having a pore diameter of 0.4 μm to prepare a hard coat layer composition A.
(Actinic radiation curable resin)
Pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 55 parts by mass Trimethylolpropane triacrylate (A-TMPT, manufactured by Shin-Nakamura Chemical Co., Ltd.) 45 parts by mass ( Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 6 parts by mass (leveling agent)
Fluorine-siloxane graft compound (35% by mass) 2 parts by mass (solvent)
Propylene glycol monomethyl ether 20 parts by weight Methyl acetate 30 parts by weight Methyl ethyl ketone 70 parts by weight
 〈フッ素-シロキサングラフト化合物の調製〉
 上記のフッ素-シロキサングラフト化合物は下記の材料を用い、下記のようにラジカル重合性フッ素樹脂を合成してから調製した。
 ラジカル重合性フッ素樹脂(A):セフラルコートCF-803(ヒドロキシ基価60、数平均分子量15000;セントラル硝子(株)製)
 片末端ラジカル重合性ポリシロキサン(B):サイラプレーンFM-0721(数平均分子量5000;チッソ(株)製)
 ラジカル重合開始剤:パーブチルO(t-ブチルパーオキシ-2-エチルヘキサノエート;日本油脂(株)製)
 硬化剤:スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;住化バイエルウレタン(株)製)
<Preparation of fluorine-siloxane graft compound>
The above-mentioned fluorine-siloxane graft compound was prepared by synthesizing a radical polymerizable fluororesin as described below using the following materials.
Radical polymerizable fluororesin (A): Cefal coat CF-803 (hydroxy group number 60, number average molecular weight 15000; manufactured by Central Glass Co., Ltd.)
One-end radically polymerizable polysiloxane (B): Silaplane FM-0721 (number average molecular weight 5000; manufactured by Chisso Corporation)
Radical polymerization initiator: Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
Curing agent: Sumidur N3200 (biuret type prepolymer of hexamethylene diisocyanate; manufactured by Sumika Bayer Urethane Co., Ltd.)
 《ラジカル重合性フッ素樹脂の合成》
 機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記セフラルコートCF-803(1554質量部)、キシレン(233質量部)、及び2-イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱した。80℃で2時間反応し、サンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂を得た。
<< Synthesis of radical polymerizable fluororesin >>
Into a glass reactor equipped with a mechanical stirrer, thermometer, condenser and dry nitrogen gas inlet, the above-mentioned cefal coat CF-803 (1554 parts by mass), xylene (233 parts by mass), and 2-isocyanatoethyl methacrylate ( 6.3 parts by mass) and heated to 80 ° C. in a dry nitrogen atmosphere. After reacting at 80 ° C. for 2 hours and confirming that the absorption of isocyanate disappeared by the infrared absorption spectrum of the sampled material, the reaction mixture was taken out to obtain 50% by mass of a radically polymerizable fluororesin via a urethane bond. .
 《フッ素-シロキサングラフト化合物の調製》
 機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(26.1質量部)、キシレン(19.5質量部)、酢酸n-ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n-ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2-ヒドロキシエチルメタクリレート(1.8質量部)、上記FM-0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1部)を追加し、さらに90℃で5時間保持することによって、重量平均分子量が171000である35質量%フッ素-シロキサングラフト化合物の溶液を得た。重量平均分子量はGPCにより求めた。また、フッ素-シロキサングラフト化合物の質量%は、HPLC(液体クロマトグラフィー)により求めた。
<< Preparation of fluorine-siloxane graft compound >>
In a glass reactor equipped with a mechanical stirrer, thermometer, condenser and dry nitrogen gas inlet, the above synthesized radical polymerizable fluororesin (26.1 parts by mass), xylene (19.5 parts by mass), acetic acid n-butyl (16.3 parts by mass), methyl methacrylate (2.4 parts by mass), n-butyl methacrylate (1.8 parts by mass), lauryl methacrylate (1.8 parts by mass), 2-hydroxyethyl methacrylate (1 8 parts by mass), FM-0721 (5.2 parts by mass), and perbutyl O (0.1 parts by mass) were heated to 90 ° C. in a nitrogen atmosphere, and held at 90 ° C. for 2 hours. Perbutyl O (0.1 part) was added, and the mixture was further maintained at 90 ° C. for 5 hours to obtain a 35 mass% fluorine-siloxane graft compound solution having a weight average molecular weight of 171,000. The weight average molecular weight was determined by GPC. The mass% of the fluorine-siloxane graft compound was determined by HPLC (liquid chromatography).
