WO2015146346A1 - エンジン冷却水回路 - Google Patents

エンジン冷却水回路 Download PDF

Info

Publication number
WO2015146346A1
WO2015146346A1 PCT/JP2015/053900 JP2015053900W WO2015146346A1 WO 2015146346 A1 WO2015146346 A1 WO 2015146346A1 JP 2015053900 W JP2015053900 W JP 2015053900W WO 2015146346 A1 WO2015146346 A1 WO 2015146346A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
engine
path
electric
coolant
Prior art date
Application number
PCT/JP2015/053900
Other languages
English (en)
French (fr)
Inventor
弘樹 成安
福田 健一
ルリ子 寺田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to US15/127,904 priority Critical patent/US10060330B2/en
Priority to EA201691933A priority patent/EA030224B1/ru
Priority to EP15770128.5A priority patent/EP3124768B1/en
Priority to AU2015235704A priority patent/AU2015235704B2/en
Priority to ES15770128.5T priority patent/ES2673920T3/es
Priority to CA2943335A priority patent/CA2943335C/en
Priority to KR1020167026689A priority patent/KR101805526B1/ko
Priority to CN201580015870.9A priority patent/CN106164437B/zh
Publication of WO2015146346A1 publication Critical patent/WO2015146346A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/18Heater
    • F01P2060/185Heater for alternators or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine coolant circuit that cools an engine by circulating coolant.
  • Patent Document 1 discloses an engine coolant circuit that dissipates the waste heat of coolant that has flowed out of the engine with a radiator and then returns the engine heat to the engine. ing.
  • the present invention reduces the amount of cooling water in the engine cooling water circuit without enlarging the diameter of the cooling water pipe or increasing the size of components constituting the engine cooling water circuit such as a thermostat type switching valve.
  • the object is to present a configuration that can be increased.
  • the present invention is an engine cooling water circuit that circulates cooling water to cool the engine in order to solve the above problems, and is provided with a plurality of thermostat type switching valves in parallel on the cooling water outlet side path of the engine, An electric three-way valve is provided on the downstream side of each thermostat type switching valve in the cooling water circulation direction, and a radiator and an engine waste heat recovery device are installed in parallel on the cooling water outlet side path of each electric three-way valve, Of the two cooling water outlets in each electric three-way valve, one cooling water outlet communicates with the radiator, and the other cooling water outlet communicates with the engine waste heat recovery device. I will provide a.
  • the amount of cooling water in the engine cooling water circuit is increased without increasing the diameter of the cooling water pipe or increasing the size of the components constituting the engine cooling water circuit such as a thermostat type switching valve. It becomes possible to make it.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a cogeneration apparatus including an engine coolant circuit according to the present embodiment.
  • FIG. 2 is a perspective view of the engine coolant circuit and its peripheral portion in the cogeneration apparatus shown in FIG.
  • FIG. 3 is a perspective view of the engine coolant circuit and its peripheral portion in the cogeneration apparatus shown in FIG.
  • FIG. 1 is a block diagram showing a schematic configuration of a cogeneration apparatus 100 including an engine coolant circuit 200 according to the present embodiment.
  • 2 is a perspective view of the engine coolant circuit 200 and its peripheral portion in the cogeneration apparatus 100 shown in FIG.
  • FIG. 3 is a perspective view of the engine coolant circuit 200 and its peripheral part in the cogeneration apparatus 100 shown in FIG. 2 and 3, the front side is indicated by F.
  • the exhaust silencer 185 and the like are not shown in FIG. 2, and the exhaust silencer 185, the radiator 220, the three-way catalyst 130 and the like are omitted in FIG.
  • the cogeneration apparatus 100 electrically connects a commercial power system of an external commercial power source and a generated power system of the generator 120 to a power transmission system to a power consuming device (load), and obtains the demand power of the load. It is a system that covers and recovers waste heat generated by power generation and uses the recovered waste heat. That is, the cogeneration apparatus 100 includes an engine 110, a generator 120, an engine coolant circuit 200, and an engine waste heat recovery unit 230, and in addition to a power generation function that outputs generated power from the generator 120 driven by the engine 110.
  • a function of recovering the waste heat of the coolant circulated by the engine coolant circuit 200 and heated by heat exchange with the waste heat of the engine 110 by the engine waste heat recovery unit 230 (in this example, the waste heat of the coolant is It has a function to collect and use for hot water supply.
  • the engine coolant circuit 200 includes an exhaust gas heat exchanger 210 that performs heat exchange between the exhaust gas discharged from the engine 110 and the coolant discharged from the engine 110.
  • a radiator 220 (not shown in FIG. 3) that dissipates the waste heat of the cooling water flowing out of the exhaust gas heat exchanger 210, and an engine waste heat that recovers the waste heat of the cooling water flowing out of the exhaust gas heat exchanger 210.
  • the recovery unit 230, the engine 110, the exhaust gas heat exchanger 210, the radiator 220, and the engine waste heat recovery unit 230 are passed through the cooling water path 240 (specifically, the cooling water pipe) and the cooling water path 240.
  • the engine waste heat recovery unit 230 is a water / water heat exchanger that performs heat exchange between the cooling water and the hot water of the water heater 400 (see FIG. 1).
  • the engine coolant circuit 200 passes from the engine 110 via the exhaust gas heat exchanger 210 to the radiator 220 and / or the engine waste heat recovery unit 230 and passes through the water absorption part 251 of the coolant pump 250 (see FIGS. 1 and 2). ), A circuit for returning the coolant to the engine 110 is configured.
  • the engine cooling water circuit 200 is provided with a plurality of (two in this example) thermostat type switching valves 260 and 260 in parallel on the cooling water outlet 111 (see FIG. 1) side path of the engine 110.
  • electric three-way valves 270 and 270 are provided downstream of the thermostat switching valves 260 and 260, respectively, and cooling of the electric three-way valves 270 and 270 is performed.
  • the radiator 220 and the engine waste heat recovery unit 230 are installed in parallel in the water outlet (272, 273), (272, 273) (see FIG. 1) side path.
  • cooling water outlet 272, 272 communicates with the radiator 220, and the other cooling water outlet 273.
  • 273 communicate with the engine waste heat recovery unit 230.
  • the engine coolant circuit 200 further includes a plurality (two in this example) of thermostat switching valves 260 and 260 and a plurality (two in this example) of electric three-way valves 270 and 270. Yes.
  • the thermostat type switching valve 260 and the electric three-way valve 270 used here are of the same type as those conventionally used. Therefore, the sizes of the conventional thermostat type switching valve and the electric three-way valve are It is the same size.
  • the thermostat type switching valve 260 includes one cooling water inlet 261 (see FIG. 1) through which cooling water flows, and two cooling water outlets 262 and 263 (see FIG. 1) through which cooling water from the cooling water inlet 261 flows out.
  • the cooling water inlet 261 operates to flow to one of the cooling water outlets 262.
  • the cooling water inlet 261 is configured to operate so as to flow from the cooling water outlet 263 to the other cooling water outlet 263.
