TW200904636A - Anti-dazzling film, anti-dazzling anti-refleciton film, polarizing plate using the anti-dazzling film and anti-reflection film, and display device - Google Patents

Anti-dazzling film, anti-dazzling anti-refleciton film, polarizing plate using the anti-dazzling film and anti-reflection film, and display device Download PDF

Info

Publication number
TW200904636A
TW200904636A TW97106360A TW97106360A TW200904636A TW 200904636 A TW200904636 A TW 200904636A TW 97106360 A TW97106360 A TW 97106360A TW 97106360 A TW97106360 A TW 97106360A TW 200904636 A TW200904636 A TW 200904636A
Authority
TW
Taiwan
Prior art keywords
film
glare
resin
acid
group
Prior art date
Application number
TW97106360A
Other languages
Chinese (zh)
Inventor
Satoshi Okano
Yukio Amano
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Publication of TW200904636A publication Critical patent/TW200904636A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

This invention provides an anti-dazzling film, which, from the viewpoint of pursuing viewability as display devices, for example, an increase in the view angle and an increase in definition of liquid crystal displays, prevents a lowering in contrast due to surface reflection of a liquid crystal display surface, that is, a polarizing plate surface, has optical properties satisfying a good balance between anti-dazzling properties and visibility, and is excellent in film strength (scratch resistance and pencil hardness) after endurance storing, and an anti-dazzling anti-reflection film, a polarizing plate using the anti-dazzling film and anti-dazzling anti-reflection film, and a display device.; The anti-dazzling film comprises an anti-dazzling layer provided on a transparent film base material and is characterized in that the anti-dazzling layer comprises at least one curing resin and at least one type of fluorine-containing acrylic resin fine particles. The curing resin is preferably an ultraviolet curing-type acrylate resin, and the fluorine-containing acrylic resin fine particles are preferably fluorine-containing polymethyl methacrylate fine particles.

Description

200904636 九、發明說明 【發明所屬之技術領域】 本發明係關於防眩性薄膜、防眩性抗反射薄膜、使用 其之偏光板、及顯示裝置者。 【先前技術】 各種顯示器之一爲液晶顯示器。作爲追求液晶顯示器 的廣視野角化、高精細化等顯示裝置之觀賞容易度,液晶 顯示器表面,即無法忽略偏光板表面之表面反射所造成的 對比降低。換言之,於室外之使用頻度較高的衛星導航定 位系統用監視器或攝影機用監視器於表面反射所造成的辨 識性之下降會變得顯著。 因此,裝於這些機器之偏光板中,防反射膜爲不可欠 缺的,對於室外使用頻度較高的液晶顯示器,實際上幾乎 使用施予防眩處理的偏光板。 防眩處理爲藉由模糊表面上反射的影像輪廓,降低反 射影像之辨識性,減低顯示裝置使用時之反射影像的雜影 攝入。一般爲設計成藉由噴砂處理、滾邊輥、化學微影等 適宜方式進行粗面化處理並於表面上賦予微細凹凸結構者 、藉由金屬鑄型進行轉印方式等於表面上賦予微細凹凸結 構者、樹脂層中分散微粒子使其含有之表面上賦予微細凹 凸結構者、於表面之凹凸結構上將可見光區的反射光進行 散光下進行。 這些防眩處理中,亦以樹脂層中分散含有微粒子之方 -4- 200904636 法因可簡單地賦予微細凹凸結構而較佳。 專利文獻1中記載,透明薄膜基材上將分散放射性硬 化型樹脂、平均粒徑1 〇 V m以下的微粒子及觸變化劑之 分散液進行塗佈,經乾燥硬化後,形成於表面具有微細凹 凸結構之防眩層的例子報告。 專利文獻2與專利文獻3中已記載多數的形成樹脂層 中分散含有微粒子之防眩層的例子。然而,這些防眩處理 由反射影像之雜影攝入低減效果的點來看,皆未令人十分 滿意。 專利文獻4中記載,紫外線硬化樹脂與交聯丙烯基珠 子所成之防眩性薄膜。此爲使用0.5至6.0 # m的較小粒 子,且可進一步地改善粒子之分散性。此爲推測藉由減小 一個一個的凹凸,使曲率變大下,並將焦點位置設計成對 於全體爲平均者。 又,專利文獻5中記載,防眩層爲規定含有樹脂與具 有折射率差之粒子的表面凹凸形狀之中心線平均粗度(Ra )、及十點平均粗度(Rz ),可達到於明室中之反射影像 的雜影攝入之低減效果、與防止面不均者。 [專利文獻1]特開平10-219136號公報 [專利文獻2]特開2002-202402號公報 [專利文獻3]特開2002-60735號公報 [專利文獻4]特開平1 0-264284號公報 [專利文獻5]特開2000-338310號公報 -5- 200904636 【發明內容】 發明所要解決的課題 然而,過去方法中,可將反射影像之雜影攝入低減減 少至某種程度,且於明室中薄膜基材表面會變白的混濁問 題並未被解決。又,耐久保存後之膜強度會有劣化之問題 〇 如此,過去技術中,並未發現可抑制反射影像之雜影 攝入的減低或混濁之辨識性耐久保存後的膜強度(耐擦性 、鉛筆硬度)、及層合於防眩層時與上層之密著性有令人 滿足者,對於液晶顯示器等,具備如此特性之防眩性薄膜 的產生有著強烈的期待。 本發明之目的爲解決上述之過去技術的問題,提供一 種防眩性與辨識性之平衡令人滿意的光學特性、耐久保存 後之膜強度(耐擦性、鉛筆硬度)優良的防眩性薄膜、防 眩性抗反射薄膜、使用其之偏光板、及顯示裝置。 解決課題之手段 本發明者們對於上述點進行詳細重複硏究結果,發現 防眩性薄膜的防眩層爲含有至少1種的硬化性樹脂、及至 少1種的含氟丙烯酸樹脂微粒子時,可解決上述過去技術 之問題而完成本發明。 欲達成上述目的,申請專利範圍第1項的發明係爲透 明薄膜基材上具有防眩層之防眩性薄膜,其特徵爲防眩層 爲含有至少1種之硬化性樹脂、及至少1種之含氟丙烯酸 -6- 200904636 樹脂微粒子。 申請專利範圍第2項的發明爲申請專利範圍第1項所 記載的防眩性薄膜,其特徵爲透明薄膜基材係以纖維素酯 薄膜爲主材。 申請專利範圍第3項的發明爲申請專利範圍第1項或 第2項所記載的防眩性薄膜,其特徵爲透明薄膜基材係含 有纖維素酯、糖酯化合物、及丙烯酸系聚合物者。 此時,透明薄膜基材係由纖維素酯、結合1〜12個至 少1種選自呋喃糖結構及吡喃糖結構之結構且糖化合物經 酯化的糖酯化合物、與重量平均分子量爲 500以上, 3 0000以下之丙烯酸系聚合物所成者爲佳。 申請專利範圍第4項的發明爲,申請專利範圍第1項 〜第3項中任一項所記載的防眩性薄膜,其特徵爲防眩層 的厚度爲0.5〜50# m之範圍。 申請專利範圍第5項的發明爲申請專利範圍第1項〜 第4項中任一項所記載的防眩性薄膜,其特徵爲硬化性樹 脂爲紫外線硬化樹脂。 申請專利範圍第6項的發明爲申請專利範圍第1項〜 第5項中任一項所記載的防眩性薄膜,其特徵爲硬化性樹 脂爲紫外線硬化型丙烯酸酯系樹脂。 申請專利範圍第7項的發明爲申請專利範圍第1項〜 第6項中任一項所記載的防眩性薄膜,其特徵爲含氟丙烯 酸樹脂微粒子爲含氟聚甲基甲基丙烯酸酯微粒子。 申請專利範圍第8項的發明爲申請專利範圍第1項〜 200904636 第7項中任一項所記載的防眩性薄膜,其特徵爲含氟丙烯 酸樹脂微粒子之平均粒子徑爲5nm〜30/zm之範圍。 申請專利範圍第9項的發明爲申請專利範圍第1項〜 第8項中任一項所記載的防眩性薄膜,其特徵爲含氟丙烯 酸樹脂微粒子之含有量對於前述硬化性樹脂1 00質量份而 言爲0.0 1〜5 00質量份之範圍。 申請專利範圍第1 0項之防眩性抗反射薄膜的發明爲 ,申請專利範圍第1項〜第9項中任一項所記載的防眩性 薄膜之防眩層上,層合含有內部爲多孔質或空洞之至少1 種中空二氧化矽微粒子的低折射率層爲特徵者。 申請專利範圍第1 1項的發明爲申請專利範圍第〗〇項 所記載的防眩性抗反射薄膜,其特徵爲防眩層與低折射率 層之間介著高折射率層者。 申請專利範圍第1 2項的發明爲申請專利範圍第1 〇項 或第1 1項所記載的防眩性抗反射薄膜,其特徵爲中空二 氧化矽微粒子之表面上具有烴主鏈之聚合物係以共價鍵方 式結合。 申請專利範圍第1 3項的偏光板的發明,其特徵爲其 一面上使用申請專利範圍第1項〜第9項中任一項所記載 的防眩性薄膜。 申請專利範圍第1 4項的偏光板的發明,其特徵爲其 一面上使用申請專利範圍第1 0項〜第1 2項中任一項所記 載的防眩性抗反射薄膜。 申請專利範圍第1 5項的顯示裝置的發明爲,使用申 -8- 200904636 請專利範圍第1項〜第9項中任—項所記載的防眩性薄膜 爲特徵。 申請專利範圍第16項的顯示裝置的發明爲,使用申 請專利範圍第1 〇項〜第1 2項中任一項所記載的防眩性抗 反射薄膜爲特徵。 申請專利範圍第17項的顯示裝置的發明爲,使用申 請專利範圍第1 3項或第1 4項所記載的偏光板爲特徵。 發明的效果 如申請專利範圍第1項的發明爲,透明薄膜基材上具 有防眩層之防眩性薄膜,其爲防眩層含有至少1種之硬化 性樹脂、及至少1種之含氟丙烯酸樹脂微粒子者,故如申 請專利範圍第1項之防眩性薄膜的發明,其具有滿足防眩 性與辨識性之較佳平衡的光學特性、耐久保存後之膜強度 (耐擦性、鉛筆硬度)優良之效果。 申請專利範圍第2項的發明爲如申請專利範圍第1項 所記載的防眩性薄膜,透明薄膜基材係以纖維素酯薄膜爲 主材者,如申請專利範圍第2項之防眩性薄膜的發明爲特 別可達到上述效果者。 申請專利範圍第3項的發明爲如申請專利範圍第1項 或第2項所記載的防眩性薄膜,透明薄膜基材爲含有纖維 素酯、糖酯化合物、及丙烯酸系聚合物者,如申請專利範 圍第3項之防眩性薄膜的發明爲特別可達到上述效果。 申請專利範圍第4項的發明係爲如申請專利範圍第1 -9- 200904636 項〜第3項中任一項所記載的防眩性薄膜,防眩層之厚度 爲0.5〜5 0 # m之範圍者,如申請專利範圍第4項的防眩 性薄膜的發明爲特別可達到上述效果。 申請專利範圍第5項的發明爲如申請專利範圍第1項 〜第4項中任一項所記載的防眩性薄膜,硬化性樹脂爲紫 外線硬化樹脂,如申請專利範圍第5項之防眩性薄膜的發 明爲特別可達到上述效果。 申請專利範圍第6項的發明爲申請專利範圍第1項〜 第5項中任一項匕所記載的防眩性薄膜,硬化性樹脂爲紫 外線硬化型丙烯酸酯系樹脂,申請專利範圍第6項之防眩 性薄膜的發明爲特別可達到上述效果。 申請專利範圍第7項的發明爲申請專利範圍第1項〜 第6項中任一項所記載的防眩性薄膜,其中含氟丙烯酸樹 脂微粒子爲含氟聚甲基甲基丙烯酸酯微粒子者,如申請專 利範圍第7項之防眩性薄膜的發明爲特別可達到上述效果 〇 申請專利範圍第8項的發明爲申請專利範圍第1項〜 第7項中任一項所記載的防眩性薄膜,其中含氟丙烯酸樹 脂微粒子之平均粒子徑爲5 nm〜3 0 // m的範圍者,如申請 專利範圍第5項之防眩性薄膜的發明爲特別可達到上述效 果。 申請專利範圍第9項的發明爲、申請專利範圍第1項 〜第8項中任一項所記載的防眩性薄膜,其中含氟丙烯酸 樹脂微粒子之含有量對於前述硬化性樹脂1 00質量份而言 -10- 200904636 爲0.0 1〜5 00質量份之範圍者,如申請專利範圍第9項之 防眩性薄膜的發明爲特別可達到上述效果。 申請專利範圍第1 0項之防眩性抗反射薄膜的發明爲 ,如申請專利範圍第1項〜第9項中任一項所記載的防眩 性薄膜之防眩層上,層合含有內部爲多孔質或空洞之中空 二氧化矽微粒子的低折射率層者,所謂層合含有如此中空 二氧化矽微粒子之低折射率層的如申請專利範圍第1 0項 之防眩性抗反射薄膜的發明,其具有優良抗反射性之同時 ,具有達到耐久性試驗後優良密著性之效果。 如申請專利範圍第1 1項的發明係爲如申請專利範圍 第1 0項所記載的防眩性抗反射薄膜,防眩層與低折射率 層之間,介著高折射率層者,所謂如申請專利範圍第11 項的發明爲具有優良的抗反射性之同時,具有達到耐久性 試驗後優良密著性之效果。 如申請專利範圍第1 2項的發明爲,如申請專利範圍 第1 〇項或第1 1項所記載的防眩性抗反射薄膜,其中中空 二氧化矽微粒子表面上,具有烴主鏈的聚合物經共價方式 結合者,所謂如申請專利範圍第1 2項之防眩性抗反射薄 膜的發明爲嚴苛耐久性試驗中,亦具有可達到優良膜強度 (耐擦性、鉛筆硬度)、及優良辨識性之效果。 如申請專利範圍第1 3項之偏光板的發明爲,將如申 請專利範圍第1項〜第9項中任一項所記載的可進一步平 衡防眩性與辨識性之防眩性薄膜使用於一面者,故所謂申 請專利範圍第1 3項之偏光板的發明爲不用在意光線的亂 -11 - 200904636 攝入,且可達到辨識性優良的效果。 如申請專利範圍第1 4項之偏光板的發明爲,將如申 請專利範圍第10項〜第12項中任一項所記載的可進一步 平衡防眩性與辨識性、及抗反射性之防眩性抗反射薄膜使 用於一面者,所謂申請專利範圍第14項之偏光板的發明 爲具有優良的抗反射性,不用在意光線的亂攝入,且可達 到辨識性優良的效果。 如申請專利範圍第1 5項之顯示裝置的發明爲使用如 申請專利範圍第1項〜第9項中任一項所記載的可進一步 平衡防眩性與辨識性之防眩性薄膜者,故如申請專利範圍 第15項之顯示裝置的發明爲不用在意光線的亂攝入,且 可達到辨識性優良的效果。 如申請專利範圍第1 6項之顯示裝置的發明爲使用如 申請專利範圍第1 〇項〜第1 2項中任一項所記載的防眩性 抗反射薄膜者,故如申請專利範圍第16項之顯示裝置的 發明爲具有優良抗反射性,且不用在意光線的亂攝入,且 可達到辨識性優良的效果。 如申請專利範圍第17項之顯示裝置的發明爲使用如 申§靑專利範圍第1 3項或第1 4項所記載的偏光板者,故如 申請專利範圍第17項之顯示裝置的發明爲不用在意光線 的亂攝入’且可達到辨識性優良的效果,且具有可達到優 良抗反射性之效果。 實施發明的較佳型態 -12- 200904636 繼續對於本發明的實施形態,參考圖面進行說明,但 本發明並非受到這些之限定者。 本發明的防眩性薄膜爲透明薄膜基材上具有防眩層之 防眩性薄膜,防眩層爲含有至少1種之硬化性樹脂、及至 少1種之含氟丙烯酸樹脂微粒子者爲特徵。 其中,所謂防眩性爲,藉由模糊反射於薄膜基材表面 之影像輪廓,使反射影像之辨識性降低,使用於所謂液晶 顯示器、有機EL顯示器、電漿顯示器之影像顯示裝置等 時,不用介意反射影像之雜影攝入者。藉由薄膜基材表面 設有適當凹凸,可使其具有如此性質。 又,本發明的防眩性薄膜爲有效率地減低反射影像之 雜影攝入,設置於影像顯示裝置等最表層。因此,與照明 外套或液晶顯示器之背光等光源的光擴散性薄片於用途相 異。 作爲於薄膜基材表面上形成如此凹凸之方法,可舉出 對透明薄膜基材之加工、防眩層之塗佈設置等。 作爲本發明所謂之薄膜基材表面的凹凸形狀,可舉出 選自直圓錐、斜圓錐、角錐、斜角錐、楔型、凸多角體、 半球狀等之結構、以及具有這些部分形狀之結構。且,半 球狀其表面形狀並非必須爲真球形狀,可爲楕圓體形狀或 亦可爲更變形之凸曲面形狀。又,凹凸形狀稜線爲延伸成 延伸爲線狀,可舉出稜鏡形狀、lenticular透鏡形狀、菲 涅爾透鏡形狀。由該稜線至谷線的斜面可爲平面狀、曲面 狀、或亦可爲兩者之複合形狀。 -13- 200904636 本發明之防眩性薄膜的防眩層係以JI S B 0 6 0 1 : 2 0 0 1 所規定之算術平均粗度(Ra )爲1 5nm以上者,較佳爲 1 5 n m〜3 0 0 0 n m,由顯示光學特性良好之防眩性的凹凸形 狀來看更佳爲80〜2000nm。Ra若未達15nm時,其防眩 性效果較弱,超過3 000nm時,由目視來看有著過於粗糙 的印象。算術平均粗度(Ra )係以光干涉式之表面粗度測 定器進行測定爲佳,例如可使用光學干涉式表面粗度計 RST/PLUS ( WYKO公司製)進行測定。又,平均頂部間 隔Sm以20〜150#m程度爲佳。JIS B 0601爲準的十點 平均粗度rz爲0.1〜3,較佳爲0·15〜2,更佳爲0.2〜1 (特佳爲0.3〜0.9 )。平均頂部間隔S m與十點平均粗度 Rz 之比(Rz/Sm)爲 0.005 〜0.02,較佳爲 0.006 〜0.018 ,更佳爲0.006〜0.015。 且’ Rz及Sm之値可由可測定三次元之凹凸結構的裝 置系統(原子間力顯微鏡系統、觸針段差測定系統、共焦 點雷射顯微鏡解析系統等)之解析結果而算出。 本發明之防眩性薄膜的防眩層爲,藉由將防眩層用塗 佈組成物塗佈於基材上所得之塗膜經乾燥後,於薄膜基材 表面上形成凹凸形狀者。 且,因賦予防眩性’亦可並用以下防眩層形成方法、 及後述透明薄膜基材之表面上形成凹凸形狀的方法。 (1 )於輥或原盤上形成作爲目的形狀之負型後,於 滾邊賦予形狀之方法。 (2 )於輥或原盤上形成作爲目的形狀之負型後,將 -14- 200904636 熱硬化性樹脂塡充於負型,經加熱硬化後由負型剝離之方 法。 (3)於輥或原盤上形成作爲目的形狀之負型後,塗 佈紫外線或電子線硬化樹脂並塡充於凹部後,介著樹脂液 於凹版上包覆透明薄膜基材下,照射紫外線或電子線,將 經硬化之樹脂與其所黏著之透明薄膜基材自負型進行剝離 之方法。 (4 )將作爲目的之形狀的負型於流延輸送帶上形成 後,於進行澆鑄時賦予目的形狀之溶劑澆鑄法。 (5 )將藉由光或加熱進行硬化之樹脂於透明基板上 進行凸版印刷,藉由光或加熱使其硬化並形成凹凸之方法 〇 (6 )將於透明薄膜基材表面經光或加熱使其硬化的 樹脂藉由噴射法進行印刷、或將藉由光或加熱使其硬化的 透明薄膜基材表面成爲凹凸形狀之方法。 (7) 將於透明薄膜基材表面經光或加熱使其硬化的 樹脂藉由噴射法進行印刷、形成藉由光或加熱使其硬化的 凹凸形狀,再以透明樹脂層包覆之方法。 (8) 將表面以機械工具等進行切割加工之方法。 (9) 將球、多角體等各種形狀之粒子,於透明薄膜 基材表面壓入至一半掩埋程度而成爲一體化,將透明薄膜 基材表面成爲凹凸形狀之方法。 (1 0 )將球、多角體等各種形狀之粒子分散於少量膠 黏劑者塗佈於透明薄膜基材表面,使透明薄膜基材表面成 -15- 200904636 爲凹凸形狀之方法。 (in於透明薄膜基材表面塗佈膠黏劑,其上散佈球 、多角體等各種形狀之粒子,將透明薄膜基材表面成爲凹 凸形狀之方法。 (12)於透明薄膜基材表面將鑄型壓下形成凹凸之方 法。具體如特開2005- 1 5 66 1 5號公報所記載的方法。 於上述薄膜基材表面形成凹凸形狀之方法中,以形成 負型之方法或並用噴射法者具有效果。 本發明之防眩性薄膜係爲防眩層中含有至少1種硬化 性樹脂、及至少1種含氟丙烯酸樹脂微粒子,因含有此兩 者’可表現防眩性薄膜之耐久保存後的膜強度、層合時與 上層之密著性、及反射影像之雜影攝入減低或混濁之抑制 等辨識性效果。 又’本發明中之防眩性薄膜因設置於影像顯示裝置等 最表面’故硬塗佈性被要求。又,作爲硬塗佈性,鉛筆硬 度以3 Η〜8 Η爲佳,特佳爲4H〜6 Η。鉛筆硬度爲,經製 作之防眩性薄膜試料於溫度2 5 °C、相對濕度6 0 %之條件 下進行2小時調濕後,使用jIS S 6006所規定之試驗用鉛 筆’依據JIS K 5400所規定之鉛筆硬度評估方法進行測 定所得之値。 對於使用於形成本發明之防眩性薄膜的防眩層之防眩 層用塗佈組成物作說明。 防眩層用塗佈組成物中含有硬化性樹脂與含氟丙烯酸 樹脂微粒子。 -16- 200904636 所謂硬化性樹脂,較佳爲活性能量線硬化樹脂 活性能量線硬化樹脂爲,藉由如紫外線或電子線之 照射進行交聯反應等使其硬化之樹脂。作爲活性能 化樹脂爲,使用含有具乙烯性不飽和雙鍵之單體的 佳’藉由照射如紫外線或電子線之活性線使其硬化 活性能量線硬化樹脂層。作爲活性能量線硬化樹脂 做爲代表性的紫外線硬化性樹脂或電子線硬化性樹 其中特別以紫外線硬化樹脂爲佳。 作爲紫外線硬化性樹脂,例如可使用紫外線硬 烷丙烯酸酯系樹脂、紫外線硬化型聚酯丙烯酸酯系 紫外線硬化型環氧基丙烯酸酯系樹脂、紫外線硬化 醇丙烯酸酯系樹脂等紫外線硬化型丙烯酸酯系樹脂 外線硬化型環氧基樹脂等爲佳。其中亦以紫外線硬 嫌酸酯系樹脂因具有耐久保存後之優良膜強度(耐 鉛筆硬度)效果而較佳。 作爲紫外線硬化型尿烷丙烯酸酯系樹脂,一般 多元醇與異氰酸酯單體、或預聚物進行反應所得之 ’再進一步與具有2 -羥基乙基丙烯酸酯、2一羥 甲基丙稀酸酯(以下丙烯酸酯中含有甲基丙烯酸酯 以丙烯酸酯表示)、2-羥基丙基丙烯酸酯等羥基 知醋系單體進行反應後可容易得到。例如可使用 59-151110號公報所記載者。 作爲紫外線硬化型尿烷丙烯酸酯系樹脂,可使 迪克1 7-8 06 (大日本墨水化學工業股份有限公司義 ,所謂 活性線 量線硬 成分爲 後形成 可舉出 脂等, 化型尿 樹脂、 型多元 、或紫 化型丙 擦性、 爲聚酯 生成物 乙基 者係僅 之丙烯 時開昭 用優尼 [)100 -17- 200904636 份與CORONETL (日本聚尿烷股份有限公司製)1份之混 合物等爲佳。 作爲紫外線硬化型聚酯丙烯酸酯系樹脂,一般可舉出 將聚酯多元醇與2-羥基乙基丙烯酸酯、2-羥基丙烯酸 酯系單體進行反應而可容易形成者,可使用如特開昭 59-151112號公報所記載者。 作爲紫外線硬化型環氧基丙烯酸酯系樹脂之具體例, 可舉出將環氧基丙烯酸酯作爲寡聚物,於此添加反應性稀 釋劑、光聚合啓始劑,並使其反應後所生成者,可使用如 特開平1 - 1 0573 8號公報所記載者。 作爲紫外線硬化型多元醇丙烯酸酯系樹脂之具體例, 可舉出三羥甲基丙烷三丙烯酸酯、二三羥甲基丙烷四丙烯 酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、二季 戊四醇六丙烯酸酯、烷基改性二季戊四醇五丙烯酸酯等。 作爲這些紫外線硬化性樹脂之光聚合啓始劑,具體可 舉出苯偶因及其衍生物、乙醯苯、二苯甲酮、羥基二苯甲 酮、米希勒酮、-胺肟酯、噻噸酮等、及彼等之衍生物 。亦可同時使用光增感劑。上述光聚合啓始劑亦可作爲光 增感劑使用。又’使用環氧基丙烯酸酯系樹脂之光聚合啓 始劑時,可使用η - 丁胺、三乙胺、三一 η — 丁基膦等增 感劑。使用於紫外線硬化性樹脂之光聚合啓始劑或光增感 劑對於該樹脂100質量份而言爲0.1〜20質量份,較佳爲 1〜1 5質量份。 又’作爲其他丙烯酸酯系單體’例如作爲不飽和雙鍵 -18- 200904636 爲其中一單體時,可舉出甲基丙烯酸酯、乙基丙烯酸酯、 丁基丙烯酸酯、苯甲基丙烯酸酯、環己基丙烯酸酯、乙酸 乙烯酯、苯乙烯等一般單體。又,作爲具有二個以上之不 飽和雙鍵的單體時,可舉出乙二醇二丙烯酸酯、丙二醇二 丙烯酸酯、二乙烯苯、1,4 一環己烷二丙烯酸酯、1,4 一環 己基二甲基二丙烯酸酯、三羥甲基丙烷三丙烯酸酯、季戊 四醇四丙烯酯、二三羥甲基丙烷四丙烯酸酯、季戊四醇三 丙烯酸酯、季戊四醇四丙烯酸酯、二季戊四醇六丙烯酸酯 、烷基改性二季戊四醇五丙烯酸酯、異冰片丙烯酸酯等。 又,亦可使用特開2006-3647號公報所記載的單體。 作爲本發明中所使用的紫外線硬化樹脂之販賣品,可 舉出 Adekaoptomer-KR.BY 系列:KR-400、KR-410、 KR-5 5 0、KR-5 66、KR-5 6 7、B Y - 3 2 0 B (旭電化股份有限 公司製);KoeihardA-1 0 1-KK、A-1 0 1 · WS、C-3 02、 C-401-N、C-501、M-101、Μ-102 ' T-102、D-102、 NS-1 01、FT-102Q8、MAG-1-P20、AG-106、M-101-C (廣 榮化學股份有限公司製);SeCabeamPHC2210 ( S ) ' PHCX-9 ( K-3 ) 、PHC2213、DP-10、DP-20、DP-30、 P1000 、 P1100 ' P1200 、 P1300 、 P1400、 P1500、 P1600、 SCR900 (大日精化工業股份有限公司製);KRM703 3、 KRM7039 、 KRM7130 、 KRM7131 、 UVECRYL2920 1 、 UVECRYL29202 ( DAICEL · UCB 股份有限公司製); RC-5015、RC-5016、RC- 5 020、RC- 5 03 1、RC-5100、 RC-5102、 RC-5120、 RC-5122、 RC-5152、 RC-5171、 -19- 200904636 RC-5 180、RC-5181 (大日本墨水化學工業股份有限公司 製):歐雷克斯No.340克力亞(中國塗料股份有限公司 製);山拉多 H-601、RC-750、RC-700、RC-600、 RC-5 00、RC-611、RC- 6 1 2 (三洋化成工業股份有限公司 製);SP-1509、SP-1507 (昭和高分子股份有限公司製) ;RCC-15C ( Grace Japan股份有限公司製)、亞羅尼克 斯Μ-όΙΟΟ、M-8〇3〇、M-8〇6〇 (東亞合成股份有限公司製 );NK hard B-420、NK 酯 A-IB、B-500 (新中村化學 工業股份有限公司製)等作適宜選擇利用。 又,硬化性樹脂中亦含有熱硬化性樹脂。作爲熱硬化 性樹脂’可舉出不飽和聚酯樹脂、環氧基樹脂、乙烯酯樹 脂、酚樹脂、熱硬化性聚醯亞胺樹脂、熱硬化性聚醯胺亞 胺等。 作爲不飽和聚醋樹脂,例如可舉出將鄰苯二甲酸系樹 脂、異苯二甲酸系樹脂、對苯二甲酸系樹脂、雙酚系樹脂 、丙二醇馬來酸系樹脂、二環戊二烯或其衍生物導入於不 飽和聚酯組成中使其低分子量化、或添加包膜形成性之躐 化合物的低苯乙烯揮發性樹脂、添加熱可塑性樹脂(聚乙 酸乙稀醋樹脂、本乙稀· 丁二稀共聚物、聚苯乙稀、飽和 聚酯等)之低收縮性樹脂、將不飽和聚酯直接Br2溴化、 或共聚合氯橋酸、二溴新戊基二醇等之反應性型、氯化石 蠟、四溴雙酚等鹵化物與三氧化銻、燐化合物之組合或將 氫氧化鋁等作爲添加劑使用的添加型難燃性樹脂、與聚尿 烷或聚矽氧烷之混合化、或經IPN化之強韌性(高強度、 -20- 200904636 高彈性率、高延伸)之強韌性樹脂等。 作爲環氧基樹脂’例如可舉出含有雙酚A型、漆用 酌酸酚型、雙酚F型、溴化雙酚a型之環氧丙醚系環氧 基樹脂、含有環氧丙胺系 '環氧丙酯系、環式脂肪系、雜 環式環氧基系之特殊環氧基樹脂等。 作爲乙烯酯樹脂’例如有將普通環氧基樹脂與甲基丙 烯酸等不飽和一元酸進行開環加成反應所得之寡聚物溶解 於苯乙烯等單體之物。又亦含有於分子末端或支鏈上具有 乙烯基之乙烯單體等特殊型。 作爲環氧丙醚系環氧基樹脂之乙烯酯樹脂,例如爲雙 酚系、漆用酚醛系、溴化雙酚系等,作爲特殊乙烯酯樹脂 有乙烯酯尿烷系、三聚異氰酸乙烯系、支鏈乙烯酯系等。 酚樹脂爲,將酚類與甲醛類作爲原料經縮聚合後得到 之甲階酚醛型與漆用酚醛型。 作爲熱硬化性聚醯亞胺樹脂,例如有馬來酸系聚醯亞 胺、例如聚馬來酸酐縮亞胺胺、聚胺基雙馬來酸酐縮亞胺 、雙馬來酸酐縮亞胺· 〇,〇’ -二烯丙基雙酚-A樹脂、雙 馬來酸酐縮亞胺•三嗪樹脂等、又納迪克酸改性聚醯亞胺 、及乙炔末端聚醯亞胺等。 繼續對於含氟丙烯酸樹脂微粒子作說明。 作爲含氟丙烯酸樹脂微粒子’例如有自含氟之丙烯酸 酯或甲基丙烯酸酯之單體或聚合物所形成之微粒子。作爲 含氟之丙烯酸酯或甲基丙嫌酸酯之具體例,可舉出 1H,1H,3H —四氟丙基(甲基)丙烯酸酯、1H,1H,5H—八 -21 - 200904636 氟戊基(甲基)丙烯酸酯、1H,1H,7H-十二氟庚基(甲基 )丙烯酸酯、1H,1H,9H—十六氟壬基(甲基)丙烯酸酯、 2,2,2—三氟乙基(甲基)丙烯酸酯、2,2,3,3,3—五氣丙基 (甲基)丙烯酸酯、2—(全氟丁基)乙基(甲基)丙燦 酸醋、2-(全氟己基)乙基(甲基)丙燒酸醋、(全 氟辛基)乙基)(甲基)丙烯酸酯、2 —全氟癸基乙基( 甲基)丙烯酸酯、3—全氟丁基—2-羥基丙基(甲基)丙 烯酸酯、3 —全氟己基一 2-羥基丙基(甲基)丙稀酸酯、 3—全氟辛基一 2_羥基丙基(甲基)丙烯酸酯、2一(全 氟一 3—甲基丁基)乙基(甲基)丙烯酸酯、2_ (全親― 5—甲基己基)乙基(甲基)丙烯酸酯、2—(全氟—7 一 甲基辛基)乙基(甲基)丙烯酸酯、3—(全氟一 3 一甲基 丁基一 2-羥基丙基(甲基)丙烯酸酯、3—(全氟一 5— 甲基己基)一 2 —羥基丙基(甲基)丙烯酸酯、3—(全氟 一 7—甲基辛基)—2—羥基丙基(甲基)丙烯酸酯、1H 一 1 一 (三氟甲基)三氟乙基(甲基)丙烯酸酯、 1H,1H,3H—六氟丁基(甲基)丙烯酸酯、三氟乙基甲基丙 烯酸酯、四氟丙基甲基丙烯酸酯、全氟辛基乙基丙烯酸酯 、2—(全氟丁基)乙基一α —氟丙烯酸酯。 又,含氟丙烯酸樹脂微粒子之中’亦以2- (全氟丁 基)乙基一α —氟丙烯酸酯所成之微粒子、含氟聚甲基甲 基丙烯酸酯微粒子、將含氟甲基丙烯酸於交聯劑之存在下 與乙烯單體進行共聚合之微粒子爲佳’更佳爲含氟聚甲基 甲基丙烯酸酯微粒子。 -22- 200904636 作爲含氟(甲基)丙烯酸與可共聚合之乙烯單體,僅 爲具有乙烯基者即可,具體可舉出甲基丙烯酸甲酯、甲基 丙烯酸丁酯等甲基丙烯酸烷酯、丙烯酸甲酯、丙烯酸乙酯 等丙烯酸烷酯、及苯乙烯、《 —甲基苯乙烯等苯乙烯類等 ’這些可單獨或混合後使用。作爲使用於聚合反應時的交 聯劑’雖無特別限定,但以使用具有2個以上之不飽和基 者爲佳,例如可舉出乙二醇二甲基丙烯酸酯、聚乙二醇二 甲基丙烯酸酯等2官能性二甲基丙烯酸酯' 或三羥甲基丙 烷三甲基丙烯酸酯、二乙烯苯等。 且,本發明中,於製造含氟聚甲基甲基丙烯酸酯微粒 子之聚合反應僅爲隨機共聚合及嵌段共聚合中任一者即可 。具體可舉出例如特開2 000- 1 6965 8號公報所記載的方法 等,作爲販賣品,例如可舉出Nipponpaint製:FS-701、 根上工業製:MF-0043等販賣品。且,這些含氟丙烯酸樹 脂微粒子雖可單獨使用,但亦可組合2種以上使用。又, 這些含氟丙烯酸樹脂微粒子之狀態爲粉體或乳膠狀等,可 以任意狀態下添加。 且,上述含氟丙烯酸樹脂微粒子已記載於例如特開 2003 -3 3 5956號公報、特開2006-348208號公報。這些文 獻係關於照明外套或液晶顯示器之背光等光源的光擴散性 薄片的用途,本發明之防眩性薄膜的使用效果於過去爲未 知。 欲由高速塗佈時之塗平性或處理性減低塗工液的液黏 度,以降低固形濃度爲較佳,由如此狀態下的塗工液安定 -23- 200904636 性、且良好分散性之觀點來看,含氟丙烯酸樹脂微粒子之 平均粒子徑爲5nm〜3 0//m之範圍內較佳。更佳爲l〇nm 〜1 5 μ m。平均粒子徑可例如藉由雷射折射式粒度分佈測 定裝置而測定。 又,由塗工液之安定性及分散液的分散性來看,作爲 含於防眩層之含氟丙烯酸樹脂微粒子的含有量,對於上述 活性能量線硬化樹脂10 0質量份而言,以0.01〜5 00質量 份爲佳,更佳爲0 .1〜1 0 0質量份,特佳爲1〜3 0質量份 〇 又,防眩層中亦可含有其他有機微粒子或無機微粒子 。作爲其他有機微粒子之具體例,可舉出聚甲基甲基丙烯 酸酯、聚苯乙烯、三聚氰胺聚合物、苯並鳥糞胺、或聚尿 烷系微粒子等。 作爲聚苯乙烯系微粒子,例如可舉出綜硏化學製; SX-130H、SX-200H、SX-350H)、積水化成品工業製、 SBX系列(SBX-6、SBX-8 )等販賣品。 作爲三聚氰胺聚合物系微粒子,例如,可舉出日本觸 媒製·苯並鳥糞胺•三聚氰胺•甲醛縮合物(商品名: epostar,grade ; M30、商品名:epostarGP、grade ; H40 〜 H110) '日本觸媒製:三聚氰胺•甲醛縮合物(商品名: epostar,grade; S12、S6、S、SC4)等販賣品。 又’亦可舉出核心係由三聚氰胺系樹脂所成,殻係以 二氧化矽所塡充之核心-殼型球狀複合硬化三聚氰胺樹脂 粒子等。特別對於可見光之粒子的光散亂特性或光反射特 -24 - 200904636 性等點來看,構成殼之二氧化矽以膠體二氧化矽爲佳,平 均粒子徑以 5〜70nm爲佳。該殼之層厚度以 80〜400nm 爲佳。又,具體可由特開2006- 1 7 1 033號公報所記載的方 法所製作,可舉出日產化學工業製:三聚氰胺樹脂.二氧 化矽複合粒子(商品名;歐普多珠子)等販賣品。 作爲聚甲基甲基丙烯酸酯系微粒子’例如可舉出綜硏 化學製;MX150、MX3 00、日本觸媒製;epostarMA、 grade ; ΜΑ 1 002 、 ΜΑ 1 004 、 ΜΑ 1 006 ' ΜΑΙΟ 1 0 、 epostarMX (乳膠)、grade ; MX020W、MX030W、 MX05 0W、MX100W)、積水化成品工業製:MBX系歹Ij ( MBX-8、MBX12)等販賣品。 又,亦可舉出丙烯基與苯乙烯經交聯之有機微粒子, 作爲具體例,例如可舉出Nipponpaint製:FS-102、 FS-401、FS-201、MG-351 等販賣品。 作爲苯並鳥糞胺系微粒子,例如可舉出日本觸媒製: 苯並鳥糞胺•甲醛縮合物(商品名:ep〇Star,grade ; L15 、M05、MS、SC25 )等。 作爲聚尿烷系微粒子,例如可舉出大日精化製Dimic beads、以及乙烯•甲基甲基丙烯酸酯共聚合物等。 作爲無機微粒子,可舉出二氧化矽微粒子,例如可舉 出日本 A e r 〇 s i 1 製、A e r 〇 s i 1 2 0 0、2 0 0 V、3 0 0、d e g u s s a 製 、AerosilOX50、TT600、富士 silysia 化學製、Silysia 3 50等商品名。 且’其他微粒子雖可單獨使用,但亦可組合2種以上 -25- 200904636 使用。又,這些微粒子之狀態可包含粉體或乳膠等狀態。 其他,亦可添加聚矽氧烷系樹脂粉末、聚苯乙烯系樹 脂粉末、聚碳酸酯樹脂粉末、聚烯烴系樹脂粉末、聚酯系 樹脂粉末、聚醯胺系樹脂粉末、聚醯亞胺系樹脂粉末、或 聚氟化乙烯系樹脂粉末等紫外線硬化性樹脂組成物。又, 視需要可再含有特開2000-24 1 807號公報所記載的微粒子 〇 且,上述微粒子可單獨使用,亦可組合2種以上使用 。又,這些微粒子之狀態亦可爲粉體或乳膠等任一狀態下 加入。 視必要,可添加其他種類的添加劑。具體可舉出聚矽 氧院界面活性劑、氟界面活性劑、聚氧醚化合物、丙烯酸 系共聚合物、乙炔二醇系化合物或自由基聚合性非離子性 界面活性劑等。且,這些亦可倂用。 作爲聚矽氧烷界面活性劑或氟界面活性劑,可舉出後 述之低折射率層所記載的氟系或聚矽氧烷界面活性劑等。 作爲聚氧醚化合物,可舉出聚環氧乙烷烷醚、聚環氧 乙烷月桂基醚、聚環氧乙烷十六烷基醚、聚環氧乙烷硬脂 醯醚等聚環氧乙烷烷醚化合物、聚環氧乙烷壬基苯醚、聚 環氧乙烷辛基苯醚等聚氧烷基苯醚化合物、聚氧伸烷基烷 醚、聚環氧乙烷高級醇類醚、聚環氧乙烷辛基月桂基醚等 。這些非離子性聚氧醚化合物之中以聚環氧乙烷油基醚化 合物爲佳。 作爲聚環氧乙烷油基醚化合物,一般可舉出下述一般 -26- 200904636 式(1 )所示化合物。 c 18H35-〇(C2H4〇)nH …⑴ 式中,η表示2〜40。 對於油基部分之環氧乙烷的平均加成個數(η)爲2 〜40,較佳爲2〜10。又,一般式(1)之化合物係由環 氧乙烷與油醇進行反應而得。 作爲具體商品可舉出EMULGEN 404〔聚環氧乙烷(4 )油基醚〕、EMULGEN 408〔聚環氧乙烷(8 )油基醚〕 、EMULGEN 409P〔聚環氧乙烷(9) 油基醚〕、 EMULGEN 420〔聚環氧乙烷(1 3 )油基醚〕、EMULGEN 430〔聚環氧乙烷(30)油基醚〕;以上爲花王公司製、 日本油脂製NOFABLEEAO-9905〔聚環氧乙烷(5 )油基 醚〕等。且,()內爲η之數字。 作爲丙烯酸系共聚合物,具體可舉出ΒΥΚ-36 1Ν、 ΒΥΚ-357、ΒΥΚ-354 (以上,BYK Japan股份有限公司公 司製)等。 作爲乙炔二醇系化合物,具體可舉出Surfynol 104E 、Surfynol 104PA、Surfynol 420、Surfynol 440、Dinol 6 04 (以上,日信化學工業股份有限公司公司製)。 作爲自由基聚合性之非離子性界面活性劑,例如可舉 出「RMA-564」、「RMA-568」、「RMA-1114」〔以上 ’商品名、日本乳化劑股份有限公司製〕等聚氧伸烷基烷 基苯醚(甲基)丙烯酸酯系聚合性界面活性劑等。 作爲上述界面活性劑之添加劑的添加量,對於硬化性 -27- 200904636 樹脂100質量份而言,0.001〜10質量份爲佳,更佳爲 0.1〜8質量份。 又,作爲可添加於本發明的防眩性薄膜之防眩層中的 其他種種添加劑,亦可舉出偶合劑、可塑劑、分散劑等。 又,防眩層中可含有金屬氧化物。具體可舉出氧化鈦 、氧化鋁、氧化錫、氧化銦、氧化銦-錫(ITO)、氧化鋅 、氧化銷、氧化鎂、碳酸鈣、碳酸鈣、滑石、黏土、燒成 陶土、燒成矽酸鈣、水和矽酸鈣、矽酸鋁、矽酸鎂、及磷 酸鈣。 本發明的防眩性薄膜之防眩層厚度,由膜強度性或良 好光擴散性之觀點來看,並無特別限定,一般爲0.5〜5 0 //m,特佳爲1〜30#m。又,防眩層係可由單層、或複 數層所構成。 本發明的防眩層係藉由包含塗佈使用於透明薄膜基材 形成防眩層之塗佈組成物的塗佈步驟、將所得之塗膜進行 乾燥之乾燥步驟、及使經乾燥之塗膜進行硬化的硬化步驟 的方法而形成。 將形成防眩層之塗佈組成物塗佈於基材的方法,並無 特別限定,可配合所使用之塗佈組成物或塗佈步驟之狀況 而做適宜選擇。例如可採用轉動塗佈、輥塗佈、篩子印刷 、噴霧塗佈、凹版塗佈、後述之噴射法等種種塗佈方法。 又,進行上述塗佈時’以後述透明薄膜基材的寬度爲1.4 〜4m下捲取成輥狀之狀態下重複進行,經乾燥.硬化處 理後’以捲取成輥狀爲佳。將所得之塗膜經乾燥之乾燥步 -28- 200904636 驟可藉由減壓乾燥下進行爲佳。 作爲硬化方法,可舉出藉由加熱而使其熱硬化的方法 、藉由紫外線等光照射使其硬化之方法等。使其熱硬化時 ,加熱溫度以5 0〜3 0 0 °C爲佳,較佳爲6 0〜2 5 0 °C、更佳 爲8 0〜1 5 0 °C。加熱時間依加熱溫度而變化,但以3〜3 0 0 分鐘的範圍爲適當。或經一次捲取後,於50〜1 00°C程度 之溫度下可進行1〜20日程度之熟成處理。 又,藉由光照射使其硬化時,以照射光之曝光量爲 1 OmJ/cm2 〜1 0 J/cm2 時爲佳,1 0 0m J/cm2 〜5 0 0 m J/cm2 爲較 佳。其中作爲經照射之光的波長區雖無特別限定,已使用 具有紫外線區域之波長的光爲佳。具體可使用低壓水銀燈 、中壓水銀燈、高壓水銀燈、超高壓水銀燈、碳極電弧燈 、金屬鹵素燈、氙氣燈等。 照射條件依各燈光而相異,但活性線之照射量一般爲 5〜500mJ/cm2,較佳爲 5〜150mJ/cm2,特佳爲 20〜 1 00mJ/cm2 〇 又,照射活性線時,於薄膜之搬送方向上賦予張力下 進行爲佳,更佳爲於寬方向亦賦予張力下進行。所賦予的 張力以3 0〜3 OON/m爲佳。賦予張力之方法雖無特別限定 ,在背輥上可於搬送方向賦予張力、或以拉幅器於寬方向 、或2軸方向賦予張力。藉此可得到平面性更優良的薄膜 〇 形成防眩層之塗佈組成物中含有溶劑。其中,作爲溶 劑,例如可舉出烴類(甲苯、二甲苯)、醇類(甲醇、乙 -29- 200904636 醇、異丙醇、丁醇、環己醇)、酮類(丙酮、甲基乙基酮 、甲基異丁基酮)、酯類(乙酸甲酯、乙酸乙酯、乳酸甲 基)、二醇醚類等有機溶劑,這些可做適宜選擇下經混合 等使用。特別爲使用含有丙二醇單烷醚(烷基之碳原子數 爲1〜4)或丙二醇單烷醚乙酸酯(烷基之碳原子數爲1〜 4)等5質量%以上’較佳爲5〜80質量%以上之有機溶 劑爲佳。 本發明的防眩性薄膜中,防眩層可藉由噴射方法形成 凹凸。 即,將防眩層形成用之塗佈組成物作爲墨水液,藉由 噴射方法進行塗佈後’可形成凸結構部、或以具有活性線 硬化樹脂之塗佈液所形成之凸結構部上作爲外套層使用、 或藉由噴射方法形成凸結構部,亦可作爲進一步外包於上 面的兩者塗佈液使用。 於防眩性薄膜的防眩層上至少設置低折射率層,可形 成防眩性抗反射薄膜,特別爲層合含有內部爲多孔質或空 洞之至少1種中空二氧化矽微粒子的低折射率層下,可形 成耐久試驗後之密著優良的防眩性抗反射薄膜。又,如此 防眩性抗反射薄膜之防眩層、與低折射率層之間,介著高 折射率層爲佳。 繼續對低折射率層作說明。 低折射率層的折射率比支持體之透明薄膜基材的折射 率還低,於23°C ’波長5 50nm下以1.30〜1.45之範圍爲 佳。 -30- 200904636 低折射率層的膜厚以5nm〜0.5/zm爲佳,l〇nm〜0.3 /zm爲較佳,30nm〜0.2ym更佳。 低折射率層含有內部爲多孔質或空洞之至少1種中空 二氧化矽微粒子,與防眩層之密著性較佳,更佳爲含有中 空二氧化矽微粒子、與其他1種類之二氧化矽微粒子爲佳 〇 其中,作爲其他1種類之二氧化矽微粒子,並無特別 限定,以膠體二氧化矽爲佳。其中,膠體二氧化矽之平均 粒徑以未達中空二氧化矽微粒子之平均粒徑的1 . 1〜2 0倍 爲佳。又,低折射率層亦可含有平均粒徑相異的2種以上 中空二氧化矽微粒子。 繼續對於內部爲多孔質或空洞之中空二氧化矽微粒子 (以下僅稱爲中空微粒子)作說明。 中空微粒子爲,(1)設置於多孔質粒子與該多孔質 粒子表面之被覆層所成之複合粒子、或(2)於內部具有 空洞,且內容物以溶劑、氣體或多孔質物質塡充之空洞粒 子。 且,空洞粒子爲,內部具有空洞之粒子,空洞係以粒 子壁包圍。空洞內中塡充使用於調製時的溶劑、氣體或多 孔質物質等內容物。如此中空微粒子之平均粒徑爲5〜 20 0nm ’較佳爲1 〇〜70nm。中空微粒子之粒徑以變動係 數爲1〜40%之單分散時爲佳。 中空二氧化矽微粒子之平均粒徑可藉由掃描電子顯微 鏡(SEM )等由電子顯微鏡照片測定。藉由利用動態散光 -31 - 200904636 法或靜態散光法等之粒度分佈計等進行測定。 使用的中空微粒子之平均粒徑可配合所形成之低折射 率層的透明包膜厚度作適宜選擇,透明包膜之膜厚的3/2 〜1/10爲佳,較佳爲2/3〜1/10。其中中空微粒子因低折 射率層之形成,以分散於適當的媒體之狀態下爲佳。作爲 分散媒,以水、醇類(例如曱醇、乙醇 '異丙醇)、及酮 (例如甲基乙基酮、甲基異丁基酮)、酮醇類(例如二丙 酮醇類)、伸丙基單甲醚、丙二醇單甲醚乙酸酯等爲佳。 複合粒子的被覆層之厚度或空洞粒子之粒子壁厚度爲 1〜40nm,較佳爲 1〜20nm,更佳爲 2〜15nm。複合粒子 時,被覆層之厚度未達lnm時,有時無法完全包覆粒子 ,塗佈液成分容易進入複合粒子之內部,使內部之多孔性 減少,無法得到低折射率化之充分效果。又,被覆層的厚 度若超過20nm時,塗佈液成分不會進入內部,複合粒子 之多孔性(細孔容積)降低,有時無法得到低折射率化之 充分效果。又,空洞粒子的情況,粒子壁之厚度未達1 urn 時,有時無法維持粒子形狀,又即使厚度超過20nm,亦 無法實現低折射率化之充分效果。 複合粒子的被覆層或空洞粒子之粒子壁以二氧化矽爲 主成分時爲佳。又,亦可含有二氧化矽以外之成分,具體 可舉出 Al2〇3、B2〇3、Ti〇2、Zr〇2、Sn〇2、Ce〇2、P203、 Sb2〇3、Mo〇3、Zn〇2、W03等。作爲構成複合粒子之多孔 質粒子,可舉出二氧化矽所成者、二氧化矽與二氧化矽以 外之無機化合物所成者、CaF2、NaF、NaAlF6、MgF等所 -32- 200904636 成者。其中係以二氧化矽與二氧化矽以外的無機化合物之 複合氧化物所成之多孔質粒子爲佳。作爲二氧化矽以外之 無機化合物,可舉出 Al2〇3、B2〇3、Ti02、Zr02、Sn02、 Ce02 ' P2O3 ' Sb2〇3 ' M0O3 ' Zn02 ' W03 等 1 種或 2 種以 上。如此多孔質粒子中,二氧化矽以S i O 2作代表,二氧 化矽以外之無機化合物以氧化物換算(ΜΟΧ )時的莫耳比 M0X/Si02爲0.0001〜1.0,較佳爲0.001〜0.3之範圍。 難以得到多孔質粒子的莫耳比MOx/Si02未達0.000 1 者,即使得到其細孔容積亦較小,無法得到折射率較低的 粒子。又,多孔質粒子的莫耳比MOx/Si 02若超過1.0,二 氧化矽之比率會變小,故細孔容積變大,且難以得到折射 率較低者。 如此多孔質粒子之細孔容積爲爲0.1〜1.5ml/g,較佳 爲0.2〜1.5ml/g之範圍。細孔容積未達〇.lml/g時,無法 得到折射率充分降低的粒子,若超過1.5ml/g時,微粒子 的強度會降低,所得之包膜的強度會減低。 且,如此多孔質粒子的細孔容積可藉由水銀壓入法求 得。又,作爲空洞粒子之內容物,可舉出使用於粒子調製 時的溶劑、氣體、多孔質物質等。溶劑中可含有空洞粒子 調製時所使用的粒子前驅體之未反應物、使用之觸媒等。 又,作爲多孔質物質,可舉出多孔質粒子所例舉的化合物 所成者。這些內容物可爲單一成分所成者,亦可爲複數成 分之混合物。 作爲如此中空微粒子的製造方法,例如可採用特開平 -33- 200904636 7-133105號公報之段落號碼〔〇01〇〕〜〔〇〇33〕所 的複合氧化物膠體粒子之調製方法。具體之複合粒子 二氧化矽、二氧化矽以外的無機化合物所成時,藉由 以下第1步驟〜第3步驟,可製造出中空微粒子。 第1步驟:多孔質粒子前驅體之調製 第1步驟中,預先各別調製出二氧化矽原料與二 矽以外的無機化合物原料之鹼水溶液、或調製出二氧 原料與二氧化矽以外的無機化合物原料之混合水溶液 合將此水溶液作爲目的的複合氧化物之複合比率 pH 1 0以上的鹼水溶液中一邊攪拌一邊徐徐添加調製 孔質粒子前驅體。 作爲二氧化矽原料,可使用鹼金屬、銨或有機鹼 酸鹽。作爲鹼金屬的矽酸鹽,可使用矽酸鈉(水玻璃 矽酸鉀。作爲有機鹼可舉出四乙基銨鹽等第4級銨鹽 乙醇胺、二乙醇胺、三乙醇胺等胺類。且,銨之矽酸 有機鹼之矽酸鹽中亦含有矽酸液中添加氨、第4級銨 化物、胺化合物等之鹼性溶液。 又,作爲二氧化矽以外的無機化合物之原料,可 鹼可溶之無機化合物。具體可舉出選自 Al、B、Ti、 Sn、Ce、P、Sb、Mo、Zn、W等的元素之氧化酸、該 酸之鹼金屬鹽或鹼土類金屬鹽、銨鹽、第4級銨鹽。 體爲鋁酸鈉、四硼酸鈉、碳酸锆銨、銻酸鉀、錫酸鉀 矽酸鈉、鉬酸鈉、硝酸鈽銨、燐酸鈉。 揭示 係由 實施 氧化 化矽 ,配 ,於 出多 之矽 )或 、單 鹽或 氫氧 使用 Zr、 氧化 更具 、鋁 -34- 200904636 雖與這些水溶液之添加的同時,混合水溶液之pH値 會產生變化,將該pH値控制於所定範圍的操作並非特別 必要。水溶液最終爲依據無機氧化物之種類、及其混合比 率而決定其pH値。此時水溶液之添加速度並無特別限定 。又,於複合氧化物粒子之製造時,種粒子之分散液可作 爲出發原料使用。 作爲該種粒子,雖無·特別限定,可使用S i Ο 2 ' A12 Ο 3 、Ti02或Zr02等無機氧化物或彼等複合氧化物之微粒子 ,一般可使用彼等溶膠。且藉由上述製造方法所得之多孔 質粒子前驅體分散液亦可作爲種粒子分散液使用。 使用種粒子分散液時,將種粒子分散液的pH調整爲 1 〇以上後’於該種粒子分散液中將上述化合物之水溶液 於鹼水溶液中攪拌下添加。此時,並非必須進行分散液 p Η控制。使用如此的種粒子時,容易控制所調製之多孔 質粒子的粒徑,可得到粒度均一者。 上述二氧化矽原料、及無機化合物原料具有於鹼較高 的溶解度。然而’以該溶解度之較大pH區域混合兩者時 ,或降低矽酸離子、及鋁酸離子等氧化酸離子之溶解度, 析出這些複合物而成長爲微粒子、或引起種粒子上析出的 粒·子成長。因此’於微粒子之析出、成長時,無須進行如 過去方法之p Η控制。 第1步驟中之二氧化矽與二氧化矽以外的無機化合物 之複合比率’對於二氧化矽之無機化合物換算爲氧化物( ΜΟχ),其MOx/Si〇2之莫耳比爲〇_〇5〜2·0,較佳爲0.2 -35- 200904636 〜2.0之範圍內。該範圍內,二氧化砂的比率越小,多孔 質粒子之細孔容積越增大。然而,莫耳比即使超過2.0, 多孔質粒子的細孔容積幾乎不會增加。另一方面,莫耳比 未達 0.05時,細孔容積會變小。調製空洞粒子時, M0x/Si02之莫耳比以0.25〜2.0之範圍內爲佳。 第2步驟:自多孔質粒子除去二氧化矽以外之無機化合物 第2步驟中,自第1步驟所得之多孔質粒子前驅體, 將二氧化矽以外的無機化合物(矽與氧以外之元素)之至 少一部份經選擇地除去。作爲具體之除去方法,將多孔質 粒子前驅體中的無機化合物使用鉱酸或有機酸進行溶解除 去、或與陽離子交換樹脂接觸後進行離子交換除去。 且,第1步驟所得之多孔質粒子前驅體係爲矽與無機 化合物構成元素介著氧而結合之網目結構粒子。藉由如此 自多孔質粒子前驅體除去無機化合物(矽與氧以外之元素 ),可得到一層多孔質中細孔容積較大的多孔質粒子。又 ,使自多孔質粒子前驅體除去無機氧化物(矽與氧以外之 元素)之量變多,即可調製出空洞粒子。 又,自多孔質粒子前驅體除去二氧化矽以外的無機化 合物之前,於由第1步驟所得之多孔質粒子前驅體分散液 中添加將含有二氧化矽之鹼金屬鹽經脫鹼所得之氟含有取 代烷基之矽烷化合物的矽酸液或水解性有機砂化合物’形 成二氧化矽保護膜者爲佳。二氧化矽保護膜的厚度爲0·5 〜40nm,較佳爲0.5〜15nm之厚度即可。且’即使形成 -36- 200904636 二氧化矽保護膜,該步驟之保護膜爲多孔質’厚度較爲薄 ,故可將上述二氧化矽以外的無機化合物自多孔質粒子前 驅體中除去。 藉由形成如此二氧化矽保護膜,保持粒子形狀下’將 上述之二氧化矽以外的無機化合物,可自多孔質粒子前驅 體中除去。又,形成後述二氧化矽被覆層時,多孔質粒子 之細孔不會因被覆層而被閉塞,因此不會降低細孔容積’ 可形成後述之二氧化矽被覆層。且,除去之無機化合物的 量較少時,粒子不會被破壞,並非必須形成保護膜。 又,調製空洞粒子時,形成該二氧化矽保護膜爲佳。 調製空洞粒子時,除去無機化合物時,可得到由二氧化矽 保護膜、二氧化矽保護膜內之溶劑、與未溶解之多孔質固 體成分所成之空洞粒子的前驅體,於空洞粒子之前驅體中 形成後述之被覆層時,所形成之被覆層成爲粒子壁而形成 空洞粒子。 欲形成上述二氧化矽保護膜時所添加之二氧化矽源的 量,於可保持粒子形狀之範圍內較少爲佳。二氧化矽源的 量過多時’二氧化矽保護膜會過厚,而難以自多孔質粒子 前驅體除去二氧化矽以外的無機化合物。 作爲使用於二氧化矽保護膜形成用之水解性有機矽化 合物,可使用下述一般式(2)[Technical Field] The present invention relates to an anti-glare film, an anti-glare anti-reflection film, a polarizing plate using the same, and a display device. [Prior Art] One of various displays is a liquid crystal display. In order to facilitate the viewing of a display device such as a wide viewing angle and a high definition of a liquid crystal display, the surface of the liquid crystal display, that is, the surface reflection of the surface of the polarizing plate cannot be ignored. In other words, the deterioration of the visibility caused by the reflection of the surface of the satellite navigation positioning system with a high frequency of outdoor use by the monitor or the camera monitor becomes remarkable. Therefore, in the polarizing plate of these machines, the antireflection film is indispensable, and for a liquid crystal display having a high frequency of outdoor use, a polarizing plate to which an antiglare treatment is applied is practically used. The anti-glare treatment reduces the visibility of the reflected image by blurring the image contour reflected on the surface, and reduces the noise intake of the reflected image when the display device is used. Generally, it is designed to be roughened by a suitable method such as sand blasting, a roll roll, chemical lithography, or the like, and a fine uneven structure is applied to the surface, and the transfer method by a metal mold is equal to the surface imparting fine uneven structure on the surface. In the resin layer, fine particles are provided on the surface of the resin layer to impart fine concavo-convex structure, and the reflected light in the visible light region is astigmatized on the surface uneven structure. In the anti-glare treatment, it is preferable to disperse the fine particles in the resin layer. -4-200904636 The method can easily provide a fine uneven structure. Patent Document 1 discloses that a transparent film substrate is coated with a dispersion of a radioactive hardening resin and fine particles having an average particle diameter of 1 〇V m or less and a modifier, and is dried and hardened to have fine unevenness on the surface. An example report of the structure of the anti-glare layer. In Patent Document 2 and Patent Document 3, an example in which a plurality of antiglare layers containing fine particles are dispersed in a resin layer is described. However, these anti-glare treatments are not very satisfactory from the point of view of the low-intake effect of the reflection image. Patent Document 4 describes an antiglare film formed of an ultraviolet curable resin and crosslinked propylene-based beads. This is using 0. 5 to 6. Small particles of 0 #m and further improve the dispersibility of the particles. It is presumed that the curvature is made larger by reducing the unevenness of one by one, and the focus position is designed to be average for the whole. Further, Patent Document 5 discloses that the antiglare layer is a center line average roughness (Ra) and a ten point average thickness (Rz) of a surface uneven shape including a resin and a particle having a refractive index difference, which can be achieved. The effect of the reduction of the noise of the reflection image in the room and the prevention of unevenness of the surface. [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A- No. Hei. No. Hei. Patent Document 5: Japanese Laid-Open Patent Publication No. 2000-338310-5-200904636 SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION However, in the past method, the noise reduction of the reflected image can be reduced to a certain extent, and in the bright room. The problem of turbidity in which the surface of the film substrate becomes white has not been solved. Further, there is a problem that the film strength after the endurance storage is deteriorated. In the prior art, it has been found that the film strength (resistance, scratch resistance, and the like after suppressing the reduction of the image pickup of the reflected image or the turbidity after the durable storage is not observed. The pencil hardness) and the adhesion to the upper layer when laminated on the antiglare layer are satisfactory, and there is a strong expectation for the production of an antiglare film having such characteristics for a liquid crystal display or the like. An object of the present invention is to solve the problems of the prior art described above, and to provide an anti-glare film excellent in optical properties with satisfactory balance between anti-glare property and visibility, and excellent film strength (scratch resistance, pencil hardness) after durable storage. An anti-glare anti-reflection film, a polarizing plate using the same, and a display device. Means for Solving the Problem The inventors of the present invention have found that the antiglare layer of the antiglare film is at least one type of curable resin and at least one type of fluorine-containing acrylic resin fine particles. The present invention has been accomplished by solving the above problems of the prior art. In order to achieve the above object, the invention of claim 1 is an anti-glare film having an anti-glare layer on a transparent film substrate, characterized in that the anti-glare layer contains at least one curable resin and at least one Fluorinated acrylic acid-6- 200904636 Resin microparticles. The invention of claim 2 is the anti-glare film according to the first aspect of the invention, wherein the transparent film substrate is made of a cellulose ester film. The invention of claim 3 is the anti-glare film according to the first or second aspect of the invention, wherein the transparent film substrate contains a cellulose ester, a sugar ester compound, and an acrylic polymer. . In this case, the transparent film substrate is a cellulose ester, a sugar ester compound which binds 1 to 12 at least one structure selected from a furanose structure and a pyranose structure, and the sugar compound is esterified, and has a weight average molecular weight of 500. Above, an acrylic polymer of 30,000 or less is preferred. The anti-glare film according to any one of claims 1 to 3, wherein the anti-glare layer has a thickness of 0. 5~50# m range. The anti-glare film according to any one of claims 1 to 4, wherein the curable resin is an ultraviolet curable resin. The anti-glare film according to any one of the first to fifth aspects of the invention, wherein the curable resin is an ultraviolet curable acrylate resin. The anti-glare film according to any one of claims 1 to 6, wherein the fluorine-containing acrylic resin fine particles are fluorine-containing polymethyl methacrylate fine particles. . The anti-glare film according to any one of the preceding claims, wherein the fluorinated acrylic resin microparticles have an average particle diameter of 5 nm to 30/zm. The scope. The anti-glare film according to any one of the first to eighth aspects of the present invention, characterized in that the content of the fluorine-containing acrylic resin fine particles is 100% for the curable resin. In terms of share, it is 0. 0 1 to 5 00 parts by mass. In the anti-glare layer of the anti-glare film according to any one of the first to ninth aspects of the invention, the laminate contains the inside of the anti-glare layer. A low refractive index layer of at least one hollow cerium oxide microparticle of a porous or void is characterized. The invention of claim 1 is the anti-glare antireflection film according to the invention, wherein the anti-glare layer and the low refractive index layer are interposed between the anti-glare layer and the low refractive index layer. The invention of claim 12 is the anti-glare antireflection film according to the first or the first aspect of the invention, characterized in that the polymer having a hydrocarbon main chain on the surface of the hollow ceria particles They are combined by covalent bonding. The invention of the polarizing plate of claim 13 is characterized in that the anti-glare film according to any one of the first to ninth aspects of the invention is used. The invention of the polarizing plate of claim 14 is characterized in that the anti-glare antireflection film described in any one of claims 10 to 12 is used on one side. The invention of the display device of the fifteenth aspect of the invention is characterized in that the anti-glare film described in any one of the first to the ninth aspects of the invention is characterized by the use of the invention. The invention of the invention is characterized in that the anti-glare antireflection film according to any one of the first to the second aspect of the invention is characterized by the invention. The invention of the display device of claim 17 is characterized in that the polarizing plate described in item 13 or item 14 of the patent application is used. Advantageous Effects of Invention The invention of claim 1 is an anti-glare film having an anti-glare layer on a transparent film substrate, wherein the anti-glare layer contains at least one curable resin and at least one fluorine-containing resin The invention relates to an anti-glare film according to the first aspect of the patent application, which has an optical property satisfying a better balance between anti-glare property and recognizability, and a film strength after endurance storage (scratch resistance, pencil) Hardness) Excellent effect. The invention of claim 2 is the anti-glare film according to the first aspect of the patent application, and the transparent film substrate is based on a cellulose ester film, and the anti-glare property is as claimed in claim 2 The invention of the film is particularly effective in achieving the above effects. The invention of claim 3 is the anti-glare film according to claim 1 or 2, wherein the transparent film substrate is a cellulose ester, a sugar ester compound, or an acrylic polymer, such as The invention of the anti-glare film of the third application of the patent scope is particularly effective in achieving the above effects. The invention of claim 4 is an anti-glare film according to any one of the claims 1 to 9 to 10,046,036 to 3, the thickness of the anti-glare layer is 0. In the range of 5 to 5 0 #m, the invention of the anti-glare film of the fourth application of the patent scope is particularly effective in achieving the above effects. The invention of claim 5 is the anti-glare film according to any one of claims 1 to 4, wherein the curable resin is an ultraviolet curable resin, and the anti-glare is as claimed in claim 5 The invention of the film is particularly effective in achieving the above effects. The invention of claim 6 is the anti-glare film described in any one of the first to fifth aspects of the patent application, and the curable resin is an ultraviolet curable acrylate resin, and the patent application scope is the sixth item. The invention of the anti-glare film is particularly effective in achieving the above effects. The anti-glare film according to any one of the above-mentioned claims, wherein the fluorine-containing acrylic resin fine particles are fluorine-containing polymethyl methacrylate fine particles, The invention of the anti-glare film of claim 7 is particularly effective in achieving the above effects. The invention of claim 8 is the anti-glare property described in any one of claims 1 to 7. In the film, in which the average particle diameter of the fluorine-containing acrylic resin fine particles is in the range of 5 nm to 3 0 // m, the invention of the anti-glare film of the fifth application of the patent application is particularly effective in achieving the above effects. The anti-glare film according to any one of claims 1 to 8, wherein the content of the fluorine-containing acrylic resin fine particles is 100 parts by mass of the curable resin. For the -10-200904636 is 0. The invention of the anti-glare film of the range of 0 to 50,000 parts by mass, such as the anti-glare film of claim 9 is particularly effective. In the anti-glare layer of the anti-glare film according to any one of the first to ninth aspects of the invention, the laminate contains the inside. a low-refractive-index film of a hollow or hollow hollow ceria particle, the anti-glare anti-reflection film of the item 10 of the patent application scope of the low refractive index layer containing such hollow ceria particles. According to the invention, it has excellent antireflection properties and has an effect of achieving excellent adhesion after the durability test. The invention of claim 1 is an anti-glare antireflection film as described in claim 10, and a high refractive index layer is interposed between the antiglare layer and the low refractive index layer. The invention of claim 11 of the patent application has an excellent antireflection property and an effect of achieving excellent adhesion after the durability test. The anti-glare antireflection film according to the first or second aspect of the invention, wherein the hollow ceria particle has a hydrocarbon main chain polymerization on the surface thereof. The invention of the anti-glare anti-reflection film of the first aspect of the patent application is in the severe durability test, and also has excellent film strength (scratch resistance, pencil hardness), And excellent recognition effect. The invention of the polarizing plate of the ninth aspect of the invention is the use of the anti-glare film which can further balance the anti-glare property and the identification property as described in any one of the first to ninth aspects of the patent application. On the other hand, the invention of the polarizing plate of claim 13 of the patent application is an ingestion of the disorder -11 - 200904636, and the effect of excellent visibility can be achieved. The invention of the polarizing plate of claim 14 is that the anti-glare property, the visibility, and the anti-reflection resistance can be further balanced as described in any one of the claims 10th to 12th. The glare antireflection film is used on one side, and the invention of the polarizing plate of claim 14 is excellent in antireflection property, and it is not necessary to care about the intensive intake of light, and the effect of excellent visibility can be achieved. The invention of the display device of the fifteenth aspect of the invention is the use of the anti-glare film which can further balance the anti-glare property and the identification property as described in any one of the first to ninth aspects of the patent application. The invention of the display device of claim 15 is that the inadvertent ingestion of light is not taken care of, and the effect of excellent visibility can be achieved. The invention of the display device of claim 16 is an anti-glare anti-reflection film as described in any one of the first to the second aspect of the invention. The invention of the display device of the present invention has excellent anti-reflection properties, and does not care about the disorderly intake of light, and can achieve an excellent visibility. The invention of the display device of claim 17 is the use of the polarizing plate as described in claim 13 or claim 14, the invention of the display device of claim 17 is Don't care about the indiscriminate intake of light' and achieve excellent recognition, and have the effect of achieving excellent anti-reflective properties. BEST MODE FOR CARRYING OUT THE INVENTION -12-200904636 The embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. The antiglare film of the present invention is an antiglare film having an antiglare layer on a transparent film substrate, and the antiglare layer is characterized in that it contains at least one curable resin and at least one fluorine-containing acrylic resin microparticle. Among them, the anti-glare property is such that the image of the image reflected on the surface of the film substrate is blurred, and the visibility of the reflected image is lowered. When used in an image display device such as a liquid crystal display, an organic EL display, or a plasma display, Mind the shadow ingestor of the reflected image. Such a property can be obtained by providing appropriate irregularities on the surface of the film substrate. Further, the anti-glare film of the present invention is provided in an outermost layer such as a video display device in order to efficiently reduce the noise of the reflected image. Therefore, the light diffusing sheet of the light source such as the backlight of the lighting jacket or the liquid crystal display is different in use. Examples of the method of forming such irregularities on the surface of the film substrate include processing of a transparent film substrate, application of an antiglare layer, and the like. The concavo-convex shape of the surface of the film substrate of the present invention may be a structure selected from the group consisting of a straight cone, a tapered cone, a pyramid, a beveled cone, a wedge, a convex polyhedron, and a hemispherical shape, and a structure having these partial shapes. Further, the hemispherical surface shape does not have to be a true spherical shape, and may be a rounded shape or a more deformed convex curved shape. Further, the ridge line of the uneven shape is extended to extend in a line shape, and examples thereof include a 稜鏡 shape, a lenticular lens shape, and a Fresnel lens shape. The slope from the ridgeline to the valley line may be planar, curved, or a composite shape of the two. -13- 200904636 The antiglare layer of the antiglare film of the present invention has an arithmetic mean roughness (Ra) of 15 nm or more, preferably 15 nm, as defined by JIS B 0 0 0 : 2 0 0 1 ~300 nm is more preferably 80 to 2000 nm from the uneven shape showing an anti-glare property with good optical characteristics. If Ra is less than 15 nm, its anti-glare effect is weak, and when it exceeds 3 000 nm, it is visually too rough. The arithmetic mean roughness (Ra) is preferably measured by an optical interference type surface roughness measuring device, and can be measured by, for example, an optical interference type surface roughness meter RST/PLUS (manufactured by WYKO Co., Ltd.). Further, the average top spacing Sm is preferably about 20 to 150 #m. The ten point of JIS B 0601 is the average thickness rz is 0. 1 to 3, preferably 0·15 to 2, more preferably 0. 2 to 1 (extra good is 0. 3~0. 9 ). The ratio of the average top spacing S m to the ten point average roughness Rz (Rz/Sm) is 0. 005 ~0. 02, preferably 0. 006 ~0. 018, more preferably 0. 006~0. 015. Further, the sum of Rz and Sm can be calculated from the analysis results of the device system (atomic force microscope system, stylus step difference measurement system, confocal point laser microscope analysis system, etc.) capable of measuring the three-dimensional concave-convex structure. The antiglare layer of the antiglare film of the present invention is obtained by applying a coating composition obtained by applying a coating composition for an antiglare layer to a substrate, and then forming a concavo-convex shape on the surface of the film substrate. Further, the antiglare layer can be used in combination with the following method for forming an antiglare layer and a method for forming an uneven shape on the surface of a transparent film substrate to be described later. (1) A method of imparting a shape to a roll after forming a negative shape as a target shape on a roll or a master. (2) After forming a negative shape as a target shape on a roll or a master, the -14-200904636 thermosetting resin is filled in a negative type, and is cured by heat and then peeled off by a negative type. (3) After forming a negative shape as a target shape on a roll or a master, applying ultraviolet or electron beam hardening resin to the recess, and coating the resin liquid on the intaglio plate under the transparent film substrate, irradiating ultraviolet rays or The electronic wire is a method in which the hardened resin is peeled off from the negative film of the transparent film substrate to which it is adhered. (4) A solvent casting method in which a target shape is formed on a casting conveyor belt and a desired shape is applied during casting. (5) performing a relief printing on a transparent substrate by a resin hardened by light or heat, and hardening it by light or heating to form irregularities (6) by light or heating on the surface of the transparent film substrate The cured resin is printed by a jetting method or a method of forming a surface of a transparent film substrate which is cured by light or heat. (7) A resin which is cured by light or heat on a surface of a transparent film substrate is printed by a jetting method to form a concavo-convex shape which is cured by light or heat, and then coated with a transparent resin layer. (8) A method of cutting a surface with a machine tool or the like. (9) A method in which particles of various shapes such as a sphere and a polygonal body are pressed into the surface of a transparent film substrate to a degree of burying, and the surface of the transparent film substrate is formed into an uneven shape. (10) A method in which particles of various shapes such as spheres and polyhedrons are dispersed in a small amount of a binder, and the surface of the transparent film substrate is -15-200904636 as a concave-convex shape. (In the surface of the transparent film substrate, an adhesive is applied, and particles of various shapes such as spheres and polyhedrons are scattered thereon, and the surface of the transparent film substrate is formed into a concavo-convex shape. (12) The surface of the transparent film substrate is cast. A method of forming a concavity and convexity by a type of pressure. The method described in Japanese Laid-Open Patent Publication No. Hei. No. 2005- 1 5 66 1 5 is a method of forming a concave-convex shape on the surface of the film substrate, or a method of forming a negative type or a jet method. The anti-glare film of the present invention contains at least one type of curable resin and at least one type of fluorine-containing acrylic resin fine particles in the anti-glare layer, and both of them contain an 'anti-glare film' after durable storage. The film strength, the adhesion between the laminate and the upper layer, and the reduction of the shadow image of the reflected image, or the suppression of turbidity, etc. The anti-glare film of the present invention is provided in the image display device and the like. For the hard coating property, the pencil hardness is preferably 3 Η to 8 Η, and particularly preferably 4 to 6 Η. The pencil hardness is the prepared anti-glare film sample. Temperature 2 5 °C, phase After adjusting the humidity for 60 hours under the conditions of a humidity of 60%, the test pencil according to JIS S 6006 was used to measure according to the pencil hardness evaluation method specified in JIS K 5400. For use in forming the present invention The coating composition for the anti-glare layer of the anti-glare layer of the anti-glare film is described. The coating composition for the anti-glare layer contains a curable resin and fluorine-containing acrylic resin fine particles. -16- 200904636 The active energy ray-hardening resin active energy ray-curable resin is a resin which is hardened by a crosslinking reaction such as irradiation with ultraviolet rays or electron beams, and is used as an active energy-generating resin, and contains an ethylenically unsaturated double bond. The monomer is excellent in hardening the active energy ray-curable resin layer by irradiating an active wire such as ultraviolet rays or electron beams. The active energy ray-curable resin is representative of an ultraviolet curable resin or an electron sclerosing tree. The ultraviolet curable resin is preferred. As the ultraviolet curable resin, for example, an ultraviolet hard acrylate resin or ultraviolet curing can be used. An ultraviolet ray-curable acrylate-based resin, such as a polyester acrylate-based ultraviolet curable epoxy acrylate resin or an ultraviolet curable alcohol acrylate resin, is preferably an externally curable epoxy resin. The ester-based resin is preferred because of its excellent film strength (pencil hardness resistance) after durable storage. As an ultraviolet curable urethane acrylate resin, a polyol is generally reacted with an isocyanate monomer or a prepolymer. Further, it has a hydroxyl group with 2-hydroxyethyl acrylate, 2-hydroxymethyl acrylate (hereinafter, methacrylate is represented by acrylate), 2-hydroxypropyl acrylate, etc. The body can be easily obtained after the reaction, and for example, those described in JP-A-59-151110 can be used. As a UV-curable urethane acrylate resin, Dick 1 7-8 06 (Daily Ink Chemical Industry Co., Ltd., the so-called active wire amount wire hard component is formed by adding a lipid, etc., a urethane, Type multi-component, or purple-type propylene-like property, which is a polyester product, ethyl group is only propylene, and it is used by 昭 用 优 优 [ [ [ [ 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 A mixture of parts and the like is preferred. The ultraviolet curable polyester acrylate-based resin is generally one which can be easily formed by reacting a polyester polyol with a 2-hydroxyethyl acrylate or a 2-hydroxy acrylate monomer, and can be used, for example. It is described in the Gazette No. 59-151112. Specific examples of the ultraviolet curable epoxy acrylate-based resin include an epoxy acrylate as an oligomer, and a reactive diluent and a photopolymerization initiator are added thereto and reacted. For example, those described in Japanese Laid-Open Patent Publication No. Hei No. Hei. Specific examples of the ultraviolet curable polyol acrylate resin include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol hexaacrylate. Ester, alkyl modified dipentaerythritol pentaacrylate, and the like. Specific examples of the photopolymerization initiator of these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, michelone, and amidoxime ester. Thioxanthone, and the like, and derivatives thereof. It is also possible to use a photosensitizer at the same time. The above photopolymerization initiator can also be used as a light sensitizer. Further, when a photopolymerization initiator using an epoxy acrylate resin is used, a sensitizer such as η-butylamine, triethylamine or tris-butylphosphonium can be used. The photopolymerization initiator or the photosensitizer used for the ultraviolet curable resin is 0% by mass based on 100 parts by mass of the resin. 1 to 20 parts by mass, preferably 1 to 15 parts by mass. Further, as another acrylate monomer, for example, as the unsaturated double bond -18-200904636, one of the monomers may be methacrylate, ethacrylate, butyl acrylate or phenyl methacrylate. Or a general monomer such as cyclohexyl acrylate, vinyl acetate or styrene. Further, examples of the monomer having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4 cyclohexane diacrylate, and 1,4 ring. Hexyl dimethyl diacrylate, trimethylolpropane triacrylate, pentaerythritol tetrapropenyl ester, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl Modified dipentaerythritol pentaacrylate, isobornyl acrylate, and the like. Further, the monomer described in JP-A-2006-3647 can also be used. As a commercial product of the ultraviolet curable resin used in the present invention, Adekaoptomer-KR can be cited. BY series: KR-400, KR-410, KR-5 5 0, KR-5 66, KR-5 6 7, BY - 3 2 0 B (made by Asahi Kasei Co., Ltd.); KoeihardA-1 0 1-KK , A-1 0 1 · WS, C-3 02, C-401-N, C-501, M-101, Μ-102 'T-102, D-102, NS-1 01, FT-102Q8, MAG -1-P20, AG-106, M-101-C (manufactured by Guangrong Chemical Co., Ltd.); SeCabeamPHC2210 (S) 'PHCX-9 (K-3), PHC2213, DP-10, DP-20, DP- 30, P1000, P1100 ' P1200, P1300, P1400, P1500, P1600, SCR900 (made by Dairi Seiki Co., Ltd.); KRM703 3, KRM7039, KRM7130, KRM7131, UVECRYL2920 1 , UVECRYL29202 (DAICEL · UCB Co., Ltd.) ; RC-5015, RC-5016, RC-5 020, RC-5 5 1, RC-5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, -19- 200904636 RC- 5 180, RC-5181 (made by Dainippon Ink Chemical Industry Co., Ltd.): Orex No. 340 gram (Asian Coatings Co., Ltd.); Shan Lado H-601, RC-750, RC-700, RC-600, RC-5 00, RC-611, RC- 6 1 2 (Sanyo Chemical Industry Co., Ltd.); SP-1509, SP-1507 (made by Showa Polymer Co., Ltd.); RCC-15C (made by Grace Japan Co., Ltd.), Alonis Μ-όΙΟΟ, M-8〇3〇, M-8〇6〇 (manufactured by Toagosei Co., Ltd.); NK hard B-420, NK ester A-IB, B-500 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), etc. are suitable for use. Further, the curable resin also contains a thermosetting resin. Examples of the thermosetting resin include an unsaturated polyester resin, an epoxy resin, a vinyl ester resin, a phenol resin, a thermosetting polyimide resin, and a thermosetting polyimide. Examples of the unsaturated polyester resin include a phthalic acid resin, an isophthalic resin, a terephthalic resin, a bisphenol resin, a propylene glycol maleic resin, and dicyclopentadiene. Or a derivative thereof, which is introduced into an unsaturated polyester composition to lower the molecular weight thereof, or a low styrene volatile resin containing a coating forming compound, and a thermoplastic resin (polyacetate vinegar resin, ethylene) · Low shrinkage resin of butyl diene copolymer, polystyrene, saturated polyester, etc., direct bromination of unsaturated polyester by Br2, or copolymerization of chlorohydrin, dibromoneopentyl glycol, etc. a combination of a halogenated compound such as a chlorinated paraffin or tetrabromobisphenol, a combination of antimony trioxide or an antimony compound, or an additive type flame retardant resin using an aluminum hydroxide or the like as an additive, and a polyurethane or a polyoxyalkylene. Hybrid or toughness resin with high toughness (high strength, -20-200904636 high modulus, high elongation). Examples of the epoxy resin include a bisphenol A type, a lacquer phenol type, a bisphenol F type, a brominated bisphenol a type, a glycidyl ether type epoxy resin, and a glycidylamine type. A special epoxy resin such as a glycidyl ester, a cyclic aliphatic or a heterocyclic epoxy group. The vinyl ester resin, for example, is obtained by subjecting an oligomer obtained by subjecting an ordinary epoxy resin to an unsaturated monobasic acid such as methacrylic acid to a ring-opening addition reaction to a monomer such as styrene. It also contains a special type such as a vinyl monomer having a vinyl group at a molecular terminal or a branch. The vinyl ester resin of the epoxy propylene ether epoxy resin is, for example, a bisphenol system, a phenol resin system or a brominated bisphenol system, and a vinyl ester urethane system or a trimeric isocyanic acid as a special vinyl ester resin. Ethylene or branched vinyl esters. The phenol resin is a resol type and a phenol type which are obtained by polycondensation of a phenol and a formaldehyde as a raw material. As the thermosetting polyimine resin, for example, a maleic acid polyimine, for example, polymaleic anhydride imide, polyaminobismaleic acid imide, bis-maleic anhydride imide, hydrazine , 〇'-diallyl bisphenol-A resin, bis-maleic anhydride imide/triazine resin, nadic acid modified polyimine, and acetylene terminal polyimide. The description of the fluorine-containing acrylic resin microparticles will be continued. The fluorine-containing acrylic resin fine particles 'for example are fine particles formed of a monomer or a polymer of a fluorine-containing acrylate or methacrylate. Specific examples of the fluorine-containing acrylate or methyl propyl acrylate include 1H, 1H, 3H-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-8-21 - 200904636 fluoropentane (meth) acrylate, 1H, 1H, 7H-dodecafluoroheptyl (meth) acrylate, 1H, 1H, 9H-hexadecafluorodecyl (meth) acrylate, 2, 2, 2 - Trifluoroethyl (meth) acrylate, 2,2,3,3,3-penta-propyl (meth) acrylate, 2-(perfluorobutyl)ethyl (methyl) propylene vinegar , 2-(perfluorohexyl)ethyl (meth) propyl sulphuric acid vinegar, (perfluorooctyl) ethyl) (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, 3--perfluorobutyl 2-hydroxypropyl (meth) acrylate, 3-perfluorohexyl- 2-hydroxypropyl (meth) acrylate, 3-perfluorooctyl 2- hydroxy propyl Base (meth) acrylate, 2-mono(perfluoro-3-methylbutyl)ethyl (meth) acrylate, 2_ (perenophilic 5-methylhexyl) ethyl (meth) acrylate, 2-(perfluoro-7 monomethyloctyl)ethyl (meth) propylene Ester, 3-(perfluoro-3-methylbutyl 2-hydroxypropyl (meth) acrylate, 3-(perfluoro-5-methylhexyl)-2-hydroxypropyl (meth) acrylate Ester, 3-(perfluoro-7-methyloctyl)-2-hydroxypropyl (meth) acrylate, 1H-mono-(trifluoromethyl)trifluoroethyl (meth) acrylate, 1H ,1H,3H-hexafluorobutyl (meth) acrylate, trifluoroethyl methacrylate, tetrafluoropropyl methacrylate, perfluorooctyl ethyl acrylate, 2-(perfluorobutyl) Ethyl-α-fluoroacrylate. Further, among the fluorine-containing acrylic resin microparticles, a microparticle formed by 2-(perfluorobutyl)ethyl-α-fluoroacrylate, a fluorine-containing polymethylmethyl group The acrylate fine particles and the fine particles which copolymerize the fluorine-containing methacrylic acid with the ethylene monomer in the presence of the crosslinking agent are preferably 'more preferably fluorine-containing polymethyl methacrylate fine particles. -22- 200904636 (Meth)acrylic acid and a copolymerizable ethylene monomer, only those having a vinyl group, specifically, methyl propyl Alkenyl methacrylate such as methyl methacrylate or butyl methacrylate; alkyl acrylate such as methyl acrylate or ethyl acrylate; and styrene, styrene such as methyl styrene, etc., which may be used alone or in combination The crosslinking agent used in the polymerization reaction is not particularly limited, but it is preferably one having two or more unsaturated groups, and examples thereof include ethylene glycol dimethacrylate and polyethylene. a bifunctional dimethacrylate such as an alcohol dimethacrylate or trimethylolpropane trimethacrylate, divinylbenzene, etc. Further, in the present invention, a fluorine-containing polymethyl methacrylate is produced. The polymerization of the microparticles is only one of random copolymerization and block copolymerization. Specifically, for example, the method described in Japanese Laid-Open Patent Publication No. Hei. No. Hei. Further, these fluorine-containing acrylic resin fine particles may be used singly or in combination of two or more kinds. Further, the state of the fluorine-containing acrylic resin fine particles may be a powder or a latex or the like, and may be added in any state. In addition, the above-mentioned fluorine-containing acryl resin fine particles are disclosed in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. 2006-348208. These documents relate to the use of a light-diffusing sheet of a light source such as a backlight of a lighting jacket or a liquid crystal display, and the use effect of the anti-glare film of the present invention is not known in the past. It is preferable to reduce the liquid viscosity of the coating liquid by the flatness or the treatment property at the time of high-speed coating, and to lower the solid concentration, and the coating liquid in this state is stable -23-200904636, and the viewpoint of good dispersibility In view of the above, the average particle diameter of the fluorine-containing acrylic resin fine particles is preferably in the range of 5 nm to 30 μm. More preferably, l〇nm 〜1 5 μ m. The average particle diameter can be measured, for example, by a laser refractive particle size distribution measuring device. In addition, the content of the fluorine-containing acrylic resin fine particles contained in the antiglare layer is 10% by mass of the active energy ray-curable resin, in view of the stability of the coating liquid and the dispersibility of the dispersion. . 01~5 00 mass parts is better, more preferably 0. 1 to 100 parts by mass, particularly preferably 1 to 30 parts by mass 〇 Further, the antiglare layer may contain other organic fine particles or inorganic fine particles. Specific examples of the other organic fine particles include polymethylmethacrylate, polystyrene, melamine polymer, benzoguanamine, or polyurethane microparticles. Examples of the polystyrene-based fine particles include commercially available products such as Kokusai Chemical Co., Ltd.; SX-130H, SX-200H, and SX-350H), Sekisui Chemicals Co., Ltd., and SBX series (SBX-6, SBX-8). Examples of the melamine polymer-based fine particles include a Japanese catalyst-based benzoguanamine-melamine-formaldehyde condensate (trade name: epostar, grade; M30, trade name: epostar GP, grade; H40 to H110). Japanese catalyst system: melamine and formaldehyde condensate (trade name: epostar, grade; S12, S6, S, SC4) and other sales. Further, a core-shell type spherical composite hardened melamine resin particle in which the core is made of a melamine resin and the shell is filled with cerium oxide may be used. In particular, for the light scattering characteristics of the visible light particles or the light reflection characteristics, the cerium oxide constituting the shell is preferably colloidal cerium oxide, and the average particle diameter is preferably 5 to 70 nm. The thickness of the shell layer is preferably 80 to 400 nm. Further, it can be produced by the method described in JP-A-2006-1713-1, and it can be exemplified by Nissan Chemical Industry Co., Ltd.: melamine resin. Selling products such as ruthenium dioxide composite particles (trade name; Opdo beads). Examples of the polymethyl methacrylate microparticles include, for example, a synthetic chemical system; MX150, MX3 00, and Japanese catalyst; epostarMA, grade; ΜΑ 1 002, ΜΑ 1 004 , ΜΑ 1 006 ' ΜΑΙΟ 1 0 , EpostarMX (latex), grade; MX020W, MX030W, MX05 0W, MX100W), Sekisui finished product industry: MBX series 歹Ij (MBX-8, MBX12) and other sales. Further, organic fine particles obtained by crosslinking the acryl group and the styrene may be mentioned, and specific examples thereof include those sold by Nipponpaint: FS-102, FS-401, FS-201, MG-351, and the like. Examples of the benzoguanamine-based fine particles include a benzoguanamine-formaldehyde condensate (trade name: ep〇Star, grade; L15, M05, MS, SC25). Examples of the polyurethane-based fine particles include Dimic beads manufactured by Daisei Seiki Co., Ltd., and ethylene methyl methacrylate copolymers. Examples of the inorganic fine particles include cerium oxide fine particles, and examples thereof include Aer 〇si 1 manufactured by Japan, A er 〇si 1 2 0 0, 2 0 0 V, 300, degussa, Aerosil OX50, TT600, and Fuji. Silysia chemical system, Silysia 3 50 and other trade names. Further, although other fine particles may be used alone, they may be used in combination of two or more types -25-200904636. Further, the state of these fine particles may include a state such as a powder or a latex. Others may be a polyoxyalkylene resin powder, a polystyrene resin powder, a polycarbonate resin powder, a polyolefin resin powder, a polyester resin powder, a polyamide resin powder, or a polyimide. An ultraviolet curable resin composition such as a resin powder or a polyvinyl fluoride resin powder. In addition, the fine particles described in JP-A No. 2000-24 1 807 may be further used, and the fine particles may be used singly or in combination of two or more. Further, the state of these fine particles may be added in any state such as a powder or a latex. Other types of additives may be added as necessary. Specific examples thereof include a polysiloxane surfactant, a fluorine surfactant, a polyoxyether compound, an acrylic copolymer, an acetylene glycol compound, or a radical polymerizable nonionic surfactant. And, these can also be used. Examples of the polyoxyalkylene surfactant or the fluorosurfactant include a fluorine-based or polyoxyalkylene surfactant described in the low refractive index layer to be described later. Examples of the polyoxy ether compound include polyepoxy ethers such as polyethylene oxide alkyl ether, polyethylene oxide lauryl ether, polyethylene oxide cetyl ether, and polyethylene oxide stearyl ether. a polyoxyalkylphenyl ether compound such as an ethane alkyl ether compound, a polyethylene oxide nonylphenyl ether or a polyethylene oxide octyl phenyl ether, a polyoxyalkylene alkyl ether, a polyethylene oxide higher alcohol Ether, polyethylene oxide octyl lauryl ether, and the like. Among these nonionic polyoxyether compounds, a polyethylene oxide oleyl ether compound is preferred. The polyepoxy oleyl ether compound is generally exemplified by the following formula -26-200904636. c 18H35-〇(C2H4〇)nH (1) wherein η represents 2 to 40. The average number (η) of ethylene oxide added to the oil-based portion is from 2 to 40, preferably from 2 to 10. Further, the compound of the general formula (1) is obtained by reacting ethylene oxide with oleyl alcohol. Specific products include EMULGEN 404 [polyethylene oxide (4) oleyl ether], EMULGEN 408 [polyethylene oxide (8) oleyl ether], and EMULGEN 409P [polyethylene oxide (9) oil. Ethyl ether], EMULGEN 420 [polyethylene oxide (1 3 ) oleyl ether], EMULGEN 430 [polyethylene oxide (30) oleyl ether]; the above is made by Kao Corporation, Japanese oil and fat NOFABLEEAO-9905 [ Polyethylene oxide (5) oleyl ether] and the like. And, within () is the number of η. Specific examples of the acrylic copolymer include ΒΥΚ-36 1Ν, ΒΥΚ-357, and ΒΥΚ-354 (above, BYK Japan Co., Ltd.). Specific examples of the acetylene glycol-based compound include Surfynol 104E, Surfynol 104PA, Surfynol 420, Surfynol 440, and Dinol 6 04 (all manufactured by Nissin Chemical Industry Co., Ltd.). Examples of the radically polymerizable nonionic surfactant include "RMA-564", "RMA-568", and "RMA-1114" (the above-mentioned 'product name, made by Japan Emulsifier Co., Ltd.'). An alkylene alkyl phenyl ether (meth) acrylate-based polymerizable surfactant or the like. The amount of the additive as the surfactant is 0.5% by mass of the resin of the hardening -27-200904636 resin. 001 to 10 parts by mass is preferred, more preferably 0. 1 to 8 parts by mass. Further, as other additives which can be added to the antiglare layer of the antiglare film of the present invention, a coupling agent, a plasticizer, a dispersant and the like can be given. Further, the antiglare layer may contain a metal oxide. Specific examples thereof include titanium oxide, aluminum oxide, tin oxide, indium oxide, indium tin oxide (ITO), zinc oxide, oxidation pins, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined clay, and calcined crucible. Calcium acid, water and calcium citrate, aluminum citrate, magnesium citrate, and calcium phosphate. The thickness of the antiglare layer of the antiglare film of the present invention is not particularly limited, and is generally 0. from the viewpoint of film strength or good light diffusibility. 5~5 0 //m, especially good is 1~30#m. Further, the antiglare layer may be composed of a single layer or a plurality of layers. The antiglare layer of the present invention comprises a coating step comprising coating a coating composition for forming an antiglare layer on a transparent film substrate, a drying step of drying the obtained coating film, and drying the coating film. It is formed by a method of performing a hardening hardening step. The method of applying the coating composition for forming the antiglare layer to the substrate is not particularly limited, and may be appropriately selected in accordance with the conditions of the coating composition or the coating step to be used. For example, various coating methods such as spin coating, roll coating, screen printing, spray coating, gravure coating, and a spraying method described later can be employed. Further, when the above coating is carried out, the width of the transparent film substrate to be described later is 1. 4 ~ 4m under the state of taking the roll into a roll, repeating, drying. After the hardening treatment, it is preferable to take it into a roll shape. The obtained coating film is dried by drying step -28-200904636, preferably by drying under reduced pressure. Examples of the curing method include a method of thermally curing by heating, a method of curing by irradiation with light such as ultraviolet rays, and the like. When it is thermally hardened, the heating temperature is preferably from 50 to 300 ° C, preferably from 60 to 250 ° C, more preferably from 80 to 150 ° C. The heating time varies depending on the heating temperature, but it is suitably in the range of 3 to 300 minutes. Alternatively, after one take-up, the ripening treatment can be carried out at a temperature of about 50 to 100 ° C for about 1 to 20 days. Further, when it is cured by light irradiation, it is preferable that the exposure amount of the irradiation light is 1 OmJ/cm 2 to 1 0 J/cm 2 , and 100 μM/cm 2 to 5 0 0 m J/cm 2 is preferable. The wavelength region as the irradiated light is not particularly limited, and light having a wavelength of an ultraviolet region is preferably used. Specifically, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The irradiation conditions are different depending on the respective lights, but the irradiation amount of the active line is generally 5 to 500 mJ/cm 2 , preferably 5 to 150 mJ/cm 2 , particularly preferably 20 to 100 mJ/cm 2 , and when the active line is irradiated, It is preferable to carry out the tension in the transport direction of the film, and it is more preferable to apply the tension in the width direction. The tension imparted is preferably 3 0 to 3 OON/m. The method of imparting the tension is not particularly limited, and the tension can be applied to the transporting direction on the back roller or the tension can be imparted in the width direction or the two-axis direction by the tenter. Thereby, a film having better planarity can be obtained. 涂布 A coating composition for forming an antiglare layer contains a solvent. In addition, examples of the solvent include hydrocarbons (toluene, xylene), alcohols (methanol, ethyl -29-200904636 alcohol, isopropyl alcohol, butanol, cyclohexanol), and ketones (acetone, methyl ethyl). An organic solvent such as a ketone or a methyl isobutyl ketone), an ester (methyl acetate, ethyl acetate, methyl lactic acid) or a glycol ether can be used as a suitable mixture or the like. In particular, propylene glycol monoalkyl ether (alkyl group having 1 to 4 carbon atoms) or propylene glycol monoalkyl ether acetate (having an alkyl group having 1 to 4 carbon atoms) is preferably used in an amount of 5% by mass or more, preferably 5 More than 80% by mass of the organic solvent is preferred. In the antiglare film of the present invention, the antiglare layer can be formed into irregularities by a spraying method. In other words, the coating composition for forming an anti-glare layer is used as an ink liquid, and after being applied by a spraying method, a convex structure portion or a convex structure portion formed of a coating liquid having an active-strand hard resin can be formed. The use of the overcoat layer or the formation of the convex structure by the spraying method can also be used as a coating liquid for further encapsulation thereon. At least a low refractive index layer is provided on the antiglare layer of the anti-glare film to form an anti-glare anti-reflection film, in particular, a low refractive index laminated to at least one hollow ceria particle containing a porous or void inside. Under the layer, an excellent anti-glare anti-reflection film with an excellent adhesion after the endurance test can be formed. Further, it is preferable that the antiglare layer of the antiglare antireflection film and the low refractive index layer have a high refractive index layer interposed therebetween. The description of the low refractive index layer continues. The refractive index of the low refractive index layer is lower than that of the transparent film substrate of the support, and is 1.1 at a wavelength of 5 50 nm at 23 ° C'. 30~1. The range of 45 is better. -30- 200904636 The film thickness of the low refractive index layer is 5nm~0. 5/zm is better, l〇nm~0. 3 / zm is better, 30nm ~ 0. 2ym is better. The low refractive index layer contains at least one type of hollow cerium oxide microparticles which are porous or hollow inside, and has good adhesion to the antiglare layer, and more preferably contains hollow cerium oxide microparticles and other one type of cerium oxide. The microparticles are preferably one type of the other type of cerium oxide microparticles, and colloidal cerium oxide is preferred. Wherein, the average particle size of the colloidal cerium oxide is less than 1 of the average particle diameter of the hollow cerium oxide microparticles.  1 to 2 0 times better. Further, the low refractive index layer may contain two or more kinds of hollow cerium oxide fine particles having different average particle diameters. The description will be continued for hollow ceria particles (hereinafter simply referred to as hollow particles) which are porous or void inside. The hollow fine particles are (1) composite particles formed on a porous particle and a coating layer on the surface of the porous particle, or (2) having voids therein, and the contents are filled with a solvent, a gas or a porous substance. Empty particles. Further, the hollow particles are particles having voids inside, and the voids are surrounded by the particle walls. The inside of the cavity is filled with contents such as a solvent, a gas, or a porous substance at the time of preparation. The average particle diameter of the hollow fine particles is 5 to 20 nm, preferably 1 to 70 nm. The particle size of the hollow fine particles is preferably a monodispersion with a variation coefficient of from 1 to 40%. The average particle diameter of the hollow ceria particles can be determined by an electron micrograph by a scanning electron microscope (SEM) or the like. The measurement is carried out by using a particle size distribution meter such as a dynamic astigmatism-31 - 200904636 method or a static astigmatism method. The average particle diameter of the hollow fine particles to be used may be appropriately selected in accordance with the transparent coating thickness of the formed low refractive index layer, and the film thickness of the transparent envelope is preferably 3/2 to 1/10, preferably 2/3~ 1/10. Among them, the hollow fine particles are preferably formed in a state of being dispersed in an appropriate medium due to the formation of a low refractive index layer. As the dispersing medium, water, alcohols (for example, decyl alcohol, ethanol 'isopropyl alcohol), and ketones (for example, methyl ethyl ketone, methyl isobutyl ketone), keto alcohols (for example, diacetone alcohol), Propylene monomethyl ether, propylene glycol monomethyl ether acetate, etc. are preferred. The thickness of the coating layer of the composite particles or the particle wall thickness of the void particles is 1 to 40 nm, preferably 1 to 20 nm, more preferably 2 to 15 nm. In the case of the composite particles, when the thickness of the coating layer is less than 1 nm, the particles may not be completely coated, and the coating liquid component easily enters the inside of the composite particles, and the internal porosity is reduced, so that a sufficient effect of lowering the refractive index cannot be obtained. When the thickness of the coating layer exceeds 20 nm, the coating liquid component does not enter the inside, and the porosity (pore volume) of the composite particles is lowered, and a sufficient effect of lowering the refractive index may not be obtained. Further, in the case of the void particles, when the thickness of the particle wall is less than 1 urn, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the sufficient effect of lowering the refractive index cannot be achieved. It is preferred that the coating layer of the composite particles or the particle walls of the void particles have ruthenium dioxide as a main component. Further, components other than cerium oxide may be contained, and specific examples thereof include Al2〇3, B2〇3, Ti〇2, Zr〇2, Sn〇2, Ce〇2, P203, Sb2〇3, and Mo〇3. Zn〇2, W03, etc. Examples of the porous particles constituting the composite particles include those obtained by cerium oxide, inorganic compounds other than cerium oxide and cerium oxide, and those of CaF2, NaF, NaAlF6, and MgF-32-200904636. Among them, a porous particle composed of a composite oxide of an inorganic compound other than cerium oxide and cerium oxide is preferred. Examples of the inorganic compound other than cerium oxide include one or more of Al2〇3, B2〇3, TiO2, Zr02, Sn02, Ce02 'P2O3 'Sb2〇3 'M0O3 ' Zn02 'W03, and the like. In such a porous particle, cerium oxide is represented by S i O 2 , and the molar ratio of the inorganic compound other than cerium oxide in terms of oxide (ΜΟΧ) is 0. 0001~1. 0, preferably 0. 001~0. The scope of 3. It is difficult to obtain a porous particle having a molar ratio of MOx/SiO 2 of less than 0. In the case of 000 1 , even if the pore volume is small, the particles having a lower refractive index cannot be obtained. Further, if the molar ratio of the porous particles to MOx/Si 02 exceeds 1. 0, the ratio of cerium oxide becomes small, so the pore volume becomes large, and it is difficult to obtain a refractive index lower. The pore volume of such a porous particle is 0. 1~1. 5 ml / g, preferably 0. 2~1. A range of 5 ml/g. The pore volume is not up to 〇. When lml/g, particles with a sufficiently reduced refractive index cannot be obtained, if it exceeds 1. At 5 ml/g, the strength of the fine particles is lowered, and the strength of the resulting envelope is reduced. Further, the pore volume of such a porous particle can be obtained by a mercury intrusion method. Further, examples of the content of the void particles include a solvent, a gas, a porous substance, and the like which are used in particle preparation. The solvent may contain void particles, unreacted materials of the particle precursor used for preparation, and a catalyst to be used. Further, examples of the porous material include those exemplified as the porous particles. These contents may be a single component or a mixture of plural components. As a method for producing the hollow fine particles, for example, a method of preparing composite oxide colloidal particles according to paragraph numbers [〇01〇] to [〇〇33] of JP-A-33-200904636 No. 7-133105 can be employed. Specific composite particles When inorganic compounds other than cerium oxide or cerium oxide are formed, hollow fine particles can be produced by the following first steps to third steps. First Step: Preparation of Porous Particle Precursor In the first step, an alkali aqueous solution of a raw material of an inorganic compound other than dioxins and a raw material other than dioxins is prepared in advance, or an inorganic substance other than a dioxane raw material and cerium oxide is prepared. The mixed aqueous solution of the compound raw material is mixed with the aqueous solution as the target composite oxide in an aqueous solution of pH 10 or higher, and the pore-preserving precursor is gradually added while stirring. As the raw material of cerium oxide, an alkali metal, ammonium or organic alkali acid salt can be used. As the ceric acid salt of an alkali metal, sodium citrate (water glass potassium citrate) can be used. Examples of the organic base include amines such as a fourth-order ammonium salt such as a tetraethylammonium salt, an ethanolamine such as diethanolamine or triethanolamine. The ammonium citrate organic base citrate also contains an alkaline solution of ammonia, a fourth-order ammonium compound, an amine compound, etc. in the citric acid solution. Further, as a raw material of an inorganic compound other than cerium oxide, the alkalinity may be used. Specific examples of the inorganic compound to be dissolved include an oxidizing acid of an element selected from the group consisting of Al, B, Ti, Sn, Ce, P, Sb, Mo, Zn, and W, an alkali metal salt or an alkaline earth metal salt of the acid, and ammonium. Salt, fourth grade ammonium salt. The body is sodium aluminate, sodium tetraborate, ammonium zirconium carbonate, potassium citrate, sodium citrate citrate, sodium molybdate, cerium ammonium nitrate, sodium citrate.矽, 配,多出矽) or, single salt or hydrogen oxygen use Zr, oxidation more, aluminum-34- 200904636 Although the addition of these aqueous solutions, the pH of the mixed aqueous solution will change, the pH操作 Controlling the operation within the specified range is not particularly necessary. The aqueous solution ultimately determines its pH based on the type of inorganic oxide and its mixing ratio. The rate of addition of the aqueous solution at this time is not particularly limited. Further, in the production of the composite oxide particles, the dispersion of the seed particles can be used as a starting material. The particles are not particularly limited, and inorganic oxides such as S i Ο 2 ' A12 Ο 3 , TiO 2 or ZrO 2 or fine particles of the composite oxides can be used. Generally, these sols can be used. Further, the porous particle precursor dispersion obtained by the above production method can also be used as a seed particle dispersion. When the seed particle dispersion liquid is used, the pH of the seed particle dispersion liquid is adjusted to 1 Torr or more, and the aqueous solution of the above compound is added to the aqueous base solution with stirring in an aqueous alkali solution. At this time, it is not necessary to carry out the dispersion p Η control. When such a seed particle is used, it is easy to control the particle size of the prepared porous particle, and a uniform particle size can be obtained. The above-mentioned ceria raw material and inorganic compound raw material have a high solubility in alkali. However, when the two are mixed in a large pH region of the solubility, the solubility of oxidized acid ions such as citrate ions and aluminate ions is lowered, and these complexes are precipitated to grow into fine particles or particles which are precipitated on the seed particles. Child growth. Therefore, it is not necessary to perform p Η control as in the past method when the fine particles are precipitated and grown. The composite ratio of the inorganic compound other than cerium oxide and cerium oxide in the first step is converted to an oxide (ΜΟχ) for the inorganic compound of cerium oxide, and the molar ratio of MOx/Si 〇 2 is 〇_〇5. ~2·0, preferably 0. 2 -35- 200904636 ~2. Within the range of 0. Within this range, the smaller the ratio of silica sand, the larger the pore volume of the porous particles. However, Morbi even exceeds 2. 0, the pore volume of the porous particles hardly increases. On the other hand, Moerby has not reached 0. At 05 o'clock, the pore volume will become smaller. When modulating the cavity particles, the molar ratio of M0x/Si02 is 0. 25~2. Within the range of 0 is preferred. Step 2: Removal of inorganic compound other than cerium oxide from porous particles In the second step, the porous particle precursor obtained in the first step is an inorganic compound other than cerium oxide (an element other than cerium and oxygen). At least a portion is selectively removed. As a specific removal method, the inorganic compound in the porous particle precursor is dissolved or removed by using a citric acid or an organic acid, or is contacted with a cation exchange resin, and then subjected to ion exchange removal. Further, the porous particle precursor system obtained in the first step is a mesh structure particle in which an element of an inorganic compound and an inorganic compound are bonded via oxygen. By thus removing the inorganic compound (the element other than cerium and oxygen) from the porous particle precursor, a porous particle having a large pore volume in the porous body can be obtained. Further, by removing the amount of the inorganic oxide (the element other than cerium and oxygen) from the porous particle precursor, the void particles can be prepared. Further, before removing the inorganic compound other than cerium oxide from the porous particle precursor, the fluorine-containing content obtained by subjecting the alkali metal salt containing cerium oxide to alkali removal is added to the porous particle precursor dispersion obtained in the first step. It is preferred that the tannic acid solution or the hydrolyzable organic sand compound of the alkyl group-substituted decane compound forms a cerium oxide protective film. The thickness of the ruthenium dioxide protective film is from 0.5 to 40 nm, preferably 0. The thickness of 5~15nm can be used. Further, even if the -36-200904636 cerium oxide protective film is formed, the protective film of this step is porous, and the inorganic compound other than the above-mentioned cerium oxide can be removed from the porous precursor of the porous precursor. By forming such a cerium oxide protective film, the inorganic compound other than the above-mentioned cerium oxide can be removed from the porous particle precursor while maintaining the particle shape. Further, when the ceria coating layer described later is formed, the pores of the porous particles are not blocked by the coating layer, so that the pore volume can be formed without forming a cerium oxide coating layer which will be described later. Further, when the amount of the inorganic compound to be removed is small, the particles are not destroyed, and it is not necessary to form a protective film. Further, when the void particles are prepared, it is preferable to form the ceria protective film. When the void particles are prepared, when the inorganic compound is removed, a precursor of the void particles formed by the cerium oxide protective film, the solvent in the cerium oxide protective film, and the undissolved porous solid component can be obtained. When a coating layer to be described later is formed in the body, the formed coating layer becomes a particle wall to form void particles. The amount of the ceria source to be added in order to form the above-mentioned ceria protective film is preferably less in the range in which the particle shape can be maintained. When the amount of the cerium oxide source is too large, the cerium oxide protective film is too thick, and it is difficult to remove the inorganic compound other than cerium oxide from the porous particle precursor. As the hydrolyzable organic ruthenium compound for use in the formation of a ruthenium dioxide protective film, the following general formula (2) can be used.