 <ハードコート層組成物B>
 下記の比率で材料を混合し、孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層組成物Bを調製した。
 (活性線硬化樹脂)
 ペンタエリスリトールトリ/テトラアクリレート(NKエステルA-TMM-3L、新中村化学工業(株)製)            55質量部
 トリメチロールプロパントリアクリレート(A-TMPT、新中村化学工業(株)製)                       45質量部
 (光重合開始剤)
 イルガキュア184(BASFジャパン(株)製)      6質量部
 (レベリング剤)
 BYK-UV3510(ポリエーテル変性ポリジメチルシロキサン、ビックケミー・ジャパン株式会社製                2質量部
 (溶剤)
 プロピレングリコールモノメチルエーテル         20質量部
 酢酸メチル                       30質量部
 メチルエチルケトン                   70質量部
<Hard Coat Layer Composition B>
The materials were mixed at the following ratio, and filtered through a polypropylene filter having a pore size of 0.4 μm to prepare a hard coat layer composition B.
(Actinic radiation curable resin)
Pentaerythritol tri / tetraacrylate (NK ester A-TMM-3L, manufactured by Shin-Nakamura Chemical Co., Ltd.) 55 parts by mass Trimethylolpropane triacrylate (A-TMPT, manufactured by Shin-Nakamura Chemical Co., Ltd.) 45 parts by mass ( Photopolymerization initiator)
Irgacure 184 (manufactured by BASF Japan) 6 parts by mass (leveling agent)
BYK-UV3510 (polyether-modified polydimethylsiloxane, 2 parts by mass (solvent) manufactured by Big Chemie Japan Co., Ltd.)
Propylene glycol monomethyl ether 20 parts by weight Methyl acetate 30 parts by weight Methyl ethyl ketone 70 parts by weight
 <実施例1>
 上記のフィルム上に、上記のハードコート層組成物Aを押し出しコーターを用いて塗布し、恒率乾燥区間温度50℃、減率乾燥区間温度50℃で乾燥の後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cmで、照射量を0.2J/cmとして塗布層を硬化させ、ドライ膜厚2.5μmのハードコート層を形成した。続いて(株)エム・ディ・コム製エキシマー照射装置(MECL-M-1-200)を用いて下記の条件でハードコート層にエキシマー光を照射し、ロール状に巻き取って実施例1のハードコートフィルムを作製した。
(エキシマー光照射条件)
 ランプ封入ガス:Xe
 波長:172nm
 エキシマー光強度:130mW/cm(172nm)
 試料と光源の距離:2mm
 照射装置内の酸素濃度:0.3%(窒素パージ)
 波長が200nmより短い光の積算光量:1600mJ/cm
<Example 1>
On the above film, the hard coat layer composition A is applied using an extrusion coater, dried at a constant rate drying zone temperature of 50 ° C. and a reduced rate drying zone temperature of 50 ° C., and an oxygen concentration of 1.0 volume. % with a nitrogen purge so that the following atmosphere at 100 mW / cm 2 illuminance in the irradiated portion using an ultraviolet lamp to cure the coated layer to the amount of radiation as 0.2 J / cm 2, dry film thickness 2.5μm A hard coat layer was formed. Subsequently, the hard coat layer was irradiated with excimer light under the following conditions using an excimer irradiation apparatus (MECL-M-1-200) manufactured by M.D. A hard coat film was produced.
(Excimer light irradiation conditions)
Lamp filled gas: Xe
Wavelength: 172nm
Excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 2mm
Oxygen concentration in irradiation device: 0.3% (nitrogen purge)
Integrated light quantity of light having a wavelength shorter than 200 nm: 1600 mJ / cm 2
 <実施例2>
 ハードコート層組成物Aの代わりにハードコート層組成物Bを用いた以外は、実施例1と同様にして実施例2のハードコートフィルムを得た。
<Example 2>
A hard coat film of Example 2 was obtained in the same manner as in Example 1 except that the hard coat layer composition B was used instead of the hard coat layer composition A.