  • the electric three-way valve 270 has one cooling water inlet 271 (see FIG. 1) into which cooling water flows and two cooling water outlets 272, 273 (see FIG. 1) that branch out cooling water from the cooling water inlet 271 and flow out. ) And the second flow rate of the cooling water flowing from the cooling water inlet 271 to the one cooling water outlet 272 and the second flow rate of the cooling water flowing from the cooling water inlet 271 to the other cooling water outlet 273 are changed. It has a valve (not shown) and a drive unit 274 (specifically, a drive motor) that drives the operating valve.
  • the drive unit 274 is electrically connected to the output system of the control device 150 (see FIG. 1), and drives the operating valve based on an instruction signal from the control device 150 to generate a first flow rate and a second flow rate. The flow rate ratio is changed.
  • the cooling water path 240 includes a first cooling water path 241, a second cooling water path 242, a third cooling water path 243, a fourth cooling water path 244, a fifth cooling water path 245, and a sixth cooling water.
  • a path 246, a seventh cooling water path 247, an eighth cooling water path 248, and a ninth cooling water path 249 are provided.
  • the first cooling water path 241 is provided between the engine 110 and the exhaust gas heat exchanger 210.
  • the first coolant passage 241 has an upstream end communicating with the coolant outlet 111 (see FIG. 1) of the engine 110, and a downstream end connected to the coolant inlet 211 (see FIG. 1) of the exhaust gas heat exchanger 210. Communicate.
  • the second cooling water path 242 is provided between the exhaust gas heat exchanger 210 and the thermostat type switching valves 260 and 260.
  • the second cooling water path 242 has an upstream end communicating with the cooling water outlet 212 of the exhaust gas heat exchanger 210, while the downstream side branches into a plurality (two in this example), and each downstream end has a thermostat.
  • the mold switching valves 260 and 260 communicate with the cooling water inlets 261 and 261, respectively.
  • the upper branch path of the second cooling water path 242 communicates with the upper thermostat switching valve 260
  • the lower branch path of the second cooling water path 242 is the lower thermostat type.
  • the switching valve 260 is communicated.
  • the third cooling water path 243 is a plurality (two in this example) of cooling water paths, and is provided between the thermostat type switching valves 260 and 260 and the electric three-way valves 270 and 270, respectively.
  • the third cooling water paths 243 and 243 have upstream ends communicating with one of the cooling water outlets 262 and 262 of the thermostat type switching valves 260 and 260, respectively, and downstream ends of the cooling water inlets of the electric three-way valves 270 and 270. 271 and 271 respectively.
  • the upper third cooling water path 243 communicates with the upper thermostat switching valve 260 and the upper electric three-way valve 270
  • the lower third cooling water path 243 is the lower thermostat.
  • the mold switching valve 260 and the lower electric three-way valve 270 communicate with each other.
  • the fourth cooling water path 244 is provided between the thermostat type switching valves 260 and 260 and the cooling water pump 250.
  • the fourth cooling water passage 244 has a plurality of upstream branches (two in this example), and each upstream end communicates with the other cooling water outlets 263 and 263 of the thermostat switching valves 260 and 260, respectively.
  • the downstream end communicates with the water absorption part 251 of the cooling water pump 250.
  • the upper branch path of the fourth cooling water path 244 communicates with the upper thermostat switching valve 260
  • the lower branch path of the fourth cooling water path 244 is the lower thermostat type.
  • the switching valve 260 is communicated.
  • the fifth cooling water path 245 is provided between the electric three-way valves 270 and 270 and the radiator 220.
  • the fifth cooling water path 245 has a plurality of upstream branches (two in this example), and each upstream end communicates with one of the cooling water outlets 272 and 272 of the electric three-way valves 270 and 270, respectively.
  • the downstream end communicates with the cooling water inlet 221 of the radiator 220 (see FIGS. 1 and 2).
  • the upper branch path of the fifth cooling water path 245 communicates with the upper electric three-way valve 270
  • the lower branch path of the fifth cooling water path 245 is the lower electric three-way valve. 270 communicates.
  • the sixth cooling water path 246 is provided between the electric three-way valves 270 and 270 and the engine waste heat recovery unit 230.
  • the sixth cooling water path 246 has a plurality of upstream branches (two in this example), and each upstream end communicates with the other cooling water outlets 273 and 273 of the electric three-way valves 270 and 270, respectively.
  • the downstream end communicates with the cooling water inlet 231 (see FIGS. 1 and 2) of the engine waste heat recovery unit 230.
  • the upper branch path of the sixth cooling water path 246 communicates with the upper electric three-way valve 270
  • the lower branch path of the sixth cooling water path 246 is the lower electric three-way valve. 270 communicates.
  • the seventh cooling water path 247 is provided between the radiator 220 and the cooling water pump 250.
  • the seventh cooling water path 247 has an upstream end communicating with the cooling water outlet 222 (see FIGS. 1 and 2) of the radiator 220, and a downstream end communicating with the water absorption part 251 of the cooling water pump 250.
  • the eighth cooling water path 248 is provided between the engine waste heat recovery unit 230 and the cooling water pump 250.
  • the eighth cooling water path 248 has an upstream end communicating with the cooling water outlet 232 of the engine waste heat recovery unit 230, and a downstream end communicating with the water absorption part 251 of the cooling water pump 250.
  • the ninth cooling water path 249 is provided between the cooling water pump 250 and the engine 110.
  • the ninth coolant passage 249 has an upstream end communicating with the discharge portion 252 (see FIGS. 1 and 3) of the coolant pump 250, and a downstream end connected to the coolant inlet 112 (see FIG. 1) of the engine 110. Communicate.
  • the ninth cooling water passage 249 has two branches on the downstream side, and one downstream end is the cooling water inlet 112 (see FIG. 1) on the cylinder head side 110a (see FIG. 3) of the engine 110. The other downstream side end communicates with the coolant inlet 112 (see FIG. 1) on the cylinder block side 110b (see FIG. 3) of the engine 110.
  • the first cooling water passage 241 to the ninth cooling water passage 249 are of the same type as those conventionally used, and all of them (the second cooling water passage 242, the fourth cooling water passage 244, the first The fifth cooling water path 245 and the sixth cooling water path 246 (including the branch path) have the same pipe diameter.
  • an inlet 233 and an outlet 234 through which the heat medium (hot water in this example) flows in and out are provided on the heat recovery side (in this example, the hot water heater 400 side) of the engine waste heat recovery unit 230.
  • the inflow port 233 of the engine waste heat recovery unit 230 and the outflow port 401 (see FIG. 1) of the hot water heater 400 are communicated with each other via the inflow path 410 (see FIG. 1).
  • the outflow port 234 of the water heater 230 and the inflow port 402 (see FIG. 1) of the water heater 400 are communicated with each other via an outflow path 420 (see FIG. 1).
  • the cogeneration apparatus 100 further includes a water filter 280 that filters foreign matters in the cooling water.
  • the water filter 280 is inserted in a cooling water path (specifically, the first cooling water path 241) between the engine 110 and the exhaust gas heat exchanger 210.