RnSi(OR’)4-n …(2) (式中,R與R’表示烷基、芳基、乙烯基、丙烯基等烴基 -37- 200904636 ,η表示0、1、2或3。)所示烷氧基矽烷。特別以使用 經氟取代之四甲氧基矽烷、四乙氧基矽烷、四異丙氧基矽 烷等四烷氧基矽烷爲佳。 作爲添加方法,將於這些烷氧基矽烷、純水、及醇類 之混合溶液中添加作爲觸媒之少量鹼或酸的溶液,添加於 多孔質粒子之分散液中,將於烷氧基矽烷、純水、及醇類 之混合溶液中添加作爲觸媒之少量鹼或酸的溶液,添加於 多孔質粒子之分散液中,將烷氧基矽烷經水解所生成之矽 酸聚合物附著於無機氧化物粒子之表面上。 此時,可將烷氧基矽烷、醇類、觸媒同時添加於分散 液中。作爲鹼觸媒,可使用氨、鹼金屬之氫氧化物、胺類 。又,作爲酸觸媒,可使用各種無機酸與有機酸。 多孔質粒子前驅體之分散媒爲單獨水、或對於有機溶 劑而言水之比率較高時,可使用矽酸液而形成二氧化矽保 護膜。使用矽酸液時,分散液中添加所定量的矽酸液’同 時加入鹼使矽酸液附著於多孔質粒子表面上。且’亦可並 用矽酸液與上述烷氧基矽烷製作出二氧化矽保護膜。 第3步驟:二氧化矽被覆層之形成 第3步驟中,於第2步驟所調製之多孔質粒子分散液 (空洞粒子時爲空洞粒子前驅體分散液)中’藉由添加具 有含有氟取代烷基之矽烷化合物的水解性有機砂化合物或 矽酸液等,將粒子表面以水解性有機矽化合物或砂酸液等 聚合物進行包覆而形成二氧化矽被覆層° -38 - 200904636 且,所謂矽酸液爲,將水玻璃等鹼金屬矽酸鹽之水溶 液經離子交換處理後成爲脫鹼的矽酸之低聚合物水溶液。 使用於被覆層形成用的有機矽化合物或矽酸液之添加 量僅爲可將膠體粒子表面充分包覆程度即可,最後所得之 二氧化矽被覆層的厚度爲1〜40ηιη,較佳爲可成爲1〜 2 Onm之量,添加於多孔質粒子(空洞粒子實爲空洞粒子 前驅體)分散液中。又,形成二氧化矽保護膜時,二氧化 矽保護膜與二氧化矽被覆層的合計厚度爲1〜40nm,較佳 爲成爲1〜20nm之範圍的量下添加有機矽化合物或矽酸 液。 黏著加熱處理形成被覆層之粒子的分散液。藉由加熱 處理,多孔質粒子的情況爲,包覆多孔質粒子表面的二氧 化矽被覆層經緻密化,得到多孔質粒子藉由二氧化矽被覆 層包覆的複合粒子之分散液。又,空洞粒子前驅體時,所 形成之被覆層經緻密化而成爲空洞粒子壁,得到具有內部 經溶劑、氣體或多孔質固體成分塡充的空洞之空洞粒子的 分散液。 此時的加熱處理溫度僅爲可堵塞二氧化矽被覆層之微 細孔的程度即可,並無特別限定,以80〜3 00 °C之範圍爲 佳。加熱處理溫度未達80°C時,有時完全堵塞二氧化矽被 覆層的微細孔而無法進行緻密化,又處理時間必須較長。 且加熱處理溫度超過3 0 0 °C下進行長時間處理時,會成爲 緻密粒子,而無法得到低折射率化之效果。 如此所得之無機微粒子的折射率於未達1 _ 4 2時較低 -39- 200904636 。可堆測爲如此無機微粒子雖保持多孔質粒子內部之多孔 性,但因內部爲空洞,故使得折射率變低。 又,作爲中空微粒子,由嚴苛耐久性試驗後的密著性 、耐擦性、及辨識性皆優良之點來看,於表面具有烴主鏈 的聚合物以共價鍵方式結合的中空微粒子爲佳。 繼續,對於具有烴主鏈之聚合物易共價鍵方式結合的 中空微粒子作說明。所謂具有烴主鏈之聚合物爲,直接共 價鍵、或中空二氧化矽微粒子表面的二氧化矽與具有烴主 鏈的聚合物之間介著結合劑,將二氧化矽與結合劑以共價 鍵方式結合,亦可言爲結合劑與聚合物以共價鍵方式結合 。作爲結合劑使用偶合劑爲較佳。 具有烴主鏈之聚合物易共價鍵方式結合的中空微粒子 可藉由(1)將中空二氧化矽粒子表面以未處理、或偶合 劑等進行處理之狀態下,使中空二氧化矽微粒子表面與具 有可形成共價鍵的官能基之聚合物進行反應,於中空二氧 化矽粒子表面使聚合物進行接枝的方法、或(2)將中空 二氧化矽粒子表面以未處理、或偶合劑等進行處理之狀態 下,自中空二氧化矽微粒子表面聚合單體而使聚合物鏈生 長,使其進行表面接枝之方法等而製造。作爲具體之製造 方法’可使用特開2006-257308號公報所記載的方法。 上述製造方法中’由提高表面修飾率之觀點來看,自 中空二氧化砂微粒子表面聚合單體而使聚合物鏈生長,使 其表面接枝的方法爲佳。以含有具有聚合啓始能、或連鎖 移動能的官能基之偶合劑使中空二氧化矽微粒子進行表面 -40- 200904636 處理後,聚合單體’使聚合物鏈生長的使其表 法更佳。 將具有聚合啓始能或連鎖移動能之官能基 中空二氧化矽微粒子所使用的表面處理劑(偶 用烷氧基金屬化合物(例如鈦偶合劑、矽烷偶 〇 作爲院氧基金屬化合物’以下述一般式( 烷偶合劑爲佳。 (z - L 1 ) m - S i - ( R 2 ) n R 3 ( 4 - m + η ) …(3) 式中,Ζ爲具有聚合啓始能、或連鎖移動 。L1爲碳原子數10以下之2價連結基。 其中,L1較佳爲碳原子數1〜1〇的伸烷 的伸烷基介著連結基(例如,醚、酯、醯胺) 伸烷基可具有支鏈。伸烷基可具有取代基。取 含有鹵素原子、羥基、氫硫基、羧基、環氧基 基。 又’上述一般式(3)中’ R2爲碳原子數 基。R3爲羥基或可水解的基。R3以碳原子數1 基或鹵素原子爲佳,甲氧基、乙氧基或氯原-0$η$2,且 lSm+n$3。 可具有上述一般式(3)所示砂垸偶合劑 ’可舉出羥基、鹵素原子(例如,C1、Βγ、F, 、硝基、羧基、磺基、碳原子數丨〜8的烷基 面接枝之方 ,作爲導入 合劑),使 合劑)爲佳 3 )所示矽 能之官能基 基、或複數 結合之基。 代基的例子 、烷基、芳 1〜1 〇的烷 〜5的烷氧 子更佳。且 之取代基例 '1 )、氰基 (例如,甲 -41 - 200904636 基、乙基、異丙基、丁基、己基、環丙基、環己基、2 — 羥基乙基、4 —羧基丁基、2 -甲氧基乙基、2 —二乙胺基 乙基)、碳原子數2〜8的烯基(例如,乙烯、烯丙基、2 —己烯基)、碳原子數2〜8的炔基(例如,乙炔基、1 — 丁炔基、3—己炔基)、碳原子數7〜12的芳烷基(例如 ,苯甲基、苯乙基)、碳原子數6〜10的芳基(例如,苯 基、萘基、4 —羧基苯基、4 —乙醯胺苯基、3_甲烷磺醯 胺苯基、4一甲氧基苯基、3—竣基苯基、3,5 —二竣基苯 基、4一甲院磺醯胺苯基、4 - 丁擴醯胺苯基)、碳原子數 1〜10的醯基(例如,乙酸基、苯甲醯基、两醯基、丁醯 基)、碳原子數2〜10的院氧基羰基(例如,甲氧基簾基 、乙氧基羰基)、碳原子數7〜12的芳氧基羰基(例如, 苯氧基簾基、萘氧基羰基)、碳原子數1〜1〇的胺基甲醯 基(例如,無取代的胺基甲醯基、甲胺基甲醯基、二乙胺 基甲醯基、本胺基甲醯基)、碳原子數1〜8的烷氧基( 例如’甲氧基、乙氧基、丁氧基、甲氧基乙氧基)、碳原 子數6〜12的芳氧基基(例如,苯氧基、4 —羧基苯氧基 、3 —甲基苯氧基、萘氧基)、碳原子數2〜12的醯氧基 (例如’乙酸基、苯甲醯氧基)、碳原子數1〜12的磺醯 氧$(例如’甲基磺醯氧基、苯基磺醯氧基)、胺基、碳 原子數1〜1 0的取代胺基(例如,二甲胺基、二乙胺基、 2 —殘基乙胺$)、碳原子數1〜1〇的醯胺基(例如,乙 醯fee、苯甲Μ胺)、碳原子_卜8的橫醯胺基(例如, 甲烷磺醯胺、苯磺醯胺、丁磺醯胺、辛磺醯胺)、碳原子 -42- 200904636 數1〜10的脲基(例如,脲基、甲基脲基)、碳原子數2 〜10的烷氧基羰胺基(例如,甲氧基羰胺基、乙氧基羰 胺基)、碳原子數1〜12的烷基硫基(例如,甲基硫、乙 基硫、辛基硫)、碳原子數6〜12的芳基硫基(例如,苯 基硫、萘基硫)、碳原子數1〜8的烷基磺醯基(例如, 甲基磺醯基、丁基磺醯基)、碳原子數7〜12的芳基磺醯 基(例如,苯基磺醯基、2—萘基磺醯基)、胺磺醯基、 碳原子數1〜8的取代胺磺醯基基(例如,甲胺磺醯基) 、雜環基(例如,4 _吡啶、1 一哌啶基、2 _呋喃基、糠 基、2 —噻嗯基、2 —吡咯基、2 —喹啉嗎啉代基)。 又,下述一般式(4 )所示矽烷偶合劑亦較佳。 Z-(CH2)n-Si-R43 …(4) 式中,Z與上述一般式(3)之情況相同,n表示1〜 10的整數。R4表示碳原子數1〜5的烷氧基或鹵素原子, 但以甲氧基、乙氧基、及氯原子爲佳。 上述一般式(3)及一般式(4)中的Ζ爲具有聚合啓 始能、或連鎖移動能之官能基,一般以具有使用於聚合反 應的聚合啓始劑、或連鎖移動劑之部分結構者爲佳。 必須表現對應所使用的聚合方法之啓始能,例如自由 基聚合法時’ Ζ中含有偶氮基或過酸部位者爲佳。將具有 聚合啓始能之官能基導入於中空二氧化矽表面時,作爲可 適用之聚合法’可使用自由基聚合法、離子聚合法等,但 以自由基聚合法爲佳,活性自由基聚合法爲較佳。其中亦 -43- 200904636 以藉由原子移動自由基聚合法進行表面接枝聚合圭。 其中,上述較佳聚合方法的原子移動自由基聚合法時 ,Z以鹵化甲基、齒院基苯基、〇:—鹵化醋基、<2 —齒化 羰基、α —鹵化腈基、鹵化磺醯基爲佳。又,α —鹵化酯 基、鹵化磺醯基爲較佳,0: -鹵化酯基爲特佳。 Matyj aszewski、Xia、「Chemical Re vie w」(200 1 年、 101卷、第9號、P2921 )中揭示種種啓始劑,使用原子 移動自由基聚合法時,Z爲具有於此揭示的啓始劑之部分 結構者皆較佳。 繼續,舉出含有具有上述一般式(3)所示聚合啓始 能的官能基之矽烷偶合劑的較佳例。 XCH2C(0)0(CH2)3Si(0CH3)3 CH3C(H)(X)C(0)0(CH2)3Si(0CH3)3 (CH3)2C(X)C(0)0(CH2)3Si(0CH3)3 XCH2C(0)0(CH2)6Si(0CH3)3 CH3C(H)(X)C(0)0(CH2)6Si(0CH3)3 (CH3)2C(X)C(0)0(CH2)6Si(0CH3)3 XCH2C(0)0(CH2)3Si(0C2H5)3 CH3C(H)(X)C(0)0(CH2)3Si(0C2H5)3 (CH3)2C(X)C(0)0(CH2)3Si(0C2H5)3 XCH2C(0)0(CH2)6Si(0C2H5)3 CH3C(H)(X)C(0)0(CH2)6Si(0C2H5)3 (CH3)2C(X)C(0)0(CH2)6Si(0C2H5)3 XCH2C(0)0(CH2)3SiCl3 -44 - 200904636 CH3C(H)(X)C(0)0(CH2)3SiCl3 (CH3)2C(X)C(0)0(CH2)3SiCl3 各式中’ X爲氯、溴或碘原子’特別以溴原子爲佳。 上述一般式(3 )所示矽烷偶合劑對於中空二氧化矽 微粒子而言使用1質量%〜100質量%者爲佳,較佳爲2 質量%〜80質量%,更佳爲5質量%〜50質量%。 又,烷氧基金屬化合物可並用2種類以上。其中,使 用2種類以上的烷氧基金屬化合物時,可同時添加。或配 合反應進行而適宜地添加。又,亦可預先將烷氧基金屬化 合物經水解或/及縮合反應後,再添加於中空二氧化矽微 粒子。 作爲具有連鎖移動能之官能基,雖無限定,但以鹵化 甲基、氫硫基爲佳,氫硫基爲較佳。 上述中空微粒子之低折射率層中的含有量,由低折射 率化與膜強度之觀點來看,以10〜50質量%爲佳,特佳 爲10〜40質量%。 繼續,對於與中空二氧化矽微粒子倂用使用時較佳之 膠體二氧化矽作說明。 膠體二氧化矽係爲將二氧化矽分散於水或有機溶劑中 成爲膠體狀者,雖無特別限定,但爲球狀、針狀或珠子群 狀。 膠體—氧化砍之平均粒徑以50〜300nm之範圍爲佳 。又’膠體二氧化矽係爲變動係數爲1〜40%之單分散者 -45- 200904636 爲佳。平均粒徑可藉由掃描電子顯微鏡(SEM)等由電子 顯微鏡照片進行測定。亦可利用動態散光法或靜態散光法 等藉由粒度分佈計等進行測定。然而’中空二氧化矽微粒 子與膠體二氧化砂並用時’欲求得膠體二氧化砂之平均粒 徑與中空微粒子之平均粒徑的比時’並不一定使用相同測 定方法。 膠體二氧化砂可爲被販賣者,例如可舉出日產化學工 業公司的Snowtex系列、觸媒化成工業公司的Cataloid-S 系列、Bayer公司的雷巴西爾系列等。又,以氧化鋁溶膠 或氫氧化鋁進行陽離子改性之膠體二氧化矽或二氧化矽的 一次粒子以2價以上的金屬離子進行粒子間之結合後,連 結成珠子群狀的珠子群狀膠體二氧化矽亦佳。珠子群狀膠 體二氧化矽可舉出日產化學工業公司的SnowtexAK系列 、SnowtexPS 系歹IJ 、 SnowtexUP 系歹!]等。 含有膠體二氧化矽時,由膜強度之觀點來看,低折射 率層中之含有量對於低折射率層中的固體成分而言爲1〇 〜60質量% ’更佳爲30〜60質量%。 又’低折射率層中含有全體5〜80質量%之膠黏劑時 爲佳。膠黏劑爲,黏著中空二氧化矽微粒子或膠體二氧化 砂’具有維持含有空隙之低折射率層的結構之功能。膠黏 劑的使用量不僅可塡充空隙,亦可維持低折射率層之強度 下進行調整。 作爲膠黏劑’可舉出下述一般式(2)所示之烷氧基 矽烷化合物、或其水解物或其縮聚物。 -46- 200904636 又,作爲具體之化合物,可舉出甲基三甲氧基矽烷、 甲基三乙氧基矽烷、甲基三甲氧基乙氧基矽烷、甲基三乙 酸基矽烷、甲基三丁氧基矽烷、乙基三甲氧基矽烷、乙基 三乙氧基矽烷、乙烯三甲氧基矽烷、乙烯三乙氧基矽烷、 乙烯三乙酸基矽烷、乙烯三甲氧基乙氧基矽烷、苯基三甲 氧基矽烷、苯基三乙氧基矽烷、苯基三乙酸基矽烷、r 一 氯丙基三甲氧基矽烷、7 -氯丙基三乙氧基矽烷、r -氯 丙基三乙酸基矽烷、3,3,3-三氟丙基三甲氧基矽烷、r -環氧丙基氧基丙基三甲氧基矽烷、r 一環氧丙基氧基丙 基三乙氧基矽烷、r -(Θ -環氧丙基氧基乙氧基)丙基 三甲氧基矽烷、/3_ (3,4 —環氧基環己基)乙基三甲氧 基矽烷、/3 — (3,4 —環氧基環己基)乙基三乙氧基矽院 、丙烯醯基氧基丙基三甲氧基矽烷、r 一甲基丙烯醯 基氧基丙基三甲氧基矽烷、r -胺基丙基三甲氧基矽烷、 r 一胺基丙基三乙氧基矽烷、r 一氫硫基丙基三甲氧基矽 烷、r —氫硫基丙基三乙氧基矽烷、(胺基乙基 )一 r 一胺基丙基三甲氧基矽烷、及yS —氰基乙基三乙氧 基矽烷、二甲基二甲氧基矽烷、苯基甲基二甲氧基矽烷、 二甲基二乙氧基矽烷、苯基甲基二甲氧基矽烷、二甲基二 乙氧基矽烷、苯基甲基二乙氧基矽烷、T 一環氧丙基氧基 丙基甲基二乙氧基矽烷、7 -環氧丙基氧基丙基甲基二甲 氧基矽烷、τ -環氧丙基氧基丙基苯基二乙氧基矽烷、r -氯丙基甲基二乙氧基矽烷、二甲基二乙酸基矽烷、r 一 丙烯醯基氧基丙基甲基二甲氧基矽烷、τ 一丙烯醯基氧基 -47- 200904636 丙基甲基二乙氧基矽烷、r 一甲基丙烯醯基氧基丙基甲基 二甲氧基矽烷、r -甲基丙烯醯基氧基丙基甲基二乙氧基 矽烷、r 一氫硫基丙基甲基二甲氧基矽烷、r 一氫硫基丙 基甲基二乙氧基矽烷、r_胺基丙基甲基二甲氧基矽烷、 r 一胺基丙基甲基二乙氧基矽烷、甲基乙烯二甲氧基矽烷 、及甲基乙烯二乙氧基矽烷等。 其中,分子內具有雙鍵之乙烯三甲氧基矽烷、乙烯三 乙氧基矽烷、乙烯三乙酸基矽烷、乙烯三甲氧基乙氧基矽 烷、r 一丙烯醯基氧基丙基三甲氧基矽烷、及r -甲基丙 烯醯基氧基丙基三甲氧基矽烷、作爲對於矽具有2個取代 的烷基的r -丙烯醯基氧基丙基甲基二甲氧基矽烷、r-丙烯醯基氧基丙基甲基二乙氧基矽烷、r -甲基丙烯醯基 氧基丙基甲基二甲氧基矽烷、r -甲基丙烯醯基氧基丙基 甲基二乙氧基矽烷、甲基乙烯二甲氧基矽烷、及甲基乙烯 二乙氧基矽烷爲佳,r -丙烯醯基氧基丙基三甲氧基矽烷 、及r 一甲基丙烯醯基氧基丙基三甲氧基矽烷、r 一丙烯 醯基氧基丙基甲基二甲氧基矽烷、7 -丙烯醯基氧基丙基 甲基二乙氧基矽烷、r —甲基丙烯醯基氧基丙基甲基二甲 氧基矽烷、及r -甲基丙烯醯基氧基丙基甲基二乙氧基矽 院爲特佳。 作爲其他膠黏劑,例如可舉出聚乙烯醇、聚環氧乙烷 、聚甲基甲基丙烯酸酯、聚甲基丙烯酸酯、二乙醯基纖維 素、三乙醯基纖維素、硝基纖維素、聚酯、醇酸樹脂 '氟 丙烯酸酯。 -48- 200904636 形成低折射率層之塗佈組成物中’含有有機溶劑者爲 佳。作爲具體之有機溶劑的例子,可舉出醇類(例如,甲 醇、乙醇、異丙醇、丁醇、苯甲醇類)、酮(例如,丙酮 、甲基乙基酮、甲基異丁基酮、環己酮)、酯(例如,乙 酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、甲酸甲酯、甲 酸乙酯、甲酸丙酯、甲酸丁酯)、脂肪族烴(例如,己烷 、環己烷)、鹵化烴(例如,二氯甲烷、氯仿、四氯化碳 )、芳香族烴(例如,苯、甲苯、二甲苯)、醯胺(例如 ,二甲基甲醯胺、二甲基乙醯胺、η—甲基吡咯烷酮)、 醚(例如,二乙醚、二噁烷、四氫呋喃)、醚醇類(例如 ’1—甲氧基一 2—丙醇)、丙二醇單甲醚、丙二醇單甲醚 乙酸酯。其中亦以甲苯、二甲苯、甲基乙基酮、甲基異丁 基酮、環己酮、及丁醇爲特佳。 形成低折射率層之塗佈組成物中的固體成分濃度以1 〜4質量%爲佳,藉由使固體成分濃度成爲4質量%以下 ’可減低塗佈不均之產生、或1質量%以上時可減輕乾燥 負荷。 低折射率層中含有氟系或聚矽氧烷系之界面活性劑者 爲佳。藉由含有上述界面活性劑,可減低塗佈不均、或可 有效地提高膜表面之防污性。 作爲氟系界面活性劑,係以含有全氟烷基之單體、寡 聚物、聚合物作爲母核者’可舉出聚環氧乙烷烷醚、聚環 氧乙烷烷基烯丙基醚、聚環氧乙烷等衍生物等。 氟系界面活性劑使用販賣品時,例如可舉出Surflon -49- 200904636RnSi(OR')4-n (2) (wherein R and R' represent a hydrocarbon group such as an alkyl group, an aryl group, a vinyl group or a propenyl group - 37 to 200904636, and η represents 0, 1, 2 or 3.) Alkoxydecane is shown. Particularly, tetraalkoxy decane such as tetramethoxy decane, tetraethoxy decane or tetraisopropoxy decane which is substituted by fluorine is preferably used. As a method of addition, a solution of a small amount of a base or an acid as a catalyst is added to a mixed solution of alkoxysilane, pure water, and an alcohol, and added to a dispersion of porous particles, which will be alkoxydecane. a solution of a small amount of a base or an acid as a catalyst added to a mixed solution of pure water and an alcohol, added to a dispersion of porous particles, and a citric acid polymer formed by hydrolysis of alkoxydecane is attached to the inorganic On the surface of the oxide particles. In this case, alkoxydecane, an alcohol, and a catalyst may be simultaneously added to the dispersion. As the base catalyst, ammonia, an alkali metal hydroxide or an amine can be used. Further, as the acid catalyst, various inorganic acids and organic acids can be used. When the dispersion medium of the porous particle precursor is water alone or when the ratio of water to the organic solvent is high, a ruthenium acid solution can be used to form a ruthenium dioxide protective film. When a citric acid solution is used, a predetermined amount of citric acid solution is added to the dispersion, and a base is added to adhere the citric acid solution to the surface of the porous particle. Further, a cerium oxide protective film can be produced by using a citric acid solution together with the above alkoxy decane. Step 3: Formation of a ruthenium dioxide coating layer In the third step, in the porous particle dispersion (the void particle precursor dispersion in the case of void particles) prepared in the second step, by adding a fluorine-substituted alkane a hydrolyzable organic sand compound or a citric acid solution of a decane compound, and the surface of the particle is coated with a polymer such as a hydrolyzable organic hydrazine compound or a sulphuric acid solution to form a cerium oxide coating layer. -38 - 200904636 The citric acid solution is obtained by subjecting an aqueous solution of an alkali metal ruthenate such as water glass to an alkali-removed low-polymer aqueous solution of citric acid. The organic cerium compound or the ceric acid solution used for forming the coating layer may be added in an amount sufficient to sufficiently coat the surface of the colloidal particles, and the thickness of the cerium oxide coating layer finally obtained may be 1 to 40 ηηη, preferably The amount of 1 to 2 Onm is added to the dispersion of the porous particles (the void particles are actually hollow particle precursors). When the cerium oxide protective film is formed, the total thickness of the cerium oxide protective film and the cerium oxide coating layer is 1 to 40 nm, and preferably an organic cerium compound or a ceric acid solution is added in an amount of 1 to 20 nm. The dispersion forming the particles of the coating layer is heat-treated by adhesion. In the case of the porous particles, the porous oxidized coating on the surface of the porous particles is densified to obtain a dispersion of the composite particles in which the porous particles are coated with the cerium oxide coating. Further, in the case of a void particle precursor, the formed coating layer is densified to become a void particle wall, and a dispersion liquid having voids in which a cavity is filled with a solvent, a gas or a porous solid component is obtained. The heat treatment temperature at this time is only to the extent that the pores of the ceria coating layer can be blocked, and is not particularly limited, and is preferably in the range of 80 to 300 °C. When the heat treatment temperature is less than 80 °C, the fine pores of the ceria coating layer may be completely blocked, and the densification may not be performed, and the treatment time must be long. When the heat treatment temperature exceeds 300 ° C for a long period of time, it becomes a dense particle, and the effect of lowering the refractive index cannot be obtained. The refractive index of the inorganic fine particles thus obtained is lower from -39 to 200904636 when it is less than 1 _ 4 2 . The inorganic fine particles can be piled up to maintain the porosity inside the porous particles, but the inside is hollow, so that the refractive index is lowered. In addition, as hollow fine particles, hollow fine particles which are covalently bonded to a polymer having a hydrocarbon main chain on the surface are excellent in adhesion, abrasion resistance, and visibility after a severe durability test. It is better. Continuing, the description will be made of hollow fine particles in which a polymer having a hydrocarbon main chain is easily covalently bonded. The polymer having a hydrocarbon main chain is a direct covalent bond, or a cerium oxide on the surface of the hollow cerium oxide microparticles and a polymer having a hydrocarbon main chain, and a coupling agent is interposed between the cerium oxide and the binder. In combination with the valence bond, it can also be said that the binding agent and the polymer are covalently bonded. It is preferred to use a coupling agent as a binder. The hollow fine particles in which the polymer having a hydrocarbon main chain is easily covalently bonded can be surface-treated with the surface of the hollow cerium oxide particles by treating the surface of the hollow cerium oxide particles with an untreated or a coupling agent or the like. a method of reacting a polymer having a functional group capable of forming a covalent bond, grafting the polymer on the surface of the hollow ceria particle, or (2) treating the surface of the hollow ceria particle with an untreated or coupling agent In the state of being treated, a monomer is polymerized from the surface of the hollow ceria microparticles to grow a polymer chain, and the surface is grafted. As a specific production method, the method described in JP-A-2006-257308 can be used. In the above production method, a method of polymerizing a monomer from the surface of the hollow silica sand fine particles to grow a polymer chain and grafting the surface thereof is preferable from the viewpoint of increasing the surface modification ratio. After the hollow ceria particles are subjected to a surface treatment of -40 to 200904636 by a coupling agent containing a functional group having a polymerization initiation energy or a chain shifting energy, the polymerization of the monomer to grow the polymer chain is better. a surface treatment agent (optionally using an alkoxy metal compound (for example, a titanium coupling agent, a decane oxime as an oxy metal compound) of the functional group hollow cerium oxide microparticles having a polymerization initiation energy or a chain shifting energy; The general formula (an alkane coupling agent is preferred. (z - L 1 ) m - S i - ( R 2 ) n R 3 ( 4 - m + η ) (3) wherein Ζ has a polymerization initiation energy, or L1 is a divalent linking group having 10 or less carbon atoms. Among them, L1 is preferably an alkylene group of a stretching alkyl group having 1 to 1 ring of carbon atoms via a linking group (for example, an ether, an ester or a decylamine). The alkylene group may have a branched chain. The alkylene group may have a substituent. It contains a halogen atom, a hydroxyl group, a thiol group, a carboxyl group, an epoxy group. Further, in the above general formula (3), 'R2 is a carbon atom number group. R3 is a hydroxyl group or a hydrolyzable group. R3 is preferably a carbon atom number group or a halogen atom, a methoxy group, an ethoxy group or a chloro group -0$η$2, and lSm+n$3. (3) The sand 垸 coupling agent 'is exemplified by a hydroxyl group or a halogen atom (for example, C1, Βγ, F, nitro, carboxyl, sulfo, carbon) The number of 烷基~8 of the alkyl side grafted as the introduction mixture) is such that the mixture is preferably a functional group or a complex group of the oxime shown in the formula 3). Examples of the substituent, alkyl group, aryl 1~ 1 〇 of the alkane of 5 to 5 is more preferred, and the substituent '1', cyano (for example, methyl-41 - 200904636, ethyl, isopropyl, butyl, hexyl, cyclopropyl, Cyclohexyl, 2-hydroxyethyl, 4-carboxybutyl, 2-methoxyethyl, 2-diethylaminoethyl), alkenyl having 2 to 8 carbon atoms (for example, ethylene, allyl) , 2-hexenyl), an alkynyl group having 2 to 8 carbon atoms (for example, an ethynyl group, a 1-butynyl group, a 3-hexynyl group), an aralkyl group having a carbon number of 7 to 12 (for example, benzene) Methyl, phenethyl), an aryl group having 6 to 10 carbon atoms (for example, phenyl, naphthyl, 4-carboxyphenyl, 4-ethylamine phenyl, 3-methanesulfonamide phenyl, 4 Monomethoxyphenyl, 3-mercaptophenyl, 3,5-didecylphenyl, 4-methyl sulfonamide phenyl, 4-butanamine phenyl), carbon number 1~10 Sulfhydryl (eg, acetate, benzhydryl, Anthracenyloxycarbonyl group having 2 to 10 carbon atoms (for example, methoxyl ethoxy group, ethoxycarbonyl group), aryloxycarbonyl group having 7 to 12 carbon atoms (for example, phenoxy curtain) Alkyloxycarbonyl), an aminocarbyl group having 1 to 1 ring of carbon atoms (for example, an unsubstituted aminomethyl fluorenyl group, a methylaminomethyl fluorenyl group, a diethylaminomethyl fluorenyl group, a present amine Alkoxy group having 1 to 8 carbon atoms (for example, 'methoxy group, ethoxy group, butoxy group, methoxyethoxy group), and aryloxy group having 6 to 12 carbon atoms (e.g., phenoxy, 4-carboxyphenoxy, 3-methylphenoxy, naphthyloxy), an anthraceneoxy group having 2 to 12 carbon atoms (e.g., 'acetoxy group, benzhydryloxy group), a sulfonium oxide having a carbon number of 1 to 12 (for example, 'methylsulfonyloxy group, phenylsulfonyloxy group), an amine group, a substituted amino group having 1 to 10 carbon atoms (for example, a dimethylamino group) , diethylamino group, 2-resylethylamine (), amidino group having 1 to 1 ring of carbon atoms (for example, acetammine, benzamide), and a sulfonium group of carbon atom For example, methanesulfonamide, benzenesulfonamide, butyl Indoleamine, octanesulfonamide, carbon atom-42-200904636 A ureido group (for example, a ureido group, a methylureido group) having 1 to 10 carbon atoms, and an alkoxycarbonylamine group having 2 to 10 carbon atoms (for example, a methoxycarbonylamino group, an ethoxycarbonylamino group, an alkylthio group having 1 to 12 carbon atoms (for example, methyl sulfide, ethyl sulfur, octyl sulfide), and an aromatic group having 6 to 12 carbon atoms a thiol group (for example, phenylsulfide, naphthylsulfide), an alkylsulfonyl group having 1 to 8 carbon atoms (for example, methylsulfonyl group, butylsulfonyl group), and a carbon number of 7 to 12 An arylsulfonyl group (for example, phenylsulfonyl, 2-naphthylsulfonyl), an aminesulfonyl group, a substituted aminesulfonyl group having 1 to 8 carbon atoms (for example, methylaminesulfonyl) And a heterocyclic group (for example, 4-pyridine, 1-piperidinyl, 2-furyl, fluorenyl, 2-thiol, 2-pyrrolyl, 2-quinolinemorpholinyl). Further, the decane coupling agent represented by the following general formula (4) is also preferable. Z-(CH2)n-Si-R43 (4) wherein Z is the same as the above general formula (3), and n represents an integer of 1 to 10. R4 represents an alkoxy group or a halogen atom having 1 to 5 carbon atoms, preferably a methoxy group, an ethoxy group or a chlorine atom. The oxime in the above general formula (3) and general formula (4) is a functional group having a polymerization initiation energy or a chain shifting energy, and generally has a partial structure having a polymerization initiator used in a polymerization reaction or a chain shifting agent. It is better. It must be expressed in accordance with the initiation energy of the polymerization method used, for example, in the free radical polymerization method, it is preferred that the oxime contains an azo group or a peracid moiety. When a functional group having a polymerization initiation energy is introduced onto the surface of a hollow ceria, a radical polymerization method, an ion polymerization method, or the like can be used as a suitable polymerization method, but a radical polymerization method is preferred, and a living radical polymerization is preferred. The law is better. Among them, -43-200904636 is used for surface graft polymerization by atomic mobile radical polymerization. Wherein, in the atomic mobile radical polymerization method of the above preferred polymerization method, Z is a halogenated methyl group, a chiral phenyl group, a fluorene-halogenated vine group, a <2-dentified carbonyl group, an α-halogenated nitrile group, or a halogenated group. Sulfonyl is preferred. Further, an α-halogenated ester group or a halogenated sulfonyl group is preferred, and a 0:-halogenated ester group is particularly preferred. Various initiators are disclosed in Matyj aszewski, Xia, "Chemical Re vie w" (200 1 , 101 , 9 , P 2291 ). When using atomic mobile radical polymerization, Z is the initiation of this disclosure. Part of the structure of the agent is preferred. Further, a preferred example of the decane coupling agent containing a functional group having the polymerization initiation ability represented by the above general formula (3) will be mentioned. XCH2C(0)0(CH2)3Si(0CH3)3 CH3C(H)(X)C(0)0(CH2)3Si(0CH3)3(CH3)2C(X)C(0)0(CH2)3Si( 0CH3)3 XCH2C(0)0(CH2)6Si(0CH3)3 CH3C(H)(X)C(0)0(CH2)6Si(0CH3)3 (CH3)2C(X)C(0)0(CH2 6Si(0CH3)3 XCH2C(0)0(CH2)3Si(0C2H5)3 CH3C(H)(X)C(0)0(CH2)3Si(0C2H5)3 (CH3)2C(X)C(0) 0(CH2)3Si(0C2H5)3 XCH2C(0)0(CH2)6Si(0C2H5)3 CH3C(H)(X)C(0)0(CH2)6Si(0C2H5)3 (CH3)2C(X)C (0)0(CH2)6Si(0C2H5)3 XCH2C(0)0(CH2)3SiCl3 -44 - 200904636 CH3C(H)(X)C(0)0(CH2)3SiCl3 (CH3)2C(X)C( 0) 0(CH2)3SiCl3 In the formula, 'X is a chlorine, bromine or iodine atom' is particularly preferably a bromine atom. The decane coupling agent represented by the above general formula (3) is preferably used in an amount of from 1% by mass to 100% by mass based on the hollow cerium oxide fine particles, preferably from 2% by mass to 80% by mass, more preferably from 5% by mass to 50% by mass. quality%. Further, the alkoxy metal compound may be used in combination of two or more kinds. Among them, when two or more kinds of alkoxide metal compounds are used, they can be simultaneously added. Or the compounding reaction proceeds and is suitably added. Further, the alkoxy metal compound may be added to the hollow ceria microparticles after being hydrolyzed or/and condensed in advance. The functional group having a chain shifting energy is not limited, but a halogenated methyl group or a hydrogenthio group is preferred, and a hydrogenthio group is preferred. The content of the low refractive index layer of the hollow fine particles is preferably from 10 to 50% by mass, particularly preferably from 10 to 40% by mass, from the viewpoint of low refractive index and film strength. Continuing with the description of colloidal cerium oxide which is preferred when used with hollow cerium oxide microparticles. The colloidal cerium oxide is a gelatinous shape in which the cerium oxide is dispersed in water or an organic solvent, and is not particularly limited, but is in the form of a spherical shape, a needle shape or a bead group. The average particle size of the colloid-oxidation chopping is preferably in the range of 50 to 300 nm. Further, the colloidal cerium oxide is a monodisperse of -45 to 200904636 having a coefficient of variation of 1 to 40%. The average particle diameter can be measured by an electron microscope photograph by a scanning electron microscope (SEM) or the like. It can also be measured by a particle size distribution meter or the like using a dynamic astigmatism method or a static astigmatism method. However, when the hollow cerium oxide microparticles are used in combination with the colloidal silica sand, the ratio of the average particle diameter of the colloidal silica sand to the average particle diameter of the hollow microparticles is not required to use the same measurement method. The colloidal silica sand may be a seller, and examples thereof include the Snowtex series of Nissan Chemical Industries Co., Ltd., the Cataloid-S series of Catalyst Chemical Industries, and the Ray Basil series of Bayer. Further, the primary particles of the colloidal ceria or cerium oxide which are cationically modified with an alumina sol or aluminum hydroxide are bonded to each other by a metal ion having a valence of 2 or more, and are then joined into a group of beads of a bead group. Antimony dioxide is also preferred. Bead group gels of cerium oxide include the Snowtex AK series of the Nissan Chemical Industry Co., Ltd., the SnowtexPS system 歹IJ, and the SnowtexUP system! ]Wait. When the colloidal cerium oxide is contained, the content in the low refractive index layer is from 1 to 60% by mass, more preferably from 30 to 60% by mass, based on the solidity of the low refractive index layer. . Further, it is preferable that the entire low refractive index layer contains 5 to 80% by mass of the adhesive. The adhesive is a function of adhering hollow cerium oxide microparticles or colloidal silica sand having a structure for maintaining a low refractive index layer containing voids. The amount of the adhesive can be adjusted not only to fill the void but also to maintain the strength of the low refractive index layer. The alkoxy decane compound represented by the following general formula (2), or a hydrolyzate thereof or a polycondensate thereof may be mentioned as the binder. -46- 200904636 Further, specific examples of the compound include methyltrimethoxydecane, methyltriethoxydecane, methyltrimethoxyethoxydecane, methyltriacetoxydecane, and methyltributylate. Oxydecane, ethyltrimethoxydecane, ethyltriethoxydecane, ethylene trimethoxydecane, ethylene triethoxydecane, ethylene triacetoxydecane, ethylene trimethoxyethoxydecane, phenyl trimethyl Oxydecane, phenyltriethoxydecane, phenyltriacetoxydecane, r-chloropropyltrimethoxydecane, 7-chloropropyltriethoxydecane, r-chloropropyltriacetoxydecane, 3,3,3-trifluoropropyltrimethoxydecane, r-glycidoxypropyltrimethoxydecane, r-epoxypropyloxypropyltriethoxydecane, r-(Θ -Epoxypropyloxyethoxy)propyltrimethoxydecane, /3_(3,4-epoxycyclohexyl)ethyltrimethoxydecane, /3 - (3,4-epoxy ring Hexyl)ethyltriethoxy oxime, propylene decyloxypropyltrimethoxydecane, r-methacryloxypropyltrimethoxydecane, r-amine Propyltrimethoxydecane, r-aminopropyltriethoxydecane, r-hydrothiopropyltrimethoxydecane, r-thiopropylpropyltriethoxydecane, (aminoethyl) a mono-aminopropyltrimethoxydecane, and yS-cyanoethyltriethoxydecane, dimethyldimethoxydecane, phenylmethyldimethoxydecane, dimethyldiethyl Oxydecane, phenylmethyldimethoxydecane, dimethyldiethoxydecane, phenylmethyldiethoxydecane, T-epoxypropyloxypropylmethyldiethoxydecane , 7-epoxypropyloxypropylmethyldimethoxydecane, τ-glycidoxypropylphenyldiethoxydecane, r-chloropropylmethyldiethoxydecane, Dimethyldiacetoxydecane, r-propenylmethoxypropylmethyldimethoxydecane, τ-acryloyloxy-47-200904636 propylmethyldiethoxydecane, r-methyl Propylene decyloxypropylmethyldimethoxydecane, r-methylpropenyloxypropylmethyldiethoxydecane, r-hydrothiopropylmethyldimethoxydecane, r Monothiopropyl Methyldiethoxydecane, r-aminopropylmethyldimethoxydecane, r-aminopropylmethyldiethoxydecane, methylethylenedimethoxydecane, and methylethylene Diethoxydecane, etc. Wherein, ethylene trimethoxy decane, ethylene triethoxy decane, ethylene triacetoxy decane, ethylene trimethoxy ethoxy decane, r propylene methoxy propyl trimethoxy decane having a double bond in the molecule, And r-methacryloxypropyltrimethoxydecane, as r-propenylmethoxypropylmethyldimethoxydecane having 2 substituted alkyl groups, r-propylene fluorenyl Oxypropylmethyldiethoxydecane, r-methylpropenyloxypropylmethyldimethoxydecane, r-methylpropenyloxypropylmethyldiethoxydecane, Methyl ethylene dimethoxy decane, and methyl ethylene diethoxy decane are preferred, r - propylene methoxy propyl trimethoxy decane, and r - methacryl methoxy propyl trimethoxy Decane, r-propenyloxypropylmethyldimethoxydecane, 7-propenylmethoxypropylmethyldiethoxydecane, r-methylpropenyloxypropylmethyldi Methoxy decane, and r-methyl propylene methoxy propyl methyl diethoxy fluorene are particularly preferred. Examples of other adhesives include polyvinyl alcohol, polyethylene oxide, polymethyl methacrylate, polymethacrylate, diethyl cellulose, triethyl cellulose, and nitro group. Cellulose, polyester, alkyd resin 'fluorinated acrylate. -48- 200904636 It is preferred that the coating composition forming the low refractive index layer contains an organic solvent. Specific examples of the organic solvent include alcohols (for example, methanol, ethanol, isopropanol, butanol, benzyl alcohol), and ketones (for example, acetone, methyl ethyl ketone, and methyl isobutyl ketone). , cyclohexanone), esters (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, Alkanes, cyclohexane), halogenated hydrocarbons (eg, dichloromethane, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), decylamine (eg, dimethylformamide, Dimethylacetamide, η-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohols (eg, '1-methoxy-2-propanol), propylene glycol monomethyl ether , propylene glycol monomethyl ether acetate. Among them, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and butanol are particularly preferred. The solid content concentration in the coating composition in which the low refractive index layer is formed is preferably 1 to 4% by mass, and the solid content concentration is 4% by mass or less or less, and the coating unevenness can be reduced or 1% by mass or more. It can reduce the drying load. It is preferred that the low refractive index layer contains a fluorine-based or polyoxyalkylene-based surfactant. By containing the above surfactant, coating unevenness can be reduced, or the antifouling property of the film surface can be effectively improved. The fluorine-based surfactant is a monomer containing a perfluoroalkyl group, an oligomer, or a polymer as a core. A polyethylene oxide alkyl ether or a polyethylene oxide alkyl allyl group is exemplified. Derivatives such as ether and polyethylene oxide. When a fluorine-based surfactant is used as a commercial product, for example, Surflon -49-200904636

「S-381」、「S-3 82」、「SC-101」、「 SC-103」、「SC-104」(皆爲旭硝子股份窄 Fluorad「FC-43 0」' 「FC-431」、「FC"S-381", "S-3 82", "SC-101", "SC-103", "SC-104" (all are Asahi Glass shares narrow Fluorad "FC-43 0"' "FC-431", "FC

Fluorochemicals 住友 3M 製)' EFTOP 1 EF301」、「EF303」(皆爲新秋田化成股 )、修貝格夫亞「8035」、「8036」(皆爲 製)、「BM1000」、「BM1100」(皆爲 製)、Megaface「F-1 7 1」、厂 F-470」(皆 化學工業股份有限公司製)等。 本發明中,氟系界面活性劑之含氟比率 量%,較佳爲〇.1〜1質量%。上述氟系界 用1種或倂用2種以上。 繼續對於聚矽氧烷界面活性劑作說明。 本發明中所使用的聚矽氧烷界面活性劑 矽原子之有機基的種類,而大槪分爲純聚砂 聚矽氧烷油。 其中,所謂純聚矽氧烷油爲,將甲基、 作爲取代基而結合者。所謂改性聚矽氧烷油 矽氧烷油以二次衍生的構成部分者。一方面 氧烷油之反應性來分類。綜合上述如以下。 聚矽氧烷油 1 .純聚矽氧烷油 1 -1.非反應性聚矽氧烷油:二甲基、甲基 SC-102」、「 「限公司製)、 -173」(皆爲 -EF3 5 2」、「 份有限公司製 ;修貝格滿公司 BM ·亥米公司 爲大日本墨水 爲0·05〜2質 面活性劑可使 ,依據結合於 氧烷油與改性 苯基、氫原子 爲具有由純聚 ,亦可由聚矽 苯基取代等 -50- 200904636 1-2·反應性聚矽氧烷油:甲基氫取代等 2.改性聚矽氧烷油 於二甲基聚矽氧烷油中導入各式各樣有機基所產生的 改性聚矽氧烷油。 2 -1 ·非反應性聚矽氧烷油:烷基、烷基/芳烷基、烷基/聚 醚、聚醚、高級脂肪酸酯取代等 烷基/芳烷基改性聚矽氧烷油爲,將二甲基聚矽氧烷 油之甲基一部份由長鏈院基或苯基院基取代之聚矽氧院油 〇 聚醚改性聚矽氧烷油爲,將親水性聚氧伸烷基導入於 疏水性二甲基聚矽氧烷之聚矽氧烷系高分子界面活性劑。 高級脂肪酸改性聚矽氧烷油爲,將二甲基聚矽氧烷油 之甲基一部份由高級脂肪酸酯取代的聚矽氧烷油。 胺基改性聚矽氧烷油爲,具有將聚矽氧烷油之甲基一 部份由胺基烷基取代之結構的聚矽氧烷油。 環氧基改性聚矽氧烷油爲,具有將聚矽氧烷油之甲基 一部份由含有環氧基之烷基取代之結構的聚矽氧烷油。 羧基改性或醇類改性聚矽氧烷油爲,具有將聚矽氧烷 油之甲基一部份由含有羧基或羥基之烷基取代之結構的聚 砂氧院油。 2_2.反應性聚矽氧烷油:胺基、環氧基、羧基、醇類取 代等 -51 - 200904636 其中,可添加聚醚改性聚矽氧烷油。聚醚改性聚政氧 烷油之數平均分子量,例如爲1,000〜100,000,較佳爲 2,000〜5 0,000,數平均分子量未達1,000時,塗膜之乾燥 性會降低,相反地數平均分子量若超過100,000時,於塗 膜表面表容易外滲。 作爲具體商品,可舉出日本unicar股份有限公司的 L-45 、 L-9300 、 FZ-3704 、 FZ-3703 、 FZ-3720 、 FZ-3786 、 FZ-3501 、 FZ-3504 、 FZ-3508 、 FZ-3705 、 FZ-3707 、 FZ-3710 ' FZ-3750 、 FZ-3760 、 FZ-3785 、 FZ-3785 、 Y-7499 ' 信越化學公司的 KF96L、KF96、KF96H、KF99 ' KF54 、 KF965 、 KF968 、 KF56 、 KF995 、 KF351 、 KF351A 、 KF352 、 KF353 、 KF354 、 KF355 、 KF615 、 KF618 、 KF945 、 KF6004 、 FL100 等。 聚矽氧烷界面活性劑爲,將聚矽氧烷油的甲基一部份 由親水性基取代之界面活性劑。取代位置爲聚矽氧烷油之 支鏈、兩末端、單方末端、兩末端支鏈等。作爲親水性基 可舉出聚醚、聚甘油、吡略烷酮、甜菜鹼、硫酸鹽、磷酸 鹽、4級鹽等。 作爲聚矽氧烷界面活性劑,疏水基爲由二甲基聚矽氧 烷、親水基爲聚氧伸烷基所構成之非離子界面活性劑爲佳 〇 非離子界面活性劑爲,不具有水溶液中解離成離子之 基的界面活性劑之總稱,除具有疏水基以外,亦具有作爲 親水性基之多元醇類的羥基、又具有聚氧伸烷基鏈(聚胃 -52- 200904636 氧乙烷)等作爲親水基者。親水性爲隨著醇類性羥基數目 的增加,又隨著聚氧伸烷基鏈(聚環氧乙烷鏈)之加長而 增強。 使用疏水基爲由二甲基聚矽氧烷、親水基爲聚氧伸烷 基所構成之非離子界面活性劑時,會提高上述低折射率層 之不均或膜表面之防污性。可推測爲由聚甲基矽氧烷所成 之疏水基配向於表面時,可形成難被污染的膜表面。使用 其他界面活性劑時無法得到的效果。 作爲這些非離子界面活性劑之具體例,例如日本 unicar股份有限公司製、聚矽氧烷界面活性劑SILWET L-77 、 L-720 、 L-7001 、 L-7002 、 L-7604 、 Y-7006 、 FZ-2101、 FZ-2104、 FZ-2105、 FZ-2110、 FZ-2118、 FZ-2120 、 FZ-2122 、 FZ-2123 、 FZ-2130 、 FZ-2154 、 FZ-2161 、 FZ-2162 、 FZ-2163 、 FZ-2164 、 FZ-2166 、 FZ-2191 等。 又,可舉出 SUPERSILWET SS-2 8 0 1 ' SS-2802、 SS-2803 、 SS-2804 、 SS-2805 等。 又’作爲疏水基係由二甲基聚矽氧烷所構成,親水基 係由聚氧伸烷基所構成之非離子系界面活性劑的較佳結構 ’以二甲基聚矽氧烷結構部分與聚氧伸烷基鏈成交互重複 結合之直鏈狀嵌段共聚物爲佳。由主鏈骨架之鏈長較長, 直鏈狀結構來看其爲較優良。此可推測親水基與疏水基爲 交互重複嵌段共聚物時,1個活性劑分子於多數處吸附二 氧化矽微粒子之表面至如覆蓋於上。 -53- 200904636 作爲這些具體例,例如可舉出日本unicar股份有限 公司製、聚矽氧烷界面活性劑ABN SILWET FZ-2203、 FZ-2207 、 FZ-2208 、 FZ-2222 等 ° 這些聚矽氧烷油或聚矽氧烷界面活性劑之中,以具有 聚醚基者爲佳。 又,可使用BYK Japan公司製之界面活性劑BYK系 列、BYK-300/302、BYK-306、BYK-3 07、BYK-310、 BYK-315、BYK-320、BYK-322、BYK-3 23、BYK-3 25、 BYK-3 30、BYK-331、BYK-3 3 3、BYK-3 3 7、BYK-340、 BYK-344、BYK-3 70、BYK-3 75、BYK-3 77、BYK-3 52、 BYK-3 54、BYK-3 5 5/3 5 6、B YK-3 5 8N/3 6 1 N、BYK-3 57、 BYK-3 90、BYK-3 92、BYK-UV3 500、BYK-UV3510、 BYK-UV3 5 70、BYK-Silclean3 700、GE 東芝聚矽氧烷公司 製之二甲基聚矽氧烷系列、XC96-723、YF3800、XF3905 、YF3057 、 YF3807 、 YF3802、 YF3897 爲佳。 氟系或聚矽氧烷系界面活性劑可與其他界面活性劑並 用,例如可舉出磺酸鹽系、硫酸酯鹽系、磷酸酯鹽系等陰 離子界面活性劑,又可舉出具有作爲聚環氧乙烷鏈親水基 之醚型、醚酯型等非離子界面活性劑等。 上述界面活性劑之添加量爲,低折射率層塗佈組成物 中爲0.05〜2.0質量%時,不僅可提高塗膜之撥水、撥油 性、防污性,亦可發揮表面耐擦傷性之效果故較佳。 又,於低折射率層塗佈組成物中可添加酸。藉由添加 酸,由中空微粒子之內部可溶出氨等鹼成分’亦可於塗佈 -54- 200904636 液調製後至塗佈之間可防止低折射率層塗佈組成物之黏度 增加。 所添加之酸可舉出公知無機酸或有機酸,但以有機酸 爲佳。作爲有機酸可舉出乙酸、甲酸、丙酸等。其中以乙 酸爲佳。 有機酸之添加量爲自中空微粒子內部對應氨等鹼成分 之量,對於中空微粒子分散液中之固體成分而言,例如酸 而言添加乙酸5〜100質量%。雖取決於中空微粒子分散 液之濃度,一般爲添加中空微粒子分散液之0.5〜30.0質 量%範圍的酸爲佳。 繼續對於防眩性抗反射薄膜做說明。 防眩性抗反射薄膜爲,最表面之算術平均粗度(Ra ) 未達40〜500nm,較佳爲60〜300nm。 防眩性抗反射薄膜的最表面之算術平均粗度(Ra )與 防眩層同樣地,例如使用光學千涉式表面粗度計 RST/PLUS ( WYKO公司製)可測定。 防眩性抗反射薄膜爲,藉由於防眩層上欲形成上述低 折射率層而將塗佈組成物進行塗佈之塗佈步驟,將所得之 塗膜經乾燥之乾燥步驟的方法而形成。又,防眩層上與低 折射率層之間所介在之較佳高折射率層亦經由塗佈而形成 〇 塗佈方法雖無特別限定’配合所使用之塗佈組成物或 塗佈步驟狀況而做適宜選擇。例如可採用轉動塗佈、輥塗 佈、篩子印刷、噴霧塗佈、凹版塗佈、後述噴射法等種種 -55 - 200904636 塗佈方法。 防眩性抗反射薄膜之形成中’乾燥步驟後視必要可加 設硬化步驟。又,防眩性抗反射薄膜於製作後’可含有進 行溫度50〜160ΐ之加熱處理的步驟。加熱處理時間’藉 由所設定之溫度做適宜決定即可,加熱處理之溫度’例如 5 0 °C時,較佳爲3日以上,3 0日以下之期間,加熱處理溫 度,例如1 6 0 °C時爲1 〇分鐘以上,1日以下之範圍爲佳。 作爲硬化方法,藉由加熱使其熱硬化之方法、藉由紫 外線等光照射使其硬化之方法等。使其熱硬化時,加熱溫 度以 50〜300 °C爲佳,較佳爲 60〜250 °C,更佳爲 80〜 150°C。藉由光照射使其硬化時,照射光之曝光量以 10mJ/cm2 〜10J/cm2 爲佳,以 100mJ/cm2 〜500mJ/cm2 爲較 佳。其中作爲經照射之光波長區,並無特別限定,但以具 有紫外線區域之波長者爲佳。具體可使用低壓水銀燈、中 壓水銀燈、高壓水銀燈、超高壓水銀燈、碳極電弧燈、金 屬鹵素燈、氙氣燈等。 照射條件依燈光而不同,但活性線之照射量,一般爲 5〜500mJ/cm2,較佳爲 5〜1 5 Om J/cm2,特佳爲 20〜 1 00mJ/cm2。 防眩性抗反射薄膜爲,防眩層表面經表面處理,於進 行該表面處理之防眩層表面形成低折射率層爲佳。 防眩性抗反射薄膜爲,形成上述防眩層後,將防眩層 表面進行表面處理’於進行該表面處理之防眩層表面上, 形成低折射率層爲佳。 -56 - 200904636 防眩性抗反射薄膜之反射率可藉由分光光度計進行測 定。此時’試品測定側之裏面經粗面化處理後,使用黑色 噴霧進行光吸收處理後,測定可見光區(4〇〇〜700nm) 之反射光。反射率越低越佳,但可見光區之波長中的平均 値以2 · 5 %以下爲佳,反射率僅爲2.5 %以下,即可表現 本發明之防眩性抗反射薄膜。 最低反射率以2 · 5 %以下爲佳,更佳爲! . 5 %以下。 又,可見光的波長區中,具有平坦形狀之反射光譜爲佳。 又’施予抗反射處理之偏光板表面的反射色相,因防 反射膜之設計上可見光區中的短波長區或長波長區之反射 率較高’故多半染成紅或藍色,但反射光之色調依用途而 有不同要求,使用於FPD電視等最表面時,被要求爲自 然色調。 此場合,一般較佳反射色相範圍爲XYZ表色系( CIE1931 表色系)上,0·17$χ$0·27、0.07Sy$0.17。 低折射率層之膜厚爲,考慮到層之折射率所造成的反 射率、反射光之色調,可依據常法進行計算而求得。 繼續對於介在防眩層與低折射率層之間之較佳高折射 率層做說明。 高折射率層中含有金屬氧化物微粒子爲佳。金屬氧化 物微粒子之種類,雖無特別限定,例如可使用具有至少1 種選自 Ti、 Zr、 Sn、 Sb、 Cu、 Fe、 Mn、 Pb、 Cd、 As、 Cr 、Hg、Zn、Al、Mg、Si、P、及S之元素的金屬氧化物, 這些金屬氧化物微粒子可摻合Α1、】η、Sn、Sb、Nb、鹵 -57- 200904636 兀素、Ta等微量原子。又,亦可爲這些混合物。本發明 中使用將至少1種選自氧化銷、氧化銻、氧化錫、氧化鋅 、氧化銦·錫(ITO )、銻摻合氧化錫(ΑΤΟ )、及銻酸鲜 之金屬氧化物微粒子作爲主成分者爲佳,特佳爲銻酸鋅。 這些金屬氧化物微粒子之一次粒子的平均粒徑以i 〇 〜2 00nm爲佳,10〜150nm較佳。金屬氧化物微粒子之平 均粒徑可藉由掃描電子顯微鏡(SEM)等由電子顯微鏡照 片進行測定。可藉由利用動態散光法或靜態散光法等之粒 度分佈計等進行測定。粒徑過小時容易凝集,分散性會劣 化。粒徑過大時’霧値會顯著提高而不佳。金屬氧化物微 粒子之形狀以米粒狀 '球狀、立方體狀、紡錘形狀、針狀 或不定形狀爲佳。 高折射率層之折射率,具體爲比支持體之透明薄膜基 材的折射率還高,2 3 °C之波長5 5 0 nm測定下爲1 . 5 0〜1 . 9 0 範圍者爲佳。調整高折射率層之折射率的手段,因取決於 金屬氧化物微粒子之種類、添加量,以金屬氧化物微粒子 之折射率爲1.80〜2.60較佳。 金屬氧化物微粒子可藉由有機化合物進行表面處理。 金屬氧化物微粒子之表面以有機化合物進行表面修飾時, 有機溶劑中之分散安定性會提高,容易控制分散粒徑的同 時’可抑制經時的凝集、沈澱。因此,較佳有機化合物之 表面修飾量對於金屬氧化物粒子而言爲0.1〜5質量%, 較佳爲0.5〜3質量%。使用於表面處理之有機化合物的 例子中’含有多元醇、烷醇胺、硬脂酸、矽烷偶合劑、及 -58- 200904636 鈦酸酯偶合劑。其中亦以後述矽烷偶合劑爲佳。亦可組合 二種以上之表面處理。 含有金屬氧化物微粒子之高折射率層的厚度以5nm〜 l//m爲佳,10nm〜0.2//m爲更佳,30nm〜0.1/ζιη爲最 佳。 所使用之金屬氧化物微粒子、與活性能量線硬化樹脂 等膠黏劑之比依金屬氧化物微粒子種類、粒子尺寸等而不 同,體積比對於前者1而言後者爲2至對前者2而言後者 爲1之程度爲佳。 本發明中所使用的金屬氧化物微粒子之使用量,高折 射率層中以5〜85質量%爲佳,10〜80質量%爲較佳, 20〜75質量%更佳。使用量若過少時,無法得到所望之 折射率或本發明之效果,過多時會產生膜強度之劣化等。 金屬氧化物微粒子可爲分散於媒體之分散體的狀態下 ’提供作爲形成闻折射率層之塗佈液。作爲金屬氧化物粒 子之分散媒體’使用沸點6 0〜1 7 0。(:之液體爲佳。作爲分 散溶劑之具體例’可舉出水、醇類(例如,甲醇、乙醇、 異丙醇、丁醇、苯甲醇類)、酮(例如,丙酮、甲基乙基 酮、甲基異丁基酮、環己酮)、酮醇類(例如,二丙酮醇 類)、酯(例如’乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸 丁醋、甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸丁酯)、脂 肪族烴(例如,己烷、環己烷)、鹵化烴(例如,二氯甲 院、氯仿、四氯化碳)、芳香族烴(例如,苯、甲苯、二 甲苯)、醯胺(例如’二甲基甲醯胺、二甲基乙醯胺、n -59- 200904636 一甲基吡咯烷酮)、醚(例如,二乙醚、二噁烷、四氫呋 喃)、醚醇類(例如,1—甲氧基一 2—丙醇)、丙二醇單 甲醚、丙二醇單甲醚乙酸酯。其中亦以甲苯、二甲苯、甲 基乙基酮、甲基異丁基酮、環己酮、及丁醇爲特佳。 又,金屬氧化物微粒子可使用分散機而分散於媒體中 。作爲分散機之例子,可舉出磨砂硏磨機(例如,附針珠 硏磨機)、高速葉輪式硏磨機、石英片硏磨機、輥硏磨機 、攪拌球磨機、及膠體硏磨機。磨砂硏磨機、及高速葉輪 式硏磨機爲特佳。又,可實施預備分散處理。作爲預備分 散處理所使用的分散機例子,可舉出球硏磨機、三根輥硏 磨機、捏合機、及擠壓機。且含有具有核心/殼結構之金 屬氧化物微粒子亦可。殼可於核心周圍形成1層、或欲進 一步提高耐光性,可形成複數層。核心以藉由殼而完全包 覆者爲佳。 作爲核心,可使用氧化鈦(金紅石型、銳鈦礦型、不 定型等)、氧化锆、氧化鋅、氧化铈、摻合錫之氧化銦、 摻合銻之氧化錫等。 作爲殻,以將氧化鈦以外之無機化合物作爲主成分, 由金屬之氧化物或硫化物所形成者爲佳。例如可舉出使用 將二氧化矽(二氧化矽)、氧化鋁(氧化鋁)氧化鉻、氧 化鋅、氧化錫、氧化銻、氧化銦、氧化鐵、硫化鋅等作爲 主成分之無機化合物。其中以氧化鋁、二氧化矽、氧化銷 爲佳。又,這些混合物亦可。 對於核心之殼的覆蓋量爲平均覆蓋量2〜50質量%。 -60- 200904636 較佳爲3〜40質量%,更佳爲4〜25質量%。殻之覆蓋量 過多時,微粒子之折射率會降低,覆蓋量過少時,耐光性 會劣化。可並用二種以上之無機微粒子。 作爲核心之氧化鈦爲,可使用經液相法或氣相法所製 作者。又,作爲將殼於核心周圍形成之方法,例如可使用 美國專利第3,4 1 0,708號說明書、特公昭5 8-4706 1號公報 、美國專利第2,8 8 5,3 6 6號說明書、同第3,43 7,5 02號說 明書、英國專利第1,1 34,M9號說明書、美國專利第 3,383,231號說明書、英國專利第2,629,953號說明書、及 同第1,3 6 5,9 99號說明書所記載之方法等。 繼續對於欲提高作爲金屬氧化物微粒子之膠黏劑的塗 膜之成膜性、物理特性所添加之硬化性樹脂做說明。 硬化性樹脂可使用防眩層所記載之上述硬化性樹脂。 作爲硬化性樹脂,以活性能量線硬化樹脂爲佳。 作爲活性能量線硬化樹脂,可使用如具有紫外線或電 子線之電離放射線的照射,直接或受到聚合啓始劑之作用 後間接地產生聚合反應之官能基2個以上之單體或寡聚物 〇 其中,作爲官能基爲具有如(甲基)丙烯醯基氧基等 之不飽和雙鍵的基,可舉出環氧基、矽烷醇基等。其中亦 以使用具有2個以上不飽和雙鍵之自由基聚合性單體或寡 聚物爲佳。視必要可組合光聚合啓始劑。 作爲如此活性能量線硬化樹脂,例如可舉出多官能丙 烯酸酯化合物等,選自季戊四醇多官能丙烯酸酯、二季戊 -61 - 200904636 四醇多官能丙烯酸酯、季戊四醇多官能甲基丙烯酸酯、及 二季戊四醇多官能甲基丙烯酸酯所成群之化合物爲佳。 其中,所謂多官能丙烯酸酯化合物,分子中具有2個 以上丙烯醯基氧基、及/或甲基丙烯醯氧基之化合物。 作爲多官能丙烯酸酯化合物之單體,例如可舉出乙二 醇二丙烯酸酯、二乙二醇二丙烯酸酯、1,6-己二醇二丙 烯酸酯、新戊基二醇二丙烯酸酯、三羥甲基丙烷三丙烯酸 酯、三羥甲基乙烷三丙烯酸酯、四羥甲基甲烷三丙烯酸酯 、四羥甲基甲烷四丙烯酸酯、五甘油三丙烯酸酯、季戊四 醇二丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇四丙烯酸 酯、甘油三丙烯酸酯、二季戊四醇三丙烯酸酯、二季戊四 醇四丙烯酸酯、二季戊四醇五丙烯酸酯、二季戊四醇六丙 烯酸酯、參(丙烯醯基氧基乙基)三聚異氰酸酯、乙二醇 二甲基丙烯酸酯、二乙二醇二甲基丙烯酸酯、1,6 —己二 醇二甲基丙烯酸酯、新戊基二醇二甲基丙烯酸酯、三羥甲 基丙烷三甲基丙烯酸酯、三羥甲基乙烷三甲基丙烯酸酯、 四羥甲基甲烷三甲基丙烯酸酯、四羥甲基甲烷四甲基丙烯 酸酯、五甘油三甲基丙烯酸酯、季戊四醇二甲基丙烯酸酯 、季戊四醇三甲基丙烯酸酯、季戊四醇四甲基丙烯酸酯、 甘油三甲基丙烯酸酯、二季戊四醇三甲基丙烯酸酯、二季 戊四醇四甲基丙烯酸酯、二季戊四醇五甲基丙烯酸酯、二 季戊四醇六甲基丙烯酸酯、異冰片丙烯酸酯等爲較佳。 這些化合物各可單獨或混合2種以上使用。又,可爲 上述單體之2聚物、3聚物等寡聚物。 -62- 200904636 硬化性樹脂之添加量爲,形成高折射率組成物之塗佈 組成物的固體成分中15質量%以上,50質量%以下者爲 佳。 又,欲促進硬化性樹脂之硬化,使光聚合啓始劑、與 分子中具有2個以上的可聚合之不飽和鍵的丙烯酸系化合 物之質量比爲3: 7〜1: 9下被含有爲佳。 作爲光聚合啓始劑,具體可舉出乙醯苯、二苯甲酮、 羥基二苯甲酮、米希勒酮' α -胺肟酯、噻噸酮等、及彼 等之衍生物,並無特別限定。 作爲使用於塗佈高折射率層時的有機溶劑’例如可舉 出醇類(例如甲醇、乙醇、丙醇、異丙醇、丁醇、異丁醇 、第二丁醇、第三丁醇、戊醇、己醇、環己醇、苯甲醇類 等)、多元醇類(例如乙二醇、二乙二醇、三乙二醇、聚 乙二醇、丙二醇、二丙二醇、聚丙二醇、丁二醇、己二醇 、戊二醇、甘油、己三醇、硫撐二乙醇等)、多元醇類醚 類(例如乙二醇單甲醚、乙二醇單乙醚、乙二醇單丁酸、 二乙二醇單甲醚、二乙二醇單甲醚、二乙二醇單丁酸、丙 二醇單甲醚、丙二醇單丁醚、乙二醇單甲醚乙酸酯、二乙 二醇單甲醚、三乙二醇單乙醚、乙二醇單苯酸、丙一醇單 苯醚等)、胺類(例如乙醇胺、二乙醇胺、二乙醇胺、Ν —甲基二乙醇胺、Ν —乙基二乙醇胺、嗎啉、Ν —乙基嗎 啉、伸乙基二胺、二伸乙基二胺、三伸乙基四胺、四伸乙 基五胺、聚乙烯亞胺、五甲基二伸乙基三胺、四甲基伸丙 基二胺等)、醯胺類(例如甲醯胺、Ν,Ν - 一甲基甲醯胺 -63- 200904636 、N,N—二甲基乙醯胺等)、雜環類(例如2—吡咯烷酮 、N —甲基一 2_吡咯烷酮、環己基吡咯烷酮、2—噁唑酮 、1,3-二甲基—2 —咪唑二酮等)、亞颯類(例如二甲基 亞颯等)、颯類(例如環丁颯等)、尿素、乙腈、丙酮等 ,特別以醇類、多元醇類、多元醇類醚類爲佳。 本發明的防眩性薄膜中,設有纖維素酯薄膜等透明薄 膜基材之防眩層的面與反面上設有背塗佈層爲佳。 背塗佈層爲,欲矯正設有防眩層、或其他層所產生之 彎曲而設置。又,背塗佈層可兼具結塊防止層而被塗佈設 置。此時,於背塗佈層塗佈組成物因具有結塊防止功能, 故添加微粒子爲佳。 作爲所添加之微粒子,可舉出二氧化矽、二氧化鈦、 氧化鋁、氧化锆、碳酸鈣、滑石、黏土、燒成陶土、燒成 矽酸鈣、氧化錫、氧化銦、氧化鋅、ITO、水和矽酸鈣、 矽酸鋁、矽酸鎂、及磷酸鈣等。這些微粒子中由霧値較低 的觀點來看以二氧化矽爲佳。 作爲微粒子之具體化合物,例如可舉出AerosilR972 、R972V 、 R974 、 R812 、 200 、 200V 、 300 、 R202 、 0X50 、TT600 (以上,日本Aerosil股份有限公司製)、KE-10 、KE-3 0、KE-100 (以上,股份有限公司日本觸媒)等販 買品。 又,因 Aerosil200V、AerosilR972V、KE-30 可保持 較低霧値下具有較大結塊防止效果故特佳。 含於背塗佈層之微粒子,對於下述膠黏劑而言以〇. 1 -64 - 200904636 〜50質量%較佳,以0.1〜10質量%爲更佳。設有背塗佈 層時之霧値增加以1 %以下爲佳’以0.5 %以下爲較佳’ 特佳爲0.0〜0.1%。 使用於塗佈背塗佈層時的有機溶劑’可舉出二11惡烷、 丙酮、甲基乙基酮、ν,ν —二甲基甲醯胺、乙酸甲酯、乙 酸乙酯、三氯伸乙基、二氯甲烷、伸乙基氯化物、四氯乙 烷、三氯乙烷、氯仿等溶劑。 作爲塗佈方法,可使用凹版塗佈機、浸漬塗佈機、逆 塗佈機、線圈棒塗佈機、塑模塗佈機、或噴霧塗佈、噴射 塗佈等,於透明薄膜基材之表面上以濕膜厚1〜100/im 下塗佈爲佳,特佳爲5〜30/zm。 作爲背塗佈層之膠黏劑所使用的樹脂,例如可舉出氯 化乙烯-乙酸乙烯酯共聚物、氯化乙烯樹脂、乙酸乙烯酯 樹脂、乙酸乙烯酯與乙烯醇類之共聚物、部分經水解之氯 化乙烯-乙酸乙烯酯共聚物、氯化乙烯-氯化亞乙烯共聚物 、氯化乙烯-丙烯醯基共聚物、乙烯乙烯醇類共聚物、氯 化聚氯化乙烯、乙烯-氯化乙烯共聚物、乙烯-乙酸乙烯醋 共聚物等乙烯系聚合體或共聚物、硝基纖維素、纖維素乙 酸酯丙酸酯(較佳爲乙醯基取代度1.2〜2.3、丙醯基取代 度0.1〜1.0)、二乙醯基纖維素、纖維素乙酸酯丁酸酯樹 脂等纖維素衍生物、馬來酸、及/或丙烯酸之共聚物、丙 烯酸酯共聚物、丙烯醯基-苯乙烯共聚物、氯化聚乙烯、 丙烯醯基-氯化聚乙烯苯乙烯共聚物、甲基甲基丙烯酸醋_ 丁二烯苯乙烯共聚物、丙烯酸樹脂、聚乙烯縮醛樹脂、聚 -65- 200904636 乙烯丁縮醛樹脂、聚酯聚尿烷樹脂、聚醚聚尿烷樹脂、聚 碳酸酯聚尿烷樹脂、聚酯樹脂、聚醚樹脂、聚醯胺樹脂、 胺基樹脂、苯乙烯丁二烯樹脂、丁二烯丙烯醯基樹脂等橡 膠系樹脂、聚矽氧烷系樹脂、氟系樹脂等,但不限定於此 0 例如作爲丙嫌酸樹脂,可舉出ACRYPET MD、VH、 MF、V (三菱Rayon股份有限公司製)、亥巴錄M-4003 、M-4005、M-4006、M-4202、M-5000、M-500 1、Μ -4 5 0 1 (根上工業股份有限公司製)、台亞那路BR-50、BR-52 、BR-53、BR-60、BR-64、BR-73、BR-75、BR-77、 BR-79、BR-80、BR-82、BR-83、BR-85、BR-87、BR-88 、’ BR-90、BR-93、BR-95、BR-100、BR-101、BR-102、 BR-105、BR-1 06 ' BR-107、BR-108、BR-112、BR-113、 BR-115、BR-116、BR-117、BR-118 等(二菱 R a y ο η 股份 有限公司製)之丙烯基、及將甲基丙烯酸系單體作爲原料 所製造之各種均聚物以及共聚物等已被販賣,可適宜地選 出其中較佳者。 特佳爲如二乙醯基纖維素、三乙醯基纖維素、纖維素 乙酸酯丙酸酯、纖維素乙酸酯丁酸酯之纖維素系樹脂層。 繼續對於透明薄膜基材做說明。 作爲透明薄膜基材,可舉出製造容易度、與防眩層之 黏著性良好、光學性各向同性、於光學之透明等作爲較佳 之要件。 又,本發明中,透明薄膜基材的寬度由平面性的觀點 -66 - 200904636 來看,以1.4〜4m者爲特佳。 本發明中所謂的透明爲,可見光之透過率60%以上 者,較佳爲8〇%以上,特佳爲90%以上。 僅具有上述性質者即可,並無特別限定,例如可舉出 纖維素酯系薄膜、聚酯系薄膜、聚碳酸酯系薄膜、聚丙烯 酸酯系薄膜、聚颯(亦含聚醚颯)系薄膜、聚乙烯對苯二 甲酸酯、聚乙烯萘酸酯等聚酯薄膜、聚乙烯薄膜、聚丙烯 薄膜、玻璃紙、纖維素二乙酸酯薄膜、纖維素三乙酸酯、 纖維素乙酸酯丙酸酯薄膜、纖維素乙酸酯丁酸酯薄膜、聚 氯化亞乙烯薄膜、聚乙烯醇薄膜、伸乙基乙烯醇類薄膜、 間規(syndiotactic )聚苯乙烯系薄膜、聚碳酸酯薄膜、 環烯烴聚合物薄膜(亞頓(JSR公司製)、ZEONEX、 ZEONOA (以上,日本ΖΕΟΝ公司製)、聚甲基戊烯薄膜 、聚醚酮薄膜、聚醚酮亞胺薄膜、聚醯胺薄膜、氟樹脂薄 膜、尼龍(註冊商標)薄膜、聚甲基甲基丙烯酸酯薄膜、 丙烯基薄膜或玻璃板等。其中亦以纖維素三乙酸酯薄膜、 聚碳酸酯薄膜、聚颯(含有聚醚颯)爲佳,本發明中,特 別以纖維素醋薄膜(例如 Konicaminolta tak、製品名 KC8UX2MW、KC4UX2MW、KC8UY、KC4UY、KC5UN、 KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4UEW 、KC4FR-1、KC4FR-2 ( Konicaminolta opt 股份有限公司 製),由製造上、經濟面、透明性、各向同性、黏著性、 及本發明之效果來看爲佳。這些薄膜可由熔融流延製膜法 所製造之薄膜、或由溶液流延製膜法所製造之薄膜。 -67- 200904636 繼續對於作爲透明薄膜基材使用的纖維素酯薄膜做說 明。 纖維素酯薄膜原料之纖維素並無特別限定,可舉出綿 花棉絨、木材紙漿(來自針葉樹,來自廣葉樹)、洋麻等 。又,纖維素酯爲,配合各取代度而混合醯基化劑而反應 者,纖維素酯爲,這些醯基化劑對於纖維素分子之羥基起 反應。醯基化劑可舉出酸酐(乙酸酐、丙酸酐、丁酸酐) 或酸氯化物(CH3C0C1、C2H5COCl、C3H7C0C1 )等,酸 酐的情況爲,可使用如乙酸之有機酸或二氯甲烷等有機溶 劑,使用如硫酸之質子性觸媒與纖維素原料進行反應而得 〇 酸基化劑爲酸氯化物之情況爲,作爲觸媒使用如胺之 鹼性化合物進行反應。具體可參考特開平1 0-45804號公 報所記載的方法等而進行合成。 又,纖維素酯爲,葡萄糖單位爲多數連結者所成,於 葡萄糖單位上具有3個羥基。該3個羥基上醯基被衍生的 數目稱爲取代度(莫耳%)。例如纖維素三乙酸酯爲,葡 萄糖單位之3個羥基皆與乙醯基結合(實際上爲2.6〜3.0 )° 作爲本發明所使用的纖維素酯的取代度,可於第2位 、第3位、第6位上平均地以醯基取代、或於第6位上較 多或較少經取代之纖維素酯亦佳。較佳第6位的取代度爲 0 · 7 〜0 · 9 7,更佳爲 0.8 〜0.9 7。 作爲本發明所使用的纖維素酯,可使用如纖維素乙酸 -68- 200904636 酯丙酸酯、纖維素乙酸酯丁酸酯、或纖維素乙酸酯丙酸酯 丁酸酯之乙醯基以外與丙酸酯基或丁酸酯基結合之纖維素 的混合脂肪酸酯爲特佳。且作爲形成丁酸酯之丁醯基,可 爲直鏈狀或支鏈狀。 將丙酸酯基作爲取代基含有之纖維素乙酸酯丙酸酯可 作爲耐水性優良,且爲液晶影像顯示裝置用之薄膜。 醯基的取代度之測定方法可依據ASTM-D817-96之規 定進行測定。 纖維素酯之數平均分子量爲7 0,0 0 0〜2 5 0,0 0 0,成型 時的機械性強度較強,且成爲適度摻合黏度而較佳,更佳 爲 80,000 〜1 5 0,000。 又,纖維素酯薄膜之中亦由防眩性薄膜之耐久性試驗 後膜強度或辨識性之觀點來看,以由糖酯化合物、及丙烯 酸系聚合物所成之纖維素酯薄膜爲佳。 繼續對於糖酯化合物與丙烯酸系聚合物做說明。 作爲糖酯化合物,以將與1至12個至少1種選自呋 喃糖結構及吡喃糖結構之結構經結合之糖化合物的羥基經 酯化的糖酯化合物爲佳。作爲具體之糖化合物,可舉出葡 萄糖、半乳糖、甘露糖、果糖'木糖、阿拉伯糖、乳糖、 蔗糖、纖維二糖、纖維丙糖、麥芽三糖、棉子糖等,特佳 爲具有呋喃糖結構與吡喃糖結構雙方者。作爲例子可舉出 蔗糖。 糖酯化合物爲,糖化合物所具有的羥基一部份或全部 經酯化所得者、或其混合物。 -69- 200904636 使用於合成糖酯化合物時的單羧酸,並無特別限定, 可使用公知之脂肪族單羧酸、脂環族單羧酸、芳香族單羧 酸等進行酯化,合成本發明所使用的糖酯化合物,所使用 的羧酸可爲1種類、或2種以上之混合物。 作爲較佳脂肪族單羧酸,可舉出乙酸、丙酸、丁酸、 異丁酸、戊酸、己酸、庚酸、辛酸、壬酸、癸酸、2 -乙 基-己烷羧酸、十一烷基酸、月桂酸、十三烷基酸、肉豆 蔻酸、十五烷基酸、棕櫚酸、十七烷基酸、硬脂酸、十九 烷基酸、花生酸、山嵛酸、巴西棕櫚酸、蠘酸、二十七烷 基酸、二十八烷基酸、三十烷基酸、三十二烷基酸等飽和 脂肪酸、十一碳烯酸、油酸、山梨酸、亞油酸、亞麻酸、 花生浸烯酸、辛烯酸等不飽和脂肪酸等。 作爲較佳脂環族單羧酸之例子,可舉出環戊烷羧酸、 環己烷羧酸、環辛烷羧酸、或其衍生物。 作爲較佳芳香族單羧酸之例子,可舉出安息香酸、甲 苯酸等安息香酸之苯環上導入1〜5個的烷基或烷氧基等 取代基芳香族單羧酸、肉桂酸、苯甲基酸、聯苯基羧酸、 萘羧酸、萘滿羧酸等具有2個以上的苯環之芳香族單羧酸 '或彼等衍生物,特別以安息香酸爲佳。 這些化合物之製造方法可參考特開昭62-42996號公 報、及特開平10-237084號公報。 本發明的糖酯化合物對於纖維素酯而言可使用0.5〜 35質量%,較佳爲1〜30質量%。 可舉出本發明之糖酯化合物的具體例。 -70- 200904636 【化1】 化合物1 cFluorochemicals Sumitomo 3M) 'EFTOP 1 EF301", "EF303" (all new Akita Chemicals), repairing Begofya "8035", "8036" (all systems), "BM1000", "BM1100" (all For the system, Megaface "F-1 7 1", Plant F-470" (made by Chemical Industry Co., Ltd.). In the present invention, the fluorine-based surfactant has a fluorine content ratio of %, preferably 〇. 1 to 1% by mass. The fluorine-based boundary may be used alone or in combination of two or more. The description of the polyoxyalkylene surfactant is continued. The polyoxyalkylene surfactant used in the present invention is a type of organic group of a ruthenium atom, and is largely classified into a pure polythene polysiloxane. Among them, the pure polyoxyalkylene oil is a combination of a methyl group and a substituent. The modified polyoxyalkylene oil is a component of secondary derivatization. On the one hand, the reactivity of oxyalkyl oils is classified. The above is summarized as follows. Polyoxane oil 1 . Pure polyoxyalkylene oil 1 -1. Non-reactive polyoxane oil: dimethyl, methyl SC-102", ""limited company", -173" (all -EF3 5 2), "parts of the company"; BM·Hemi Company can be used as a large-scale Japanese ink of 0·05~2, which can be replaced by oxyalkylene oil and modified phenyl group, and hydrogen atom can be replaced by pure poly or polyfluorene phenyl. -50- 200904636 1-2·Reactive polyoxane oil: methyl hydrogen substitution, etc. 2. Modified Polyoxane Oil A modified polyoxane oil produced by introducing a wide variety of organic groups into dimethylpolysiloxane oil. 2 -1 · Non-reactive polyoxyalkylene oil: alkyl/aralkyl modified polyoxyalkylene, such as alkyl, alkyl/aralkyl, alkyl/polyether, polyether, higher fatty acid ester substitution The oil is a polyether modified polyoxyalkylene oil in which a part of the methyl group of the dimethyl polysiloxane oil is replaced by a long chain or a phenyl group, and the hydrophilicity is The polyoxyalkylene group is introduced into a polyoxyalkylene-based polymer surfactant of hydrophobic dimethyl polyoxyalkylene. The higher fatty acid modified polyoxyalkylene oil is a polyoxyalkylene oil in which a part of a methyl group of a dimethylpolysiloxane oil is substituted with a higher fatty acid ester. The amine-modified polyoxyalkylene oil is a polyoxyalkylene oil having a structure in which a methyl group of a polyoxyalkylene oil is partially substituted with an aminoalkyl group. The epoxy group-modified polyoxyalkylene oil is a polyoxyalkylene oil having a structure in which a part of a methyl group of a polysiloxane oil is substituted with an alkyl group having an epoxy group. The carboxyl group-modified or alcohol-modified polyoxyalkylene oil is a polyoxan oil having a structure in which a part of a methyl group of a polyoxyalkylene oil is substituted with an alkyl group having a carboxyl group or a hydroxyl group. 2_2. Reactive polyoxyalkylene oil: amine group, epoxy group, carboxyl group, alcohol substitution, etc. -51 - 200904636 wherein polyether modified polysiloxane oil can be added. The number average molecular weight of the polyether modified polyoxyalkane oil is, for example, 1,000 to 100,000, preferably 2,000 to 50,000, and when the number average molecular weight is less than 1,000, the drying property of the coating film is lowered, and conversely When the number average molecular weight exceeds 100,000, the surface of the coating film is easily extravasated. Specific products include L-45, L-9300, FZ-3704, FZ-3703, FZ-3720, FZ-3786, FZ-3501, FZ-3504, FZ-3508, FZ from Japan Unicar Co., Ltd. -3705 , FZ-3707 , FZ-3710 ' FZ-3750 , FZ-3760 , FZ-3785 , FZ-3785 , Y-7499 ' Shin-Etsu Chemical Co. KF96L, KF96, KF96H, KF99 ' KF54 , KF965 , KF968 , KF56 , KF995, KF351, KF351A, KF352, KF353, KF354, KF355, KF615, KF618, KF945, KF6004, FL100, etc. The polyoxyalkylene surfactant is a surfactant in which a part of the methyl group of the polyoxyalkylene oil is substituted with a hydrophilic group. The substitution position is a branch of polyoxyalkylene oil, two ends, a single end, a two-end branch, and the like. Examples of the hydrophilic group include a polyether, polyglycerin, pyrrolidone, betaine, sulfate, phosphate, and a quaternary salt. As a polyoxyalkylene surfactant, the nonionic surfactant composed of a dimethylpolysiloxane and a hydrophilic alkyl group is a nonionic surfactant, and has no aqueous solution. A general term for a surfactant which dissociates into an ion group. In addition to having a hydrophobic group, it also has a hydroxyl group as a hydrophilic group and a polyoxyalkylene chain (polygas-52-200904636 oxyethane) ) as a hydrophilic base. The hydrophilicity increases as the number of alcoholic hydroxyl groups increases, and as the polyoxyalkylene chain (polyethylene oxide chain) lengthens. When a nonionic surfactant composed of a dimethylpolysiloxane and a hydrophilic group is a polyoxyalkylene group is used, the unevenness of the low refractive index layer or the antifouling property of the film surface is enhanced. It is presumed that when the hydrophobic group formed of polymethyl siloxane is aligned to the surface, a surface of the film which is difficult to be contaminated can be formed. Effects not available with other surfactants. Specific examples of these nonionic surfactants include, for example, unicar Co., Ltd., polyoxyxane surfactants SILWET L-77, L-720, L-7001, L-7002, L-7604, Y-7006 , FZ-2101, FZ-2104, FZ-2105, FZ-2110, FZ-2118, FZ-2120, FZ-2122, FZ-2123, FZ-2130, FZ-2154, FZ-2161, FZ-2162, FZ -2163, FZ-2164, FZ-2166, FZ-2191, etc. Further, SUPERSILWET SS-2 8 0 1 'SS-2802, SS-2803, SS-2804, SS-2805, and the like can be cited. Further, 'the preferred structure of the nonionic surfactant composed of a polyoxyalkylene group as the hydrophobic group is composed of dimethyl polyoxyalkylene, and the dimethyl polyoxyalkylene moiety is A linear block copolymer which is repeatedly and repeatedly bonded to the polyoxyalkylene chain is preferred. The chain length of the main chain skeleton is relatively long, and it is superior in terms of a linear structure. It can be inferred that when the hydrophilic group and the hydrophobic group are cross-repetitive block copolymers, one active agent molecule adsorbs the surface of the cerium oxide microparticles at a large portion to cover the surface. -53-200904636 As these specific examples, for example, a polyoxyxane surfactant ABN SILWET FZ-2203, FZ-2207, FZ-2208, FZ-2222, etc., which are manufactured by Nippon Unicar Co., Ltd., etc. Among the alkane oils or polyoxyalkylene surfactants, those having a polyether base are preferred. Also, BYK Japan's surfactants BYK series, BYK-300/302, BYK-306, BYK-3 07, BYK-310, BYK-315, BYK-320, BYK-322, BYK-3 23 can be used. , BYK-3 25, BYK-3 30, BYK-331, BYK-3 3 3, BYK-3 3 7, BYK-340, BYK-344, BYK-3 70, BYK-3 75, BYK-3 77, BYK-3 52, BYK-3 54, BYK-3 5 5/3 5 6, B YK-3 5 8N/3 6 1 N, BYK-3 57, BYK-3 90, BYK-3 92, BYK-UV3 500, BYK-UV3510, BYK-UV3 5 70, BYK-Silclean3 700, GE dimethyl methacrylate series manufactured by Toshiba Polyoxane Co., Ltd., XC96-723, YF3800, XF3905, YF3057, YF3807, YF3802, YF3897 It is better. The fluorine-based or polyoxyalkylene-based surfactant may be used in combination with other surfactants, and examples thereof include anionic surfactants such as sulfonate-based, sulfate-based, and phosphate-based salts, and may also be used as a polymer. A nonionic surfactant such as an ether type or an ether ester type of an ethylene oxide chain hydrophilic group. The amount of the above surfactant added is 0. in the low refractive index layer coating composition. 05~2. When the content is 0% by mass, not only the water repellency, the oil repellency, and the antifouling property of the coating film but also the surface scratch resistance can be exhibited, which is preferable. Further, an acid may be added to the low refractive index layer coating composition. By adding an acid, an alkali component such as ammonia can be dissolved from the inside of the hollow fine particles, and the viscosity of the coating composition of the low refractive index layer can be prevented from increasing after the coating is applied to the coating of -54-200904636. The acid to be added may be a known inorganic acid or organic acid, but an organic acid is preferred. Examples of the organic acid include acetic acid, formic acid, propionic acid, and the like. Among them, acetic acid is preferred. The amount of the organic acid to be added is an amount corresponding to an alkali component such as ammonia from the inside of the hollow fine particles, and for the solid component in the hollow fine particle dispersion, for example, acetic acid is added in an amount of 5 to 100% by mass. Depending on the concentration of the hollow microparticle dispersion, it is generally added to the hollow microparticle dispersion. 5~30. An acid in the range of 0% by mass is preferred. Continue to explain the anti-glare anti-reflective film. The antiglare antireflection film has an arithmetic mean roughness (Ra) of the outermost surface of not more than 40 to 500 nm, preferably 60 to 300 nm. The arithmetic mean roughness (Ra) of the outermost surface of the anti-glare anti-reflection film can be measured, for example, using an optical multi-dimensional surface roughness meter RST/PLUS (manufactured by WYKO Co., Ltd.) in the same manner as the anti-glare layer. The anti-glare antireflection film is formed by a coating step of applying a coating composition on the antiglare layer to form the low refractive index layer, and drying the obtained coating film by a drying step. Further, the preferred high refractive index layer interposed between the antiglare layer and the low refractive index layer is also coated by coating. The coating method is not particularly limited, and the coating composition or coating step used in the mixing is not limited. And make a suitable choice. For example, a coating method of -55 - 200904636 can be employed, such as spin coating, roll coating, screen printing, spray coating, gravure coating, and a later-described spraying method. In the formation of the anti-glare anti-reflection film, a hardening step may be added after the drying step as necessary. Further, the anti-glare antireflection film may be subjected to a heat treatment at a temperature of 50 to 160 Torr after the production. The heat treatment time 'is appropriately determined by the set temperature, and the temperature of the heat treatment is, for example, 50 ° C, preferably 3 days or more, 30 days or less, and heat treatment temperature, for example, 1 60. When the temperature is °C, it is more than 1 minute, and the range below 1 day is better. As a curing method, a method of thermally hardening by heating, a method of curing by irradiation with light such as ultraviolet rays, or the like. When it is thermally hardened, the heating temperature is preferably 50 to 300 ° C, preferably 60 to 250 ° C, more preferably 80 to 150 ° C. When it is hardened by light irradiation, the exposure amount of the irradiation light is preferably 10 mJ/cm 2 to 10 J/cm 2 , and more preferably 100 mJ/cm 2 to 500 mJ/cm 2 . The wavelength region of the irradiated light is not particularly limited, but it is preferably a wavelength having an ultraviolet region. Specifically, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, a carbon arc lamp, a metal halogen lamp, a xenon lamp, or the like can be used. The irradiation conditions vary depending on the light, but the irradiation amount of the active line is usually 5 to 500 mJ/cm2, preferably 5 to 1 5 Om J/cm2, and particularly preferably 20 to 100 mJ/cm2. The anti-glare antireflection film is such that the surface of the anti-glare layer is subjected to surface treatment, and a low refractive index layer is preferably formed on the surface of the anti-glare layer on which the surface treatment is performed. In the anti-glare antireflection film, after the antiglare layer is formed, the surface of the antiglare layer is subjected to surface treatment. Preferably, a low refractive index layer is formed on the surface of the antiglare layer on which the surface treatment is performed. -56 - 200904636 The reflectance of the anti-glare anti-reflective film can be measured by a spectrophotometer. At this time, the inside of the measurement side of the sample was subjected to roughening treatment, and then light absorption treatment was performed using a black spray, and then the reflected light in the visible light region (4 Å to 700 nm) was measured. The lower the reflectance, the better, but the average 値 in the wavelength of the visible light region is preferably 2.5% or less, and the reflectance is only 2. The anti-glare antireflection film of the present invention can be expressed at less than 5%. The minimum reflectance is preferably 2 · 5 % or less, more preferably! .  Less than 5%. Further, in the wavelength region of visible light, a reflection spectrum having a flat shape is preferable. In addition, the reflected hue of the surface of the polarizing plate subjected to the anti-reflection treatment is mostly red or blue, but the reflection is high because the anti-reflection film is designed to have a high reflectance in the short-wavelength region or the long-wavelength region in the visible light region. The color of light has different requirements depending on the application. When used on the outermost surface such as FPD TV, it is required to be a natural color. In this case, it is generally preferred that the range of reflected hue is on the XYZ color system (CIE1931 color system), 0·17$χ$0·27, 0. 07Sy$0. 17. The film thickness of the low refractive index layer is determined by considering the refractive index of the layer and the color tone of the reflected light, which can be calculated by a usual method. A description will be given of a preferred high refractive index layer interposed between the antiglare layer and the low refractive index layer. It is preferred that the high refractive index layer contains metal oxide fine particles. The type of the metal oxide fine particles is not particularly limited, and for example, at least one selected from the group consisting of Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg can be used. Metal oxides of elements of Si, P, and S. These metal oxide fine particles can be blended with trace atoms such as ruthenium 1, η, Sn, Sb, Nb, and halogen-57-200904636. Also, these mixtures are also possible. In the present invention, at least one metal oxide fine particle selected from the group consisting of an oxidation pin, cerium oxide, tin oxide, zinc oxide, indium tin oxide (ITO), cerium-doped tin oxide (cerium), and neodymium acid is used as a main component. The composition is better, especially the zinc citrate. The average particle diameter of the primary particles of these metal oxide fine particles is preferably i 〜 2,000 nm, and preferably 10 〜 150 nm. The average particle diameter of the metal oxide fine particles can be measured by an electron microscope photograph by a scanning electron microscope (SEM) or the like. The measurement can be carried out by using a particle size distribution meter such as a dynamic astigmatism method or a static astigmatism method. When the particle diameter is too small, aggregation tends to occur, and the dispersibility is deteriorated. When the particle size is too large, the smog will be significantly improved. The shape of the metal oxide microparticles is preferably a spherical shape, a spherical shape, a cubic shape, a spindle shape, a needle shape or an indefinite shape. The refractive index of the high refractive index layer is specifically higher than the refractive index of the transparent film substrate of the support, and is 1 at a wavelength of 25 ° C at 25 ° C.  5 0~1.  9 0 The range is better. The means for adjusting the refractive index of the high refractive index layer depends on the type and amount of the metal oxide fine particles, and the refractive index of the metal oxide fine particles is 1. 80~2. 60 is preferred. The metal oxide fine particles can be surface-treated by an organic compound. When the surface of the metal oxide fine particles is surface-modified with an organic compound, the dispersion stability in the organic solvent is improved, and it is easy to control the dispersion of the particle diameter while suppressing aggregation and precipitation over time. Therefore, the amount of surface modification of the preferred organic compound is 0 for the metal oxide particles. 1 to 5 mass%, preferably 0. 5 to 3 mass%. In the example of the surface-treated organic compound, 'containing a polyhydric alcohol, an alkanolamine, a stearic acid, a decane coupling agent, and a -58-200904636 titanate coupling agent. Among them, a decane coupling agent is also preferred. It is also possible to combine more than two types of surface treatments. The thickness of the high refractive index layer containing the metal oxide fine particles is preferably 5 nm to l//m, and 10 nm to 0. 2//m is better, 30nm~0. 1/ζιη is the best. The ratio of the metal oxide fine particles to be used and the adhesive such as the active energy ray-curable resin differs depending on the type of metal oxide fine particles, the particle size, and the like, and the volume ratio is 2 for the former 1 and 2 for the former 2 The degree to 1 is better. The amount of the metal oxide fine particles used in the present invention is preferably 5 to 85% by mass in the high refractive index layer, more preferably 10 to 80% by mass, still more preferably 20 to 75% by mass. When the amount used is too small, the desired refractive index or the effect of the present invention cannot be obtained, and when it is too large, deterioration of film strength or the like occurs. The metal oxide fine particles may be provided as a coating liquid for forming a luminescent refractive index layer in a state of being dispersed in a dispersion of a medium. As the dispersion medium of the metal oxide particles, a boiling point of 60 to 170 is used. (The liquid is preferably: Specific examples of the dispersion solvent include water, alcohols (for example, methanol, ethanol, isopropanol, butanol, benzyl alcohol), and ketones (for example, acetone, methyl ethyl) Ketones, methyl isobutyl ketones, cyclohexanone), keto alcohols (eg, diacetone alcohols), esters (eg, 'methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, Ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, dichlorocarbyl, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, , benzene, toluene, xylene), decylamine (eg 'dimethylformamide, dimethylacetamide, n-59-200904636 monomethylpyrrolidone), ether (eg diethyl ether, dioxane, Tetrahydrofuran), ether alcohols (for example, 1-methoxy-2-propanol), propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, which also contains toluene, xylene, methyl ethyl ketone, methyl Isobutyl ketone, cyclohexanone, and butanol are particularly preferred. Further, a metal oxide fine particle can be used as a dispersing machine. Dispersed in the medium. As an example of the dispersing machine, a sanding honing machine (for example, a bead honing machine), a high-speed impeller honing machine, a quartz honing machine, a roller honing machine, a stirring ball mill, And a colloid honing machine. A sanding honing machine and a high-speed impeller honing machine are particularly excellent. Further, a preliminary dispersion treatment can be carried out. As an example of the dispersing machine used for the preliminary dispersion treatment, a ball honing machine and three balls can be cited. A roll honing machine, a kneader, and an extruder, and may also contain metal oxide fine particles having a core/shell structure. The shell may form one layer around the core, or may further improve light resistance, and may form a plurality of layers. It is preferable to completely coat the shell. As the core, titanium oxide (rutile type, anatase type, amorphous type, etc.), zirconia, zinc oxide, cerium oxide, indium oxide doped with tin, or the like may be used. In addition, as the shell, an inorganic compound other than titanium oxide is used as a main component, and it is preferably formed of a metal oxide or a sulfide. For example, cerium oxide (cerium oxide) is used. ),oxygen Aluminum (aluminum oxide) chromium oxide, zinc oxide, tin oxide, antimony oxide, indium oxide, iron oxide, zinc sulfide, etc. as a main component of the inorganic compound, of which alumina, cerium oxide, oxidation pin is preferred. The mixture may also have an average coverage of 2 to 50% by mass for the shell of the core. -60 to 200904636 is preferably 3 to 40% by mass, more preferably 4 to 25% by mass. When the coverage of the shell is excessive The refractive index of the fine particles is lowered, and when the amount of the coating is too small, the light resistance is deteriorated. Two or more types of inorganic fine particles may be used in combination. The titanium oxide as the core may be produced by a liquid phase method or a gas phase method. As a method of forming the shell around the core, for example, the specification of U.S. Patent No. 3,410,708, the specification of Japanese Patent No. 5 8-4706, and the specification of U.S. Patent No. 2,8 8 5,360, and the like can be used. No. 3, 43 7, 5 02, British Patent No. 1,1 34, M9, US Patent No. 3,383,231, British Patent No. 2,629,953, and the same as No. 1, 3, 5, 9 99 The method described, and the like. The curable resin to be added to the film forming property and physical properties of the coating film which is an adhesive for metal oxide fine particles will be described. As the curable resin, the above curable resin described in the antiglare layer can be used. As the curable resin, an active energy ray-curable resin is preferred. As the active energy ray-curable resin, for example, irradiation with ionizing radiation having ultraviolet rays or electron rays, or a monomer or oligomer having two or more functional groups which indirectly generate a polymerization reaction by the action of a polymerization initiator may be used. In the above, the functional group is a group having an unsaturated double bond such as a (meth) acrylonitrile group, and examples thereof include an epoxy group and a stanol group. Among them, a radical polymerizable monomer or oligomer having two or more unsaturated double bonds is also preferably used. The photopolymerization initiator can be combined as necessary. Examples of the active energy ray-curable resin include a polyfunctional acrylate compound and the like, and are selected from the group consisting of pentaerythritol polyfunctional acrylate, dipenta-61-200904636 tetraol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and Compounds in which pentaerythritol polyfunctional methacrylate is present are preferred. Here, the polyfunctional acrylate compound has a compound having two or more acryloyloxy groups and/or a methacryloxy group in the molecule. Examples of the monomer of the polyfunctional acrylate compound include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and three. Hydroxymethylpropane triacrylate, trimethylolethane triacrylate, tetramethylol methane triacrylate, tetramethylol methane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate Ester, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, hexamethyleneoxyethyl trimeric isocyanate, Ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethyl Acrylate, trimethylolethane trimethacrylate, tetramethylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol Acrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol Methacrylate, dipentaerythritol hexamethacrylate, isobornyl acrylate, and the like are preferred. These compounds can be used individually or in mixture of 2 or more types. Further, it may be an oligomer such as a dimer or a trimer of the above monomer. -62-200904636 The amount of the curable resin to be added is preferably 15% by mass or more and 50% by mass or less based on the solid content of the coating composition of the high refractive index composition. Further, in order to promote the curing of the curable resin, the mass ratio of the photopolymerization initiator to the acrylic compound having two or more polymerizable unsaturated bonds in the molecule is 3: 7 to 1: 9 good. Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, michelone 'α-amine oxime ester, thioxanthone, and the like, and derivatives thereof. There is no special limit. Examples of the organic solvent used when the high refractive index layer is applied include alcohols (for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, second butanol, and third butanol, Pentanol, hexanol, cyclohexanol, benzyl alcohol, etc.), polyols (such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, dibutyl Alcohol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiethanol, etc.), polyol ethers (such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyric acid, Diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyric acid, propylene glycol monomethyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl Ether, triethylene glycol monoethyl ether, ethylene glycol monophthalic acid, propanol monophenyl ether, etc.), amines (eg ethanolamine, diethanolamine, diethanolamine, hydrazine-methyldiethanolamine, hydrazine-ethyldiethanolamine) , morpholine, oxime-ethylmorpholine, ethylidene diamine, diethylenediamine, tri-ethyltetramine, tetraethylamamine, polyethylidene Imine, pentamethyldiethylideneamine, tetramethylpropanediamine, etc.), guanamines (eg, formazan, hydrazine, hydrazine - monomethylcarbamide-63-200904636, N, N-dimethylacetamide, etc.), heterocyclics (eg 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexylpyrrolidone, 2-oxazolone, 1,3-dimethyl-2-imidazole Diketones, etc., sulfoxides (such as dimethyl hydrazine, etc.), hydrazines (such as cyclobutyl hydrazine), urea, acetonitrile, acetone, etc., especially alcohols, polyols, polyol ethers good. In the antiglare film of the present invention, it is preferred to provide a back coating layer on the surface and the reverse surface of the antiglare layer of the transparent film substrate such as a cellulose ester film. The back coating layer is provided to correct the curvature caused by the antiglare layer or other layers. Further, the back coating layer may be applied together with an agglomeration preventing layer. At this time, since the coating composition for the back coating layer has a blocking prevention function, it is preferable to add fine particles. Examples of the fine particles to be added include cerium oxide, titanium oxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, fired clay, calcined calcium citrate, tin oxide, indium oxide, zinc oxide, ITO, and water. And calcium citrate, aluminum citrate, magnesium citrate, and calcium phosphate. Among these fine particles, cerium oxide is preferred from the viewpoint of a low haze. Specific examples of the fine particles include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, 0X50, TT600 (above, manufactured by Nippon Aerosil Co., Ltd.), KE-10, KE-3 0, KE. -100 (above, Japan Co., Ltd.) and other products. In addition, Aerosil 200V, Aerosil R972V, and KE-30 are particularly good at maintaining a large agglomeration prevention effect in a low haze. The microparticles contained in the back coating layer are 〇 for the following adhesives.  1 -64 - 200904636 ~ 50% by mass is better, with 0. 1 to 10% by mass is more preferred. When the back coating layer is provided, the haze increase is preferably less than 1% by 0. 5 % or less is better 'Specially good is 0. 0~0. 1%. The organic solvent used in the coating of the back coating layer may be exemplified by dioxane, acetone, methyl ethyl ketone, ν, ν-dimethylformamide, methyl acetate, ethyl acetate, trichloro Ethyl, dichloromethane, ethyl chloride, tetrachloroethane, trichloroethane, chloroform and the like are extended. As the coating method, a gravure coater, a dip coater, a reverse coater, a coil bar coater, a die coater, spray coating, spray coating, or the like can be used for the transparent film substrate. The surface is preferably coated with a wet film thickness of 1 to 100/im, particularly preferably 5 to 30/zm. Examples of the resin used as the adhesive of the back coating layer include a vinyl chloride-vinyl acetate copolymer, a vinyl chloride resin, a vinyl acetate resin, a copolymer of vinyl acetate and a vinyl alcohol, and a part. Hydrolyzed chlorinated ethylene-vinyl acetate copolymer, chlorinated ethylene-vinylidene copolymer, chlorinated ethylene-propylene fluorenyl copolymer, ethylene vinyl alcohol copolymer, chlorinated polyvinyl chloride, ethylene - An ethylene-based polymer or copolymer such as a chlorinated ethylene copolymer or an ethylene-vinyl acetate copolymer; a nitrocellulose, a cellulose acetate propionate (preferably an acetyl group substitution degree of 1. 2~2. 3, propyl thiol substitution degree 0. 1~1. 0), cellulose derivatives such as diacetyl cellulose, cellulose acetate butyrate resin, copolymer of maleic acid and/or acrylic acid, acrylate copolymer, acrylonitrile-styrene copolymer , chlorinated polyethylene, acrylonitrile-chlorinated polyethylene styrene copolymer, methyl methacrylate acrylate, butadiene styrene copolymer, acrylic resin, polyvinyl acetal resin, poly-65- 200904636 vinyl Acetal resin, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, polyether resin, polyamide resin, amine resin, styrene butadiene resin, A rubber-based resin such as a butadiene acryl-based resin, a polyoxyalkylene-based resin, or a fluorine-based resin, but is not limited thereto. For example, as a acrylic acid resin, ACRYPET MD, VH, MF, V (Mitsubishi) Rayon Co., Ltd.), Haibalu M-4003, M-4005, M-4006, M-4202, M-5000, M-500 1, Μ -4 5 0 1 (manufactured by Roots Industrial Co., Ltd.), Taiana Road BR-50, BR-52, BR-53, BR-60, BR-64, BR-73, BR-75, BR-77, BR-79, BR-80, BR-82 , BR-83, BR-85, BR-87, BR-88, 'BR-90, BR-93, BR-95, BR-100, BR-101, BR-102, BR-105, BR-1 06 'BR-107, BR-108, BR-112, BR-113, BR-115, BR-116, BR-117, BR-118, etc. (made by Mitsubishi R ay ο η Co., Ltd.) Various homopolymers and copolymers produced by using a methacrylic monomer as a raw material have been sold, and those which are preferable are preferably selected. Particularly preferred are cellulose-based resin layers such as diethyl hydrazino cellulose, triethylene sulfhydryl cellulose, cellulose acetate propionate, and cellulose acetate butyrate. Continue to explain the transparent film substrate. The transparent film substrate is preferably a material which is easy to manufacture, has good adhesion to an antiglare layer, is optically isotropic, and is optically transparent. Further, in the present invention, the width of the transparent film substrate is from the viewpoint of planarity - 66 - 200904636, and is 1. 4~4m is especially good. The transparency in the present invention is such that the transmittance of visible light is 60% or more, preferably 8% or more, and particularly preferably 90% or more. The above-mentioned properties are not particularly limited, and examples thereof include a cellulose ester-based film, a polyester-based film, a polycarbonate-based film, a polyacrylate-based film, and a polyfluorene (including polyether oxime) system. Polyester film such as film, polyethylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, cellulose diacetate film, cellulose triacetate, cellulose acetate Ester propionate film, cellulose acetate butyrate film, polyvinyl chloride film, polyvinyl alcohol film, ethyl vinyl alcohol film, syndiotactic polystyrene film, polycarbonate Film, cycloolefin polymer film (ADEN (manufactured by JSR), ZEONEX, ZEONOA (above, manufactured by Nippon Paint Co., Ltd.), polymethylpentene film, polyether ketone film, polyether ketimide film, polyamine Film, fluororesin film, nylon (registered trademark) film, polymethyl methacrylate film, acryl film or glass plate, etc. Among them, cellulose triacetate film, polycarbonate film, polyfluorene (including Polyether oxime Preferably, in the present invention, in particular, a cellulose vinegar film (for example, Konicaminolta tak, product name KC8UX2MW, KC4UX2MW, KC8UY, KC4UY, KC5UN, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4UEW, KC4FR-1) KC4FR-2 (manufactured by Konicaminolta opt Co., Ltd.) is preferable in terms of manufacturing, economical surface, transparency, isotropy, adhesion, and effects of the present invention. These films can be formed by melt casting film forming method. The film produced or the film produced by the solution casting film forming method. -67- 200904636 The cellulose ester film used as the transparent film substrate is further described. The cellulose of the cellulose ester film raw material is not particularly limited. Examples thereof include cotton linters, wood pulp (from coniferous trees, from broadleaf trees), kenaf, etc. Further, cellulose esters are those which are mixed with a thiolating agent in accordance with each degree of substitution, and cellulose esters are used. The thiolating agent reacts with the hydroxyl group of the cellulose molecule, and the thiolating agent may be an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride) or an acid chloride (CH3C0C1, C2H5COCl, C3H7C0C1), etc. In the case where an organic solvent such as acetic acid or an organic solvent such as dichloromethane can be used, a protonic acid-based catalyst such as sulfuric acid is used to react with a cellulose raw material to obtain an acid chloride. The medium is reacted with a basic compound such as an amine, and the synthesis can be carried out by a method described in JP-A-10-50804. Further, the cellulose ester is a unit in which a glucose unit is a majority of a linker. There are three hydroxyl groups thereon. The number of the three hydroxyl group-derived groups is referred to as the degree of substitution (% by mole). For example, cellulose triacetate is that the three hydroxyl groups of the glucose unit are combined with the ethyl sulfonate group (actually 2. 6~3. 0)° The degree of substitution of the cellulose ester used in the present invention may be substituted with a thiol group at the 2nd, 3rd, and 6th positions, or a more or less substituted at the 6th position. The cellulose ester is also preferred. Preferably, the degree of substitution of the sixth bit is 0 · 7 〜 0 · 9 7 and more preferably 0. 8 ~ 0. 9 7. As the cellulose ester used in the present invention, for example, cellulose acetate-68-200904636 ester propionate, cellulose acetate butyrate, or cellulose acetate propionate butyrate can be used. A mixed fatty acid ester of cellulose other than a propionate group or a butyrate group is particularly preferred. Further, as the butyric acid group forming the butyric acid ester, it may be linear or branched. The cellulose acetate propionate containing a propionate group as a substituent is excellent in water resistance and is a film for a liquid crystal image display device. The method for determining the degree of substitution of the thiol group can be determined in accordance with the provisions of ASTM-D817-96. The number average molecular weight of the cellulose ester is 70,0 0 0~2 5 0,0 0 0, the mechanical strength during molding is strong, and it is preferably a moderate blending viscosity, more preferably 80,000 to 1 5 0,000. . Further, among the cellulose ester films, a cellulose ester film made of a sugar ester compound and an acrylic polymer is preferable from the viewpoint of film strength or visibility after the durability test of the antiglare film. The description of the sugar ester compound and the acrylic polymer will be continued. As the sugar ester compound, a sugar ester compound obtained by esterifying a hydroxyl group of a sugar compound having 1 to 12 at least one structure selected from a furanose structure and a pyranose structure is preferred. Specific examples of the sugar compound include glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, cellobiose, fibrilose, maltotriose, raffinose, etc., particularly preferably Both have a furanose structure and a pyranose structure. As an example, sucrose can be mentioned. The sugar ester compound is obtained by partially esterifying a hydroxyl group of a sugar compound, or a mixture thereof. -69-200904636 The monocarboxylic acid used in the synthesis of the sugar ester compound is not particularly limited, and can be esterified by using a known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid or aromatic monocarboxylic acid. The saccharide ester compound to be used in the invention may be one type or a mixture of two or more types of carboxylic acids. Preferred examples of the aliphatic monocarboxylic acid include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, capric acid, capric acid, and 2-ethyl-hexanecarboxylic acid. , undecylic acid, lauric acid, tridecyl acid, myristic acid, pentadecyl acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecyl acid, arachidic acid, hawthorn Saturated fatty acids such as acid, carnaubalic acid, citric acid, heptacosyl acid, octadecanoic acid, tridecyl acid, tridecyl acid, undecylenic acid, oleic acid, sorbic acid , unsaturated fatty acids such as linoleic acid, linolenic acid, arachidonic acid, and octenoic acid. Examples of preferred alicyclic monocarboxylic acids include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, or a derivative thereof. Examples of the preferred aromatic monocarboxylic acid include a substituted aromatic monocarboxylic acid such as an alkyl group or an alkoxy group having 1 to 5 alkyl groups or a cinnamic acid introduced into a benzene ring of benzoic acid such as benzoic acid or toluic acid. An aromatic monocarboxylic acid having two or more benzene rings, such as benzyl acid, biphenylcarboxylic acid, naphthalenecarboxylic acid or naphthalene carboxylic acid, or a derivative thereof, particularly preferably benzoic acid. For the production of these compounds, reference is made to JP-A-62-42996 and JP-A-10-237084. The sugar ester compound of the present invention can be used for the cellulose ester. 5 to 35 mass%, preferably 1 to 30 mass%. Specific examples of the sugar ester compound of the present invention can be mentioned. -70- 200904636 Compound 1 c

<<

化合物2Compound 2

化合物3 R30Compound 3 R30

CC

R3R3

9 OHC 化合物4 ( R409 OHC Compound 4 ( R40

((

R4 o H2 R4· Ηδ c2h -71 - 200904636 【化2】化合物5 CH2〇R5 CH2PR5R4 o H2 R4· Ηδ c2h -71 - 200904636 [Chemical 2] Compound 5 CH2〇R5 CH2PR5

om R5= —G-CH3Om R5= —G-CH3

O tl R6= —G-CHiO tl R6= —G-CHi

R7: O n -c 一 ch3 化合物8R7: O n -c a ch3 compound 8

R8 = O u -c 一 ch3 -72- 200904636 化合物9 【化3】R8 = O u -c a ch3 -72- 200904636 Compound 9 [Chemical 3]

RS= Ο II c-ch3 化合物10RS= Ο II c-ch3 Compound 10

R10OR10O

ORIO 〇 CH2〇R1P ΗORIO 〇 CH2〇R1P Η

Rioo/eH2〇Rid OR10 R10: 作爲丙烯酸系聚合物,分子內不具有芳香環與 基之乙烯性不飽和單體Xa、與分子內不具有芳香 有親水性基之乙烯性不飽和單體Xb,經共聚合所 量平均分子量5,000以上,30,000以下之丙烯酸系 爲佳,較佳爲下述一般式(5)所示之丙烯酸系聚 〇 -(Xa)m-(Xb)n-(Xc)p- …(5) 更佳爲下述一般式(6)所示之聚合物。Rioo/eH2〇Rid OR10 R10: As an acrylic polymer, an ethylenically unsaturated monomer Xa having no aromatic ring and a group in the molecule, and an ethylenically unsaturated monomer Xb having no aromatic hydrophilic group in the molecule, The acrylic acid having an average molecular weight of 5,000 or more and 30,000 or less is preferably copolymerized, and is preferably an acrylic poly-(Xa)m-(Xb)n-(Xc)p represented by the following general formula (5). - (5) More preferably, it is a polymer represented by the following general formula (6).

0 II -C‘ch3 親水性 環,具 得之重 聚合物 合物X -73- 200904636 -[CH2-C(-R1)(-C〇2R2)]m-[CH2-C(-R3)(-C02R4-〇H)-]n-[Xc]p- …(6) (式中,R1、R3表示H或CH3。R2表示碳數1〜I〗的烷 基、環烷基。R4表示- CH2_ ' -C2H4-或-C3H6-。XC表示Xa ' Xb上可聚合的單體單位。m、11及p表示莫耳組成比。 但,m^O、η关0、k^〇、m+n+P^lOO。) 本發明中,作爲構成丙烯酸系聚合物X之單體單位 的單體可舉出下述者,但不限定於此。 丙烯酸系聚合物X中’所謂親水性基爲具有羥基、 環氧乙烷連鎖之基。 分子內不具有芳香環與親水性基之乙烯性不飽和單體 Xa,例如可舉出丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙基( 1_、11-)、丙烯酸丁酯(11-、丨-、5-、卜)、丙烯酸戊基( n-、i-、s-)、丙烯酸己基(n-、i-)、丙烯酸庚基(η·、 i_) '丙烯酸辛基(n-、i-)、丙烯酸壬基(n-、i_)、丙 烯酸肉豆蔻基(n-、i-)、丙烯酸(2—乙基己基)、丙烯 酸(ε —己內酯)等、或將上述丙烯酸酯改爲甲基丙烯酸 酯者。 其中’亦以丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲 酯、甲基丙烯酸乙酯、甲基丙烯酸丙基(i-、η_)者爲佳 〇 分子內不具有芳香環,具有親水性基之乙烯性不飽和 單體Xb中’作爲具有羥基之單體單位,以丙烯酸或甲基 -74- 200904636 丙烯酸酯爲佳,例如可舉出丙烯酸(2—羥基乙基)、丙 烯酸(2—羥基丙基)、丙烯酸(3-羥基丙基)、丙烯酸 (4 一羥基丁基)、丙烯酸(2 —羥基丁基)、或將這些丙 烯酸取代爲甲基丙烯酸者,較佳爲丙烯酸(2-羥基乙基 )、及甲基丙烯酸(2 -羥基乙基)、丙烯酸(2 —羥基丙 基)、丙烯酸(3—羥基丙基)。 作爲Xc,僅爲Xa、Xb以外者,且可共聚合之乙烯 性不飽和單體即可,並無特別限定,但具有芳香環者爲佳 〇0 II -C'ch3 Hydrophilic ring, heavier polymer X-73- 200904636 -[CH2-C(-R1)(-C〇2R2)]m-[CH2-C(-R3)( -C02R4-〇H)-]n-[Xc]p- (6) (wherein R1 and R3 represent H or CH3. R2 represents an alkyl group having a carbon number of 1 to I, and a cycloalkyl group. R4 represents - CH2_ '-C2H4- or -C3H6-. XC represents a monomer unit polymerizable on Xa 'Xb. m, 11 and p represent the molar composition ratio. However, m^O, η is 0, k^〇, m+ In the present invention, the monomer constituting the monomer unit of the acrylic polymer X is exemplified as follows, but is not limited thereto. In the acrylic polymer X, the so-called hydrophilic group is a group having a hydroxyl group or an ethylene oxide linkage. Examples of the ethylenically unsaturated monomer Xa having no aromatic ring and hydrophilic group in the molecule include methyl acrylate, ethyl acrylate, propyl acrylate (1_, 11-), and butyl acrylate (11-, 丨- , 5-, b), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), hexyl acrylate (η·, i_) 'acrylic acid octyl (n-, i- ), fluorenyl acrylate (n-, i_), acrylic acid myristyl (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), etc., or the above acrylate Methacrylate. Among them, 'methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid propyl (i-, η_) are preferred. There is no aromatic ring in the molecule, and it has a hydrophilic group. In the ethylenically unsaturated monomer Xb, 'as a monomer unit having a hydroxyl group, preferably an acrylic acid or a methyl-74-200904636 acrylate, and examples thereof include (2-hydroxyethyl) acrylate and 2-hydroxyl group. Propyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), or those substituted with acrylic acid to methacrylic acid, preferably acrylic acid (2-hydroxyl) Ethyl), methacrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl). Xc is not limited to Xa and Xb, and may be a copolymerizable ethylenically unsaturated monomer, and is not particularly limited, but it is preferably an aromatic ring.

Xa、Xb及XC之莫耳組成比m : η以99 : 1〜65 : 35 之範圍爲佳’更佳爲95: 5〜75: 25之範圍。乂〇的卩爲〇 〜10。Xc爲複數單體單位即可。The molar composition ratio of ma of Xa, Xb and XC is m: η is preferably in the range of 99:1 to 65:35, more preferably in the range of 95:5 to 75:25. The trick is 〇~10. Xc is a plural monomer unit.

Xa、Xb之莫耳組成比可依據與纖維素酯之相溶性、 光學特性等最適化而做適宜選擇。 又’丙烧酸系聚合物之重量平均分子量可依據公知分 子量調節方法進行調整。作爲如此分子量調節方法,例如 可舉出添加四氯化碳、月桂基硫醇、硫代二醇酸辛酯等連 鎖移動劑之方法等。 又,作爲丙烯酸系聚合物,可舉出下述〜般式(?) 所示者。 -(Ya)k-(Yb)q- …(7) 更佳爲下述一般式(8)所示之聚合物。 -[CH2-C(-R5)(.c〇2R6)]k.[Yb]q. (8) -75- 200904636 (式中,R5表示Η或CH3。R6表示碳數1〜12的烷基或 環烷基。Yb表示與Ya可共聚合之單體單位。k及q表示 莫耳組成比。但,k#0、k + q=l 〇〇。)The molar composition ratio of Xa and Xb can be appropriately selected depending on the compatibility with the cellulose ester, optical properties, and the like. Further, the weight average molecular weight of the propionic acid polymer can be adjusted in accordance with a known molecular weight adjustment method. As such a method of adjusting the molecular weight, for example, a method of adding a linking mobile agent such as carbon tetrachloride, lauryl mercaptan or octyl thioglycolate may be mentioned. Further, examples of the acrylic polymer include the following general formula (?). - (Ya) k - (Yb) q - (7) More preferably, it is a polymer represented by the following general formula (8). -[CH2-C(-R5)(.c〇2R6)]k.[Yb]q. (8) -75- 200904636 (wherein R5 represents hydrazine or CH3. R6 represents an alkyl group having 1 to 12 carbon atoms. Or a cycloalkyl group. Yb represents a monomer unit copolymerizable with Ya. k and q represent a molar composition ratio. However, k#0, k + q=l 〇〇.)

Yb表示可與Ya共聚合之乙烯性不飽和單體即可,並 無特別限定。Yb亦可爲複數。k + q=l〇〇、q較佳爲〇〜30 〇 構成聚合不具有芳香環之乙嫌性不飽和單體所得之聚 合物Y之乙烯性不飽和單體Ya,作爲丙烯酸酯,例如可 舉出丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙基(i-、n-)、 丙烯酸丁酯(n-、i-、s-、t-)、丙烯酸戊酯(n-、i-、s-)、丙烯酸己酯(n-、i-) 、丙烯酸庚酯(n_、i_)、丙 烯酸辛酯(n-、i-)、丙烯酸壬酯(n_、i_)、丙烯酸肉 豆蔻酯(n-、i-)、丙烯酸環己酯、丙烯酸(2—乙基己基 )、丙烯酸(ε —己內酯)、丙烯酸(2—羥基乙基)、 丙烯酸(2—羥基丙基)'丙烯酸(3-羥基丙基)、丙烯 酸(4 一羥基丁基)、丙烯酸(2—羥基丁基)、作爲甲基 丙烯酸酯將上述丙烯酸酯改爲甲基丙烯酸酯者;作爲不飽 和酸,例如可舉出丙烯酸、甲基丙烯酸、馬來酸酐、巴豆 酸、衣康酸等。Yb represents an ethylenically unsaturated monomer copolymerizable with Ya, and is not particularly limited. Yb can also be plural. k + q = l 〇〇, q is preferably 〇 〜 30 〇 constituting the ethylenically unsaturated monomer Ya of the polymer Y obtained by polymerizing a bivalent unsaturated monomer having no aromatic ring, as an acrylate, for example, Examples of methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), amyl acrylate (n-, i-, s- ), hexyl acrylate (n-, i-), heptyl acrylate (n_, i_), octyl acrylate (n-, i-), decyl acrylate (n_, i_), myristyl acrylate (n-, I-), cyclohexyl acrylate, acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl) 'acrylic acid (3-hydroxyl) Propyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), methacrylate as a methacrylate, and acrylic acid ester, and examples of the unsaturated acid include acrylic acid. Methacrylic acid, maleic anhydride, crotonic acid, itaconic acid, and the like.

Yb僅爲與Ya可共聚合之乙烯性不飽和單體即可,並 無特別限定,作爲乙烯酯’例如可舉出乙酸乙烯酯、丙酸 乙烯酯、丁酸乙烯酯、戊酸乙烯酯、三甲基乙酸乙烯酯、 己酸乙烯酯、癸酸乙烯酯、月桂酸乙烯酯、肉豆蔻酸乙烯 -76- 200904636 酯、棕櫚酸乙烯酯、硬脂酸乙烯酯、環己烷羧酸乙烯酯、 辛基酸乙烯酯、甲基丙烯酸乙烯酯、巴豆酸乙烯酯、山梨 酸乙烯酯、桂皮酸乙烯酯等爲佳° Yb以複數爲佳。 合成聚合物X、及聚合物γ時,一般聚合中分子量之 控制較難,使用不要讓分子量過大的方法中儘可能使分子 量均一的方法爲佳。 作爲聚合物X、及聚合物γ之聚合方法,使用如過氧 化枯烯或氫過氧化第三丁基之過氧化物聚合啓始劑之方法 、聚合啓始劑大量使用於一般聚合之方法、使用聚合啓始 劑以外的氫硫基化合物或四氯化碳等連鎖移動劑之方法、 使用聚合啓始劑以外如苯並喹啉或二硝基苯之聚合停止劑 的方法、具有特開2000-12 8911號公報或同2000-344823 號公報所記載的1個硫醇基與2級羥基之化合物、或使用 並用該化合物與有機金屬化合物之聚合觸媒之嵌段聚合方 法等。 聚合物Y爲,將分子中具有硫醇基與2級羥基之化 合物作爲連鎖移動劑使用的聚合方法爲佳。此時,聚合物 Y的末端上會具有聚合觸媒及連鎖移動劑所引起的羥基、 硫醚。藉由該末端殘基,可調整聚合物Y與纖維素酯之 相溶性。 聚合物X及聚合物Y之羥基價以30〜150〔mgKOH/g 〕爲佳。 其中,羥基價之測定可依據JIS K 0070 ( 1 992 )進行 。該羥基價定義爲,將試料1 g進行乙醯基化時,欲中和 -77- 200904636 與羥基結合之乙酸所需的氫氧化鉀mg數。具體爲將試料 xg (約lg)以燒瓶精準稱取後’於此正確地加入乙醯基 化試藥(於乙酸酐2〇ml中加入吡啶使其成爲400ml者) 20ml。於燒瓶口裝上空氣冷卻管’於95〜100°C之甘油浴 中進行加熱。經1小時3 0分鐘後冷卻’由空氣冷卻管加 入純水1ml,將乙酸酐分解成乙酸。其次使用電位差滴定 裝置以0.5mol/L氫氧化鉀乙醇溶液進行滴定,所得之滴 定曲線的變曲點作爲終點。且作爲空白試驗爲未放入試料 下進行滴定,求得滴定曲線之變曲點。羥基價如以下式子 算出。Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with Ya, and examples of the vinyl ester include vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl valerate. Trimethyl vinyl acetate, vinyl hexanoate, vinyl decanoate, vinyl laurate, ethylene myristate-76- 200904636 ester, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate , vinyl octyl acrylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl cinnamate, etc. Preferably, Yb is preferably plural. In the case of synthesizing the polymer X and the polymer γ, it is generally difficult to control the molecular weight in the polymerization, and it is preferred to use a method in which the molecular weight is not as large as possible in a method in which the molecular weight is too large. As a polymerization method of the polymer X and the polymer γ, a method of using a peroxide polymerization initiator such as cumene peroxide or a third butyl hydroperoxide, a polymerization initiator is used in a large amount in a general polymerization method, A method of using a chain transfer agent such as a hydrosulfide compound or a carbon tetrachloride other than a polymerization initiator, or a polymerization stopper other than a polymerization initiator such as benzoquinoline or dinitrobenzene, having a special opening 2000 A compound of a thiol group and a hydroxy group described in JP-A No. 2000-344823, or a block polymerization method using a polymerization catalyst of the compound and an organometallic compound. The polymer Y is preferably a polymerization method in which a compound having a thiol group and a second-order hydroxyl group in the molecule is used as a chain shifting agent. At this time, the terminal of the polymer Y may have a hydroxyl group or a thioether caused by a polymerization catalyst and a chain shifting agent. The compatibility of the polymer Y with the cellulose ester can be adjusted by the terminal residue. The hydroxyl group of the polymer X and the polymer Y is preferably 30 to 150 [mgKOH/g]. Among them, the measurement of the hydroxyl value can be carried out in accordance with JIS K 0070 (1 992). The hydroxyl value is defined as the number of mg of potassium hydroxide required to neutralize -75-200904636 acetic acid bound to the hydroxyl group when 1 g of the sample is acetylated. Specifically, the sample xg (about lg) was accurately weighed in a flask, and then 20 ml of the acetamidine reagent (the pyridine was added to 2 ml of acetic anhydride to make it into 400 ml) was correctly added thereto. The air-cooled tube was placed in the flask mouth and heated in a glycerin bath at 95 to 100 °C. After cooling for 1 hour and 30 minutes, 1 ml of pure water was added from an air cooling tube to decompose acetic anhydride into acetic acid. Next, titration was carried out using a potentiometric titration apparatus in a 0.5 mol/L potassium hydroxide ethanol solution, and the obtained strain curve was used as an end point. Further, as a blank test, titration was carried out without placing a sample, and the curve of the titration curve was obtained. The hydroxyl value is calculated by the following formula.

羥基價= {(B-C)xfx 28.05/x} + D (式中,B表示使用於空白試驗之〇.5mol/L氫氧化鉀乙 醇溶液的量(ml) 、C表示使用於滴定之0.5mol/L的氫 氧化鉀乙醇溶液量(ml) 、f表示〇.5mol/L氫氧化鉀乙醇 溶液之因數、D表示酸價、又28.05表示氫氧化鉀之lm〇l 量 56.11 的 1/2) 聚合物X與聚合物Y之纖維素酯薄膜中的含有量以 滿足下述式(i)、式(ii)之範圍者爲佳。聚合物X之 含有量作爲xg (質量% =聚合物X之質量/纖維素酯之質 量χΙΟΟ)、聚合物Y的含有量作爲yg (質量%), 式(i) 5$?^+)^‘35(質量%) 式(ii ) 0.05^ yg/ ( xg + yg ) SO.4 式(i)之較佳範圔爲〜25質量%。 -78- 200904636 聚合物之重量平均分子量Mw可使用凝膠滲透層析法 進行測定。 測定條件如以下所示。 溶劑: 二氯甲烷Hydroxy valence = {(BC)xfx 28.05/x} + D (wherein B is the amount used in the blank test. 5 mol/L potassium hydroxide ethanol solution (ml), C is 0.5 mol/ used for titration. The amount of potassium hydroxide solution (ml) of L, f represents the factor of 5.5mol/L potassium hydroxide ethanol solution, D represents the acid value, and 28.05 represents 1/2 of the amount of potassium hydroxide 256.11. The content of the cellulose ester film of the substance X and the polymer Y is preferably such that it satisfies the following formula (i) or formula (ii). The content of the polymer X is taken as xg (% by mass = mass of the polymer X / mass of the cellulose ester), and the content of the polymer Y is yg (% by mass), and the formula (i) 5$?^+)^ '35 (% by mass) Formula (ii) 0.05^yg/(xg + yg) SO.4 The preferred formula of formula (i) is 〜25 mass%. -78- 200904636 The weight average molecular weight Mw of the polymer can be determined by gel permeation chromatography. The measurement conditions are as follows. Solvent: dichloromethane

管柱: Shodex K806、 K805、 K803G (使用連接3根昭和電工股份有限公司製) 管柱溫度:2 5 °C 試料濃度:0.1質量% 檢測器:RI Model 504 ( GLScience 公司製) 幫浦: L6000 (日立製作所股份有限公司製) 流量: l.Oml/minPipe column: Shodex K806, K805, K803G (using 3 connections made by Showa Denko Co., Ltd.) Column temperature: 2 5 °C Sample concentration: 0.1% by mass Detector: RI Model 504 (GLScience) Pump: L6000 (Hitachi Manufacturing Co., Ltd.) Flow: l.Oml/min

校對曲線:標準聚苯乙烯STK 使用standard聚苯乙烯(Tosoh股份有限公司製) Mw=l,0 00,〇〇〇〜5 00之13個試品所得之校對曲線。13個 試品幾乎使用相等間隔。 又,纖維素酯中可添加抗氧化劑、熱劣化防止劑。具 體可使用內酯系、硫磺系、酚系 '雙鍵系、受阻胺系、磷 系化合物。 作爲內醋系,例如含有由 Ciba Specialty Chemicals 股份有限公司購得之“Irgaf〇sXP40”、“IrgafosXP60”的商 品爲佳。 作爲酚系化合物以具有2,6-二烷基酚之結構者爲佳 ,例如以 Ciba Specialty Chemicals股份有限公司、 “Irganoxl 076”、“IrganoxlOlO”之商品爲佳。 -79- 200904636 磷系化合物,例如由住友化學工業股份有限公司所購 得之“SumilizerGP”、由旭電化工業股份有限公司所購得 之 “ADK STAB PEP-24G”、“ADK STAB PEP-3 6” 及 “ ADK STAB 3010”、由 Ciba Specialty Chemicals 股份有限公司 所購得 “IRGAFOS P-EPQ”、由 API Corporation 股份有限 公司購得之“GSY-P101”之商品爲佳。 受阻胺系化合物,例如以由Ciba Specialty Chemicals 股份有限公司所購得之“Tinuvinl44”及“Tinuvin770”、由 旭電化工業股份有限公司所購得之“ADK STAB LA-52”之 商品名爲佳。 硫磺系化合物,例如由住友化學工業股份有限公司所 購得之 “Sumilizer TPL-R”及 “Sumilizer TP-D”之商品名爲 佳。 雙鍵系化合物爲,由住友化學工業股份有限公司所購 得之“Sumilizer GM”及“Sumilizer GS”之商品名爲佳。 且,作爲酸捕捉劑,如美國專利第4,1 3 7,20 1號說明 書所記載,亦可含有具有環氧基之化合物。 這些抗氧化劑等可配合所再生使用時的步驟而適宜地 決定其添加量,一般對於薄膜之主原料的樹脂添加0.05〜 2〇質量%之範圍爲佳。 這些抗氧化劑、熱劣化防止劑比起僅使用一種,並用 數種相異系的化合物時可得到相乘效果。例如以並用內酯 系、磷系、酚系及雙鍵系化合物較佳。 纖維素酯薄膜爲,可藉由一般稱爲溶液流延製膜法, -80- 200904636 將纖維素酯溶解液(摻合)由無限地移送的無端金屬輸送 帶或轉動的金屬轉筒之流延用支持體上,進行加壓塑模使 摻合物流延(進行澆鑄)製膜的方法、或可藉由熔融流延 製膜法而形成。 溶液流延製膜法中,作爲使用於摻合調製的有機溶劑 ,可溶解纖維素酯’並具有適當沸點者爲佳,例如可舉出 二氯甲烷、乙酸甲酯、乙酸乙酯、乙酸戊基、乙醯乙酸甲 酯、丙酮、四氫呋喃、1,3 —二氧雜戊環、1,4 一二噁烷、 環己酮、甲酸乙醋、2,2,2 —三氟乙醇' 2,2,3,3 —四氟一1 一丙醇、1,3 — 二氟一 2 — 丙醇、1,1,1,3,3,3~ 六氟一 2—甲 基—2 —丙醇、1,1,1,3,3,3 —六氣一 2 —丙醇、2,2,3,3,3 - 五氟<一1—丙醇、硝基乙院、1,3 —二甲基—2 —咪哗二酮 等,但亦可舉出二氯甲烷等有機鹵化合物、二氧雜戊環衍 生物、乙酸甲酯、乙酸乙酯、丙酮 '乙醯乙酸甲酯等爲佳 有機溶劑(即’良溶劑)。 又’如下述製膜步驟所示’自溶劑蒸發步驟中於流延 用支持體上所形成之織物(web )(摻合膜)乾燥溶劑時 ,由防止織物中之發泡的觀點來看,作爲所使用的有機溶 劑之沸點以3 0〜8 0 °c爲佳’例如上述所記載的良溶劑之沸 點爲二氯甲燒(沸點40.4°C)、乙酸甲酯(沸點56.32°C )、丙酮(沸點56.3。(:)、乙酸乙酯(沸點76.82t )等 〇 上述良溶劑中’以具有優良溶解性之二氯甲烷或乙酸 甲醋爲佳。 -81 - 200904636 上述有機溶劑以外,亦可含有0·1〜40質量%之碳原 子數1〜4的醇類爲佳。特佳爲含有5〜30質量%之上述 醇類。此爲將摻合物於流延用支持體上進行流延後’溶劑 開始蒸發的醇類比率變多時,織物(摻合膜)會凝膠化’ 織物可穩定地由流延用支持體進行剝離,作爲凝膠化溶劑 使用、或彼等比率較少時,可扮演促進非氯系有機溶劑的 纖維素酯之溶解的角色。 作爲碳原子數1〜4的醇類,可舉出甲醇、乙醇、η-丙醇、iso-丙醇、η-丁醇、sec-丁醇、tert-丁醇等。 這些溶劑中,由摻合安定性佳、沸點亦較低、乾燥性 亦佳、且無毒性等觀點來看,以乙醇爲佳。較佳爲使用對 於二氯甲烷70〜95質量%而言,含有乙醇5〜30質量% 之溶劑。取代二氯甲烷可使用乙酸甲酯。此時,可藉由冷 卻溶解法調製出摻合物。 或可並用二氯甲烷與乙酸甲酯,例如可以10.1〜3之 質量比下並用。於此可進一步含有前述醇類。 又,纖維素酯中含有如下述可塑劑者爲佳。 作爲可塑劑,例如可使用磷酸酯系可塑劑、鄰苯二甲 酸酯系可塑劑、偏苯三酸酯系可塑劑、均苯四甲酸系可塑 劑、乙醇酸酯系可塑劑、檸檬酸酯系可塑劑、聚酯系可塑 劑、多元醇類酯系可塑劑等。 磷酸酯系可塑劑中可使用三苯基磷酸酯、三甲酌;p酸 酯、甲酚二苯基磷酸酯、辛基二苯基磷酸酯、二苯基聯苯 基磷酸酯、三辛基磷酸酯、三丁基磷酸酯等、鄰苯二甲酸 -82- 200904636 酯系可塑劑中可使用二乙基酞酸酯、二甲氧基乙基酞酸酯 、二甲基酞酸酯、二辛基酞酸酯、二丁基酞酸酯、二—2 -乙基己基酞酸酯、丁基苯甲基酞酸酯、二苯基酞酸酯、 二環己基酞酸酯等、偏苯三酸系可塑劑中可使用三丁基偏 苯三酸酯、三苯基偏苯三酸酯、三乙基偏苯三酸酯等、均 苯四甲酸酯系可塑劑中可使用四丁基均苯四甲酸酯、四苯 基均苯四甲酸酯、四乙基均苯四甲酸酯等、乙醇酸酯系可 塑劑中可使用三醋精、甘油三丁酸酯、乙基鄰苯二醯基乙 基乙醇酸酯、甲基鄰苯二醯基乙基乙醇酸酯、丁基鄰苯二 醯基丁基乙醇酸酯等、檸檬酸酯系可塑劑中可使用三乙基 檸檬酸酯、三一 η - 丁基檸檬酸酯、乙醯基三乙基檸檬酸 酯、乙醯基三—η— 丁基檸檬酸酯、乙醯基三_n— (2 — 乙基己基)檸檬酸酯等。作爲其他羧酸酯的例子,含有三 羥甲基丙烷三苯甲酸酯、油酸丁基、蓖麻醇酸甲基乙醯基 、癸二酸二丁基、種種偏苯三酸酯。 多元醇類酯系可塑劑爲2價以上的脂肪族多元醇類與 單羧酸之酯所成的可塑劑,分子內具有芳香環或環烷基環 爲佳。較佳爲2〜20價之脂肪族多元醇類酯。 作爲聚酯系可塑劑,可使用脂肪族二鹼酸、脂環式二 鹼酸、芳香族二鹼酸等二鹼酸與二醇之共聚物。作爲脂肪 族二鹼酸,並無特別限定,可使用己二酸、癸二酸、鄰苯 二甲酸、對苯二甲酸、1,4 一環己基二羧酸等。作爲二醇 ,可使用乙二醇、二乙二醇、1,3 —丙二醇、1,2 —丙二醇 、1,4 一丁二醇、u 一丁二醇、2 — 丁二醇等。這些二鹼 -83- 200904636 酸、及二醇可各別單獨使用、或混合2種以上使用。 這些可塑劑之使用量,由薄膜性能、加工性等點來看 ,對於纖維素酯而言以1〜2 0質量%爲佳,特佳爲3〜1 3 質量%。 又,亦可添加纖維素酯、紫外線吸收劑較佳。 作爲紫外線吸收劑,由波長3 7 0nm以下的紫外線具 有優良吸收能,且良好液晶顯示性之觀點來看,使用波長 4 0 0nm以上的可見光之吸收較少者爲佳。 作爲紫外線吸收劑之具體例,例如可舉出氧基二苯甲 酮系化合物、苯並三唑系化合物、三嗪系化合物、水楊酸 酯系化合物、二苯甲酮系化合物、氰基丙烯酸酯系化合物 、鎳錯鹽系化合物等,但未限定於此。 UV-1 ·_ 2- (2,-羥基- 5’-甲基苯基)苯並三唑 11¥-2:2-(2’-經基-3’,5’-二-〖61^-丁基苯基)苯並三 唑 UV-3 : 2- ( 2’-經基- 3’-tert-丁基- 5’ -甲基苯基)苯並 三η坐 !^-4:2-(2’-羥基-3’,5’-二-161^-丁基苯基)-5-氯苯 並三唑 UV-5 : 2- ( 2’-羥基- 3’- ( 3,,,4,,,5”,6,,-四氫酞醯亞胺 甲基)-5’-甲基苯基)苯並三唑 11¥-6:2,2-伸甲基雙(4-(1,1,3,3-四甲基丁基)_6_ (2Η-苯並三唑-2-基)酚) UV-7 : 2- ( 2’-羥基- 3’-tert-丁基- 5,-甲基苯基) 200904636 苯並三唑 UV-8 : 2- ( 2H-苯並三唑-2-基)-6-(直鏈及支鏈月 桂基)-4-甲基酚(TINUVIN171、Ciba 製) UV-9 :辛基-3-〔 3-tert-丁基-4-羥基-5-(氯-2H-苯並 三唑-2-基)苯基〕丙酸酯與2-乙基己基-3-〔3-tert-丁基-4-羥基- 5-( 5-氯- 2H-苯並三唑-2-基)苯基〕丙酸酯之混 合物(TIN UV IN 109、Ciba 製) 作爲二苯甲酮系紫外線吸收劑,雖舉出下述具體例, 但本發明爲限定於此等。 〇¥-10:2,4-二羥基二苯甲酮 UV-11 : 2,2’-二羥基-4-甲氧基二苯甲酮 UV-12: 2-羥基-4-甲氧基-5-磺基二苯甲酮 UV-13:雙(2-甲氧基-4-羥基-5-苯甲醯基苯基甲烷) 作爲較佳紫外線吸收劑,以透明性高,具有優良防止 偏光板或液晶劣化之效果的苯並三唑系紫外線吸收劑或二 苯甲酮系紫外線吸收劑爲佳,無須著色較少的苯並三唑系 紫外線吸收劑爲特佳。 又’使用特開平6 - 1 4 8 4 3 0號公報所記載的一般式(1 )或一般式(2 )亦佳。作爲高分子紫外線吸收劑,可舉 出PUVA-3 0M (大塚化學股份有限公司製)等販賣品。 又’纖維素酯中欲賦予滑潤性,使用以下微粒子者較 佳。 作爲微粒子,無機化合物的例子,可舉出二氧化矽、 二氧化鈦 '氧化鋁、氧化鉻、碳酸鈣、碳酸鈣、滑石、黏 -85- 200904636 土、燒成陶土、燒成矽酸鈣、水和矽酸鈣、矽酸鋁、矽酸 鎂、及磷酸鈣。由微粒子之濁度較低的觀點來看以二氧化 砂爲佳。 微粒子之一次粒子平均徑以5〜50nm爲佳,更佳爲 、7〜20nm。這些主要含有粒徑0.05〜0.3//m之2次凝集 體者爲佳。纖維素酯薄膜中的這些微粒子之含有量以〇.〇5 〜1質量%爲佳,特別以0.1〜0.5質量%爲佳。藉由共流 延法之多層構成的纖維素酯薄膜之情況爲,於表面含有該 添加量之微粒子爲佳。 二氧化矽的微粒子,例如可使用 Aer〇silR972、 R972V 、 R974 、 R812 、 200 、 200V 、 300 、 R202 、 0X50 ' TT600 (以上,日本Aerosil股份有限公司製)等商品名 〇 氧化锆的微粒子,例如可使用以 Aer〇SilR976、及 R811(以上日本Aerosil股份有限公司製)之商品名被販 賣者。 又,亦可使用聚合物微粒子,作爲該例子,可舉出聚 矽氧烷樹脂、氟樹脂、及丙烯酸樹脂。其中以聚矽氧烷樹 脂爲佳,特佳爲具有三次元之網狀結構,例如可使用以 Tospearl 103、同 105、同 108、同 120、同 145、同 3120 、及同240 (以上東芝聚矽氧烷股份有限公司製)的商品 名被販賣者。 彼等中亦以 Aerosil200V、AerosilR972V因可保持纖 維素酯薄膜之較低濁度,減低摩擦係數之效果較大故特佳 -86- 200904636 。本發明所使用的纖維素酯薄膜中,活性能量線硬化樹脂 層之裏面側動摩擦係數以1.0以下爲佳。 本發明中’纖維素醋薄膜可由溶液流延製膜法所製造 ,亦可由溶融流延製膜法所製造。 以下’對於溶液流延製膜法中之纖維素酯薄膜的製造 方法做詳細說明。 纖維素酯薄膜的製造爲,藉由將纖維素酯、及添加劑 溶解於溶劑中調製出摻合物的步騾、將摻合物於輸送帶狀 或滾筒狀之金屬支持體上進行流延之步驟、將經流延之摻 合物作爲織物(web )進行乾燥之步驟、由金屬支持體進 行剝離之步驟、進行延伸或寬保持之步驟、進一步進行乾 燥之步驟、捲取經加工後的薄膜之步驟而進行。 對於調製摻合物的步驟做說明。摻合物中的纖維素酯 濃度爲,濃度較高時於金屬支持體上流延後之乾燥負荷可 減低故較佳,但纖維素酯之濃度若過高時過濾時的負荷會 增加,使過濾純度變差。作爲可使其兩立之濃度,以10 〜35質量%爲佳,更佳爲15〜25質量%。 摻合所使用的溶劑可單獨使用或並用2種以上,但纖 維素酯之良溶劑與弱溶劑經混合後使用時由生產效率的觀 點來看較佳,良溶劑較多時,由纖維素酯的溶解性之觀點 來看較佳。良溶劑與弱溶劑之混合比率的較佳範圍爲,良 溶劑70〜98質量%,弱溶劑2〜3 0質量%。所謂良溶劑 、弱溶劑爲,可單獨溶解所使用之纖維素酯者定義爲良溶 劑、單獨下可膨潤或無法溶解者定義爲弱溶劑。因此,藉 -87 - 200904636 由纖維素酯的醯基取代度,可改變爲良溶劑或弱溶劑,例 如將丙酮作爲溶劑使用時,纖維素酯之乙酸酯(乙醯基取 代度2.4)、纖維素乙酸酯丙酸酯成爲良溶劑,纖維素之 乙酸酯(乙醯基取代度2.8)成爲弱溶劑。 良溶劑雖無特別限定,可舉出二氯甲烷等有機鹵化合 物或二氧雜戊環類、丙酮、乙酸甲酯、乙醯乙酸甲酯等。 特佳可舉出二氯甲烷或乙酸甲酯。 又,弱溶劑雖無特別限定,例如可使用甲醇、乙醇、 η-丁醇、環己烷、環己酮等。又,摻合物中含有水〇.〇1〜 2質量%者爲佳。 調製上述摻合物時,作爲纖維素酯之溶解方法,可使 用一般方法。組合加熱與加壓時,可於常壓下於沸點以上 進行加熱。以溶劑於常壓下的沸點以上且加壓下不會使溶 劑沸騰之溫度範圍內一邊加熱,一邊攪拌溶解時,可防止 凝膠或稱爲mamaco (結塊)之塊狀未溶解物的發生,故 較佳。又,將纖維素酯與弱溶劑混合成爲濕潤或膨潤後, 可再添加良溶劑進行溶解之方法亦佳。 加壓可藉由壓入氮氣等惰性氣體的方法、或藉由加熱 使溶劑之蒸氣壓上昇的方法進行。加熱由外部進行者爲佳 ,例如外套型者因容易控制溫度故較佳。 添加溶劑之加熱溫度,較高時由纖維素酯之溶解性的 觀點來看較佳,加熱溫度若過高時,因必須的壓力過大而 使生產性變差。較佳加熱溫度爲 45〜120 °C,以 60〜 110 °C爲佳,70 °C〜105 °C爲較佳。又,壓力可調整至設定 -88- 200904636 溫度下溶劑不會沸騰之程度。 又,亦可使用冷卻溶解法,藉此乙酸甲酯等溶劑中可 溶解纖維素酯。 繼續,將該纖維素酯溶液使用濾紙等適當過濾材進行 過濾。作爲過濾材’欲除去不溶物等以絕對過濾精度較小 者爲佳’但絕對過濾精度過小時,容易產生過濾材阻塞的 問題。因此以絕對過濾精度爲0.008mm以下的濾材爲佳 ,0.001〜0.008mm之濾材者爲較佳,0.003〜〇.〇〇6mm之 濾材者爲更佳。 濾材之材質並無特別限定,可使用一般的濾材,聚丙 烯、鐵佛龍(註冊商標)等塑質製之濾材、或不鏽鋼等金 屬製濾材因無繊維脫落等而較佳。藉由過濾,含於原料之 纖維素酯的雜質,特別爲除去、減低亮點異物而較佳。 摻合物的過濾可藉由一般方法進行,於溶劑之常壓下 的沸點以上,且加壓下溶劑不會沸騰之溫度範圍內一邊加 熱一邊過濾之方法’可減低過濾前後之濾壓差(稱爲差壓 )的上昇而較佳。較佳溫度爲45〜120。(:,以45〜70 °C爲 較佳,4 5〜5 5 °C更佳。 濾壓較小爲佳。濾壓以1.6MPa以下時爲佳,l.2MPa 以下時爲較佳,l.OMPa以下時爲更佳。 繼續對於摻合物的流延做說明。 流延(澆鑄)步驟中的金屬支持體以可對表面進行鏡 面加工者爲佳,作爲金屬支持體,使用以不鏽鋼輸送帶或 鑄物進行表面鍍敷加工的轉筒爲佳。澆鑄寬度可爲i〜4m -89- 200904636 。流延步驟之金屬支持體的表面溫度設定爲-5 0 °C〜溶劑 沸騰不發泡之溫度以下。溫度較高時可使織物之乾燥速度 加快故較佳,若過高時,織物會發泡、或會使平面性劣化 。作爲較佳金屬支持體溫度以 0〜1 0(TC爲適宜,以5〜 3 〇 °C爲更佳。又,藉由冷卻可使織物(web )凝膠化,以 含有大量殘留溶劑之狀態下自金屬支持體剝離亦爲較佳方 法。控制金屬支持體之溫度的方法,雖無特別限定,但可 使用吹入溫風或冷風之方法、或將溫水與金屬支持體裏側 接觸之方法。使用溫水時,可有效率地進行熱之傳達,故 金屬支持體的溫度到達一定之時間較短而較佳。使用溫風 時,考慮到溶劑之蒸發潛熱會使織物之溫度降低,使用溶 劑沸點以上之溫風可防止發泡下,亦可使用比目的溫度還 高之風。特別爲自流延至剝離之間,改變金屬支持體之溫 度、及乾燥風之溫度,而有效率地進行乾燥爲佳。 欲使纖維素酯薄膜顯示良好平面性,自金屬支持體剝 離織物時的殘留溶劑量以1 0〜1 5 0質量%爲佳,更佳爲 20〜40質量%或60〜130質量%,特佳爲20〜30質量% 或70〜120質量%。 本發明中,殘留溶劑量定義如下述式。 殘留溶劑量(質量% ) ={(Μ-Ν)/Ν}χ100 且,Μ爲織物或薄膜於製造中或製造後的任意時點所 採取之試料質量,Ν爲Μ於1 1 5 t下進行1小時加熱後之 質量。 -90- 200904636 又,纖維素酯薄膜之乾燥步驟中,將織物自金屬支持 體剝離後進行乾燥,使殘留溶劑量爲1質量%以下者爲隹 ’更佳爲〇·1質量%以下,特佳爲0〜〇_〇1質量%以下。 薄膜乾燥步驟中,一般採用以輥乾燥方式(將配置於 上下的多數輥使織物(web)交互通過並乾燥之方式)或 拉幅器方式搬送織物下進行乾燥之方式。 欲製造本發明之使用於防眩性薄膜的纖維素酯薄膜時 ,自金屬支持體剝離後之織物殘留溶劑量較多處馬上於搬 送方向進行延伸,且以將織物之兩端以壓板等夾住之拉幅 器方式於寬方向進行延伸爲特佳。 於縱方向、橫方向之兩者的較佳延伸倍率爲1.05〜 1_5倍,較佳爲 1.05〜1.3倍,1.05〜1.15倍爲更佳。藉 由縱方向及橫方向延伸,使面積成爲1.1〜2倍時爲佳。 此可藉由縱方向之延伸倍率X橫方向的的延伸倍率求得。 欲於剝離後馬上於縱方向延伸,藉由剝離張力及其後 之搬送張力進行延伸爲佳。例如剝離張力爲2 1 ON/m以上 下進行剝離爲佳,特佳爲220〜300N/m。 乾燥織物(web )之手段並無特別限定,一般可藉由 熱風、紅外線、加熱輥、微波等進行,但由簡便之觀點來 看,進行熱風者爲佳。 織物的乾燥步驟中之乾燥溫度爲30〜150°C以段階性 提高方式進行爲佳,50〜14CTC之範圍下進行時’可使尺 寸安定性良好而更佳。 纖維素酯薄膜之膜厚雖無特別限定,但以〜2G() -91 - 200904636 A m爲佳。因具有優良的平面性與生產性,故纖維素酯薄 膜之膜厚以10〜70/zm爲特佳。 更佳爲20〜60#m。最佳爲30〜60//m。又,藉由共 流延法作爲多層構成可使用纖維素酯薄膜爲佳。纖維素酯 爲多層構成時’亦具有含有紫外線吸收劑與可塑劑之層, 此可爲核心層、表面層、或其雙方皆可。 又,作爲透明薄膜基材之表面上形成算術平均粗度( Ra)爲未達50〜lOOOnm之凹凸形狀的方法,例如於透明 薄膜基材上藉由壓型而形成者爲佳。 繼續對於熔融流延製膜法做說明。熔融流延製膜法中 ,未使用溶劑(例如二氯甲烷等),藉由加熱熔融之熔融 流延的成形法,更詳細爲可分類爲熔融壓出成形法、加壓 成形法、吹塑法、射出成形法、吹氣成形法、延伸成形法 等。其中欲得到具有優良的機械性強度、及表面精度等之 纖維素酯薄膜,以熔融押出法爲優良。 繼續舉出熔融壓出法之例子,對於藉由熔融流延製膜 法之纖維素酯薄膜的製造方法做說明。 圖1表示實施本發明之纖維素酯薄膜的製造方法之熔 融流延製膜裝置的全體構成槪略流程圖,圖2表示自流延 塑模的冷卻輥部分之擴大圖。 圖1與圖2中,本發明的纖維素酯薄膜之製造方法爲 ,混合纖維素樹脂等薄膜材料後,使用壓出機1’自流延 塑模4於第1冷卻輥5上進行熔融壓出’銜接於第1冷卻 輥5之同時,進一步地外接以第2冷卻輥7、第3冷卻輥 -92- 200904636 8之順序的合計3根之冷卻輥,經冷卻固化成爲薄膜1 0。 繼續,將藉由剝離輥9經剝離之薄膜1 0,接著以延 伸裝置1 2夾住薄膜之兩端部於寬方向進行延伸後,藉由 捲取裝置16進行捲取。又,欲矯正平面性,設置將熔融 薄膜於第1冷卻輥5表面夾壓的接觸輥6。 該接觸輥6爲表面具有彈性,與第1冷卻輥5之間形 成壓區(nip )。對於接觸輥6於後詳細說明。 本發明之纖維素酯薄膜的製造方法中,熔融壓出的條 件可於與其他聚酯等熱可塑性樹脂所使用的相同條件下進 行。材料以預先乾燥爲佳。以真空或減壓乾燥機或除濕熱 風乾燥機等將水分乾燥至lOOOppm以下,較佳爲200ppm 以下爲佳。 以熱風或真空或減壓下進行乾燥之纖維素酯系樹脂, 使用壓出機1,例如以壓出溫度2 0 0〜3 0 0。(:程度下進行熔 融’以葉片型過濾器2等進行過濾將異物除去。 由供給料斗(圖示略)導入壓出機1時,真空下或減 壓下或惰性氣體環境氣體下,防止氧或水分的影響進而防 止氧化分解等爲佳。 未預先混合可塑劑等添加劑時,可於壓出機途中進行 混煉。欲可均勻地添加’使用靜態攪拌器3等混合裝置爲 隹。 本發明中’纖維素樹脂與其他視必要所添加的安定化 劑等添加劑,可於熔融前進行混合爲佳。纖維素樹脂與安 定化劑於最初混合更佳。混合可使用混合機等進行,又如 -93- 200904636 上述,亦可於纖維素樹脂調製過程中混合。使用混合機時 ,可使用 v型混合機、圓錐螺旋型混合機、水平圓筒型 混合機等、亨舍爾攪拌機、螺帶式混合機等一般混合機。 如上述將薄膜構成材料混合後,將該混合物可使用壓 出機1經直接熔融而製膜,但一旦將薄膜構成材料進行顆 粒化後,可將該顆粒以壓出機1經熔融後製膜。又,薄膜 構成材料爲含有熔點相異的複數材料時,僅於可熔融熔點 較低的材料的溫度下,一旦製作成所謂的米通半熔融物, 再將半熔融物投入於壓出機1中而製膜。 於薄膜構成材料若含有容易熱分解之材料時,以減少 熔融次數爲目的下,未製造顆粒下進行直接製膜的方法、 或如上述作成如米通之半熔融物後再製膜之方法爲佳。 壓出機1可使用可購得之種種壓出機,但以熔融混煉 壓出機爲佳,單軸壓出機或2軸壓出機皆可。由薄膜構成 材料未製造顆粒下進行直接製膜時,因適當的混煉度爲必 要’故使用2軸壓出機爲佳,亦可爲單軸壓出機、或將螺 旋形狀變更爲Maddock型、Unimelt型、Dulmage等混煉 型之螺旋可得到適度混煉,故可使用。 作爲薄膜構成材料,一旦使用顆粒或米通半熔融物時 ’可使用單軸壓出機,亦可使用2軸壓出機。 壓出機1內、及壓出後之冷卻步驟可由氮氣等惰性氣 體取代、或藉由減壓可降低氧濃度爲佳。 壓出機1內的薄膜構成材料之熔融溫度,依據薄膜構 成材料之黏度或吐出量、製造之薄片厚度等其較佳條件相 -94- 200904636 異’但一般而言對於薄膜之玻璃轉移溫度(Tg ) , 以上’ Tg+l〇〇°c以下,較佳爲Tg+lOt:以上,Tg + 以下。壓出時之熔融黏度爲10〜1 000 00泊,較佳爲 〜10000泊〇 又,壓出機1內之薄膜構成材料的滯留時間較短 ,5分鐘以內爲佳,較佳爲3分鐘以內,更佳爲2分 內。滞留時間易受控於壓出機1之種類、壓出條件, 由調整材料之供給量或L/D、螺旋轉動數、螺旋溝之 等可縮短滯留時間。 壓出機1的螺旋形狀或轉動數等可藉由薄膜構成 之黏度或吐出量等做適宜選擇。本發明中之壓出機1 斷速度爲1 /秒〜1 0 0 0 0 /秒,較佳爲 5 /秒〜1 0 0 0 /秒, 爲1 0 /秒〜1 0 0 /秒。 作爲本發明所使用的壓出機1,一般可使用塑質 機。 自壓出機1所壓出的薄膜構成材料,被送至流延 4,由流延塑模4之隙縫壓出成薄膜狀。流延塑模4 使用於製造薄片或薄膜者即可並無特別限定。 作爲流延塑模4之材質,可舉出將硬鉻、碳化鉻 化鉻、碳化鈦、碳氮化鈦、氮化鈦、超鋼、陶瓷(碳 、氧化鋁、氧化鉻)等進行溶射或鍍敷,作爲表面加 可舉出施予使用拋光#1000支以下的磨石進行硏磨’ #1 000支以上的鑽石磨石之平面切割(切割方向與樹 流向呈垂直方向)、電解硏磨、電解複合硏磨等加工 (Tg 9 0°c 100 爲佳 鐘以 但藉 深度 材料 的剪 更佳 成形 塑模 爲可 、氮 化鶴 工, 使用 脂的 等。 -95- 200904636 流延塑模4的突出(lip)部之較佳材質與流延塑模4相 同。又,突出部表面精度以0.5S以下爲佳,〇.2S以下爲 較佳。 該流延塑模4之隙縫被構成爲可調整該間隔。此如圖 3所示。形成流延塑模4之隙縫3 2的一對突出(1 i p )中 ,一方爲剛性較低容易變形之可撓性突出3 3,另一方爲 固定突出34。而多數加熱螺栓35於流延塑模4之寬方向 ,即隙縫3 2之長方向以一定間距被排列》 各加熱螺栓35中,設有具有埋入電加熱器37與冷卻 媒體通路之嵌段36,各加熱螺栓35爲縱向貫通各嵌段36 。加熱螺栓35的基部爲固定於塑模本體31,先端爲銜接 於可撓性突出3 3之外面。 而將嵌段36進行一般空調冷卻下,增減埋入電加熱 器37之入力並調整嵌段36之溫度,藉此熱伸縮加熱螺栓 3 5,使可撓性突出3 3變位而調整薄膜厚度。於塑模後流 之所要處設置厚度計,藉此經檢測的織物厚度情報放入控 制裝置中,將該厚度情報以控制裝置與設定厚度情報作比 較,可藉由來自同裝置之修正控制量的信號來控制加熱螺 栓之發熱體的電力或操作率。 加熱螺栓較佳爲長度20〜40 cm、直徑7〜14mm,例 如數十根之複數加熱螺栓排列成較佳間距2 0〜4 0 mm。取 代加熱螺栓,亦可設置於軸方向以手動使其前後移動來調 節隙縫間隔之螺栓作爲主體的間隔調節構件。藉由間隔調 節構件經調節之隙縫間隔一般爲200〜1 000 μ m,較佳爲 -96- 200904636 300 〜800/z m,更佳爲 400〜600y m。 第1冷卻輥5〜第3冷卻輥8爲壁厚20〜 之無縫鋼管製’且表面經鏡面加工者。其內部 冷卻液之配管’構成爲配管藉由流入之冷卻液 輥上的薄膜之熱。 一方面,銜接於第1冷卻輥5之接觸輥6 有彈性,藉由對於第1冷卻輥5之壓力,沿著 5之表面而變形’與第1輥5之間形成壓區。 圖4表示接觸輥6的一實施形態(以下稱 )之槪略截面圖。如圖所示’接觸輥A爲於 套管4 1的內部配置彈性滾筒4 2者。 金屬套管41爲厚度0.3mm之不鏽鋼製者 撓性。金屬套管41若過薄時強度會不足,相 時則彈性會不足。藉此作爲金屬套管4 1之厚 1.5mm爲佳。彈性滾筒42爲,介著軸承轉動 製內筒43表面上設有橡膠44成爲輥狀者。 而接觸輥A於第1冷卻輥5上被加壓時 42爲金屬套管41於第1冷卻輥5被加壓、含 及彈性滾筒42爲對應第1冷卻輥5之相似形 與第1冷卻輥之間形成壓區。在金屬套管41 性滾筒4 2之間所形成之空間中流入冷卻水4 5 圖5、圖6表示夾壓轉動體之另一實施形 B。接觸輕B具有可捷性’由無縫不鏽鋼鋼: 4mm)的外筒51、與該外筒51內側配置成同 -3 0mm程度 配置有流入 可吸收來自 ,其表面具 第1冷卻輥 爲接觸輕A 可撓性金屬 ,其具有可 反地若過厚 度以0.1〜 自在的金屬 ’彈性滾筒 έ屬套管4 1 狀下變形, 之內部於彈 〇 態的接觸輥 管製(厚度 一軸心狀的 -97- 200904636 高剛性金屬內筒52所槪略構成。外筒5 1與內筒52之間 的空間53中流入冷卻液54。 詳細而言,接觸輥B爲,於兩端轉動軸55a、55b裝 上外筒支持凸緣56a、56b,於此兩外筒支持凸緣56a、 56b之外周部間裝上薄壁金屬外筒51。 又,形成於一方轉動軸5 5 a之軸心部所形成之流體回 流通道5 7的流體排出孔5 8內,流體供給管5 9設置成同 一軸心狀,該流體供給管59被連接固定於薄壁金屬外筒 5 1內之軸心部所配置之流體軸筒60上。 於該流體軸筒60之兩端部可裝上內筒支持凸緣61a 、61b,自這些內筒支持凸緣61a' 61b之外周部間至他端 側外筒支持凸緣56b裝上具有約15〜20mm程度壁厚的金 屬內筒52。 而於該金屬內筒52與薄壁金屬外筒5 1之間,例如形 成1 0mm程度的冷卻液之流送空間5 3,又於金屬內筒5 2 ,兩端部附近各形成連通流送空間53與內筒支持凸緣 6 1 a、6 1 b外側之中間通路6 2 a、6 2 b之流出口 5 2 a、及流 人□ 52b 。 又,外筒51爲,因具有與橡膠彈性相近的柔軟性與 可撓性、復原性,於彈性力學的薄壁圓筒理論可適用之範 圍內達到薄壁化。該薄壁圓筒理論所評估的可撓性以壁厚 t/輥半徑r之比表示,t/r的比越小,可撓性越高。該接觸 輥B中,t/r S 0 · 0 3時,可撓性爲最適條件。 一般所使用的接觸輥爲’輥徑:R = 200〜5 00mm (輥 -98- 200904636 半徑:r = R/2)、輥有效寬度:L = 500〜1600mm,輥半徑 r/輥有效寬度L之比:r/L < 1下,其橫長形狀。 如圖6所示’例如輥徑:R = 3〇〇mm、輥有效寬度: L=1 200mm時’壁厚:t之最適範圍爲15〇x〇.〇3=4.5mm以 下’但對於熔融薄片寬度爲13〇〇mm而言,平均線壓以 9 8N/cm夾壓時’與同一形狀的橡膠輥比較,使外筒51的 壁厚爲3mm時反彈定數亦相等,外筒51與冷卻輥之壓區 的輕轉動方向之壓區寬度k亦爲約9mni,該橡膠輕之壓 區寬度顯示接近約1 2mm之値,得知相同條件下可夾壓。 且’該壓區寬度k中的擦曲量爲〇.〇5〜O.lmin程度。 其中,作爲〇1^0.03,一般輥徑:11 = 200〜500111111時 ,特別以2mm S t S 5 mm之範圍時,可得到充分的可撓性 ’且藉由機械加工的薄壁化亦容易實施,成爲極實用之範 圍。壁厚爲2mm以下時,加工時的彈性變形無法進行高 精度加工。 該的換算値對於一般輥徑而言,雖成 爲0.008$t/rS0.05,但實用上於t/r = 0.03之條件下,與 輥徑成比例且壁厚亦變大爲佳。例如輥徑:R = 200中, t = 2〜3mm’輕徑:R = 500中,t = 4〜5mm之範圍下選擇。 該接觸輕A、B爲,藉由未圖示之供能(energizing )手段,於第1冷卻輥提供能量。該供能手段之供能力作 爲F,除以於壓區(nip)之薄膜的沿著第1冷卻輥5之 轉動軸方向的幅度W之値=F/W (線壓)設定爲9.8〜 1 4 7N/cm ° -99- 200904636 本發明中,接觸輥A、B與第1冷卻輥5之間形成壓 區,該壓區(nip )於薄膜通過之間使其矯正成平面性即 可。因此,與接觸輥由剛體所構成,與第1冷卻輥之間未 形成壓區(nip )時相比較,較小線壓下經過長時間夾壓 薄膜,故可更能確實地矯正平面性。即,線壓若比 9.8N/cm小時,塑膜線無法充分地消除。 相反地,線壓若比147N/cm大時,薄膜不容易通過 壓區(nip),薄膜厚度反而容易引起不均。 又,接觸輥A、B之表面由金屬所構成時,與接觸輥 表面爲橡膠的情況相比較,更能平滑接觸輥A、B之表面 ,故可得到平滑性較高的薄膜。且,作爲彈性滾筒42之 彈性體44的材質,可使用乙烯-伸丙基橡膠、氯丁橡膠、 矽橡膠等。 而欲藉由接觸輥6更能消除塑膜線,接觸輥6夾壓薄 膜時的薄膜黏度必須爲適當範圍爲重要。又,已知纖維素 酯爲溫度所造成的黏度變化較爲大。 因此,欲將接觸輥6夾壓纖維素酯薄膜時的黏度設定 於適當範圍,接觸輥6夾壓纖維素酯薄膜時的薄膜溫度必 須設定於適當範圍爲重要。 將纖維素酯薄膜的玻璃轉移溫度作爲(Tg)時,薄膜 夾壓於接觸輥6前的薄膜溫度T以滿足Tg < T < Tg + 1 l〇°C之條件者爲佳。薄膜溫度T若比Tg低時,薄膜黏度 會過高,而無法矯正塑膜線。 相反地’薄膜之溫度T若比Tg + 110 高時,薄膜表 -100- 200904636 面與輥無法均勻地黏著’仍然無法矯正塑膜線。較佳爲 Tg + lot: < T< Tg + 9(TC,更佳爲 Tg + 2(TC < T< Tg+ 70〇c o 欲使接觸輥6夾壓纖維素酯薄膜時的薄膜溫度設定於 適當範圍,自流延塑模4壓出的熔融物爲,由與第1冷卻 輥5接觸之位置p1調整沿著第1冷卻輥5與接觸輥6之 壓區(nip )的第1冷卻輥5之轉動方向之長度:L即可 〇 第1輥5、第2輥6之較佳材質可舉出碳鋼、不鏽鋼 鋼、樹脂等挙。又,表面精度較高爲佳,作爲表面粗度爲 0.3S以下,較佳爲〇.〇is以下。 藉由將由流延塑模4之開口部(1 i p )至第1輥5的 部分減壓至70kPa以下,可增大上述塑膜線之矯正效果爲 佳。較佳減壓爲50〜70kPa。作爲自流延塑模4之開口部 (lip )至第1輥5的部分壓力保持於70kPa以下之方法 ’雖無特別限定’有著自流延塑模4至輥周邊以耐壓構件 覆蓋進而減壓等方法。 此時吸引裝置爲,爲使裝置自體不會成爲昇華物之附 著場所,施予加熱器進行加熱等處置爲佳。吸引壓若過小 時,昇華物無法有效地被吸引,故必須要有適當的吸引壓 〇 將自T塑模4之熔融狀態的薄膜狀纖維素酯系樹脂, 以第1輥(第1冷卻輥)5、第2冷卻輥7、及第3冷卻 輥8之順序下密著地搬送且使其冷卻固化,得到未延伸之 -101 - 200904636 纖維素酯系樹脂薄膜1 0。 如圖1所示的本發明之實施形態中,自第3冷卻輥8 藉由剝離輥9剝離之經冷卻固化的未延伸薄膜1 〇爲,經 由跳動輥(薄膜張力調整輥)Η導入延伸機12,於此將 薄膜1〇進行橫方向(寬方向)。藉由該延伸,配向薄膜 中的分子。 將薄膜往寬方向延伸之方法,可使用公知拉幅器等方 法。 一方面,偏光薄膜的透過軸一般亦爲寬方向。偏光薄 膜之透過軸與光學薄膜之遲相軸爲平行下將層合之偏光板 裝入液晶顯示裝置中,可提高液晶顯示裝置之顯示對比, 同時亦可得到良好視野角。 薄膜構成材料之玻璃轉移溫度(Tg )可藉由構成薄膜 之材料種類、及所構成之材料比率的不同來控制。作爲纖 維素酯薄膜製造相位差薄膜時,Tg爲1 2 0 °c以上,較佳爲 1 3 5 °C以上。液晶顯示裝置中,影像之顯像狀態中,裝置 本身的溫度上昇,例如來自光源之溫度上昇可使薄膜之溫 度環境產生變化。 此時比薄膜的使用環境溫度,薄膜之Tg爲更低時, 會使得藉由延伸固定於薄膜內部之分子配向狀態所造成的 滯溜値、及作爲薄膜之尺寸形狀產生大變化。薄膜之Tg 過高時,使薄膜構成材料進行薄膜化時的溫度會過高而提 高加熱之能量消費,又進行薄膜化時的材料本身會分解, 且藉此會產生著色,因此Tg以25 0 °c以下爲佳。 -102- 200904636 又,延伸步驟中可進行公知熱固定條件、冷卻、緩和 處理,適宜地選出具有依目的之光學薄膜所要求之特性者 即可。 欲賦予相位差薄膜之物性與液晶顯示裝置的視野角擴 大時的相位差薄膜之功能’可適宜地選擇上述延伸步驟、 熱固定處理而進行。含有如此延伸步驟、熱固定處理時, 加熱加壓步驟爲這些延伸步驟、熱固定處理之前進行。 製造作爲纖維素酯薄膜之相位差薄膜時,且複合纖維 素酯薄膜之功能時,必須進行折射率控制,但該折射率控 制可藉由延伸操作來進行’又以延伸操作爲較佳方法。以 下對於該延伸方法作說明。 相位差薄膜之延伸步驟中’於纖維素樹脂之1方向延 伸1.0〜2.0倍、及於薄膜面內與此直交之方向上延伸 1 . 0 1〜2.5倍時,可控制必要的滞留値Ro及Rt、或可改 善平面性。 其中,所謂Ro爲顯示面內滯留値,其爲面內之長方 向MD的折射率與寬方向TD之折射率的差乘上厚度者, Rt爲顯示厚度方向滯留値,其爲面內的折射率(長方向 MD與寬方向TD之平均)與厚度方向之折射率的差乘上 厚度者。 延伸爲,例如可於薄膜之長方向及與此於薄膜面內呈 直交之方向、即對於寬方向,逐次或同時進行。此時對於 至少1方向的延伸倍率過小時,無法得到充分的相位差, 過大時難以延伸而容易產生薄膜破斷。 -103- 200904636 於相互直交之2軸方向進行延伸爲,使薄膜之折射率 nx、ny、nz於所定範圍之有效方法。其中,nx表示長手 MD方向之折射率,ny表示寬TD方向之折射率,nz表示 厚度方向之折射率。 例如,於熔融流延方向進行延伸時,寬方向之收縮若 過大,nz之値會過大。此時,抑制薄膜之寬度收縮、或 於寬方向亦進行延伸來改善。於寬方向進行延伸時,於寬 方向會產生折射率不均分佈。 此分佈有時於使用拉幅器法時出現,其被推測爲將薄 膜於寬方向進行延伸時,於薄膜中央部會產生收縮力,因 端部被固定所產生的現象,即產生所謂的bowing現象。 此時亦於流延方向進行延伸時,可抑制bowing現象,可 減少寬方向之相位差分佈不均。 藉由於互相平行的2軸方向進行延伸,可減少所得之 薄膜的膜厚變動。相位差薄膜之膜厚變動過大時,會使相 位差不均,使用於液晶顯示器時,會成爲著色等不均之問 題。 纖維素酯薄膜的膜厚變動爲±3%,更佳爲±1%之範圍 。於如上述目的中,於互相直交之2軸方向進行延伸的方 法爲有效,互相直交之2軸方向的延伸倍率於最終各於流 延方向爲1.0〜2.0倍,於寬方向爲1.01〜2.5倍之範圍爲 佳,更佳爲得到必須於流延方向爲1 · 0 1〜1 · 5倍,於寬方 向爲1.05〜2.0倍之範圍內進行的滯留値。 於長方向存在偏光子之吸收軸時,可使於寬方向上偏 -104- 200904636 光子之透過軸爲一致。欲得到長尺狀偏光板,相位差薄膜 於寬方向進行延伸至得到遲相軸爲佳。 對於應力,使用得到正複折射的纖維素酯時’由上述 構成於寬方向進行延伸時,相位差薄膜的遲相軸可於寬方 向賦予應力。此時,欲提高顯示品質,相位差薄膜之遲相 軸以寬方向爲佳,欲得到目的之滯留値必須滿足, 式:(寬方向的延伸倍率)>(流延方向的延伸倍率) 之條件。 延伸後,將薄膜之端部藉由縱剪切機13剪裁作爲製 品之寬度的隙縫後,藉由滾邊環14及背輥15所成之凸邊 加工裝置,於薄膜兩端部施行凸邊加工(knurled,壓紋 加工),藉由捲取機1 6進行捲取,防止纖維素酯薄膜( 元捲)F中之貼合或擦傷之產生。 凸邊加工之方法’可將側面具有凸凹圖形的金屬環藉 由加熱或加壓而進行加工。且,薄膜兩端部之壓板把持部 分一般爲已變形,無法作爲薄膜製品使用,故經切除後可 作爲原料再利用。 繼續,薄膜之捲取步驟爲,將圓筒形捲薄膜的外周面 、與此前的移動式搬送輥的外周面之間的最短距離保持一 定下將薄膜於捲取筒進行捲取者。且,捲取筒之前,可設 有除去或減低薄膜之表面電位的除靜電風機等手段。 有關本發明的纖維素酯薄膜之製造的捲取機可使用一 般使用者’可由定張力法、定轉矩法、傾斜張力法、內部 應力一定之程式張力控制法等捲取方法進行捲取。且,纖 -105- 200904636 維素酯薄膜之捲取時的初期捲取張力以90.2〜3 00.8N/m 爲佳。 薄膜之捲取步驟中,於溫度20〜30 °C、濕度20〜60 % RH之環境條件下,捲取薄膜爲佳。如此規定於薄膜捲 取步驟之溫度及濕度,可提高厚度方向滯留値(Rt)之濕 度變化耐性。 捲取步驟中的溫度未達2 0°C時,會產生皴紋,薄膜捲 品質的劣化使得無法實用而不佳。薄膜之捲取步驟中的溫 度若超過30°C時’仍然會產生皺紋,因薄膜捲品質的劣化 而無法實用而不佳。 又’薄膜之捲取步驟中之濕度若未達20% RH時,容 易產生靜電,薄膜捲品質之劣化使得無法實用而不佳。薄 膜之捲取步驟中的濕度若超過60%RH時,捲品質、貼合 故障、搬送性等會劣化而不佳。 將纖維素酯薄膜捲取成輥狀時,作爲捲核心,僅爲圓 筒上之的核心即可,可爲任種材質,但較佳爲中空塑質核 心’作爲塑質材料以可耐住加熱處理溫度之耐熱性塑質即 可’可舉出酚樹脂、二甲苯樹脂、三聚氰胺樹脂、聚酯樹 脂、環氧基樹脂等樹脂。 又’藉由玻璃繊維等塡充材之經強化熱硬化性樹脂爲 佳。例如,中空塑質核心:使用FRP製之外徑6英吋( 以下’英吋表示2.54cm。)、內徑5英吋之捲核心。 對於這些捲核心之捲數,以1〇〇捲以上爲佳,5〇〇捲 以上爲更佳’捲厚以5cm以上爲佳,長度爲5 00〜1 0000m -106- 200904636 ,薄膜寬度以1〜5m爲佳’特佳爲1.5〜4m。 製造廣幅薄膜時’亦可於捲取前對薄膜施予隙縫加工 後得到2〜3根輥薄膜。 製膜步驟中,經剪裁的薄膜兩端之壓板把持部分’經 粉碎處理後、或視必要進行造粒處理後’可作爲相同品種 之薄膜用原料或相異品種之薄膜用原料再利用。 防眩層之表面處理中可使用洗淨法、鹼處理法、面電 漿處理法、高頻率放電電漿法 '電子束法、離子束法、濺 射法、酸處理、電暈處理法、大氣壓電漿法等。 其中,所謂電暈處理爲,大氣壓下,電極間外加1 kV 以上高電壓,使其放電下進行之處理,可使用春日電機股 份有限公司或股份有限公司Toyo電機等販賣的裝置進行 。電暈放電處理之強度爲,取決於電極間距離、每單位面 積之輸出、發生器之頻率數。電暈處理裝置的一方電極( A電極)可使用販賣品,但材質可選自鋁、不鏽鋼等。另 一方爲要包住塑質薄膜的電極(B電極),且欲使電暈處 理可安定且均勻下實施的對於A電極之一定距離上所設 置之輕電極。此亦可使用一般購得者,材質爲銘、不鏽鋼 、及彼等金屬所製作之輥上可使陶瓷、聚矽氧烷、EP T橡 膠、海普龍橡膠等作爲裏襯(lining)之輥爲佳。 使用於電暈處理之頻率數爲20〜100 kHz之頻率數, 以30〜60kHz之頻率數爲佳。頻率數降低時,電暈處理之 均一性會劣化’而產生電暈處理不均。又,頻率數過大時 ,進行高輸出之電暈處理時,雖無特別問題,但實施低輸 -107- 200904636 出之電暈處理時,難以進行安定之處理,結果會產生處理 不均。 電暈處理的輸出爲 1〜5w_min./m2,以 2〜 4wmin./m2之輸出爲佳。電極與薄膜之距離爲5〜50mm ,但較佳爲10〜35mm。間隙過開時,欲維持一定輸出而 必須要高電壓,容易產生不均。又,間隙過於狹隘時,外 加電壓會過低,而容易產生不均。且,搬運薄膜進行連續 處理時,電極上會接觸到薄膜而產生擦傷^ 又,作爲鹼處理法,僅將塗佈設置防眩層之薄膜浸漬 於鹼水溶液的方法即可,並無特別限定。 作爲鹼水溶液,可使用氫氧化鈉水溶液、氫氧化鉀水 溶液 '氣水溶液等,其中亦以氫氧化鈉水溶液爲佳。 鹼水溶液之鹼濃度,例如氫氧化鈉濃度以0.1〜2 5質 量%爲佳,0·5〜15質量%較佳。 鹼處理溫度一般爲10〜80 °C,較佳爲20〜60 t:。 鹼處理時間爲5秒〜5分鐘,較佳爲3 0秒〜3分鐘。 驗處理後之薄膜以酸性水中和後,充分地進行水洗硫磺爲 佳。 本發明中,大氣壓或接近此的壓力下,相對電極之間 外加頻率數爲50kHz〜150MHz之高頻率電壓後形成放電 ’將藉由該放電所形成的激起氣體,與透明薄膜基材或透 曰月薄膜基材上具有防眩層之薄膜表面進行接觸後,塗佈防 &射·層後形成者爲佳。且頻率數以50kHz〜27MHz爲佳。 相對電極係由第1電極與第2電極所構成,任一方電 -108- 200904636 極上所外加之高頻率電壓的頻率數以50kHz〜150MHz爲 佳。又,於第1電極外加之高頻率電壓的頻率數爲1〜 200kHz,且於第2電極外加之高頻率電壓的頻率數以 8 00kHz 〜1 50MHz 爲佳。 大氣壓或接近此之壓力下進行的電漿放電處理,以下 僅稱爲大氣壓電漿法。 將於透明薄膜基材上具有防眩層之薄膜,於大氣壓或 接近此之壓力下,於第1電極與第2電極所構成之相對電 極間,於第1電極外加第1頻率數ωΐ之電壓成分的高頻 率電壓,於第2電極外加第2頻率數ω2之電壓成分的高 頻率電壓而形成放電,於藉由該放電所形成之激起氣體上 與該透明薄膜基材表面接觸後,其上形成防反射層。 作爲大氣壓電漿法,可參考特開平1 1 - 1 3 3 205號公報 、特開2 0 0 0 - 1 8 5 3 6 2號公報、特開平1 1 - 6 1 4 0 6號公報、 特開2000- 1 47209號公報、特開2000- 1 2 1 804號公報等所 揭不的技術。 繼續對於大氣壓電漿方法作說明。 大氣壓或接近其之壓力下,於放電空間(相對電極間 )供給氣體,於該放電空間外加高頻率電壓,使氣體激起 而成爲電漿狀態,於該激起之電漿狀態的氣體中,曝曬於 透明薄膜基材上具有防眩層之薄膜表面者。於相對電極間 所形成之放電空間所外加之高頻率電壓可爲1的頻率數之 高頻率,亦可爲2個或此以上之頻率數的高頻率。 大氣壓電漿處理雖於大氣壓或接近此之壓力下進行, -109- 200904636 但大氣壓或接近此之壓力爲20〜llOkPa程度,以93〜 1 04kPa 爲佳。 於相對電極間(放電空間)所供給之氣體至少爲,含 有藉由高頻率電壓激起之激起氣體、或藉由高頻率電壓激 起之激起氣體、與接受該能量成爲電漿狀態或激起狀態之 氣體。其中所謂高頻率爲至少具有0.5kHz之頻率數者。 以1個頻率數之高頻率電壓進行電漿放電處理時(有 時稱爲1頻率數高頻率電壓外加方式)、或以2個頻率數 之高頻率電壓下進行電漿放電處理時(有時稱爲2頻率數 高頻率電壓外加方式)之電極爲使用完全相同者,裝置本 身並無太大差異。相異點爲,高頻率電源爲2個,具有附 於此的過濾器,且由相對電極雙方電極外加高頻率電壓。 1頻率數高頻率電壓外加方式時,相對電極之一方爲 地線電極,另一方爲外加電極,於外加電極上連接高頻率 電源,於地線電極上地線被接地。 參考圖7,對於1頻率數高頻率電壓外加方式、及2 頻率數高頻率電壓外加方式之各方式的薄膜形成裝置(大 氣壓電漿處理裝置)做說明。 圖7表示1頻率數高頻率電壓外加方式之薄膜形成裝 置的一例槪略圖。同圖中,外加電漿放電容器1 3 0內部之 高頻率電壓的外加電極(角筒型電極)136、與捲取該下 側之透明薄膜基材F的輥型地線電極1 3 5形成相對電極。 外加電極136可多少個並列皆可。氣體G爲由電漿放電 容器1 〇之氣體供給口 1 5 2供給,通過使氣體G均一化的 -110- 200904636 篩子,沿著外加電極1 3 6之間、及外加電極與電漿放電容 器1 3 1之內壁通過,使相對電極之間的放電空間1 3充分 氣體G。藉由高頻率電源21於外加電極136外加高頻率 電壓,於放電空間1 3 2所激起之氣體G中曝曬透明薄膜 基材F。外加高頻率電壓之頻率數以5 0kHz以上爲佳。較 佳爲50kHz〜150MHz之範圍,由均一處理或大面積化處 理之觀點來看爲佳。 於激起之氣體G中曝曬透明薄膜基材F之間,自電 極溫度調節手段1 6 0經過配管可加熱或冷卻電極。作爲溫 度調節之媒體,可使用蒸餾水、油等絕緣性材料爲佳。電 漿放電處理時,欲儘可能不要產生寬方向或長方向之基材 溫度不均,可均等地調節電極內部之溫度。 圖8表不2頻率數尚頻率電壓外加方式之薄膜形成裝 置其他一例槪略圖。此與圖7的情況相同,以輥電極(第 1電極)135與角筒型電極群(第2電極)136之相對電 極間(放電空間)1 32,對透明薄膜基材F進行電漿放電 處理者。 於輥電極(第1電極)135與角筒型電極群(第2電 極)136之間的放電空間(相對電極間)132,於輥電極 (第1電極)135由第1電極141外加頻率數ωΐ之高頻 率電壓VI,又於角筒型電極群(第2電極)136由第2 電源142外加頻率數ω2之高頻率電壓V2所成。 輥電極(第1電極)13 5與第丨電源141之間,設置 第1過濾器143使自第i電源i 4丨之電流往輥電極(第1 -111 - 200904636 電極)135流入,該第1過濾器143爲設計成自第1電源 141之電流難以通過,自第2電源142之電流容易通過設 計。又,角筒型電極群(第2電極)136與第2電源142 之間,設置第2過濾器144使自第2電源之電流往第2電 極流入,第2過濾器144爲設計成自第2電源142之電流 難以通過,自第1電源141之電流容易通過。其中,所謂 難以通過電流爲,僅通過電流之2 0 %以下爲佳,較佳爲 僅通過10%以下。相反地所謂容易通過爲,較佳爲通過 電流之8 0 %以上,更佳爲9 0 %以上。 例如對應第2電源142之頻率數,可使用數1〇〜數 萬pF之電容器、或數程度之線圈。作爲第2過濾器 1 44 ’對應第1電源14 1之頻率數,使用i 〇 μ η以上之線 圏,介著這些線圏或電容器可接地線而可作爲過爐器使用 〇 又’可將輕電極135作爲桌2電極、又可將角筒型電 極群136作爲第1電極使用。於第1電極連接第丨電源、 又第2電極中連接第2電源。且’第丨電源爲僅具有可外 加比第2電源還大之局頻率電壓(Vl>V2)的力gp可· 。又,僅具有頻率數爲ω1<ω2之能力即可。 圖8中,氣體供給手段1 50之氣體供給裝置1 5丨所產 生的氣體G爲,控制流量下由氣體供給口 152導入至電 發放電處理容器131內。使放電空間132、及電漿放電處 理容器131內充滿氣體G。 將透明薄膜基材F由未圖示之元捲經解開後搬運送來 -112- 200904636 、或由前步驟搬運送來、經由導向輥164以夾輥165遮斷 隨透明薄膜基材同進的空氣等,與輥電極135接觸下一邊 捲取一邊移送至與角筒型電極群136之間,由輥電極(第 1電極)135與角筒型電極群(第2電極)136之雙方加 入電壓,以相對電極間(放電空間)1 3 2產生放電電漿。 透明薄膜基材F爲與輥電極135接觸下一邊捲取一邊曝曬 於電漿狀態之氣體。透明薄膜基材F爲經由夾輥166、導 向輥167,以未圖示之捲取機進行捲取、或移送至次步驟 〇 經放電處理之處理排氣體G’爲經排氣口 153排出。 於電漿狀態之氣體的曝曬時間,欲加熱或冷卻輥電極 (第1電極)135、及角筒型電極群(第2電極)136,將 由電極溫度調節手段1 60調節溫度之媒體,以送液幫浦P 經由配管1 6 1送至兩電極,由電極內側調節溫度。且, 1 6 5及1 6 6爲切割電漿放電處理容器1 3 1與外界之切割板 〇 外加之高頻率電壓可爲斷續方式的脈衝波、或連續方 式的訊息波,雖未限定外加電壓波形,但欲外加高能量高 頻率電壓、形成強固薄膜而言以訊息波爲佳。 於第1電極外加之高頻率電壓的頻率數爲1〜200kHz ,且於第2電極外加之高頻率電壓的頻率數以800kHz以 上爲佳。 此時之電力密度以1〜50W/cm2 (其中分母之cm2爲 放電所引起的面積。)爲佳,較佳爲1.2〜30W/Cm2。 -113- 200904636 作爲高頻率電源,可舉出100kHz;|! (Hayden硏究所 製)、200kHz、800kHz、2MHz、1 3 · 5 6MHz、2 7MHz、及 150MHz (皆爲pearl工業製)等。且*印爲Hay den硏究所 Impulse高頻率電源(連續模式爲100 kHz)。 圖9表示輥電極之導電性金屬質母材、與其上以介電 體包覆之結構的一例斜視圖。 同圖中,輥電極1 3 5 a爲,導電性金屬質母材1 3 5 A、 與其上以介電體135B包覆者。內部成爲中空外套,成爲 可進行溫度調節。 圖10表示圖7與圖8所示的角筒型電極之導電性金 屬質母材、與其上以介電體包覆之結構的一例斜視圖。 圖10中,角筒型電極136a爲對於導電性金屬質母材 13 6A而言,具有與圖9之情況相同的介電體13 6B之被覆 ,該電極之結構成爲金屬質幫浦,其成爲外套,可進行放 電中之溫度調節。 且,角筒型電極的數目爲,沿著比上述輥電極圓周還 大之圓周上,設置複數根,該電極之放電面積爲相對輥電 極135之全角筒型電極面的面積和。 圖10所示之角筒型電極136a亦可爲圓筒型電極,但 角筒型電極與圓筒型電極相比,具有擴充放電範圍(放電 面積)之效果,故適合使用於本發明。 圖9與圖10中,輥電極135a、及角筒型電極136a 各爲導電性金屬質母材135A、及136A之上,溶射作爲介 電體135B、及136B之陶瓷器後,使用無機化合物之封孔 -114- 200904636 材料進行封孔處理者。陶瓷器介電體僅爲單面厚度imm 程度下包覆即可。作爲使用於溶射之陶瓷器材,可使用氧 化鋁•氮化矽等,其中亦以氧化鋁因容易加工而特佳。又 ’介電體層可爲藉由玻璃裏襯設置無機材料之裏襯處理介 電體。 作爲導電性金屬質母材13 5A、及13 6A,可舉出鈦或 鈦合金、銀、白金、不鏽鋼、鋁、鐵等金屬等、或鐵與陶 瓷器之複合材料或鋁與陶瓷器之複合材料,但由後述理由 得知鈦或鈦合金爲特佳。 2個電極間之距離(電極間隙)可考慮到設置於導電 性金屬質母材之介電體厚度、外加電壓之大小、利用電漿 之目的等而決定,但於電極一方設置介電體時的介電體表 面與導電性金屬質母材表面之最短距離、於上述電極雙方 設置介電體時的介電體表面彼此距離,任一情況亦以可進 行均一放電之觀點來看以0.1〜20mm爲佳,特佳爲0.5〜 2mm。 電漿放電處理容器爲使用Pyr ex (註冊商標)玻璃製 處理容器等爲佳,但可與電極爲絕緣狀態者即可,亦可使 用金屬製者。例如可於鋁或不鏽鋼之內面貼合聚醯亞胺樹 脂等、或亦可於該金屬面不進行陶瓷器溶射下使其成爲絕 緣性。 繼續對於導電性金屬質母材、及介電體做詳細說明。 使用於大氣壓電漿法之電極必須爲結構上、或性能上 皆可耐得住嚴苛條件者。作爲如此電極,於金屬質母材上 -115- 200904636 覆蓋介電體者爲佳。 介電體被覆電極中,各式各樣金屬質母材與介電體之 間以特性相配者爲佳’作爲其中一特性,金屬質母材與介 電體之線熱膨張係數的差成爲1 〇 X 1 〇 -6 / °C以下之組合者。 較佳爲8xl(T6/°C以下’更佳爲5xl(T6/°C以下,特佳爲 2xlO_6/°C以下。且’所謂線熱膨張係數爲周知材料特有之 物性値。 線熱膨張係數之差’作爲該範圍之導電性金屬質母材 、與介電體之組合例爲如以下者。 組合例 導電性金屬母材 (1 )純欽或欽合金 (2 )純鈦或鈦合金 (3 )不鏽鋼 (4 )不鏽鋼 (5) 陶瓷器及鐵的複合材料 (6) 陶瓷器及鐵的複合材料 (7) 陶瓷器及鋁的複合材料 (8) 陶瓷器及鋁的複合材料 介電體 陶瓷器溶射包膜 玻璃裏襯 陶瓷器溶射包膜 玻璃裏襯 陶瓷器溶射包膜 玻璃裏襯 陶瓷器溶射皮膜 玻璃裏襯 所g胃線熱膨張係數之差的觀點中,上述例(1 )或例 (2 )、及例(5 )〜例(8 )之組合爲佳,特別以例(1 ) 之組合爲佳。 -116- 200904636 金屬質母材爲,上述特性來看,使用鈦或鈦合金爲特 佳。將金屬質母材作爲鈦或鈦合金使用時,將介電體如上 述使用時’可避開使用中之電極劣化,特別可避開裂開、 剝落、脫落等,可耐住於嚴苛條件下長時間之使用。 電極之金屬質母材爲含有鈦70質量%以上之鈦合金 或鈦。 作爲介電體所要求的特性,具體以比誘電率爲6〜4 5 之無機化合物較佳,又作爲如此介電體,可舉出氧化鋁、 氮化矽等陶瓷器、或矽酸鹽系玻璃、硼酸鹽系玻璃等玻璃 裏襯材等。其中將後述陶瓷器經溶射者或設置玻璃裏襯者 爲佳。特佳爲溶射氧化鋁後設置之介電體爲佳。 或作爲可耐住如上述大電力之形式,介電體之空隙率 爲10體積%以下,較佳爲8體積%以下,較佳爲超過〇 體積%,且5體積%以下。 且’介電體之空隙率可藉由BET吸著法或水銀孔率 計進行測定。例如可藉由島津製作所製的水銀孔率計,使 用包覆於金屬質母材之介電體破片,測定空隙率。介電體 因具有較低空隙率而可達到高耐久性。 具有如此空隙者’作爲較低空隙率之介電體,可舉出 藉由大氣電漿溶射法等之高密度、高密著陶瓷器溶射包膜 等。且欲進一步降低空隙率,進行封孔處理爲佳。 其中,大氣電漿溶射法爲,將陶瓷器等微粉末、線圏 等投入於電漿熱源中,作爲熔融或半熔融狀態之微粒子往 被覆對象之金屬質母材吹並附著後形成皮膜之技術。 -117- 200904636 所謂電漿熱源爲,使分子氣體成高溫,並解離成原子 ’再賦予能量使其放出電子成爲高溫電漿氣體。該電漿氣 體之噴射速度較大,與過去之電弧溶射或面溶射相比,溶 射材料可高速下衝入金屬質母材,故密著強度較高,可得 到高密度之包膜。更詳係可參考特開2000-301655號公報 所記載的高溫被曝構件形成熱遮蔽皮膜之溶射方法。藉由 該方法,可得到如上述包覆的介電體(陶瓷溶射膜)之空 隙率。 又’作爲耐住大電力之其他較佳形式爲介電體厚度爲 〇·5〜3mm者。該膜厚變動以5%以下爲佳,較佳爲3%以 下,更佳爲1 %以下。 欲更減低介電體之空隙率,於如上述陶瓷器等溶射膜 進一步進行無機化合物之封孔處理爲佳。於此作爲無機化 合物,以金屬氧化物爲佳,其中含有氧化矽(S i Ο X )作爲 主成分者爲特佳。 封孔處理之無機化合物以藉由溶膠凝膠反應硬化而形 成者爲佳。封孔處理之無機化合物係以金屬氧化物作爲主 成分者時,將金屬烷氧化物等作爲封孔液塗佈於陶瓷溶射 膜上,藉由溶膠凝膠反應使其硬化。無機化合物將二氧化 矽作爲主成分時,可將烷氧基矽烷作爲封孔液使用爲佳。 其中,溶膠凝膠反應之促進中,使用能量處理爲佳。 作爲能量處理,有熱硬化(較佳爲2 〇 〇 r以下)、或紫外 線照射等。且作爲封孔處理之方式,可稀釋封孔液後依序 重複進行數次塗佈及硬化重後,可更提高無機質化,得到 -118- 200904636 劣化較少的緻密電極。 將介電體被覆電極之金屬烷氧化物等作爲封孔液,塗 佈於陶瓷器溶射膜後’進行以溶膠凝膠反應進行硬化之封 孔處理時,硬化後之金屬氧化物的含有量以60莫耳%以 上者爲佳。作爲封孔液之金屬烷氧化物使用烷氧基矽烷時 ’硬化後之Si Ox (X爲2以下)含有量以60莫耳%以上 爲佳。硬化後之SiOx含有量藉由xpS分析介電體層之斷 層而測定。 本發明中’至少與電極的基材銜接之面,Jis B 0601 :2001所規定之表面粗度的最大高度(Rmax)調整至1〇 // m以下,由得到本發明所記載的效果之觀點來看較佳, 更佳爲表面粗度之最大値爲8 # m以下,特佳爲7 // m以 下。 藉由如此進行介電體被覆電極之介電體表面的硏磨等 方法,可保持一定的介電體厚度、及電極間之間隔,使放 電狀態成安定化,且不會因熱收縮差或殘留應力而使其變 形或裂開’於高精度下可大大提高耐久性。介電體表面之 硏磨加工爲’於至少與基材銜接的側之介電體中進行爲佳 。且JIS B 060 1 ·· 200 1所規定之算術平均粗度(Ra)以 0.5/zm以下爲佳,更佳爲o.iym以下。 本發明所使用的介電體被覆電極中,作爲可耐住大電 力之其他較佳形式,其爲耐熱溫度爲1 〇 〇。(3以上者。更佳 爲120°C以上’特佳爲150°C以上。且上限爲5 00。(:。 且’所謂耐熱溫度爲未產生絕緣破壞,可耐住正常放 -119- 200904636 電之狀態的最高溫度。如此耐熱溫度可適用上述陶瓷器溶 射、或混入量相異的層狀玻璃裏襯所設之介電體、或可適 當地組合選自下述金屬質母材與介電體之線熱膨張係數差 範圍內之材料而達成。 本發明中’必須於電漿放電處理裝置中採用外加如此 電壓下可保持均一發光放電狀態之電極。 本發明中相對電極間外加之電力於第2電極供給1〜 50W/cm2,較佳爲 1.2〜30W/cm2之電力密度,激起放電 氣體而產生電漿,將能量賦予薄膜形成性氣體而形成薄膜 〇 其中,關於高頻率電源之外加法,可採用稱爲連續模 式之連續訊息波狀連續發振模式、與稱爲脈衝模式之將 ΟΝ/OFF斷續進行之斷續發振模式中任一方,但至少第2 電極側以連續訊息波方式可得到緻密良質之膜而較佳。 放電條件爲,於相對第1電極與第2電極之放電空間 中,外加高頻率電壓,該高頻率電壓爲,至少具有重疊第 1頻率數ωΐ之電壓成分、與比第1頻率數還高的第2 頻率數ω2之電壓成分所成的成分者爲佳。 高頻率電壓爲,重疊第1頻率數ωΐ之電壓成分、與 比第1頻率數ωΐ還高之第2頻率數ω2之電壓成分所成 的成分,該波形爲頻率數ω 1之訊息波上,重疊比此還高 之頻率數ω 2之訊息成爲ω 1的訊息波波形。訊息波之經 重畳的波形雖無限定,可爲雙方皆爲脈衝波,或一方爲訊 息波’另一方爲脈衝波。又,可進一步地具有第3電壓成 -120- 200904636 分。然而’本發明中,與1頻率數高頻率電壓外加方式同 樣地’至少第2電極側上爲連續訊息波時可得到緻密良質 之膜。 所謂放電啓始電壓爲,實際所使用之放電空間(電極 之構成等)、及反應條件(氣體條件等)中可引起放電之 最低電壓。放電啓始電壓可藉由供給於放電空間之氣體種 或電極的介電體種類而做稍微變動,但可考慮與放電氣體 單獨之放電啓始電壓略同。 推測將如上述高頻率電壓外加於相對電極間(放電空 間)’可引起放電,產生高密度電漿。 外加高頻率電壓於放電空間之具體方法,可使用構成 相對電極之第1電極上,連接外加頻率數ω1且電壓VI 之第1高頻率電壓的第】電源,於第2電極上,連接外加 頻率數ω2且電壓V2之第2高頻率電壓的第2電源的薄 膜形成裝置(大氣壓電漿處理裝置)。 如此由2個高頻率電源外加高頻率電壓者,對於啓動 藉由第1頻率數ωΐ側具有較高放電啓始電壓之放電氣體 的放電而S爲必要、且第2頻率數ω2側對於提高電漿密 度而形成緻密良質之薄膜而言爲必要爲重點。 使用第1電源由第1電極外加1〜200kHz程度之高頻 率電壓,又使用第2電源由第2電極外加800kHz〜 1 5MHz程度之高頻率電壓者爲佳。此時,藉由外加之!〜 2 00kHz的高頻率電壓,可激起放電啓始電壓較高的放電 氣體而產生電漿。 -121 - 200904636 且,第1電源具有外加比第2電源還高之頻率電壓的 能力者爲佳。 又,作爲放電條件,相對第1電極與第2電極之間外 加高頻率電壓,該高頻率電壓爲重疊第i高頻率電壓: VI、及第2高頻率電壓:V2者,將放電啓始電壓爲IV時 ,滿足 V12IV>V2 或 Vl>IVgV2。 更佳爲滿足VI > IV > V2。 局頻率、及放電啓始電壓之定義、以及作爲將上述高 頻率電壓外加於相對電極間(放電空間)之具體方法,與 上述者相同。 其中,高頻率電壓(外加電壓)與放電啓始電壓可以 下述方法進行測定。 高頻率電壓:VI、及V2C單位:kV/mm )之測定方法 設置各電極部之高頻率探針(P6015A),將該高頻 率探針銜接於 oscilloscope ( Tektronix 公司製、 TDS3012B )並測定電壓。 放電啓始電壓:IV (單位:kV/mm )之測定方法 於電極間供給放電氣體,增大該電極間之電壓,將開 始放電之電壓定義爲放電啓始電壓:IV。測定器與上述高 頻率電壓測定相同。 藉由如外加較高電壓之放電條件下,例如即使爲如氮 氣之放電啓始電壓爲較高放電氣體,當啓動放電氣體時可 -122- 200904636 於高密度下維持安定電漿狀態。 藉由上述測定將放電氣體作爲氮氣時,該放電啓始電 壓:IV爲3.7kV/mm程度,因此,上述關係中將第1高頻 率電壓作爲 V123.7kV/mm,藉由外加激起氮氣,可使其 呈現電漿狀態。 作爲放電氣體,可舉出氮、氦氣、氬氣等稀有氣體、 空氣、氫、氧等,這些可單獨作爲放電氣體使用,亦可混 合使用,但使用氮氣時,與使用氦氣或氬氣等稀有氣體時 相比較,因可得到放電氣體較高經濟性,故爲特佳。 設置於大氣壓電漿處理裝置之高頻率電源,雖與前述 者相同,但由第1電源(高頻率電源)與第2電源(高頻 率電源)之頻率數可分爲下述。 作爲第1電源,可舉出下述販賣品,皆可適用。 高頻率電源記號 公司名 頻率數 A1 神鋼電機 3kHz A2 神鋼電機 5kHz A3 春曰電機 15kHz A4 神鋼電機 50kHz A5 Hayden 硏究所 100kHz* A6 pearl 工業 200kHz 且*符號爲Hayden硏究所impulse高頻率電源(連繪 模式之l〇〇kHz)。 又’作爲第2電源(高頻率電源),可舉出下述販賣 -123- 200904636 ΠΡ 皆可適用。 高頻率電源記號 公 Β 1 pe B 2 p e Β 3 p e Β 4 ρ e Β 5 ρ e 司名 頻率數 arl 工業 800kHz arl 工業 2MHz arl 工業 1 3.56MHz arl 工業 27MHz arl 工業 150MHz 上述相對電極之至少一方電極爲具備於相對電極間供 給放電氣體之氣體供給手段者爲佳。且具有控制電極溫度 之電極溫度控制手段者爲佳·。 又,圖7與圖8之電極中,爲顯示金屬母材、及介電 體,但與圖9與圖10之情況相同,與電極之金屬母材同 樣地當然可由介電體包覆。 於相對電極間外加之高頻率電壓,可爲斷續之脈衝波 ,亦可爲連續之訊息波,但以連續之訊息波爲佳。 電極間之距離可考慮到電極之金屬母材所設置之介電 體厚度、外加電壓之大小等而做決定。上述電極之一方上 設置介電體時的介電體與電極之最短距離、上述電極之雙 方設置介電體時的介電體彼此之距離,皆由可進行均一放 電之觀點來看以0.5〜20mm爲佳,較佳爲0.5〜5mm,更 佳爲0.5〜3mm’特佳爲imm±0.5mm。 對於使用本發明之防眩性薄膜、及防眩性抗反射薄膜 -124- 200904636 的偏光板做敘述。 本發明之偏光板爲,例如將本發明之防眩性抗反射薄 膜的裏面側進行鹼化處理,將經處理之防反射薄膜於碘溶 液中浸漬延伸所製作之偏光膜的至少一面上,使用完全鹼 化型聚乙烯醇水溶液進行貼合爲佳。另一面,亦使用該防 反射薄膜,亦可使用其他偏光板保護薄膜。對於本發明之 防眩性抗反射薄膜,使用於另一面之偏光板保護薄膜爲, 具有面內方向滯留値(R〇)於波長590nm中爲20〜70nm ,厚度方向滯留値(Rt)爲100〜400nm之相位差的光學 補償薄膜(相位差薄膜)者爲佳。這些可藉由例如特開 2 002-7 1 95 7號公報、特開2003 - 1 70492號公報等所記載的 方法來製作。又使用兼具具有將盤狀液晶等液晶化合物經 配向所形成之光學異方層的光學補償薄膜之偏光板保護薄 膜爲佳。例如可藉由特開2003 -983 48號公報所記載的方 法而形成光學異方性層。或面內方向滯留値(Ro )於波長 5 90nm中爲 0〜5nm,厚度方向滯留値(Rt )爲-20〜 + 20nm之無配向薄膜亦可。 藉由與本發明的防眩性薄膜或防眩性抗反射薄膜經組 合使用,可得到平面性優且具有安定之視野角擴大效果的 偏光板。 作爲使用於裏面側之偏光板保護薄膜,作爲販賣品的 纖維素酯薄膜,使用 KC8UX2MW、KC4UX、KC5UX、 KC4UY 、 KC8UY、KC12UR、KC4UEW、KC8UCR-3、 KC8UCR-4、KC8UCR-5、KC4FR-1、KC4FR-2 ( -125- 200904636Proofreading curve: Standard polystyrene STK uses a calibration curve obtained from standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw=l, 00, 〇〇〇~5 00 of 13 samples. The 13 samples used almost equal intervals. Further, an antioxidant and a thermal deterioration preventing agent may be added to the cellulose ester. Specifically, a lactone-based, sulfur-based, phenolic-double bond system, a hindered amine system, or a phosphorus compound can be used. As the internal vinegar system, for example, a product containing "Irgaf〇s XP40" and "Irgafos XP60" commercially available from Ciba Specialty Chemicals Co., Ltd. is preferable. The phenolic compound is preferably a structure having a 2,6-dialkylphenol. For example, it is preferably a product of Ciba Specialty Chemicals Co., Ltd., "Irganoxl 076" or "IrganoxlOlO". -79- 200904636 Phosphorus compounds, such as "SumilizerGP" purchased by Sumitomo Chemical Industries Co., Ltd., "ADK STAB PEP-24G" purchased by Asahi Kasei Kogyo Co., Ltd., "ADK STAB PEP-3 6" "ADK STAB 3010", "IRGAFOS P-EPQ" purchased by Ciba Specialty Chemicals Co., Ltd., and "GSY-P101" commercially available from API Corporation, are preferred. The hindered amine-based compound is, for example, "Tinuvinl 44" and "Tinuvin 770" available from Ciba Specialty Chemicals Co., Ltd., and "ADK STAB LA-52" commercially available from Asahi Denki Kogyo Co., Ltd. Sulfur-based compounds such as "Sumilizer TPL-R" and "Sumilizer TP-D" are commercially available from Sumitomo Chemical Industries, Ltd. The double bond compound is a product name of "Sumilizer GM" and "Sumilizer GS" which are commercially available from Sumitomo Chemical Industries Co., Ltd. Further, as the acid scavenger, a compound having an epoxy group may be contained as described in the specification of U.S. Patent No. 4,1,7,20,1. These antioxidants and the like can be appropriately determined in accordance with the procedure at the time of re-use, and it is preferable to add 0.05 to 2% by mass of the resin of the main raw material of the film. These antioxidants and thermal deterioration preventing agents can obtain a multiplication effect when only one type is used and a plurality of different compounds are used. For example, a lactone type, a phosphorus type, a phenol type, and a double bond type compound are preferably used in combination. The cellulose ester film is an endless metal conveyor belt or a rotating metal drum which can be infinitely transferred by infinitely transferring the cellulose ester solution (blending) by a method known as solution casting film forming method, -80-200904636 The method of forming a film by casting a blend by press molding by press molding, or by a melt casting film forming method. In the solution casting film forming method, as the organic solvent to be blended, it is preferable to dissolve the cellulose ester and have an appropriate boiling point, and examples thereof include dichloromethane, methyl acetate, ethyl acetate, and ethyl acetate. Base, ethyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol' 2, 2,3,3 -tetrafluoro-1-propanol, 1,3 -difluoro-2-propanol, 1,1,1,3,3,3~hexafluoro-2-methyl-2-propanol 1,1,1,3,3,3—six-gas-two-propanol, 2,2,3,3,3-pentafluoro <1-1-propanol, nitro-benzamine, 1,3-dimethyl-2-diindoledione, etc., but also organic halogen compounds such as dichloromethane, dioxolane derivatives, Methyl acetate, ethyl acetate, acetone 'acetate methyl acetate, etc. are preferred organic solvents (ie, 'good solvents'). Further, 'from the viewpoint of preventing foaming in the fabric from the viewpoint of preventing foaming in the fabric when the solvent is dried from the web (blending film) formed on the casting support in the solvent evaporation step as shown in the following film forming step The boiling point of the organic solvent to be used is preferably from 30 to 80 ° C. For example, the boiling point of the good solvent described above is methylene chloride (boiling point: 40.4 ° C) and methyl acetate (boiling point: 56.32 ° C). Acetone (boiling point: 56.3. (:), ethyl acetate (boiling point: 76.82t), etc. in the above-mentioned good solvent 'is preferably methylene chloride or methyl acetate acetal having excellent solubility. -81 - 200904636 The alcohol may be contained in an amount of from 0 to 1% by mass to 10% by mass, preferably from 5 to 30% by mass. The above-mentioned alcohol is contained on the support for casting. After the casting, when the ratio of the alcohol in which the solvent starts to evaporate increases, the woven fabric (blend film) gels. The woven fabric can be stably peeled off from the casting support, used as a gelling solvent, or the ratio thereof. When less, it can act as a solvent to promote the dissolution of cellulose esters in non-chlorinated organic solvents. The alcohols having 1 to 4 carbon atoms include methanol, ethanol, η-propanol, iso-propanol, η-butanol, sec-butanol, tert-butanol, etc. Among these solvents, Ethanol is preferred from the viewpoints of good blending stability, low boiling point, good drying property, and no toxicity. It is preferably used in an amount of 70 to 95% by mass of methylene chloride. 30% by mass of solvent. Methyl acetate can be used in place of methylene chloride. In this case, the blend can be prepared by a cooling dissolution method. Alternatively, methylene chloride and methyl acetate can be used in combination, for example, a mass ratio of 10.1 to 3 Further, the above-mentioned alcohol may be further contained. The cellulose ester may preferably contain a plasticizer as described below. As the plasticizer, for example, a phosphate-based plasticizer or a phthalate-based plasticizer may be used. A trimellitate plasticizer, a pyromellitic acid plasticizer, a glycolate plasticizer, a citric acid ester plasticizer, a polyester plasticizer, a polyol ester plasticizer, etc. Phosphate ester plasticity Triphenyl phosphate, trimethoate can be used in the agent; p-ester, cresol Phosphate ester, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc., phthalic acid-82- 200904636 Ethyl ester plasticizer can be used in two Phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzene Methyl phthalate, diphenyl phthalate, dicyclohexyl decanoate, etc., tributyl trimellitate, triphenyl trimellitate, three may be used in the trimellitic acid plasticizer. As the ethyl trimellitate or the like, a tetraphenyl pyromellitic acid ester, a tetraphenyl pyromellitic acid ester, a tetraethyl pyromellitic acid ester can be used for the pyromellitic acid ester plasticizer. In the glycolate plasticizer, triacetin, glyceryl tributyrate, ethyl phthalic acid ethyl glycolate, methyl phthalyl ethyl glycolate, butyl butyl can be used. Triethyl citrate, tri-n-butyl citrate, ethyltriethyl citrate, acetamidine can be used for the citrate-based plasticizer such as benzodiazepine butyl glycolate. three- Η-butyl citrate, acetamyl tri-n-(2-ethylhexyl) citrate, and the like. Examples of the other carboxylic acid ester include trimethylolpropane tribenzoate, oleic acid butyl, ricinoleic acid methyl ethyl sulfonate, dibutyl sebacate, and various trimellitic acid esters. The polyol ester-based plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule. An aliphatic polyol ester having a valence of 2 to 20 is preferred. As the polyester-based plasticizer, a copolymer of a dibasic acid such as an aliphatic dibasic acid, an alicyclic dibasic acid or an aromatic dibasic acid and a diol can be used. The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid or the like can be used. As the diol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butanediol, u-butylene glycol, 2-butanediol or the like can be used. These di-alkali-83-200904636 acid and diol may be used alone or in combination of two or more. The amount of the plasticizer to be used is preferably from 1 to 20% by mass, particularly preferably from 3 to 13% by mass, based on the film properties and workability. Further, a cellulose ester or an ultraviolet absorber may be preferably added. As the ultraviolet absorber, it is preferable that the ultraviolet light having a wavelength of 370 nm or less has excellent absorption energy and the liquid crystal display property is good, and the absorption of visible light having a wavelength of 400 nm or more is less. Specific examples of the ultraviolet absorber include an oxybenzophenone-based compound, a benzotriazole-based compound, a triazine-based compound, a salicylate-based compound, a benzophenone-based compound, and cyanoacrylic acid. An ester compound, a nickel salt fault compound, or the like is not limited thereto. UV-1 ·_ 2- (2,-hydroxy-5'-methylphenyl)benzotriazole 11¥-2:2-(2'-radio-3',5'-di-〖61^ -butylphenyl)benzotriazole UV-3 : 2-( 2'-trans-yl- 3'-tert-butyl-5'-methylphenyl)benzotriene η sitting ^4:2 -(2'-hydroxy-3',5'-di-161--butylphenyl)-5-chlorobenzotriazole UV-5 : 2-( 2'-hydroxy-3'- ( 3,, ,4,,,5",6,,-tetrahydroindenylmethyl)-5'-methylphenyl)benzotriazole 11¥-6:2,2-extended methyl double (4- (1,1,3,3-tetramethylbutyl)_6_(2Η-benzotriazol-2-yl)phenol) UV-7 : 2-( 2'-hydroxy-3'-tert-butyl- 5,-Methylphenyl) 200904636 Benzotriazole UV-8 : 2-( 2H-benzotriazol-2-yl)-6-(linear and branched lauryl)-4-methylphenol ( TINUVIN 171, manufactured by Ciba) UV-9 : Octyl-3-[ 3-tert-butyl-4-hydroxy-5-(chloro-2H-benzotriazol-2-yl)phenyl]propionate and 2 -ethylhexyl-3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate mixture (TIN UV IN 109 , Ciba system) As a benzophenone-based UV absorber, although Specific examples, but the present invention is limited thereto. 〇¥-10:2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV -12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: bis(2-methoxy-4-hydroxy-5-benzhydrylphenylmethane) as a preferred The ultraviolet absorber is preferably a benzotriazole-based ultraviolet absorber or a benzophenone-based ultraviolet absorber having high transparency and excellent effect of preventing deterioration of a polarizing plate or a liquid crystal, and does not require a less colored benzotriazole system. The ultraviolet ray absorbing agent is particularly preferable. The general formula (1) or the general formula (2) described in JP-A-6-1-4408-3 is also preferable. As the polymer ultraviolet absorbing agent, PUVA is exemplified. -3 0M (manufactured by Otsuka Chemical Co., Ltd.), etc. In addition, it is preferable to use the following fine particles in the cellulose ester. Examples of the inorganic compound include fine particles and titanium dioxide. Alumina, chromium oxide, calcium carbonate, calcium carbonate, talc, sticky -85- 200904636 soil, calcined clay, calcined calcium citrate, water and calcium citrate Aluminum citrate, magnesium citrate, and calcium phosphate. Preferably, the sulphur dioxide is preferred from the viewpoint of low turbidity of the fine particles. The average diameter of the primary particles of the fine particles is preferably 5 to 50 nm, more preferably 7 to 20 nm. . These are mainly those which contain two agglomerates having a particle diameter of 0.05 to 0.3/m. The content of these fine particles in the cellulose ester film is preferably 〇5 ~1% by mass, particularly preferably 0.1 to 0.5% by mass. In the case of the cellulose ester film composed of a plurality of layers of the co-flowing method, it is preferred to contain the added amount of fine particles on the surface. For the fine particles of cerium oxide, for example, fine particles of cerium oxide such as Aer〇silR972, R972V, R974, R812, 200, 200V, 300, R202, 0X50' TT600 (above, manufactured by Nippon Aerosil Co., Ltd.), for example, can be used. A seller who is a trade name of Aer〇SilR976 and R811 (manufactured by Japan Aerosil Co., Ltd.) can be used. Further, polymer microparticles can also be used, and examples of the polymer microparticles include a polysiloxane resin, a fluororesin, and an acrylic resin. Among them, a polyoxyalkylene resin is preferred, and a network structure having a three-dimensional structure is particularly preferred. For example, Tospearl 103, the same 105, the same 108, the same 120, the same 145, the same 3120, and the same 240 (the above Toshiba can be used) The trade name of the manufacturer of the siloxane is a vendor. Among them, Aerosil 200V and Aerosil R972V are particularly good because they can maintain the lower turbidity of the cellulose ester film and reduce the friction coefficient, which is particularly good -86-200904636. In the cellulose ester film used in the present invention, the active energy ray-curable resin layer preferably has an inner side dynamic friction coefficient of 1.0 or less. In the present invention, the cellulose vinegar film can be produced by a solution casting film forming method or a melt casting film forming method. The following is a detailed description of the method for producing the cellulose ester film in the solution casting film forming method. The cellulose ester film is produced by dissolving a cellulose ester and an additive in a solvent to prepare a step of the blend, and casting the blend on a metal belt of a conveyor belt or a drum. a step of drying the cast blend as a web, a step of peeling off from the metal support, a step of stretching or widening, a step of further drying, and winding the processed film The steps are carried out. The procedure for preparing the blend is explained. The concentration of the cellulose ester in the blend is preferably such that the drying load after casting on the metal support can be reduced when the concentration is high, but if the concentration of the cellulose ester is too high, the load during filtration increases, so that the filtration is performed. The purity is deteriorated. The concentration which can be made two is preferably 10 to 35 mass%, more preferably 15 to 25 mass%. The solvent to be used for the blending may be used singly or in combination of two or more. However, when a good solvent of a cellulose ester is mixed with a weak solvent, it is preferably from the viewpoint of production efficiency, and when the good solvent is large, the cellulose ester is used. The solubility is preferred. The mixing ratio of the good solvent to the weak solvent is preferably from 70 to 98% by mass of the good solvent and from 2 to 30% by mass of the weak solvent. The term "good solvent" or "weak solvent" is defined as a good solvent in which the cellulose ester used alone is dissolved, and a weak solvent in the case where it is swellable or insoluble. Therefore, by -87 - 200904636, the degree of substitution of the thiol group of the cellulose ester can be changed to a good solvent or a weak solvent. For example, when acetone is used as a solvent, the cellulose ester of the cellulose ester (the degree of substitution of acetyl group 2.4), Cellulose acetate propionate becomes a good solvent, and cellulose acetate (acetylation degree of ethylene 2.8) becomes a weak solvent. The good solvent is not particularly limited, and examples thereof include organic halogen compounds such as dichloromethane, dioxolane, acetone, methyl acetate, and ethyl acetate. Particularly preferred are dichloromethane or methyl acetate. Further, the weak solvent is not particularly limited, and for example, methanol, ethanol, η-butanol, cyclohexane, cyclohexanone or the like can be used. Further, it is preferred that the blend contains hydrazine. 〇 1 to 2% by mass. When the above blend is prepared, a general method can be employed as a method of dissolving the cellulose ester. When combined heating and pressurization, it can be heated at a boiling point or higher at normal pressure. When the solvent is heated at a temperature higher than the boiling point of normal pressure and does not boil the solvent under pressure, it can prevent the occurrence of gel or block undissolved matter called mamaco (agglomeration) while stirring and dissolving. Therefore, it is better. Further, it is also preferred to mix the cellulose ester with a weak solvent to form a wet or swell, and then add a good solvent to dissolve. The pressurization can be carried out by a method of pressurizing an inert gas such as nitrogen or a method of increasing the vapor pressure of the solvent by heating. It is preferable that the heating is performed by the outside, and for example, the jacket type is preferable because it is easy to control the temperature. The heating temperature at which the solvent is added is preferably from the viewpoint of solubility of the cellulose ester at a high temperature, and if the heating temperature is too high, the productivity is deteriorated due to an excessively large pressure. The heating temperature is preferably 45 to 120 ° C, preferably 60 to 110 ° C, and preferably 70 ° C to 105 ° C. Also, the pressure can be adjusted to the extent that the solvent does not boil at temperatures from -88 to 200904636. Further, a cooling dissolution method can also be used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate. Further, the cellulose ester solution is filtered using a suitable filter material such as filter paper. As the filter material, it is preferable to remove the insoluble matter or the like with a small absolute filtration accuracy. However, if the absolute filtration accuracy is too small, the filter material is likely to be clogged. Therefore, it is preferable that the filter material having an absolute filtration accuracy of 0.008 mm or less is preferable, and a filter material of 0.001 to 0.008 mm is preferable, and a filter material of 0.003 to 〇. 〇〇 6 mm is more preferable. The material of the filter material is not particularly limited, and a general filter medium can be used, and a plastic filter material such as polypropylene or Teflon (registered trademark) or a metal filter material such as stainless steel is preferable because it does not fall off. The impurities contained in the cellulose ester of the raw material are preferably filtered to remove or reduce bright foreign matter. The filtration of the blend can be carried out by a general method, and the method of filtering while heating at a temperature above the boiling point of the solvent at a normal pressure of the solvent and under boiling under the pressure of the solvent can reduce the filtration pressure difference before and after the filtration ( It is better to refer to the rise of the differential pressure. The preferred temperature is 45 to 120. (:, preferably 45 to 70 ° C, preferably 4 5 to 5 5 ° C. The filtration pressure is preferably small. The filtration pressure is preferably 1.6 MPa or less, and preferably less than 1.2 MPa. It is better to be below OMPa. Continue to describe the casting of the blend. The metal support in the casting (casting) step is preferably mirror-finished on the surface, and used as a metal support in stainless steel. The drum with surface or plating for surface plating is preferred. The casting width can be i~4m -89- 200904636. The surface temperature of the metal support in the casting step is set to -5 0 °C~ solvent boiling does not foam Below the temperature, when the temperature is high, the drying speed of the fabric can be increased, so that if the temperature is too high, the fabric will foam or the planarity will be deteriorated. As a preferred metal support, the temperature is 0 to 1 0 (TC). Preferably, it is preferably 5 to 3 〇 ° C. Further, it is preferable to gel the web by cooling and peel off from the metal support in a state containing a large amount of residual solvent. The method of supporting the temperature of the body is not particularly limited, but may be blown into a warm or cold air. Method, or a method of contacting warm water with the inner side of the metal support. When warm water is used, heat can be efficiently transmitted, so that the temperature of the metal support reaches a certain period of time is shorter and better. When using warm air, Considering the latent heat of evaporation of the solvent, the temperature of the fabric is lowered, and the warm air above the boiling point of the solvent can be used to prevent foaming, and a wind higher than the target temperature can be used. Especially for self-casting to peeling, the metal support is changed. The temperature and the temperature of the dry air are preferably dried efficiently. To make the cellulose ester film exhibit good planarity, the residual solvent amount when peeling the fabric from the metal support is preferably 10 to 150% by mass. More preferably, it is 20 to 40% by mass or 60 to 130% by mass, particularly preferably 20 to 30% by mass or 70 to 120% by mass. In the present invention, the amount of residual solvent is defined as the following formula: Residual solvent amount (% by mass) ={(Μ-Ν)/Ν}χ100 Moreover, the quality of the sample taken at any point during or after manufacture of the fabric or film is the mass after heating for 1 hour at 1 1 5 t. -90- 200904636 Again, fiber In the drying step of the ester film, the woven fabric is peeled off from the metal support and then dried, and the amount of the residual solvent is 1% by mass or less, more preferably 〇·1% by mass or less, and particularly preferably 0 to 〇_〇1. In the film drying step, a method of drying by a roll drying method (a method in which a plurality of rolls disposed on the upper and lower sides are used to allow the web to pass through and drying) or a tenter method to carry the fabric is generally used. When the cellulose ester film used for the anti-glare film of the present invention is used, the amount of residual solvent of the fabric after peeling from the metal support is immediately extended in the conveying direction, and the both ends of the fabric are sandwiched by a press plate or the like. It is particularly preferable that the tenter method is extended in the width direction. The preferred stretching ratio in both the longitudinal direction and the transverse direction is 1.05 to 1_5 times, preferably 1.05 to 1.3 times, and more preferably 1.05 to 1.15 times. It is preferable to extend the longitudinal direction and the lateral direction so that the area is 1.1 to 2 times. This can be obtained by the stretching ratio in the longitudinal direction of the stretching magnification X in the horizontal direction. It is preferable to extend in the longitudinal direction immediately after peeling, and it is preferable to extend by the peeling tension and the conveyance tension thereafter. For example, peeling is preferably carried out at a peeling tension of 2 1 ON/m or more, and particularly preferably 220 to 300 N/m. The means for drying the web is not particularly limited, and it can be generally carried out by hot air, infrared rays, heating rolls, microwaves, etc., but it is preferable from the viewpoint of convenience. The drying temperature in the drying step of the woven fabric is preferably from 30 to 150 ° C in a stepwise manner, and when it is carried out in the range of from 50 to 14 CTC, the dimensional stability is better and more preferable. The film thickness of the cellulose ester film is not particularly limited, but is preferably 〜2G() -91 - 200904636 A m. The film thickness of the cellulose ester film is particularly preferably 10 to 70/zm because of its excellent planarity and productivity. More preferably 20~60#m. The best is 30~60//m. Further, a cellulose ester film can be preferably used as the multilayer structure by the co-casting method. When the cellulose ester is in the form of a multilayer, it also has a layer containing an ultraviolet absorber and a plasticizer, which may be a core layer, a surface layer, or both. Further, as a method of forming an uneven shape having an arithmetic mean roughness (Ra) of less than 50 to 100 nm on the surface of the transparent film substrate, for example, it is preferably formed by molding on a transparent film substrate. Continue to explain the melt casting film forming method. In the melt casting film forming method, a molding method in which a solvent (for example, methylene chloride or the like) is used, which is melt-cast by heating and melting, can be classified into a melt extrusion molding method, a pressure molding method, and a blow molding method in more detail. Method, injection molding method, air blowing method, extension molding method, and the like. Among them, a cellulose ester film having excellent mechanical strength, surface precision, and the like is preferably obtained by a melt extrusion method. An example of a melt extrusion method will be described, and a method for producing a cellulose ester film by a melt casting film formation method will be described. Fig. 1 is a schematic flow chart showing the overall configuration of a melt casting film forming apparatus for carrying out the method for producing a cellulose ester film of the present invention, and Fig. 2 is an enlarged view showing a portion of a cooling roll portion of the self-casting mold. 1 and 2, in the method for producing a cellulose ester film of the present invention, after a film material such as a cellulose resin is mixed, the film is extruded from the first cooling roll 5 by using an extruder 1' from the casting die 4. At the same time as the first cooling roll 5, a total of three cooling rolls in the order of the second cooling roll 7 and the third cooling roll-92-200904636 are externally cooled and solidified to form a film 10. Continuing, the film 10 is peeled off by the peeling roller 9, and then the both ends of the film are stretched by the stretching device 12 in the width direction, and then taken up by the winding device 16. Further, in order to correct the planarity, a contact roller 6 that presses the molten film on the surface of the first cooling roll 5 is provided. The contact roller 6 has elasticity on the surface and forms a nip between the first cooling roller 5. The contact roller 6 will be described in detail later. In the method for producing a cellulose ester film of the present invention, the conditions of melt extrusion can be carried out under the same conditions as those used for thermoplastic resins such as other polyesters. The material is preferably pre-dried. The moisture is dried to 100 ppm or less, preferably 200 ppm or less, by a vacuum or a vacuum dryer or a dehumidifying hot air dryer. The cellulose ester-based resin which is dried by hot air or under vacuum or under reduced pressure is used, for example, at an extrusion temperature of 2 0 0 to 300. (The melting is performed to the extent that it is filtered by the vane type filter 2 or the like to remove foreign matter. When the extruder is introduced into the extruder 1 by a supply hopper (not shown), oxygen is prevented under vacuum or under reduced pressure or under inert gas atmosphere. Further, it is preferable to prevent the oxidative decomposition or the like by the influence of moisture. When the additive such as a plasticizer is not previously mixed, the mixture can be kneaded in the middle of the extruder. The mixing device using the static agitator 3 or the like can be uniformly added. It is preferable to mix the cellulose resin with other additives such as stabilizers added as necessary, and it is preferred to mix the mixture before the melting. The cellulose resin and the stabilizer are preferably mixed initially. The mixing can be carried out using a mixer or the like. -93- 200904636 The above can also be mixed in the cellulose resin preparation process. When using a mixer, a v-type mixer, a conical spiral type mixer, a horizontal cylinder type mixer, a Henschel mixer, and a ribbon can be used. A general mixer such as a mixer. After mixing the film constituent materials as described above, the mixture can be directly melted using the extruder 1 to form a film, but once the film is formed After the granulation is carried out, the granules may be melted and formed into a film by the extruder 1. Further, when the film constituting material is a plurality of materials having different melting points, only at the temperature of the material having a lower melting point, once The so-called Mitong semi-molten is produced, and the semi-molten is put into the extruder 1 to form a film. When the film constituent material contains a material which is easily thermally decomposed, the pellet is not produced for the purpose of reducing the number of meltings. The method of directly forming a film, or the method of forming a film such as a semi-melt of Meton as described above is preferred. The extruder 1 can use various commercially available extruders, but melt-kneading and extruding the machine. Preferably, the single-axis extruder or the 2-axis extruder can be used. When the film-forming material is directly formed into a film without granules, it is preferable to use a 2-axis extruder because proper kneading degree is necessary. It can also be used as a film constituting material, such as a uniaxial extruder or a spiral having a spiral shape changed to a mixed type of Maddock type, Unimelt type, or Dulmage. 'When melted' can be used For the shaft press, a 2-axis extruder can also be used. The cooling step in the extruder 1 and after the extrusion can be replaced by an inert gas such as nitrogen or the oxygen concentration can be lowered by depressurization. The melting temperature of the film constituent material in the film is preferably -94-200904636 depending on the viscosity or discharge amount of the film constituent material, the thickness of the manufactured sheet, etc., but generally the glass transition temperature (Tg) of the film, 'Tg+l〇〇°c or less, preferably Tg+lOt: or more, Tg+ or less. The melt viscosity at the time of extrusion is 10 to 1 000 00 poise, preferably 10,000 poises, and the extruder 1 The retention time of the film constituent material in the film is short, preferably within 5 minutes, preferably within 3 minutes, more preferably within 2 minutes. The residence time is easily controlled by the type of extrusion machine 1 and the extrusion conditions are adjusted. The supply amount or L/D of the material, the number of spiral rotations, the spiral groove, etc. can shorten the residence time. The spiral shape or the number of rotations of the extruder 1 can be suitably selected by the viscosity or the amount of discharge of the film. The extruder 1 of the present invention has a breaking speed of 1 / sec to 1 0 0 0 / sec, preferably 5 / sec to 1 0 0 0 / sec, and is 10 / sec to 1 0 0 / sec. As the extruder 1 used in the present invention, a plasticizer can be generally used. The film constituent material extruded from the extruder 1 is sent to the casting 4, and is pressed into a film shape by the slit of the casting mold 4. The casting mold 4 is not particularly limited as long as it is used for producing a sheet or a film. Examples of the material of the casting mold 4 include hard chromium, chromium chromium carbide, titanium carbide, titanium carbonitride, titanium nitride, ultra-steel, ceramics (carbon, alumina, chromium oxide), or the like. For plating, as a surface, it is possible to use a grinding stone of less than 1000 stones for honing' plane cutting of more than 1 000 diamond grindstones (the cutting direction is perpendicular to the flow direction of the tree), and electrolytic honing , electrolytic composite honing and other processing (Tg 9 0 ° c 100 is a good clock, but better cutting by deep material forming mold can be, nitrided crane, grease, etc. -95- 200904636 cast molding The preferred material of the projection portion of the projection 4 is the same as that of the casting mold 4. Further, the surface precision of the projection portion is preferably 0.5 S or less, preferably 2 Å or less. The slit of the casting mold 4 is constituted. In order to adjust the interval, this is shown in Fig. 3. Among the pair of protrusions (1 ip ) forming the slit 3 2 of the casting mold 4, one of the pair of protrusions (3 ip ) having low rigidity and being easily deformed is 3 3, and the other side To fix the protrusion 34. Most of the heating bolts 35 are in the width direction of the casting mold 4, that is, the rectangular shape of the slit 3 2 Arranged at a constant pitch" Each of the heating bolts 35 is provided with a block 36 having a buried electric heater 37 and a cooling medium passage, and each of the heating bolts 35 extends longitudinally through each block 36. The base of the heating bolt 35 is fixed to the plastic The mold body 31 has a tip end that is connected to the outer surface of the flexible protrusion 3 3. The block 36 is cooled by a general air conditioner to increase or decrease the input force of the electric heater 37 and adjust the temperature of the block 36, thereby heating and contracting. The bolts 3 5 are used to adjust the thickness of the film by displacing the flexible protrusions 3 3 . A thickness gauge is provided at the desired flow after the molding, whereby the detected fabric thickness information is placed in the control device, and the thickness information is controlled. Comparing the device with the set thickness information, the power or operating rate of the heating element of the heating bolt can be controlled by a signal from the correction control amount of the same device. The heating bolt is preferably 20 to 40 cm in length and 7 to 14 mm in diameter, for example. Dozens of plural heating bolts are arranged at a preferred spacing of 20 to 40 mm. Instead of heating bolts, they can also be placed in the axial direction to manually move them back and forth to adjust the gap between the bolts as the main body. The gap adjusting member is generally adjusted to have a gap interval of 200 to 1 000 μm, preferably -96 to 200904636 300 to 800/zm, more preferably 400 to 600 μm. The first cooling roller 5~ The third cooling roll 8 is made of a seamless steel pipe having a thickness of 20 〜 and the surface is mirror-finished. The pipe of the internal coolant is configured to heat the film on the coolant roll flowing into the pipe. The contact roller 6 of the first cooling roller 5 is elastic, and is deformed along the surface of 5 by the pressure of the first cooling roller 5 to form a nip between the first roller 5. Fig. 4 is a schematic cross-sectional view showing an embodiment (hereinafter referred to as) of the touch roll 6. As shown in the figure, the contact roller A is a member in which the elastic roller 42 is disposed inside the sleeve 41. The metal sleeve 41 is made of stainless steel having a thickness of 0.3 mm. When the metal sleeve 41 is too thin, the strength is insufficient, and the elasticity is insufficient at the time. Therefore, it is preferable that the thickness of the metal sleeve 4 1 is 1.5 mm. The elastic roller 42 is provided with a rubber 44 formed on the surface of the inner cylinder 43 via the bearing rotation. When the contact roller A is pressurized on the first cooling roller 5, the metal sleeve 41 is pressurized by the first cooling roller 5, and the elastic roller 42 is similar to the first cooling roller 5, and the first cooling is performed. A nip is formed between the rolls. Cooling water 4 5 flows into the space formed between the metal sleeve 41 cylinders 4 2 . Fig. 5 and Fig. 6 show another embodiment B of the crimping rotor. The outer cylinder 51 having the flexibility of contact with the light B is made of seamless stainless steel (4 mm), and the inner side of the outer cylinder 51 is disposed at the same level as -3 mm, and the inflow is absorbed, and the surface thereof is in contact with the first cooling roller. Light A flexible metal, which can be reversely deformed to a thickness of 0.1~ free metal 'elastic roller 套管 sleeve 4 1 deformation, the internal contact of the contact roller in the elastic state (thickness The high-rigidity metal inner cylinder 52 is slightly configured. The cooling liquid 54 flows into the space 53 between the outer cylinder 51 and the inner cylinder 52. In detail, the contact roller B is a rotating shaft at both ends. The outer cylinder support flanges 56a and 56b are attached to the 55a and 55b, and the thin metal outer cylinder 51 is attached between the outer peripheral portions of the outer cylinder support flanges 56a and 56b. Further, the shaft is formed on the shaft of one of the rotation shafts 5a. The fluid supply tube 59 is disposed in the same axial center in the fluid discharge hole 58 of the fluid return passage 57 formed by the core, and the fluid supply tube 59 is connected and fixed to the shaft in the thin-walled metal outer cylinder 51. The fluid shaft cylinder 60 is disposed on the portion of the fluid shaft cylinder 60. The inner cylinder support flange 6 can be attached to both ends of the fluid shaft cylinder 60. 1a, 61b, from the outer peripheral portion of the inner cylinder supporting flange 61a' 61b to the other end side outer cylinder supporting flange 56b, a metal inner cylinder 52 having a wall thickness of about 15 to 20 mm is attached. Between 52 and the thin-walled metal outer cylinder 51, for example, a cooling liquid flow space 5 3 of about 10 mm is formed, and in the metal inner cylinder 5 2 , a communication flow space 53 and an inner cylinder support are formed in the vicinity of both end portions. The intermediate passages 6 2 a, 6 2 b of the outer side of the flanges 6 1 a, 6 1 b are outlets 5 2 a and the flow person □ 52b. Further, the outer cylinder 51 has flexibility similar to that of rubber elasticity. Flexibility, restorability, thinning in the range applicable to the theory of elastic wall thin-walled cylinders. The flexibility evaluated by the thin-walled cylinder theory is expressed by the ratio of wall thickness t/roller radius r, t/r The smaller the ratio, the higher the flexibility. In the contact roller B, when t/r S 0 · 0 3 , the flexibility is the optimum condition. The contact roller generally used is 'roller diameter: R = 200 to 500 mm (Roll-98- 200904636 Radius: r = R/2), roll effective width: L = 500~1600mm, ratio of roll radius r / roll effective width L: r / L <1, its horizontally long shape. As shown in Fig. 6, 'for example, roll diameter: R = 3〇〇mm, roll effective width: L=1 200mm' wall thickness: the optimum range of t is 15〇x〇.〇3=4.5mm or less' but for melting When the sheet width is 13 〇〇mm, when the average line pressure is 9 8 N/cm, the same as the rubber roller of the same shape, the rebound ratio is equal when the wall thickness of the outer cylinder 51 is 3 mm, and the outer cylinder 51 is The nip width k of the nip of the chill roll is also about 9 mni, and the light nip width of the rubber is close to about 12 mm, and it can be pinched under the same conditions. And the amount of rubbing in the width k of the nip is 〇.〇5~O.lmin. Among them, as 〇1^0.03, when the roll diameter is generally 11=200 to 500111111, particularly in the range of 2 mm S t S 5 mm, sufficient flexibility can be obtained, and it is easy to be thinned by machining. Implementation has become a very practical range. When the wall thickness is 2 mm or less, the elastic deformation during processing cannot be processed with high precision. The conversion 値 is 0.008$t/rS0.05 for the normal roll diameter, but it is practically based on the t/r = 0.03, which is proportional to the roll diameter and the wall thickness is also increased. For example, the roll diameter: R = 200, t = 2~3mm' light path: R = 500, t = 4~5mm range. The contact lightes A and B are supplied to the first cooling roll by an energizing means (not shown). The supply capacity of the energy supply means is F, and the width W of the film of the nip along the rotation axis direction of the first cooling roll 5 is set to 9.8 = F / W (linear pressure) is set to 9.8 - 1 4 7N/cm ° -99- 200904636 In the present invention, a nip is formed between the contact rolls A, B and the first cooling roll 5, and the nip is corrected to be planar between the passage of the film. Therefore, when the contact roller is composed of a rigid body and the nip is not formed between the first cooling roller, the film is nip for a long time under a small linear pressure, so that the planarity can be more reliably corrected. That is, if the line pressure is less than 9.8 N/cm, the plastic film line cannot be sufficiently eliminated. On the contrary, when the line pressure is larger than 147 N/cm, the film does not easily pass through the nip, and the film thickness is liable to cause unevenness. Further, when the surfaces of the contact rolls A and B are made of metal, the surface of the rolls A and B can be smoothly smoothed compared with the case where the surface of the contact roll is made of rubber, so that a film having high smoothness can be obtained. Further, as the material of the elastic body 44 of the elastic roller 42, an ethylene-propylene propylene rubber, a neoprene rubber, a ruthenium rubber or the like can be used. It is important to eliminate the plastic film line by the contact roller 6, and it is important that the film viscosity when the contact roller 6 is pressed against the film must be an appropriate range. Further, it is known that cellulose esters have a large change in viscosity due to temperature. Therefore, in order to set the viscosity when the contact roll 6 is pressed against the cellulose ester film to an appropriate range, it is important that the film temperature at the time of the contact of the contact lens 6 with the cellulose ester film is set to an appropriate range. When the glass transition temperature of the cellulose ester film is (Tg), the film is pressed against the film temperature T before the contact roll 6 to satisfy Tg. < T < Tg + 1 l 〇 ° C conditions are preferred. If the film temperature T is lower than Tg, the film viscosity will be too high to correct the film line. Conversely, if the temperature T of the film is higher than Tg + 110, the surface of the film -100-200904636 cannot be uniformly adhered to the roll, and the film line cannot be corrected. Preferably Tg + lot: < T < Tg + 9 (TC, more preferably Tg + 2 (TC < T <Tg+70〇co The film temperature at which the contact lens 6 is pressed with the cellulose ester film is set to an appropriate range, and the melt extruded from the casting die 4 is adjusted by the position p1 in contact with the first cooling roll 5. The length of the first cooling roll 5 along the nip of the first cooling roll 5 and the contact roll 6 is L: the preferred material of the first roll 5 and the second roll 6 is carbon. Steel, stainless steel, resin, etc. Further, the surface precision is preferably high, and the surface roughness is 0.3 S or less, preferably 〇.〇is or less. By reducing the portion of the opening portion (1 i p ) of the casting mold 4 to the first roller 5 to 70 kPa or less, the effect of correcting the plastic film line can be increased. Preferably, the reduced pressure is 50 to 70 kPa. The method of maintaining the partial pressure of the opening from the opening of the casting die 4 to the first roller 5 to 70 kPa or less is not particularly limited, and the self-casting mold 4 is applied to the periphery of the roller to cover the pressure member, and the pressure is reduced. method. At this time, it is preferable that the suction device is disposed so that the device does not become a place where the sublimate is attached, and the heater is applied to perform heating or the like. If the suction pressure is too small, the sublimate material cannot be effectively attracted. Therefore, it is necessary to have a suitable suction pressure to melt the film-like cellulose ester resin from the T mold 4 to the first roll (the first cooling roll). 5, the second cooling roll 7 and the third cooling roll 8 are sequentially conveyed in a dense manner and cooled and solidified to obtain an unextended -101 - 200904636 cellulose ester-based resin film 10. In the embodiment of the present invention as shown in Fig. 1, the cooled and solidified unstretched film 1 which is peeled off from the third cooling roll 8 by the peeling roller 9 is introduced into the stretching machine via a dancer roll (film tension adjusting roll). 12. Here, the film 1〇 is oriented in the lateral direction (width direction). By this extension, the molecules in the film are aligned. A method of extending the film in the width direction can be carried out by a known tenter or the like. On the one hand, the transmission axis of the polarizing film is generally also in the width direction. The polarizing plate of the polarizing film is parallel to the retardation axis of the optical film, and the laminated polarizing plate is incorporated in the liquid crystal display device, thereby improving the display contrast of the liquid crystal display device and obtaining a good viewing angle. The glass transition temperature (Tg) of the film constituent material can be controlled by the difference in the kind of the material constituting the film and the ratio of the materials constituting the film. When a retardation film is produced as a cellulose ester film, the Tg is 1 20 ° C or more, preferably 1 35 ° C or more. In the liquid crystal display device, in the developing state of the image, the temperature of the device itself rises, for example, the temperature rise from the light source causes the temperature environment of the film to change. At this time, when the Tg of the film is lower than the ambient temperature of the film, the stagnation caused by the state of the molecular orientation fixed to the inside of the film and the size of the film are greatly changed. When the Tg of the film is too high, the temperature at which the film constituent material is thinned is too high, and the energy consumption for heating is increased, and the material itself is decomposed when the film is formed, and coloring is caused thereby, so Tg is 25 0 Below °c is preferred. Further, in the extending step, known heat setting conditions, cooling, and relaxation treatment can be carried out, and those having characteristics required for the intended optical film can be appropriately selected. The function of the retardation film when the physical properties of the retardation film and the viewing angle of the liquid crystal display device are to be expanded can be appropriately selected by the above-described stretching step and heat setting treatment. In the case where the stretching step and the heat setting treatment are carried out, the heating and pressurizing step is performed before the stretching step and the heat setting treatment. In the case of producing a retardation film as a cellulose ester film, and the function of the composite cellulose ester film, it is necessary to perform refractive index control, but the refractive index control can be carried out by an extending operation, which is a preferred method. The extension method will be described below. In the step of extending the retardation film, the length of the cellulose resin is extended by 1.0 to 2.0 times in the direction of the cellulose resin, and when the film is extended in the direction perpendicular to the film by 1.0 to 1 to 2.5 times, the necessary retention time Ro can be controlled. Rt, or can improve the planarity. Here, Ro is the in-plane retention enthalpy, which is the difference between the refractive index of the in-plane long-direction MD and the refractive index of the width direction TD multiplied by the thickness, and Rt is the display thickness direction retention 値, which is the in-plane refraction. The difference between the ratio (the average of the long direction MD and the width direction TD) and the refractive index in the thickness direction is multiplied by the thickness. The stretching may be carried out, for example, in the longitudinal direction of the film and in the direction orthogonal to the film surface, i.e., in the width direction, sequentially or simultaneously. At this time, when the stretching ratio in at least one direction is too small, a sufficient phase difference cannot be obtained, and when it is too large, it is difficult to extend and the film is likely to be broken. -103- 200904636 An effective method of extending the refractive index nx, ny, and nz of the film in a predetermined range in the two-axis direction orthogonal to each other. Here, nx represents the refractive index of the long-hand MD direction, ny represents the refractive index in the wide TD direction, and nz represents the refractive index in the thickness direction. For example, when extending in the direction of melt casting, if the shrinkage in the width direction is too large, the nz is too large. At this time, it is suppressed that the width of the film is shrunk or extended in the width direction. When extending in the width direction, uneven distribution of refractive index occurs in the width direction. This distribution sometimes occurs when the tenter method is used, and it is presumed that when the film is stretched in the width direction, a contraction force is generated in the central portion of the film, and the end portion is fixed, which causes a so-called bowing. phenomenon. At this time, when the stretching is also performed in the casting direction, the bowing phenomenon can be suppressed, and the uneven distribution of the phase difference in the width direction can be reduced. By extending in the two-axis directions parallel to each other, the film thickness variation of the obtained film can be reduced. When the film thickness of the retardation film is excessively changed, the phase difference is uneven, and when used in a liquid crystal display, unevenness in coloring or the like may occur. The film thickness variation of the cellulose ester film is ±3%, more preferably ±1%. In the above object, the method of extending in the two-axis direction orthogonal to each other is effective, and the stretching ratio in the two-axis direction orthogonal to each other is 1.0 to 2.0 times in the final casting direction, and 1.01 to 2.5 times in the width direction. The range is preferably, and it is more preferable to obtain a residence enthalpy which is required to be in the range of 1.0 to 1.2 times in the casting direction and 1.05 to 2.0 times in the width direction. When there is an absorption axis of a polarizer in the long direction, the transmission axis of the -104-200904636 photon in the width direction is uniform. In order to obtain a long-length polarizing plate, it is preferable that the retardation film is stretched in the width direction to obtain a slow phase axis. When a cellulose ester obtained by positive birefringence is used as the stress, when the above structure is extended in the width direction, the retardation axis of the retardation film can impart stress in the width direction. In this case, in order to improve the display quality, the retardation axis of the retardation film is preferably in the width direction, and the retention of the target must be satisfied, and the formula: (the stretching ratio in the width direction) > (the stretching ratio in the casting direction) condition. After the extension, the end portion of the film is cut by the slitting machine 13 as a slit of the width of the product, and then the flange processing is performed by the edge ring 14 and the back roller 15, and the edge processing is performed on both ends of the film. (knurled, embossing), being taken up by a winder 16 to prevent the occurrence of sticking or scratching in the cellulose ester film (element) F. The method of burring processing can process a metal ring having a convex-concave pattern on its side by heating or pressurizing. Further, the holding portion of the press plate at both end portions of the film is generally deformed and cannot be used as a film product, so that it can be reused as a raw material after being cut. Continuing, the film winding step is such that the film is wound on the take-up reel by keeping the shortest distance between the outer peripheral surface of the cylindrical roll film and the outer peripheral surface of the previous movable transfer roll. Further, before the take-up reel, means such as a static eliminating fan for removing or reducing the surface potential of the film may be provided. The coiler for producing the cellulose ester film of the present invention can be wound by a general user's winding method such as a constant tension method, a constant torque method, a tilting tension method, or a program tension control method with a constant internal stress. Further, the initial winding tension at the time of winding the fiber-105-200904636 velocide film is preferably 90.2 to 3 00.8 N/m. In the winding step of the film, it is preferable to wind up the film under the environmental conditions of a temperature of 20 to 30 ° C and a humidity of 20 to 60 % RH. By setting the temperature and humidity of the film winding step in this way, the humidity resistance change in the thickness direction retention enthalpy (Rt) can be improved. When the temperature in the winding step is less than 20 °C, crepe is generated, and the deterioration of the quality of the film roll makes it impossible to use it. When the temperature in the winding step of the film exceeds 30 °C, wrinkles are still generated, and the film roll quality is deteriorated, which is not practical. Further, if the humidity in the winding step of the film is less than 20% RH, static electricity is easily generated, and deterioration of the quality of the film roll makes it impossible to use it. When the humidity in the winding step of the film exceeds 60% RH, the roll quality, the bonding failure, the conveyability, and the like may be deteriorated. When the cellulose ester film is wound into a roll shape, the core of the roll may be only the core on the cylinder, and may be any material, but it is preferably a hollow plastic core as a plastic material to be resistant. The heat-resistant plastic material having a heat treatment temperature may be a resin such as a phenol resin, a xylene resin, a melamine resin, a polyester resin or an epoxy resin. Further, it is preferable to use a tempered thermosetting resin such as glass enamel. For example, a hollow plastic core: a roll core having an outer diameter of 6 inches (hereinafter referred to as '2.5 inches) and an inner diameter of 5 inches using FRP. For the number of rolls of these volume cores, it is preferable to use 1 roll or more, and 5 roll or more is better. The roll thickness is preferably 5 cm or more, and the length is 5 00 to 1 0000 m -106 to 200904636, and the film width is 1 ~5m is good 'extra good for 1.5~4m. When a wide film is produced, it is also possible to apply a slit to the film before winding to obtain 2 to 3 roll films. In the film forming step, the platen holding portion at both ends of the cut film is pulverized or, if necessary, granulated, and can be reused as a raw material for a film of the same type or a film material of a different type. The surface treatment of the anti-glare layer may use a washing method, an alkali treatment method, a surface plasma treatment method, a high-frequency discharge plasma method 'electron beam method, an ion beam method, a sputtering method, an acid treatment, a corona treatment method, Atmospheric piezoelectric slurry method, etc. Here, the corona treatment is carried out by applying a high voltage of 1 kV or more to the electrodes under atmospheric pressure, and performing the treatment under discharge, and can be carried out using a device sold by Kasuga Electric Co., Ltd. or Toyo Electric Co., Ltd. The intensity of the corona discharge treatment depends on the distance between the electrodes, the output per unit area, and the frequency of the generator. A commercially available product may be used for one electrode (A electrode) of the corona treatment device, but the material may be selected from aluminum, stainless steel, or the like. The other is an electrode (B electrode) to enclose the plastic film, and the light electrode to be placed at a certain distance from the A electrode to be subjected to corona treatment can be stabilized and uniformly performed. This can also be used as a lining roller for ceramics, polyoxyalkylene, EP T rubber, Heplon rubber, etc. on rollers made of Ming, stainless steel, and their metals. It is better. The frequency used for the corona treatment is 20 to 100 kHz, and the frequency is preferably 30 to 60 kHz. When the number of frequencies is lowered, the uniformity of corona treatment is deteriorated, and corona treatment is uneven. Further, when the number of frequencies is too large, there is no particular problem in performing corona treatment with high output. However, when the corona treatment of the low-transmission -107-200904636 is performed, it is difficult to perform the stabilization process, and as a result, processing unevenness occurs. The output of the corona treatment is 1~5w_min./m2, and the output of 2~4wmin./m2 is preferred. The distance between the electrode and the film is 5 to 50 mm, but preferably 10 to 35 mm. When the gap is too open, it is necessary to maintain a certain output and must have a high voltage, which is prone to unevenness. Also, when the gap is too narrow, the applied voltage is too low, and unevenness is likely to occur. In addition, when the film is continuously processed, the film is in contact with the film to cause scratches. Further, as the alkali treatment method, only the film to which the antiglare layer is applied is immersed in the aqueous alkali solution, and is not particularly limited. As the aqueous alkali solution, an aqueous sodium hydroxide solution, a potassium hydroxide aqueous solution, an aqueous solution or the like can be used, and among them, an aqueous sodium hydroxide solution is also preferred. The alkali concentration of the aqueous alkali solution, for example, the concentration of sodium hydroxide is preferably 0.1 to 25% by mass, preferably 0.5 to 15% by mass. The alkali treatment temperature is usually 10 to 80 ° C, preferably 20 to 60 t:. The alkali treatment time is from 5 seconds to 5 minutes, preferably from 30 seconds to 3 minutes. After the treated film is neutralized with acidic water, it is preferred to wash the sulfur sufficiently. In the present invention, at a high pressure or a pressure close to this, a high frequency voltage of 50 kHz to 150 MHz is applied between the opposing electrodes to form a discharge 'the excited gas formed by the discharge, and the transparent film substrate or the transparent film substrate After the surface of the film having the anti-glare layer on the film substrate is contacted, it is preferable to form the film after the anti-amplitude layer is formed. The frequency is preferably 50 kHz to 27 MHz. The counter electrode is composed of the first electrode and the second electrode, and the frequency of the high frequency voltage applied to the pole of any one of -108-200904636 is preferably 50 kHz to 150 MHz. Further, the frequency of the high frequency voltage applied to the first electrode is 1 to 200 kHz, and the frequency of the high frequency voltage applied to the second electrode is preferably 800 kHz to 1 50 MHz. The plasma discharge treatment at atmospheric pressure or near this pressure is hereinafter referred to simply as the atmospheric piezoelectric slurry method. a film having an anti-glare layer on a transparent film substrate, and a voltage of the first frequency number ωΐ is applied to the first electrode between the opposing electrodes formed by the first electrode and the second electrode at or near atmospheric pressure a high frequency voltage of the component is applied to the second electrode by a high frequency voltage of a voltage component of the second frequency number ω2 to form a discharge, and after the excited gas formed by the discharge is in contact with the surface of the transparent film substrate, An antireflection layer is formed on the upper surface. As an atmospheric piezoelectric slurry method, reference is made to Japanese Laid-Open Patent Publication No. Hei No. 1 1 - 1 3 3 205, Japanese Patent Publication No. 2000-180, and Japanese Patent Publication No. Hei 1 1 - 6 1 4 0 6 The technique disclosed in Japanese Laid-Open Patent Publication No. 2000- 1472, No. 2000-121, and the like. Continue to explain the atmospheric piezoelectric slurry method. At atmospheric pressure or near the pressure, a gas is supplied to the discharge space (between the opposing electrodes), and a high frequency voltage is applied to the discharge space to cause the gas to be excited to become a plasma state. In the gas of the agitated plasma state, Exposure to a film surface having an anti-glare layer on a transparent film substrate. The high frequency voltage applied to the discharge space formed between the opposing electrodes may be a high frequency of one frequency, or may be a high frequency of two or more frequency numbers. The atmospheric piezoelectric slurry treatment is carried out at atmospheric pressure or near this pressure, -109- 200904636, but the atmospheric pressure or the pressure close to this is 20 to 110 kPa, preferably 93 to 1 04 kPa. The gas supplied between the opposing electrodes (discharge space) is at least containing a stimulating gas excited by a high frequency voltage, or a stimulating gas excited by a high frequency voltage, and receiving the energy to become a plasma state or A gas that stirs up the state. The high frequency rate is a frequency having at least 0.5 kHz. When plasma discharge treatment is performed at a high frequency voltage of one frequency (sometimes referred to as a high frequency and high frequency voltage addition method), or when a plasma discharge treatment is performed at a high frequency voltage of two frequency numbers (sometimes The electrodes called 2 frequency number and high frequency voltage addition method are used in the same way, and the device itself does not have much difference. The difference is that there are two high-frequency power sources, and there is a filter attached thereto, and a high frequency voltage is applied from the electrodes of the opposite electrodes. 1 When the frequency is high and the frequency is applied, one of the opposing electrodes is the ground electrode, and the other is the external electrode. The high frequency power is connected to the applied electrode, and the ground is grounded on the ground electrode. Referring to Fig. 7, a thin film forming apparatus (atmospheric piezoelectric slurry processing apparatus) of each of the first frequency number high frequency voltage addition method and the two frequency number high frequency voltage addition method will be described. Fig. 7 is a schematic view showing an example of a film forming apparatus of a high frequency and high frequency voltage application method. In the same figure, an external electrode (corner type electrode) 136 having a high frequency voltage inside the plasma discharge vessel 130 is formed, and a roll type ground electrode 1 3 5 which winds the lower transparent film substrate F is formed. Relative electrode. How many of the additional electrodes 136 can be juxtaposed. The gas G is supplied from the gas supply port 152 of the plasma discharge vessel 1 by a -110-200904636 sieve which homogenizes the gas G, along the applied electrode 136, and the external electrode and the plasma discharge vessel The inner wall of 1 3 1 passes, so that the discharge space 1 3 between the opposing electrodes is sufficient for the gas G. The high frequency power supply 21 is applied to the external electrode 136 to apply a high frequency voltage, and the transparent film substrate F is exposed to the gas G excited by the discharge space 132. The frequency of the applied high frequency voltage is preferably 50 kHz or more. It is preferably in the range of 50 kHz to 150 MHz, which is preferable from the viewpoint of uniform processing or large-area processing. The transparent film substrate F is exposed between the agitated gas G, and the electrode can be heated or cooled by the electrode temperature adjusting means 160. As the medium for temperature adjustment, an insulating material such as distilled water or oil can be preferably used. In the plasma discharge treatment, it is desirable to avoid uneven temperature of the substrate in the wide direction or the long direction as much as possible, and the temperature inside the electrode can be uniformly adjusted. Fig. 8 is a schematic view showing another example of a film forming apparatus in which the frequency is not the same as the frequency and voltage. In the same manner as in the case of FIG. 7, the transparent film substrate F is plasma-discharged by the roll electrode (first electrode) 135 and the opposing electrode (discharge space) 1 32 of the corner-type electrode group (second electrode) 136. Processor. In the discharge space (between the electrodes) 132 between the roller electrode (first electrode) 135 and the corner electrode group (second electrode) 136, the number of frequencies applied to the first electrode 141 by the roller electrode (first electrode) 135 The high frequency voltage VI of ω 又 is formed by the high frequency voltage V2 of the second power source 142 plus the frequency number ω2 in the corner electrode group (second electrode) 136. Between the roller electrode (first electrode) 135 and the second power source 141, a first filter 143 is provided to allow a current from the i-th power source i 4 to flow into the roller electrode (first -111 - 200904636 electrode) 135. The filter 143 is designed such that the current from the first power source 141 is difficult to pass, and the current from the second power source 142 is easily designed. Further, between the corner-shaped electrode group (second electrode) 136 and the second power source 142, the second filter 144 is provided to allow a current from the second power source to flow into the second electrode, and the second filter 144 is designed to be self-contained. 2 The current of the power source 142 is difficult to pass, and the current from the first power source 141 easily passes. Among them, it is difficult to pass the current, and it is preferably only 20% or less of the current, and preferably only 10% or less. On the other hand, the so-called easy passage is preferably 80% or more of the passing current, more preferably 90% or more. For example, a capacitor of a number of 〇 to tens of thousands of pF or a number of coils can be used in accordance with the number of frequencies of the second power source 142. As the second filter 1 44 'corresponding to the frequency of the first power source 14 1 , a wire i of i 〇 μ η or more is used, and the wire 圏 or the capacitor can be grounded via the wire, and can be used as a furnace. The light electrode 135 is used as the table 2 electrode, and the corner tube type electrode group 136 can be used as the first electrode. The second power source is connected to the first electrode and the second power source is connected to the second electrode. Further, the "th power supply" has a force gp which can only add a local frequency voltage (Vl > V2) larger than the second power supply. Also, only have the frequency number ω1 < ω2 ability can be. In Fig. 8, the gas G generated by the gas supply device 15 of the gas supply means 150 is introduced into the electric discharge discharge processing vessel 131 by the gas supply port 152 at a controlled flow rate. The discharge space 132 and the plasma discharge treatment container 131 are filled with the gas G. The transparent film substrate F is unwound from a not-shown element, and then conveyed to -112-200904636, or conveyed by the previous step, and nip by the nip roller 165 via the guide roller 164 to block the transparent film substrate. The air or the like is transferred between the roll electrode 135 and the roll electrode 135, and is transferred between the roll electrode type electrode group 136 and the roll electrode (first electrode) 135 and the corner tube type electrode group (second electrode) 136. The voltage generates a discharge plasma with a relative electrode (discharge space) of 132. The transparent film substrate F is a gas which is wound while being in contact with the roller electrode 135 while being exposed to the plasma state. The transparent film substrate F is taken up by a winder (not shown) via a nip roll 166 and a guide roll 167, or transferred to a secondary step. The discharge body G' is discharged through the exhaust port 153. In the exposure time of the gas in the plasma state, the roller electrode (first electrode) 135 and the corner tube electrode group (second electrode) 136 are heated or cooled, and the temperature is adjusted by the electrode temperature adjusting means 160 to send the medium. The liquid pump P is sent to the two electrodes via the pipe 161, and the temperature is adjusted from the inside of the electrode. Moreover, the 1 6 5 and 1 6 6 are the pulse wave of the cutting plasma discharge treatment vessel 133 and the cutting plate of the outside, and the pulse wave of the intermittent mode or the continuous wave of the signal wave, although not limited The voltage waveform, but it is better to add high energy and high frequency voltage to form a strong film. The frequency of the high frequency voltage applied to the first electrode is 1 to 200 kHz, and the frequency of the high frequency voltage applied to the second electrode is preferably 800 kHz or more. The power density at this time is preferably 1 to 50 W/cm 2 (wherein the cm 2 of the denominator is the area caused by the discharge), preferably 1.2 to 30 W/cm 2 . -113- 200904636 As a high-frequency power supply, 100 kHz; |! (made by Hayden Research Institute), 200 kHz, 800 kHz, 2 MHz, 1 3 · 5 6 MHz, 2 7 MHz, and 150 MHz (all manufactured by Pearl Industries) can be cited. And * printed as Hay den Research Institute Impulse high frequency power supply (continuous mode is 100 kHz). Fig. 9 is a perspective view showing an example of a conductive metal base material of a roll electrode and a structure covered with a dielectric. In the same figure, the roller electrode 1 3 5 a is a conductive metal base material 1 3 5 A, and is covered with a dielectric body 135B. The interior becomes a hollow jacket that is temperature-adjustable. Fig. 10 is a perspective view showing an example of a conductive metal base material of the corner tube type electrode shown in Fig. 7 and Fig. 8 and a structure covered with a dielectric body. In Fig. 10, the corner electrode 136a has a dielectric body 136B which is the same as the case of Fig. 9 for the conductive metal base material 136A, and the structure of the electrode is a metal pump, which becomes The jacket can be used for temperature regulation during discharge. Further, the number of the corner-type electrodes is such that a plurality of roots are provided along a circumference larger than the circumference of the above-mentioned roller electrode, and the discharge area of the electrode is the area sum of the full-bore cylindrical electrode faces of the roller electrode 135. The corner tube electrode 136a shown in Fig. 10 may be a cylindrical electrode. However, the angle tube type electrode has an effect of expanding the discharge range (discharge area) as compared with the cylindrical electrode, and is therefore suitable for use in the present invention. In Fig. 9 and Fig. 10, each of the roller electrode 135a and the corner-tube electrode 136a is made of a conductive metal base material 135A and 136A, and a ceramic material is used as the dielectric bodies 135B and 136B, and an inorganic compound is used. Sealing -114- 200904636 Material for sealing. The ceramic dielectric body can be coated only to a single thickness of imm. As the ceramic material used for the dissolution, an alumina, a tantalum nitride, or the like can be used, and among them, alumina is particularly preferable because it is easy to process. Further, the dielectric layer may be a liner-treated dielectric material provided with a glass liner. Examples of the conductive metal base materials 13 5A and 13 6A include titanium or a titanium alloy, a metal such as silver, platinum, stainless steel, aluminum, or iron, or a composite material of iron and ceramics or a composite of aluminum and ceramics. Material, but titanium or titanium alloy is particularly preferable from the following reasons. The distance between the two electrodes (electrode gap) can be determined in consideration of the thickness of the dielectric body provided on the conductive metal base material, the magnitude of the applied voltage, the purpose of the plasma, etc., but when the dielectric body is provided on the electrode side. The shortest distance between the surface of the dielectric body and the surface of the conductive metal base material, and the distance between the dielectric bodies when the dielectric is provided on both of the electrodes, and in any case, from the viewpoint of uniform discharge, 0.1~ 20mm is preferred, and particularly preferably 0.5 to 2mm. The plasma discharge treatment container is preferably a Pyr ex (registered trademark) glass processing container, but may be insulated from the electrode, and may be made of metal. For example, a polyimide or the like may be bonded to the inner surface of aluminum or stainless steel, or the metal surface may be insulated without being sprayed with a ceramic. The conductive metal base material and the dielectric body will be described in detail. The electrodes used in the atmospheric piezoelectric slurry method must be structurally or in a manner that can withstand severe conditions. As such an electrode, it is preferable to cover the dielectric body on the metal base material -115-200904636. In the dielectric-coated electrode, it is preferable to have a characteristic match between various metal base materials and a dielectric body, and the difference in thermal expansion coefficient between the metal base material and the dielectric body becomes 1 〇X 1 〇-6 / °C combination of the following. Preferably, it is 8xl (less than T6/°C), more preferably 5xl (T6/°C or less, especially preferably 2xlO_6/°C or less. And the so-called linear thermal expansion coefficient is a physical property characteristic of a well-known material. Line thermal expansion coefficient The difference between the conductive metal base material and the dielectric material in this range is as follows. Combination example Conductive metal base material (1) Pure Qin or Chin alloy (2) Pure titanium or titanium alloy ( 3) Stainless steel (4) Stainless steel (5) Ceramic and iron composites (6) Ceramic and iron composites (7) Ceramic and aluminum composites (8) Ceramic and aluminum composite dielectrics Ceramics spray coated glass lining ceramic spray coating glass lining ceramic spray coating glass lining ceramic spray film glass lining g stomach line thermal expansion coefficient difference, the above example (1) or The combination of the example (2) and the examples (5) to (8) is preferred, and the combination of the examples (1) is particularly preferable. -116- 200904636 The metal base material is titanium or titanium in view of the above characteristics. The alloy is particularly good. When the metal base material is used as titanium or titanium alloy, the dielectric can be used as described above. Avoid the deterioration of the electrode during use, especially avoiding cracking, peeling, falling off, etc., and can withstand long-term use under severe conditions. The metal base material of the electrode is a titanium alloy containing 70% by mass or more of titanium or Titanium. The specific characteristics of the dielectric material are preferably inorganic compounds having a specific electric conductivity of 6 to 4 5 , and examples of such a dielectric material include ceramics such as alumina and tantalum nitride, or tannic acid. A glass lining material such as a salt glass or a borate glass, etc., in which a ceramic device to be described later is sprayed or a glass lining is preferred. A dielectric body provided after the molten alumina is preferably used. The dielectric material has a void ratio of 10% by volume or less, preferably 8% by volume or less, preferably more than 5% by volume, and 5% by volume or less, and a gap of a dielectric body. The rate can be measured by a BET sorption method or a mercury porosimeter. For example, a porosity can be measured by using a mercury porosimeter manufactured by Shimadzu Corporation using a dielectric body coated with a metal base material to measure the void ratio. High durability due to lower void ratio For the dielectric material having a low void ratio, a high-density, high-density ceramic spray coating film or the like by atmospheric plasma spray method, etc., may be used, and the void ratio is further reduced. In the atmospheric plasma spray method, a fine powder such as a ceramics or a wire is placed in a plasma heat source, and the particles in a molten or semi-molten state are blown and adhered to a metal base material to be coated. -117- 200904636 The so-called plasma heat source is to make the molecular gas high temperature and dissociate into atoms' and then give energy to emit electrons into high-temperature plasma gas. The plasma gas has a high jet velocity. Compared with the past arc spraying or surface spraying, the molten material can be punched into the metal base material at a high speed, so that the adhesion strength is high, and a high-density coating can be obtained. For more details, a method of spraying a heat-shielding film by a high-temperature exposed member described in JP-A-2000-301655 can be referred to. By this method, the void ratio of the dielectric (ceramic spray film) coated as described above can be obtained. Further, as another preferable form for resisting large electric power, the thickness of the dielectric body is 〇·5 to 3 mm. The film thickness variation is preferably 5% or less, preferably 3% or less, more preferably 1% or less. In order to further reduce the void ratio of the dielectric body, it is preferable to further perform the sealing treatment of the inorganic compound on the spray film such as the above ceramics. Here, as the inorganic compound, a metal oxide is preferable, and cerium oxide (S i Ο X ) is contained as a main component. The inorganic compound to be subjected to the plugging treatment is preferably formed by hardening by a sol-gel reaction. When the inorganic compound of the plugging treatment is a metal oxide as a main component, a metal alkoxide or the like is applied as a plugging liquid to the ceramic spray film, and is cured by a sol-gel reaction. When the inorganic compound contains cerium oxide as a main component, it is preferred to use alkoxy decane as a sealing liquid. Among them, in the promotion of the sol-gel reaction, energy treatment is preferred. As the energy treatment, there is thermal curing (preferably 2 〇 〇 r or less), or ultraviolet irradiation. Further, as a method of sealing the pores, the sealing liquid can be diluted and the coating and hardening are repeated several times, and the inorganicization can be further improved to obtain a dense electrode having less deterioration from -118 to 200904636. When a metal alkoxide or the like of a dielectric-coated electrode is used as a sealing liquid and applied to a ceramic spray film, and the sealing treatment is performed by a sol-gel reaction, the content of the metal oxide after curing is 60% or more are preferred. When alkoxysilane is used as the metal alkoxide of the plugging liquid, the content of Si Ox (X is 2 or less) after curing is preferably 60 mol% or more. The SiOx content after hardening was measured by xpS analysis of the cross section of the dielectric layer. In the present invention, the maximum height (Rmax) of the surface roughness specified by Jis B 0601:2001 is adjusted to at least 1 〇//m on the surface at least in contact with the substrate of the electrode, and the viewpoint of the effect described in the present invention is obtained. Preferably, the maximum roughness of the surface roughness is 8 #m or less, and particularly preferably 7 // m or less. By performing the honing of the surface of the dielectric body of the dielectric-coated electrode in this manner, it is possible to maintain a certain dielectric thickness and the interval between the electrodes, thereby stabilizing the discharge state without being inferior in heat shrinkage or Residual stress causes it to deform or crack. 'High durability can be greatly improved. The honing of the surface of the dielectric body is preferably carried out in a dielectric body on the side at least in contact with the substrate. Further, the arithmetic mean roughness (Ra) prescribed by JIS B 060 1 ·· 200 1 is preferably 0.5/zm or less, more preferably less than or equal to i.m. In the dielectric-coated electrode used in the present invention, as another preferable form which can withstand a large electric power, the heat-resistant temperature is 1 〇 〇. (3 or more. More preferably 120 ° C or more 'extra is 150 ° C or more. The upper limit is 500. (:. and 'The so-called heat-resistant temperature is not caused by insulation damage, can withstand normal discharge -119- 200904636 The highest temperature in the state of electricity. The heat-resistant temperature can be applied to the dielectric of the above-mentioned ceramics, or the dielectric layer of the laminated glass lining which is mixed in a different amount, or can be appropriately combined and selected from the following metal base materials and In the present invention, it is necessary to use an electrode which can maintain a uniform luminescent discharge state under such a voltage in the plasma discharge treatment device. In the present invention, the electric power is applied between the opposite electrodes. The second electrode is supplied with a power density of 1 to 50 W/cm 2 , preferably 1.2 to 30 W/cm 2 , and a discharge gas is generated to generate a plasma, and energy is supplied to the film forming gas to form a film. In addition, a continuous-wave continuous oscillation mode called continuous mode and an intermittent vibration mode in which ΟΝ/OFF is intermittently called a pulse mode may be employed, but at least the second electrode side is connected The signal wave method is preferably a dense and good film. The discharge condition is such that a high frequency voltage is applied to the discharge space of the first electrode and the second electrode, and the high frequency voltage has at least a first frequency number ω overlapping. It is preferable that the voltage component and the voltage component of the second frequency number ω2 which is higher than the first frequency number are formed. The high frequency voltage is a voltage component in which the first frequency number ω 重叠 is superimposed, and the first frequency number is overlapped. Ωΐ is also a component of the voltage component of the second frequency number ω2, and the waveform is the signal wave of the frequency number ω1, and the signal of the frequency number ω2 which is higher than this is the signal waveform of ω1. The waveform of the wave is not limited, and may be a pulse wave for both sides, or one of the signal waves and the other is a pulse wave. Further, the third voltage may be further divided into -120 to 200904636. However, the present invention In the same manner as the high frequency and voltage application method of the first frequency, the film can be densely formed at least on the second electrode side. The discharge starting voltage is the actual discharge space (the composition of the electrodes). The minimum voltage at which the discharge can be caused by the reaction conditions (gas conditions, etc.). The discharge start voltage can be slightly changed by the type of the gas supplied to the discharge space or the type of the electrode, but it can be considered and discharged. The discharge voltage of the gas alone is slightly the same. It is presumed that the high frequency voltage is applied to the opposite electrode (discharge space) as described above, which can cause discharge and generate high-density plasma. The specific method of adding high frequency voltage to the discharge space can be used. The first electrode constituting the counter electrode is connected to the first power source having the frequency ω1 and the first high frequency voltage of the voltage VI, and the second electrode is connected to the second high frequency voltage of the frequency ω2 and the voltage V2. 2 power film forming device (atmospheric piezoelectric slurry processing device). When the high frequency voltage is applied from the two high-frequency power sources, S is necessary to start the discharge of the discharge gas having the higher discharge start voltage on the first frequency number ωΐ side, and the second frequency number ω2 side is used to increase the power. It is necessary to focus on the density of the pulp to form a dense and good film. It is preferable to apply a high-frequency voltage of about 1 to 200 kHz from the first electrode to the first power source, and to apply a high-frequency voltage of about 800 kHz to 15 MHz from the second electrode using the second power supply. At this time, by adding it! The high frequency voltage of ~ 00 kHz can excite the discharge gas with a higher discharge start voltage to generate plasma. -121 - 200904636 Further, it is preferable that the first power source has a capability of applying a higher frequency voltage than the second power source. Further, as a discharge condition, a high frequency voltage is applied between the first electrode and the second electrode, and the high frequency voltage is a superimposed i-th high frequency voltage: VI and a second high frequency voltage: V2, and the discharge start voltage is applied. When IV, V12IV>V2 or Vl>IVgV2 is satisfied. Better to meet VI > IV > V2. The definition of the local frequency and the discharge start voltage, and the specific method of applying the high frequency voltage to the opposing electrode (discharge space) are the same as those described above. Among them, the high frequency voltage (applied voltage) and the discharge starting voltage can be measured by the following methods. High-frequency voltage: VI, and V2C unit: kV/mm) The high-frequency probe (P6015A) of each electrode section was placed, and the high-frequency probe was connected to an oscilloscope (TDS3012B, manufactured by Tektronix Co., Ltd.), and the voltage was measured. Measurement method of discharge starting voltage: IV (unit: kV/mm) A discharge gas is supplied between the electrodes to increase the voltage between the electrodes, and the voltage at which the discharge starts is defined as the discharge starting voltage: IV. The detector is the same as the above high frequency voltage measurement. By discharging a higher voltage, for example, even if the discharge voltage such as nitrogen is a higher discharge gas, the stable plasma state can be maintained at a high density when the discharge gas is activated. When the discharge gas is used as the nitrogen gas by the above measurement, the discharge starting voltage: IV is about 3.7 kV/mm. Therefore, in the above relationship, the first high frequency voltage is V123.7 kV/mm, and the nitrogen gas is externally excited. It can be made into a plasma state. Examples of the discharge gas include rare gases such as nitrogen, helium, and argon, air, hydrogen, and oxygen. These may be used as a discharge gas alone or in combination, but when nitrogen is used, helium or argon is used. When the rare gas is compared, it is particularly preferable because the discharge gas can be obtained with high economic efficiency. The high frequency power supply provided in the atmospheric piezoelectric slurry processing apparatus is the same as the above, but the frequency of the first power source (high frequency power source) and the second power source (high frequency power source) can be classified as follows. As the first power source, the following sales items can be used. High frequency power supply company name frequency number A1 Kobelco motor 3kHz A2 Kobelco motor 5kHz A3 spring motor 15kHz A4 Kobelco motor 50kHz A5 Hayden Institute 100kHz* A6 pearl Industrial 200kHz and * symbol for Hayden research institute high frequency power supply (continuous Paint mode l〇〇kHz). Further, as the second power source (high-frequency power source), the following sales-123-200904636 可 can be applied. High frequency power supply mark Β 1 pe B 2 pe Β 3 pe Β 4 ρ e Β 5 ρ e Division name frequency arl Industrial 800kHz arl Industrial 2MHz arl Industrial 1 3.56MHz arl Industrial 27MHz arl Industrial 150MHz At least one electrode of the above relative electrode It is preferable to provide a gas supply means for supplying a discharge gas between the opposing electrodes. It is also preferable to have an electrode temperature control means for controlling the electrode temperature. Further, in the electrodes of Figs. 7 and 8, the metal base material and the dielectric body are shown. However, as in the case of Figs. 9 and 10, the metal base material of the electrode may of course be covered with a dielectric body. The high frequency voltage applied between the opposing electrodes may be an intermittent pulse wave or a continuous wave of information, but a continuous signal wave is preferred. The distance between the electrodes can be determined in consideration of the thickness of the dielectric provided by the metal base material of the electrode, the magnitude of the applied voltage, and the like. The shortest distance between the dielectric body and the electrode when the dielectric is placed on one of the electrodes, and the distance between the dielectric bodies when the dielectric is provided on both of the electrodes are 0.5 to 0.5 mm from the viewpoint of uniform discharge. 20 mm is preferable, preferably 0.5 to 5 mm, more preferably 0.5 to 3 mm', and particularly preferably imm ± 0.5 mm. A polarizing plate using the anti-glare film of the present invention and the anti-glare anti-reflection film -124-200904636 will be described. In the polarizing plate of the present invention, for example, the back side of the anti-glare antireflection film of the present invention is alkalized, and at least one surface of the polarizing film produced by immersing the treated antireflection film in an iodine solution is used. It is preferred to carry out the lamination of a fully alkalized polyvinyl alcohol aqueous solution. On the other hand, the antireflection film is also used, and other polarizing plates can be used to protect the film. In the anti-glare antireflection film of the present invention, the polarizing plate protective film used on the other side has an in-plane direction retention enthalpy (R〇) of 20 to 70 nm in a wavelength of 590 nm and a thickness retention 値(Rt) of 100. An optical compensation film (phase difference film) having a phase difference of ~400 nm is preferred. For example, it can be produced by the method described in, for example, JP-A No. 2 002-7 1 95 7 and JP-A-2003-170492. Further, it is preferable to use a polarizing plate protective film having an optical compensation film having an optical heterogeneous layer formed by aligning a liquid crystal compound such as a discotic liquid crystal. The optical anisotropic layer can be formed, for example, by the method described in JP-A-2003-98348. Or an in-plane direction enthalpy (Ro) may be 0 to 5 nm at a wavelength of 5 90 nm, and an unaligned film having a thickness direction of -20 (Rt ) of -20 to + 20 nm may be used. By using the antiglare film or the antiglare antireflection film of the present invention in combination, a polarizing plate having excellent planarity and a stable viewing angle expansion effect can be obtained. As a polarizing plate protective film used for the inside side, as a cellulose ester film for sale, KC8UX2MW, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC4UEW, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 are used. , KC4FR-2 ( -125- 200904636

Konicaminoltaopt股份有限公司製)等爲佳。 偏光板之主要構成要素的偏光膜爲,僅通 之偏波面的光之元件,現今已知的代表性偏光 醇系偏光薄膜,此有聚乙烯醇系薄膜中以碘染 與將二色性染料經染色所得者,但不限定於何 爲,將聚乙烯醇水溶液進行製膜,將此進行一 色、或經染色後進行一軸延伸後,較佳爲使用 進行耐久性處理者。偏光膜之膜厚爲5〜30// 8〜15;/ιη之偏光膜。該偏光膜面上貼合本發 抗反射薄膜片面後形成偏光板。較佳爲使用完 烯醇等作爲主成分之水系黏著劑進行貼合。 藉由將使用本發明的防眩性抗反射薄膜之 眩性抗反射薄膜面,裝於影像顯示裝置之鑑賞 側),可製造出種種辨識性優良的影像顯示裝 本發明中之防眩性抗反射薄膜以使用反射 、半透過型LCD或TN型、STN型、OCB型 VA型(PVA型、MVA型)、IPS型等各種 L C D爲佳。 又,本發明之防眩性抗反射薄膜爲,防反 光的顏色不均顯著減少、又反射率較低、平面 適用於電漿顯示器、場發射顯示器、有機EL 機EL顯不器、電子紙等各種顯示裝置上。特 30吋以上之大畫面影像顯示裝置中,具有色 不均較少,長時間鑑賞後眼睛亦不亦疲勞之效 過一定方向 膜爲聚乙稀 色所得者、 者。偏光膜 軸延伸並染 以硼化合物 m,較佳爲 明之防眩性 全鹼化聚乙 偏光板的防 面側(顯示 置。 型、透過型 、HAN 型、 驅動方式之 射層之反射 性優良,且 顯示器、無 別爲畫面爲 不均或波紋 果。 -126- 200904636 【實施方式】 [實施例] &下’說明本發明之實施例,但本發明未 實施例1 <透明薄膜基材1的製作> (摻合組成物) 纖維素三乙酸酯(平均酢化度61.0%) 三苯基磷酸酯 乙基鄰苯二醯基乙基乙醇酸酯 TINUVIN I09(Ciba Specialty Chemicals TINUVIN 171(Ciba Specialty Chemicals 二氯甲烷 甲醇 將上述組成物投入密閉容器中,加壓下於 一邊攪拌使其完全溶解後得到摻合組成物。 繼續,過濾該摻合組成物並冷卻後保持於 延塑模藉由不鏽鋼鋼製無終點輸送帶於支持體 流延,蒸發溶劑至可剝離的程度,將織物藉由 持體剝離。接著將織物(薄膜)以拉幅器往 限定於此。 1 〇 〇質量份 8質量份 2質量份 b司製) 1質量份 t司製) 1質量份 43 0質量份 9〇質量份 80°C保溫並 3 3 °c ’由流 上進行均一 剝離輥自支 寬方向進行 -127- 200904636 1.1倍延伸後,以多數輥邊搬送邊乾燥,於兩端部設置高 度ΙΟ/zm之痕刻部,藉由捲取裝置進行捲取’得到膜厚 80/zm、幅1.5m、長度3000m之纖維素三乙酸酯薄膜所 成之透明薄膜基材1。 (含氟丙烯酸樹脂微粒子之合成) <2-(全氟丁基)乙基-α-氟丙烯酸酯之合成> 於500ml燒瓶中加入2—(全氟丁基)乙醇(大金 Fluorochemicals 股份有限公司製)l.lmol、三乙胺 1.0 m ο 1、氫酿 0.0 1 m ο 1,以冰水冷卻後,藉由滴下漏斗徐 徐滴入α -氟丙烯酸氯化物,使α -氟丙烯酸氯化物與2 一(全氟丁基)乙醇進行反應,合成2—(全氟丁基)乙 基一 α —氟丙烯酸酯。滴入全量後,以冰水洗淨,再以 NaHC03之5 %冰水液洗淨反應物,再次以冰水進行洗淨 。於此加入氫醌,藉由減壓蒸餾得到單體。產率爲65 % <聚-2-(全氟丁基)乙基-α-氟丙烯酸酯微粒子的合成> 如上述所得之2-(全氟丁基)乙基一α -氟丙烯酸 酯1 〇g中添加偶氮異丁腈(和光純藥股份有限公司製) 〇.〇lg,並加熱溶解。此後添加Fluorad FC-43 0 (商品名 、3M公司製的氟脂肪聚合酯、非離子性)0. lg並攪拌。 於該單體混合物3.0g中加入將雙酚A型環氧基樹脂 (商品名:西米環氧基ELA128、住友化學工業股份有限 -128- 200904636 公司製)10.0質量份、甲基六氫無水鄰苯二甲酸(脂環式 酸酐系硬化劑)(商品名:HN5 500、日立化成工業股份 有限公司製)8.5質量份、2,4,6—參(二甲胺基乙基)酣 (第三胺系硬化劑)(商品名:西米奎亞D、住友化學工 業股份有限公司製)0.1質量份之比率下進行混合的環氧 基樹脂組成物l〇.〇g,於2000rpm下進行攪拌後,以溫度 5 〇°C進行脫泡,得到樹脂組成物。將該樹脂組成物於熱風 烤箱中,溫度1 20t下放置2小時加熱,使其硬化而合成 聚一 2—(全氟丁基)乙基—α -氟丙烯酸酯微粒子。粒 子徑爲5 a m。 <防眩性薄膜的製作> (防眩層用塗佈組成物1 ) 丙酮 3 5質量份 乙酸乙酯 35質量份 環己酮 1 5質量份 甲苯 1 5質量份 季戊四醇三丙烯酸酯 30質量份 季戊四醇四丙烯酸酯 45質量份 尿烷丙烯酸酯 25質量份 (商品名U-4HA新中村化學工業公司製) 1-經基環己基-苯基酮 8質量份 (IRGACURE 184 Ciba Specialty Chemicals 公司製) 2 -甲基- l-〔4-(甲基硫)苯基〕-2-嗎_代丙院-1·酮 -129- 200904636 8質量份 (IRGACURE 907、Ciba Specialty Chemicals 公司製) 聚-2-(全氟丁基)乙基-a -氟 丙烯酸酯微粒子(平均粒徑5/im) 5.0質量份 <防眩層之形成> 於上述製作之透明薄膜基材1上,進行上述防眩層用 塗佈組成物1之膜塗佈,經80 °c乾燥後’將0.15 J/cm2之 紫外線以高壓水銀燈下照射,使硬化後之膜厚成爲8 m 下塗佈設置防眩層1。 <背塗佈層之形成> (背塗佈層用塗佈組成物) 30質量份 45質量份 1 〇質量份 0.6質量份 0.2質量份 丙酮 乙酸乙酯 異丙醇 二乙醯基纖維素 超微粒子二氧化矽2%丙酮分散液Konicaminoltaopt Co., Ltd.) is preferred. The polarizing film which is a main component of the polarizing plate is a light-transmitting element which only passes through the polarizing surface, and a representative polarizing alcohol-based polarizing film which is known today, and the polyvinyl alcohol-based film is dyed with iodine and the dichroic dye. The dyed product is not limited thereto, and a polyvinyl alcohol aqueous solution is formed into a film, and after one color or dyed and then subjected to one-axis stretching, it is preferably used for durability treatment. The film thickness of the polarizing film is 5 to 30 / / 8 to 15; / ηη polarizing film. The surface of the polarizing film is bonded to the surface of the antireflection film to form a polarizing plate. It is preferred to use a water-based adhesive which is a main component such as an enol. By using the glare anti-reflective film surface of the anti-glare anti-reflection film of the present invention on the viewing side of the image display device, it is possible to manufacture various image display devices having excellent visibility and anti-glare resistance in the present invention. The reflective film is preferably a reflective LCD, a transflective LCD, a TN type, an STN type, an OCB type VA type (PVA type, MVA type), or an IPS type. Moreover, the anti-glare anti-reflection film of the present invention has a significantly reduced anti-reflective color unevenness and a low reflectance, and is suitable for a plasma display, a field emission display, an organic EL EL display, an electronic paper, etc. On various display devices. In the large-screen image display device of 30 吋 or more, the color unevenness is small, and the eye is not fatigued after a long time of appreciation. The film is obtained from a certain direction of the film. The polarizing film axis extends and is dyed with a boron compound m, preferably the anti-glare side of the anti-glare fully alkalized polyethylene polarizing plate (the display type, the transmission type, the HAN type, and the driving type are excellent in reflectivity). And the display is not uneven or corrugated. -126- 200904636 [Embodiment] [Embodiment] &Bottom' illustrates an embodiment of the present invention, but the present invention is not in the embodiment 1 <Transparent film base Preparation of material 1 > (blending composition) Cellulose triacetate (average degree of deuteration 61.0%) Triphenyl phosphate ethyl phthalate ethyl glycolate TINUVIN I09 (Ciba Specialty Chemicals TINUVIN 171 (Ciba Specialty Chemicals, dichloromethane, methanol, the above composition was put into a closed container, and the mixture was stirred and completely dissolved under pressure to obtain a blended composition. Continuing, the blended composition was filtered and cooled to be maintained in a plastic form. The mold is cast on the support by a stainless steel endless conveyor belt, and the solvent is evaporated to a peelable extent, and the fabric is peeled off by the holder. The fabric (film) is then limited thereto by a tenter. 〇 mass parts 8 parts by mass 2 parts by mass of b)) 1 part by mass of t system) 1 part by mass of 43 0 parts by mass of 9 parts by mass of 80 ° C heat preservation and 3 3 °c 'single stripping roller self-supporting by flow In the width direction -127-200904636 1.1 times extension, drying with a plurality of roll edges, and providing a mark of height ΙΟ/zm at both ends, and winding up by a winding device to obtain a film thickness of 80/zm, Transparent film substrate 1 made of a cellulose triacetate film having a width of 1.5 m and a length of 3000 m. (Synthesis of fluorine-containing acrylic resin microparticles) <2-(perfluorobutyl)ethyl-α-fluoroacrylate Synthesis > In a 500 ml flask, 2-(perfluorobutyl)ethanol (manufactured by Daikin Fluorochemicals Co., Ltd.) l.lmol, triethylamine 1.0 m ο 1 , hydrogen brewed 0.011 m ο 1, and ice water were added. After cooling, the α-fluoroacrylic acid chloride is slowly dropped into the funnel to react the α-fluoroacrylic acid chloride with 2 (perfluorobutyl)ethanol to synthesize 2-(perfluorobutyl)ethyl-α. - Fluoroacrylate. After dripping in the whole amount, wash it with ice water, then wash the reaction with 5% aqueous solution of NaHC03, then The mixture was washed with ice water, and hydroquinone was added thereto to obtain a monomer by distillation under reduced pressure. The yield was 65% <poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate fine particles Synthesis > Addition of azoisobutyronitrile (manufactured by Wako Pure Chemical Co., Ltd.) to 2-(perfluorobutyl)ethyl-α-fluoroacrylate 1 〇g obtained as described above, and heating and dissolving . Lg搅拌搅拌。 After adding Flororad FC-43 0 (trade name, fluoro fatty acid ester of 3M company, nonionic) 0. lg and stirring. To 3.0 g of the monomer mixture, 10.0 parts by mass of a bisphenol A type epoxy resin (trade name: sago epoxy group ELA128, manufactured by Sumitomo Chemical Co., Ltd. -128-200904636), methyl hexahydrous anhydrous Phthalic acid (alicyclic acid anhydride-based curing agent) (trade name: HN5 500, manufactured by Hitachi Chemical Co., Ltd.) 8.5 parts by mass, 2,4,6-gin(dimethylaminoethyl)anthracene A triamine-based hardener (trade name: simiquia D, manufactured by Sumitomo Chemical Co., Ltd.) was mixed at a ratio of 0.1 part by mass of the epoxy-based resin composition l〇.〇g, and stirred at 2000 rpm. Thereafter, defoaming was carried out at a temperature of 5 ° C to obtain a resin composition. The resin composition was heated in a hot air oven at a temperature of 20 ° C for 2 hours to be hardened to synthesize poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate fine particles. The particle diameter is 5 a m. <Preparation of anti-glare film> (application composition 1 for anti-glare layer) acetone 35 parts by mass ethyl acetate 35 parts by mass cyclohexanone 15 parts by mass toluene 1 5 parts by mass pentaerythritol triacrylate 30 mass 45 parts by mass of pentaerythritol tetraacrylate, 25 parts by mass of urethane acrylate (trade name U-4HA, manufactured by Shin-Nakamura Chemical Co., Ltd.) - 8 parts by mass of cyclohexyl-phenyl ketone (IRGACURE 184 Ciba Specialty Chemicals) 2-Methyl-l-[4-(methylthio)phenyl]-2-?-propylate-1·ketone-129- 200904636 8 parts by mass (IRGACURE 907, manufactured by Ciba Specialty Chemicals) Poly-2 - (perfluorobutyl)ethyl-a-fluoroacrylate microparticles (average particle diameter: 5/im) 5.0 parts by mass <formation of antiglare layer> The above-mentioned prevention was carried out on the transparent film substrate 1 produced as described above. The glare layer was coated with the film of the coating composition 1, and after drying at 80 ° C, '0.15 J/cm 2 of ultraviolet light was irradiated under a high pressure mercury lamp, and the film thickness after hardening was set to 8 m to coat the antiglare layer 1 . <Formation of Back Coating Layer> (Coating Composition for Back Coating Layer) 30 parts by mass of 45 parts by mass of 1 part by mass of 0.6 part by mass of 0.2 part by mass of acetone ethyl acetate isopropanol diethyl hydrazide cellulose Ultrafine particle cerium dioxide 2% acetone dispersion

(曰本Aerosil股份有限公司製Aerosil200V 經塗佈設置防眩層1之面的反面上,以上述背塗佈層 用塗佈組成物液進行膜塗佈至濕膜厚爲1 4 # m,設置背塗 佈層,製作出本發明之防眩性薄膜。 -130- 200904636 實施例2〜4 與實施例1之情況同樣地,製造出本發明之防眩性薄 膜,但實施例1所使用之防眩層用塗佈組成物1的聚- 2 -(全氟丁基)乙基-α -氟丙烯酸酯微粒子之固體成分 中的量於實施例2中爲10.0質量份,於實施例3中爲 15.0質量份,於實施例4中爲20.0質量份,製造出本發 明之防眩性薄膜。 實施例5與6 與實施例1之情況同樣地,製作出本發明之防眩性薄 膜,但實施例1所使用之防眩層用塗佈組成物1的聚- 2 一(全氟丁基)乙基-α -氟丙烯酸酯微粒子之合成中, 攪拌時間或脫泡溫度可適宜調整下,合成平均粒徑2&quot;m 之聚一 2_ (全氟丁基)乙基-α -氟丙烯酸酯微粒子。 使用該平均粒徑2/zm之聚—2—(全氟丁基)乙基一 α -氟丙烯酸酯微粒子,固體成分中之量於實施例5爲5.0 質量份,於實施例6中爲15.0質量份,製造出本發明之 防眩性薄膜。 實施例7與8 與實施例1之情況同樣地,製作出本發明之防眩性薄 膜,但實施例1所使用之防眩層用塗佈組成物1的聚- 2 -(全氟丁基)乙基-α-氟丙烯酸酯微粒子之合成中, 攪拌時間或脫泡溫度做適宜調整下,合成平均粒徑3 . 5 -131 - 200904636 &quot;m的聚一 2—(全氟丁基)乙基一 〇: 一氟丙烯酸酯微粒 子。使用該平均粒徑2μπι的聚一 2—(全氟丁基)乙基 一 α -氟丙烯酸酯微粒子,固體成分中之量於實施例7爲 5.0質量份,於實施例8中爲1 5.0質量份’製造出本發明 之防眩性薄膜。 實施例9與10 與實施例1之情況同様地,製作出本發明之防眩性薄 膜,但實施例1所使用之防眩層用塗佈組成物1的聚-2 -(全氟丁基)乙基-α-氟丙烯酸酯微粒子變更爲販賣 品之含氟聚甲基甲基丙烯酸酯微粒子(根上工業製)’固 體成分中之量於實施例9中爲5.0質量份,於實施例10 中爲1 5.0質量份,製造出本發明之防眩性薄膜。 實施例1 1與12 與實施例1之情況同様地,製作出本發明之防眩性薄 膜,但取代實施例1所使用之防眩層用塗佈組成物1的聚 —2- (全氟丁基)乙基一 α -氟丙烯酸酯微粒子使用下 述所合成之微粒子。 &lt;含氟(甲基)丙烯酸烷基與交聯乙烯共聚物所成之微粒 子的合成&gt; 2 6 0質量份 (單體溶液的調製) 甲基丙烯酸甲酯 -132- 200904636 乙二醇二甲基丙烯酸酯 20質量份 三氟乙基甲基丙烯酸酯 120質量份 過氧化枯烯 2質量份 及正月桂基硫醇2質量份 1公升容器中放入上述材料並攪拌後調製出單體溶液 〇 與此區分,於2公升容器中放入難容於水之第三磷酸 鈣20質量份、水1 200質量份、及月桂基硫酸鈉1質量份 〇 將上述單體溶液放入2公升容器中並混合,藉由均質 機進行高速攪拌並使其分散。粒子徑約到達3 . 5 # m時, 放入具備攪拌機之外套式2公升高壓釜並攪拌下進行於溫 度70°C下5小時、l〇〇°C下5小時之聚合。所得之分散液 經過濾、洗淨、脫水、乾燥後,折到含氟(甲基)丙烯酸 烷基與交聯乙烯共聚物所成之微粒子。該微粒子之平均粒 子徑爲3.5 v m。 繼續,取代實施例1所使用之防眩層用塗佈組成物1 的聚- 2—(全氟丁基)乙基一 α —氟丙烯酸酯微粒子使 用含氟(甲基)丙烯酸烷基與交聯乙烯共聚物所成之微粒 子,製造出本發明之防眩性薄膜。且,該微粒子之固體成 分中的量於實施例11中爲5.0質量份,實施例12中爲 1 5.0質量份。 比較例1〜1 0 -133- 200904636 欲比較,將實施例1之情況作一部份變更,製造 較例之防眩性薄膜,但取代實施例1所使用之防眩層 佈組成物1的聚一 2_ (全氟丁基)乙基一 α —氟丙 酯微粒子,於比較例1與2中使用販賣品之平均粒徑 /zm的聚苯乙烯微粒子,固體成分中的量於比較例1 5_〇質量份,於比較例2中爲15_0質量份。 比較例3與4中,使用販賣品之平均粒徑3 .5 μ 聚甲基甲基丙烯酸酯微粒子,固體成分中之量於比較 中爲5.0質量份,比較例4中爲1、〇質量份。 比較例5與6中使用販賣品之平均粒徑2.0#m 苯乙烯微粒子,固體成分中的量於比較例5中爲5.0 份,比較例6中爲1 5.0質量份。 比較例7與8中,使用販賣品之平均粒徑2.0 // 聚甲基甲基丙烯酸酯微粒子,固體成分中之量於比較 中爲5.0質量份,於比較例8中爲1 5 · 0質量份。 比較例9與1 0中,使用販賣品之平均粒徑2 _0 # 二氧化矽微粒子,固體成分中之量於比較例9中爲5 量份,比較例1 〇中爲1 5 . 〇質量份。 (比較例1 1 ) 參考特開2006-160980號公報之實施例1及實施 ’以以下方法,製造出含有聚碳酸酯樹脂與含氟院基 基)丙烯酸酯與乙烯共聚物微粒子之膜厚0.1mm的 薄片。 出比 用塗 烯酸 ί 3.5 中爲 m的 例3 的聚 質量 m的 例7 m的 • 0質 例2 (甲 擴散 -134- 200904636 &lt;含氟烷基(甲基)丙烯酸酯•乙烯共聚物微粒子之合成 &gt; 於分散容器中,放入脫離子水300份、第三磷酸鈣 10份及聚環氧乙烷烷基芳醚0.2份。另外由甲基甲基丙烯 酸酯55份、三氟乙基甲基丙烯酸酯40份、乙二醇二甲基 丙烯酸酯5份及月桂基過氧化物1份調製出單體溶液,並 添加於上述分散容器中。所得之混合液使用均質機進行分 散處理,得到液滴徑經調整之分散液。將該分散液注入於 具備攪拌機、溫度計、迴流冷卻器及氮導入口之聚合反應 機,氮氣流下70°C進行攪拌,並於80〜90°C下進行3小 時聚合反應。所得之聚合物粒子的分散液藉由過濾、洗淨 、乾燥後得到平均粒子徑8.2 yin之含氟烷基(甲基)丙 烯酸酯•乙烯共聚物微粒子。 &lt;光擴散薄片的製作&gt; 藉由界面聚合法所製作之聚碳酸酯樹脂(聚二氧基二 苯基甲烷碳酸酯)99份與上述合成之含氟烷基(甲基) 丙烯酸酯.乙烯共聚物微粒子1份使用二軸壓出機(池貝 鐵鋼(股)製·· PCM-30 )進行進行約300°C之混煉、壓出 ,得到顆粒。將該顆粒藉由射出成型機進行射出成形,得 到0.1mm厚度之光擴散薄片。 且,將使用於實施例1〜1 2、及比較例1〜1 1之防眩 性薄膜的製作上的防眩層用塗佈組成物中之微粒子種類歸 -135- 200904636 納如下述表1。 &lt;防眩性薄膜之評估&gt; (耐久性試驗試品的製作) 將上述實施例1〜〗2、及比較例丨〜丨丨所製作之防眩 性薄膜的試料,將各防眩層作爲表面側,藉由耐候性試驗 機(Eye super UV tester '岩崎電氣股份有限公司公司製 )進行200小時光照射。繼續將此試料於溫度6〇t:、濕度 90% RH之恆溫恆濕裝置中保存7天,製造出耐久性試驗 試品。 (擦傷性) 將上述之耐久性試驗試品於溫度2 5 °C、相對濕度6 0 %之條件下進行2小時調濕後,藉由新東科學股份有限公 司製之摩擦摩耗試驗機(TRIBO STATION TYPE : 32、移 動速度4000mm/min) ’於行號#〇〇〇〇之鋼絲絨(sw)上 負荷8 0 0 g/cm2 ’並測定進行2 0次往返時的防眩性薄膜每 1 cm寬度所產生的傷痕條數。且’於傷痕條數於負荷重量 之部分中最多條之處進行測定。該擦傷性試驗中,防眩性 薄膜之傷痕條數爲5條/cm寬以下爲佳,1條/cm寬以下 爲更佳。所得之結果如下述表2所示。 (鉛筆硬度) 將上述耐久性試驗試品於溫度2 5 °C,相對濕度6 〇 % -136- 200904636 之條件下經2小時調濕後’使用ns s 6 006所規定之試驗 用錯筆,依據JIS K 5 4 0 0所規定之給筆硬度評估法,使 用1 Kg荷重,以各硬度鉛筆重複進行5次的防眩性薄膜 之拉刮試驗,測定傷痕1根以下之表面硬度。數字越高顯 示越高硬度。所得之結果如下述表2所示。 (辨識性評估) 對於上述實施例1〜1 2、及比較例1〜1 1所製作之防 眩性薄膜的耐久性試驗試品’作爲辨識性評估之指標’評 估雜影攝入(防眩性)、鮮銳性、及混濁。 (雜影攝入·防眩性、鮮銳性) 將述耐久性試驗試品’於顯示裝置之監視器上以基材 兩面膠帶貼合,由觀察員30人對於影像之雜影攝入、及 鮮銳性的官能進行評估’求得其平均點。評估1 0點爲最 佳,雜影攝入較少、或鮮銳性較高。評估1點爲最差。所 得之結果歸納於如下述表2所示。 (混濁) 將貼合上述耐久性試驗試品之液晶顯示裝置的監視器 ,於lOOOlux之明室中,將液晶顯示裝置以黑顯示,由種 種視角以目視觀察混濁有無,並以下述基準進行評估。所 得之結果歸納如下述表2。 -137- 200904636 評估基準 4 :完全無混濁 3 :幾乎無混濁 2 :稍有混濁 1 :有強烈混濁 -138- 200904636 【I fi 5眩層用塗佈組成物中之種類與添加量 夜-2-(全氟丁基)乙基-α-氟丙烯酸酯微粒子、平均粒徑5/zm(5.0質量份) 较-2-(全氟丁基)乙基-α-氟丙烯酸酯微粒子、平均粒徑5# m(10.0質量份) 聚-2-(全氟丁基)乙基-α-氟丙烯酸酯微粒子、平均粒徑5# m(15.0質量份) 聚-2-(全氟丁基)乙基-ct-氟丙烯酸酯微粒子、平均粒徑5/zm(20.0質量份) 聚-2-(全氟丁基)乙基-α-氟丙烯酸酯微粒子、平均粒徑2# m(5.0質量份) 聚-2-(全氟丁基)乙基-ct-氟丙烯酸酯微粒子、平均粒徑2/zm(15.0質量份) L聚-2-(全氟丁基)乙基-α-氟丙烯酸酯微粒子、平均粒徑3.5//m(5.0質量份) _-2-(全氟丁基)乙基_α-氟丙烯酸酯微粒子、平均粒徑3.5/zm(15.0質量份) _ ft 〇 yn ✓ a rn 圈 m Η g ίί Μ m 餾 裝 E m &amp; m 扭· 减 _ 〇 «λ 'w 5 r m 觥 Η s ί? 起 鏟 涵 扭· 糊 6 N 减 &lt;rn 1含氟之(甲基)丙烯酸烷基•交聯乙烯共聚物微粒子、平均粒徑3.5^m(5.0質量份) 含氟之(甲基)丙烯酸烷基•交聯乙烯共聚物微粒子、平均粒徑3.5^m(15.0質量份) 聚苯乙烯微粒子、平均粒徑3.5//m(5.0質量份) 聚苯乙烯微粒子、平均粒徑3.5jam(lS.O質量份) 1 聚甲基甲基丙烯酸酯微粒子、平均粒徑3.5/zm(5.0質量份) 聚甲基甲基丙烯酸酯微粒子、平均粒徑3.5//m(15.0質量份) 聚苯乙烯微粒子、平均粒徑2/zm(5.0質量份) 聚苯乙烯微粒子、平均粒徑2//m(15.0質量份) 聚甲基甲基丙烯酸酯微粒子、平均粒徑2# m(5.0質量份) 聚甲基甲基丙烯酸酯微粒子、平均粒徑2/Wm(15.〇質量份) 二氧化矽微粒子、平均粒徑2//m(5.0質量份) 二氧化矽微粒子、平均粒徑質量份) 含氟之烷基(甲基)丙烯酸酯•乙烯共聚物微粒子、平均粒徑s.2#m 實施例1 i 實施例2 | 實施例3 ? 1實施例4 ] 1實施例5 實施例6 實施例7 | 實施例8 實施例9 1實施例ίο m Ιϋ i實施例12 比較例1 |比較例2 比較例3 比較例4 比較例5 比較例6 比較例7 比較例8 比較例9 比較例10 比較例11 ί -139- 200904636 [表2] 防眩性薄膜之評估 _ 膜強度 辨識性 _____ 耐擦性 (條) 表面硬度 雜影攝入 (防眩性) 鮮銳性 混濁 實施例1 2 4H 9 9 4 實施例2 3 4H 9 9 4 實施例3 2 4H 9 8 3 實施例4 3 3H 9 8 3 實施例5 3 4H 9 9 4 實施例6 2 4H 9 8 4 實施例7 2 4H 9 9 4 實施例8 2 4H 9 8 3 實施例9 0 4H 10 10 4 實施例1〇 0 4H 10 10 4 實施例11 2 4H 9 9 4 實施例12 2 4H 9 9 4 比較例1 11 2H 7 5 2 比較例2 10 2H 7 4 1 比較例3 11 2H 6 5 2 比較例4 10 2H 7 4 1 比較例5 10 2H 6 4 2 比較例6 10 2H 6 5 2 比較例7 10 2H 6 5 2 比較例8 11 2H 7 4 2 比較例9 10 2H 7 3 2 比較例10 1 1 2H 7 3 1 比較例11 25 2H 7 3 1 由上述表2之結果得知,含有本發明之實施例1〜12 的含氟丙烯酸樹脂微粒子之防眩性薄膜爲耐久保存後之膜 強度、及辨識性皆優良。其中更以含有含氟聚甲基甲基丙 -140- 200904636 烯酸酯微粒子之防眩性薄膜因耐久保存後之膜強度、及辨 識性皆特別優良。 相對於此,含有比較例1〜1 0之過去微粒子的防眩性 薄膜,爲耐久保存後之膜強度、及辨識性較差者。又,藉 由含氟聚甲基甲基丙烯酸酯微粒子與界面聚合法所製作之 聚碳酸酯樹脂所成的光擴散薄片中,耐久保存後之膜強度 、及辨識性皆爲較差者。 實施例1 3與1 4 於實施例1 3與14之防眩性薄膜中,將實施例9與 10中之透明薄膜基材1變更爲透明薄膜基材2以外,與 實施例9與1 0之情況同樣下製造出本發明之防眩性薄膜 〇 其中,透明薄膜基材2爲纖維素酯C1、丙烯酸系聚 合物API、三羥甲基丙烷三苯甲酸酯:TMPTB、及糖酯化 合物所成者,藉由以下方法製作。 (纖維素酯C1之合成) 調整丙酸、乙酸之添加量後合成乙醯基取代度、丙醯 基取代度爲下述纖維素酯C1者。 首先,於丙酸150ml中溶解濃硫酸90ml而調製出溶 液A。於丙酸290ml中溶解濃硫酸175ml而調製出溶液B 。乙酸54.43kg中溶解脫離子水18.14kg而調製出溶液C 。將乙酸22_68kg以水22.68kg稀釋後調製出溶液〇。溶 -141 - 200904636 液E爲乙酸5kg及水4.53kg之溶液中的碳酸鎂410g所成 者。水14.6kg中溶解碳酸鉀69g及檸檬酸192g而調製出 溶液F。 開始製造時,於附有機械攪拌機,且加熱及冷卻用之 外套的反應器中加入乙酸43.1kg及丙酸9.1kg。 接著,添加由皮棉衍生的纖維素,將裝塡材料上升至 55°C(130°F),攪拌並同溫下保持30分鐘。 將溫度降低至32.2°C ( 90°F ),添加溶液A。再將液 體冷卻至-17.78°C ( 0T ),添加乙酸酐13.6kg及丙酸酐 34kg。經45分鐘後,將反應溫度上升至l〇°C ( 50°F )後 添加溶液B。接著3小時,將溫度設定爲5 5 °C ( 1 3 0 °F ) ’並投入溶液C。將該反應水溶液保持1 7小時、溫度 60°C ( 140°F )後,添加溶液D並攪拌,再將溶液E經15 分鐘添加。過濾酯之該酸性溶液。最後激烈攪拌溶液下, 添加水分至觀察到聚合物沈澱。取出沈澱物,洗淨至乙酸 到達0.0 5 %。於該濕潤生成物中添加溶液F 2 4 0 m 1,再經 真空乾燥’得到具有以下取代度之纖維素酯C 1。 纖維素酯C 1 : 乙醯基取代度1 . 3 0、丙醯基取代度1 .3 0、総醯基取 代度2.60 且,纖維素酯的取代度爲依據ASTM-D817-96算出。 (丙烯基聚合物API合成) -142- 200904636 合成下述一般式(9)所示之丙烯基聚合物API。 -(X a) m - (X b) η - (X c) p - …(9) 式中,Xa表示ΜΜΑ (甲基甲基丙烯酸酯)、Xb表 示HEM A (2-羥基乙基甲基丙烯酸酯)、Xc表示MA (甲 基丙烯酸酯)、m = 80、n=10、p=10。 欲合成所示之丙烯基聚合物API,於附有攪拌機、2 個滴下漏斗、氣體導入管、及溫度計之玻璃燒瓶中,裝入 Xa : MMA、Xb : HEMA、Xc : MA 之各單體以 m : η : ρ = 80 : 10 : 10的比率進行混合之單體混合液40g、連鎖移 動劑之氫硫基丙酸3.0g、及甲苯30g,昇溫至90°C。其後 ’由一方滴下漏斗,將單體混合液60g經3小時滴下,同 時由另一方漏斗將溶解於甲苯14g之偶氮雙異丁腈〇.6g 經3小時滴入。其後再將於甲苯56g溶解之偶氮雙異丁腈 〇-6g經2小時滴入後,再繼續進行2小時反應,得到丙烯 基聚合物API。丙烯基聚合物API之重量平均分子量依 據下述測定法進行測定後得到8 0 0 0。 (分子量之測定) Μ量平均分子量的測定使用高速液體層析法進行測定 〇 測定條件如以下所示。 溶劑: 二氯甲烷 管柱: 使用連接 3 根 Shodex K806,K805,K803G( -143- 200904636 昭和電工股份有限公司製)者 管柱溫度:25°C 試料濃度:0.1質量% 檢測器:RI Model 504 ( GLScience 公司製) 幫浦: L6000 (日立製作所股份有限公司製) 流量: l.Oml/min 校對曲線:使用標準聚苯乙烯STK standard聚苯乙 烯(Tosoh股份有限公司製)Mw=1000000〜500之13個 試品所得之校對曲線。1 3個試品以幾乎等間隔下使用。 (三羥甲基丙烷三苯甲酸酯:TMPTB之合成) 攪拌保持100 °C之45質量份三羥甲基丙烷、1〇1質量 份三乙胺之混合溶液下,將71質量份之氯化苯甲醯基經 3 0分鐘滴下,再經3 0分鐘攪拌。反應終了後冷卻至室溫 後過濾沈澱物,再以加入乙酸乙酯•純水進行洗淨,分出 有機相並將乙酸乙酯經減壓餾去,得到1 26質量份(產率 85%)之白色結晶。且該化合物之分子量爲446。 (糖酯化合物) 使用具有下述化學式之糖酯化合物。 -144- 200904636 【化4】(Aerosil 200V manufactured by Aerosil Co., Ltd. was coated on the reverse side of the surface on which the antiglare layer 1 was applied, and the film was applied to the coating composition for the back coating layer to a wet film thickness of 1 4 # m, and was set. The anti-glare film of the present invention was produced by the back coating layer. -130-200904636 Examples 2 to 4 The anti-glare film of the present invention was produced in the same manner as in Example 1, but was used in Example 1. The amount of the solid content of the poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate fine particles of the coating composition 1 for the antiglare layer was 10.0 parts by mass in Example 2, and in Example 3 The anti-glare film of the present invention was produced in an amount of 20.0 parts by mass in the same manner as in Example 4, and the anti-glare film of the present invention was produced in the same manner as in the case of Example 1, but the anti-glare film of the present invention was produced. In the synthesis of the poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate microparticles of the coating composition 1 for the antiglare layer used in Example 1, the stirring time or the defoaming temperature can be appropriately adjusted. Synthetic average particle size 2 &quot; m of poly- 2_(perfluorobutyl)ethyl-α-fluoroacrylate fine particles. The poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate fine particles having an average particle diameter of 2/zm were used, and the amount in the solid content was 5.0 parts by mass in Example 5, and was 15.0 in Example 6. The anti-glare film of the present invention was produced in parts by mass. Examples 7 and 8 The anti-glare film of the present invention was produced in the same manner as in Example 1, but the anti-glare layer used in Example 1 was coated. In the synthesis of the poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate microparticles of the composition 1, the stirring time or the defoaming temperature is appropriately adjusted, and the average particle diameter is 3. 5 -131 - 200904636 &quot Poly- 2-(perfluorobutyl)ethyl-anthracene: monofluoroacrylate microparticles. Poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate microparticles with an average particle size of 2 μm The amount of the solid component was 5.0 parts by mass in Example 7, and 15.0 parts by mass in Example 8 to produce the antiglare film of the present invention. Examples 9 and 10 are the same as in the case of Example 1, The antiglare film of the present invention was produced, but the coating composition 1 for the antiglare layer used in Example 1 was produced. -2 - (perfluorobutyl)ethyl-α-fluoroacrylate fine particles were changed to fluorine-containing polymethyl methacrylate fine particles (manufactured by K.K.) in the 'sales'. The amount in the solid content was as in Example 9. 5.0 parts by mass, and 5.0 parts by mass in Example 10, the antiglare film of the present invention was produced. Example 1 1 and 12 In the same manner as in Example 1, the antiglare film of the present invention was produced. However, in place of the poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate fine particles of the coating composition 1 for an antiglare layer used in Example 1, the fine particles synthesized as described below were used. &lt;Synthesis of fine particles of a fluorine-containing (meth)acrylic acid alkyl group and a crosslinked ethylene copolymer&gt; 260 parts by mass (modulation of a monomer solution) methyl methacrylate-132-200904636 ethylene glycol II 20 parts by mass of methacrylate, 120 parts by mass of trifluoroethyl methacrylate, 2 parts by mass of cumene peroxide, and 2 parts by mass of n-lauryl mercaptan in a 1 liter container, and the mixture is stirred to prepare a monomer solution. 〇In this way, 20 parts by mass of calcium tricalcium phosphate, 1 200 parts by mass of water, and 1 part by mass of sodium lauryl sulfate are placed in a 2 liter container, and the above monomer solution is placed in a 2 liter container. The mixture was mixed and mixed by a homogenizer at a high speed and dispersed. When the particle diameter reached about 3.5 Å, the mixture was placed in a jacket type 2 liter autoclave equipped with a stirrer and stirred at a temperature of 70 ° C for 5 hours and at 10 ° C for 5 hours. The resulting dispersion is filtered, washed, dehydrated, dried, and then folded into fine particles of a fluorine-containing (meth)acrylic acid alkyl group and a crosslinked ethylene copolymer. The fine particles had an average particle diameter of 3.5 v m. Continuing, in place of the poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate microparticles of the coating composition 1 for the antiglare layer used in Example 1, the fluorine-containing (meth)acrylic acid alkyl group was used. The anti-glare film of the present invention is produced by forming fine particles of a biethylene copolymer. Further, the amount in the solid component of the fine particles was 5.0 parts by mass in Example 11, and 15.0 parts by mass in Example 12. Comparative Example 1 to 1 0 - 133 - 200904636 For comparison, the case of Example 1 was partially modified to produce a comparative anti-glare film, but instead of the anti-glare layer cloth composition 1 used in Example 1, Poly-2-(perfluorobutyl)ethyl-α-fluoropropyl granules were used, and in Comparative Examples 1 and 2, polystyrene fine particles having an average particle diameter of zm/zm were used, and the amount in the solid content was compared with Comparative Example 1. 5_〇 parts by mass, in Comparative Example 2, 15_0 parts by mass. In Comparative Examples 3 and 4, the average particle diameter of the vending product was 3.5 μm of polymethyl methacrylate fine particles, and the amount in the solid content was 5.0 parts by mass in comparison, and in Comparative Example 4, it was 1. . In Comparative Examples 5 and 6, the average particle diameter of the vending product was 2.0 #m styrene fine particles, and the amount in the solid content was 5.0 parts in Comparative Example 5 and 15.0 parts by mass in Comparative Example 6. In Comparative Examples 7 and 8, the average particle diameter of the vending product was 2.0 // polymethyl methacrylate fine particles, and the amount in the solid content was 5.0 parts by mass in the comparison, and in the comparative example 8, it was 1 5 · 0 mass. Share. In Comparative Examples 9 and 10, the average particle size of the vending product 2 _0 # cerium oxide microparticles was used, and the amount in the solid component was 5 parts by weight in Comparative Example 9, and the amount in the comparative example 1 was 15%. . (Comparative Example 1 1) The film thickness of the acrylate and ethylene copolymer microparticles containing the polycarbonate resin and the fluorine-containing compound base was 0.1 in the following Example 1 and the implementation of the following method. Sheet of mm. Example 7 of the mass of m of Example 3, which is m in the form of oleic acid ί 3.5, is the mass of m. Example 2 of the mass of m. (A diffusion -134- 200904636 &lt; fluorinated alkyl (meth) acrylate • ethylene copolymerization Synthesis of fine particles&gt; In a dispersion container, 300 parts of deionized water, 10 parts of calcium triphosphate, and 0.2 parts of polyethylene oxide alkyl aryl ether were placed. In addition, 55 parts of methyl methacrylate, three 40 parts of fluoroethyl methacrylate, 5 parts of ethylene glycol dimethacrylate, and 1 part of lauryl peroxide were prepared as a monomer solution, and added to the above dispersion vessel. The resulting mixture was homogenized. Dispersing treatment to obtain a dispersion having a droplet diameter adjusted. The dispersion was poured into a polymerization reactor equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen inlet, and stirred at 70 ° C under a nitrogen stream at 80 to 90 ° The polymerization reaction was carried out for 3 hours at C. The obtained polymer particle dispersion was filtered, washed, and dried to obtain a fluorine-containing alkyl (meth) acrylate/ethylene copolymer fine particle having an average particle diameter of 8.2 yin. Fabrication of light diffusing sheets&gt; 99 parts of a polycarbonate resin (polydioxydiphenylmethane carbonate) produced by a surface polymerization method and one part of the above-mentioned synthesized fluorine-containing alkyl (meth) acrylate. ethylene copolymer fine particles were extruded using two axes. Machine (Chibei Iron & Steel Co., Ltd. PCM-30) was kneaded and extruded at about 300 ° C to obtain pellets. The pellets were injection molded by an injection molding machine to obtain a light diffusion of 0.1 mm thickness. Further, the types of fine particles in the coating composition for an antiglare layer used in the production of the antiglare film of Examples 1 to 2 2 and Comparative Examples 1 to 1 are classified as -135 to 200904636. Table 1. <Evaluation of Anti-glare Film> (Production of Durability Test Specimen) The samples of the anti-glare film produced in the above Examples 1 to 2 and Comparative Examples 丨 丨丨 丨丨 , The anti-glare layer was subjected to light irradiation for 200 hours by a weather resistance tester (Eye super UV tester 'Iwasaki Electric Co., Ltd.) as a surface side. The sample was continuously heated at a temperature of 6 〇t: and a humidity of 90% RH. Stored in a humidity control device for 7 days to produce a durability test sample (Scratch) The above-mentioned durability test sample was conditioned at a temperature of 25 ° C and a relative humidity of 60% for 2 hours, and then subjected to a frictional wear tester (TRIBO) manufactured by Shinto Scientific Co., Ltd. STATION TYPE : 32, moving speed 4000mm/min) 'On the line #〇〇〇〇, the steel wool (sw) is loaded with 800g/cm2' and measures the anti-glare film for every 20 round trips. The number of flaws produced by the width of cm, and 'measured in the maximum number of scars in the part of the load weight. In the scratch resistance test, the number of the scratches of the anti-glare film is preferably 5 pieces/cm or less, and more preferably 1 piece/cm width or less. The results obtained are shown in Table 2 below. (Pencil hardness) The above-mentioned durability test sample was conditioned at a temperature of 25 ° C and a relative humidity of 6 〇 % -136 to 200904636 for 2 hours, using the test errone pen specified in ns s 6 006. According to the pen hardness evaluation method prescribed by JIS K 5 0 0, a 1 Kg load was used, and a scratch test of an anti-glare film was repeated five times for each hardness pencil, and the surface hardness of one or less scratches was measured. The higher the number, the higher the hardness. The results obtained are shown in Table 2 below. (Identification evaluation) The durability test sample of the anti-glare film produced in the above Examples 1 to 2 2 and Comparative Examples 1 to 1 was evaluated as an indicator of the evaluation of the image (anti-glare). Sex), sharpness, and turbidity. (Horse ingestion, anti-glare, and sharpness) The durability test sample 'is attached to the monitor of the display device with a double-sided tape on the substrate, and 30 observers take pictures of the image, and The sharpness of the faculty was evaluated 'to find its average point. It is best to evaluate 10 points, with less shadow consumption or higher sharpness. The evaluation of 1 point is the worst. The results obtained are summarized in Table 2 below. (turbidity) The monitor of the liquid crystal display device to which the above-mentioned durability test sample was attached was displayed in black in a bright room of 100 lux, and the presence or absence of turbidity was visually observed from various viewpoints, and evaluated based on the following criteria. . The results obtained are summarized in Table 2 below. -137- 200904636 Evaluation No. 4: Completely no turbidity 3: Almost no turbidity 2: Slight turbidity 1: Strong turbidity - 138- 200904636 [I fi 5 glare layer coating composition type and addition amount night-2 -(perfluorobutyl)ethyl-α-fluoroacrylate fine particles, average particle diameter 5/zm (5.0 parts by mass), compared with -2-(perfluorobutyl)ethyl-α-fluoroacrylate fine particles, average particles Diameter 5# m (10.0 parts by mass) Poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate fine particles, average particle size 5# m (15.0 parts by mass) Poly-2-(perfluorobutyl) Ethyl-ct-fluoroacrylate microparticles, average particle size 5/zm (20.0 parts by mass) Poly-2-(perfluorobutyl)ethyl-α-fluoroacrylate microparticles, average particle size 2# m (5.0 mass Part) Poly-2-(perfluorobutyl)ethyl-ct-fluoroacrylate microparticles, average particle size 2/zm (15.0 parts by mass) L poly-2-(perfluorobutyl)ethyl-α-fluoro Acrylate fine particles, average particle diameter 3.5//m (5.0 parts by mass) _-2-(perfluorobutyl)ethyl_α-fluoroacrylate fine particles, average particle diameter 3.5/zm (15.0 parts by mass) _ ft 〇 Yn ✓ a rn circle m Η g ίί Μ m Distillation E m &amp; m Twist · Subtract _ 〇«λ 'w 5 Rm 觥Η s ί? shovel twisting paste 6 N minus &lt;rn 1 fluorine-containing (meth)acrylic acid alkyl • crosslinked ethylene copolymer fine particles, average particle diameter 3.5 ^ m (5.0 parts by mass) (Meth)acrylic acid alkyl • crosslinked ethylene copolymer fine particles, average particle diameter 3.5 μm (15.0 parts by mass) polystyrene fine particles, average particle diameter 3.5 / / m (5.0 parts by mass) polystyrene fine particles, average Particle size 3.5jam (lS.O parts by mass) 1 Polymethyl methacrylate microparticles, average particle size 3.5/zm (5.0 parts by mass) Polymethyl methacrylate microparticles, average particle size 3.5//m (15.0) Parts by mass) Polystyrene microparticles, average particle diameter 2/zm (5.0 parts by mass) Polystyrene microparticles, average particle diameter 2//m (15.0 parts by mass) Polymethyl methacrylate microparticles, average particle size 2# m (5.0 parts by mass) polymethyl methacrylate fine particles, average particle diameter 2/Wm (15. 〇 parts by mass) cerium oxide fine particles, average particle diameter 2 / / m (5.0 parts by mass) cerium oxide fine particles, Average particle size by mass) Fluorine-containing alkyl (meth) acrylate/ethylene copolymer fine particles, average particle diameter s. 2 #m Example 1 i Example 2 | Example 3 ? 1 Example 4] 1 Example 5 Example 6 Example 7 | Example 8 Example 9 1 Example ίο m Ιϋ i Example 12 Comparative Example 1 | Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 Comparative Example 11 ί -139- 200904636 [Table 2] Evaluation of anti-glare film _ Film strength identification _____ Rub resistance ( Correspondence of surface hardness smear (anti-glare) Fresh turbidity Example 1 2 4H 9 9 4 Example 2 3 4H 9 9 4 Example 3 2 4H 9 8 3 Example 4 3 3H 9 8 3 Implementation Example 5 3 4H 9 9 4 Example 6 2 4H 9 8 4 Example 7 2 4H 9 9 4 Example 8 2 4H 9 8 3 Example 9 0 4H 10 10 4 Example 1 〇 0 4H 10 10 4 Example 11 2 4H 9 9 4 Example 12 2 4H 9 9 4 Comparative Example 1 11 2H 7 5 2 Comparative Example 2 10 2H 7 4 1 Comparative Example 3 11 2H 6 5 2 Comparative Example 4 10 2H 7 4 1 Comparative Example 5 10 2H 6 4 2 Comparative Example 6 10 2H 6 5 2 Comparative Example 7 10 2H 6 5 2 Comparative Example 8 11 2H 7 4 2 Comparative Example 9 10 2H 7 3 2 Comparative Example 10 1 1 2H 7 3 1 Comparative Example 11 25 2H 7 3 1 From the results of Table 2 above, Example embodiments of the present invention, the fluorine-containing acrylic resin fine particles 1~12 antiglare film is a film strength after the preservation durability, and are excellent in visibility. Further, the antiglare film containing fluorine-containing polymethylmethylpropane-140-200904636 acrylate microparticles is particularly excellent in film strength and sensitivity after durable storage. On the other hand, the antiglare film containing the past fine particles of Comparative Examples 1 to 10 was inferior in film strength and visibility after durable storage. Further, in the light-diffusing sheet made of the polycarbonate resin produced by the fluorine-containing polymethyl methacrylate fine particles and the interfacial polymerization method, the film strength and the visibility after the endurance storage are inferior. Example 1 3 and 1 4 In the anti-glare film of Examples 1 and 14, the transparent film substrate 1 of Examples 9 and 10 was changed to the transparent film substrate 2, and Examples 9 and 10 In the same manner, the anti-glare film of the present invention is produced. The transparent film substrate 2 is a cellulose ester C1, an acrylic polymer API, trimethylolpropane tribenzoate: TMPTB, and a sugar ester compound. The winner is made by the following method. (Synthesis of Cellulose Ester C1) The amount of substitution of propionic acid and acetic acid was adjusted to synthesize the degree of substitution of the ethyl ketone group, and the degree of substitution of the propyl thiol group was the following cellulose ester C1. First, 90 ml of concentrated sulfuric acid was dissolved in 150 ml of propionic acid to prepare a solution A. Solution B was prepared by dissolving 175 ml of concentrated sulfuric acid in 290 ml of propionic acid. Solution C was prepared by dissolving 18.14 kg of deionized water in 54.43 kg of acetic acid. The solution 〇 was prepared by diluting 22_68 kg of acetic acid with 22.68 kg of water. Solution -141 - 200904636 Liquid E is a catalyst of 410 g of magnesium carbonate in a solution of 5 kg of acetic acid and 4.53 kg of water. Solution F was prepared by dissolving 69 g of potassium carbonate and 192 g of citric acid in 14.6 kg of water. At the beginning of the production, 43.1 kg of acetic acid and 9.1 kg of propionic acid were placed in a reactor equipped with a mechanical stirrer and a jacket for heating and cooling. Next, cellulose derived from lint was added, and the decoration material was raised to 55 ° C (130 ° F), stirred and kept at the same temperature for 30 minutes. Reduce the temperature to 32.2 ° C (90 ° F) and add solution A. The liquid was further cooled to -17.78 ° C (0T), and 13.6 kg of acetic anhydride and 34 kg of propionic anhydride were added. After 45 minutes, the reaction temperature was raised to 10 ° C (50 ° F) and solution B was added. Next, for 3 hours, the temperature was set to 5 5 ° C (130 °F) and the solution C was charged. After maintaining the aqueous solution for 17 hours at a temperature of 60 ° C (140 ° F), the solution D was added and stirred, and the solution E was added over 15 minutes. The acidic solution of the ester is filtered. Finally, under vigorous stirring of the solution, water was added until a polymer precipitate was observed. The precipitate was taken out and washed until acetic acid reached 0.05%. The solution F 2 40 m 1 was added to the wet product, and dried under vacuum to obtain a cellulose ester C 1 having the following degree of substitution. The cellulose ester C 1 : ethyl ketone group substitution degree 1. 30, acrylonitrile group substitution degree 1.30, thiol group substitution degree 2.60, and the degree of substitution of the cellulose ester is calculated in accordance with ASTM-D817-96. (Propylene-Based Polymer API Synthesis) -142- 200904636 The propylene-based polymer API represented by the following general formula (9) was synthesized. -(X a) m - (X b) η - (X c) p - (9) wherein Xa represents ΜΜΑ (methyl methacrylate) and Xb represents HEM A (2-hydroxyethyl methyl group) Acrylate), Xc represents MA (methacrylate), m = 80, n = 10, p = 10. To synthesize the propylene-based polymer API shown, in a glass flask equipped with a stirrer, two dropping funnels, a gas introduction tube, and a thermometer, and to charge each monomer of Xa : MMA, Xb : HEMA, Xc : MA m: η : ρ = 80 : 10 : 10 The monomer mixture to be mixed, 40 g of the monomer mixture, 3.0 g of the thiol propionic acid of the chain shifting agent, and 30 g of toluene were heated to 90 ° C. Thereafter, the funnel was dropped from one side, and 60 g of the monomer mixture was dropped over 3 hours, while 6 g of azobisisobutyronitrile dissolved in toluene (6 g) was dropped from the other funnel over 3 hours. Thereafter, azobisisobutyronitrile--6 g dissolved in 56 g of toluene was added dropwise over 2 hours, and the reaction was further continued for 2 hours to obtain a propylene-based polymer API. The weight average molecular weight of the propylene-based polymer API was determined by the following measurement method to obtain 8000. (Measurement of molecular weight) The measurement of the amount of the average molecular weight is carried out by high-speed liquid chromatography. 〇 The measurement conditions are as follows. Solvent: Dichloromethane column: Connected with 3 Shodex K806, K805, K803G (-143- 200904636 Showa Denko Co., Ltd.) Column temperature: 25 °C Sample concentration: 0.1% by mass Detector: RI Model 504 (GLScience company) Pump: L6000 (manufactured by Hitachi, Ltd.) Flow rate: l.Oml/min Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw=1000000~500 Proofreading curves from 13 samples. 1 3 samples were used at almost equal intervals. (Synthesis of Trimethylolpropane Tribenzoate: TMPTB) 71 parts by mass of a mixture of 45 parts by mass of trimethylolpropane and 1 part by mass of triethylamine at 100 ° C while stirring The benzamidine group was dropped over 30 minutes and stirred for 30 minutes. After the reaction was completed, the mixture was cooled to room temperature, and the precipitate was filtered, washed with ethyl acetate and purified water, and the organic phase was separated, and ethyl acetate was evaporated under reduced pressure to give 126 parts by weight (yield 85%). ) white crystals. And the molecular weight of the compound was 446. (Sugar ester compound) A sugar ester compound having the following chemical formula is used. -144- 200904636 【化4】

化合物3Compound 3

(透明薄膜基材2的製作) 將合成之纖維素酯c 1於1 3 0°c下進行1小時乾燥空 氣中的熱處理,將乾燥空氣中冷卻至室溫後,得到乾燥纖 維素樹脂C 1 1。 繼續,對於乾燥纖維素樹脂C 1 1 : 8 8質量份,添加混 合丙烯酸系聚合物(API) 4質量份、三羥甲基丙烷三苯 甲酸酯(TMPTB ) 4質量份、具有上述化學式之糖酯化合 物3.8質量份、及抗氧化劑(商品名:GSY-P101、API Corporation股份有限公司製)0.5質量份,將該混合物 使用壓出機於溫度23 0°C下進行加熱而製造出顆粒並使其 冷卻。 所得之顆粒使用流通空氣之熱風乾燥器,於溫度8 0 °C 下進行5小時乾燥而除去水分。繼續將乾燥顆粒投入突出 (Ηρ)寬度1.5m之具有外套型τ塑模之單軸壓出機(三 菱重工業股份有限公司製:螺旋徑9 0mm、T塑模突出( lip)構件材質爲碳化鎢)’藉由熔融壓出使其壓出成形 而製造出薄膜。於此’壓出成形爲等級1000〇以下之無塵 -145- 200904636 內,溶融溫度25〇°C ’ T塑模溫度245°C之成形條件下進行 。繼續,將所得之薄膜於長方向進行1 · 1 0倍延伸,再使 用拉幅器裝置將薄膜往寬方向進行1.2〇倍延伸’最後得 到膜厚80/zm、長度3000m、寬度1.5m之透明薄膜基材 2 ° 實施例1 5與1 6 實施例1 5與1 6之防眩性薄膜中,將實施例9與10 中之透明薄膜基材1變更爲透明薄膜基材3以外’與實施 例9及1 〇之情況相同下製造出本發明之防眩性薄膜。 其中,透明薄膜基材3爲纖維素酯C1、丙烯酸系聚 合物AP2、三羥甲基丙烷三苯甲酸酯:TMPTB、及糖酯化 合物所成者,藉由以下方法而製作 (丙烯基聚合物AP2合成) 合成下述之一般式(10)所不之丙稀基聚合物AP2。 -(Xa)m-(Xb)n-(Xc)p- &quot;-(10) 式中,Xa表示Μ ΜΑ (甲基甲基丙烯酸酯)、Xb表 示HEMA ( 2-羥基乙基甲基丙烯酸酯)、m = 90、n=l 0、 ρ = 0 〇 欲合成所示之丙烯基聚合物AP2 ’於附有攪拌機、2 個滴下漏斗、氣體導入管、及溫度計之玻璃燒瓶中,裝入 將Xa : MMA、Xb : HEMA之各單體以m : n = 90 : 1 0的比 -146- 200904636 率下混合之單體混合液40g、連鎖移動劑之氫硫基丙酸 3.〇g、及甲苯30g’昇溫至90°C。其後,由一方之滴下漏 斗將單體混合液60g經3小時滴下,同時由另一方漏斗將 溶解於甲苯14g之偶氮雙異丁腈〇.6g經3小時滴入。其 後,將於甲苯56g溶解之偶氮雙異丁腈〇.6g經2小時滴 入後,再繼續進行2小時反應,得到丙烯基聚合物AP2。 丙烯基聚合物AP2之重量平均分子量由下述測定法進行 測定後得到8000。 (透明薄膜基材3薄膜的製作) 繼續,對於上述乾燥纖維素樹脂C 1 1 : 8 8質量份,添 加混合丙烯酸系聚合物(AP2) 4質量份、三羥甲基丙烷 三苯甲酸酯(TMPTB ) 4質量份、具有上述化學式之糖酯 化合物3 · 8質量份、及抗氧化劑(商品名:GS Y-P 1 0 1、 API Corporation株公司製)0.5質量份,將混合物使用 壓出機進行溫度230t之加熱,製造顆粒並冷卻。 將所得之顆粒使用流通空氣之熱風乾燥器,於溫度 80°C下進行5小時乾燥並除去水分。繼續將乾燥顆粒投入 於具有突出(lip)寬度1.5m之外套型T塑模的單軸壓出 機(三菱重工業股份有限公司製:螺旋徑90mm、T塑模 突出(lip )構件材質爲碳化鎢),藉由熔融壓出使其壓 出成形製造出薄膜。於此壓出成形爲等級1 0000以下之無 塵內,熔融溫度2 5 0 °c、T塑模溫度2 4 5 °C之成形條件下進 行。繼續’將所得之薄膜往長方向延伸1 _ 1 0倍,再使用 -147- 200904636 拉幅器裝置將薄膜往寬方向延伸1.2 0倍,最後得到膜厚 80/zm、長度300 0m、寬度1.5m之透明薄膜基材3。 &lt;防眩性薄膜之評估&gt; (耐久性試驗試品的製作) 實施例9、實施例10、及實施例1 3〜實施例1 6所製 作之防眩性薄膜的試料,將各薄膜之防眩層作爲表面,藉 由耐候性試驗機(Eye super UV tester、岩崎電氣股份有 限公司製)進行3 00小時的光照射。繼續,將這些試料於 溫度60°C、濕度90% RH之恆溫恆濕裝置中保存5 00小時 ,製造出耐久性試驗試品。 對於上述實施例9、實施例1 0、及實施例1 3〜實施 例1 6所製作之防眩性薄膜的耐久性試驗試品試料,與上 述實施例1之情況同様地,作爲擦傷性、表面硬度(鉛筆 硬度)、以及辨識性評估之指標,評估雜影攝入(防眩性 )、鮮銳性、及混濁。所得之結果如下述表3所示。 -148- 200904636 【ε ¥ 担 is •N m 職 辨識性 混濁 ΓΛ cn 寸 寸 寸 寸 鮮銳性 卜 卜 00 00 雜影攝入 (防眩性) 卜 卜 〇 ο 〇 cen g 侧 表面硬度 X m C^) 寸 寸 X 寸 X 寸 锻 m 耐擦性(條) 寸 寸 〇 1—Η 〇 防眩性薄膜 防眩層用塗佈組成 物之種類 組成物1 組成物2 組成物1 組成物2 組成物1 組成物2 透明薄膜基材之種 類 基材1 基材1 基材2 基材2 基材3 基材3 實施例9 實施例10 實施例13 實施例14 實施例15 實施例16 -149- 200904636 由上述表3之結果得知,經過更嚴苛之耐久性試驗後 的試品中,作爲透明薄膜基材使用纖維素酯、糖酯化合物 、及丙烯酸系聚合物所成之透明薄膜基材2、及使用透明 薄膜基材3之實施例13〜實施例16的防眩性薄膜,其膜 強度、及辨識性皆更優良。 實施例1 7〜2 4、及比較例1 2〜1 7 使用上述實施例1、實施例3、及實施例7〜實施例 1 2、以及比較例1〜4、比較例9、及比較例1 〇所製作之 防眩性薄膜,製作出防眩性抗反射薄膜。 〈大氣壓電漿處埋〉 首先實施例1、實施例3、及實施例7〜實施例12、 以及比較例1〜4、比較例9、及比較例1 0所製作之防眩 性薄膜的防眩層表面上使用大氣壓電漿處理裝置(圖示略 ),電極間隙爲〇.5mm,將下述放電氣體供給於放電空間 ,100kHz使其放電,藉由大氣壓電漿處理進行表面處理 (放電氣體) 氮氣 80.0體積% 氧氣 20.0體積% &lt;高折射率層之形成&gt; -150- 200904636 經大氣壓電漿處理之各防眩性薄膜的防眩層表面上, 塗佈設置高折射率層後’調製出粒子分散液A,再調製出 高折射率層用塗佈組成物。 (粒子分散液A之調製) 於甲醇分散銻複氧化物膠體(銻酸鋅溶膠、固體成分 60%、商品名:西路拿克斯CX-Z610M-F2、日產化學工 業股份有限公司製)6.0kg中攪拌下徐徐添加異丙醇 12.0kg,調製出微粒子分散液A。 (筒折射率層用塗佈組成物) PGME (丙二醇單甲醚) 40質量份 異丙醇 25質量份 甲基乙基酮 25質量份 季戊四醇三丙烯酸酯 0.9質量份 季戊四醇四丙烯酸酯 1 . 〇質量份 尿烷丙烯酸酯 0.6質量份 (商品名:U-4HA、新中村化學工業公司製) 微粒子分散液A 2〇質量份 卜羥基-環己基-苯基-酮 0.4質量份 (IRGACURE 1 84、Ciba Specialty Chemicals 公司 製) 2 -甲基-1-〔 4-(甲基硫)苯基〕-2 -嗎啉代丙烷-1-酮 0.2質量份 -151 - 200904636 (IRGACURE 907、Ciba Specialty Chemicals 公司 製) FZ-2207 0.4 質量份 (10%丙二醇單甲醚溶液、日本unicar公司製) 於經大氣壓電槳處理之各防眩性薄膜的防眩層表面上 ,將下述高折射率層用塗佈組成物經膜塗佈,於溫度70°C 下進行乾燥後,將〇 . 1 5 J/cm2之紫外線以高壓水銀燈照射 ,硬化後之膜厚爲12〇nm下設置高折射率層。高折射率 層之折射率爲1.60。 &lt;低折射率層之形成&gt; 於塗佈設置上述高折射率層之各防眩性薄膜表面上形 成低折射率層後,首先調製出中空二氧化矽微粒子1之異 丙醇分散液、及四乙氧基矽烷水解物A後,調製出低折 射率層用塗佈組成物1。 (中空二氧化矽微粒子1之異丙醇分散液的調製) 步驟(a):將平均粒徑5nm、Si02濃度20質量%之 二氧化矽溶膠l〇〇g、與純水1 900g之混合物加溫至80°C 。此反應母液的pH爲10.5,於同母液中同時添加作爲 Si02之0.98質量%的矽酸鈉水溶液9000g、與作爲Al2〇3 之1.02質量%的鋁酸鈉水溶液90 00g。其間,將反應液之 溫度保持於80 °C。反應液之pH爲添加後上升至12.5,其 -152- 200904636 後幾乎無變化。添加終了後,將反應液冷卻至室溫,以極 限過濾膜進行洗淨後調製出固體成分濃度20質量%之 Si〇2.Al2〇3核粒子分散液。 步驟(b):於該核粒子分散液5〇〇g加入純水1 700g 並加溫至溫度9 8 °C,保持該溫度下,添加將矽酸鈉水溶液 以陽離子交換樹脂進行脫鹼所得之矽酸液(Si02濃度3.5 質量% ) 3 000g ’得到形成第1二氧化矽被覆層之核粒子 的分散液。 步驟(c ):繼續,經極限過濾膜洗淨後,於形成固 體成分濃度13質量%之第1二氧化矽被覆層的核粒子分 散液500g中加入純水1125g,再滴入濃鹽酸(35.5%)變 爲pH 1.0,進行脫鋁處理。繼續加入PH 3之鹽酸水溶液 10L與純水5L下,以極限過濾膜分離經溶解之鋁鹽,調 製出除去形成第1二氧化矽被覆層之核粒子的構成成分一 部份的si〇2 · ai2o3多孔質粒子之分散液。 步驟(d ):將上述多孔質粒子分散液1 5 00g、與純 水500g、乙醇l,750g、及28%氨水626g之混合液,加溫 至溫度35°C後,添加乙基矽酸酯(Si〇2 28質量%) 104g ,將形成第1二氧化矽被覆層之多孔質粒子表面,以乙基 矽酸酯之水解縮聚物進行覆蓋,形成第2二氧化矽被覆層 。繼續使用極限過濾膜調製出溶劑以異丙醇取代之固體成 分濃度20質量%的中空二氧化矽微粒子1之分散液。 該中空二氧化矽微粒子之第1二氧化矽被覆層的厚度 爲 3nm,平均粒徑爲 45nm,M0x/Si02 (莫耳比)爲 -153- 200904636 0.0017,折射率爲1.28。其中,平均粒徑、及粒徑之變動 係數可藉由動態散光法進行測定。 (四乙氧基矽烷水解物A的調製) 混合四乙氧基矽烷230g (商品名:KBE04、信越化學 工業公司製)與乙醇440g,於此添加 2 %乙酸水溶液 l2〇g後,於室溫(25°C )下進行28小時攪拌而調製出四 乙氧基砂院水解物A。 (低折射率層用塗佈組成物1 ) 丙二醇單甲醚 430質量份 異丙醇 430質量份 四乙氧基矽烷水解物A (固體成分21%換算) 120 質量份 γ-甲基丙烯氧基丙基三甲氧基矽烷 3.〇質量份 (商品名:ΚΒΜ 503、信越化學工業公司製) 中空二氧化矽微粒子1之異丙醇分散液 40質量份 (平均粒徑45nm、粒徑變動係數30% ) 異丙醇分散球狀膠體二氧化矽 20質量份 (固體成分20%、平均粒徑45nm、粒徑之變動係 數3 0 %、販賣品) 銘乙基乙醯乙酸酯•二異丙酸酯 3.0質量份 (K a w a k e n F i n e C h e m i c a 1 s C 〇 _,L t d 製) FZ-2207 3.0 質量份 -154- 200904636 (10%丙二醇單甲醚溶液、日本11!^(^!:公司製) (防眩性抗反射薄膜的製作) 塗佈前述高折射率層之各防眩性薄膜表面上,將上述 低折射率層用塗佈組成物1經膜塗佈後於溫度8 0 °C下乾燥 ,並於流入氮氣使氧濃度爲1.0體積%以下的環境氣體下 ,以0.1 5 J/cm2之紫外線由高壓水銀燈照射,設置低折射 率層使使膜厚至86nm,製作出實施例17〜24、及比較例 1 2〜1 7之防眩性抗反射薄膜。低折射率層之折射率爲 1.38。 &lt;防眩性抗反射薄膜之評估&gt; (耐久性試驗試品的製作) 對於實施例1 7〜2 4、及比較例1 2〜1 7之防眩性抗反 射薄膜,與實施例1之情況同樣地製造出耐久性試驗試品 〇 繼續,對於這些實施例17〜24、及比較例I2〜17之 防眩性抗反射薄膜的耐久性試驗試品試料’以下密著性評 估與上述實施例1之情況同樣地,作爲擦傷性、表面硬度 (鉛筆硬度)、以及辨識性評估之指標’評估雜影攝入( 防眩性)、鮮銳性、及混濁。所得之結果如下述表4所示 (密著性評估) -155- 200904636 將上述實施例17〜24、及比較例12〜17的防眩性抗 反射薄膜之耐久試驗試品於溫度25 °C、相對濕度60%之 條件下進行2小時調濕。繼續,對於各試品之具有防眩性 防反射層的側表面,以刀子切成縱1 1根、橫1 1根之格子 狀,總計爲1 〇 〇個之正方形格子,將聚酯黏著膠帶(品番 3 1 B、日東電工股份有限公司製)之密著試驗,於相同場 所重複進行3次。以目視觀察是否有剝離,進行下述4段 階之評估。 ◎ : 1 00格子中完全未觀察到剝落 〇:1 00格子中2格子觀察到剝落 △ : 1 0 0格子中3格子〜1 〇格子觀察到剝落 X : 1 0 0格子中超過1 1格子觀察到剝落 -156- 200904636 [表4] 防眩性薄膜之麵 防眩性ί 贩射薄膜之評估 密著性 耐擦性 滌) 辨識性 雜影攝入 (防眩性) 鮮銳性 混濁 實施例Π 實施例1製作之薄膜 ◎ 2 9 9 4 實施例18 實施例3製作之薄膜 ◎ ’ 2 9 8 4 實施例19 實施例7製作之薄膜 ◎ 3 9 9 4 實施例20 實施例8製作之薄膜 ◎ 2 9 8 4 實施例21 實施例9製作之薄膜 ◎ 0 10 9 4 實施例22 實施例10製作之薄膜 ◎ 1 10 9 4 實施例23 實施例11製作之薄膜 ◎ 1 2 9 8 4 實施例24 實施例12製作之薄膜 ◎ 3 9 8 4 比較例12 比較例1製作之薄膜 Δ 11 7 5 2 比較例13 比較例2製作之薄膜 Δ 12 7 5 1 比較例14 比較例3製作之薄膜 Δ 12 7 5 2 比較例15 比較例4製作之薄膜 Δ 11 7 5 2 比較例16 比較例9製作之薄膜 Δ 12 7 4 1 比較例17 比較例10製作之薄膜 Δ 13 6 4 1 由上述表4之結果可得知,本發明之實施例17〜24 的防眩性抗反射薄膜,與比較例1 2〜1 7之防眩性抗反射 薄膜相比,具有更優良的密著性、耐擦性、及辨識性。其 中,使用含有含氟聚甲基甲基丙烯酸酯微粒子之防眩性薄 膜於底部的防眩性抗反射薄膜,其耐擦性、及防眩性更特 別優良。 實施例25〜32、及比較例18〜23 使用上述實施例1、實施例3、及實施例7〜實施例 1 2、以及比較例1〜4、比較例9、及比較例1 0所製作之 -157- 200904636 防眩性薄膜,製作出防眩性抗反射薄膜,但上述 1 7〜24與比較例1 2〜1 7時的相異點爲,於防眩性 面上無須設置高折射率層,使用下述低折射率層用 成物2可直接設置低折射率層。 &lt;大氣壓電漿處理&gt; 首先於實施例1、實施例3、及實施例7〜實! 、以及比較例1〜4.、比較例9、及比較例1 0所製 眩性薄膜的防眩層表面上,使用大氣壓電漿處理裝 示略),與上述實施例17〜24、及比較例12〜17 同樣下,進行藉由大氣壓電漿處理之表面處理。 於經大氣壓電漿處理之各防眩性薄膜的防眩層 ,當形成低折射率層時,首先調製含氟聚合物1、 液I後,再調製低折射率層用塗佈組成物1。 (含氟聚合物1之調製) 於內容量100ml之不鏽鋼製攪拌機付高壓釜中 酸乙酯4 0ml、羥基乙基乙烯醚14.7g、及過氧化二 基〇.55g,機反應系內進行脫氣後以氮氣取代。再 伸丙基(HFP ) 25g導入於高壓釜中,昇溫至溫度 高壓釜內之溫度到達65°C時之壓力爲5.4kg/cm2。 溫度下繼續進行8小時反應,壓力到達3.2kg/cm2 加熱,並使其冷卻。使內溫降至室溫時,趕出未反 體,並開放高壓釜,取出反應液。將所得之反應液 實施例 薄膜表 塗佈組 拒例12 作之防 置(圖 之情況 表面上 及溶膠 裝入乙 月桂醯 將六氟 6 5°C。 保持該 時停止 應之單 投入於 -158- 200904636 過剩量的己烷中’藉由傾析將溶劑除去後,取出沈澱之聚 合物。再將該聚合物溶解於少量乙酸乙酯中,以己烷再進 行2次再沈澱後,將殘存單體完全除去並乾燥。乾燥後得 到聚合物28g。繼續,將該聚合物之20g溶解於N,N —二 甲基乙醯胺100ml’冰冷下滴入丙嫌酸氯化物11.4g後, 室溫下進行1 〇小時攪拌。反應液中加入乙酸乙酯並水洗 ,萃取有機層後濃縮,將所得之聚合物以己烷進行再沈澱 而得到1 9 g之含氟聚合物1。 (溶膠液I之調製) 於具備攪拌機、迴流冷卻器之反應器中,放入甲基乙 基酮120質量份、丙烯醯基氧基丙基三甲氧基矽烷( KBM-5 103、信越化學工業股份有限公司製)1〇〇質量份 、二異丙氧基鋁乙基乙醯乙酸酯3質量份並混合後,加入 離子交換水30質量份,於溫度6(TC下進行4小時反應後 冷卻至室溫,得到溶膠液I。 溶膠液I中之反應生成物的質量平均分子量爲1600 ,寡聚物成分以上之成分中,分子量爲1000〜20000之成 分爲100質量%。又,由氣體層析法之分析得知,完全未 殘留原料之丙烯醯基氧基丙基三甲氧基矽烷。 (低折射率層用塗佈組成物2之調製) 甲基乙基酮 200質量份 環己酮 1 5 0質量份 -159- 200904636 含氟聚合物1 30質量份 甲基丙烯酸酯基含有聚矽氧烷樹脂 3質量份 (商品名、RMS-03 3、Gelest股份有限公司製) 光自由基產生劑(商品名、IRGACURE 9〇7) 3質量份 二季戊四醇五丙烯酸酯與二-季戊四醇六丙烯酸酯之 混合物(日本化藥股份有限公司製) 7質量份 溶膠液1(溶劑揮發後之固體成分27質量份) 45質量份 中空二氧化矽微粒子1異丙醇分散液 1 00質量份 上述低折射率層用塗佈組成物2之中,對於甲基乙基 酮及環己酮,上述調製之含氟聚合物1、含有甲基丙烯酸 酯基之聚矽氧烷樹脂、光自由基產生劑、二季戊四醇五丙 烯酸酯與二季戊四醇六丙烯酸酯之混合物以上述比率下添 加並溶解後,將上述溶膠液I與上述低折射率層用塗佈組 成物1所調製之中空二氧化矽微粒子1異丙醇分散液以上 述比率下添加。 繼續’以甲基乙基酮稀釋至塗佈組成物全體之固體成 分濃度爲7質量%,調製出低折射率層用塗佈組成物2。 (防眩性抗反射薄膜的製作) 於經大氣壓電漿處理之各防眩性薄膜的防眩層表面上 ’將上述低折射率層用塗佈組成物2藉由膜塗佈,並於流 Λ氮氣使氧濃度爲1.0體積%以下的環境氣體下,以 -160- 200904636 0. 1 5 J/cm2之紫外線由高壓水銀燈照射,塗佈至膜厚爲 86nm,設置低折射率層’製作出實施例25〜32、及比較 例1 8〜2 3之防眩性抗反射薄膜。低折射率層之折射率爲 1.44。 &lt;防眩性抗反射薄膜之評估&gt; (耐久性試驗試品的製作) 對於實施例2 5〜3 2、及比較例1 8〜2 3之防眩性抗反 射薄膜與實施例1之情況同樣地,製造出耐久性試驗試品 〇 繼續,對於這些實施例25〜32、及比較例18〜23之 防眩性抗反射薄膜之耐久性試驗試品試料,與上述實施例 1 7之情況同樣下進行密著性之評估,同時與上述實施例1 之情況同樣地’作爲擦傷性、表面硬度(鉛筆硬度)、以 及辨識性評估之指標,評估雜影攝入(防眩性)、鮮銳性 、及混濁。所得之結果如下述表5所示。 -161 - 200904636 [表5] 防眩性薄膜之種類 防眩性j 5Ϊ反射薄膜之評估 密著性 耐擦性 (條) 辨識性 雜影攝入 (防眩性) 鮮銳性 混濁 實施例25 實施例1製作之薄膜 ◎ 2 9 9 4 實施例26 實施例3製作之薄膜 ◎ 2 9 8 4 實施例27 實施例7製作之薄膜 ◎ 2 9 9 4 實施例28 實施例8製作之薄膜 ◎ 3 9 8 4 實施例29 實施例9製作之薄膜 ◎ 0 10 9 4 實施例30 實施例10製作之薄膜 ◎ 0 10 9 4 實施例31 實施例11製作之薄膜 ◎ 3 9 8 4 實施例32 實施例12製作之薄膜 ◎ 2 9 8 4 比較例18 比較例1製作之薄膜 Δ 12 7 5 2 比較例19 比較例2製作之薄膜 Δ 13 7 5 1 比較例20 比較例3製作之薄膜 Δ 12 7 5 2 比較例21 比較例4製作之薄膜 Δ 13 7 5 2 比較例22 比較例9製作之薄膜 Δ 12 7 4 1 比較例23 比較例10製作之薄膜 Δ 13 6 4 1 由上述表5之結果得知,本發明之實施例2 5〜3 2的 防眩性抗反射薄膜與比較例1 8〜23之防眩性抗反射薄膜 相比較,具有更優良的密著性、耐擦性、及辨識性。其中 亦以含有含氟聚甲基甲基丙烯酸酯微粒子之防眩性薄膜作 爲底使用的防眩性抗反射薄膜具有特優良的耐擦性、及防 眩性。 實施例3 3與3 4 與上述實施例29之情況同樣下,製造出防眩性抗反 射薄膜’但其相異點爲’取代實施例2 9所使用之低折射 -162- 200904636 率層用塗佈組成物2,使用下述低折射率層用塗佈凝 3或低折射率層用塗佈組成物4,製造出實施例3 3 之防眩性抗反射薄膜。 調製低折射率層用塗佈組成物3時,首先調製 中空二氧化矽微粒子1之分散液(A1),繼續使用 散液(A1),調製出表面修飾二氧化矽粒子分散液 1),進一步使用該表面修飾二氧化矽粒子分散液( ),調製出支鏈具有交聯性基之表面接枝聚合物中空 化砂粒子分散液(A1-1G)。 [含有中空二氧化矽微粒子1之分散液(A1)的調製 上述實施例1 7〜24所調製之中空二氧化矽微哲 異丙醇分散液500質量份中,加入〔3-(2_漠丙酗 丙基〕三乙氧基矽烷30質量份、及二異丙氧基鋁Z 酸酯1 . 5質量份並混合後,加入離子交換水9質量任 度60°C中進行8小時反應後,冷卻至室溫。繼續將g 分散液以超遠心分離機進行濃縮後,去除上清液後, 異丙醇,進行經表面處理之中空二氧化矽之純化,耋 次該操作。以核磁氣共鳴(NMR )、及氣體層析法 ),確認殘存矽烷偶合劑未達1質量%,加入異丙围 到固體成分濃度30質量%之含有中空二氧化矽微粒 的分散液(A1 )。 [表面修飾二氧化矽粒子分散液(A1-1 )之調製] L成物 與34 i含有 1該分 (ΑΙΑ 1 -1 :二氧 子1 基) 基乙 。溫 反應 加入 複3 (GC ,得 子1 -163- 200904636 於未圖示之聚合容器中’混合含有上述中空二氧化矽 微粒子1之分散液(A1) 30質量份、臭化銅(〇 1質量 份、4,4’ 一二(5—壬基)一 2,2, _雙吡啶6質量份、甲基 乙基酮5 0質量份後’密閉該聚合容器後以冷卻進行脫氣 ’其後重複進行3次氮取代之操作,將聚合容器內成爲氮 氣環境。 繼續’於聚合容器內加入甲基丙烯酸2一羥基乙基 3 〇 0質量份’加溫至溫度70 °C後進行8小時聚合反應。聚 合反應終了後將所得之聚合反應溶液投入於己烷中,重複 3次再沈操作’純化聚合反應物。將所得之聚合反應物的 固體成分溶解於Ν,Ν—二甲基乙醯胺,調製出固體成分濃 度10質量%之表面修飾二氧化矽粒子分散液(Α1-1)。 [表面接枝聚合物中空二氧化矽粒子分散液(A1-1G)之調 製] 於反應容器中,放入上述表面修飾二氧化矽粒子分散 液(Α1 -1 ) 500質量份、聚合禁止劑(商品名·· IRGANOX 1010、Ciba Specialty Chemicals 製)1 0,000 分之 1 質量 份並混合,再於反應容器中將丙烯酸氯化物70質量份於 冰浴中滴下。滴下終了後,將反應容器之內容物直室溫下 反應8小時。將反應後所得之反應溶液,以乙酸乙酯/水 系進行萃取,丙將乙酸乙酯層以硫酸鎂乾燥。再將乙酸乙 酯層之內容物投入於己烷中,重複進行3次的再沈操作’ 純化反應物。將所得之反應物固體成分溶解於甲基乙基酮 -164- 200904636 珠’調製出固體成分濃度20質量%且支鏈具有交聯性基 之表面接枝聚合物中空二氧化矽粒子分散液(A1-1G)。 (低折射率層用塗佈組成物3之調製) 200質量份 甲基乙基酮 環己酮 1 5 0質量份 含氟聚合物1 30質量份 甲基丙烯酸酯基含有聚矽氧烷樹脂 3質量份 (商品名、RMS-033、Gelest股份有限公司製) 光自由基產生劑(商品名、IRGACURE 907) 3質量份 二季戊四醇五丙烯酸酯與二-季戊四醇六丙烯酸酯之 混合物(日本化藥股份有限公司製) 7質量份 溶膠液1(溶劑揮發後之固體成分爲27質量份) 45質量份 表面接枝聚合物中空二氧化矽粒子分散液(A1-1G) 1〇〇質量份 上述低折射率層用塗佈組成物3中,對於甲基乙基酮 及環己酮而言,將含氟聚合物1、甲基丙烯酸酯基含有聚 矽氧烷樹脂、光自由基產生劑、二季戊四醇五丙烯酸酯與 二季戊四醇六丙烯酸酯之混合物以上述比率下加入並溶解 後,將上述溶膠液I、與上述調製之表面接枝聚合物中空 二氧化矽粒子分散液(A 1 -1 G )以上述比率添加。 繼續,稀釋甲基乙基酮至塗佈組成物全體的固體成分 -165- 200904636 濃度成爲7質量%,調製出低折射率層用塗佈組成物3。 (低折射率層用塗佈組成物4之調製) 調製低折射率層用塗佈組成物4時,首先調製出含有 中空二氧化矽微粒子1之分散液(B1),再使用該分散液 (B1),調製出表面修飾二氧化矽粒子分散液(B1-1), 再使用該表面修飾二氧化矽粒子分散液(B1-1),調製出 支鏈具有交聯性基之表面接枝聚合物中空二氧化矽粒子分 散液(B 1 -1 G )。 [含有中空二氧化矽微粒子1之分散液(B1)之調製] 上述低折射率層用塗佈組成物3之含有中空二氧化矽 微粒子1之分散液(A1 )的調製中,除〔3 -( 2 —溴丙 醯基)丙基〕三乙氧基矽烷變更爲〔3-(2 —溴異丁醯氧 基)丙基〕三乙氧基矽烷以外,與上述分散液(A1)之 調製情況同樣下,得到固體成分濃度3 0質量%的含有中 空二氧化矽微粒子1之分散液(B 1 )。 [表面修飾二氧化矽粒子分散液(B1-1 )之調製] 對於上述低折射率層用塗佈組成物3之表面修飾二氧 化矽粒子分散液(A 1 -1 )的調製,將所使用的含有中空二 氧化矽微粒子1之分散液(A1) ’變更爲上述所製作之 含有中空二氧化矽微粒子1之分散液(B 1 )以外,與上述 分散液(A 1 -1 )之調製情況同樣下’得到固體成分濃度 -166- 200904636 10質量%之表面修飾二氧化矽粒子分散液(B1-1)。 [表面接枝聚合物中空二氧化矽粒子分散液(B1-1G)之調 製] 上述低折射率層用塗佈組成物3的表面接枝聚合物中 空二氧化矽微粒子分散液(A1-1G)之調製中,將表面修 飾二氧化矽分散液(A1-1)變更爲上述所調製之表面修飾 二氧化矽分散液(B1-1) 500質量份以外,與上述分散液 (A1-1G )之調製情況同様下,調製出固體成分濃度20 質量%之表面接枝聚合物中空二氧化矽微粒子分散液( B1 -1 G )。 繼續,進行低折射率層用塗佈組成物4之調製時,上 述低折射率層用塗佈組成物3之調製中,將表面接枝聚合 物中空二氧化矽微粒子分散液(A1-1G),變更爲上述所 製作之表面接枝聚合物中空二氧化矽微粒子分散液(B1-1 G )以外,與上述低折射率層用塗佈組成物3之調製情 況同樣下,調製出固體成分濃度7質量%之低折射率層用 塗佈組成物4。 (防眩性抗反射薄膜的製作) 繼續,與上述實施例29之情況同様下,於經大氣壓 電漿處理之防眩性薄膜的防眩層表面上,塗佈上述之低折 射率層用塗佈組成物3或低折射率層用塗佈組成物4,設 置低折射率層,製作出實施例33與34之防眩性抗反射薄 -167- 200904636 膜。所得之實施例33與34之防眩性抗反射薄膜的低折射 率層之折射率皆爲1.44。 且’將使用於實施例33與34之防眩性抗反射薄膜的 製作之低折射率層用塗佈組成物中的微粒子種類如下述表 6所示。 &lt;防眩性抗反射薄膜之評估&gt; (耐久性試驗試品的製作) 對於實施例29、實施例33與34之防眩性抗反射薄 膜’與實施例1 3之情況同樣地,製作出過酷條件下之耐 久性試驗試品。 繼續’對於這些實施例2 9、實施例3 3與3 4之防眩 性抗反射薄膜的耐久性試驗試品試料,與上述實施例1 7 之情況同様地’進行密著性之評估,同時與上述實施例1 之情況同樣地’作爲擦傷性、表面硬度(鉛筆硬度)、以 及辨識性評估之指標,評估雜影攝入(防眩性)、鮮銳性 、及混濁。所得結果如下述表7所示。 -168- 200904636 [表6] 防眩薄膜之種類 低折射率層用塗佈組成物中 之微粒子種類 實施例29 實施例3製作之薄膜 中空二氧化矽微粒子 實施例33 實施例3製作之薄膜 表面接枝聚合物中空二氧化 矽微粒子(A1_G) 實施例34 實施例3製作之薄膜 表面接枝聚合物中空二氧化 矽微粒子(B1-G) -169- 200904636(Production of Transparent Film Substrate 2) The synthesized cellulose ester c 1 was heat-treated in a dry air at 130 ° C for 1 hour, and cooled to room temperature in a dry air to obtain a dried cellulose resin C 1 . 1. In the dry cellulose resin C 1 1 : 8 8 parts by mass, 4 parts by mass of a mixed acrylic polymer (API) and 4 parts by mass of trimethylolpropane tribenzoate (TMPTB) are added, and the above chemical formula is added. 3.8 parts by mass of a sugar ester compound and 0.5 parts by mass of an antioxidant (trade name: GSY-P101, manufactured by API Corporation), and the mixture was heated at a temperature of 23 ° C using an extruder to produce pellets. Let it cool. The obtained pellets were dried using a hot air dryer of circulating air at a temperature of 80 ° C for 5 hours to remove water. Continue to dry the granules into a single-axis extruder with a jacket type τ mould with a width of 1.5 m (made by Mitsubishi Heavy Industries Co., Ltd.: a spiral diameter of 90 mm, a T-die component made of tungsten carbide) The film is produced by extrusion molding by melt extrusion. Here, the extrusion molding is performed in a dust-free grade of -145 to 200904636 of a grade of 1000 Å or less, and a melting temperature of 25 〇 ° C 'T mold temperature of 245 ° C under molding conditions. Continuing, the obtained film was stretched by 1.10 times in the long direction, and then the film was stretched 1.2 times in the width direction using a tenter device. Finally, a film thickness of 80/zm, a length of 3000 m, and a width of 1.5 m was obtained. Film substrate 2 ° Example 1 5 and 1 6 Example 1 5 and 16 of the anti-glare film, the transparent film substrate 1 of Examples 9 and 10 was changed to the transparent film substrate 3' and the implementation The antiglare film of the present invention was produced in the same manner as in Examples 9 and 1. Among them, the transparent film substrate 3 is a cellulose ester C1, an acrylic polymer AP2, a trimethylolpropane tribenzoate: TMPTB, and a sugar ester compound, and is produced by the following method (propylene-based polymerization) Synthesis of AP2) The acryl-based polymer AP2 of the following general formula (10) was synthesized. -(Xa)m-(Xb)n-(Xc)p- &quot;-(10) wherein Xa represents Μ 甲基 (methyl methacrylate) and Xb represents HEMA ( 2-hydroxyethyl methacrylate Ester), m = 90, n = l 0, ρ = 0 〇 The propylene-based polymer AP2' to be synthesized is placed in a glass flask equipped with a stirrer, two dropping funnels, a gas introduction tube, and a thermometer. 40g of monomer mixture of Xa : MMA, Xb : HEMA with m : n = 90 : 10 ratio -146- 200904636, thiol propionic acid of chain transfer agent 3. 〇g And toluene 30g' was heated to 90 °C. Thereafter, 60 g of the monomer mixture was dropped from one of the dropping funnels over 3 hours, and arsenazoisobutyronitrile (6 g) dissolved in 14 g of toluene was added dropwise from the other funnel over 3 hours. Thereafter, azobisisobutyronitrile ruthenium 6 g dissolved in 56 g of toluene was added dropwise over 2 hours, and the reaction was further continued for 2 hours to obtain a propylene-based polymer AP2. The weight average molecular weight of the propylene-based polymer AP2 was measured by the following measurement method to obtain 8,000. (Production of Film of Transparent Film Substrate 3) Further, 4 parts by mass of the mixed acrylic polymer (AP2) and trimethylolpropane tribenzoate were added to the above dried cellulose resin C 1 1 : 8 parts by mass. (TMPTB) 4 parts by mass, 0.3 parts by mass of the sugar ester compound having the above chemical formula, and 0.5 parts by mass of an antioxidant (trade name: GS YP 1 0 1 , manufactured by API Corporation Co., Ltd.), and the mixture was extruded using an extruder. Heating at 230 t, pellets were produced and cooled. The obtained granules were dried in a hot air dryer using a circulating air at a temperature of 80 ° C for 5 hours to remove water. The uniaxial extruder (continuously manufactured by Mitsubishi Heavy Industries Co., Ltd.: a spiral diameter of 90 mm and a T-die member made of tungsten carbide) was continuously placed on the dry granules in a sleeve T mold having a projection width of 1.5 m. The film is formed by extrusion molding by melt extrusion. The extrusion molding was carried out in a dust-free state of a grade of 1,000,000 or less, a molding temperature of 2,500 ° C, and a mold temperature of 2,45 °C. Continue to 'extend the obtained film 1 _ 10 times in the long direction, and then use the -147-200904636 tenter device to extend the film 1.20 times in the width direction, and finally obtain a film thickness of 80/zm, a length of 300 0m, a width of 1.5. m transparent film substrate 3. &lt;Evaluation of Anti-glare Film&gt; (Production of Durability Test Specimen) Samples of Example 9, Example 10, and Example 1 3 to Example 1 The anti-glare film produced by the film, each film The antiglare layer was used as a surface, and was irradiated with light for 300 hours by a weather resistance tester (Eye super UV tester, manufactured by Iwasaki Electric Co., Ltd.). Further, these samples were stored in a constant temperature and humidity apparatus at a temperature of 60 ° C and a humidity of 90% RH for 500 hours to prepare a durability test sample. The sample of the durability test sample of the anti-glare film produced in the above-mentioned Example 9, Example 10, and Example 13 to Example 16 was the same as that of the above-described Example 1, and was scratched, Surface hardness (pencil hardness) and indicators for identification evaluation, evaluation of noise intake (anti-glare), sharpness, and turbidity. The results obtained are shown in Table 3 below. -148- 200904636 [ε ¥ 担is • N m 辨识 混 混 cn 寸 inch inch inch sharpness 卜 00 00 shadow intake (anti-glare) Bu Bu 〇 〇 cen g side surface hardness X m C^ ) inch inch X inch X inch forging m abrasion resistance (bar) inch inch 〇1—Η 〇 anti-glare film anti-glare layer coating composition type composition 1 composition 2 composition 1 composition 2 composition 1 composition Type 2 Transparent film substrate type Substrate 1 Substrate 1 Substrate 2 Substrate 2 Substrate 3 Substrate 3 Example 9 Example 10 Example 13 Example 14 Example 15 Example 16 -149- 200904636 As a result of Table 3, it was found that a transparent film substrate 2 made of a cellulose ester, a sugar ester compound, and an acrylic polymer was used as a transparent film substrate in a sample after a more severe durability test. The antiglare films of Examples 13 to 16 which used the transparent film substrate 3 were more excellent in film strength and visibility. Example 1 7 to 2 4, and Comparative Example 1 2 to 1 7 Using the above Example 1, Example 3, and Example 7 to Example 1 2, and Comparative Examples 1 to 4, Comparative Example 9, and Comparative Example 1 The anti-glare film produced by 〇 produces an anti-glare anti-reflective film. <Atmospheric piezoelectric slurry burying> Anti-glare film prepared in the first embodiment, the third embodiment, and the seventh to fourth embodiments, and the comparative examples 1 to 4, the comparative example 9, and the comparative example 10 An atmospheric piezoelectric slurry processing device (not shown) is used on the surface of the glare layer, and the electrode gap is 〇5 mm. The following discharge gas is supplied to the discharge space, and is discharged at 100 kHz, and surface treatment is performed by atmospheric piezoelectric slurry treatment (discharge gas). Nitrogen 80.0% by volume Oxygen 20.0% by volume &lt;Formation of high refractive index layer&gt; -150- 200904636 On the surface of the anti-glare layer of each anti-glare film treated by atmospheric piezoelectric slurry, after coating a high refractive index layer The particle dispersion A was prepared, and a coating composition for a high refractive index layer was prepared. (Preparation of particle dispersion A) Methanol dispersion ruthenium complex oxide colloid (zinc silicate sol, solid content 60%, trade name: West Lukes CX-Z610M-F2, manufactured by Nissan Chemical Industry Co., Ltd.) 6.0 1 kg of isopropanol was slowly added under stirring in kg to prepare a fine particle dispersion A. (coating composition for cylindrical refractive index layer) PGME (propylene glycol monomethyl ether) 40 parts by mass of isopropyl alcohol 25 parts by mass methyl ethyl ketone 25 parts by mass pentaerythritol triacrylate 0.9 parts by mass pentaerythritol tetraacrylate 1. 〇 quality 0.6 parts by mass of urethane acrylate (trade name: U-4HA, manufactured by Shin-Nakamura Chemical Co., Ltd.) Microparticle dispersion A 2 〇 mass parts hydroxy-cyclohexyl-phenyl-ketone 0.4 parts by mass (IRGACURE 1 84, Ciba Specialty Chemicals Co., Ltd.) 2-Methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one 0.2 parts by mass - 151 - 200904636 (IRGACURE 907, manufactured by Ciba Specialty Chemicals) FZ-2207 0.4 parts by mass (10% propylene glycol monomethyl ether solution, manufactured by Nippon Unicar Co., Ltd.) The following high refractive index layer was coated on the surface of the antiglare layer of each antiglare film treated with an atmospheric piezoelectric paddle. The composition was applied through a film and dried at a temperature of 70 ° C, and then ultraviolet rays of 1 1 5 J/cm 2 were irradiated with a high pressure mercury lamp, and a high refractive index layer was set at a film thickness of 12 〇 nm after hardening. The refractive index of the high refractive index layer was 1.60. &lt;Formation of Low Refractive Index Layer&gt; After forming a low refractive index layer on the surface of each of the antiglare films on which the high refractive index layer is applied, first, an isopropanol dispersion of hollow ceria particles 1 is prepared, After the tetraethoxy decane hydrolyzate A, the coating composition 1 for a low refractive index layer was prepared. (Preparation of isopropyl alcohol dispersion of hollow cerium oxide microparticles 1) Step (a): Adding a mixture of cerium oxide sol 100 μg having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by mass and 1 900 g of pure water Warm to 80 ° C. The pH of the reaction mother liquid was 10.5, and 9000 g of a 0.98 mass% sodium citrate aqueous solution of SiO 2 and 90 00 g of a 1.02 mass% sodium aluminate aqueous solution as Al 2 〇 3 were simultaneously added to the mother liquid. In the meantime, the temperature of the reaction liquid was maintained at 80 °C. The pH of the reaction solution increased to 12.5 after the addition, and there was almost no change after -152-200904636. After the completion of the addition, the reaction solution was cooled to room temperature, and washed with a filter membrane to prepare a Si〇2.Al2〇3 core particle dispersion having a solid concentration of 20% by mass. Step (b): adding 1 700 g of pure water to the core particle dispersion 5 〇〇g and heating to a temperature of 98 ° C, and maintaining the temperature, adding the sodium citrate aqueous solution to remove the alkali by using a cation exchange resin. Niobic acid solution (SiO 2 concentration: 3.5% by mass) 3 000 g 'A dispersion liquid of the core particles forming the first ceria coating layer was obtained. Step (c): Continuing, after washing with a limit filtration membrane, 1125 g of pure water was added to 500 g of the core particle dispersion liquid of the first cerium oxide coating layer having a solid concentration of 13% by mass, and then concentrated hydrochloric acid was added (35.5). %) changed to pH 1.0 and subjected to dealumination treatment. Continuing to add 10 L of a hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the dissolved aluminum salt was separated by a limiting filtration membrane to prepare a Si 〇 2 part of the constituents of the core particles from which the first cerium oxide coating layer was formed. A dispersion of ai2o3 porous particles. Step (d): adding a mixture of the above porous particle dispersion 1 500 g, 500 g of pure water, 1 750 g of ethanol, and 626 g of 28% ammonia water, and heating to a temperature of 35 ° C, then adding ethyl phthalate (Si〇2 28% by mass) 104 g, the surface of the porous particle of the first cerium oxide coating layer was formed, and covered with a hydrolyzed polycondensate of ethyl phthalate to form a second cerium oxide coating layer. Further, a dispersion of hollow cerium oxide fine particles 1 having a solid component concentration of 20% by mass in which the solvent was replaced with isopropyl alcohol was prepared by using a limiting filtration membrane. The first cerium oxide coating layer of the hollow cerium oxide microparticles had a thickness of 3 nm, an average particle diameter of 45 nm, a M0x/SiO 2 (mol ratio) of -153 to 200904636 0.0017, and a refractive index of 1.28. Among them, the average particle diameter and the coefficient of variation of the particle diameter can be measured by dynamic astigmatism. (Preparation of tetraethoxy decane hydrolysate A) 230 g of tetraethoxy decane (trade name: KBE04, manufactured by Shin-Etsu Chemical Co., Ltd.) and 440 g of ethanol were added thereto, and after adding 2% acetic acid aqueous solution to the mixture, at room temperature The tetraethoxy sand house hydrolyzate A was prepared by stirring at (25 ° C) for 28 hours. (Coating composition 1 for low refractive index layer) propylene glycol monomethyl ether 430 parts by mass of isopropyl alcohol 430 parts by mass of tetraethoxy decane hydrolyzate A (solid content 21% conversion) 120 parts by mass of γ-methyl propyleneoxy group Propyl trimethoxy decane 3. 〇 parts by mass (trade name: ΚΒΜ 503, manufactured by Shin-Etsu Chemical Co., Ltd.) 40 parts by mass of isopropyl alcohol dispersion of hollow cerium oxide fine particles 1 (average particle diameter 45 nm, particle diameter variation coefficient 30 %) 20 parts by mass of isopropyl alcohol dispersed spherical colloidal cerium oxide (solid content 20%, average particle diameter 45 nm, particle size variation coefficient 30%, sold) Ming Ethyl Acetate Acetate • Diisopropyl 3.0 parts by mass of acid ester (K awaken F ine C hemica 1 s C 〇 _, manufactured by L td) FZ-2207 3.0 parts by mass -154- 200904636 (10% propylene glycol monomethyl ether solution, Japan 11!^(^!: company (Preparation of an anti-glare anti-reflection film) The surface of each of the anti-glare films coated with the high-refractive-index layer is applied to the coating composition 1 for a low refractive index layer at a temperature of 80 ° C is dried, and under an ambient gas in which nitrogen gas is introduced to have an oxygen concentration of 1.0% by volume or less, .1 5 J/cm2 of ultraviolet light was irradiated by a high-pressure mercury lamp, and a low refractive index layer was set so as to have a film thickness of 86 nm, and the anti-glare antireflection films of Examples 17 to 24 and Comparative Examples 1 2 to 17 were produced. The refractive index of the refractive index layer was 1.38. <Evaluation of Antiglare Antireflection Film> (Production of Durability Test Specimen) Antiglare for Examples 1 7 to 2 4 and Comparative Example 1 2 to 1 7 The anti-reflection film was produced in the same manner as in the case of Example 1, and the durability test sample of the anti-glare anti-reflection film of Examples 17 to 24 and Comparative Examples I2 to 17 was continued. In the same manner as in the above-described Example 1, the following evaluations of the sample were evaluated as the scratch resistance, the surface hardness (pencil hardness), and the index of the identification evaluation to evaluate the noise intake (anti-glare), sharpness, And turbidity. The results obtained are shown in Table 4 below (Evaluation of Adhesion) -155-200904636 The endurance test samples of the anti-glare antireflection films of the above Examples 17 to 24 and Comparative Examples 12 to 17 were subjected to temperature. 2 hours of conditioning at 25 ° C and 60% relative humidity. For the side surface of each sample having an anti-glare anti-reflection layer, a knife is cut into a lattice shape of 1 1 vertical and 1 1 horizontal, and a total of 1 square square lattice is used to bond the polyester adhesive tape ( The adhesion test of the product No. 3 1 B and Nitto Denko Co., Ltd. was repeated three times in the same place. The presence or absence of peeling was visually observed, and the following four stages were evaluated. ◎ : No observation was made in the 1 00 grid. Peeling 〇: 1 00 grid in 2 grids observed peeling △: 1 0 0 grid 3 grid ~ 1 〇 grid observed peeling X: 1 0 0 grid in more than 1 1 grid observed peeling off -156- 200904636 [Table 4] Anti-glare film surface anti-glare property ί Evaluation of the film thickness of the film. Adhesive film ingestion (anti-glare) Fresh turbidity Example 薄膜 Film made in Example 1 ◎ 2 9 9 4 Example 18 Film produced in Example 3 ◎ '2 9 8 4 Example 19 Film produced in Example 7 ◎ 3 9 9 4 Example 20 Film produced in Example 8 ◎ 2 9 8 4 Example 21 Example 9 produced film ◎ 0 10 9 4 Example 22 Example 10 Film ◎ 1 10 9 4 Example 23 Film produced in Example 11 ◎ 1 2 9 8 4 Example 24 Film produced in Example 12 ◎ 3 9 8 4 Comparative Example 12 Film prepared in Comparative Example 1 Δ 11 7 5 2 Comparison Example 13 Film prepared in Comparative Example 2 Δ 12 7 5 1 Comparative Example 14 Film prepared in Comparative Example 3 Δ 12 7 5 2 Comparative Example 15 Film prepared in Comparative Example 4 Δ 11 7 5 2 Comparative Example 16 Film produced in Comparative Example 9 Δ 12 7 4 1 Comparative Example 17 Film Δ 13 6 4 1 prepared in Comparative Example 10 From the results of Table 4 above, the anti-glare antireflection film of Examples 17 to 24 of the present invention, and Comparative Example 1 2 Compared with the anti-glare anti-reflection film of ~17, it has better adhesion, rub resistance and recognition. Among them, an anti-glare antireflection film using an anti-glare film containing fluorine-containing polymethylmethacrylate fine particles at the bottom is particularly excellent in abrasion resistance and anti-glare property. Examples 25 to 32 and Comparative Examples 18 to 23 were produced using the above-described Example 1, Example 3, and Example 7 to Example 1, 2, and Comparative Examples 1 to 4, Comparative Example 9, and Comparative Example 10 -157-200904636 Anti-glare film, an anti-glare anti-reflection film is produced, but the difference between the above 7 7-24 and the comparative example 1 2 to 17 is that high-refraction is not required on the anti-glare surface. In the rate layer, the low refractive index layer can be directly provided by using the following low refractive index layer product 2. &lt;Atmospheric Piezoelectric Pulp Treatment&gt; First, in Example 1, Example 3, and Example 7~ Real! And the surface of the anti-glare layer of the glare film of Comparative Examples 1 to 4., Comparative Example 9, and Comparative Example 10, using the atmospheric piezoelectric slurry treatment, and compared with the above Examples 17 to 24, and Examples 12 to 17 Similarly, surface treatment by atmospheric piezoelectric slurry treatment was carried out. In the antiglare layer of each antiglare film treated with the atmospheric piezoelectric slurry, when the low refractive index layer is formed, the fluoropolymer 1 and the liquid I are first prepared, and then the coating composition 1 for the low refractive index layer is prepared. (Preparation of fluoropolymer 1) 40 ml of ethyl acetate, 14.7 g of hydroxyethyl vinyl ether, and 55 g of bismuth peroxide were placed in an autoclave with a stainless steel stirrer of 100 ml in content, and the reaction was carried out in a machine reaction system. After the gas is replaced by nitrogen. Further, propylene (HFP) 25 g was introduced into the autoclave, and the temperature was raised to a temperature. The pressure in the autoclave reached 65 ° C and the pressure was 5.4 kg/cm 2 . The reaction was continued for 8 hours at a temperature, the pressure reached 3.2 kg/cm2, and it was allowed to cool. When the internal temperature was lowered to room temperature, the unreacted body was driven out, and the autoclave was opened, and the reaction liquid was taken out. The obtained reaction liquid was applied to the film coating group of the example of the coating group to prevent the sample 12 (in the case of the case, the sol was charged with the laurel, and the hexafluoride was 65 ° C. 158- 200904636 In excess of hexane, 'after removing the solvent by decantation, the precipitated polymer is taken out. The polymer is dissolved in a small amount of ethyl acetate and reprecipitated twice with hexane. The residual monomer was completely removed and dried. After drying, 28 g of a polymer was obtained. Thereafter, 20 g of the polymer was dissolved in 100 ml of N,N-dimethylacetamide, and 11.4 g of a crude acid chloride was added dropwise under ice cooling. The mixture was stirred at room temperature for 1 hour, and ethyl acetate was added to the reaction mixture, and the mixture was washed with water. The organic layer was extracted and concentrated, and the obtained polymer was re-precipitated with hexane to obtain 19 g of fluoropolymer 1. Preparation of Liquid I) In a reactor equipped with a stirrer and a reflux condenser, 120 parts by mass of methyl ethyl ketone and propylene decyloxypropyl trimethoxy decane (KBM-5 103, Shin-Etsu Chemical Co., Ltd.) Company system) 1〇〇质量份,二异After 3 parts by mass of propoxy aluminum ethyl acetonitrile acetate and mixed, 30 parts by mass of ion-exchanged water was added, and the reaction was carried out at a temperature of 6 (TC for 4 hours, and then cooled to room temperature to obtain a sol liquid I. Sol solution I The mass average molecular weight of the reaction product in the middle is 1600, and the component having a molecular weight of 1,000 to 20,000 is 100% by mass in the component having an oligomer component or higher. Further, it is known from gas chromatography that no raw material remains. Propylene decyloxypropyltrimethoxydecane. (Preparation of coating composition 2 for low refractive index layer) Methyl ethyl ketone 200 parts by mass of cyclohexanone 150 parts by mass - 159 - 200904636 Fluoropolymer 1 30 parts by mass of a methacrylate group containing 3 parts by mass of a polyoxyalkylene resin (trade name, RMS-03 3, manufactured by Gelest Co., Ltd.) photoradical generator (trade name, IRGACURE 9〇7) 3 parts by mass a mixture of dipentaerythritol pentaacrylate and di-pentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.) 7 parts by mass of sol liquid 1 (solid component 27 parts by mass after solvent evaporation) 45 parts by mass of hollow cerium oxide microparticles 1 Propylene dispersion 100 parts by mass of the above-mentioned coating composition 2 for a low refractive index layer, for the methyl ethyl ketone and cyclohexanone, the above-mentioned fluoropolymer 1 and a methacrylate group-containing polyoxyalkylene resin And a mixture of a photoradical generator, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate, which is added and dissolved at the above ratio, and the hollow solution I and the low refractive index layer coating composition 1 are hollow. The cerium oxide microparticles 1 isopropyl alcohol dispersion was added at the above ratio. Continued to dilute with methyl ethyl ketone until the solid content concentration of the entire coating composition was 7 mass%, and the coating composition for the low refractive index layer was prepared. Object 2. (Production of anti-glare anti-reflection film) The coating composition 2 for the low refractive index layer is coated on the surface of the anti-glare layer of each anti-glare film treated by the atmospheric piezoelectric slurry, and is applied to the film. Λ Nitrogen gas with an oxygen concentration of 1.0% by volume or less is irradiated with a high-pressure mercury lamp with an ultraviolet ray of -160-200904636 0.15 J/cm2, and applied to a film thickness of 86 nm, and a low refractive index layer is formed. Antiglare antireflection films of Examples 25 to 32 and Comparative Examples 1 8 to 2 3 . The refractive index of the low refractive index layer was 1.44. &lt;Evaluation of Anti-glare Antireflection Film&gt; (Production of Durability Test Specimen) The antiglare antireflection film of Example 2 5 to 3 2, and Comparative Example 1 8 to 2 3 and Example 1 In the same manner, the durability test sample was produced, and the durability test specimen samples of the antiglare antireflection films of Examples 25 to 32 and Comparative Examples 18 to 23 were compared with the above-described Example 17 In the same manner, the evaluation of the adhesion was carried out, and in the same manner as in the case of the above-described Example 1, "the shaving property, the surface hardness (pencil hardness), and the index of the identification evaluation were evaluated, and the noise intake (anti-glare property) was evaluated. Sharpness and turbidity. The results obtained are shown in Table 5 below. -161 - 200904636 [Table 5] Type of anti-glare film Anti-glare property j 5 Evaluation of reflective film Adhesive rubbing resistance (Article) Identification of ghost image intake (anti-glare property) Freshness turbidity Example 25 Film produced in Example 1 ◎ 2 9 9 4 Example 26 Film produced in Example 3 ◎ 2 9 8 4 Example 27 Film produced in Example 7 ◎ 2 9 9 4 Example 28 Film produced in Example 8 ◎ 3 9 8 4 Example 29 Film produced in Example 9 ◎ 0 10 9 4 Example 30 Film produced in Example 10 ◎ 0 10 9 4 Example 31 Film produced in Example 11 ◎ 3 9 8 4 Example 32 Example Film produced by 12 ◎ 2 9 8 4 Comparative Example 18 Film prepared in Comparative Example 1 Δ 12 7 5 2 Comparative Example 19 Film prepared in Comparative Example 2 Δ 13 7 5 1 Comparative Example 20 Film prepared in Comparative Example 3 Δ 12 7 5 2 Comparative Example 21 Film prepared in Comparative Example 4 Δ 13 7 5 2 Comparative Example 22 Film prepared in Comparative Example 9 Δ 12 7 4 1 Comparative Example 23 Film prepared in Comparative Example 10 Δ 13 6 4 1 From the results of Table 5 above It is understood that the anti-glare anti-reflection film of Example 2 5 to 3 2 of the present invention and Comparative Example 1 8 to 23 Antiglare antireflection film, compared with a more excellent adhesion, abrasion resistance, and visibility. Among them, an anti-glare antireflection film which is also used as an anti-glare film containing fluorine-containing polymethyl methacrylate fine particles has excellent scratch resistance and anti-glare property. Example 3 3 and 3 4 In the same manner as in the above-mentioned Example 29, an anti-glare anti-reflection film was produced, but the difference was 'the low refractive index used in Substituting Example 29-162-200904636 The coating composition 2 was coated with the coating composition 4 for a low refractive index layer or a low refractive index layer, and the antiglare antireflection film of Example 3 was produced. When the coating composition 3 for a low refractive index layer is prepared, first, a dispersion (1) of the hollow cerium oxide fine particles 1 is prepared, and the dispersion (A1) is continuously used to prepare a surface-modified cerium oxide particle dispersion 1). Using the surface-modified ceria particle dispersion ( ), a surface graft polymer hollow sand particle dispersion (A1-1G) having a crosslinkable group in a branched chain was prepared. [Preparation of Dispersion Liquid (A1) Containing Hollow Ceria Particles 1] 500 parts by mass of the hollow ceria micro-isopropanol dispersion prepared in the above Examples 1 to 24, added to [3-(2_漠30 parts by mass of propyl propyl]triethoxy decane and 1.5 parts by mass of diisopropoxy aluminum Z acrylate, and after mixing, ion exchange water was added at a mass of 90 ° C for 8 hours. After cooling to room temperature, the g dispersion is continuously concentrated by a super telecentric separator, and after removing the supernatant, isopropanol is used to purify the surface-treated hollow ceria, and the operation is repeated. Resonance (NMR) and gas chromatography were carried out, and it was confirmed that the residual decane coupling agent was less than 1% by mass, and a dispersion (A1) containing hollow cerium oxide fine particles having a solid content of 30% by mass was added. [Preparation of surface-modified cerium oxide particle dispersion (A1-1)] L-form and 34 i contain 1 of this fraction (ΑΙΑ 1 -1 : dioxygen 1 group). The temperature reaction is carried out by adding a complex 3 (GC, Des. 1-163-200904636 in a polymerization container not shown) to mix 30 parts by mass of the dispersion (A1) containing the above hollow ceria particles 1, and to deodorize copper (〇1 mass). Parts, 4,4'-two (5-fluorenyl)- 2,2, _bipyridine 6 parts by mass, methyl ethyl ketone 50 parts by mass, 'sealing the polymerization vessel and then degassing by cooling' The operation of nitrogen substitution was repeated three times, and the inside of the polymerization vessel was made into a nitrogen atmosphere. Continue to add 2-hydroxyethyl methacrylate 3 〇0 parts by mass to the polymerization vessel and warm to a temperature of 70 ° C for 8 hours of polymerization. After the end of the polymerization reaction, the obtained polymerization reaction solution is put into hexane, and the re-sinking operation is repeated three times to purify the polymerization reaction. The solid component of the obtained polymerization reaction product is dissolved in hydrazine, hydrazine-dimethyl hydrazine. A surface-modified cerium oxide particle dispersion (Α1-1) having a solid concentration of 10% by mass is prepared as an amine. [Preparation of surface graft polymer hollow cerium oxide particle dispersion (A1-1G)] in a reaction vessel Put in the above surface modified cerium oxide particles 500 parts by mass of a dispersion (Α1 -1 ), a polymerization inhibitor (trade name: IRGANOX 1010, manufactured by Ciba Specialty Chemicals), 1 part by mass, and mixed, and 70 parts by mass of acrylic acid chloride in a reaction container After the dropwise addition, the contents of the reaction vessel were reacted for 8 hours at room temperature. The reaction solution obtained after the reaction was extracted with ethyl acetate/water, and the ethyl acetate layer was dried over magnesium sulfate. The content of the ethyl acetate layer was further poured into hexane, and the re-sinking operation was repeated three times to purify the reactants. The obtained reactant solid content was dissolved in methyl ethyl ketone-164-200904636 beads. A surface graft polymer hollow ceria particle dispersion (A1-1G) having a solid concentration of 20% by mass and having a crosslinkable group in a branched chain. (Modulation of coating composition 3 for low refractive index layer) 200 mass Methyl ethyl ketone cyclohexanone 150 parts by mass of fluoropolymer 1 30 parts by mass of methacrylate group containing 3 parts by mass of polysiloxane resin (trade name, RMS-033, manufactured by Gelest Co., Ltd.) Photoactive free radical production (product name, IRGACURE 907) 3 parts by mass of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.) 7 parts by mass of sol solution 1 (solid content after solvent evaporation is 27 mass) 45 parts by mass of surface graft polymer hollow ceria particle dispersion (A1-1G) 1 part by mass of the above coating composition 3 for low refractive index layer, for methyl ethyl ketone and cyclohexanone In the case where the fluoropolymer 1, the methacrylate group contains a polysiloxane catalyst, a photoradical generator, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, and added at the above ratio, The above sol liquid I and the above-prepared surface graft polymer hollow ceria particle dispersion (A 1 -1 G ) were added at the above ratio. Further, the methyl ethyl ketone was diluted until the solid content of the entire coating composition was -165-200904636, and the concentration was 7 mass%, and the coating composition 3 for a low refractive index layer was prepared. (Preparation of Coating Composition 4 for Low Refractive Index Layer) When the coating composition 4 for a low refractive index layer is prepared, first, a dispersion (B1) containing hollow ceria particles 1 is prepared, and the dispersion is used ( B1), a surface-modified cerium oxide particle dispersion (B1-1) is prepared, and the surface-modified cerium oxide particle dispersion (B1-1) is used to prepare a surface graft polymerization in which a branched chain has a crosslinkable group. Hollow ceria particle dispersion (B 1 -1 G ). [Preparation of the dispersion liquid (B1) containing the hollow cerium oxide fine particles 1] In the preparation of the dispersion liquid (A1) containing the hollow cerium oxide fine particles 1 of the coating composition 3 for a low refractive index layer, except for [3 - Preparation of (2-(bromopropyl) propyl]triethoxydecane with [3-(2-bromoisobutyloxy)propyl]triethoxydecane, and dispersion with the above dispersion (A1) In the same manner, a dispersion (B 1 ) containing hollow cerium oxide fine particles 1 having a solid content concentration of 30% by mass was obtained. [Preparation of surface-modified cerium oxide particle dispersion (B1-1)] The preparation of the surface-modified cerium oxide particle dispersion (A 1 -1 ) of the coating composition 3 for a low refractive index layer described above is used. The dispersion liquid (A1) containing hollow cerium oxide fine particles 1 is changed to the dispersion liquid (B 1 ) containing the hollow cerium oxide fine particles 1 produced above, and the dispersion with the above dispersion (A 1 -1 ) Similarly, a surface-modified cerium oxide particle dispersion (B1-1) having a solid content concentration of -166 to 200904636 10% by mass was obtained. [Preparation of surface graft polymer hollow cerium oxide particle dispersion (B1-1G)] Surface graft polymer hollow cerium oxide microparticle dispersion (A1-1G) of coating composition 3 for low refractive index layer In the preparation, the surface-modified cerium oxide dispersion (A1-1) is changed to 500 parts by mass of the surface-modified cerium oxide dispersion (B1-1) prepared above, and the dispersion (A1-1G) The surface graft polymer hollow cerium oxide microparticle dispersion (B1 -1 G ) having a solid content concentration of 20% by mass was prepared under the same conditions as in the preparation. When the coating composition 4 for a low refractive index layer is prepared, the surface graft polymer hollow cerium oxide fine particle dispersion (A1-1G) is prepared in the preparation of the coating composition 3 for the low refractive index layer. In addition to the surface graft polymer hollow cerium oxide fine particle dispersion (B1-1 G) produced as described above, the solid content concentration is prepared in the same manner as in the case of the above-described low refractive index layer coating composition 3 The coating composition 4 was applied to 7 mass% of the low refractive index layer. (Preparation of anti-glare antireflection film) Continuing with the above-described Example 29, coating the above-mentioned low refractive index layer on the surface of the antiglare layer of the antiglare film treated with the atmospheric piezoelectric slurry The cloth composition 3 or the low refractive index layer coating composition 4 was provided with a low refractive index layer, and the antiglare antireflection thin films of Examples 33 and 34 were prepared. The refractive indices of the low refractive index layers of the obtained antiglare antireflection films of Examples 33 and 34 were both 1.44. Further, the types of fine particles in the coating composition for a low refractive index layer produced in the antiglare antireflection film of Examples 33 and 34 are shown in Table 6 below. &lt;Evaluation of anti-glare anti-reflection film&gt; (Production of durability test sample) The anti-glare anti-reflection film of Example 29 and Examples 33 and 34 was produced in the same manner as in Example 13 Durability test samples under cool conditions. Continuing with the test of the durability test sample of the anti-glare anti-reflection film of the Example 29 and the Examples 3 3 and 3 4, the adhesion evaluation was performed in the same manner as in the above-mentioned Example 17 In the same manner as in the case of the above-described Example 1, "the shading property, the surface hardness (pencil hardness), and the index of the evaluation of the visibility were evaluated, and the noise intake (anti-glare property), sharpness, and turbidity were evaluated. The results obtained are shown in Table 7 below. -168- 200904636 [Table 6] Types of anti-glare film Microparticle types in coating composition for low refractive index layer Example 29 Film hollow hollow cerium oxide microparticles produced in Example 3 Example 33 Film surface prepared in Example 3 Grafted polymer hollow cerium oxide microparticles (A1_G) Example 34 Film surface grafted polymer hollow cerium oxide microparticles (B1-G) prepared in Example 3 -169- 200904636

-170- 200904636 由上述表7之結果得知,對於更嚴苛的耐久性試驗後 的試品,使用表面接枝聚合物中空二氧化矽微粒子的本發 明之實施例3 3與3 4之防眩性抗反射薄膜’比使用一般中 空二氧化矽微粒子之實施例29可得到更優良的密著性、 膜強度、及辨識性。 (偏光膜的製作) 欲製作液晶顯示板,首先製作出偏光膜。即,將厚度 120/im的聚乙烯醇薄膜進行一軸延伸(溫度110°C,延伸 倍率5倍)。將此於碘0.075g、碘化鉀5g、水100g所成 之水溶液中進行60秒浸漬,再於碘化鉀6g、硼酸7.5g、 水1 0 0 g所成之6 8 °C的水溶液中浸漬。將此經水洗、乾燥 後得到偏光膜。 (偏光板的製作) 繼續,於偏光膜之一面上,依據下述步驟1〜5,將 實施例1〜1 2及比較例1〜1 0所製作之防眩性薄膜,貼合 成防眩層爲外側,於偏光膜之另一方裏面貼合具有販賣品 的相位差之纖維素酯薄膜·ΚοηίεαιηίηοΠ3 tak ( Konicaminolta opt股份有限公司製)而製作出偏光板。 步驟1 :於5 0 °C之1莫耳/L的氫氧化鈉溶液中浸漬 6〇秒,再經水洗後乾燥,得到與偏光膜貼合之側經鹼化 的防眩性薄膜、纖維素酯薄膜。 步騾2:將偏光膜浸漬於固體成分2質量%的聚乙烯 -171 - 200904636 醇黏著劑槽中1〜2秒。 步驟3:輕輕擦拭去步驟2中附著於偏光膜之過剩黏 著劑,將該偏光膜載持於經步驟1處理之纖維素酯薄膜上 面,再於偏光膜上面配置成將經步驟1處理之防眩性薄膜 依序層合成防眩層爲外側。 步驟4 :將步驟3所層合之防眩性薄膜與偏光膜與纖 維素酯薄膜以壓力20〜30N/cm2、搬送速度2m/分鐘下進 行貼合。 步驟5 : 80 °C之乾燥機中以步驟4所製作之防眩性薄 膜與偏光膜與纖維素酯薄膜經2分鐘乾燥後製作出偏光板 (液晶顯示板的製作) 繼續,小心翼翼地剝離購得之液晶顯示板(NEC製 彩色液晶顯示器、MultiSync、LCD 1 525J :型名、LA-1529HM)最表面之偏光板,於此貼合上述製作之偏光板 ,製作出實施例35〜46、及比較例24〜33之液晶顯示板 ,對於所得之液晶顯示板’評估雜影攝入(防眩性)、鮮 明性、及閃爍。 &lt;評估&gt; [雜影攝入(防眩性)] 將如上述所得之實施例3 5〜4 6及比較例2 4〜3 3之液 晶面板,配置於自地板爲80cm之高度的桌子上’由地板 -172- 200904636 3m高度之天花板部,以白天顏色光直管螢光燈( FLR40S . D/M-X、松下電器產業股份有限公司製)40Wx2 根作爲1組,於1 · 5 m間隔下設置1 0組。此時評估者在於 液晶面板顯示面正面,於天花板部設置螢光燈使螢光可由 評估者之頭上往後方照射。對於液晶面板,自對桌子爲垂 直之方向爲25 °傾斜之方向攝入螢光燈,並對於畫面之易 見度進行等級評估。所得結果如下述表8所示。 雜影攝入(防眩性)評估等級 4:最爲接近的螢光燈之雜影攝入未令人在意,字形 尺寸爲8以下的文字亦可讀。 3 :附近的螢光燈之雜影攝入稍令人在意,但遠處則 不會令人在意’字形尺寸爲8以下之文字勉強可讀。 2:遠處的螢光燈之雜影攝入令人在意,字形尺寸爲 8以下之文字難以閱讀。 1:螢光燈之雜影攝入非常令人在意,雜影攝入部分 的字形尺寸爲8以下之文字無法閱讀。 (鮮明性) 於實施例35〜46及比較例24〜33之各液晶面板,將 動畫顯示時的影像鮮明性以目視下依述基準進行評估。所 得之結果如下述表8所示。 鮮明性評估等級 -173- 200904636 4 :快速移動的影像亦鮮明可見。 3 :快速移動的影像稍有不鮮明之狀況。 2 :僅不動之影像爲鮮明可見,但移動影像則不鮮明 1 :移動影像或不動影像皆不鮮明。 (閃爍) 上述製作之實施例3 5〜46及比較例24〜3 3之各液晶 面板上映上具有天窗之螢光燈擴散光,將表面閃爍感依據 以下所示基準進行目視評估。所得之結果如下述表8所示 閃爍評估等級 4 :完全無閃爍。 3 :幾乎無閃爍。 2 :稍有閃爍。 1 :明顯有閃爍。 -174- 200904636 [表8] 防眩性薄膜之種類 頭示而板之評估 _ 雜影攝入 (防眩性) 鮮明性 閃爍 實施例35 實施例1製作之薄膜 4 4 4 實施例36 實施例2製作之薄膜 4 3 4 實施例37 實施例3製作之薄膜 4 4 4 實施例38 實施例4製作之薄膜 4 3 4 實施例39 實施例5製作之薄膜 4 3 4 實施例40 實施例6製作之薄膜 4 3 4 實施例41 實施例7製作之薄膜 4 3 4 實施例42 實施例8製作之薄膜 4 4 4 實施例43 實施例9製作之薄膜 4 4 4 實施例44 實施例10製作之薄膜 4 4 4 實施例45 實施例11製作之薄膜 4 4 3 實施例46 實施例12製作之薄膜 4 3 4 比較例24 比較例1製作之薄膜 2 2 2 比較例25 比較例2製作之薄膜 2 2 1 比較例26 比較例3製作之薄膜 2 3 2 比較例27 比較例4製作之薄膜 1 3 1 比較例28 比較例5製作之薄膜 1 3 1 比較例29 比較例6製作之薄膜 1 3 1 比較例30 比較例7製作之薄膜 1 3 1 比較例31 比較例8製作之薄膜 1 3 1 比較例32 比較例9製作之薄膜 1 3 1 比較例33 比較例10製作之薄膜 1 3 1 由上述表8之結果得知,本發明的實施例35〜46之 液晶面板與比較例24〜3 3之液晶面板相比,具有更優良 的辨識性(防眩性、鮮明性、閃爍)。 實施例4 7〜5 4、及比較例3 4〜3 9 -175- 200904636 (偏光板及液晶顯示板的製作) 繼續,使用上述實施例25〜32、及比較例18〜23所 製作之防眩性抗反射薄膜,與上述實施例3 5〜46、及比 較例2 4〜3 3之相同情況下,製造出偏光板後’製作出實 施例47〜54、及比較例34〜39之液晶顯示板,對於所得 之液晶顯示板,將雜影攝入(防眩性)、鮮明性、及閃爍 與上述實施例3 5〜4 6、及比較例2 4〜3 3之相同情況下進 行評估。所得之結果如表9所示。 [表9] 防眩性抗反射薄膜之種類 顯示面板之評估 雜影攝入 (防眩性) 鮮明性 閃爍 實施例47 實施例25製作之薄膜 4 3 4 實施例48 實施例26製作之薄膜 4 4 4 實施例49 實施例27製作之薄膜 4 4 4 實施例50 實施例28製作之薄膜 4 4 3 實施例51 實施例29製作之薄膜 4 4 4 實施例52 實施例30製作之薄膜 4 3 4 實施例53 實施例31製作之薄膜 4 4 4 實施例54 實施例32製作之薄膜 4 3 4 比較例34 比較例17製作之薄膜 2 3 2 比較例35 比較例18製作之薄膜 2 3 2 比較例36 比較例19製作之薄膜 2 3 2 比較例37 比較例20製作之薄膜 2_. 3 2 比較例38 比較例21製作之薄膜 2 3 2 比較例39 比較例22製作之薄膜 2 3 2 由上述表9的結果得知’本發明之實施例35 -176- 200904636 的液晶面板與比較例24〜3 3之液晶面板相比,具有更優 良的辨識性(防眩性、鮮明性、閃爍)。 【圖式簡單說明】 [圖1]表示實施本發明的相關偏光板保護薄膜之製造 方法的裝置之1實施形態的槪略流程圖。 [圖2]製造裝置之重要部份的擴大流程圖。 [圖3]圖3 (a)表示流延塑模之重要部份外觀圖、圖 3 ( b )表示流延塑模之重要部份截面圖。 [圖4]表示夾壓轉動體之具體例的截面圖。 [圖5]表示夾壓轉動體之其中1具體例,其爲與轉動 軸成垂直平面之截面圖。 [圖6]表示含有圖5之夾壓轉動體的轉動軸之平面下 的截面圖。 [圖7] 1頻率數高頻率電壓外加方式之薄膜形成裝置 的一例槪略圖。 [圖8]2頻率數高頻率電壓外加方式之薄膜形成裝置 的一例槪略圖。 [圖9]表示輥電極之導電性金屬質母材與其上被覆蓋 的介電體之結構一例的斜視圖。 [圖10]表示角筒型電極之導電性金屬質母材與其上被 被覆的介電體之結構一例的斜視圖。 【主要元件符號說明】 -177- 200904636 4 :流延塑模 5 :第1冷卻輥 6 :接觸車昆 7 :第2冷卻輥 8 :第3冷卻輥 10 :薄膜 -178--170- 200904636 It is known from the results of Table 7 above that for the samples after the more severe durability test, the use of the surface graft polymer hollow cerium oxide microparticles of the Examples 3 3 and 3 4 The glare antireflection film can provide better adhesion, film strength, and visibility than Example 29 using general hollow ceria particles. (Production of Polarizing Film) To produce a liquid crystal display panel, first, a polarizing film is produced. Namely, a polyvinyl alcohol film having a thickness of 120 / im was subjected to one-axis stretching (temperature: 110 ° C, elongation of 5 times). This was immersed in an aqueous solution of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water. This was washed with water and dried to obtain a polarizing film. (Production of Polarizing Plate) Subsequently, the anti-glare film produced in Examples 1 to 12 and Comparative Examples 1 to 10 was laminated on one surface of the polarizing film according to the following steps 1 to 5, and laminated to an anti-glare layer. On the other side, a polarizing plate was produced by laminating a cellulose ester film having a phase difference of a commercial product, ΚοηίεαιηίηοΠ3 tak (manufactured by Konicaminolta opt Co., Ltd.), on the other side of the polarizing film. Step 1: immersed in a 1 mol/L sodium hydroxide solution at 50 ° C for 6 sec seconds, and then washed with water and dried to obtain an alkalized anti-glare film and cellulose bonded to the polarizing film. Ester film. Step 2: The polarizing film was immersed in a solid content of 2% by mass of polyethylene -171 - 200904636 in an alcohol adhesive tank for 1 to 2 seconds. Step 3: Gently wipe the excess adhesive attached to the polarizing film in step 2, and carry the polarizing film on the cellulose ester film treated in step 1, and then arrange the film on the polarizing film to be processed in step 1. The anti-glare film sequentially forms an anti-glare layer to the outside. Step 4: The antiglare film laminated with the step 3 and the polarizing film and the cellulose ester film were bonded at a pressure of 20 to 30 N/cm 2 and a conveying speed of 2 m/min. Step 5: The anti-glare film prepared by the step 4 and the polarizing film and the cellulose ester film were dried in a dryer at 80 ° C for 2 minutes to prepare a polarizing plate (manufacture of a liquid crystal display panel), and carefully peeled off. A polarizing plate having the outermost surface of a liquid crystal display panel (NEC-made color liquid crystal display, MultiSync, LCD 1 525J: model name, LA-1529HM) was attached to the polarizing plate prepared above, and Examples 35 to 46, and In the liquid crystal display panels of Comparative Examples 24 to 33, the resulting liquid crystal display panel was evaluated for ghosting (anti-glare), sharpness, and flicker. &lt;Evaluation&gt; [Walk-intake (anti-glare property)] The liquid crystal panels of Examples 35 to 46 and Comparative Examples 2 to 3 3 obtained as described above were placed on a table having a height of 80 cm from the floor. On the ceiling of the floor-172-200904636 3m height, the daylight color straight tube fluorescent lamp (FLR40S. D/MX, Matsushita Electric Industrial Co., Ltd.) 40Wx2 root as a group, at 1 · 5 m interval Set 10 groups below. At this time, the evaluator is on the front side of the display panel of the liquid crystal panel, and a fluorescent lamp is placed on the ceiling to allow the fluorescent light to be illuminated from the head of the assessor. For the liquid crystal panel, the fluorescent lamp is ingested from the direction in which the table is inclined at a vertical angle of 25 °, and the visibility of the screen is evaluated. The results obtained are shown in Table 8 below. Hype ingestion (anti-glare) evaluation level 4: The most inconspicuous fluorescent light intake is not noticeable, and the font size of 8 or less is also readable. 3: The shadow of the nearby fluorescent light is slightly noticeable, but it is not noticeable in the distance. The text with a font size of 8 or less is barely readable. 2: The shadow of the fluorescent light in the distance is interesting, and the characters with a font size of 8 or less are difficult to read. 1: The shadow of the fluorescent light is very interesting, and the characters with a glyph size of 8 or less cannot be read. (Fancyness) In each of the liquid crystal panels of Examples 35 to 46 and Comparative Examples 24 to 33, the image sharpness at the time of animation display was evaluated by visual basis. The results obtained are shown in Table 8 below. Sharpness Evaluation Level -173- 200904636 4 : Fast moving images are also clearly visible. 3: The fast moving image is slightly unclear. 2: The image that is only moving is clearly visible, but the moving image is not clear. 1 : Moving images or moving images are not clear. (Flickering) Each of the liquid crystal panels of the above-described Examples 3 to 46 and Comparative Examples 24 to 3 was subjected to spectroscopic diffused light having a sunroof, and the surface flickering feeling was visually evaluated based on the following criteria. The results obtained are shown in Table 8 below. Scintillation Evaluation Level 4: Completely no flicker. 3: Almost no flicker. 2 : Slightly flickering. 1 : Obviously flickering. -174- 200904636 [Table 8] Types of anti-glare film and evaluation of the plate _ Miscellaneous film intake (anti-glare) Vibrant flicker Example 35 Film produced in Example 1 4 4 Example 36 Example 2 Film produced 4 3 4 Example 37 Film produced in Example 3 4 4 Example 38 Film prepared in Example 4 4 3 Example 39 Example 5 Film 4 4 4 Example 40 Preparation of Example 6 Film 4 3 4 Example 41 Film produced in Example 7 4 3 4 Example 42 Film produced in Example 8 4 4 Example 43 Film prepared in Example 4 4 4 Example 44 Film produced in Example 10 4 4 4 Example 45 Film produced in Example 11 4 4 3 Example 46 Film prepared in Example 12 4 3 4 Comparative Example 24 Film prepared in Comparative Example 2 2 2 Comparative Example 25 Film prepared in Comparative Example 2 2 1 Comparative Example 26 Film prepared in Comparative Example 3 2 3 2 Comparative Example 27 Film prepared in Comparative Example 1 1 3 1 Comparative Example 28 Film prepared in Comparative Example 5 1 3 1 Comparative Example 29 Film prepared in Comparative Example 1 1 3 1 Comparison Example 30 Film prepared in Comparative Example 7 1 3 1 Comparative Example 31 Comparative Example 8 Film 1 3 1 Comparative Example 32 Film prepared in Comparative Example 9 1 3 1 Comparative Example 33 Film prepared in Comparative Example 10 1 3 1 From the results of Table 8 above, the liquid crystal panels of Examples 35 to 46 of the present invention were obtained. Compared with the liquid crystal panels of Comparative Examples 24 to 3, it has more excellent visibility (anti-glare, sharpness, and flicker). Example 4 7 to 5 4, and Comparative Example 3 4 to 3 9 -175- 200904636 (Production of Polarizing Plate and Liquid Crystal Display Panel) Continuing, the defenses produced by the above Examples 25 to 32 and Comparative Examples 18 to 23 were used. The glare antireflection film was produced in the same manner as in the above Examples 35 to 46 and Comparative Examples 24 to 3, and the liquid crystals of Examples 47 to 54 and Comparative Examples 34 to 39 were produced. In the display panel, the obtained liquid crystal display panel was evaluated in the same manner as in the case of the above-mentioned Examples 35 to 46 and Comparative Examples 24 to 3 3 in terms of the ingestion (anti-glare), sharpness, and flicker. . The results obtained are shown in Table 9. [Table 9] Types of Anti-glare Anti-reflection Films Evaluation of Photographs of Panels (Anti-glare) Vivid Scintillation Example 47 Films produced in Example 25 4 3 4 Example 48 Films produced in Example 26 4 4 Example 49 Film produced in Example 27 4 4 Example 50 Film prepared in Example 28 4 4 3 Example 51 Film prepared in Example 29 4 4 Example 52 Film prepared in Example 30 4 3 4 Example 53 Film prepared in Example 31 4 4 Example 54 Film prepared in Example 32 4 3 4 Comparative Example 34 Film prepared in Comparative Example 17 2 3 2 Comparative Example 35 Film prepared in Comparative Example 18 2 3 Comparative Example 36 Comparative Example 19 Film 2 3 2 Comparative Example 37 Comparative Example 20 Film 2_. 3 2 Comparative Example 38 Comparative Example 21 Film 2 3 2 Comparative Example 39 Comparative Example 22 Film 2 3 2 From the above table As a result of 9, it was found that the liquid crystal panel of Example 35-176-200904636 of the present invention has more excellent visibility (anti-glare property, sharpness, and flicker) than the liquid crystal panels of Comparative Examples 24 to 33. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic flow chart showing an embodiment of an apparatus for carrying out a method for producing a polarizing plate protective film according to the present invention. [Fig. 2] An enlarged flowchart of an important part of the manufacturing apparatus. [Fig. 3] Fig. 3(a) is a view showing an important part of a casting mold, and Fig. 3(b) is a cross-sectional view showing an important part of a casting mold. Fig. 4 is a cross-sectional view showing a specific example of a crimping rotor. Fig. 5 is a cross-sectional view showing a specific example of a pinch rotating body which is a plane perpendicular to the axis of rotation. Fig. 6 is a cross-sectional view showing a plane including a rotating shaft of the nip rotating body of Fig. 5. Fig. 7 is a schematic diagram showing an example of a thin film forming apparatus in which a frequency is high frequency and a voltage is applied. Fig. 8 is a schematic diagram showing an example of a thin film forming apparatus in which a frequency number is high and a frequency is applied. Fig. 9 is a perspective view showing an example of a structure of a conductive metal base material of a roll electrode and a dielectric body covered thereon. Fig. 10 is a perspective view showing an example of a structure of a conductive metal base material of a corner tube type electrode and a dielectric body coated thereon. [Description of main component symbols] -177- 200904636 4 : Casting mold 5 : 1st cooling roll 6 : Contact car 7 : 2nd cooling roll 8 : 3rd cooling roll 10 : Film -178-

Claims (1)

200904636 十、申請專利範圍 1· 一種防眩性薄膜,其爲透明薄膜基材上具有防眩 層之防眩性薄膜,其特徵爲防眩層爲含有至少1種之硬化 性樹脂、及至少1種之含氟丙烯酸樹脂微粒子者。 2 ·如申請專利範圍第1項之防眩性薄膜,其中透明 薄膜基材係以纖維素酯薄膜作爲主材者。 3·如申請專利範圍第1項或第2項中任一項之防眩 性薄膜,其中透明薄膜基材爲含有纖維素酯、糖酯化合物 、及丙烯酸系聚合物者。 4-如申請專利範圍第1項〜第3項中任一項之防眩 性薄膜,其中防眩層厚度爲〇 . 5〜5 0 # m之範圍者。 5 ·如申請專利範圍第1項〜第4項中任一項之防眩 性薄膜,其中硬化性樹脂爲紫外線硬化樹脂。 6. 如申請專利範圍第1項〜第5項中任一項之防眩 性薄膜,其中硬化性樹脂爲紫外線硬化型丙烯酸酯系樹脂 〇 7. 如申請專利範圍第1項〜第6項中任一項之防眩 性薄膜,其中含氟丙烯酸樹脂微粒子爲含氟聚甲基甲基丙 烯酸酯微粒子。 8. 如申請專利範圍第1項〜第7項中任一項之防眩 性薄膜,其中含氟丙烯酸樹脂微粒子之平均粒子徑爲5nm 〜3 0 // m的範圍。 9. 如申請專利範圍第1項〜第8項中任一項之防眩 性薄膜,其中含氟丙烯酸樹脂微粒子之含有量對於該硬化 -179- 200904636 性樹脂100質量份而言爲0.01〜500質量份之範圍。 I 〇. —種防眩性抗反射薄膜,其特徵爲如申請專利範 圍第1項〜第9項中任一項之防眩性薄膜的防眩層上,層 合含有內部爲多孔質或空洞之至少1種中空二氧化矽微粒 子的低折射率層。 II · 一種防眩性抗反射薄膜,其爲如申請專利範圍第 10項之防眩性抗反射薄膜,其特徵爲於防眩層與低折射率 層之間介著高折射率層。 1 2 ·如申請專利範圍第1 〇項或第1 1項之防眩性抗反 射薄膜,其中於中空二氧化矽微粒子之表面上,具有烴主 鏈之聚合物以共價鍵方式結合。 13. 一種偏光板,其特徵爲其一面上使用如申請專利 範圍第1項〜第9項中任一項之防眩性薄膜。 14. 一種偏光板,其特徵爲其一面上使用如申請專利 範圍第1 〇項〜第1 2項中任一項之防眩性抗反射薄膜。 15. —種顯示裝置,其特徵爲使用如申請專利範圍第 1項〜第9項中任一項之防眩性薄膜。 16. —種顯示裝置,其特徵爲使用如申請專利範圍第 1 0項〜第1 2項中任一項之防眩性抗反射薄膜。 1 7.—種顯示裝置,其特徵爲使用如申請專利範圍第 13項或第14項之偏光板。 -180-200904636 X. Patent Application No. 1. An anti-glare film which is an anti-glare film having an anti-glare layer on a transparent film substrate, characterized in that the anti-glare layer contains at least one kind of curable resin, and at least 1 Fluorinated acrylic resin particles. 2. The anti-glare film of claim 1, wherein the transparent film substrate is a cellulose ester film as a main material. The anti-glare film according to any one of claims 1 to 2, wherein the transparent film substrate is a cellulose ester, a sugar ester compound, and an acrylic polymer. 4- The anti-glare film according to any one of the above-mentioned claims, wherein the anti-glare layer has a thickness of 〇 5 to 5 0 # m. The anti-glare film according to any one of claims 1 to 4, wherein the curable resin is an ultraviolet curable resin. 6. The anti-glare film according to any one of claims 1 to 5, wherein the curable resin is an ultraviolet curable acrylate resin 〇 7. As in the scope of claims 1 to 6 An anti-glare film according to any one of the invention, wherein the fluorine-containing acrylic resin microparticles are fluorine-containing polymethylmethacrylate fine particles. 8. The anti-glare film according to any one of claims 1 to 7, wherein the average particle diameter of the fluorine-containing acrylic resin microparticles is in the range of 5 nm to 3 0 // m. 9. The anti-glare film according to any one of claims 1 to 8, wherein the content of the fluorine-containing acrylic resin microparticles is 0.01 to 500 for 100 parts by mass of the hardened -179-200904636 resin. The range of parts by mass. I. An anti-glare anti-reflection film characterized by an anti-glare layer of an anti-glare film according to any one of claims 1 to 9, wherein the laminate contains a porous or void inside. A low refractive index layer of at least one type of hollow ceria particles. II. An anti-glare antireflection film which is an anti-glare antireflection film according to claim 10 of the patent application, characterized in that a high refractive index layer is interposed between the antiglare layer and the low refractive index layer. An anti-glare anti-reflective film according to the first or third aspect of the patent application, wherein the polymer having a hydrocarbon main chain is covalently bonded to the surface of the hollow ceria particles. A polarizing plate characterized by using an anti-glare film according to any one of the first to ninth aspects of the patent application. A polarizing plate characterized by using an anti-glare antireflection film according to any one of the first to the second aspects of the patent application. A display device characterized by using an anti-glare film according to any one of claims 1 to 9. A display device characterized by using an anti-glare antireflection film according to any one of claims 10 to 12. A display device characterized by using a polarizing plate according to item 13 or item 14 of the patent application. -180-
TW97106360A 2007-02-26 2008-02-22 Anti-dazzling film, anti-dazzling anti-refleciton film, polarizing plate using the anti-dazzling film and anti-reflection film, and display device TW200904636A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045621 2007-02-26

Publications (1)

Publication Number Publication Date
TW200904636A true TW200904636A (en) 2009-02-01

Family

ID=39720961

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97106360A TW200904636A (en) 2007-02-26 2008-02-22 Anti-dazzling film, anti-dazzling anti-refleciton film, polarizing plate using the anti-dazzling film and anti-reflection film, and display device

Country Status (3)

Country Link
JP (1) JPWO2008105117A1 (en)
TW (1) TW200904636A (en)
WO (1) WO2008105117A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111516235A (en) * 2020-04-24 2020-08-11 泉州嘉德利电子材料有限公司 Production device and preparation process of mixed-raw-material high-temperature-resistant capacitor film for automobile
CN111855695A (en) * 2020-07-24 2020-10-30 北京领邦智能装备股份公司 Workpiece side circumference imaging system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010035564A1 (en) * 2008-09-25 2012-02-23 コニカミノルタオプト株式会社 Method for producing optical film
JP5501659B2 (en) * 2009-06-01 2014-05-28 リンテック株式会社 Polarizer protective film-forming material, polarizer protective film, polarizing plate and method for producing the same
CN101957465B (en) * 2010-10-15 2012-02-22 中国乐凯胶片集团公司 Optical diffusion film and preparation method thereof
JP5979026B2 (en) * 2013-01-30 2016-08-24 凸版印刷株式会社 Transfer film for simultaneous decoration
JP6201404B2 (en) * 2013-04-30 2017-09-27 三菱ケミカル株式会社 Scratch resistant resin laminate
JP6442375B2 (en) * 2015-03-04 2018-12-19 富士フイルム株式会社 Antireflection article, polarizing plate, cover glass, image display device, and method of manufacturing antireflection article
US9903982B2 (en) 2015-03-04 2018-02-27 Fujifilm Corporation Antireflection article, polarizing plate, cover glass and image display device, and manufacturing method of antireflection article
CN113518802A (en) * 2019-03-01 2021-10-19 日产化学株式会社 Coating liquid for forming antiglare film, and laminate having antiglare film
JP7464385B2 (en) * 2019-12-13 2024-04-09 株式会社日本触媒 Hollow resin particles and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507713B2 (en) * 1998-12-02 2004-03-15 積水化成品工業株式会社 Light diffusing resin composition
JP4788072B2 (en) * 2001-06-29 2011-10-05 コニカミノルタホールディングス株式会社 Cellulose ester film, protective film for polarizing plate and polarizing plate
JP2003335956A (en) * 2002-05-21 2003-11-28 Kuraray Co Ltd Light-diffusing resin composition
JP4159024B2 (en) * 2002-06-25 2008-10-01 綜研化学株式会社 Low refractive index polymer spherical particles and method for producing the same, optical characteristic film using the particles, and image display device provided with the film
JP2004083707A (en) * 2002-08-26 2004-03-18 Toyo Ink Mfg Co Ltd Crosslinked microparticles
JP2006257308A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Hollow silica particle dispersion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111516235A (en) * 2020-04-24 2020-08-11 泉州嘉德利电子材料有限公司 Production device and preparation process of mixed-raw-material high-temperature-resistant capacitor film for automobile
CN111855695A (en) * 2020-07-24 2020-10-30 北京领邦智能装备股份公司 Workpiece side circumference imaging system
CN111855695B (en) * 2020-07-24 2024-03-19 北京领邦智能装备股份公司 Workpiece side periphery imaging system

Also Published As

Publication number Publication date
JPWO2008105117A1 (en) 2010-06-03
WO2008105117A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
TW200904636A (en) Anti-dazzling film, anti-dazzling anti-refleciton film, polarizing plate using the anti-dazzling film and anti-reflection film, and display device
KR101384382B1 (en) Process for producing antiglare antireflection film, antiglare antireflection film, polarizer, and display
KR101182002B1 (en) Antireflection Film, Production Method of the Same, Polarizing Plate and Display
TWI447424B (en) A transparent hard coat film, an anti-reflection film, a polarizing film, and a display device using the same
JP5298857B2 (en) Method for producing antireflection film
TWI448747B (en) Optical film, polarizing plate and liquid crystal display device
TWI405798B (en) Cellulose ester film, polarizing plate for in-plane-swtiching mode display and in-plane-switching mode display using the cellulose ester film
KR101274848B1 (en) Antireflection film, process for producing antireflection film, hard coat film, polarizer, and display
WO2013114979A1 (en) Polarizing plate, method for manufacturing polarizing plate and liquid crystal display device
JP2009042351A (en) Optical film, polarizing plate, and display device
JP4857801B2 (en) Antireflection film, method for producing antireflection film, polarizing plate and display device
WO2007097303A1 (en) Antireflection film, method for producing antireflection film, polarizing plate and display
WO2010016369A1 (en) Optical film, method for production of the optical film, polarizing plate, and liquid crystal display device
JP2009036818A (en) Antiglare film, antiglare antireflection film, polarizing plate and image display device
TWI448719B (en) Anti-reflection film, and anti-reflection film, and a polarizing plate using the same, and a display device
JP2008224718A (en) Antiglare antireflection film and display device
JP2008089969A (en) Antireflection film, polarizing plate, and display device
JP2005156642A (en) Antireflection film, polarizing plate, and image display device using the same
JP2006227162A (en) Antireflection film, method of manufacturing antireflection film, polarizing plate, and display device
JP5168278B2 (en) Antiglare film, antiglare antireflection film using the same, polarizing plate, and display device
JP2008152199A (en) Antiglare antireflection film, polarizing plate and display apparatus each using the same
JP5098336B2 (en) Antireflection film, display device using the same, front plate filter for plasma display, and plasma display
TW200907491A (en) Antireflection film, polarizing plate using the same, and image display
JP2005338549A (en) Antireflection film, polarizing plate, and image display device
JP2007025329A (en) Antireflection film, method for producing same, polarizing plate, and display device