 <実施例3>
 ハードコート層組成物Aの代わりにハードコート層組成物Bを用い、波長が200nmより短い光の積算光量を500mJ/cmとした以外は、実施例1と同様にして実施例3のハードコートフィルムを得た。
<Example 3>
The hard coat of Example 3 was used in the same manner as in Example 1 except that the hard coat layer composition B was used in place of the hard coat layer composition A, and the cumulative amount of light having a wavelength shorter than 200 nm was 500 mJ / cm 2. A film was obtained.
 <実施例4>
 ハードコート層組成物Aの代わりにハードコート層組成物Bを用い、エ波長が200nmより短い光の積算光量を2000mJ/cmとした以外は、実施例1と同様にして実施例4のハードコートフィルムを得た。
<Example 4>
The hard of Example 4 is the same as Example 1 except that the hard coat layer composition B is used in place of the hard coat layer composition A and the integrated light quantity of light having an wavelength shorter than 200 nm is 2000 mJ / cm 2. A coated film was obtained.
 <実施例5>
 ハードコート層組成物Aの代わりにハードコート層組成物Bを用い、波長が200nmより短い光の積算光量を3500mJ/cmとした以外は、実施例1と同様にして実施例5のハードコートフィルムを得た。
<Example 5>
The hard coat of Example 5 was used in the same manner as in Example 1 except that the hard coat layer composition B was used instead of the hard coat layer composition A, and the integrated light quantity of light having a wavelength shorter than 200 nm was 3500 mJ / cm 2. A film was obtained.
 <比較例1>
 エキシマー光を照射しなかった以外は、実施例1と同様にして比較例1のハードコートフィルムを得た。
<Comparative Example 1>
A hard coat film of Comparative Example 1 was obtained in the same manner as in Example 1 except that no excimer light was irradiated.
 <比較例2>
 ハードコート層組成物Aの代わりにハードコート層組成物Bを用い、エキシマー光を照射しなかった以外は、実施例1と同様にして比較例2のハードコートフィルムを得た。
<Comparative example 2>
A hard coat film of Comparative Example 2 was obtained in the same manner as in Example 1 except that the hard coat layer composition B was used in place of the hard coat layer composition A and no excimer light was irradiated.
 <比較例3>
 エキシマー光を照射する代わりにコロナ処理(放電量:130W/m/min)を行った以外は、実施例1と同様にして比較例3のハードコートフィルムを得た。
<Comparative Example 3>
A hard coat film of Comparative Example 3 was obtained in the same manner as Example 1 except that corona treatment (discharge amount: 130 W / m 2 / min) was performed instead of excimer light irradiation.
 <比較例4>
 エキシマー光を照射する代わりにUV処理(300mJ/cm)を行った以外は、実施例1と同様にして比較例4のハードコートフィルムを得た。
<Comparative example 4>
A hard coat film of Comparative Example 4 was obtained in the same manner as in Example 1 except that UV treatment (300 mJ / cm 2 ) was performed instead of excimer light irradiation.
 <比較例5>
 ハードコート層組成物Aの代わりにハードコート層組成物Bを用い、波長が200nmより短い光の積算光量を30mJ/cmとした以外は、実施例1と同様にして比較例5のハードコートフィルムを得た。
<Comparative Example 5>
The hard coat of Comparative Example 5 was made in the same manner as in Example 1 except that the hard coat layer composition B was used instead of the hard coat layer composition A, and the integrated light quantity of light having a wavelength shorter than 200 nm was 30 mJ / cm 2. A film was obtained.
 <比較例6>
 ハードコート層組成物Aの代わりにハードコート層組成物Bを用い、エキシマー光照射時の積算光量を6000mJ/cmとした以外は、実施例1と同様にして比較例6のハードコートフィルムを得た。
<Comparative Example 6>
The hard coat film of Comparative Example 6 was prepared in the same manner as in Example 1 except that the hard coat layer composition B was used in place of the hard coat layer composition A, and the integrated light quantity at the time of excimer light irradiation was 6000 mJ / cm 2. Obtained.