  • the cogeneration apparatus 100 further includes an exhaust path 140 (specifically, an exhaust pipe) (see FIGS. 1 and 2) for exhausting the exhaust gas from the engine 110 to the outside via the exhaust gas heat exchanger 210. ing.
  • an exhaust path 140 specifically, an exhaust pipe
  • the exhaust path 140 is a first provided on the upstream side of the exhaust gas heat exchanger 210 (specifically, between the engine 110 and the exhaust gas heat exchanger 210) in the exhaust gas exhaust direction D (see FIG. 1).
  • An exhaust path 141 and a second exhaust path 142 provided downstream of the exhaust gas heat exchanger 210 (specifically, between the exhaust gas heat exchanger 210 and the outside) are provided.
  • the cogeneration apparatus 100 includes a three-way catalyst 130 (see FIGS. 1 and 2) that purifies exhaust gas exhausted from the engine 110, and when exhaust gas from the engine 110 is exhausted to the outside. And an exhaust silencer 185 (see FIG. 1) for reducing the exhaust noise.
  • the three-way catalyst 130 and the exhaust silencer 185 are inserted in the first exhaust path 141 and the second exhaust path 142, respectively.
  • engine coolant circuit 200 further includes a radiator fan 181 (see FIG. 1) that is driven and controlled by control device 150 to discharge the air in the exhaust chamber to the outside and radiate heat from radiator 220. Yes.
  • the exhaust gas discharged from the engine 110 is purified by the three-way catalyst 130 through the first exhaust path 141 and enters the exhaust gas heat exchanger 210.
  • the cooling water that has cooled the engine 110 and has flowed out of the cooling water outlet 111 passes through the first cooling water passage 241, the foreign matter is removed by the water filter 280, and flows into the cooling water inlet 221 of the exhaust gas heat exchanger 210. To do.
  • the cooling water flowing out from the cooling water outlet 212 of the exhaust gas heat exchanger 210 is branched into two through the second cooling water passage 242, and flows into the cooling water inlets 261 of the thermostat type switching valves 260 and 260, respectively.
  • the thermostat type switching valve 260 operates so that the cooling water flows out from the other cooling water outlets 263, 263. After flowing out from the outlets 263 and joining through the fourth cooling water passage 244, they are sucked into the water absorption part 251 of the cooling water pump 250.
  • the thermostat switching valves 260 and 260 operate so that the cooling water flows out from the one cooling water outlets 262 and 262, The water flows out from the water outlets 262 and 262, respectively, and flows into the cooling water inlets 271 and 271 of the electric three-way valves 270 and 270 through the third cooling water paths 243 and 243, respectively.
  • the drive unit 274 is driven according to the temperature of the cooling water detected by a temperature sensor (not shown) by the control device 150 and the usage state on the heat recovery side (in this example, the hot water heater 400 side).
  • the flow rate ratio by the operating valve is changed, and the first flow rate of the cooling water flowing from the cooling water inlet 271 to one cooling water outlet 272 (on the radiator 220 side) and the other cooling water outlet 273 from the cooling water inlet 271 (engine waste)
  • the second flow rate of the cooling water flowing to the heat recovery unit 230 side) is adjusted. For example, when the amount of heat exchange in the engine waste heat recovery unit 230 is small, the control device 150 increases the first flow rate (decreasing the second water amount) and increases the amount of water flowing to the radiator 220.
  • the cooling water flowing out from one of the cooling water outlets 272 and 272 of the electric three-way valves 270 and 270 merges through the fifth cooling water passage 245 and then flows into the cooling water inlet 221 of the radiator 220.
  • the radiator 220 radiates the waste heat of the cooling water flowing out from the exhaust gas heat exchanger 210 via the thermostat switching valves 260 and 260 and the electric three-way valves 270 and 270. Then, the waste heat from the radiator 220 is discharged to the outside by the radiator fan 181.
  • the cooling water flowing out from the cooling water outlet 222 of the radiator 220 is sucked into the water absorption part 251 of the cooling water pump 250 through the seventh cooling water path 247.
  • the engine waste heat recovery unit 230 recovers the waste heat of the cooling water flowing out from the exhaust gas heat exchanger 210 via the thermostat type switching valves 260 and 260 and the electric three-way valves 270 and 270. Then, the waste heat recovered by the engine waste heat recovery unit 230 is used on the heat recovery side (in this example, the water heater 400 side).
  • the cooling water that has flowed out of the cooling water outlet 232 of the engine waste heat recovery unit 230 is sucked into the water absorption part 251 of the cooling water pump 250 through the eighth cooling water path 248.
  • the cooling water discharged from the discharge part 252 of the cooling water pump 250 is branched into two through the ninth cooling water path 249, and one cooling water path is connected to the cooling water inlet 261 on the cylinder head side 110 a of the engine 110.
  • the other coolant passage flows into the coolant inlet 261 on the cylinder block side 110b.
  • the thermostat type switching valve 260, the electric three-way valve 270, and the third cooling water path 243 are two, but may be three or more.
  • the second cooling water path 242, the fourth cooling water path 244, the fifth cooling water path 245 and the sixth cooling water path 246 are branched into three or more.
  • the engine coolant circuit 200 can cool the engine 110 and the exhaust gas by circulating the coolant.
  • a plurality (two in this example) of the thermostat type switching valves 260 and 260 are provided in parallel on the cooling water outlet 111 side path of the engine 110, and the circulation direction of the cooling water.
  • Electric three-way valves 270 and 270 are respectively provided on the downstream side of the thermostat type switching valves 260 and 260 in C, and radiators are provided in the coolant outlets (272 and 273) and (272 and 273) side paths of the electric three-way valves 270 and 270, respectively.
  • 220 and the engine waste heat recovery unit 230 are installed in parallel, and one of the two cooling water outlets (272, 273), (272, 273) in the electric three-way valves 270, 270 is one of the cooling water outlets 272, 272.
  • Is connected to the radiator 220, and the other cooling water outlets 273 and 273 are connected to the engine waste heat recovery unit 230.
  • a plurality of thermostat type switching valves 260 and electric three-way valves 270 are provided in parallel.
  • the amount (capacity) of cooling water in the engine cooling water circuit 200 can be increased. Therefore, the diameter of the cooling water pipe can be increased, and the size of the constituent members constituting the engine cooling water circuit 200 such as the thermostat switching valve 260 can be increased.
  • the amount (capacity) of cooling water in the engine cooling water circuit 200 can be increased without increasing the value.
  • the component costs of the thermostat type switching valve 260 and the electric three-way valve 270 are suppressed.
  • the amount of cooling water in the engine cooling water circuit 200 can be increased.
  • mold switching valve 260 and the electric three-way valve 270 can be ensured, and it becomes possible to implement
  • the present invention relates to an engine cooling water circuit that circulates cooling water to cool an engine, and in particular, a configuration that increases the diameter of a cooling water pipe or configures an engine cooling water circuit such as a thermostat type switching valve.
  • the present invention can be applied to an application for increasing the amount of cooling water in the engine cooling water circuit without increasing the size of the member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

