WO2015146390A1 - ガス遮断器 - Google Patents

ガス遮断器 Download PDF

Info

Publication number
WO2015146390A1
WO2015146390A1 PCT/JP2015/054620 JP2015054620W WO2015146390A1 WO 2015146390 A1 WO2015146390 A1 WO 2015146390A1 JP 2015054620 W JP2015054620 W JP 2015054620W WO 2015146390 A1 WO2015146390 A1 WO 2015146390A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
gas
pressure
circuit breaker
arc discharge
Prior art date
Application number
PCT/JP2015/054620
Other languages
English (en)
French (fr)
Inventor
内井 敏之
崇文 飯島
加藤 紀光
古田 宏
嵩人 石井
森 正
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP15769921.6A priority Critical patent/EP3125265B1/en
Priority to CN201580015288.2A priority patent/CN106133870B/zh
Publication of WO2015146390A1 publication Critical patent/WO2015146390A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume

Definitions

  • Embodiment of this invention is related with the gas circuit breaker which has the pressure accumulation space of arc-extinguishing gas.
  • a gas circuit breaker is used to perform current switching including an excessive accident current.
  • a type of gas circuit breaker a puffer-type gas circuit breaker in which arc extinguishing gas is blown to extinguish arc discharge is widely used (for example, Patent Document 1).
  • the puffer type gas circuit breaker will be described in detail with reference to FIG. FIGS. 7A to 7C show rotationally symmetric shapes with the center line as the rotation axis, where FIG. 7A shows the energized state, FIG. 7B shows the first half of the current interruption operation, and FIG. 7C shows the current. This is the second half of the blocking operation.
  • the puffer-type gas circuit breaker is provided with a counter arc electrode 2 and a counter energizing electrode 3, and these electrodes 2, 3 face the concentric axis on the movable arc.
  • the electrode 4 and the movable energizing electrode 5 are disposed so as to freely reciprocate.
  • These electrodes 2-5 are housed in a sealed container (not shown) filled with the arc extinguishing gas 1.
  • the pair of arc electrodes 2 and 4 can be electrically energized, and is configured such that arc discharge 7 can be generated between the electrodes 2 and 4 when the current of the gas circuit breaker is interrupted.
  • SF 6 gas sulfur hexafluoride gas
  • arc interruption performance arc extinguishing performance
  • electrical insulation performance is usually used.
  • other media are possible.
  • the movable arc electrode 4 is attached to the distal end portion of the hollow drive rod 6, and the movable energizing electrode 5 is attached to the distal end portion of the puffer cylinder 9.
  • An insulating nozzle 8 is attached to the tip of the puffer cylinder 9 inside the movable energizing electrode 5.
  • the movable arc electrode 4, the movable energizing electrode 5, the drive rod 6, the insulating nozzle 8, and the puffer cylinder 9 are integrally formed. This integrally configured portion is driven together with the movable side electrodes 4 and 5 and is therefore collectively referred to as a movable portion.
  • the movable part is driven by a driving device (not shown).
  • a fixed piston 11 is slidably installed in the puffer cylinder 9.
  • the fixed piston 11 is fixed in the sealed container independently of the movable part.
  • the fixed piston 11 is provided with an intake hole 12 and an intake valve 13.
  • the opposed arc electrode 2 and the opposed energized electrode 3 are integrally formed by a conductive metal rib 20, and are electrically connected to the terminal 18a.
  • the movable arc electrode 4 and the movable energizing electrode 5 are also integrally formed by a conductive metal link 19, which are electrically connected to the terminal 18 b through the slide contact 17.
  • a puffer chamber 16 is constituted by a space surrounded by the drive rod 6, the puffer cylinder 9 and the fixed piston 11.
  • the puffer cylinder 9 and the fixed piston 11 serve as means for boosting the arc extinguishing gas 1 in the puffer chamber 16, and the puffer chamber 16 serves as a pressure accumulating space for storing the boosted arc extinguishing gas 1.
  • the insulating nozzle 8 serves as a means for rectifying and blowing the arc extinguishing gas 1 from the puffer chamber 16 toward the arc discharge 7. As shown in FIG. 7B, the arc discharge 7 is generated between the arc electrodes 2 and 4 when the opposed arc electrode 2 and the movable arc electrode 4 which have been in contact with each other are separated.
  • the opposed arc electrode 2 and the movable arc electrode 4, and the opposed energizing electrode 3 and the movable energizing electrode 5 are in contact with each other and are in a current energized state in the on state (FIG. 7). (See (a)).
  • the movable arc electrode 4 and the movable energized electrode 5 are driven rightward in FIG.
  • the heat exhaust gas 14 generated by the heat of the high-temperature arc discharge 7 is taken into the puffer chamber 16, so that in addition to the mechanical compression described above, a pressurizing action by the arc heat can also be expected (FIG. 7 ( b)).
  • This is referred to as self-boosting action.
  • the insulating nozzle 8 rectifies the arc extinguishing gas 1 compressed in the puffer chamber 16, sprays it on the arc discharge 7 as a spraying gas 15a, and extinguishes the arc discharge 7 (see FIG. 7C).
  • the blowing gas 15a is heated by the hot exhaust gas 14 from the arc discharge 7, it is hereinafter referred to as a high temperature blowing gas 15a.
  • the intake valve 13 provided in the fixed piston 11 operates when the pressure in the puffer chamber 16 becomes lower than the filling pressure of the arc extinguishing gas 1.
  • the suction hole 12 is opened, and the arc extinguishing gas 1 is replenished to the puffer chamber 16 by suction.
  • the arc extinguishing gas 1 can be quickly replenished into the puffer chamber 16 even during the charging operation immediately after the current interruption.
  • the arc discharge 7 can be surely extinguished by securing a sufficient gas flow rate of the high-temperature blowing gas 15a during the second interruption operation. it can.
  • the conventional gas circuit breaker described above has the following problems.
  • the high temperature blowing gas 15a is heated by the thermal exhaust gas 14 from the arc discharge 7, so that it is necessarily in a high temperature state. Yes. For this reason, the cooling efficiency of the arc discharge 7 is lowered, and the interruption performance may be lowered.
  • driving operation energy in the operation mechanism of the movable part In order to reduce driving operation energy in the gas circuit breaker, it is necessary to reduce the weight of the movable part.
  • the embodiment of the present invention has been proposed to solve the above-described problems. That is, the gas circuit breaker according to the present embodiment aims to lower the temperature of the blowing gas, improve durability and reduce maintenance, shorten the current interruption time, reduce driving operation energy, and stabilize the gas flow.
  • the object is to provide a gas circuit breaker.
  • a pair of arc electrodes are arranged opposite to each other in an airtight container filled with an arc extinguishing gas, and the arc electrodes can be electrically energized.
  • An arc discharge is generated and heat exhaust gas is generated by the heat of the arc discharge.
  • the arc extinguishing gas is boosted to generate a pressurizing gas.
  • a gas circuit breaker provided with a boosting means, a pressure accumulation space for storing the pressure boosted gas, and an insulating nozzle for guiding the pressure boosted gas from the pressure accumulation space toward the arc discharge has the following characteristics. ing.
  • An openable / closable opening / closing part for closing the pressure accumulation space or an open state, and a trigger electrode that is movably disposed between the arc electrodes and generates arc discharge along with the movement are provided.
  • the opening / closing part is constituted by a gap between the arc electrode and the trigger electrode, a gap between the insulating nozzle and the trigger electrode, or a gap between both.
  • Sectional drawing which shows the structure of 1st Embodiment.
  • Sectional drawing which shows arrangement
  • the expanded sectional view which shows the structure of the pressure release part 47 periphery of 1st Embodiment.
  • Sectional drawing which shows the structure of 2nd Embodiment.
  • Sectional drawing which shows the structure of the conventional puffer-type gas circuit breaker.
  • FIGS. 1A to 1E show a rotationally symmetric shape with the center line as the axis of rotation, as in FIG. 7, where FIG. 1A shows the energized state and FIG. 1B shows the first half of the current interruption operation.
  • (C) and (d) are states in the latter half of the current interruption operation, and (e) is a state after completion of the current interruption operation.
  • the gas pressure in the sealed container (not shown) is the charging pressure of the arc extinguishing gas 1 at any part during normal operation.
  • a fixed arc electrode 35a is provided instead of the counter arc electrode 2, and a fixed arc electrode 35b is disposed so as to face the fixed arc electrode 35a.
  • the arc electrodes 35a and 35b can be electrically energized. When the current is interrupted, an arc discharge 7 is generated between the electrodes 35a and 35b, and the heat exhaust gas 14 is generated by the heat of the arc discharge 7.
  • the pair of arc electrodes 35a and 35b are not included in the movable part including the movable energizing electrode 5 and the like, but are electrodes fixed inside a sealed container (not shown).
  • the arc electrode 35a and the counter energizing electrode 3 are integrally formed by a conductive metal rib 32 and connected to the terminal 18a.
  • a rod-shaped trigger electrode 34 Inside the fixed arc electrodes 35a and 35b, a rod-shaped trigger electrode 34 having a diameter smaller than that of the fixed arc electrodes 35a and 35b is in contact with the fixed arc electrodes 35a and 35b, and between these electrodes 35a and 35b in the center line direction. Arranged to move. However, if the trigger electrode 34 is always electrically connected to the fixed arc electrode 35b, the movable energizing electrode 5, and the terminal 18b, the trigger electrode 34 and the fixed arc electrode 35b do not necessarily have to be in contact with each other. .
  • the trigger electrode 34 In the energized state, the trigger electrode 34 is brought into contact with the fixed arc electrode 35a to realize the energized state. Further, when the current is interrupted, an arc discharge 7 is generated between the trigger electrode 34 and the fixed arc electrode 35a, and the arc discharge 7 is finally transferred from the trigger electrode 34 to the fixed arc electrode 35b. That is, an arc is ignited between the fixed arc electrodes 35a and 35b by moving the trigger electrode 34.
  • Such a trigger electrode 34 is one of the characteristic components of the present embodiment.
  • the trigger electrode 34 is interposed between the fixed arc electrode 35b and the trigger electrode 34 and an insulating nozzle 81 described later.
  • a gap portion is formed between the nozzle throat 37 and the trigger electrode 34 (see (d) and (e) of FIG. 1).
  • An opening / closing part for opening the pressure accumulating chamber 42 is constituted by these gap portions.
  • the trigger electrode 34 is inserted into the fixed arc electrode 35b and the nozzle throat 37 of the insulating nozzle 81, whereby the gap portion is closed.
  • a portion that closes the gap is defined as a closed portion 45 (see FIGS. 1A and 1B).
  • the trigger electrode 34 moves to form the closed portion 45 and the gap portion is closed, so that the opening / closing portion closes the pressure accumulation chamber 42.
  • the trigger electrode 34 moves in the opposite direction to open the closing portion 45 and the gap portion is opened, so that the opening / closing portion opens the pressure accumulating chamber 42.
  • the pressure accumulating chamber 42 is a pressure accumulating space in which the pressurized gas is stored.
  • the pressurizing gas is obtained by increasing the pressure of the arc extinguishing gas 1 and is generated by a pressurizing chamber cylinder 41 and a movable piston 38 (described later) that are pressurizing means.
  • the pressure accumulating chamber 42 is formed so as to be surrounded by the pressure accumulating chamber cylinder 43, the pressure increasing chamber cylinder 41, the fixed arc electrode 35 b, the insulating nozzle 81, and the flange portion 22.
  • a pressure accumulation chamber cylinder 43 and a pressure increase chamber cylinder 41 are integrally attached to the flange portion 22.
  • the pressure accumulating chamber 42 is an L-shaped space (generally a U-shaped space as a whole) whose cross section is half of the center line as a whole.
  • the pressure accumulating chamber cylinder 43 is disposed, the pressure increasing chamber cylinder 41 is disposed on the lower surface portion side of the pressure accumulating chamber 42, and the flange portion 22 is disposed on the right surface portion side of the pressure accumulating chamber 42.
  • the fixed arc electrode 35b and the insulating nozzle 81 face each other on the short side of the L-shape, the fixed arc electrode 35b is disposed on the right surface portion side of the pressure accumulating chamber 42, and the insulating nozzle 81 is disposed on the left surface portion side of the accumulator chamber 42. ing.
  • the opening / closing part is to make the pressure accumulating chamber 42 closed or open by the movement of the trigger electrode 34. More specifically, in the first half when the current is interrupted, the trigger electrode 34 seals the flow path in the nozzle throat 37 and the fixed arc electrode 35b, so that the closed portion 45 is formed, and the pressure accumulation chamber 42 is closed. For this reason, the heat exhaust gas 14 generated by the heat of the arc discharge 7 is restricted from flowing into the pressure accumulating chamber 42. Further, the outflow from the pressure accumulating chamber 42 is also restricted with respect to the pressurized gas in the pressure accumulating chamber 42.
  • the arc discharge 7 is transferred from the trigger electrode 34 to the fixed arc electrode 35b by the movement of the trigger electrode 34, and the flow path sealing in the nozzle throat 37 and the fixed arc electrode 35b is released. . That is, a gap portion is formed between the fixed arc electrode 35b and the trigger electrode 34 and between the nozzle throat 37 and the trigger electrode 34, and the pressure accumulation chamber 42 is opened. Since the pressure accumulating chamber 42 is in an open state, the pressurized gas in the pressure accumulating chamber 42 is guided to the arc discharge 7 through the insulating nozzle 81.
  • the trigger electrode 34 and the movable energizing electrode 5 are integrally provided together with the support portion 21 made of a conductive metal material, the movable piston 38, the drive rod 36, and the link 31, and the movable portion is constituted by these members.
  • the movable energizing electrode 5 is provided with a heat radiating hole 49 as long as a necessary energizing capacity can be secured.
  • the heat radiating hole 49 is for radiating heat generated in the contact energization portion of the movable energizing electrode 5 and the counter energizing electrode 3.
  • the movable part is always electrically connected to the fixed arc electrode 35b and the terminal 18b by the slide contact 17. Therefore, a minute gap is provided between the trigger electrode 34 and the fixed arc electrode 35b, and it is considered that metal wear powder that threatens electrical insulation is not generated by sliding.
  • An insulating nozzle 81 is disposed so as to surround the trigger electrode 34.
  • the insulating nozzle 81 guides the arc-extinguishing gas 1 whose pressure is increased from the pressure accumulating chamber 42 toward the arc discharge 7 in the same manner as the insulating nozzle 8 of the conventional gas circuit breaker shown in FIG.
  • the insulating nozzle 81 is configured to blow the arc-extinguishing gas 1 toward the arc discharge 7 substantially vertically from the periphery of the arc discharge 7 toward the center.
  • the insulating nozzle 81 is a fixed part that does not move during the shut-off operation. That is, the insulating nozzle 81 is fixed not in the movable part but in the sealed container. This point is different from the conventional insulating nozzle 8 shown in FIG. Further, the trigger electrode 34 moves inside the insulating nozzle 81 during the current interruption operation. For this reason, the arc discharge 7 is configured to occur inside the insulating nozzle 81.
  • a nozzle throat 37 defined as a minimum cross-sectional area portion in the gas flow path in the insulating nozzle 81 is formed. Both ends of the nozzle throat 37 are formed so that the opening is enlarged and the cross-sectional area is enlarged. At this time, since the openings at both ends of the nozzle throat 37 are enlarged, the area of the gas flow channel flowing from the outside of the arc discharge 7 is larger than the total cross-sectional area of the inner diameter portion of the nozzle throat 37 and the fixed arc electrode 35b. It is configured to be wide.
  • boost chamber 40 A space surrounded by the boost chamber cylinder 41, the drive rod 36, the movable piston 38, and the flange portion 22 is defined as the boost chamber 40.
  • the booster chamber cylinder 41 is disposed on the upper surface side of the booster chamber 40
  • the drive rod 36 is disposed on the lower surface side of the booster chamber 40
  • the movable piston 38 is disposed on the left surface side of the booster chamber 40
  • the flange portion 22 is disposed in the booster chamber 40. It is arranged on the right side.
  • the movable piston 38 is driven integrally with, for example, the trigger electrode 34, the support portion 21, the drive rod 36, the link 31, and the movable energizing electrode 5 by a driving device (not shown).
  • a driving device not shown
  • a plurality of support portions 21 and links 31 are provided at predetermined angles around the center line in order to avoid excessive mechanical force concentration and prevent axial deviation (see FIG. 2).
  • a sealing member 46 is provided and sealed at the sliding portion of the drive rod 36 and the movable piston 38 so that the pressure in the pressure increasing chamber 40 does not leak therefrom.
  • the movable piston 38 moves away from the arc discharge 7, the arc extinguishing gas 1 in the pressurizing chamber 40 is compressed to generate pressurizing gas. That is, the movable piston 38 compresses the arc extinguishing gas 1 on the back surface of the piston, contrary to the conventional arc extinguishing chamber.
  • Such a movable piston 38 and the boosting chamber cylinder 41 constitute a boosting means.
  • the drive rod 36 is provided with a pressure release portion 47 by partially reducing the rod diameter or providing a pressure release groove.
  • the pressure release part 47 is for discharging the arc extinguishing gas 1 in the pressure increasing chamber 40 to the outside as a discharge compressed gas 48.
  • a communication hole 39 is formed in the boosting chamber cylinder 41, and the boosting chamber 40 is in pressure communication with the pressure accumulating chamber 42 through the communication hole 39 at least in the first half of the current interruption process.
  • the communication hole 39 is closed by a seal member 46 provided on the outer peripheral surface of the moved movable piston 38, and the pressure increasing chamber 40 is pressure-separated from the pressure accumulating chamber 42.
  • Thermal exhaust gas storage chamber Assuming that the pressurizing chamber 40 is disposed on the right side of the movable piston 38, the thermal exhaust gas storage chamber that temporarily stores the thermal exhaust gas 14 is located on the left side of the movable piston 38, that is, closer to the generation space of the arc discharge 7 than the pressurizing chamber 40. 44 is arranged.
  • the thermal exhaust gas storage chamber 44 is a space surrounded by the boost chamber cylinder 41, the fixed arc electrode 35 b, the trigger electrode 34, and the movable piston 38.
  • the pressure in the thermal exhaust gas storage chamber 44 is configured to act as a force that assists the compression of the arc extinguishing gas 1 by the movable piston 38 and the booster chamber cylinder 41.
  • the trigger electrode 34 closes the nozzle throat 37 in the insulating nozzle 81 and the fixed arc electrode 35b to form a closed portion 45.
  • the pressure increasing chamber 40 and the pressure accumulating chamber 42 are integrated spaces because the communication holes 39 are opened. Therefore, the arc extinguishing gas 1 existing in the sealed space composed of the pressure increasing chamber 40 and the pressure accumulating chamber 42 is compressed and pressurized by the movable piston 38.
  • the closing portion 45 restricts the flow of the thermal exhaust gas 14 from the arc discharge 7 into the sealed space composed of the pressure increasing chamber 40 and the pressure accumulating chamber 42, and the arc extinguishing gas being pressurized in the sealed space.
  • Limit 1 from flowing out. Therefore, the energy required for compression by the movable piston 38 is almost completely excluding the arc-extinguishing gas in the sealed space (the pressure increasing chamber 40 and the pressure accumulating chamber 42), except for a minute gap in the closed portion 45 that cannot be avoided due to the structure. Converted to a pressure energy of 1. Further, in a very short time during the interruption operation, the arc discharge 7 is hardly affected by the heat. Therefore, the pressurization of the arc extinguishing gas 1 in the sealed space (the pressure increasing chamber 40 and the pressure accumulating chamber 42) is brought about only by the adiabatic compression action by the movable piston 38.
  • the closing portion 45 is opened. Therefore, the insulating nozzle 81 strongly blows the compressed gas in the pressure accumulation chamber 42 toward the arc discharge 7 from the pressure accumulation chamber 42 as a low temperature spray gas 15b having a low temperature. At this time, the low-temperature spraying gas 15b is sprayed to the arc discharge 7 so as to cross substantially vertically from the periphery of the arc discharge 7 toward the center. Therefore, the arc discharge 7 is rapidly cooled at the spray point.
  • the insulating nozzle 81 sprays the low-temperature sprayed gas 15b onto the arc discharge 7 and appropriately rectifies the gas flow so that the thermal exhaust gas 14 is discharged smoothly.
  • the flow passage area flowing from the outside of the arc discharge 7 is configured wider than the total cross-sectional area of the nozzle throat 37 and the inner diameter portion of the fixed arc electrode 35b, which are the exhaust area of the thermal exhaust gas 14.
  • the flow rate of the low-temperature spraying gas 15b sufficient for cooling the arc discharge 7 can be ensured.
  • the arc discharge 7 is transferred to the fixed arc electrode 35b. Therefore, the period during which the arc discharge 7 is ignited on the trigger electrode 34 is only a limited period at the beginning of the interruption process until the arc discharge 7 is transferred to the fixed arc electrode 35b.
  • the trigger electrode 34 passes through the nozzle throat 37 of the insulating nozzle 81, and only the closed portion 45 on the nozzle throat 37 side is opened, and the trigger electrode 34 and the nozzle throat 37 of the insulating nozzle 81 are opened.
  • the low temperature spraying gas 15b starts to be sprayed from the gap portion of FIG.
  • FIG. 1 (d) as the trigger electrode 34 moves, the blocking portion 45 in the fixed arc electrode 35 b is also opened.
  • the arc discharge 7 is rapidly cooled by powerful spraying in both the left direction and the right direction toward the figure.
  • the thermal exhaust gas 14 exhausted from the fixed arc electrode 35 b side is guided to the thermal exhaust gas storage chamber 44 formed on the opposite side of the compression chamber 40 of the movable piston 38, and is exhausted to the sealed container through the exhaust hole 33.
  • the intake valve 13 provided with the pressure increasing chamber 40 replenishes the arc-extinguishing gas 1 into the pressure increasing chamber 40 only when the pressure in the pressure increasing chamber 40 becomes lower than the filling pressure in the sealed container. Accordingly, when the charging operation is performed again after the shut-off process is completed, fresh arc-extinguishing gas 1 is supplied from the inside of the hermetic container to the booster chamber 40 through the intake hole 12.
  • the operation and effects of the first embodiment as described above are as follows.
  • the first embodiment is characterized in that it does not use the self-pressure boosting action by the arc heat.
  • the low-temperature sprayed gas 15b sprayed on the arc discharge 7 is not thermally boosted by the hot exhaust gas 14, and can be a gas whose pressure is increased only by mechanical compression by the movable piston 38.
  • the temperature of the low-temperature spraying gas 15b sprayed to the arc discharge 7 is much lower than the temperature of the conventional high-temperature spraying gas 15a using the self-pressure boosting action. By blowing such a low temperature spraying gas 15b, the cooling effect of the arc discharge 7 can be remarkably enhanced.
  • the arc electrodes 35a and 35b fixed to the closed container side do not affect the weight of the movable part including the movable piston 38 and the like. For this reason, the fixed arc electrodes 35a and 35b can be made thick without worrying about an increase in weight, and as a result, the durability of the arc electrodes 35a and 35b against a large current arc is remarkably improved.
  • the arc electrodes 35a and 35b are made thick, it is possible to greatly reduce the electric field concentration at the tips of the arc electrodes 35a and 35b when a high voltage is applied between the electrode gaps. Therefore, compared with the conventional gas circuit breaker, the required electrode gap space
  • the trigger electrode 34 is worn during the period when the arc discharge 7 is ignited. However, since the period is only at the beginning of the interruption process until the arc discharge 7 is transferred to the fixed arc electrode 35b, the wear is limited. Is. Therefore, the maintenance burden on the trigger electrode 34 can be reduced.
  • the pressure in the sealed container is a single pressure in any part, for example, the charging pressure of the arc extinguishing gas 1 during normal operation, and is necessary only in the current interruption process. It is possible to realize a very simple configuration in which a simple compressed gas is generated. Therefore, according to the first embodiment, although it is a single pressure type, it is possible to generate a compressed gas necessary only in the current interruption process, and it is possible to reduce the size of the device and reduce the cost, which is required for maintenance. The work burden can be reduced.
  • the pressure boosting action by the arc heat since the pressure boosting action by the arc heat is not used, the pressure and flow rate of the arc extinguishing gas 1 blown to the arc discharge 7 are always independent of the current conditions. It is constant. Also, the timing for starting the spraying to the arc discharge 7 is determined at the timing at which the trigger electrode 34 passes through the nozzle throat 37 or the fixed arc electrode 35b and the closing portion 45 is opened, and is therefore always constant regardless of the current conditions. . Therefore, unlike the conventional gas circuit breaker, the completion time of the current interruption is not prolonged by the interruption current condition, and the request for shortening the completion time of the current interruption can be met.
  • the pressure increasing chamber 40 and the pressure accumulating chamber 42 are separated in pressure by the sealing member 46 provided on the movable piston 38 closing the communication hole 39, and The pressure in the pressure increasing chamber 40 is released by the pressure release unit 47. For this reason, as long as there is drive energy capable of pulling the movable portion to at least the complete cutoff position, thereafter, the force that reverses the stroke is not applied to the movable piston 38. Therefore, there is no possibility that the stroke will go backward. This is almost completely independent of the current conditions.
  • Realization of a reduction in drive operation energy is particularly preferable when a spring operation mechanism or the like in which the drive force decreases with the interruption operation is employed.
  • a plurality of support portions 21 and links 31 are provided in the angular direction, axial deviation can be prevented, and excessive mechanical force is not concentrated in one place, and stable operation is possible. It is.
  • the trigger electrode 34 has a smaller diameter than the fixed arc electrodes 35a and 35b, and can be lighter than the conventional movable arc electrode 4 and drive rod 6. Furthermore, since the insulating nozzle 8 is not included in the movable part in addition to the two fixed arc electrodes 35a and 35b, the weight of the movable part can be significantly reduced. In this embodiment in which the weight of the movable part is advanced as described above, the driving operation force can be greatly reduced in terms of obtaining the opening speed of the movable part necessary for interrupting the current.
  • the spraying pressure itself necessary to cut off the current can be reduced along with the weight reduction, the energy required for compression can also be reduced.
  • the temperature of the gas blown to the arc discharge 7 is much lower than that of the prior art, the cooling effect of the arc discharge 7 is remarkably enhanced, and even at a low pressure compared to the case of blowing the high-temperature blowing gas 15a. It becomes possible to interrupt the arc discharge 7.
  • spraying the low temperature spraying gas 15b to the arc discharge 7 so as to narrow it from the periphery of the arc discharge 7 toward the center also leads to reduction of the spraying pressure necessary for interrupting the current.
  • the spraying point is obtained by spraying the low-temperature spraying gas 15 b to the arc discharge 7 so as to narrow down from the periphery of the arc discharge 7 toward the center.
  • the arc discharge diameter can be narrowed down and the arc discharge 7 can be cooled more effectively.
  • the current can be interrupted even if the arc is not necessarily taken in this manner.
  • the flow passage area flowing from the outside of the arc discharge 7 is larger than the total cross-sectional area of the nozzle throat 37 and the inner diameter portion of the fixed arc electrode 35b, which are the exhaust area of the thermal exhaust gas 14.
  • the flow volume of the low temperature spraying gas 15b sufficient for cooling of the arc discharge 7 can be ensured. From these points, the arc discharge 7 can be shut off at a lower pressure by adopting a configuration in which the low-temperature compressed gas is blown to the arc discharge 7 so as to narrow the arc discharge 7 from the periphery to the center. Is possible.
  • the pressure increasing chamber 40 and the pressure accumulating chamber 42 are blocked by the blocking portion 45 until the trigger electrode 34 is sufficiently separated from the fixed arc electrode 35 a and the arc extinguishing gas 1 is blown to the arc discharge 7. That is, the closed portion 45 restricts the flow of the thermal exhaust gas 14 from the arc discharge 7 into the sealed space composed of the boosting chamber 40 and the pressure accumulating chamber 42, and the arc-extinguishing gas 1 being pressurized in the sealed space. Is restricted from leaking.
  • the compression energy applied by the movable piston 38 is almost completely converted into the arc extinguishing gas 1 in the sealed space (the pressure increasing chamber 40 and the pressure accumulating chamber 42). Can be converted to
  • the thermal exhaust gas 14 generated from the arc discharge 7 flows in a direction away from the arc discharge 7 without delay at the same time as the generation, and is quickly discharged into the space in the sealed container. ing.
  • the low-temperature sprayed gas 15b to the arc discharge 7 flows due to the difference between the pressure in the pressure accumulating chamber 42 on the upstream side and the pressure in the vicinity of the fixed arc electrode 35a on the downstream side. Therefore, if the downstream pressure is high, a sufficient blowing force cannot be obtained no matter how much the pressure in the pressure accumulating chamber 42 is increased.
  • the thermal exhaust gas 14 is quickly discharged to the sealed container through the wide exhaust passage. Therefore, the pressure on the downstream side, that is, in the vicinity of the fixed arc electrode 35a, is always maintained at a level substantially equal to the filling pressure of the sealed container. Also from this point, in this Embodiment, the spraying pressure required for electric current interruption can be reduced compared with the conventional gas circuit breaker, and drive operation energy can be reduced.
  • the pressure of the thermal exhaust gas 14 generated from the arc discharge 7 acts on the left surface of the movable piston 38 shown in FIG. That is, unlike the conventional gas circuit breaker, in this embodiment, mechanical compression is performed on the right side surface of the piston, that is, the surface opposite to the surface on which the pressure of the thermal exhaust gas 14 acts. Therefore, the pressure of the thermal exhaust gas 14 becomes a force that supports the compressive force by the movable piston 38 and does not act at least as a reaction force of the driving operation force of the movable piston 38. Also from the above point, compared with the conventional gas circuit breaker, this embodiment can aim at reduction of drive operation energy.
  • the exhaust hole 33 of the thermal exhaust gas 14 from the thermal exhaust gas storage chamber 44 is set to be small, the pressure of the thermal exhaust gas storage chamber 44 is relatively increased. If the size of the exhaust hole 33 is appropriately adjusted to such an extent that the exhaust of the hot exhaust gas 14 from the arc discharge 7 is not hindered, the pressure of the hot exhaust gas 14 in the thermal exhaust gas storage chamber 44 is used rather as a support force for driving operation. It is possible.
  • the state of the flow of the arc extinguishing gas 1 in the insulating nozzle has a great influence on the shutoff performance. Since the insulation nozzle 8 in the conventional gas circuit breaker is incorporated in the movable part, it is driven in the current interruption operation, and the flow of the arc-extinguishing gas 1 in the insulation nozzle 8 is the stroke position at the hour or the opening. It varies greatly depending on the speed of the. For this reason, it was impossible to always make the ideal arc shape of the arc extinguishing gas 1 over all current conditions.
  • the insulating nozzle 81 and the arc electrodes 35a and 35b are all fixed. Therefore, the relative positional relationship of each member does not change at all, and since the self-pressure boosting action by the arc heat is not used at all, the pressure and flow rate of the pressurizing gas sprayed to the arc discharge 7 are also Regardless of current conditions, it is always constant. Therefore, the flow path in the insulating nozzle 81 can be optimally configured.
  • the simple structure reduces the temperature of the blowing gas, improves the durability and reduces the maintenance, shortens the current interruption time, reduces the driving operation energy, and gas. All the flow stabilization can be realized.
  • the basic structure of the second embodiment is the same as that of the first embodiment.
  • the characteristic configuration of the second embodiment is that, as shown in FIG. 4, the insulating nozzle 81 is divided into two, and the sub-insulating nozzle 50 is provided on the fixed arc electrode 35b side.
  • the low temperature spraying gas 15 b is guided from the pressure accumulation space 42 to the arc discharge 7 through the gap between the sub insulating nozzle 50 and the insulating nozzle 81.
  • the sub-insulation nozzle 50 is configured such that the low-temperature spray gas 15 b is sprayed to the middle of the arc discharge 7.
  • the sub-insulation nozzle 50 is provided on the fixed arc electrode 35b side, and the low temperature spraying gas 15b is sprayed to the middle of the arc discharge 7, so that the thermal exhaust gas 14 flowing into the left side of the arc discharge 7 is used.
  • the amount of heat possessed by the heat exhaust gas 14 flowing into the right side of the arc discharge 7 can be balanced.
  • the low temperature spraying gas 15b is not sprayed in the vicinity of the fixed arc electrode 35b, that is, in any one of the arc discharges 7. For this reason, for example, the degree of damage to the constituent members due to the flow of the thermal exhaust gas 14 and the degree of deterioration of the electrical insulation between the high voltage site and the sealed container that is the ground potential are remarkable only on one side of the arc discharge 7. No worries about getting worse.
  • the low temperature spraying gas 15b is not biased to either one of the arc discharges 7, there is no concern that the flow of the thermal exhaust gas 14 on one side is limited. That is, it is possible to always ensure a sufficient flow rate of the thermal exhaust gas 14. Therefore, when the pressure of the thermal exhaust gas storage chamber 44 is increased to be used for assisting the driving force of the movable piston 38, the effect can be sufficiently obtained.
  • the third embodiment has the same basic structure as that of the first or second embodiment, but relates to a drive unit for a movable part, which is not shown in FIGS. As shown in FIG. 6, an output attenuation type characteristic as shown in FIG. 6 is adopted.
  • This driving device is configured such that the driving force decreases during the interruption process.
  • the compression reaction force (a) that is, the force that the movable piston 38 receives from the pressure in the boosting chamber 40 is indicated by a solid line
  • the driving force (a) of the drive device is indicated by a dotted line
  • the force ( The effective acceleration force ((ear)) is indicated by a one-dot chain line.
  • the horizontal axis is the drive stroke, and the complete closing position is 0 pu and the complete opening position is 1.0 pu.
  • the effective acceleration force is expressed as “driving force (A) -compression reaction force (A)”.
  • a positive value means acceleration force
  • a negative value means deceleration force.
  • the gas circuit breaker of the present embodiment mainly performs adiabatic compression by the movable piston 38 to increase the pressure of the sprayed gas, so that the compression reaction force ((A), solid line)
  • This curve has a monotonically increasing characteristic as shown in FIGS. 5 and 6, which is known as an adiabatic compression characteristic.
  • the curve of the compression reaction force (solid line) does not depend on the magnitude of the breaking current or the phase of the alternating current. , Always a constant curve.
  • FIG. 5 shows a case where the driving force ((A), dotted line) of the driving device is flat with respect to the driving stroke.
  • FIG. 6 shows a case where the driving force ((A), dotted line) of the driving device attenuates with respect to the driving stroke.
  • the driving force is constant at 0.5 pu over the entire stroke position.
  • FIG. 6 shows a case where the driving force is linearly attenuated from 0.8 pu to 0.2 pu as an example.
  • the drive energy which the drive device is accumulating for the interruption operation is given as an area obtained by integrating the drive force ((A), dotted line) with a stroke.
  • the driving energy can be obtained from Equation 1 below.
  • the driving device having the characteristic shown in FIG. 6 that produces a large driving force in the first half of the stroke and attenuates toward the second half has a larger effective acceleration force (ear) than that in FIG. It turns out that it is a value.
  • the characteristics (a) of the compression reaction force are the same in FIGS. 5 and 6, and the drive energy is also the same. Therefore, the speed at the fully open position (stroke 1pu) is the same, but the speed during the stroke is There is a big difference between the two. That is, the top speed of the movable portion is faster in FIG. 6 where the acceleration force in the first half of the opening is larger.
  • the drive device having the output attenuation type drive characteristics as shown in FIG. 6 has a higher drive speed of the movable portion than the drive device having the drive characteristics shown in FIG. Shows that you can. That is, for the gas circuit breaker, this means that the gap between the electrodes opens faster, which is a great merit in terms of quick recovery of electrical insulation between the electrodes.
  • the arc discharge 7 is transferred from the trigger electrode 34 to the fixed arc electrode 35b as much as it is, and the low-temperature spraying gas 15b is strongly sprayed from the accumulator 42 to the arc discharge 7.
  • the time until is shortened. Therefore, the durability can be improved and the time required for completing the shut-off can be shortened.
  • the gas circuit breaker of the present embodiment mainly performs the adiabatic compression by the movable piston 38 to increase the pressure of the sprayed gas. This is because it is very small and increases rapidly toward the second half.
  • the compression reaction force applied to the fixed piston 11 is greatly influenced by the heat generated by the arc, so it does not have a monotonically increasing curve, and the aspect varies greatly depending on the condition of the breaking current. .
  • F k ⁇ (L + 1 ⁇ x) (Formula 3)
  • F drive output
  • k spring constant
  • x stroke (pu)
  • the value of the spring constant k for obtaining the same driving energy increases, and the driving force accompanying the release of the spring increases. It becomes the characteristic which attenuates greatly with respect to the stroke.
  • the output characteristic is attenuated without changing the operation drive energy by connecting an appropriate link structure. It is also possible to change to a type.
  • the structure described in the first embodiment that is, the high gas pressure in the boosting chamber 40 is separated from the pressure accumulating chamber 42, and the pressure in the boosting chamber 40 is released by the pressure release unit 47, so that the driving force is opened. Even if it drops significantly in the second half, there will be no inconvenience such as the moving part going backward.
  • the driving force at the complete cutoff position (stroke 1 pu) is, for example, approximately 80% or less with respect to the driving force at the closing position (stroke 0 pu). It is desirable. If the output reduction rate at the fully open position is set to be 80% or less, the above-described effects can be substantially obtained.
  • the above embodiment is presented as an example in the present specification, and is not intended to limit the scope of the invention.
  • the present invention can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention.
  • These embodiments and modifications thereof are included in the invention described in the claims and their equivalents as well as included in the scope and gist of the invention.
  • the sub-insulation nozzle 50 is provided on the fixed arc electrode 35b side and the insulation nozzle 8 is divided into two.
  • the number of divisions is not necessarily two. It is also possible to divide into three or more parts.

Landscapes

  • Circuit Breakers (AREA)

Abstract

吹付けガスの低温化、耐久性の向上とメンテナンスの低減化、電流遮断時間の短縮化、駆動操作エネルギーの低減化ならびにガス流の安定化を図る。消弧性ガス(1)が充填された密閉容器内に一対の固定アーク電極(35a、35b)を対向配置する。固定アーク電極(35a、35b)間には小径でロッド形状のトリガー電極(34)を移動自在に配置する。トリガー電極(34)を囲むようにして絶縁ノズル(81)を配置する。また、消弧性ガス(1)を昇圧させたガスを溜める蓄圧室(42)を設け、蓄圧室(42)を閉塞状態あるいは開放状態とする開閉部を設ける。開閉部は、アーク電極(35b)とトリガー電極(34)との隙間部分および絶縁ノズル(81)とトリガー電極(34)との隙間部分を有しており、トリガー電極(34)の移動により隙間部分を閉塞状態にすることで閉塞部(45)を形成する。

Description

ガス遮断器
 本発明の実施形態は、消弧性ガスの蓄圧空間を有するガス遮断器に関するものである。
 一般に電力系統においては、過大な事故電流を含む電流開閉を行うためにガス遮断器が使用されている。ガス遮断器のタイプとしては、消弧性ガスを吹付けてアーク放電を消弧するパッファ形ガス遮断器が普及している(例えば特許文献1)。ここで図7を参照して、パッファ形ガス遮断器について具体的に説明する。図7の(a)-(c)では中心線を回転軸とした回転対称形状を示しており、(a)は通電状態、(b)は電流遮断動作の前半の状態、(c)は電流遮断動作の後半の状態である。
 図7(a)-(c)に示すように、パッファ形ガス遮断器には、対向アーク電極2および対向通電電極3が設けられ、これらの電極2、3と同心軸上に向かい合って可動アーク電極4および可動通電電極5が往復動自在に配置されている。これらの電極2-5は、消弧性ガス1が充填された密閉容器内(図示せず)に収納されている。このうち、一対となるアーク電極2、4は、電気的に通電可能であり、ガス遮断器の電流遮断時には両電極2、4間にアーク放電7が発生しうるように構成されている。密閉容器内(図示せず)に充填される消弧性ガス1としては通常、アーク遮断性能(消弧性能)および電気絶縁性能に優れたSFガス(六フッ化硫黄ガス)が使用されるが、その他の媒体もあり得る。
 可動アーク電極4は中空状の駆動ロッド6の先端部に取り付けられ、可動通電電極5はパッファシリンダ9の先端部に取り付けられている。また、パッファシリンダ9の先端部には可動通電電極5の内側に絶縁ノズル8が取り付けられている。これら可動アーク電極4、可動通電電極5、駆動ロッド6、絶縁ノズル8およびパッファシリンダ9は一体的に構成されている。この一体的に構成された部分は、可動側の電極4、5と共に駆動するので、まとめて可動部と呼ぶ。
 可動部は図示していない駆動装置により駆動される。また、パッファシリンダ9内には固定ピストン11が相対的に摺動自在に設置されている。固定ピストン11は前記可動部とは独立して密閉容器内に固定されている。固定ピストン11には吸気穴12および吸気バルブ13が設けられている。
 対向アーク電極2および対向通電電極3は導電性金属のリブ20により一体的に構成され、電気的に端子18aに接続されている。一方、可動アーク電極4および可動通電電極5も導電性金属のリンク19により一体的に構成され、それらはスライドコンタクト17を通じて電気的に端子18bに接続されている。
 駆動ロッド6、パッファシリンダ9および固定ピストン11によって囲まれた空間によってパッファ室16が構成される。パッファシリンダ9および固定ピストン11がパッファ室16内の消弧性ガス1を昇圧させる手段となり、パッファ室16が昇圧した消弧性ガス1を溜めておく蓄圧空間となる。絶縁ノズル8はパッファ室16からアーク放電7に向けて消弧性ガス1を整流し吹付ける手段となる。アーク放電7は、図7(b)に示すように、接触していた対向アーク電極2と可動アーク電極4とが離れることにより、これらアーク電極2、4間に発生する。
 以上の構成を有するパッファ形ガス遮断器では、投入状態において、対向アーク電極2と可動アーク電極4、並びに対向通電電極3と可動通電電極5が、互いに接触して電流通電状態にある(図7(a)参照)。この通電状態から電流遮断動作を実施する場合、可動アーク電極4および可動通電電極5が、駆動ロッド6によって図7の右方向に駆動する。
 駆動ロッド6の駆動が進み、対向アーク電極2と可動アーク電極4とが離れると、アーク電極2、4間にアーク放電7が発生する。それと同時に、遮断動作に伴ってパッファシリンダ9および固定ピストン11が相対的に近づくことで、パッファ室16内の容積が減少して室内の消弧性ガス1を機械的に圧縮する(図7(b)参照)。
 さらにそれと同時に、高温のアーク放電7の熱によって生成される熱排ガス14がパッファ室16に取り込まれることで、先の機械的な圧縮に加えて、アーク熱による昇圧作用も期待できる(図7(b)参照)。これを自力昇圧作用と称す。絶縁ノズル8はパッファ室16で圧縮された消弧性ガス1を整流し、吹付けガス15aとしてアーク放電7に吹付け、アーク放電7を消弧する(図7(c)参照)。この時、吹付けガス15aはアーク放電7からの熱排ガス14により加熱されているので、以後、高温吹付けガス15aと呼ぶ。
 一方、パッファ形ガス遮断器が投入動作を行う場合は、パッファ室16の圧力が消弧性ガス1の充填圧力よりも低くなった時点で、固定ピストン11に設けられた吸気バルブ13が動作して吸気穴12が開き、パッファ室16内に消弧性ガス1を吸気補充する。このため、電流遮断直後の投入動作時でもパッファ室16内に消弧性ガス1を速やかに補充することが可能となる。したがって、パッファ形ガス遮断器が高速再閉路動作を実施する場合でも、二回目の遮断動作時に十分な高温吹付けガス15aのガス流量を確保して、アーク放電7を確実に消弧することができる。
特公平7-109744号公報
 しかしながら、上記述べた従来のガス遮断器には以下のような問題点があった。
(A)吹付けガスの温度
 従来のガス遮断器の電流遮断時においては、高温吹付けガス15aは、アーク放電7からの熱排ガス14によって加熱されているので、必然的に高温状態となっている。このため、アーク放電7の冷却効率が低くなって、遮断性能が低下するおそれがあった。
(B)吹付けガスの温度による耐久性とメンテナンスへの影響
 また、高温化した高温吹付けガス15aをアーク放電7に吹付けることで、アーク放電7周辺の温度はさらに上昇する。その結果、アーク電極2、4や絶縁ノズル8が高熱にさらされて劣化し易くなり、メンテナンスを頻繁に行う必要が生じた。これは耐久性の向上とメンテナンスの低減化を求める使用者のニーズと逆行するものである。
(C)電流遮断時間
 さらに、パッファ室16内の圧力を自力昇圧作用も利用して昇圧させるので、熱排ガス14をパッファ室16内に取り込む必要があるが、この熱排ガス14の取り込みには、ある程度の時間が掛かる。そのため、電流遮断が完了するまでの時間が長くなることがある。ガス遮断器は電力系統における過大な事故電流を速やかに遮断するための機器なので、ガス遮断器の基本機能からみて電流遮断が完了するまでの時間を短縮化することが常に要請されている。
(D)駆動操作エネルギー
 また、ガス遮断器のコストを低減するには可動部の操作機構における駆動操作エネルギーを低減させることが重要である。ガス遮断器において駆動操作エネルギーを低減するためには、可動部の軽量化を図る必要である。
 しかしながら、従来のパッファ形遮断器では、大形のパッファシリンダ9、絶縁ノズル8、可動アーク電極4などが全て可動部に含まれるので、その軽量化には限界があった。可動部の重量が重いパッファ形遮断器において、電流遮断に必要な開離速度を得るためには、強い駆動操作エネルギーが必要とならざるを得ない。
 また、パッファ室16には熱排ガス14が流入するため、遮断電流条件によっては過剰な圧力が、圧縮駆動反力として固定ピストン11に作用することがある。したがって、圧縮駆動反力に打ち勝つために大きな駆動操作エネルギーが必要になることがあった。このように従来では、大きな駆動操作エネルギーが必要になることがあった。
(E)ガス流の不安定性
 さらに、自力昇圧作用を利用するパッファ形ガス遮断器では、遮断電流の大きさや交流電流の位相条件によってアーク熱の熱エネルギーが変わると、吹付け力が左右されてしまう。つまり、アーク熱を消弧性ガス1の昇圧に利用するが故に、アーク熱自体が消弧性能に影響を与えることになる。その結果、遮断電流の大きさや交流電流の位相条件が変化すると、それに伴って吹付け力も変化することになり、常に安定した流れとなる高温吹付けガス15aを確保できるとは限らなかった。
 本発明の実施形態は、以上述べた課題を解決するために提案されたものである。すなわち、本実施形態に係るガス遮断器は、吹付けガスの低温化、耐久性の向上とメンテナンスの低減化、電流遮断時間の短縮化、駆動操作エネルギーの低減化ならびにガス流の安定化を図るガス遮断器を提供することを目的とするものである。
 上記目的を達成するために、消弧性ガスが充填された密閉容器内に一対のアーク電極が対向して配置され、前記アーク電極は電気的に通電可能であり、電流遮断時には両電極間にアーク放電が発生し前記アーク放電の熱により熱排ガスを生成するように構成され、前記アーク放電に対し消弧性ガスを吹付けるために、前記消弧性ガスを昇圧させて昇圧ガスを生成する昇圧手段と、前記昇圧ガスを溜めておく蓄圧空間と、前記蓄圧空間から前記アーク放電に向けて前記昇圧ガスを導く絶縁ノズルとが設けられたガス遮断器において、次のような特徴を有している。
(1)前記蓄圧空間を閉塞状態あるいは開放状態とするための開閉自在な開閉部と、前記アーク電極間を移動自在に配置され、移動に伴ってアーク放電を発生させるトリガー電極とが設けられる。
(2)前記開閉部は、前記アーク電極と前記トリガー電極との隙間部分、もしくは、前記絶縁ノズルと前記トリガー電極との隙間部分、あるいは両方の隙間部分から構成される。
第1の実施形態の構造を示す断面図。 第1の実施形態のリンク31および支持部21の配置を示す、中心線と直交する断面図。 第1の実施形態の放圧部47周辺の構造を示す拡大断面図。 第2の実施形態の構造を示す断面図。 フラットな駆動出力特性の場合における圧縮反力および可動部加速力のストローク変化を示す図。 単調減少な駆動出力特性の場合における圧縮反力および可動部加速力のストローク変化を示す図。 従来のパッファ形ガス遮断器の構造を示す断面図。
(1)第1の実施形態
(構成)
 本発明に係る第1の実施形態について図1~図3を用いてその構成を説明する。なお、第1の実施形態の主要構成は図7に示した従来のガス遮断器と類似しているため、図7に示した従来のガス遮断器と同一の部材に関しては同一符号を付して説明は省略する。図1の(a)-(e)も、図7と同様、中心線を回転軸とした回転対称形状を示しており、(a)は通電状態、(b)は電流遮断動作の前半の状態、(c)、(d)は電流遮断動作の後半の状態、(e)は電流遮断動作完了後の状態である。
(固定アーク電極)
 第1の実施形態では、図示していない密閉容器内のガス圧力は通常運転時においていずれの部分でも消弧性ガス1の充気圧力となっている。第1の実施形態では、対向アーク電極2に代えて固定アーク電極35aが設けられ、この固定アーク電極35aに対向して固定アーク電極35bが配置されている。アーク電極35a、35bは電気的に通電可能であり、電流遮断時には両電極35a、35b間にアーク放電7が発生しアーク放電7の熱により熱排ガス14を生成するようになっている。
 これら一対のアーク電極35a、35bは、可動通電電極5などから成る可動部に含まれるものではなく、密閉容器(図示せず)の内部に固定される電極である。アーク電極35aおよび対向通電電極3は、導電性金属のリブ32により一体的に構成され、端子18aに接続されている。
(トリガー電極)
 固定アーク電極35a、35bの内側には、固定アーク電極35a、35bより径の小さなロッド形状のトリガー電極34が、固定アーク電極35a、35bに接しながらこれら電極35a、35b間を、中心線方向に移動するように配置されている。ただし、トリガー電極34が、固定アーク電極35b、可動通電電極5および端子18bと常に電気的に接続されているのであれば、トリガー電極34と固定アーク電極35bとは必ずしも接触している必要はない。
 トリガー電極34は、通電状態においては、固定アーク電極35aと接触することで通電状態を実現するようになっている。また、電流遮断時にはトリガー電極34と固定アーク電極35aの間にアーク放電7が発生し、アーク放電7は最終的にはトリガー電極34から固定アーク電極35bに転移するようになっている。つまり、トリガー電極34が動くことで固定アーク電極35a、35b間にアークを点弧させている。
 このようなトリガー電極34が本実施形態の特徴的な構成要素の1つであり、電流遮断が完了している状態では、固定アーク電極35bとトリガー電極34との間、および後述する絶縁ノズル81のノズルスロート37とトリガー電極34との間には、隙間部分が形成される(図1の(d)、(e)参照)。これらの隙間部分により、蓄圧室42を開放状態とするための開閉部が構成される。
 また、トリガー電極34が固定アーク電極35bおよび絶縁ノズル81のノズルスロート37に挿入されることで、前記の隙間部分は閉塞状態となる。隙間部分を閉塞状態にする部分を閉塞部45とする(図1の(a)、(b)参照)。このようにトリガー電極34が移動して閉塞部45を形成し隙間部分が閉塞状態となることで、開閉部は蓄圧室42を閉塞状態とする。また、トリガー電極34が反対方向に移動して閉塞部45を開放し隙間部分が開放状態となることで、開閉部は蓄圧室42を開放状態とする。
(蓄圧室)
 蓄圧室42は昇圧ガスを溜めておく蓄圧空間である。昇圧ガスとは、消弧性ガス1を昇圧させたものであり、昇圧手段である昇圧室シリンダ41と可動ピストン38(後述)によって生成される。蓄圧室42は、蓄圧室シリンダ43、昇圧室シリンダ41、固定アーク電極35b、絶縁ノズル81、フランジ部22に囲まれるようにして形成されている。フランジ部22には蓄圧室シリンダ43および昇圧室シリンダ41が一体的に取り付けられている。
 蓄圧室42は全体として中心線より半分の断面がL字状の空間(全体としてはU字状の空間)であり、L字の長辺側の三方のうち蓄圧室42の上面部側には蓄圧室シリンダ43が配置され、蓄圧室42の下面部側には昇圧室シリンダ41が配置され、蓄圧室42の右面部側にはフランジ部22が配置されている。また、L字の短辺側では固定アーク電極35bと絶縁ノズル81が向かい合い、固定アーク電極35bが蓄圧室42の右面部側に配置され、絶縁ノズル81が蓄圧室42の左面部側に配置されている。
(蓄圧室と開閉部との関係)
 先に述べたように、開閉部とは、トリガー電極34の移動により蓄圧室42を閉塞状態あるいは開放状態とするものである。より詳しくは、電流遮断時の前半にはトリガー電極34がノズルスロート37および固定アーク電極35b内の流路を封止することにより閉塞部45が形成され、蓄圧室42を閉塞状態にさせる。このため、アーク放電7の熱によって生成される熱排ガス14は蓄圧室42内への流入が制限される。また、蓄圧室42内の昇圧ガスについては蓄圧室42からの流出も制限される。
 電流遮断時の後半には、トリガー電極34の移動により、トリガー電極34から固定アーク電極35bへアーク放電7が転移され、さらにノズルスロート37および固定アーク電極35b内の流路封止が解除される。つまり、固定アーク電極35bとトリガー電極34との間、およびノズルスロート37とトリガー電極34との間に、隙間部分が形成されたことになり、蓄圧室42を開放状態にさせる。蓄圧室42が開放状態となったことで、蓄圧室42内の昇圧ガスは絶縁ノズル81を通ってアーク放電7へと導かれる。
(可動部)
 トリガー電極34と可動通電電極5は、導電性金属材料からなる支持部21、可動ピストン38、駆動ロッド36、リンク31と共に一体的に設けられており、これらの部材から可動部が構成される。可動通電電極5には、必要な通電容量が確保できる範囲で、放熱穴49が設けられている。放熱穴49は、可動通電電極5と対向通電電極3の接触通電部分における発熱を放熱するためのものである。
 また、可動部は、スライドコンタクト17により固定アーク電極35bおよび端子18bと常に電気的に接続されている。したがって、トリガー電極34と固定アーク電極35bとの間には微小なギャップが設けられており、電気絶縁性を脅かす金属摩耗粉が、摺動により発生しないように配慮されている。
(絶縁ノズル)
 トリガー電極34を囲むようにして絶縁ノズル81が配置されている。絶縁ノズル81は、図7に示した従来のガス遮断器の絶縁ノズル8と同じく、蓄圧室42からアーク放電7に向けて昇圧した消弧性ガス1を導くものである。ただし、絶縁ノズル81は、消弧性ガス1を、アーク放電7の周囲から中心に向かって、略垂直にアーク放電7へ吹付けるように構成されている。
 絶縁ノズル81は、遮断動作時に移動しない固定部品となっている。つまり絶縁ノズル81は、可動部側ではなく、密閉容器内に固定されている。この点が、図7に示した従来の絶縁ノズル8とは異なる点である。また、電流遮断動作時にはトリガー電極34が絶縁ノズル81内部を移動するようになっている。このため、アーク放電7が当該絶縁ノズル81内部に発生するように構成されている。
 絶縁ノズル81には、絶縁ノズル81内のガス流路における最小断面積部として定義されるノズルスロート37が形成されている。このノズルスロート37の両端は開口が拡径され、断面積が拡がるように形成されている。このとき、ノズルスロート37の両端の開口が拡径されているので、ノズルスロート37と固定アーク電極35bの内径部の合計断面積よりも、アーク放電7の外側から流れ込んでくるガス流路面積が広くなるように構成されている。
(昇圧室)
 昇圧室シリンダ41、駆動ロッド36、可動ピストン38、フランジ部22に囲まれた空間が、昇圧室40として定義される。昇圧室シリンダ41が昇圧室40の上面側に配置され、駆動ロッド36が昇圧室40の下面側に配置され、可動ピストン38が昇圧室40の左面側に配置され、フランジ部22が昇圧室40の右面側に配置される。
 そのため、可動ピストン38が往復動するとき、フランジ部22の下端部と駆動ロッド36の外周面、ならびに可動ピストン38の上端部と昇圧室シリンダ41の内周面とが互いに摺動するようになっている。ただし、駆動ロッド36の外周面には後述する放圧部47が設けられているため、ここにフランジ部22の下端部が位置すると、両者の間には隙間ができるようになっている。また、フランジ部22には吸気穴12が形成されており、吸気穴12には吸気バルブ13が取り付けられている。吸気バルブ13は、昇圧室40内の圧力が密閉容器内の充填圧力よりも低くなる際に限り、消弧性ガス1を昇圧室40内に吸気補充するように構成されている。
 可動ピストン38は、図示しない駆動装置により、例えば、トリガー電極34、支持部21、駆動ロッド36、リンク31、可動通電電極5と一体となって駆動する。このうち、支持部21およびリンク31は、過大な機械力の集中を回避して軸ずれを防ぐために、中心線周りに所定の角度ずつ隔てて複数本設けられている(図2参照)。駆動ロッド36および可動ピストン38の摺動部分には、そこから昇圧室40内の圧力が漏れないようにシール部材46が設けられて密閉されている。
 可動ピストン38は、アーク放電7から遠ざかるように移動することで、昇圧室40内の消弧性ガス1は圧縮されて昇圧ガスが生成される。つまり、可動ピストン38は従来の消弧室とは逆にピストンの裏面で消弧性ガス1を圧縮するようになっている。このような可動ピストン38と昇圧室シリンダ41とから昇圧手段が構成されることになる。また、図3に示すように、駆動ロッド36には、ロッド径を一部絞る、あるいは放圧溝を設けることなどにより、放圧部47が設けられている。放圧部47は、昇圧室40内の消弧性ガス1を放出圧縮ガス48として室外に放出するためのものである。
 昇圧室シリンダ41には連通穴39が形成されており、この連通穴39を通して、昇圧室40は、少なくとも電流遮断過程の前半では、蓄圧室42と圧力的に連通されている。電流遮断過程の後半では、連通穴39は、移動した可動ピストン38の外周面に設けたシール部材46によって塞がれ、昇圧室40は蓄圧室42と圧力的に切り離される。
(熱排ガス貯留室)
 可動ピストン38の右側に昇圧室40が配置されるとして、可動ピストン38の左側、つまり昇圧室40よりもアーク放電7の発生空間寄りには、熱排ガス14を一時的に貯留させる熱排ガス貯留室44が配置されている。熱排ガス貯留室44は、昇圧室シリンダ41、固定アーク電極35b、トリガー電極34、可動ピストン38に囲まれた空間である。熱排ガス貯留室44における圧力は、可動ピストン38および昇圧室シリンダ41による消弧性ガス1の圧縮を補助する力として作用するように構成されている。
 以上の構成を有する本実施形態の電流遮断動作について説明する。
<遮断過程の前半…図1の(a)から(b)へ>
 トリガー電極34が固定アーク電極35aと開離すると同時に、両者間にアーク放電7が発生する。アーク放電7から発生した熱排ガス14は、アーク放電7の発生と同時に、遅滞なくアーク放電7から遠ざかる方向に流れ、密閉容器内の空間へと速やかに排出される。
 遮断過程の前半においては、トリガー電極34が、絶縁ノズル81内のノズルスロート37と、固定アーク電極35bを塞いで閉塞部45を形成する。また、昇圧室40と蓄圧室42は連通穴39が開口しているため、一体の空間となっている。したがって、昇圧室40と蓄圧室42からなる密閉空間内に存在する消弧性ガス1は、可動ピストン38により圧縮され、昇圧される。
 このとき、閉塞部45は、昇圧室40と蓄圧室42からなる密閉空間内にアーク放電7からの熱排ガス14が流入することを制限するとともに、当該密閉空間内で昇圧中の消弧性ガス1が流出することを制限する。したがって、構造上避けることができない閉塞部45における微小な隙間を除けば、可動ピストン38による圧縮に要したエネルギーは、ほぼ完全に密閉空間(昇圧室40と蓄圧室42)内の消弧性ガス1の圧力エネルギーへと転化される。さらに、遮断動作中のごく短時間では、アーク放電7の熱の影響をほとんど受けることがない。そのため、密閉空間(昇圧室40と蓄圧室42)内の消弧性ガス1の昇圧は、可動ピストン38による断熱圧縮作用のみによって、もたらされることになる。
<遮断過程の後半…図1の(c)から(d)へ>
 遮断過程の後半においては、可動ピストン38の移動に伴い昇圧室40の体積は相対的に小さくなり、可動ピストン38により圧縮された消弧性ガス1は大半が蓄圧室42内に貯留される。それと同時に、図3に示すように、可動ピストン38の外周面に設けたシール部材46が、連通穴39を塞ぐ。これにより、昇圧室40と蓄圧室42とは圧力的に切り離される。さらに、それと連動して、放圧部47が開放される。これにより、昇圧室40内の消弧性ガス1は放出圧縮ガス48として室外に放出され、昇圧室40内の圧力は密閉容器内へと放圧される。
 一方、トリガー電極34が、絶縁ノズル81のノズルスロート37および固定アーク電極35bを通過することで、閉塞部45が開放される。そのため、絶縁ノズル81は、蓄圧室42内の圧縮ガスを、蓄圧室42からアーク放電7に向けて、温度の低い低温吹付けガス15bとして強力に吹き付ける。このとき、低温吹付けガス15bは、アーク放電7の周囲から中心に向かって、略垂直に横切るようにアーク放電7へ吹付けられる。そのため、当該吹付け点においてアーク放電7は急速に冷却されることになる。
 絶縁ノズル81は、低温吹付けガス15bをアーク放電7に吹付け、また熱排ガス14をスムーズに排出するようにガスの流れを適切に整流する。特に、熱排ガス14の排気面積となるノズルスロート37と固定アーク電極35bの内径部の合計断面積よりも、アーク放電7の外側から流れ込んでくる流路面積の方を、広く構成しているので、アーク放電7の冷却に十分な低温吹付けガス15bの流量を確保することができる。遮断過程の後半の段階では、アーク放電7は固定アーク電極35bに転移される。したがって、トリガー電極34にアーク放電7が点弧している期間は、固定アーク電極35bにアーク放電7が転移されるまでの遮断過程初期の限定された期間のみである。
 図1(c)に示す段階では、トリガー電極34は絶縁ノズル81のノズルスロート37を通過し、当該ノズルスロート37側の閉塞部45のみ開放し、トリガー電極34と絶縁ノズル81のノズルスロート37との隙間部分から、図に向かって左側方向のみ、低温吹付けガス15bの吹付けが開始される。そのすぐ後の図1(d)では、トリガー電極34の移動に伴い、固定アーク電極35bにおける閉塞部45も開放される。
 そのため、低温吹付けガス15bの吹付け点では、図に向かって左側方向および右側方向の両方向への強力な吹付けにより、アーク放電7の急速な冷却が行われる。固定アーク電極35b側から排気される熱排ガス14は、可動ピストン38の圧縮室40の反対側に形成される熱排ガス貯留室44へと導かれ、排気穴33を通して密閉容器へと排気される。
<遮断過程の終了後>
 昇圧室40の設けられた吸気バルブ13は、昇圧室40内の圧力が密閉容器内の充填圧力よりも低くなる際に限り、消弧性ガス1を昇圧室40内に吸気補充する。したがって、遮断過程終了後に、再び投入動作をした場合、昇圧室40には吸気穴12を通じて新鮮な消弧性ガス1が密閉容器内から供給される。
(作用および効果)
 上記のような第1の実施形態の作用および効果は次の通りである。
(A)吹付けガスの低温化を図る
 第1の実施形態はアーク熱による自力昇圧作用を利用していない点に特徴がある。アーク放電7に吹付けられる低温吹付けガス15bは、熱排ガス14による熱的な昇圧はなされておらず、可動ピストン38による機械的圧縮によってのみ圧力が高められたガスとすることができる。
 トリガー電極34とノズルスロート37の隙間から、蓄圧室42に、ごく僅かの熱排ガス14が流入する可能性は否定できないが、その影響は非常に小さい。したがって、アーク放電7へ吹付けられる低温吹付けガス15bの温度は、自力昇圧作用を利用した従来の高温吹付けガス15aの温度に比べて、はるかに低くなる。このような低温吹付けガス15bを吹き付けることで、アーク放電7の冷却効果を著しく高めることができる。
(B)耐久性の向上とメンテナンスの低減化を図る
 本実施形態においては、低温吹付けガス15bを吹付けたことでアーク放電7周辺の温度が低温化することができる。そのため、電流遮断に伴う固定アーク電極35a、35bや絶縁ノズル81が高温環境にさらされた場合と比べて、これらの部材の劣化を著しく軽減することができ、部材の耐久性が向上する。したがって、固定アーク電極35a、35bおよび絶縁ノズル81のメンテナンス頻度を落とすことが可能となり、メンテナンスの負担を低減化することができる。
 また、密閉容器側に固定されたアーク電極35a、35bは、可動ピストン38などを含む可動部の重量に影響しない。このため、重量増大を懸念せずに、固定アーク電極35a、35bを太く構成することができ、結果として大電流アークに対するアーク電極35a、35bの耐久性が著しく向上する。
 さらに、アーク電極35a、35bを太く構成した場合、電極ギャップ間に高電圧が印加されたときのアーク電極35a、35b先端における電界集中を大きく緩和することが可能である。したがって、従来のガス遮断器に比べて、必要となる電極ギャップ間隔を短くすることができる。その結果、アーク放電7の長さは短くなり、電流遮断時におけるアーク放電7への電気的入力パワーを小さくすることができる。
 アーク熱による自力昇圧作用を利用するガス遮断器であれば、アーク放電7への電気的入力パワーが減ることは、自力昇圧作用の低下につながるので、電流遮断性能上は望ましいことではない。しかしながら、本実施形態は、アーク熱による自力昇圧作用を利用していないものなので、アーク放電7への電気的入力パワーが減ることは、電流遮断性能上、何ら影響を及ぼすことがない。
 したがって、固定アーク電極35a、35bを太くしたにせよ、熱的な耐久性向上に大きく寄与するといったメリットだけを得ることが可能である。なお、トリガー電極34はアーク放電7が点弧している期間は損耗するが、その期間は固定アーク電極35bにアーク放電7が転移されるまでの遮断過程初期のみであるので、その損耗は限定的である。したがって、トリガー電極34のメンテナンスの負担は低くて済む。
 ところで、アーク熱の自力昇圧作用を利用しないで消弧性ガス1を昇圧させるには、高圧のリザーバタンクに圧縮ガスをコンプレッサにより事前に生成しておき、電流遮断時に、開路バルブを同期して開き、圧縮ガスをアーク放電7へと吹付ける構成なども考えられる。しかし、このような構成を実現するためにはリザーバタンク、コンプレッサ、電磁バルブなどの付帯部品が増えるので、機器の大形化やコスト増大を招くと同時に、メンテナンス性の悪化といった不具合が発生する。
 しかし、第1の実施形態では、密閉容器内の圧力は通常運転時において、いずれの部分でも単一の圧力、例えば消弧性ガス1の充気圧力となっており、電流遮断過程においてのみ必要な圧縮ガスが生成されるといった、極めてシンプルな構成を実現することができる。したがって、第1の実施形態によれば、単圧式でありながら電流遮断過程においてのみ必要な圧縮ガスを生成することが可能となり、機器のコンパクト化やコストの低減を図ることができ、メンテナンスに要する作業負担を低減化することができる。
(C)電流遮断時間の短縮化を図る
 前述した通り、従来のガス遮断器では、アーク熱による自力昇圧作用を利用して、パッファ室16内の消弧性ガス1を、遮断に必要な高い吹付け圧力にまで昇圧させる場合は、ある程度の時間がかかってしまう。そのため、従来のアーク熱による自力昇圧作用を伴ったガス遮断器においては、電流遮断が完了するまでの時間が伸びる傾向にあった。
 これに対して、本実施形態によれば、アーク熱による自力昇圧作用を利用していないので、アーク放電7へと吹付けられる消弧性ガス1の圧力や流量は、電流条件によらず常に一定である。また、アーク放電7への吹付け開始タイミングも、トリガー電極34がノズルスロート37あるいは固定アーク電極35bを通過して閉塞部45が開放されるタイミングで決まるので、電流条件によらず常に一定である。したがって、従来のガス遮断器のように、遮断電流条件によって電流遮断の完了時間が長引くことはなく、電流遮断の完了時間の短縮化という要請に応えることができる。
(D)駆動操作エネルギーの低減化を図る
 一般的に、駆動ストロークが完全遮断位置に近づくにつれて、昇圧室40および蓄圧室42内の圧縮ガスの圧力は高まり、同時に可動ピストン38に作用する圧縮反力は大きくなる。これに打ち勝つためには、それ相応の駆動力をもった駆動装置を設けなくてはならない。
 しかしながら、本実施の形態によれば、完全遮断位置においては、可動ピストン38に設けたシール部材46が連通穴39を塞ぐことにより、昇圧室40と蓄圧室42とは圧力的に切り離されると共に、放圧部47により昇圧室40内の圧力は放圧される。このため、少なくとも完全遮断位置にまで可動部を引っ張ることができる駆動エネルギーさえあれば、その後は可動ピストン38にはストロークを逆行させる力は作用されない。したがって、ストロークが逆行するおそれはない。また、このことは電流条件にはほとんど全く左右されない。
 このような効果を持つ本実施形態でなければ、熱排ガスの圧力が高くなる遮断電流条件のために、他の遮断電流条件では余剰となる駆動エネルギーを確保しなければならない。また、完全遮断位置においてストローク位置を保持するような付帯機構が必要となり、コストの上昇や機械的信頼性の低下を招くことにもつながる。本実施形態では、これらの不具合を回避することができ、駆動操作エネルギーの低減化を図ることができる。
 駆動操作エネルギーの低減化の実現は、遮断動作に伴って駆動力が低下するバネ操作機構などを採用する場合において、特に好ましいものとなる。しかも、本実施形態においては支持部21およびリンク31を角度方向に複数本設けたので、軸ずれを防止することができ、過大な機械力が一か所に集中せず、安定した動作が可能である。
 また、トリガー電極34は固定アーク電極35a、35bより径が小さく、従来の可動アーク電極4および駆動ロッド6と比べて軽量で済む。さらには、2つの固定アーク電極35a、35bに加えて、絶縁ノズル8も可動部に含まれないので、可動部の重量を大幅に低減することが可能である。このように可動部の軽量化を進めた本実施形態では、電流遮断に必要な可動部の開極速度を得る面で、駆動操作力を大幅に低減することができる。
 さらに、軽量化とともに、電流を遮断するために必要な吹き付け圧力自体を低減することができれば、圧縮に必要なエネルギーも低減することができる。本実施形態では、アーク放電7へ吹付けるガスの温度が従来に比べてはるかに低いため、アーク放電7の冷却効果が著しく高まり、高温吹付けガス15aを吹付ける場合と比べて、低い圧力でもアーク放電7を遮断することが可能となる。
 さらに、低温吹付けガス15bを、アーク放電7の周囲から中心に向かって絞り込むようにアーク放電7へ吹付けることも、電流を遮断するために必要な吹き付け圧力を低減することにつながる。特に、図1の(c)、(d)に示したように、アーク放電7の周囲から中心に向かって絞り込むように、低温吹付けガス15bをアーク放電7へ吹付けることで、吹付け点のアーク放電径を絞り込み、さらに効果的にアーク放電7を冷却することができる。ただし、アークへの吹付け方は、必ずしもこのような形態をとらなくても電流遮断は可能である。
 また、本実施形態では、熱排ガス14の排気面積となるノズルスロート37と固定アーク電極35bの内径部の合計断面積よりも、アーク放電7の外側から流れ込んでくる流路面積が広くなるように構成したことで、アーク放電7の冷却に十分な低温吹付けガス15bの流量を確保することができる。これらの点からも、低温の圧縮ガスを、アーク放電7の周囲から中心に向かって絞り込むようにアーク放電7へ吹付けるような構成をとることで、より低い圧力でアーク放電7を遮断することが可能となる。
 さらに、トリガー電極34が固定アーク電極35aと十分に開離し、消弧性ガス1がアーク放電7に吹付けられるまで、昇圧室40および蓄圧室42は閉塞部45により塞がれている。つまり、閉塞部45が、昇圧室40と蓄圧室42からなる密閉空間内にアーク放電7からの熱排ガス14が流入することを制限するとともに、当該密閉空間内で昇圧中の消弧性ガス1が流出することを制限している。したがって、構造上避けることができない微小な隙間からのリーク分を除き、可動ピストン38により加えられた圧縮エネルギーを、ほぼ完全に密閉空間内(昇圧室40と蓄圧室42)の消弧性ガス1の圧力エネルギーへと転化することができる。
 これは、消弧性ガス1の圧縮途中から、すでに昇圧ガスの排出が始まっている従来のガス遮断器(図7の(b)参照)に比べて、大きなメリットである。したがって、本実施形態では、従来のようにパッファシリンダ9と固定ピストン11により外部から与えられた圧縮エネルギーを捨てることなく、可動ピストン38による圧縮エネルギーの全てを、昇圧室40および蓄圧室42の圧力上昇に無駄なく利用することができ、この点からも駆動操作力の低減に有効である。
 また、本実施形態では、アーク放電7から発生する熱排ガス14は、その発生と同時に、遅滞なくアーク放電7から遠ざかる方向に流れ、前記密閉容器内の空間へと速やかに排出されるよう構成している。アーク放電7への低温吹付けガス15bは、上流側である蓄圧室42の圧力と、下流側である固定アーク電極35a近傍の圧力との差により流れる。したがって、下流側の圧力が高ければ、いくら蓄圧室42の圧力を高めても、十分な吹き付け力を得ることはできない。
 そこで、本実施の形態では、アーク放電7の発生と同時に、熱排ガス14を速やかに広い排気流路を通って密閉容器へと排出している。そのため、下流側すなわち固定アーク電極35a近傍の圧力は、常に密閉容器の充填圧力とほぼ同等のレベルに維持される。この点からも、本実施の形態では、従来のガス遮断器に比べて電流遮断に必要な吹き付け圧力を低減することができ、駆動操作エネルギーを低減することができる。
 また、アーク放電7から発生する熱排ガス14の圧力は、図1に示す可動ピストン38の左側の面に作用する。つまり、従来のガス遮断器とは異なり、本実施形態においてはピストンの右側の面、すなわち熱排ガス14の圧力が作用する面の反対側の面にて、機械圧縮を行っている。そのため、熱排ガス14の圧力は可動ピストン38による圧縮力をサポートする力になりこそすれ、少なくとも可動ピストン38の駆動操作力の反力として作用することは一切ない。以上の点からも、従来のガス遮断器と比べて、本実施形態は駆動操作エネルギーの低減化を図ることができる。
 さらに進んで、例えば、熱排ガス貯留室44からの熱排ガス14の排気穴33を小さめに設定すれば、熱排ガス貯留室44の圧力は相対的に上昇する。アーク放電7からの熱排ガス14の排気を妨げない程度に排気穴33の大きさを適切に調整すれば、熱排ガス貯留室44における熱排ガス14の圧力を、むしろ駆動操作のサポート力として利用することが可能である。
(E)ガス流の安定化を図る
 繰り返し述べたように、本実施形態では、消弧性ガス1の吹付け圧力上昇にアーク熱による自力昇圧作用を一切利用していない。したがって、遮断電流条件に関係なく、常に同等の吹付けガス圧力およびガス流量を安定して得ることができる。このため、遮断電流の大きさによる性能の不安定性は全く生じることがない。
 ところで、絶縁ノズル内の消弧性ガス1の流れの様相が遮断性能に非常に大きく影響することが知られている。従来のガス遮断器における絶縁ノズル8は、可動部に組み込まれているため、電流遮断動作において駆動されており、絶縁ノズル8内の消弧性ガス1の流れは毎時のストローク位置、あるいは開極のスピードなどによって大きく変動する。このため、全ての電流条件にわたって、常に理想的な消弧性ガス1の流路形状とすることは不可能であった。
 これに対して、本実施形態では、絶縁ノズル81およびアーク電極35a、35bが全て固定されている。そのため、各部材の相対的な位置関係は一切変わることがなく、また、アーク熱による自力昇圧作用を一切利用していないので、アーク放電7へと吹付けられる昇圧ガスの圧力や流量についても、電流条件によらず、常に一定である。したがって、絶縁ノズル81内の流路を最適に構成することが可能である。以上述べたように、本実施形態によれば、シンプルな構造により、吹付けガスの低温化、耐久性の向上とメンテナンスの低減化、電流遮断時間の短縮化、駆動操作エネルギーの低減化ならびにガス流の安定化を、全て実現することができる。
(2)第2の実施形態
(構成)
 第2の実施形態は第1の実施形態と基本構造は同一である。第2の実施形態の特徴的な構成は、図4に示す通り、絶縁ノズル81が二つに分割されており、固定アーク電極35b側にサブ絶縁ノズル50が設けられている点にある。このサブ絶縁ノズル50と絶縁ノズル81との隙間を通って低温吹付けガス15bが蓄圧空間42からアーク放電7へと導かれるようになっている。このとき、サブ絶縁ノズル50は、低温吹付けガス15bがアーク放電7の中腹へと吹付けられるように構成されている。
(作用および効果)
 第2の実施形態では、固定アーク電極35b側にサブ絶縁ノズル50を設け、低温吹付けガス15bをアーク放電7の中腹へと吹付けるようにしたので、アーク放電7の左側に流れ込む熱排ガス14の持つ熱量と、アーク放電7の右側に流れ込む熱排ガス14の持つ熱量とバランスを取ることができる。
 したがって、低温吹付けガス15bが固定アーク電極35b付近、すなわちアーク放電7のどちらか一方に偏って吹付けられることがない。このため、例えば熱排ガス14の流れによる構成部材の損傷の程度や、高電圧部位と接地電位である密閉容器間の電気絶縁性の低下の程度などが、アーク放電7の片方側だけで顕著に悪くなるといった心配がない。
 また、低温吹付けガス15bがアーク放電7のどちらか一方に偏らないので、片側の熱排ガス14の流れが限定的になるといった懸念もない。つまり、熱排ガス14の流量を常に十分に確保することができる。そのため、熱排ガス貯留室44の圧力を高めて可動ピストン38の駆動力の補助に利用しようとする場合に、その効果を十分に引き出すことが可能である。
(3)第3の実施形態
(構成)
 第3の実施形態は第1あるいは第2の実施形態と基本構造は同一であるが、図1、2、3、4には図示されていない、可動部の駆動装置に関するものであり、駆動装置として、図6に示すような出力減衰型の特性を有するものを採用する。この駆動装置では、駆動力が遮断過程で減少するように構成されている。
 図5および図6に、圧縮反力(ア)、すなわち可動ピストン38が昇圧室40の圧力から受ける力を実線で、駆動装置の駆動力(イ)を点線で、可動部を加速させる力(実効加速力,(イ-ア))を一点鎖線で示す。横軸は駆動ストロークであり、完全投入位置が0pu、完全開極位置が1.0puである。ここで摩擦等の影響は無視するとした場合、実効加速力は「駆動力(イ)-圧縮反力(ア)」で描かれる。実効加速力は正の値が加速力、負の値が減速力を意味する。
 ここで第1の実施形態で述べた通り、本実施形態のガス遮断器は、吹付けガスの圧力上昇を可動ピストン38による断熱圧縮を主体として行うため、圧縮反力((ア)、実線)のカーブは、断熱圧縮特性として知られる図5および図6に示すような単調増加特性となる。また、本実施形態のガス遮断器は、吹付けガスの圧力上昇にアークからの熱エネルギーを活用しないため、圧縮反力(実線)のカーブは遮断電流の大小や交流電流の位相などによらず、常に一定のカーブとなる。
 図5は、駆動装置の駆動力((イ)、点線)が駆動ストロークに対してフラットな特性の場合を示している。一方、図6は、駆動装置の駆動力((イ)、点線)が駆動ストロークに対して減衰していく特性の場合を示している。図5では最も極端な例として、駆動力は全ストローク位置にわたり0.5puで一定としている。一方、図6では、駆動力が一例として0.8puから0.2puまで直線的に減衰するケースを取り上げている。
 なお、駆動装置が遮断動作のために蓄勢している駆動エネルギーは、駆動力((イ)、点線)をストロークで積分した面積として与えられる。図5の駆動力特性の場合、駆動エネルギーは、下記の式1から求めることができる。
0.5pu×全ストローク1pu=0.5 …(式1)
 一方、図6の駆動力特性の場合、駆動エネルギーは、縦軸0puのラインと駆動力(イ)の点線とで囲まれた台形の面積となり、下記の式2から求めることができる。
 (0.8pu+0.2pu)÷2×全ストローク1pu=0.5
                          …(式2)
 つまり、図5と図6は駆動力のストローク特性は異なるものの、駆動エネルギーとしては同一である。
(作用および効果)
 一般的に駆動装置の大きさやコストは、駆動エネルギーに対して概ね単調増加の傾向を持つ。すなわち、図5と図6は駆動力の特性は異なるものの、駆動エネルギーとしては同一であるため、どちらも駆動装置の大きさやコストは、さほど大きな差はないといえる。
 一方、駆動エネルギーは同じでも、ストロークの前半で大きな駆動力を出し、後半に向かって減衰してゆく図6の特性の駆動装置の方が、実効加速力(イ-ア)が図5より大きな値となっていることが分かる。圧縮反力の特性(ア)は図5と図6で同一で、かつ、駆動エネルギーも同一であるので、完全開極位置(ストローク1pu)での速度は同一となるが、ストローク途中の速度は両者の間で大きく異なる。つまり、開極前半における加速力が大きい図6の方が、可動部のトップスピードは速くなる。
 これは、操作駆動エネルギーが同じ場合、図6に示すような出力減衰型の駆動特性をもった駆動装置の方が、図5の駆動特性の駆動装置と比べて、可動部の駆動速度を速くすることができることを示している。すなわち、ガス遮断器にとっては、より速く電極間のギャップが開くことを意味しており、電極間の速やかな電気絶縁性の回復の面で大きなメリットとなる。
 また、可動部の駆動速度が速くなれば、アーク放電7がトリガー電極34から固定アーク電極35bにそれだけ早く転移し、なおかつ蓄圧室42から低温吹付けガス15bが強力にアーク放電7へ吹付けられるまでの時間が短くなる。したがって、耐久性が向上すると共に、遮断完了までに要する時間の短縮化を図ることができる。
 以上述べた作用および効果が得られるのは、本実施形態のガス遮断器が、吹付けガスの圧力上昇を、可動ピストン38による断熱圧縮を主体として行っており、そのために圧縮反力が初期は非常に小さく、後半に向かって急激に増加する特性であることに由来する。また、圧縮反力の特性が遮断電流の大小や交流電流位相などによらず、常に一定のカーブとなることも、当該作用効果を得るための必須条件である。いずれも、従来のガス遮断器の構造では達成できない特徴である。従来のガス遮断器では、固定ピストン11に印加される圧縮反力はアーク発生熱の影響を大きく受けるため単調増加のカーブにはならず、また遮断電流の条件によりその様相が大きく異なるからである。
 さて、駆動エネルギーが同一の条件で、駆動出力を図5のようなフラットな特性から、図6のような減衰型の特性とする具体的方策について説明する。これは、駆動エネルギー源として蓄勢したバネを採用すれば容易に実現できる。バネ機構の出力特性は、原理的には以下の式3のように与えられ、図6に示したような単調減少直線となる。
 F=k・(L+1-x) …(式3)
 ここで、F:駆動出力、k:バネ定数、x:ストローク(pu)、L:完全開極位置(ストロークx=1pu)でのバネの圧縮長(pu)である。
 特に、完全開極位置でバネが自由長に近くなるように構成すれば(L≒0pu)、同じ駆動エネルギーをえるためのバネ定数kの値は大きくなり、バネの放勢にともない駆動力がストロークに対して大きく減衰する特性となる。あるいはまた、油圧操作機構のようにストロークに対して比較的フラットな出力特性を持つ駆動装置を用いる場合は、適切なリンク構造を連結することで、操作駆動エネルギーを変えずに、出力特性を減衰型に変更することも可能である。
 出力特性を減衰型にする方策は上記以外にも種々考えうるが、重要なことは、本実施形態に係るガス遮断器においては、駆動力がストロークに対して減衰型である機構と組み合わせることで、同一の操作駆動エネルギーであっても、電極の開離速度を効果的に上げることができ、遮断器の速やかな絶縁回復、遮断完了までに要する時間の短縮化、耐久性の向上などの、特有のメリットが得られるということである。
 さらに、第1の実施形態で述べた構造、すなわち昇圧室40の高いガス圧力を蓄圧室42から切り離し、かつ昇圧室40の圧力を放圧部47により放圧することで、たとえ駆動力が開極後半に大きく低下したとしても、可動部が逆行するなどの不具合は生じることはない。なお、出力低下型の駆動力特性の一つの目安としては、投入位置(ストローク0pu)での駆動力に対して、完全遮断位置(ストローク1pu)での駆動力が、例えば概ね80%以下とすることを望ましい。完全開極位置における出力低下率を80%以下となるように設定すれば、上記の作用効果を実質的に得ることができる。
(4)他の実施形態
 上記の実施形態は、本明細書において一例として提示したものであって、発明の範囲を限定することを意図するものではない。すなわち、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことが可能である。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。例えば、上記第2の実施形態では、固定アーク電極35b側にサブ絶縁ノズル50を設けて、絶縁ノズル8を二つに分割した構造について説明したが、分割数は必ずしも二つである必要はなく、三つもしくはそれ以上の部位に分割することも可能である。
1…消弧性ガス
2…対向アーク電極
3…対向通電電極
4…可動アーク電極
5…可動通電電極
6、36…駆動ロッド
7…アーク放電
8、81…絶縁ノズル
9…パッファシリンダ
11…固定ピストン
12…吸気穴
13…吸気バルブ
14…熱排ガス
15a…高温吹付けガス
15b…低温吹付けガス
16…パッファ室
17…スライドコンタクト
18a、18b…端子
19、31…リンク
20、32…リブ
21…支持部
22…フランジ部
33…排気穴
34…トリガー電極
35a、35b…固定アーク電極
36…駆動ロッド
37…ノズルスロート
38…可動ピストン
39…連通穴
40…昇圧室
41…昇圧室シリンダ
42…蓄圧室
43…蓄圧室シリンダ
44…熱排ガス貯留室
45…閉塞部
46…シール部材
47…放圧部
48…放出圧縮ガス
49…放熱穴
50…サブ絶縁ノズル 

Claims (12)

  1.  消弧性ガスが充填された密閉容器内に一対のアーク電極が対向して配置され、前記アーク電極は電気的に通電可能であり、電流遮断時には両電極間にアーク放電が発生しうるように構成され、前記アーク放電に対し消弧性ガスを吹付けるために、前記消弧性ガスを昇圧させて昇圧ガスを生成する昇圧手段と、前記昇圧ガスを溜めておく蓄圧空間と、前記蓄圧空間から前記アーク放電に向けて前記昇圧ガスを導く絶縁ノズルとが設けられたガス遮断器において、
     前記蓄圧空間を閉塞状態あるいは開放状態とするための開閉自在な開閉部と、
     前記アーク電極間を移動自在に配置され、移動に伴ってアーク放電を発生させるトリガー電極とが設けられ、
     前記開閉部は、前記アーク電極と前記トリガー電極との隙間部分、もしくは、前記絶縁ノズルと前記トリガー電極との隙間部分、あるいは両方の隙間部分から構成されたことを特徴とするガス遮断器。
  2.  前記開閉部は、電流遮断時の前半には閉塞状態となっており、前記アーク放電の熱によって生成される熱排ガスが前記蓄圧空間内へ流入することを制限、もしくは前記蓄圧空間内で昇圧中の前記消弧性ガスが流出することを制限し、
     電流遮断時の後半には開放状態となって前記蓄圧空間内の前記昇圧ガスを前記アーク放電に導くように構成されたことを特徴とする請求項1に記載のガス遮断器。
  3.  前記昇圧ガスが、前記アーク放電の周囲から中央に向かうように、前記アーク放電に対し吹付けられるように構成されたことを特徴とする請求項1又は2に記載のガス遮断器。
  4.  前記一対のアーク電極は前記密閉容器内に固定されており、
     前記一対のアーク電極の内側には前記アーク電極より径の小さなトリガー電極が前記アーク電極間を移動自在に配置され、
     前記トリガー電極は前記アーク電極と電気的に接触することで通電状態を実現し、電流遮断時には当該トリガー電極と一方の前記アーク電極の間にアーク放電が発生し、前記アーク放電は最終的には前記トリガー電極から他方の前記アーク電極に転移するように構成されたことを特徴とする請求項1~3のいずれか1項に記載のガス遮断器。
  5.  前記昇圧手段はシリンダとピストンから構成され、その少なくともどちらかが可動することで前記シリンダ内部の前記消弧性ガスを圧縮し、前記昇圧ガスを生成するように構成され、
     前記アーク放電から発生する熱排ガスの圧力が、前記ピストン又は前記シリンダによる前記消弧性ガスの圧縮反力として作用しないように構成されたことを特徴とする請求項3又は4に記載のガス遮断器。
  6.  前記アーク放電から発生する前記熱排ガスを一時的に貯留させるための熱排ガス貯留空間を設け、
     前記熱排ガス貯留空間における圧力が、前記ピストン又は前記シリンダによる前記消弧性ガスの圧縮を補助する力として作用するように構成されたことを特徴とする請求項5に記載のガス遮断器。
  7.  電流遮断時の後半には、前記ピストンおよび前記シリンダによる前記消弧性ガスの圧縮空間と、前記消弧性ガスが溜められた前記蓄圧空間とが、圧力的に切り離されるように構成されたことを特徴とする請求項5又は6に記載のガス遮断器。
  8.  電流遮断時の後半には、前記圧縮空間の圧力が放圧されるように構成されたことを特徴とする請求項7に記載のガス遮断器。
  9.  前記消弧性ガスを機械的に圧縮するための駆動装置が設けられ、
     前記駆動装置の駆動力が駆動ストロークとともに減少するように構成されたことを特徴とする請求項8に記載のガス遮断器。
  10.  前記アーク放電から発生する熱排ガスは、前記アーク放電の発生と同時に、遅滞なく前記アーク放電から遠ざかる方向に流れ、前記密閉容器内の空間へと速やかに排出されるように構成されたことを特徴とする請求項1~9のいずれか1項に記載のガス遮断器。
  11.  前記絶縁ノズルは2つもしくはそれ以上の部位に分割されており、その分割された隙間を通って、前記昇圧ガスが前記蓄圧空間から前記アーク放電へと導かれ、
     前記昇圧ガスが前記アーク放電の中腹へと吹付けられるように構成されたことを特徴とする請求項1~10のいずれか1項に記載のガス遮断器。
  12.  前記絶縁ノズルは、前記密閉容器内に固定されていることを特徴とする請求項1~11のいずれか1項に記載のガス遮断器。
     
PCT/JP2015/054620 2014-03-25 2015-02-19 ガス遮断器 WO2015146390A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15769921.6A EP3125265B1 (en) 2014-03-25 2015-02-19 Gas circuit-breaker
CN201580015288.2A CN106133870B (zh) 2014-03-25 2015-02-19 气体断路器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014062590A JP6320106B2 (ja) 2014-03-25 2014-03-25 ガス遮断器
JP2014-062590 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015146390A1 true WO2015146390A1 (ja) 2015-10-01

Family

ID=54194925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054620 WO2015146390A1 (ja) 2014-03-25 2015-02-19 ガス遮断器

Country Status (4)

Country Link
EP (1) EP3125265B1 (ja)
JP (1) JP6320106B2 (ja)
CN (1) CN106133870B (ja)
WO (1) WO2015146390A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084754A1 (ja) * 2018-10-26 2020-04-30 株式会社 東芝 ガス遮断器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289856B2 (ja) 2013-10-16 2018-03-07 株式会社東芝 ガス遮断器
EP3561840A4 (en) 2016-12-16 2020-08-19 Toshiba Energy Systems & Solutions Corporation GAS-INSULATED SWITCHING DEVICE
WO2019092862A1 (ja) * 2017-11-10 2019-05-16 株式会社 東芝 ガス遮断器
JP6773918B2 (ja) * 2017-11-10 2020-10-21 株式会社東芝 ガス遮断器
CN111357074B (zh) * 2017-11-10 2021-12-24 株式会社东芝 气体断路器
WO2019106841A1 (ja) 2017-12-01 2019-06-06 株式会社 東芝 ガス遮断器
JP6901425B2 (ja) * 2018-03-13 2021-07-14 株式会社日立製作所 ガス遮断器
US11764012B2 (en) 2019-03-19 2023-09-19 Kabushiki Kaisha Toshiba Gas circuit breaker
US11798762B2 (en) * 2019-04-02 2023-10-24 Kabushiki Kaisha Toshiba Gas circuit breaker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486632A (en) * 1981-06-12 1984-12-04 Bbc Brown, Boveri & Company, Limited High-voltage power switch
JPH11329191A (ja) * 1998-04-14 1999-11-30 Abb Res Ltd 遮断器
JP2000348580A (ja) * 1999-01-07 2000-12-15 Fuji Electric Co Ltd パッファ形ガス遮断器
JP2002203463A (ja) * 2000-11-17 2002-07-19 Abb Hochspannungstechnik Ag 電力遮断器用の接触領域

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1008415B (zh) * 1985-09-30 1990-06-13 Bbc勃朗勃威力有限公司 气吹开关
JPH04284319A (ja) * 1991-03-13 1992-10-08 Hitachi Ltd ガス遮断器
DE19641550A1 (de) * 1996-10-09 1998-04-16 Asea Brown Boveri Leistungsschalter
DE19816509B4 (de) * 1998-04-14 2006-08-10 Abb Schweiz Ag Abbrandschaltanordnung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486632A (en) * 1981-06-12 1984-12-04 Bbc Brown, Boveri & Company, Limited High-voltage power switch
JPH11329191A (ja) * 1998-04-14 1999-11-30 Abb Res Ltd 遮断器
JP2000348580A (ja) * 1999-01-07 2000-12-15 Fuji Electric Co Ltd パッファ形ガス遮断器
JP2002203463A (ja) * 2000-11-17 2002-07-19 Abb Hochspannungstechnik Ag 電力遮断器用の接触領域

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125265A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084754A1 (ja) * 2018-10-26 2020-04-30 株式会社 東芝 ガス遮断器
JPWO2020084754A1 (ja) * 2018-10-26 2021-09-09 株式会社東芝 ガス遮断器
JP7155283B2 (ja) 2018-10-26 2022-10-18 株式会社東芝 ガス遮断器
US11545322B2 (en) 2018-10-26 2023-01-03 Kabushiki Kaisha Toshiba Gas circuit breaker

Also Published As

Publication number Publication date
EP3125265A4 (en) 2017-12-13
CN106133870A (zh) 2016-11-16
EP3125265A1 (en) 2017-02-01
JP2015185467A (ja) 2015-10-22
JP6320106B2 (ja) 2018-05-09
CN106133870B (zh) 2018-11-02
EP3125265B1 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
JP6320106B2 (ja) ガス遮断器
WO2014050108A1 (ja) ガス遮断器
JP6289856B2 (ja) ガス遮断器
JP6382543B2 (ja) ガス遮断器
JP5221367B2 (ja) 2つの圧縮チャンバを有する遮断チャンバ
JP5286569B2 (ja) パッファ型ガス遮断器
KR101595110B1 (ko) 가스절연 개폐장치의 가스차단기
JP5683986B2 (ja) ガス遮断器
JP6915077B2 (ja) ガス遮断器
JPH0797468B2 (ja) パツフア形ガス遮断器
JP2013054989A (ja) ガス遮断器
WO2019092861A1 (ja) ガス遮断器
JP2014002868A (ja) ガス遮断器
JP2014072170A (ja) ガス遮断器
WO2018229972A1 (ja) ガス遮断器
JP2015122273A (ja) 電力用ガス遮断器
WO2019092862A1 (ja) ガス遮断器
JP2020119766A (ja) ガス遮断器
JP2005276614A (ja) ガス遮断器
JP2001283695A (ja) パッファ形ガス遮断器
WO2019082464A1 (ja) ガス遮断器
JPH09265878A (ja) ガス遮断器
JP2013171747A (ja) ガス遮断器
JP2013065475A (ja) ガス遮断器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769921

Country of ref document: EP