 <実施例及び比較例の評価>
 実施例及び比較例のハードコートフィルムについて、作製直後の対水接触角の測定、作製から2週間後の対水接触角の測定、スチールウール試験による耐擦傷性の評価を行った。その結果を表1に示す。
<Evaluation of Examples and Comparative Examples>
About the hard coat film of an Example and a comparative example, the measurement of the water contact angle immediately after preparation, the measurement of the water contact angle two weeks after preparation, and the abrasion resistance evaluation by the steel wool test were performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 対水接触角の測定方法及び評価基準は以下の通りである。作製直後のハードコートフィルムを温度23℃、相対湿度55%RHにおいて24時間調湿し、この温湿度下でハードコート層の表面の対水接触角を、接触角計CA-A(協和界面化学(株)製)を用いて、水の液滴径1.0mmにて測定した。また、作製から2週間後のハードコートフィルムについても同様にして対水接触角を測定した。対水接触角は作製直後、作製から2週間後ともに65°以下であれば実用上問題ないと判断した。 The measuring method and evaluation criteria for water contact angle are as follows. The hard coat film immediately after preparation was conditioned at a temperature of 23 ° C. and a relative humidity of 55% RH for 24 hours. Under this temperature and humidity, the contact angle of water on the surface of the hard coat layer with a contact angle meter CA-A (Kyowa Interface Chemistry) (Manufactured by Co., Ltd.), and the water droplet diameter was 1.0 mm. Further, the contact angle with water was measured in the same manner for the hard coat film two weeks after the production. If the contact angle with water was 65 ° or less immediately after the production and two weeks after the production, it was judged that there was no practical problem.
 スチールウール試験の手法及び耐擦傷性の評価基準は以下の通りである。実施例3~5及び比較例5、6のハードコートフィルムについて、ハードコート層の表面を500g/cmの荷重を掛けたスチールウール(日本スチールウール(株)製、#0000)で10往復させて、傷の発生有無を目視にて観察した。 The steel wool test method and scratch resistance evaluation criteria are as follows. For the hard coat films of Examples 3 to 5 and Comparative Examples 5 and 6, the surface of the hard coat layer was reciprocated 10 times with steel wool applied with a load of 500 g / cm 2 (manufactured by Nippon Steel Wool Co., Ltd., # 0000). The occurrence of scratches was visually observed.
 (評価基準)
 ○:5本未満の傷がある
 △:5本以上10本未満の傷がある
 ×:10本以上の傷がある
(Evaluation criteria)
○: Less than 5 scratches Δ: There are 5 or more and less than 10 scratches ×: There are 10 or more scratches
 表1より、ハードコート層組成物が異なる実施例1、2では、作製直後の対水接触角、作製から2週間後の対水接触角ともにほぼ同じ値を示しているため、ハードコート層組成物A、Bの違いによって対水接触角に差はないことがわかる。 From Table 1, in Examples 1 and 2 having different hard coat layer compositions, the water contact angle immediately after the production and the water contact angle two weeks after the production show substantially the same value. It can be seen that there is no difference in the water contact angle depending on the difference between the objects A and B.
 また表1より、ハードコート層の表面改質処理(エキシマー光の照射、コロナ処理又はUV処理)を行っていない比較例1、2では、それぞれ作製直後の対水接触角と作製から2週間後の対水接触角とが同じ値を示しているため、表面改質処理を行わなければ対水接触角は下がらないといえる。 Also, from Table 1, in Comparative Examples 1 and 2 where the hard coat layer surface modification treatment (excimer light irradiation, corona treatment or UV treatment) was not performed, the water contact angle immediately after production and two weeks after production, respectively. Since the contact angle with water shows the same value, it can be said that the contact angle with water does not decrease unless surface modification treatment is performed.