 冷却水を循環させてエンジンを冷却するエンジン冷却水回路は、エンジンの冷却水流出口側経路に複数のサーモスタット型切替弁を並列に設け、冷却水の循環方向における各サーモスタット型切替弁の下流側に電動三方弁をそれぞれ設け、各電動三方弁の冷却水流出口側経路にラジエータとエンジン廃熱回収器とを並列に設置し、各電動三方弁における2つの冷却水流出口のうち、一方の冷却水流出口をラジエータに連通し、他方の冷却水流出口をエンジン廃熱回収器に連通する。

Description

エンジン冷却水回路
 本発明は、冷却水を循環させてエンジンを冷却するエンジン冷却水回路に関する。
 冷却水を循環させてエンジンを冷却するエンジン冷却水回路として、例えば、特許文献1は、エンジンから流出した冷却水の廃熱をラジェータで放熱させた後、エンジンに戻すエンジン冷却水回路を開示している。
 通常、このようなエンジン冷却水回路において、冷却水の水量(容量)を増やす場合は、冷却水管の管径を拡大したり、サーモスタット型切替弁等のエンジン冷却水回路を構成する構成部材のサイズを大きくしたりする。
特開平09-096471号公報
 しかしながら、従来のエンジン冷却水回路において、冷却水管の管径を拡大したり、エンジン冷却水回路を構成する構成部材のサイズを大きくしたりする場合、個々の部材の単価が高くなるのが一般的である。
 そこで、本発明は、冷却水管の管径を拡大したり、サーモスタット型切替弁等のエンジン冷却水回路を構成する構成部材のサイズを大きくしたりすることなくエンジン冷却水回路における冷却水の水量を増加させることが可能な構成を提示することを目的とする。
 本発明は、前記課題を解決するために、冷却水を循環させてエンジンを冷却するエンジン冷却水回路であって、前記エンジンの冷却水流出口側経路に複数のサーモスタット型切替弁を並列に設け、前記冷却水の循環方向における前記各サーモスタット型切替弁の下流側に電動三方弁をそれぞれ設け、前記各電動三方弁の冷却水流出口側経路にラジエータとエンジン廃熱回収器とを並列に設置し、前記各電動三方弁における2つの冷却水流出口のうち、一方の冷却水流出口を前記ラジエータに連通し、他方の冷却水流出口を前記エンジン廃熱回収器に連通することを特徴とするエンジン冷却水回路を提供する。
 本発明によると、冷却水管の管径を拡大したり、サーモスタット型切替弁等のエンジン冷却水回路を構成する構成部材のサイズを大きくしたりすることなくエンジン冷却水回路における冷却水の水量を増加させることが可能となる。
図1は、本実施の形態に係るエンジン冷却水回路を備えたコージェネレーション装置の概略構成を示すブロック図である。 図2は、図1に示すコージェネレーション装置におけるエンジン冷却水回路およびその周辺部分を背面側左斜め上から視た斜視図である。 図3は、図1に示すコージェネレーション装置におけるエンジン冷却水回路およびその周辺部分を背面側右斜め上から視た斜視図である。
 以下、本発明の実施の形態について添付図面を参照しつつ説明する。
 図1は、本実施の形態に係るエンジン冷却水回路200を備えたコージェネレーション装置100の概略構成を示すブロック図である。図2は、図1に示すコージェネレーション装置100におけるエンジン冷却水回路200およびその周辺部分を背面側B左斜め上から視た斜視図である。また、図3は、図1に示すコージェネレーション装置100におけるエンジン冷却水回路200およびその周辺部分を背面側B右斜め上から視た斜視図である。なお、図2および図3において、正面側はFで示している。また、図2において排気サイレンサ185等は図示を省略しており、図3において排気サイレンサ185、ラジエータ220および三元触媒130等は図示を省略している。
 本実施の形態は、本発明の構成をコージェネレーション装置100に採用した場合について説明する。なお、コージェネレーション装置100とは、電力消費機器(負荷)への送電系統に、外部商用電源の商用電力系統と発電機120の発電電力系統とを電気的に接続し、該負荷の需要電力を賄い、かつ、発電に伴い生じる廃熱を回収し、回収した廃熱を利用するシステムである。すなわち、コージェネレーション装置100は、エンジン110、発電機120、エンジン冷却水回路200およびエンジン廃熱回収器230を備え、エンジン110により駆動された発電機120からの発電電力を出力する発電機能に加えて、エンジン冷却水回路200により循環されてエンジン110の廃熱との熱交換より加熱された冷却水の廃熱をエンジン廃熱回収器230によって回収する機能(この例では冷却水の廃熱を回収して給湯に利用する機能)を有している。
 図1から図3に示すように、エンジン冷却水回路200は、エンジン110から排出される排気ガスとエンジン110から流出される冷却水との間で熱交換を行う排気ガス熱交換器210と、排気ガス熱交換器210から流出される冷却水の廃熱を放熱するラジエータ220(図3では図示省略)と、排気ガス熱交換器210から流出される冷却水の廃熱を回収するエンジン廃熱回収器230と、エンジン110、排気ガス熱交換器210、ラジエータ220およびエンジン廃熱回収器230に冷却水を流通させる冷却水経路240(具体的には冷却水管)と、冷却水経路240を介してエンジン110、排気ガス熱交換器210、ラジエータ220およびエンジン廃熱回収器230に冷却水を循環させる冷却水ポンプ250とを備えている。エンジン廃熱回収器230は、この例では、冷却水と給湯機400(図1参照)の給湯水との間で熱交換を行う水/水熱交換器とされている。
 エンジン冷却水回路200は、エンジン110から排気ガス熱交換器210を経由してラジエータ220および/またはエンジン廃熱回収器230を通過して冷却水ポンプ250の吸水部251(図1および図2参照)に到って冷却水をエンジン110に還流する回路を構成している。
 詳しくは、エンジン冷却水回路200には、エンジン110の冷却水流出口111(図1参照)側経路に複数(この例では2つ)のサーモスタット型切替弁260,260が並列に設けられ、冷却水の循環方向C(図1参照)における各サーモスタット型切替弁260,260の下流側に電動三方弁270,270(具体的にはモータバルブ)がそれぞれ設けられ、各電動三方弁270,270の冷却水流出口(272,273),(272,273)(図1参照)側経路にラジエータ220とエンジン廃熱回収器230とが並列に設置されている。そして、各電動三方弁270,270における2つの冷却水流出口(272,273),(272,273)のうち、一方の冷却水流出口272,272がラジエータ220に連通し、他方の冷却水流出口273,273がエンジン廃熱回収器230に連通している。
 具体的には、エンジン冷却水回路200は、複数(この例では2つ)のサーモスタット型切替弁260,260と、複数(この例では2つ)の電動三方弁270,270とをさらに備えている。
 なお、ここで使用されているサーモスタット型切替弁260および電動三方弁270は、従来から使用されているものと同じタイプのものであり、従って、従来のサーモスタット型切替弁および電動三方弁のサイズと同じサイズとされている。
 サーモスタット型切替弁260は、冷却水を流入する1つの冷却水流入口261(図1参照)と、冷却水流入口261からの冷却水を流出する2つの冷却水流出口262,263(図1参照)とを有しており、冷却水が予め定めた所定温度より大きい場合には、冷却水流入口261から一方の冷却水流出口262に流れるように動作する一方、冷却水が前記所定温度以下の場合には、冷却水流入口261から他方の冷却水流出口263に流れるように動作する構成とされている。