 また表1より、ハードコート層をコロナ処理した比較例3及びハードコート層をUV処理した比較例4では、対水接触角が作製直後はある程度下がっているが、作製から2週間後には処理していない比較例1と同等にまで戻っている。よって、対水接触角の低接触角化が持続的でないため、表面改質処理したハードコートフィルムを保管しておき、表示装置の製造工程でハードコーフィルムを偏光板化するような用途には利用できない。また、UV処理では作製直後の対水接触角もあまり下がっておらず、十分とは言えない。 Further, from Table 1, in Comparative Example 3 in which the hard coat layer was corona-treated and in Comparative Example 4 in which the hard coat layer was UV-treated, the contact angle with water decreased to some extent immediately after the production, but after 2 weeks from the production, the treatment was performed. It has returned to the same level as that of Comparative Example 1. Therefore, since the contact angle to water is not low, the hard coat film that has been surface-modified is stored, and the hard coat film is made into a polarizing plate in the manufacturing process of the display device. Not available. In addition, in the UV treatment, the contact angle with water immediately after the production does not decrease so much and it cannot be said that it is sufficient.
 また表1より、エキシマー光を照射した実施例1~5及び比較例5、6では、作製から2週間後の対水接触角が作製直後の対水接触角からほとんど変化していない。よって、ハードコート層の表面改質処理としてエキシマー光を用いることで、持続的な低接触角化が実現できるといえる。 Also, from Table 1, in Examples 1 to 5 and Comparative Examples 5 and 6 irradiated with excimer light, the water contact angle after 2 weeks from the production hardly changed from the water contact angle immediately after the production. Therefore, it can be said that continuous contact angle reduction can be realized by using excimer light as the surface modification treatment of the hard coat layer.
 また表1より、エキシマー光の積算光量が異なる実施例2~5、比較例5、6を見ると、積算光量が50mJ/cmと少ない比較例5では作製直後から対水接触角が70°と大きい。これは、積算光量が不十分であったため、ハードコート層の表層のレベリング剤が十分に分解されず、対水接触角があまり下がらなかったものと考えられる。これに対して、積算光量が50mJ/cm以上の実施例2~5及び比較例6では作製直後から対水接触角が65°以下と十分小さい。これは、積算光量が十分であるため、ハードコート層の表層のレベリング剤が十分に分解され、対水接触角が十分に下がったものと考えられる。 Further, from Table 1, when Examples 2 to 5 and Comparative Examples 5 and 6 in which the accumulated amount of excimer light is different are seen, in Comparative Example 5 where the accumulated light amount is as small as 50 mJ / cm 2 , the water contact angle is 70 ° immediately after the production. And big. This is probably because the leveling agent on the surface layer of the hard coat layer was not sufficiently decomposed and the contact angle with water did not decrease so much because the integrated light quantity was insufficient. On the other hand, in Examples 2 to 5 and Comparative Example 6 in which the integrated light quantity is 50 mJ / cm 2 or more, the contact angle with water is 65 ° or less immediately after the production. This is presumably because the leveling agent on the surface of the hard coat layer was sufficiently decomposed and the contact angle with water was sufficiently lowered because the integrated light quantity was sufficient.
 また表1より、実施例3~5及び比較例6の耐擦傷性を見ると、波長が200nmより短い光の積算光量が50~5000mJ/cmであれば傷が5本未満と少なく実用上問題ない範囲であり、一方、波長が200nmより短い光の積算光量が6000mJ/cmであれば傷が10本以上と多く実用上問題がある。このことから、波長が200nmより短い光の積算光量が50~5000mJ/cmであればハードコート層の強度に実用上問題となる影響はないが、波長が200nmより短い光の積算光量が6000mJ/cmなどと多くなると、ハードコート層の表層のハードコート樹脂が劣化して脆くなり、傷が付きやすくなったものと考えられる。よって、波長が200nmより短い光の積算光量は50~5000mJ/cmが適切であると考えられる。 Further, from Table 1, the scratch resistance of Examples 3 to 5 and Comparative Example 6 is seen. When the integrated light quantity of light having a wavelength shorter than 200 nm is 50 to 5000 mJ / cm 2 , the scratches are less than 5 and practical. On the other hand, if the integrated light quantity of light with a wavelength shorter than 200 nm is 6000 mJ / cm 2 , there are as many as 10 or more scratches and there is a practical problem. Therefore, if the integrated light amount of light with a wavelength shorter than 200 nm is 50 to 5000 mJ / cm 2 , the intensity of the hard coat layer has no practical problem, but the integrated light amount of light with a wavelength shorter than 200 nm is 6000 mJ. When it is increased to / cm 2 or the like, it is considered that the hard coat resin on the surface of the hard coat layer deteriorates and becomes brittle, and is easily damaged. Therefore, it is considered that the integrated light quantity of light having a wavelength shorter than 200 nm is appropriately 50 to 5000 mJ / cm 2 .