 電動三方弁270は、冷却水を流入する1つの冷却水流入口271(図1参照)と、冷却水流入口271からの冷却水を分流して流出する2つの冷却水流出口272,273(図1参照)と、冷却水流入口271から一方の冷却水流出口272に流れる冷却水の第1流量と冷却水流入口271から他方の冷却水流出口273に流れる冷却水の第2流量との流量比率を変更する作動弁(図示せず)と、作動弁を駆動する駆動部274(具体的には駆動モータ)とを有している。駆動部274は、制御装置150(図1参照)の出力系に電気的に接続されており、制御装置150からの指示信号に基づいて作動弁を駆動して第1流量と第2流量との流量比率を変更する構成とされている。
 冷却水経路240は、第1冷却水経路241と、第2冷却水経路242と、第3冷却水経路243と、第4冷却水経路244と、第5冷却水経路245と、第6冷却水経路246と、第7冷却水経路247と、第8冷却水経路248と、第9冷却水経路249とを備えている。
 第1冷却水経路241は、エンジン110と排気ガス熱交換器210との間に設けられている。第1冷却水経路241は、上流側端がエンジン110の冷却水流出口111(図1参照)に連通する一方、下流側端が排気ガス熱交換器210の冷却水流入口211(図1参照)に連通している。
 第2冷却水経路242は、排気ガス熱交換器210とサーモスタット型切替弁260,260との間に設けられている。第2冷却水経路242は、上流側端が排気ガス熱交換器210の冷却水流出口212に連通する一方、下流側が複数(この例では2つ)に分岐しており、各下流側端がサーモスタット型切替弁260,260の冷却水流入口261,261にそれぞれ連通している。図1に示す例では、第2冷却水経路242の上側の分岐経路は、上側のサーモスタット型切替弁260に連通し、第2冷却水経路242の下側の分岐経路は、下側のサーモスタット型切替弁260に連通している。
 第3冷却水経路243は、複数(この例では2つ)の冷却水経路とされており、サーモスタット型切替弁260,260と電動三方弁270,270との間にそれぞれ設けられている。第3冷却水経路243,243は、上流側端がサーモスタット型切替弁260,260の一方の冷却水流出口262,262にそれぞれ連通する一方、下流側端が電動三方弁270,270の冷却水流入口271,271にそれぞれ連通している。図1に示す例では、上側の第3冷却水経路243は、上側のサーモスタット型切替弁260および上側の電動三方弁270に連通し、下側の第3冷却水経路243は、下側のサーモスタット型切替弁260および下側の電動三方弁270に連通している。
 第4冷却水経路244は、サーモスタット型切替弁260,260と冷却水ポンプ250との間に設けられている。第4冷却水経路244は、上流側が複数(この例では2つ)に分岐しており、各上流側端がサーモスタット型切替弁260,260の他方の冷却水流出口263,263にそれぞれ連通する一方、下流側端が冷却水ポンプ250の吸水部251に連通している。図1に示す例では、第4冷却水経路244の上側の分岐経路は、上側のサーモスタット型切替弁260に連通し、第4冷却水経路244の下側の分岐経路は、下側のサーモスタット型切替弁260に連通している。
 第5冷却水経路245は、電動三方弁270,270とラジエータ220との間に設けられている。第5冷却水経路245は、上流側が複数(この例では2つ)に分岐しており、各上流側端が電動三方弁270,270の一方の冷却水流出口272,272にそれぞれ連通する一方、下流側端がラジエータ220の冷却水流入口221(図1および図2参照)に連通している。図1に示す例では、第5冷却水経路245の上側の分岐経路は、上側の電動三方弁270に連通し、第5冷却水経路245の下側の分岐経路は、下側の電動三方弁270に連通している。
 第6冷却水経路246は、電動三方弁270,270とエンジン廃熱回収器230との間に設けられている。第6冷却水経路246は、上流側が複数(この例では2つ)に分岐しており、各上流側端が電動三方弁270,270の他方の冷却水流出口273,273にそれぞれ連通する一方、下流側端がエンジン廃熱回収器230の冷却水流入口231(図1および図2参照)に連通している。図1に示す例では、第6冷却水経路246の上側の分岐経路は、上側の電動三方弁270に連通し、第6冷却水経路246の下側の分岐経路は、下側の電動三方弁270に連通している。
 第7冷却水経路247は、ラジエータ220と冷却水ポンプ250との間に設けられている。第7冷却水経路247は、上流側端がラジエータ220の冷却水流出口222(図1および図2参照)に連通する一方、下流側端が冷却水ポンプ250の吸水部251に連通している。
 第8冷却水経路248は、エンジン廃熱回収器230と冷却水ポンプ250との間に設けられている。第8冷却水経路248は、上流側端がエンジン廃熱回収器230の冷却水流出口232に連通する一方、下流側端が冷却水ポンプ250の吸水部251に連通している。
 第9冷却水経路249は、冷却水ポンプ250とエンジン110との間に設けられている。第9冷却水経路249は、上流側端が冷却水ポンプ250の吐出部252(図1および図3参照)に連通する一方、下流側端がエンジン110の冷却水流入口112(図1参照)に連通している。この例では、第9冷却水経路249は、下流側が2つに分岐しており、一方の下流側端がエンジン110のシリンダヘッド側110a(図3参照)の冷却水流入口112(図1参照)に連通する一方、他方の下流側端がエンジン110のシリンダブロック側110b(図3参照)の冷却水流入口112(図1参照)に連通している。
 なお、第1冷却水経路241から第9冷却水経路249は、従来から使用されているものと同じタイプのものであり、何れも(第2冷却水経路242、第4冷却水経路244、第5冷却水経路245および第6冷却水経路246は分岐経路も含めて)同じ管径とされている。
 また、エンジン廃熱回収器230の熱回収側(この例では給湯機400側)には、熱媒体(この例では給湯水)がそれぞれ流入および流出する流入口233および流出口234が設けられている。具体的には、エンジン廃熱回収器230の流入口233と給湯機400の流出口401(図1参照)とが流入経路410(図1参照)を介して連通されており、エンジン廃熱回収器230の流出口234と給湯機400の流入口402(図1参照)とが流出経路420(図1参照)を介して連通されている。
 本実施の形態では、コージェネレーション装置100は、冷却水における異物を濾過する水フィルタ280をさらに備えている。
 水フィルタ280は、エンジン110と排気ガス熱交換器210との間の冷却水経路(具体的には、第1冷却水経路241)に介挿されている。
 また、コージェネレーション装置100は、排気ガス熱交換器210を介してエンジン110からの排気ガスを外部に排出する排気経路140(具体的には排気管)(図1および図2参照)をさらに備えている。
 排気経路140は、排気ガスの排気方向D(図1参照)における排気ガス熱交換器210の上流側(具体的にはエンジン110と排気ガス熱交換器210との間)に設けられた第1排気経路141と、排気ガス熱交換器210の下流側(具体的には排気ガス熱交換器210と外部との間)に設けられた第2排気経路142とを備えている。
 本実施の形態では、コージェネレーション装置100は、エンジン110から排出される排気ガスを浄化する三元触媒130(図1および図2参照)と、エンジン110からの排気ガスが外部へ排出される際の排気音を低減する排気サイレンサ185(図1参照)とをさらに備えている。
 三元触媒130および排気サイレンサ185は、それぞれ、第1排気経路141および第2排気経路142に介挿されている。
 本実施の形態では、エンジン冷却水回路200は、制御装置150により駆動制御されることにより排気室内の空気を外部に排出してラジエータ220を放熱するラジエータファン181(図1参照)をさらに備えている。
 以上説明したエンジン冷却水回路200では、エンジン110から排出された排気ガスは、第1排気経路141を通って三元触媒130で浄化されて排気ガス熱交換器210に入る。一方、エンジン110を冷却して冷却水流出口111から流出した冷却水は、第1冷却水経路241を通って水フィルタ280で異物が除去されて排気ガス熱交換器210の冷却水流入口221に流入する。