 以上より、実施例1~5のハードコートフィルムは、持続的な低接触角化と耐擦傷性とを実現している。 From the above, the hard coat films of Examples 1 to 5 achieve a continuous low contact angle and scratch resistance.
 本発明のハードコートフィルムは、導電フィルムや反射防止フィルム等を形成する下地として使用されたり、表示装置の最表面に用いられ、タブレット端末やスマートフォン等ではその表面にタッチパネルやカバーガラスが貼り合わせられて使用されうる。 The hard coat film of the present invention is used as a base for forming a conductive film, an antireflection film or the like, or is used on the outermost surface of a display device, and a touch panel or a cover glass is bonded to the surface of a tablet terminal or a smartphone. Can be used.
  10   ハードコートフィルム
  11   フィルム
  12   ハードコート樹脂
  12a  ハードコート樹脂
  12b  レベリング剤
10 Hard Coat Film 11 Film 12 Hard Coat Resin 12a Hard Coat Resin 12b Leveling Agent

Claims (7)

  1.  ハードコート樹脂及びレベリング剤を含むハードコート層が樹脂フィルム上に形成されたハードコートフィルムへ、波長が200nmより短い光を含む光を、波長が200nmより短い光の積算光量が50mJ/cm以上5000mJ/cm以下となるように照射することで、前記ハードコート層の表層の前記レベリング剤を分解するとともに、前記ハードコート層の表層の前記ハードコート樹脂が前記波長が200nmより短い光の少なくとも一部を吸収することを特徴とするハードコートフィルムの製造方法。 A hard coat film having a hard coat layer containing a hard coat resin and a leveling agent formed on a resin film is irradiated with light containing light having a wavelength shorter than 200 nm, and an integrated light quantity of light having a wavelength shorter than 200 nm is 50 mJ / cm 2 or more. By irradiating to 5000 mJ / cm 2 or less, the leveling agent on the surface layer of the hard coat layer is decomposed, and the hard coat resin on the surface layer of the hard coat layer has at least light with a wavelength shorter than 200 nm. A method for producing a hard coat film, wherein a part of the hard coat film is absorbed.
  2.  前記波長が200nmより短い光の積算光量が500mJ/cm以上3500mJ/cm以下であることを特徴とする請求項1に記載のハードコートフィルムの製造方法。 2. The method for producing a hard coat film according to claim 1, wherein an integrated light amount of light having a wavelength shorter than 200 nm is 500 mJ / cm 2 or more and 3500 mJ / cm 2 or less.
  3.  前記波長が200nmより短い光を含む光がエキシマー光であることを特徴とする請求項1又は2に記載のハードコートフィルムの製造方法。 3. The method for producing a hard coat film according to claim 1, wherein the light containing light having a wavelength shorter than 200 nm is excimer light.
  4.  前記エキシマー光が含む光の波長の範囲が100nm以上230nm以下の範囲内であることを特徴とする請求項3に記載のハードコートフィルムの製造方法。 The method for producing a hard coat film according to claim 3, wherein a wavelength range of light included in the excimer light is in a range of 100 nm to 230 nm.
  5.  前記ハードコート樹脂が紫外線硬化型アクリレート系樹脂であることを特徴とする請求項1~4の何れかに記載のハードコートフィルムの製造方法。 5. The method for producing a hard coat film according to claim 1, wherein the hard coat resin is an ultraviolet curable acrylate resin.
  6.  前記レベリング剤がフッ素-シロキサングラフト化合物であることを特徴とする請求項1~5の何れかに記載のハードコートフィルムの製造方法。 The method for producing a hard coat film according to any one of claims 1 to 5, wherein the leveling agent is a fluorine-siloxane graft compound.