 排気ガス熱交換器210では、三元触媒130から排出された排気ガスと水フィルタ280から流出された冷却水との間で熱交換を行う。
 排気ガス熱交換器210の冷却水流出口212から流出した冷却水は、第2冷却水経路242を通って2つに分岐され、サーモスタット型切替弁260,260の冷却水流入口261にそれぞれ流入する。このとき、冷却水の温度が所定温度以下の場合には、サーモスタット型切替弁260は、他方の冷却水流出口263,263から冷却水を流出させるように作動し、冷却水は、他方の冷却水流出口263からそれぞれ流出し、第4冷却水経路244を通って合流した後、冷却水ポンプ250の吸水部251に吸入される。一方、冷却水の温度が所定温度より大きい場合には、サーモスタット型切替弁260,260は、一方の冷却水流出口262,262から冷却水を流出させるように動作し、冷却水は、一方の冷却水流出口262,262からそれぞれ流出し、第3冷却水経路243,243を通って電動三方弁270,270の冷却水流入口271,271にそれぞれ流入する。
 電動三方弁270,270では、制御装置150により図示を省略した温度センサにて検知した冷却水の温度や熱回収側(この例では給湯機400側)の使用状況に応じて駆動部274が駆動されて作動弁による流量比率が変更され、冷却水流入口271から一方の冷却水流出口272(ラジエータ220側)に流れる冷却水の第1流量と冷却水流入口271から他方の冷却水流出口273(エンジン廃熱回収器230側)に流れる冷却水の第2流量とが調整される。例えば、制御装置150は、エンジン廃熱回収器230での熱交換量が少ない場合には、第1流量を増やして(第2水量を減らして)ラジエータ220へ流れる水量を多くする。
 電動三方弁270,270の一方の冷却水流出口272,272からそれぞれ流出した冷却水は、第5冷却水経路245を通って合流した後、ラジエータ220の冷却水流入口221に流入する。ラジエータ220では、排気ガス熱交換器210からサーモスタット型切替弁260,260および電動三方弁270,270を経由して流出される冷却水の廃熱を放熱する。そして、ラジエータ220からの廃熱をラジエータファン181により外部に排出する。ラジエータ220の冷却水流出口222から流出した冷却水は、第7冷却水経路247を通って冷却水ポンプ250の吸水部251に吸入される。
 電動三方弁270,270の他方の冷却水流出口273,273からそれぞれ流出した冷却水は、第6冷却水経路246を通って合流した後、エンジン廃熱回収器230の冷却水流入口231に流入する。エンジン廃熱回収器230では、排気ガス熱交換器210からサーモスタット型切替弁260,260および電動三方弁270,270を経由して流出される冷却水の廃熱を回収する。そして、エンジン廃熱回収器230で回収した廃熱を熱回収側(この例では給湯機400側)で利用する。エンジン廃熱回収器230の冷却水流出口232から流出した冷却水は、第8冷却水経路248を通って冷却水ポンプ250の吸水部251に吸入される。
 冷却水ポンプ250の吐出部252から吐出した冷却水は、第9冷却水経路249を通って2つに分岐され、一方の冷却水経路は、エンジン110のシリンダヘッド側110aの冷却水流入口261に流入する一方、他方の冷却水経路は、シリンダブロック側110bの冷却水流入口261に流入する。
 なお、この例では、サーモスタット型切替弁260、電動三方弁270および第3冷却水経路243を2つとしたが、3つ以上としてもよい。この場合、第2冷却水経路242、第4冷却水経路244、第5冷却水経路245および第6冷却水経路246は、3つ以上に分岐される。
 こうして、エンジン冷却水回路200では、冷却水を循環させてエンジン110および排気ガスを冷却することができる。
 以上説明したように、本実施の形態によれば、エンジン110の冷却水流出口111側経路に複数(この例では2つ)のサーモスタット型切替弁260,260を並列に設け、冷却水の循環方向Cにおける各サーモスタット型切替弁260,260の下流側に電動三方弁270,270をそれぞれ設け、各電動三方弁270,270の冷却水流出口(272,273),(272,273)側経路にラジエータ220とエンジン廃熱回収器230とを並列に設置し、各電動三方弁270,270における2つの冷却水流出口(272,273),(272,273)のうち、一方の冷却水流出口272,272をラジエータ220に連通し、他方の冷却水流出口273,273をエンジン廃熱回収器230に連通するので、冷却水経路240の冷却水管の管径を拡大したり、サーモスタット型切替弁260および電動三方弁270のサイズを大きくしたりせずに、サーモスタット型切替弁260および電動三方弁270を複数を並列に設けた分、エンジン冷却水回路200における冷却水の水量(容量)を増やすことができ、従って、冷却水管の管径を拡大したり、サーモスタット型切替弁260等のエンジン冷却水回路200を構成する構成部材のサイズを大きくしたりすることなくエンジン冷却水回路200における冷却水の水量(容量)を増加させることができる。しかも、サーモスタット型切替弁260および電動三方弁270として、従来サイズのサーモスタット型切替弁260、電動三方弁270を複数使用することにより、サーモスタット型切替弁260および電動三方弁270の部品コストを抑えつつエンジン冷却水回路200における冷却水の水量を増加させることができる。また、サーモスタット型切替弁260および電動三方弁270の購買数量を確保することができ、部品単価の低減を実現させることが可能となる。例えば、複数の機種で多く使用されている共通部材を使用すれば、それだけ部品単価を低減させることができる。
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、かかる実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 この出願は、2014年3月26日に日本で出願された特願2014-063051号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 本発明は、冷却水を循環させてエンジンを冷却するエンジン冷却水回路に係るものであり、特に、冷却水管の管径を拡大したり、サーモスタット型切替弁等のエンジン冷却水回路を構成する構成部材のサイズを大きくしたりすることなくエンジン冷却水回路における冷却水の水量を増加させるための用途に適用できる。
100  コージェネレーション装置
110  エンジン
110a シリンダヘッド側
110b シリンダブロック側
111  冷却水流出口
112  冷却水流入口
120  発電機
130  三元触媒
140  排気経路
141  第1排気経路
142  第2排気経路
150  制御装置
181  ラジエータファン
185  排気サイレンサ
200  エンジン冷却水回路
210  排気ガス熱交換器
211  冷却水流入口
212  冷却水流出口
220  ラジエータ
221  冷却水流入口
222  冷却水流出口
230  エンジン廃熱回収器
231  冷却水流入口
232  冷却水流出口
233  流入口
234  流出口
240  冷却水経路
250  冷却水ポンプ
251  吸水部
252  吐出部
260  サーモスタット型切替弁
261  冷却水流入口
262  冷却水流出口
263  冷却水流出口
270  電動三方弁
271  冷却水流入口
272  冷却水流出口
273  冷却水流出口
274  駆動部
280  水フィルタ
400  給湯機
401  流出口
402  流入口
410  流入経路
420  流出経路
B    背面側
C    循環方向
D    排気方向
F    正面側

Claims (1)

  1.  冷却水を循環させてエンジンを冷却するエンジン冷却水回路であって、
     前記エンジンの冷却水流出口側経路に複数のサーモスタット型切替弁を並列に設け、前記冷却水の循環方向における前記各サーモスタット型切替弁の下流側に電動三方弁をそれぞれ設け、前記各電動三方弁の冷却水流出口側経路にラジエータとエンジン廃熱回収器とを並列に設置し、
     前記各電動三方弁における2つの冷却水流出口のうち、一方の冷却水流出口を前記ラジエータに連通し、他方の冷却水流出口を前記エンジン廃熱回収器に連通することを特徴とするエンジン冷却水回路。
PCT/JP2015/053900 2014-03-26 2015-02-13 エンジン冷却水回路 WO2015146346A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US15/127,904 US10060330B2 (en) 2014-03-26 2015-02-13 Engine coolant circuit
EA201691933A EA030224B1 (ru) 2014-03-26 2015-02-13 Контур охлаждения двигателя
EP15770128.5A EP3124768B1 (en) 2014-03-26 2015-02-13 Engine coolant circuit
AU2015235704A AU2015235704B2 (en) 2014-03-26 2015-02-13 Engine coolant circuit
ES15770128.5T ES2673920T3 (es) 2014-03-26 2015-02-13 Circuito de fluido de refrigeración del motor
CA2943335A CA2943335C (en) 2014-03-26 2015-02-13 Engine coolant circuit
KR1020167026689A KR101805526B1 (ko) 2014-03-26 2015-02-13 엔진 냉각수 회로
CN201580015870.9A CN106164437B (zh) 2014-03-26 2015-02-13 发动机冷却水回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-063051 2014-03-26
JP2014063051A JP6066953B2 (ja) 2014-03-26 2014-03-26 エンジン冷却水回路

Publications (1)

Publication Number Publication Date
WO2015146346A1 true WO2015146346A1 (ja) 2015-10-01

Family

ID=54194884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053900 WO2015146346A1 (ja) 2014-03-26 2015-02-13 エンジン冷却水回路

Country Status (10)

Country Link
US (1) US10060330B2 (ja)
EP (1) EP3124768B1 (ja)
JP (1) JP6066953B2 (ja)
KR (1) KR101805526B1 (ja)
CN (1) CN106164437B (ja)
AU (1) AU2015235704B2 (ja)
CA (1) CA2943335C (ja)
EA (1) EA030224B1 (ja)
ES (1) ES2673920T3 (ja)
WO (1) WO2015146346A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017121647A1 (de) * 2017-09-19 2019-03-21 Illinois Tool Works Inc. Filteranordnung
CN110186299B (zh) * 2019-05-28 2020-11-10 华鼎电源(天津)有限公司 一种余热回收系统的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157006A (ja) * 1991-11-29 1993-06-22 Kubota Corp エンジンの排熱回収装置
JP2001065348A (ja) * 1999-08-27 2001-03-13 Mitsubishi Motors Corp 内燃機関の冷却装置
JP2012107573A (ja) * 2010-11-17 2012-06-07 Toyota Motor Corp 内燃機関の冷却装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5157006A (ja) * 1974-11-13 1976-05-19 Katsuji Fujiwara Ryudokenshikitsukifukusuihonpusochi
JPS58202351A (ja) * 1982-05-19 1983-11-25 Yanmar Diesel Engine Co Ltd 内燃機関の廃熱回収装置
JPH0768897B2 (ja) * 1988-04-04 1995-07-26 マツダ株式会社 エンジンの冷却装置
US4951871A (en) * 1988-10-04 1990-08-28 Kubota Ltd. Sound-proof type engine working machine with waste heat recovery apparatus
JPH0996471A (ja) 1995-09-29 1997-04-08 Mitsubishi Heavy Ind Ltd エンジン駆動式空気調和機
JPH10119549A (ja) * 1996-10-22 1998-05-12 Denso Corp 車両用暖房装置
US6993923B2 (en) * 2001-10-05 2006-02-07 Rich Beers Marine, Inc. Load bank
JP4497082B2 (ja) * 2005-11-17 2010-07-07 トヨタ自動車株式会社 エンジンの冷却媒体循環装置
JP4324216B2 (ja) 2007-10-10 2009-09-02 ヤンマー株式会社 エンジン排気ガス熱回収器ならびにそれを使用したエンジン駆動式ヒートポンプまたはコージェネレーション
JP4324219B2 (ja) 2007-12-26 2009-09-02 ヤンマー株式会社 エンジン排気ガス熱回収器ならびにこれを使用したエネルギー供給装置
CA2705048A1 (en) * 2007-10-10 2009-04-16 Yanmar Co., Ltd. Engine exhaust heat recovery device, and energy supply apparatus using the same
JP5191792B2 (ja) * 2008-05-07 2013-05-08 ヤンマー株式会社 定置式エンジンの冷却水回路
JP5195381B2 (ja) * 2008-12-11 2013-05-08 株式会社デンソー 排気熱回収装置
US9440514B2 (en) * 2009-08-07 2016-09-13 Mitsubishi Heavy Industries, Ltd. Vehicle air-conditioning system
EP2762690B1 (en) * 2011-09-30 2018-11-21 Nissan Motor Co., Ltd Engine-waste-heat utilization device
JP2013129353A (ja) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd 車両用空調装置
US8931275B2 (en) * 2012-01-24 2015-01-13 GM Global Technology Operations LLC Adaptive heat exchange architecture for optimum energy recovery in a waste heat recovery architecture
JP5925652B2 (ja) * 2012-09-21 2016-05-25 ヤンマー株式会社 エンジンシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157006A (ja) * 1991-11-29 1993-06-22 Kubota Corp エンジンの排熱回収装置
JP2001065348A (ja) * 1999-08-27 2001-03-13 Mitsubishi Motors Corp 内燃機関の冷却装置
JP2012107573A (ja) * 2010-11-17 2012-06-07 Toyota Motor Corp 内燃機関の冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124768A4 *

Also Published As

Publication number Publication date
CN106164437B (zh) 2018-11-27
JP2015183660A (ja) 2015-10-22
US20170107892A1 (en) 2017-04-20
EP3124768A4 (en) 2017-05-10
ES2673920T3 (es) 2018-06-26
EA030224B1 (ru) 2018-07-31
EA201691933A1 (ru) 2016-12-30
EP3124768A1 (en) 2017-02-01
AU2015235704B2 (en) 2017-12-14
KR101805526B1 (ko) 2017-12-07
CA2943335A1 (en) 2015-10-01
CA2943335C (en) 2018-03-13
JP6066953B2 (ja) 2017-01-25
CN106164437A (zh) 2016-11-23
KR20160119253A (ko) 2016-10-12
US10060330B2 (en) 2018-08-28
EP3124768B1 (en) 2018-04-18
AU2015235704A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
ES2659810T3 (es) Sistema de disipación térmica de un vehículo eléctrico
JP6363289B2 (ja) 温度制御システム及びそれを用いた電動車両
JP2013199853A (ja) 冷却装置
CN105865251B (zh) 工艺阀岛及热交换器系统
WO2015146346A1 (ja) エンジン冷却水回路
JP2005108458A (ja) 燃料電池の温度調整装置
JP2007016651A (ja) 油温制御装置
JP2011098670A (ja) 車両の空調装置
WO2016031089A1 (ja) 駆動システム
JP2012239344A (ja) 電動車両の暖機装置
JP5012588B2 (ja) 廃熱回収装置
WO2015170567A1 (ja) ハイブリッド車両の冷却装置
JP6254822B2 (ja) エンジンの排気熱回収装置
JP2020090114A (ja) 冷却システム
JPH10114215A (ja) 自動車用空調制御装置
WO2015146345A1 (ja) エンジン冷却水回路
JP2021048750A (ja) 温度調節装置
JP2010169010A (ja) 内燃機関の冷却装置
JP2020075569A (ja) 温調装置
CN102431414A (zh) 一种利用汽车尾气余热的采暖系统
JP6604540B2 (ja) エンジン冷却装置
JP2691372B2 (ja) エンジン作業機のエンジン排熱回収装置
JP2009257671A (ja) ヒートポンプ式電気暖房機
JP2010083177A (ja) 車両用空調システム
CN104515198A (zh) 一种可双向工作的风机盘管机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770128

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2015770128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2943335

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15127904

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167026689

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201691933

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2015235704

Country of ref document: AU

Date of ref document: 20150213

Kind code of ref document: A