  7.  前記フィルムがセルロースエステルフィルムであることを特徴とする請求項1~6の何れかに記載のハードコートフィルムの製造方法。 The method for producing a hard coat film according to any one of claims 1 to 6, wherein the film is a cellulose ester film.
PCT/JP2014/062441 2013-05-14 2014-05-09 Method for producing hard-coat film WO2014185345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-102110 2013-05-14
JP2013102110 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014185345A1 true WO2014185345A1 (en) 2014-11-20

Family

ID=51898323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062441 WO2014185345A1 (en) 2013-05-14 2014-05-09 Method for producing hard-coat film

Country Status (1)

Country Link
WO (1) WO2014185345A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227779A (en) * 1995-12-22 1997-09-02 Toto Ltd Rubber member for construction and impartment of hydrophilicity to surface thereof
WO2004073972A1 (en) * 2003-02-21 2004-09-02 Asahi Kasei Kabushiki Kaisha Laminate containing silica and application composition for forming porous silica layer
JP2007275711A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Surface modifying method, manufacturing method of substrate with film, droplet discharge head and droplet discharge apparatus
WO2012035849A1 (en) * 2010-09-14 2012-03-22 コニカミノルタオプト株式会社 Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device
WO2012073437A1 (en) * 2010-11-29 2012-06-07 コニカミノルタオプト株式会社 Optical film, image display device, and image display device comprising touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227779A (en) * 1995-12-22 1997-09-02 Toto Ltd Rubber member for construction and impartment of hydrophilicity to surface thereof
WO2004073972A1 (en) * 2003-02-21 2004-09-02 Asahi Kasei Kabushiki Kaisha Laminate containing silica and application composition for forming porous silica layer
JP2007275711A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Surface modifying method, manufacturing method of substrate with film, droplet discharge head and droplet discharge apparatus
WO2012035849A1 (en) * 2010-09-14 2012-03-22 コニカミノルタオプト株式会社 Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device
WO2012073437A1 (en) * 2010-11-29 2012-06-07 コニカミノルタオプト株式会社 Optical film, image display device, and image display device comprising touch panel

Similar Documents

Publication Publication Date Title
JP5633149B2 (en) Antireflection film and manufacturing method thereof, polarizing plate, transmissive liquid crystal display
KR101470465B1 (en) Hard coating film
KR101470464B1 (en) Hard coating film
KR101787131B1 (en) Hard coat film, polarizing film, image display device, and hard coat film manufacturing method
JP4853181B2 (en) High refractive index hard coat layer
KR101686644B1 (en) Plastic film laminate
KR101671431B1 (en) Plastic film
JP4831464B2 (en) High refractive index hard coat layer
KR20100027149A (en) Clear hard coat film, and antireflection film, polarizing plates and displays, made by using the same
WO2005093464A1 (en) Method for producing antireflective film, antireflective film, polarizing plate and image display
KR20120091170A (en) Method for producing optical film, optical film, polarizing plate and display
KR20080056642A (en) Method of manufacturing hard-coated film, hard-coated film, polarizing plate, and image display
JP2014224920A (en) Production method of antireflection film
KR101436616B1 (en) Hard coating film
JP2008088309A (en) Cured coating film, anti-reflection hard coating film using it, polarization plate and image display device
KR101342183B1 (en) Polarizing plate and liquid crystal display device
JP2005309392A (en) Method for manufacturing antireflection film, antireflection film, polarizing plate and image display device
KR101915284B1 (en) Anti-glare film, polarizing plate and display device
KR101943659B1 (en) Optical film, image display device, and method for producing image display device
CN107428971B (en) Hard coat film and method for producing same
JP2007058101A (en) Hard coat layer with high refractive index
WO2014185345A1 (en) Method for producing hard-coat film
KR20140084613A (en) Anti-reflection film and polarising plate includig the same
JP2020013154A (en) Optical film, image display device, and method for producing optical film
JP2013205644A (en) Curable composition for forming antireflection film, antireflection film and method for manufacturing the same, polarizing plate, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP