WO2015146220A1 - 超電導ケーブルの端末構造 - Google Patents

超電導ケーブルの端末構造 Download PDF

Info

Publication number
WO2015146220A1
WO2015146220A1 PCT/JP2015/050519 JP2015050519W WO2015146220A1 WO 2015146220 A1 WO2015146220 A1 WO 2015146220A1 JP 2015050519 W JP2015050519 W JP 2015050519W WO 2015146220 A1 WO2015146220 A1 WO 2015146220A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
layer
tube
bushing
superconducting
Prior art date
Application number
PCT/JP2015/050519
Other languages
English (en)
French (fr)
Inventor
祐一 芦辺
昇一 本庄
丸山 修
哲太郎 中野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP15769936.4A priority Critical patent/EP3125387A4/en
Publication of WO2015146220A1 publication Critical patent/WO2015146220A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/06Cable terminating boxes, frames or other structures
    • H02G15/064Cable terminating boxes, frames or other structures with devices for relieving electrical stress
    • H02G15/072Cable terminating boxes, frames or other structures with devices for relieving electrical stress of the condenser type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a terminal structure of a superconducting cable used for power transfer between a superconducting cable and a normal conducting power device such as a normal conducting cable used at room temperature.
  • the present invention relates to a terminal structure of a superconducting cable that is small and excellent in workability.
  • the superconducting cable is expected as an energy-saving technology because it is small and can transmit a large amount of power with low loss.
  • the superconducting cable has a cable core having a superconducting conductor layer formed by spirally winding a superconducting wire around the outer periphery of the former, and a refrigerant (for example, liquid nitrogen) that houses the core and maintains the superconducting conductor layer in a superconducting state.
  • a refrigerant for example, liquid nitrogen
  • Patent Document 1 discloses a terminal including a rod-shaped connection conductor connected to a cable core of a superconducting cable, a rod-shaped terminal conductor whose tip is disposed in a normal temperature environment, and a joint portion that connects both conductors.
  • the connecting conductor includes a superconducting wire on the outer periphery of a member made of a normal conductive material.
  • the terminal conductor includes a low temperature side member and a normal temperature side member connected by a connection sleeve.
  • the low-temperature side member includes a member made of a normal conductive material and a superconducting wire, and is connected to the connection conductor via a joint portion.
  • the room temperature side member is composed only of a normal conductive material, and corresponds to the above-described drawer portion.
  • the terminal structure described in Patent Document 1 includes a main body case including a refrigerant tank that houses the connecting conductor and the low-temperature side member and a vacuum heat insulating tank that covers the outer periphery thereof, a soot tube provided on the main body case, and a terminal conductor. And a cylindrical bushing (insulating portion) containing a heat insulating pipe to be inserted and arranged.
  • the bushing and the built-in heat insulating pipe are provided from the refrigerant tank of the main body case through the vacuum heat insulating tank to the inside of the soot pipe.
  • the tip of the built-in heat insulating tube protrudes from the soot tube, and a heat insulating portion made of a heat insulating material such as urethane resin is provided on the outer periphery thereof.
  • a terminal structure including a plurality of interposition members (connecting conductors, low temperature side members of terminal conductors, joints, etc.) between the superconducting cable and the above-described lead portion tends to be large.
  • the above-mentioned main body case becomes essential in order to cool the superconducting wire provided in the above-mentioned interposition member, the main body case itself is large.
  • the terminal structure described above is also large because it includes such large components. Depending on the construction space, it may be difficult to construct such a large terminal structure, and considering the securing of the construction space, it is desirable to reduce the size of the terminal structure.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a terminal structure of a superconducting cable that is small and excellent in workability.
  • the terminal structure of the superconducting cable includes a cable core extending from the end of the heat insulating tube at the end of the superconducting cable, a bushing through which a part of the cable core is inserted, and a room temperature in the bushing
  • a normal pipe that accommodates a superconducting conductor layer provided in the cable core at the end of the cable core protruding from the room temperature side end of the bushing, and a following inner vacuum layer , A cable side vacuum layer, and a room temperature side vacuum layer.
  • the inner vacuum layer is provided so as to extend from the inner periphery of the bushing and the outer periphery of the cable core to the room temperature side through the inside of the vertical pipe, and insulates and holds the refrigerant that cools the superconducting conductor layer of the cable core.
  • the cable-side vacuum layer is provided from the outer periphery of the cable-side region of the bushing to the end of the heat insulating tube to insulate and hold the coolant that cools the superconducting conductor layer of the cable core, and the inner vacuum layer. It is provided in duplicate.
  • the room-temperature-side vacuum layer insulates and retains a coolant that cools the connection portion between the superconducting conductor layer and the normal conducting lead-out portion disposed outside the soot tube.
  • the terminal structure of the above superconducting cable is small and has excellent workability.
  • FIG. 1 It is a schematic block diagram which shows an example of the intermediate
  • the terminal structure of the superconducting cable includes a cable core that is extended from the end of the heat insulating tube at the end of the superconducting cable, a bushing through which a part of the cable core is inserted, A normal pipe that accommodates a superconducting conductor layer provided in the cable core at the end of the cable core that protrudes from the normal temperature side end of the bushing, and a normal conductive lead portion that accommodates the normal temperature side region in the bushing, An inner vacuum layer, a cable side vacuum layer, and a room temperature side vacuum layer are provided.
  • the inner vacuum layer is provided so as to extend from the inner periphery of the bushing and the outer periphery of the cable core to the room temperature side through the inside of the tub tube, and insulates and holds the refrigerant that cools the superconducting conductor layer of the cable core.
  • the cable-side vacuum layer is provided from the outer periphery of the cable-side region of the bushing to the end of the heat insulating tube to insulate and hold the coolant that cools the superconducting conductor layer of the cable core, and the inner vacuum layer. It is provided in duplicate.
  • the room-temperature-side vacuum layer insulates and holds a coolant that cools the connection portion between the superconducting conductor layer and the normal conducting lead portion disposed outside the soot tube.
  • the terminal structure of one embodiment of the superconducting cable having the above-described configuration is small for the following reasons (i) and (ii), and is excellent in workability for the following reasons (iii) to (v).
  • the bushing Since the bushing is a member independent of the superconducting cable, the outer diameter of the bushing portion can be reduced as compared with the case where the bushing is directly provided on the outer periphery of the heat insulating tube of the superconducting cable.
  • the terminal structure of the superconducting cable according to one aspect described above also has the following effects.
  • the vacuum layers are overlapped inside and outside the bushing, it is easy to thermally insulate the normal temperature side region disposed in the vertical tube and the cable side region in contact with the refrigerant in the bushing. As a result, it becomes difficult for frost to form on the room temperature side region of the bushing, and the characteristic deterioration due to this can be suppressed.
  • a vacuum space of the inner vacuum layer is formed between the outer tube provided with the bushing insulating material and the outer tube and filled with the refrigerant.
  • an inner tube is provided, and a cable side end portion in the outer tube and a cable side end portion in the inner tube are connected to form a bottomed cylindrical shape.
  • the inside of the bottomed cylindrical body is An inner vacuum layer can be easily formed by evacuating the space. Therefore, compared with the case where the said inner pipe and the said outer pipe are assembled in a bottomed cylinder shape at a construction site, there are few processes at a construction site, and the said aspect is excellent in workability. Moreover, by setting it as a bottomed cylinder body in a factory, it is easy to handle the intermediate part provided with this bottomed cylinder body and a bushing, and it is excellent also in workability also from this point.
  • the space constituting the inner vacuum layer and the space constituting the room temperature side vacuum layer are continuous, both spaces can be evacuated at a time. Therefore, the said aspect has few evacuation processes at a construction site, and is excellent in workability.
  • the reinforcing insulating layer is provided independently of the bushing, the degree of freedom of the shape of the bushing can be increased and the length of the bushing can be shortened, and the above-described aspect can be further reduced in size. Moreover, the said aspect can perform electric field relaxation favorably by the reinforcement insulating layer and bushing which were formed in the appropriate shape.
  • the terminal structure 1 includes a superconducting conductor layer 112 provided in the cable core 110 of the superconducting cable 100, and a normal conducting power device (typically, a normal conducting cable such as an overhead power transmission line, aluminum, copper, etc.). There is provided a normal conducting lead-out portion 40 for electrically connecting a conductor of a device (not shown) such as a bus bar made of a normal conducting material to construct a power transmission path.
  • the superconducting cable terminal structure 1 according to the first embodiment is characterized in that the superconducting conductor layer 112 and the normal conducting lead portion 40 are directly connected.
  • the terminal structure 1 includes a bushing 20 into which a part of the core 110, that is, the core 110 itself is inserted, and a vacuum layer (an inner vacuum layer 50 and a cable side vacuum layer 60 provided inside and outside the bushing 20). ) And one end side region (room temperature side region) of the bushing 20, a part of the core 110, that is, a soot tube 30 that houses the core 110 itself. Further, the terminal structure 1 includes a connection portion between the superconducting conductor layer 112 and the normal conducting lead-out portion 40 outside the soot tube 30, and a vacuum layer (room temperature side vacuum layer 70) covering the connection portion.
  • the superconducting cable 100 will be described first, then the detailed configuration of the terminal structure 1, the construction procedure of the terminal structure 1, and finally the effect of this configuration will be described.
  • the superconducting cable 100 includes a cable core 110 having a superconducting conductor layer 112 provided on the outer periphery of the former 111, and a cable insulation tube 120 that houses the core 110.
  • the core 110 shown in this example includes a former 111, an intervening layer 118, a superconducting conductor layer 112, an electric insulating layer 113, a shielding layer 114, and a protective layer 115 in order from the center.
  • This cable 100 is a single-core cable in which one core 110 is housed in one heat insulation tube 120, and an electric insulation layer 113 together with a superconducting conductor layer 112 is housed in the heat insulation tube 120. It is a low-temperature insulated cable that is cooled.
  • each cable is used for power transmission in each phase.
  • a three-phase AC transmission line is used, or two such single-core cables are laid out and one cable is routed forward. It is possible to construct a DC power transmission path that uses the other cable for the return path.
  • the former 111 has a function of supporting the superconducting conductor layer 112.
  • the former 111 is a hollow body because it is also used for the flow path of the refrigerant 132 (return path in this example).
  • Such a constituent material of the former 111 can be used at a refrigerant temperature such as liquid nitrogen, and may be a metal such as stainless steel that is thin but excellent in strength.
  • a corrugated tube or a bellows tube is used for the former 111, it is excellent in flexibility even if it is made of a high-strength material.
  • the former 111 is a bellows tube made of stainless steel.
  • the former 111 made of a normal conductive material is soft and easy to bend and has excellent conductivity, it can be used, for example, as a flow path for an accident current.
  • the former 111 may be a solid body such as a stranded wire obtained by twisting a plurality of strands (a copper wire or a coated copper wire having an insulating coating such as enamel on the outer periphery of the copper wire).
  • the intervening layer 118 is provided for the purpose of mechanical protection of the superconducting conductor layer 112 or the like.
  • the intervening layer 118 has a multilayer structure made of different materials, and a metal tape layer 118a wound with a tape made of metal such as stainless steel and a tape made of an insulating material such as kraft paper are wound.
  • the metal tape layer 118a smoothes the unevenness of the bellows tube and maintains the cross-sectional shape (circular shape) of the bellows tube. In order to obtain this function satisfactorily, the metal tape layer 118a is provided immediately above the former 111.
  • the cushion layer 118b absorbs thermal contraction of the metal member in addition to mechanical protection of the superconducting conductor layer 112 (protection from damage due to friction with the metal tape layer 118a and the like). In this example, the cushion layer 118b also provides electrical insulation between the superconducting conductor layer 112 and the metal tape layer 118a.
  • a normal conductive layer can be cited. Examples of the normal conductive layer include those obtained by winding a braided material made of the above-mentioned normal conductive material. The normal conductive layer can be used, for example, for a flow path of an accident current.
  • the thickness of the intervening layer 118 can be selected as appropriate. By adjusting the thickness of the intervening layer 118, for example, an allowable bending radius of the superconducting conductor layer 112 can be ensured.
  • the intervening layer 118 may be omitted.
  • the superconducting conductor layer 112 is formed by spirally winding a plurality of superconducting wires around the outer periphery of the former 111 (immediately above the intervening layer 118 in this example).
  • a tape-like wire such as a Bi-based silver sheath wire or a RE123-based thin film wire can be used.
  • the number of wires and the number of wire layers may be appropriately selected so as to have a desired electric energy.
  • FIG. 1 shows a case where the superconducting conductor layer 112 is formed by laminating four wire layers. An interlayer insulating layer (not shown) wound with insulating paper or the like can be provided between the wire layers.
  • the electrical insulation layer 113 ensures electrical insulation between the superconducting conductor layer 112 and the outside thereof.
  • the electrical insulating layer 113 is formed by spirally winding a tape made of an insulating material around the outer periphery of the superconducting conductor layer 112. Examples of the insulating material include insulating paper such as kraft paper and semi-synthetic paper such as PPLP (Registered Trademark; Polypropylene Laminated Paper).
  • the shielding layer 114 is provided on the outer periphery of the superconducting conductor layer 112 (in this example, immediately above the electrical insulating layer 113), and shields the electric field caused by the superconducting conductor layer 112.
  • the shielding layer 114 is formed by winding a tape or a wire made of the above-described normal conductive material such as a copper tape.
  • the protective layer 115 is disposed on the outermost periphery of the cable core 110 and mechanically protects members (particularly the superconducting conductor layer 112) disposed inside the cable core 110, and between the shielding layer 114 and the cable heat insulating tube 120. It is provided for the purpose of ensuring electrical insulation.
  • Such a protective layer 115 is formed by spirally winding the above-described insulating paper around the outer periphery of the shielding layer 114.
  • the cable core 110 can include an outer superconducting layer (not shown) and a magnetic shielding layer made of a normal conducting material on the outer periphery of the electrical insulating layer 113.
  • the outer superconducting layer is formed by spirally winding the superconducting wire described above.
  • the outer superconducting layer can be used, for example, as a magnetic shielding layer in AC power transmission applications, and in DC power transmission applications, in the case of monopole power transmission, it can be used as a return conductor when the superconducting conductor layer 112 is used as a forward conductor. It can be used as a conductor for passing a current having a polarity opposite to that of the superconducting conductor layer 112.
  • the cable insulation tube 120 is a double structure tube having an inner tube 121 and an outer tube 122, and the space between the inner tube 121 and the outer tube 122 is evacuated, and this space is vacuum insulated. It is a vacuum heat insulating tube in which a layer is formed.
  • the inner space of the inner pipe 121 is a storage space for the cable core 110 and a flow path (in this example, a forward path) through which a refrigerant 130 (for example, liquid nitrogen) for maintaining the superconducting state of the superconducting conductor layer 112 is circulated. ).
  • a refrigerant 130 for example, liquid nitrogen
  • the heat insulating pipe 120 shown in this example includes a heat insulating material (not shown) such as a super insulation (trade name) between the inner pipe 121 and the outer pipe 122, and has higher heat insulating properties.
  • An anticorrosion layer 124 made of an anticorrosion material such as vinyl or polyethylene is provided outside the outer tube 122 of the heat insulating tube 120.
  • the terminal structure 1 shown in FIG. 1 is constructed, for example. Specifically, the end portion of the cable core 110 is exposed from the end portion of the cable heat insulation pipe 120 at the end portion of the cable 100, and the connection process between the superconducting conductor layer 112 and the normal conducting lead portion 40 is performed.
  • the bushing 20 and the soot tube 30 are arranged on the outer periphery of the core 110, and the refrigerant layer (the region where the refrigerants 130 and 132 are filled) and the vacuum layer are reached from the exposed portion of the core 110 to the cable side region in the normal conducting lead portion 40. (Inner vacuum layer 50, cable side vacuum layer 60, room temperature side vacuum layer 70) are provided.
  • the cable core 110 taken out from the end of the cable heat insulation pipe 120 has a shielding layer 114 and a protective layer 115 (FIG. 4) cut off near the heat insulation pipe 120 (see also the upper part of FIG. 3).
  • the electrical insulating layer 113 is generally exposed.
  • the tip of the core 110 (the part protruding from the normal temperature side end of the bushing) is stripped, and the former 111 and the superconducting conductor layer 112 are sequentially exposed. 1 and 3, the protective layer 115 is omitted.
  • the exposed superconducting conductor layer 112 and the normal conducting lead portion 40 are joined by an appropriate joining material such as solder or brazing material, and both are electrically connected. Specifically, it has an insertion hole into which the end of the cable core 110 is inserted into one end of the normal conducting lead-out portion 40, and the end of the core 110 is inserted into this insertion hole to Thus, the superconducting conductor layer 112 is fixed in the insertion hole.
  • the former 111 and the normal conducting lead part 40 are further compression-connected.
  • a mechanical connection such as a compression connection
  • the connection strength between the cable core 110 and the normal conducting lead portion 40 can be increased.
  • the former 111 is not directly compression-connected, but the front end of the former 111 is provided with a fixing bracket 111b attached via a connection fitting 111a, and this fixing fitting 111b is used as a compression connection location.
  • a region where the fixing fitting 111b in the insertion hole is inserted is a compression connection region.
  • connection between the former 111 and the connection fitting 111a and the connection between the connection fitting 111a and the fixing fitting 111b welding or the like can be used.
  • the constituent material of the fixing bracket 111b include metals such as copper, copper alloy, aluminum, aluminum alloy, and iron alloy such as stainless steel, which are excellent in compressibility.
  • the outer peripheral shape of the fixture 111b is an uneven shape such as a gear shape or a saw blade shape, the normal conducting lead portion 40 can be easily retained, and the compression connection strength can be further increased.
  • an appropriate metal that can be welded can be used as a constituent material of the connection fitting 111a.
  • the above-described compression connection can be easily performed by including the fixing bracket 111b that is made of a material that is excellent in compressibility or that has a shape that is easy to retain, Excellent workability.
  • the connection fitting 111a between the former 111 and the fixing fitting 111b By separately providing the connection fitting 111a between the former 111 and the fixing fitting 111b, the degree of freedom of the material and shape of the fixing fitting 111b can be increased.
  • the connecting bracket 111a can be omitted, and the former 111 and the normal conducting drawer 40 can be compression-connected only through the fixed bracket 111b. In this case, the number of members can be reduced and the workability is excellent.
  • both the connection fitting 111a and the fixing fitting 111b can be omitted, and the former 111 and the normal conducting lead-out portion 40 can be directly compressed.
  • the former 111 and the normal conducting lead portion 40 can be joined by the above-described joining material.
  • the region (cable side region) includes a reinforcing insulating layer 80 provided on the outer periphery thereof.
  • the reinforcing insulating layer 80 is formed by spirally winding the above-described insulating paper around the outer periphery of the core 110 (here, the electric insulating layer 113).
  • the reinforcing insulating layer 80 is tapered from the central portion in the longitudinal direction (vertical direction in FIG. 1) toward each end, that is, the normal temperature side (upper side in FIG.
  • a shielding connecting portion 82 is provided from the shielding layer 114 of the core 110 to the stress cone portion on the cable side in the reinforcing insulating layer 80.
  • the shield connection portion 80 is formed by winding a wire made of a normal conductive material such as copper as described above.
  • the bushing 20 is provided on the outer periphery of a part of the cable core 110 protruding from the cable heat insulating tube 120, specifically, an intermediate portion between the tip of the core 110 and the portion where the reinforcing insulating layer 80 is provided. .
  • the bushing 20 will be described in detail with reference to FIG.
  • the bushing 20 includes an insulating portion 25 formed in a cylindrical shape and a fixing portion 27 fixed to the soot tube 30 (FIG. 1). Further, the bushing 20 is characterized by incorporating an inner tube 21 and an outer tube 22 forming the inner vacuum layer 50 (FIG. 1).
  • the insulating unit 25 performs electrical insulation between the cable core 110 and the outside, and also performs electric field relaxation.
  • a part of the bushing 20 shown in this example is further immersed in the refrigerant 130 (FIG. 1). Therefore, the constituent material of the insulating portion 25 is preferably an insulating material that can be used without any problem even at the refrigerant temperature.
  • the fiber reinforced resin including a resin component such as epoxy resin and a reinforcing component such as glass fiber is used, the strength is also improved. Excellent.
  • the room temperature side region of the insulating portion 25 has a shape tapered toward the room temperature side (upper side in FIG. 2), and this inclined portion functions as a stress cone.
  • An electric field can be adjusted by providing a metal foil (not shown) concentrically in multiple layers in the insulating portion 25.
  • the outer peripheral surface of the cable side region of the insulating portion 25 is a uniform cylindrical surface, but the inner peripheral surface is inclined from the peripheral edge toward the room temperature side.
  • the bushing 20 is disposed so as to surround the stress cone portion on the room temperature side of the reinforcing insulating layer 80 with an appropriate interval by the inner inclined surface (FIG. 1). With this arrangement, the electric field can be satisfactorily relaxed by both the bushing 20 and the reinforcing insulating layer 80.
  • the fixing portion 27 is joined to the outer periphery of the insulating portion 25 (in this example, the central portion in the longitudinal direction and not the stress cone portion) by the resin component described above.
  • the fixing portion 27 includes a flange portion that extends outward from the insulating portion 25.
  • the bushing 20 can be fixed to the soot tube 30 by fastening the flange portion to the soot tube 30 (bottom plate portion 34, FIG. 1) with a bolt or the like.
  • the fixing portion 27 is also used for sealing the soot tube 30 and sealing the cable-side refrigerant container 61 (described later, FIG. 1) in which the cable-side region of the bushing 20 is housed.
  • Examples of the constituent material of the fixing portion 27 include an appropriate metal and resin.
  • the inner tube 21 and the outer tube 22 are provided inside the insulating portion 25 described above.
  • the inner tube 21 is filled with a refrigerant 130 that cools the cable core 110 (particularly the superconducting conductor layer 112, FIG. 1) inserted and arranged in the inner periphery of the inner tube 21.
  • the outer tube 22 is provided with an insulating portion 25 on the outer peripheral surface thereof, and is integrated with the insulating portion 25.
  • One end of the inner tube 21 is integrated with the outer tube 22 via the connecting member 240, and as a result, the inner tube 21 is integrated with the insulating unit 25.
  • both the inner tube 21 and the outer tube 22 are flat tubes. If a flat tube is used, the outer diameter of the insulating portion 25 can be made smaller than when a corrugated tube or the like is used, thereby contributing to downsizing. Further, when the flat tube is used, the inner tube 21 has an effect that the flow resistance of the refrigerant 130 is small, the cable core 110 can be easily inserted and the workability is excellent, and the outer tube 22 can easily form the insulating portion 25. If both the inner pipe 21 and the outer pipe 22 are corrugated pipes or bellows pipes, they are excellent in flexibility but are inferior in workability. A flat tube is not a problem because excessive bending is not required for the bushing 20 portion. Examples of the constituent material of the inner tube 21 and the outer tube 22 include metals such as stainless steel as described in the former section.
  • the inner tube 21 and the outer tube 22 are provided so as to extend from the bushing 20 (insulating portion 25) to the room temperature side through the inner tube 30.
  • the inner tube 21 is connected to a normal temperature side refrigerant container 71 (described later, FIG. 1) in which the cable side region of the normal conducting lead portion 40 (FIG. 1) is housed, and the outer tube 22 is a normal temperature side refrigerant container. It connects with the normal temperature side vacuum container 72 (after-mentioned, FIG. 1) provided in the outer periphery of 71.
  • FIG. 1 the inner tube 21 is longer than the outer tube 22, and the end of the inner tube 21 protrudes from the end of the outer tube 22.
  • the connection work between the inner pipe 21 and the refrigerant container 71 the connection work between the outer pipe 22 and the vacuum container 72 can be easily performed, and the workability is excellent. Further, in the terminal structure 1 shown in this example, the space between the inner tube 21 and the outer tube 22 and the space between the room temperature side refrigerant container 71 and the room temperature side vacuum container 72 communicate with each other by the above-described connection. Provide space.
  • the space between the inner tube 21 and the outer tube 22 is evacuated to form a vacuum space.
  • the refrigerant 130 can be heat-insulated.
  • a vacuum space communicating between the inner tube 21 and the outer tube 22 and between the room temperature side refrigerant container 71 and the room temperature side vacuum container 72 is provided.
  • a heat insulating material 23 such as a super insulation (trade name) is provided between the inner tube 21 and the outer tube 22 and has higher heat insulating properties. 1 and 3, the heat insulating material 23 is omitted.
  • the inner tube 21 and the outer tube 22 shown in this example are not provided with the heat insulating material 23 at the stage of the intermediate part before construction, and one end side thereof (the upper side in FIG. 2, the normal temperature side in FIG. 2) It is open and has a bottomed cylindrical shape with the other end side (lower side, cable side in FIG. 2) closed. That is, at the factory or the like, the cable side end portion of the inner tube 21 and the cable side end portion of the outer tube 22 are connected via the connecting member 240.
  • the connecting member 240 is an annular plate material. For this connection, welding or the like can be used. By using welding, it is possible to construct a joint portion having excellent sealing properties.
  • a part of the cable core 110 (cable side region provided with the reinforcing insulating layer 80) extended from the end of the above-described cable heat insulating tube 120 and the cable side region of the bushing 20 are the cable side Housed in an insulated container.
  • the cable-side heat insulating container is provided from the end of the heat insulating tube 120 to the bottom plate portion 34 of the soot tube 30, and covers the outer periphery of a part of the core 110 and the outer periphery of the cable side region of the bushing 20.
  • the cable-side heat insulation container is a bottomed cylindrical body in which one end is joined and the opening on the other end is closed by the bottom plate portion 34, and cools the core 110 (superconducting conductor layer 112).
  • the cable side refrigerant container 61 filled with the refrigerant 130 to be performed and the cable side vacuum container 62 provided so as to cover the outer periphery of the refrigerant container 61 are provided.
  • Examples of the constituent material of the containers 61 and 62 include metals such as stainless steel as described in the section of the heat insulating tube.
  • the space between the cable side refrigerant container 61 and the cable side vacuum container 62 is evacuated to form a vacuum space.
  • the refrigerant 130 can be heat-insulated.
  • the above-described heat insulating material (not shown) can be provided between the containers 61 and 62.
  • tube 22 which are incorporated in the above-mentioned bushing 20 are shown.
  • One of the features is that the two are overlapped in the longitudinal direction of the cable core 110.
  • the rod tube 30 shown in this example includes a cylindrical main body portion 32 having an insulator, an annular bottom plate portion 34 provided at one end portion of the main body portion 32 to which the fixing portion 27 of the bushing 20 is attached, And an annular upper plate portion 36 provided at the other end portion, into which the outer tube 22 built in the bushing 20 is inserted and fixed.
  • the main body 32 or the like is provided with an insulating fluid inlet / outlet (not shown).
  • a known configuration can be used as the basic configuration of the soot tube 30.
  • the normal conductive lead part 40 is made of a normal conductive material such as copper or its alloy, aluminum or its alloy, and the superconducting conductor layer 112 exposed at the tip of the cable core 110 is electrically connected. Connected.
  • One feature of the terminal structure 1 according to the first embodiment is that the connection portion between the superconducting conductor layer 112 and the normal conducting lead portion 40 is disposed outside the soot tube 30. With this configuration, the terminal structure 1 has a large (long) current-carrying region of the superconducting conductor layer until it reaches a normal conductive power device, and there are many cases where a member made of a plurality of normal conductive materials is interposed or there are many connection points thereof. Compared to the case, it is easy to reduce Joule loss.
  • the normal conducting lead portion 40 shown in this example has a rod-shaped conductor joint portion 42 to which the superconducting conductor layer 112 is directly connected, and a rod shape in which one end portion is connected to the conductor joint portion 42 and the other end portion is disposed in a room temperature environment.
  • Conductor lead-out portion 44 is provided.
  • the conductor joint portion 42 is inserted at one end thereof with the tip end portion of the cable core 110 (in this example, the former 111, the connection fitting 111a and the fixing fitting 111b, and the superconducting conductor layer 112), and the insertion hole having the compression connection region described above. And a hollow hole 42 h communicating with the hollow hole of the former 111. A flow path of the refrigerant 132 communicating from the hollow hole of the former 111 to the hollow hole 42h of the conductor joint portion 42 is formed. When the former 111 is solid, the hollow hole 42h can be omitted.
  • the other end of the conductor joining portion 42 is a connection end with the conductor lead-out portion 44.
  • the conductor joint portion 42 and the conductor lead-out portion 44 can be made a relatively short member, so that the insertion hole and the hollow hole 42h can be easily formed, and the productivity is excellent. Since the conductor joining portion 42 is relatively small, it is easy to perform compression connection between the former 111 (fixing bracket 111b) and the conductor joining portion 42 and the workability is excellent. In addition, the conductor joint portion 42 and the conductor lead-out portion 44 can be formed as an integrated member.
  • the connection part with the superconducting conductor layer 112 of the above-mentioned cable core 110 is included, and the normal-conducting drawer
  • the room temperature side heat insulation container is provided so as to protrude from the inside of the tub tube 30 to the room temperature side, and covers a part of the outer periphery of the conductor lead-out portion 44 through the conductor joint portion 42 from the connection location.
  • the room temperature side heat insulating container includes a room temperature side refrigerant container 71 filled with the refrigerant 130 and the like for cooling the connection portion, and a room temperature side vacuum container 72 provided so as to cover the outer periphery of the refrigerant container 71.
  • the room temperature side heat insulating container shown in this example includes a terminal vacuum container 752 provided so as to cover the general outer periphery of the conductor lead portion 44.
  • a room temperature side vacuum container 72 is provided so as to cover the outer periphery of the cable side region close to the refrigerant 130 in the terminal vacuum container 752. That is, both vacuum containers 72 and 752 have overlapping portions.
  • Examples of the constituent materials of these containers 71, 72, and 752 include metals such as stainless steel as described in the section of the heat insulating pipe.
  • a vacuum space is formed by evacuating the room temperature side refrigerant container 71 and the room temperature side vacuum container 72. With this vacuum space, the refrigerant 130 and the like can be insulated and held.
  • the terminal vacuum vessel 752 is also evacuated to form a vacuum space.
  • the conductor lead-out portion 44 is thermally insulated from the outside (normal temperature environment) by this vacuum space.
  • the cable-side region of the conductor lead-out portion 44 is covered with the two vacuum vessels 72 and 752, and thus is thermally insulated well.
  • the above-described heat insulating material (not shown) can be provided between the two containers 71 and 72 and in the terminal vacuum container 752.
  • the room temperature side heat insulating container shown in this example includes a partition plate 47 that partitions the room temperature side refrigerant container 71.
  • the partition plate 47 partitions the refrigerant filling area in the refrigerant container 71 into two areas, an outward path area where the refrigerant 130 is filled and a return path area where the refrigerant 132 is filled.
  • the partition plate 47 has a through hole at the center, and the conductor joint 42 is inserted and fixed in a liquid-tight manner.
  • the refrigerant container 71 includes a refrigerant introduction port 71i for introducing the refrigerant 130 into the forward path region, and a refrigerant discharge port 71o for discharging the refrigerant 132 discharged to the return path region via the former 111 and the hollow hole 42h.
  • the partition plate 47 may be omitted, or the partition plate 47 may be used as a fixing member for the conductor joint portion 42 and may be provided with a through hole for the refrigerant 130 to flow through the partition plate 47. can do.
  • the terminal structure 1 of the first embodiment having the above-described configuration includes the following spaces ⁇ to ⁇ as the refrigerant layer, and includes the following spaces ⁇ to ⁇ as the vacuum layer.
  • (Refrigerant layer) Inner circumferential space ⁇ of the inner pipe 121 of the cable heat insulation pipe 120 Inner space ⁇ of the refrigerant container 61 of the cable-side heat insulating container Inner space ⁇ of the cable side region of the bushing 20 Inner circumferential space ⁇ of the inner tube 21 built in the bushing 20 Inner circumferential space ⁇ of the refrigerant container 71 of the room temperature side heat insulating container (Vacuum layer) A space between the inner pipe 121 and the outer pipe 122 of the cable heat insulation pipe 120 The space between the refrigerant container 61 and the vacuum container 62 of the cable side heat insulating container Space ⁇ between the inner tube 21 and the outer tube 22 built in the bushing 20 Space ⁇ between the refrigerant container 71 and the vacuum
  • the above-mentioned spaces ⁇ to ⁇ constituting the refrigerant layer shown in this example are communication spaces. Therefore, when the refrigerant 130 is introduced from the refrigerant inlet 71i of the normal temperature side heat insulating container, the inner tube 21 built in the bushing 20 from the forward path region (part of the space ⁇ ) partitioned by the partition plate 47 in the normal temperature side refrigerant container 71.
  • a refrigerant flow path (outward path) that reaches the cable heat insulation pipe 120 (space ⁇ ) of the superconducting cable 100 through (space ⁇ ), one end of the bushing 20 (space ⁇ ), and the cable-side refrigerant container 61 (space ⁇ ) is constructed. be able to.
  • the above-described vacuum space is referred to as a cable vacuum layer
  • the vacuum space ⁇ is referred to as an inner vacuum layer 50
  • the vacuum space is referred to as a cable side vacuum layer 60
  • the vacuum space ⁇ is referred to as a normal temperature side vacuum layer 70
  • the vacuum space is referred to as a terminal vacuum layer 75.
  • the cable vacuum layer and a part of the cable side vacuum layer 60 are provided so as to overlap
  • the inner vacuum layer 50 and a part of the cable side vacuum layer 60 are provided so as to overlap
  • the room temperature side vacuum layer 70 and a part of the terminal vacuum layer 75 are provided so as to overlap each other.
  • the terminal structure 1 can improve a vacuum heat insulation characteristic by providing at least one part of a vacuum layer overlappingly. Further, the inside vacuum layer 50 and the cable side vacuum layer 60 located inside and outside the bushing 20 overlap in the longitudinal direction of the cable core 110, so that the room temperature side region disposed in the vertical tube 30 in the bushing 20 and the refrigerant 130. It is easy to thermally insulate the cable side area immersed in the cable. Therefore, although the cable side region of the bushing 20 is cooled by the refrigerant 130, the normal temperature side region of the bushing 20 is well thermally insulated and can prevent problems (such as generation of frost) due to overcooling by the refrigerant 130. . In addition, the resin component etc.
  • both the inner peripheral surface of the container 61 and the outer peripheral surface of the bushing 20 are metal, so-called bayonet method. The gap between them can be made extremely narrow.
  • the gas obtained by evaporating the refrigerant 130 is filled in the narrow gap, and a heat insulation portion between the liquid phase and the gas phase can be constructed, and overcooling of the bushing 20 can be further prevented.
  • the conductor lead-out portion 44 is covered with a double vacuum layer, one end of the conductor lead-out portion 44 is exposed to a normal temperature environment, but the amount of heat penetration through the conductor lead-out portion 44 can be effectively reduced. .
  • the superconducting cable terminal structure 1 of Embodiment 1 described above includes, for example, the following core processing step, cable-side heat insulating container forming step, bushing preparation step, and soot tube arrangement step. And it can construct
  • each process will be described mainly with reference to FIGS.
  • the cable core 110 having a predetermined length is taken out from the cable heat insulating tube 120 at the end of the superconducting cable 100, and the former 111, the superconducting conductor layer 112, the electric insulating layer 113, etc. are exposed in order. (See the upper part of FIG. 3).
  • the fixing bracket 111b is connected to the tip of the former 111 via the connection bracket 111a.
  • the shielding connecting portion 82 is provided so as to extend from the shielding layer 114 to a part of the outer periphery of the reinforcing insulating layer 80.
  • a cable side heat insulation container is provided so that the reinforcement insulation layer 80 of the cable core 110 may be covered (refer the middle stage of FIG. 3).
  • the refrigerant container 61 is first constructed so that a part of the outer tube 122 of the cable heat insulation pipe 120 and a part of the cable-side refrigerant container 61 overlap in the longitudinal direction of the core 110 as described above.
  • the outer tube 122 of the heat insulating tube 120 and the refrigerant container 61 are fixed by welding or the like.
  • the cable side vacuum container 62 is formed.
  • the bottom plate portion 34 of the soot tube 30 is attached so as to close the opened one end portion of the cable-side heat insulating container.
  • the inner tube 21 and the outer tube 22 described above are formed into a bottomed cylindrical shape by the connecting member 240, and an intermediate part including the insulating portion 25 on the outer periphery of the outer tube 22 is manufactured at a factory or the like. Keep it.
  • the sheet-like heat insulating material 23 is wound into a cylindrical shape, and this cylindrical body is inserted from the opening of the bottomed cylindrical body including the inner tube 21 and the outer tube 22 described above.
  • a bushing 20 having the above is constructed (FIG. 2). The tubular heat insulating material 23 is held by the connecting member 240 and held by the bushing 20.
  • the bushing 20 provided with the heat insulating material 23 is fitted to the outside of the cable core 110 (see the middle of FIG. 3). Both the inner tube 21 and the outer tube 22 of the bushing 20 are adjusted to such a length that the tip of the core 110 (here, the fixing bracket 111b) is exposed. By doing so, it is easy to connect the superconducting conductor layer 112 and the normal conducting lead portion 40 (FIG. 1), which will be described later, and the core 110 can be used as a guide during this inserting operation.
  • This insertion operation is performed until the fixing portion 27 provided in the bushing 20 comes into contact with the bottom plate portion 34. That is, the fixed portion 27 is a stopper. By this insertion operation, the cable side region of the bushing 20 is covered with the cable side heat insulating container.
  • the fixing portion 27 of the bushing 20 is fixed to the bottom plate portion 34.
  • the soot tube 30 is provided so as to cover the room temperature side region of the bushing 20 (see the lower part of Fig. 3).
  • the main body portion 32 and the upper plate portion 36 are disposed, and the above-described bottom plate portion 34, the main body portion 32, and the upper plate portion 36 are connected.
  • the soot tube 30 is provided so that the tips of the cable core 110 (here, the fixing bracket 111 b) and the tips of the inner tube 21 and the outer tube 22 built in the bushing 20 protrude from the upper plate portion 36.
  • the insulating fluid can be introduced into the soot tube 30 at an appropriate time.
  • connection process between core and normal conducting lead portion The normal conducting lead portion 40 is prepared, and the end of the cable core 110 is inserted into the insertion hole of the conductor joint portion 42 (FIG. 1), and the superconducting conductor layer 112 The normal conducting lead portion 40 is electrically connected. Further, in this example, the fixing bracket 111b connected to the former 111 and a part of the conductor joint portion 42 are compression-connected, and the core 110 and the normal conducting lead portion 40 are mechanically connected. By protruding the tip of the core 110 from the soot tube 30 (upper plate portion 36), connection processing such as compression connection such as insertion of the conductor joint portion 42, pouring and application of a joining material such as solder can be easily performed.
  • the conductor joint portion 42 and the conductor lead-out portion 44 are detachable as in this example, the conductor joint portion 42 and the conductor lead-out portion 44 are connected after the connection process described above is finished. It is sufficient to handle only 42, and the workability is excellent.
  • the conductor joint portion 42 and the conductor lead-out portion 44 may be connected in advance at a factory or construction site.
  • a room temperature side heat insulation container is constructed so as to cover the normal conduction lead portion 40 including the connection portion between the superconducting conductor layer 112 and the normal conduction lead portion 40 described above.
  • the room temperature side refrigerant container 71 is first formed. One end of the refrigerant container 71 is connected to the inner tube 21 built in the bushing 20 protruding from the upper plate portion 36 of the soot tube 30.
  • the room temperature side vacuum container 72 is formed. One end of the vacuum vessel 72 is connected to the outer tube 22 built in the bushing 20 protruding from the upper plate portion 36 of the soot tube 30.
  • Vacuuming is performed using the vacuum ports 60p, 70p, and 75p provided in the cable side vacuum vessel 62, the room temperature side vacuum vessel 72, and the terminal vacuum vessel 752, respectively.
  • the cable side vacuum layer 60, the inner vacuum layer 50, the room temperature side vacuum layer 70, and the terminal vacuum layer 75 can be formed.
  • the space ⁇ between the inner tube 21 and the outer tube 22 of the bushing 20 and the space ⁇ of the room temperature side vacuum vessel 72 communicate with each other.
  • the layer 50 and the room temperature side vacuum layer 70 can be formed simultaneously.
  • the cable heat insulating tube 120 can be evacuated in advance at a factory or the like. Using the vacuum port 100p provided in the cable heat insulation pipe 120, the vacuum state can be adjusted even at the construction site or after installation. For the vacuum layers 60, 50, 70, and 75, the vacuum state can be adjusted even after installation by using the vacuum ports 60p, 70p, and 75p. That is, the vacuum state can be managed over time.
  • the superconducting cable line can be operated by introducing the refrigerant 130 and maintaining the superconducting conductor layer 112 in the superconducting state, and power can be exchanged with the normal conducting power equipment.
  • the terminal structure 1 of the superconducting cable according to the first embodiment includes an interposition member having the above-described superconducting wire and a main body case that houses these by directly connecting the cable core 110 of the superconducting cable 100 and the normal conducting lead 40. It is not equipped and is small. Moreover, although the terminal structure 1 includes the bushing 20 independent of the core 110, the outer diameter of the bushing 20 can be reduced and the size is small as compared with the case where the insulating portion 25 is directly provided on the outer periphery of the cable heat insulating tube 120. .
  • the terminal structure 1 of the superconducting cable of the first embodiment is excellent in workability from the following points.
  • (1) The above-mentioned interposition member and main body case are not provided, and there are few connection processes and assembly processes at the construction site, and (2) large parts such as the above-mentioned main body case are not provided and are easy to handle.
  • the terminal structure 1 shown in this example is excellent in workability from the following points.
  • the example which comprises two sealed spaces was demonstrated.
  • the example in which the intermediate part in which the inner tube 21 and the outer tube 22 are formed in a bottomed cylindrical shape is used has been described.
  • the inner tube 21 and the outer tube 22 are connected at the construction site without using a bottomed cylindrical intermediate part, and the sealed space formed by the inner tube 21 and the outer tube 22 and the sealed room provided in the room temperature side heat insulating container.
  • the space can be an independent sealed space.
  • a sealed space for forming the inner vacuum layer 50 is constructed using an intermediate part different from that of the first embodiment, and includes the above-described independent sealed space.
  • the terminal structure of Embodiment 2 includes a bushing 20B shown in FIG.
  • the bushing 20B includes an insulating portion 25 made of a fiber reinforced resin, a fixing portion 27 attached to the soot tube 30 (FIG. 1), and a cable core 110 (FIG. 1) is provided with an inner tube 21 through which is inserted, and an outer tube 22 in which an insulating portion 25 is formed.
  • One end of the inner tube 21 is integrated with one end of the outer tube 22 via the connecting member 242, and is integrated with the other end of the outer tube 22 via another connecting member 244.
  • the insulating part 25 is integrated.
  • An end portion of the inner tube 21 is connected to a normal temperature side refrigerant container 71 (FIG. 1).
  • the room temperature side vacuum container 72 (FIG. 1) has an extension (not shown) extending to the outer tube 22, and this extension is connected to the outer tube 22.
  • one connecting member 242 is configured by combining both a member provided on the inner tube 21 and a member provided on the outer tube 22.
  • the connecting member 242 includes an annular seal hole 242a formed by combining grooves and the like provided in both members described above, and a screw portion 242b in which both members are screwed together.
  • the connecting member 242 includes a plurality of screw portions 242b and 242b.
  • An annular metal seal material (not shown) is disposed in the seal hole 242a.
  • the other connecting member 244 is an annular plate material like the connecting member 240 of the first embodiment, and is connected to both the tubes 21 and 22 by welding or the like.
  • the connecting members 242 and 244 are closed, and a sealed space can be formed in both the tubes 21 and 22 by metal sealing material or welding.
  • the sealed space is evacuated and the terminal structure of the second embodiment includes the inner vacuum layer 50.
  • a heat insulating material 23 is provided between the pipes 21 and 22.
  • the inner pipe 21 is not provided, but only the outer pipe 22 in which the insulating portion 25 and the fixing portion 27 and the connecting member 242 (part) are joined by welding or the like. And use intermediate parts.
  • FIG. 6 a process until the inner vacuum layer 50 is formed on the construction site using this intermediate part (prepared at a factory or the like) will be described.
  • the connecting member 242 is illustrated in a simplified manner.
  • a connecting member 242 is joined at an appropriate position on the outer peripheral surface of the inner tube 21 by welding or the like.
  • a sheet-like heat insulating material 23 is appropriately wound around the outer periphery of the inner tube 21 (see the upper left in FIG. 6). Since the connecting member 242 protrudes outward from the inner tube 21, the movement of the heat insulating material 23 in the axial direction can be restricted, but the wound heat insulating material 23 may be fixed with an appropriate binding tool (FIG. 6)
  • the inner tube 21 including the heat insulating material 23 is inserted into the outer tube 22, and the inner tube 21 and the outer tube 22 are connected to each other by a connecting member 242 at an appropriate position of the outer tube 22.
  • both can be easily connected by rotating the inner tube 21 or the outer tube 22 and coupling the screw portion 242b (FIG. 5).
  • the metal seal member arranged in the seal hole 242a hermetically seals the inner tube 21 and the outer tube 22 by the coupling by the screw portion 242b.
  • the inner tube 21 and the outer tube 22 can be sealed by joining the connecting member 244.
  • the sealed space formed between the inner tube 21 and the outer tube 22 is evacuated using a vacuum port (not shown) provided in the outer tube 22 or the like. By this step, the inner vacuum layer 50 can be formed.
  • the terminal structure of the second embodiment although an intermediate part that integrates the outer tube 22 and the inner tube 21 provided in the bushing 20B at the construction site is used, it is a simple operation and has excellent workability. Further, by using this intermediate part, it is possible to provide an independent space where the inner vacuum layer 50 and the room temperature side vacuum layer 70 (FIG. 1) do not communicate with each other, and the degree of freedom in design can be increased. In addition, even if it does not connect, a vacuum layer can be provided in the outer periphery of the refrigerant
  • the connecting member 244 may be omitted, and a vacuum space communicating with the first embodiment may be formed as in the first embodiment.
  • this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to the claim are included. For example, it can be applied to a multi-core cable.
  • the terminal structure of the superconducting cable of the present invention can be used at a connection location between a superconducting cable and a normal conducting power device (typically a normal conducting cable) placed in a room temperature environment.
  • a normal conducting power device typically a normal conducting cable

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Cable Accessories (AREA)

Abstract

小型で、施工性にも優れる超電導ケーブルの端末構造を提供する。 超電導ケーブルの断熱管の端部から出されたケーブルコアと、前記コアの一部が挿通されるブッシングと、ブッシングの常温側領域を収納する碍管と、ブッシングの常温側端部から突出された前記コアの端部において、このコアに備える超電導導体層が接続される常電導引出部と、ブッシングの内周と前記コアの外周との間から碍管内を経て常温側に延びるように設けられて、前記超電導導体層を冷却する冷媒を断熱保持する内側真空層と、ブッシングのケーブル側領域の外周から断熱管の端部に亘って設けられて、前記超電導導体層を冷却する冷媒を断熱保持し、かつ内側真空層と重複して設けられるケーブル側真空層と、碍管外に配置される超電導導体層と常電導引出部との接続箇所を冷却する冷媒を断熱保持する常温側真空層とを備える超電導ケーブルの端末構造。

Description

超電導ケーブルの端末構造
 本発明は、超電導ケーブルと、常温で利用される常電導ケーブルなどの常電導電力機器との間で電力の授受に利用される超電導ケーブルの端末構造に関する。特に、小型で、施工性にも優れる超電導ケーブルの端末構造に関する。
 超電導ケーブルは、小型でありながら、大容量の電力を低損失で送電可能なことから、省エネルギー技術として期待されている。超電導ケーブルは、フォーマの外周に超電導線材をスパイラル巻きして形成された超電導導体層を有するケーブルコアと、このコアを収納し、上記超電導導体層を超電導状態に維持する冷媒(例えば液体窒素)が充填される断熱管とを備える構成が代表的である。
 超電導ケーブルと、常温で利用される常電導ケーブルとを接続する場合、上記ケーブルコアの超電導導体層と常電導ケーブルの導体との間に、常電導材料からなる引出部を介在させた端末構造を構築することが提案されている。例えば、特許文献1は、超電導ケーブルのケーブルコアに接続される棒状の接続用導体と、先端部が常温環境に配置される棒状の端末用導体と、両導体を接続するジョイント部とを備える端末構造を開示している。接続用導体は、常電導材料からなる部材の外周に超電導線材を備える。端末用導体は、接続スリーブで接続される低温側部材と常温側部材とを備える。低温側部材は、接続用導体と同様に、常電導材料からなる部材と超電導線材とを備え、ジョイント部を介して接続用導体に接続される。常温側部材は、常電導材料のみで構成され、上述の引出部に相当する。
 特許文献1に記載の端末構造は、接続用導体及び低温側部材を収納する冷媒槽及びその外周を覆う真空断熱槽を備える本体ケースと、本体ケース上に設けられた碍管と、端末用導体が挿通配置される断熱管を内蔵する筒状のブッシング(絶縁部)とを備える。ブッシング及び内蔵する断熱管は、本体ケースの冷媒槽から真空断熱槽を経て、碍管内に亘って設けられている。上記内蔵する断熱管の先端は、碍管から突出され、その外周にウレタン樹脂などの断熱材料から構成される断熱部が設けられている。
特開2005-341767号公報
 超電導ケーブルの端末構造の小型化が望まれている。また、超電導ケーブルの端末構造の施工性の改善も望まれている。
 超電導ケーブルと上述の引出部との間に複数の介在部材(接続用導体、端末用導体の低温側部材、ジョイント部など)を備える端末構造では、大型になり易い。また、上述の介在部材に備える超電導線材を冷却するために上述の本体ケースが必須となるが、本体ケースはそれ自体が大きい。このような大型の部品を備えることからも、上述の端末構造は、大型である。施工スペースによってはこのような大型の端末構造を構築し難い場合があり、施工スペースの確保を考慮すると、端末構造の小型化が望まれる。
 上述の複数の介在部材を接続する端末構造では、その接続工程が多く、施工性の向上が望まれる。特に、上述の大型な部品を備える端末構造では、施工現場で大型の部品を取り扱い難く、施工性の低下を招き得る。
 本発明は、上述の事情に鑑みてなされたものであり、その目的の一つは、小型で施工性にも優れる超電導ケーブルの端末構造を提供することにある。
 本発明の一態様に係る超電導ケーブルの端末構造は、超電導ケーブルの端部において断熱管の端部から出されたケーブルコアと、前記ケーブルコアの一部が挿通されるブッシングと、前記ブッシングにおける常温側領域を収納する碍管と、前記ブッシングの常温側端部から突出された前記ケーブルコアの端部において、このケーブルコアに備える超電導導体層が接続される常電導引出部と、以下の内側真空層、ケーブル側真空層、及び常温側真空層とを備える。
 内側真空層は、前記ブッシングの内周と前記ケーブルコアの外周との間から前記碍管内を経て常温側に延びるように設けられて、前記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持する。
 ケーブル側真空層は、前記ブッシングにおけるケーブル側領域の外周から前記断熱管の端部に亘って設けられて、前記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持すると共に、前記内側真空層と重複して設けられる。
 常温側真空層は、前記碍管外に配置される前記超電導導体層と前記常電導引出部との接続箇所を冷却する冷媒を断熱保持する。
 上記の超電導ケーブルの端末構造は、小型で、施工性にも優れる。
実施形態1の超電導ケーブルの端末構造の縦断面を示す概略構成図である。 実施形態1の超電導ケーブルの端末構造に用いられる中間部品の一例であって、ブッシングと、内側真空層を形成する内管及び外管とを備えるものの縦断面を示す概略構成図である。 実施形態1の超電導ケーブルの端末構造を構築する手順を示す工程説明図である。 実施形態1の超電導ケーブルの端末構造に備える超電導ケーブルの一例を示す横断面である。 実施形態2の超電導ケーブルの端末構造に用いられる中間部品の一例であって、ブッシングと、内側真空層を形成する内管及び外管とを備えるものの縦断面を示す概略構成図である。 図5に示す中間部品を構築する手順を説明する工程説明図である。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 (1) 本発明の一態様に係る超電導ケーブルの端末構造は、超電導ケーブルの端部において断熱管の端部から出されたケーブルコアと、上記ケーブルコアの一部が挿通されるブッシングと、上記ブッシングにおける常温側領域を収納する碍管と、上記ブッシングの常温側端部から突出された上記ケーブルコアの端部において、このケーブルコアに備える超電導導体層が接続される常電導引出部と、以下の内側真空層、ケーブル側真空層、及び常温側真空層とを備える。
 内側真空層は、上記ブッシングの内周と上記ケーブルコアの外周との間から上記碍管内を経て常温側に延びるように設けられて、上記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持する。
 ケーブル側真空層は、上記ブッシングにおけるケーブル側領域の外周から上記断熱管の端部に亘って設けられて、上記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持すると共に、上記内側真空層と重複して設けられる。
 常温側真空層は、上記碍管外に配置される上記超電導導体層と上記常電導引出部との接続箇所を冷却する冷媒を断熱保持する。
 上述の構成を備える一態様の超電導ケーブルの端末構造は、以下の(i),(ii)の理由によって小型であり、以下の(iii)~(v)の理由によって施工性にも優れる。
(i) 上述の超電導線材を有する介在部材などを介在することなく、超電導ケーブルのケーブルコアと常電導引出部とを直接接続しているため、上述の介在部材及びこれらを収納する本体ケースを省略できる。
(ii) ブッシングを超電導ケーブルとは独立した部材としているため、超電導ケーブルの断熱管の外周にブッシングを直接設ける場合に比較して、ブッシング部分の外径を小さくできる。
(iii) 上述の複数の介在部材及び本体ケースを備えておらず、介在部材の接続工程及び本体ケースの組立工程を省略できる。
(iv) 本体ケースを備えておらず、大型な部品を取り扱う必要が無い。
(v) 超電導導体層と常電導引出部との接続箇所を碍管外に備えるため、超電導導体層と常電導引出部との接続処理が行い易い。
 その他、上述の一態様の超電導ケーブルの端末構造は、以下の効果も奏する。
(I) ケーブルコアの超電導導体層が碍管外にまで及んでいるため、超電導導体からなる通電領域が大きく(長く)、複数の常電導材料からなる部材を介在したり、常電導材料からなる部材同士の接続箇所が多かったりする場合に比較して、ジュール損を低減し易く低損失である。
(II) ブッシングの内外で真空層を重複させているため、ブッシングにおいて碍管内に配置される常温側領域と冷媒に接触するケーブル側領域とを熱絶縁し易い。その結果、ブッシングの常温側領域に霜がつき難くなり、このことに起因する特性劣化を抑制できる。
 (2) 上記超電導ケーブルの端末構造の一例として、上記ブッシングの絶縁材が設けられた外管と、上記外管との間で上記内側真空層の真空空間を形成し、上記冷媒が充填される内管とを備え、上記外管におけるケーブル側端部と上記内管におけるケーブル側端部とが接続されて有底筒状に構成されている態様が挙げられる。
 例えば、工場で、上記内管と上記外管とを、溶接などの気密性に優れる接合方法を利用して有底筒状に作製しておけば、施工現場では、この有底筒体の内部空間内を真空引きすることで内側真空層を容易に形成できる。従って、上記内管と上記外管とを施工現場で有底筒状に組み立てる場合と比較して施工現場での工程数が少なく、上記態様は、施工性に優れる。また、工場で有底筒体とすることで、この有底筒体とブッシングとを備える中間部品を取り扱い易く、この点からも施工性に優れる。
 (3) 上記超電導ケーブルの端末構造の一例として、上記内側真空層と上記常温側真空層とが連通している態様が挙げられる。
 上記態様は、内側真空層を構成する空間と常温側真空層を構成する空間とが連続しているため、両空間内を一度に真空引きできる。従って、上記態様は、施工現場での真空引き工程数が少なく、施工性に優れる。
 (4) 上記超電導ケーブルの端末構造の一例として、上記ケーブルコアのケーブル側領域の外周に設けられる補強絶縁層を備える態様が挙げられる。
 ブッシングとは独立して補強絶縁層を備えるため、ブッシングの形状の自由度を高められたり、ブッシングの長さを短くしたりでき、上記態様は、より小型にできる。また、上記態様は、適宜な形状に形成した補強絶縁層とブッシングとによって電界緩和も良好に行える。
 [本発明の実施形態の詳細]
 以下に図面を参照して、本発明の実施形態の具体例を説明する。図において同一符号は同一名称物を意味する。
 [実施形態1]
 図1~図5を参照して、実施形態1の超電導ケーブルの端末構造1を説明する。この端末構造1は、超電導ケーブル100のケーブルコア110に備える超電導導体層112と、常温で利用される常電導電力機器(代表的には、架空送電線などの常電導ケーブル、アルミニウムや銅などの常電導材料からなるブスバーなどの送電路を構築する機器、図示せず)の導体とを電気的に接続する常電導引出部40を備える。実施形態1の超電導ケーブルの端末構造1は、上記超電導導体層112と常電導引出部40とが直接接続されている点を特徴の一つとする。この点に関連して、端末構造1は、コア110の一部、即ちコア110自体が挿通されるブッシング20と、ブッシング20の内外に設けられる真空層(内側真空層50及びケーブル側真空層60)と、ブッシング20の一端側領域(常温側領域)と共にコア110の一部、即ちコア110自体を収納する碍管30とを備える。更に、端末構造1は、碍管30外に超電導導体層112と常電導引出部40との接続箇所を備えると共に、この接続箇所を覆う真空層(常温側真空層70)を備える。以下、図4を参照して、まず超電導ケーブル100を説明し、次に端末構造1の詳細な構成、端末構造1の施工手順、最後にこの構成の効果を説明する。
 ・超電導ケーブル
 超電導ケーブル100は、フォーマ111の外周に設けられた超電導導体層112を有するケーブルコア110と、コア110を収納するケーブル断熱管120とを備える。この例に示すコア110は、中心から順にフォーマ111、介在層118、超電導導体層112、電気絶縁層113、遮蔽層114、保護層115を同軸状に備える。このケーブル100は、1本のコア110が一つの断熱管120に収納された単心ケーブルであると共に、超電導導体層112と共に電気絶縁層113が断熱管120に収納されて、双方が冷媒130によって冷却される低温絶縁型のケーブルである。例えば、このような単心ケーブルを3本布設して、各ケーブルを各相の送電に利用する三相交流送電路や、このような単心ケーブルを2本布設して、一方のケーブルを往路、他方のケーブルを復路に利用する直流送電路などを構築することができる。
 ・・ケーブルコア
 ・・・フォーマ
 フォーマ111は、超電導導体層112を支持する機能を有する。この例では、冷媒132の流路(この例では復路)にも利用するため、フォーマ111を中空体としている。このようなフォーマ111の構成材料は、液体窒素などの冷媒温度で利用可能であり、薄くても強度に優れるステンレス鋼などの金属が挙げられる。コルゲート管やベローズ管をフォーマ111に利用すると、高強度材料から構成されていても可撓性に優れる。薄肉管とすると、可撓性に更に優れる。ここでは、フォーマ111は、ステンレス鋼製のベローズ管としている。その他の構成材料として、銅やその合金、アルミニウムやその合金といった常電導材料が挙げられる。常電導材料からなるフォーマ111は、柔らかく曲げ易い上に導電性に優れるため、例えば、事故電流の流路に利用できる。その他、フォーマ111は、複数の素線(銅線や、銅線の外周にエナメルなどの絶縁被覆を有する被覆銅線など)を撚り合わせた撚り線などの中実体としてもよい。
 ・・・介在層
 介在層118は、超電導導体層112の機械的保護などを目的として設けられる。この例では、介在層118は、異種の材料からなる多層構造としており、ステンレス鋼などの金属からなるテープを巻回した金属テープ層118aと、クラフト紙などの絶縁材からなるテープを巻回したクッション層118bとを備える。金属テープ層118aは、ベローズ管の凹凸を平滑化すると共に、ベローズ管の断面形状(円形状)を維持する。この機能を良好に得るために金属テープ層118aはフォーマ111の直上に設けられる。クッション層118bは、超電導導体層112の機械的保護(金属テープ層118aなどとの擦れ合いによる損傷からの保護)に加えて、金属部材の熱収縮の吸収を行う。この例では、更にクッション層118bは、超電導導体層112と金属テープ層118aとの間の電気的絶縁も行う。その他の介在層118として、常電導層が挙げられる。常電導層は、例えば、上述の常電導材料の線材からなる編組材などを巻回したものが挙げられる。常電導層は、例えば、事故電流の流路に利用できる。介在層118の厚さは適宜選択できる。介在層118の厚さを調整して、例えば、超電導導体層112の許容曲げ半径を確保することができる。介在層118は省略してもよい。
 ・・・超電導導体層
 超電導導体層112は、フォーマ111の外周(この例では介在層118の直上)に複数の超電導線材をスパイラル巻きすることで形成されている。超電導線材には、例えばBi系銀シース線材やRE123系薄膜線材などのテープ状線材が利用できる。線材の数や線材層の数は、所望の電力量を有するように適宜選択するとよい。図1では、超電導導体層112が4層の線材層を積層した場合を示す。線材層間には、絶縁紙などを巻回した層間絶縁層(図示せず)を設けることができる。
 ・・・電気絶縁層
 電気絶縁層113は、超電導導体層112とその外部との電気的絶縁を確保する。電気絶縁層113は、絶縁材からなるテープを超電導導体層112の外周にスパイラル巻きすることで形成されている。絶縁材には、例えば、クラフト紙やPPLP(登録商標;Polypropylene Laminated Paper)といった半合成紙などの絶縁紙が挙げられる。
 ・・・遮蔽層
 遮蔽層114は、超電導導体層112の外周(この例では電気絶縁層113の直上)に設けられて、超電導導体層112に起因する電界を遮蔽する。遮蔽層114は、銅テープといった上述の常電導材料からなるテープや線材などを巻回することで形成される。
 ・・・保護層
 保護層115は、ケーブルコア110の最外周に配置され、その内側に配置された部材(特に超電導導体層112)の機械的保護、遮蔽層114とケーブル断熱管120との間の電気的絶縁の確保を目的として設けられる。このような保護層115は、上述の絶縁紙を遮蔽層114の外周にスパイラル巻きすることで形成される。
 その他、ケーブルコア110は、電気絶縁層113の外周に外側超電導層(図示せず)や、常電導材料からなる磁気遮蔽層を備えることができる。外側超電導層は、上述の超電導線材をスパイラル巻きして形成される。外側超電導層は、例えば、交流送電用途では磁気遮蔽層に利用でき、直流送電用途では、モノポール送電の場合、超電導導体層112を往路導体としたときに帰路導体に利用でき、バイポール送電の場合、超電導導体層112とは逆極性の電流を流す導体に利用できる。
 ・・ケーブル断熱管
 ケーブル断熱管120は、内管121と外管122とを有する二重構造管であり、内管121と外管122との間の空間が真空引きされ、この空間に真空断熱層が形成された真空断熱管である。内管121の内部空間は、ケーブルコア110の収納空間であると共に、超電導導体層112の超電導状態を維持するための冷媒130(例えば、液体窒素など)が流通される流路(この例では往路)に利用される。内管121及び外管122は、コルゲート管やベローズ管とすると可撓性に優れ、フラット管とすると表面積が小さく、断熱性に優れ、冷媒の圧力損失も小さくできる。内管121及び外管122の構成材料は、フォーマの項で述べたようにステンレス鋼などの金属が挙げられる。この例に示す断熱管120は、内管121と外管122との間にスーパーインシュレーション(商品名)などの断熱材(図示せず)を備えており、より高い断熱性を有する。断熱管120の外管122の外側には、ビニルやポリエチレンなどの防食材から構成される防食層124を備える。
 ・超電導ケーブルの端末構造
 上述の超電導ケーブル100と常電導電力機器とを接続する場合、例えば、図1に示す端末構造1を構築する。具体的には、ケーブル100の端部においてケーブル断熱管120の端部からケーブルコア110の端部を露出して、超電導導体層112と常電導引出部40との接続処理を行う。コア110の外周にはブッシング20及び碍管30を配置すると共に、コア110の露出部分から常電導引出部40におけるケーブル側領域に至って、冷媒層(冷媒130,132が充填される領域)及び真空層(内側真空層50、ケーブル側真空層60、常温側真空層70)を設ける。以下、主として図1を参照して、端末構造1に備える各要素を順に説明する。
 ・・ケーブルコア
 ケーブル断熱管120の端部から出されたケーブルコア110は、断熱管120の近くで遮蔽層114及び保護層115(図4)が切断されており(図3上段も参照)、断熱管120の開口部よりも先の領域では、概ね電気絶縁層113が露出されている。更にコア110の先端部(ブッシングの常温側端部から突出された部分)が段剥ぎされて、フォーマ111、超電導導体層112が順に露出されている。なお、図1及び図3では、保護層115を省略している。
 露出された超電導導体層112と常電導引出部40とは、ハンダやロー材などの適宜な接合材によって接合されて、両者が電気的に接続されている。具体的には、常電導引出部40の一端部にケーブルコア110の端部が挿入される挿入穴を有しており、この挿入穴にコア110の端部が挿入されて、上述の接合材によって超電導導体層112が挿入穴内に固定される。
 この例では、更に、フォーマ111と常電導引出部40とが圧縮接続されている。圧縮接続といった機械的な接続もなされることで、ケーブルコア110と常電導引出部40との接続強度を高められる。この例では、フォーマ111を直接圧縮接続するのではなく、フォーマ111の先端部に、接続金具111aを介して取り付けられた固定金具111bを備え、この固定金具111bを圧縮接続箇所としている。常電導引出部40では、上記挿入穴における固定金具111bが挿入される領域を圧縮接続領域とする。
 フォーマ111と接続金具111aとの接続、接続金具111aと固定金具111bとの接続には、溶接などが利用できる。固定金具111bの構成材料には、圧縮性に優れる銅や銅合金、アルミニウムやアルミニウム合金、ステンレス鋼などの鉄合金といった金属が挙げられる。固定金具111bの外周形状を歯車形状や鋸刃形状などの凹凸形状とすると、常電導引出部40を引き留め易く、圧縮接続強度をより高められる。接続金具111aの構成材料には、溶接が可能な適宜な金属が利用できる。フォーマ111がベローズ管といった圧縮し難い形状であっても、圧縮性に優れる材料から構成されたり、引き留め易い形状であったりする固定金具111bを備えることで、上述の圧縮接続を容易に行えて、施工性に優れる。フォーマ111と固定金具111bとの間に接続金具111aを別途備えることで、固定金具111bの材質や形状の自由度を高められる。
 接続金具111aを省略し、固定金具111bのみを介して、フォーマ111と常電導引出部40とを圧縮接続することができる。この場合、部材数を低減できて、施工性に優れる。フォーマ111が中空体ではなく中実体である場合、接続金具111a及び固定金具111bの双方を省略し、フォーマ111と常電導引出部40とを直接圧縮することができる。その他、フォーマ111と常電導引出部40とを上述の接合材によって接合することもできる。
 一方、ケーブル断熱管120から出されたケーブルコア110において、上述の先端部とは逆の領域、即ち、断熱管120の端部近くであって遮蔽層114及び保護層115が除去されて露出された領域(ケーブル側領域)には、その外周に設けられた補強絶縁層80を備える。補強絶縁層80は、上述の絶縁紙をコア110(ここでは電気絶縁層113)の外周にスパイラル巻きすることで形成されている。補強絶縁層80は、その長手方向(図1では上下方向)の中央部分から各端部に向かって先細りした形状、即ち、常温側(図1では上側)及びケーブル側(図1では下側)に向かって先細りした形状である。各傾斜部分は、ストレスコーンとして機能する。コア110の遮蔽層114から補強絶縁層80においてケーブル側のストレスコーン部分に亘って遮蔽接続部82を備える。遮蔽接続部80は、上述の銅などの常電導材料からなる線材を巻回して形成される。
 ・・ブッシング
 ケーブル断熱管120から出されたケーブルコア110の一部、具体的にはコア110の先端部と補強絶縁層80が設けられた部分との間の中間部分の外周にブッシング20を備える。以下、図2を参照してブッシング20を詳細に説明する。ブッシング20は、筒状に形成された絶縁部25と、碍管30(図1)に固定される固定部27とを備える。更に、ブッシング20は、内側真空層50(図1)を形成する内管21及び外管22を内蔵することを特徴の一つとする。
 絶縁部25は、ケーブルコア110と外部との間の電気的絶縁を行うと共に、電界緩和を行う。この例に示すブッシング20は、更に、その一部が冷媒130(図1)に浸漬される。そのため、絶縁部25の構成材料は、冷媒温度でも問題なく使用可能な絶縁材料が好ましく、特にエポキシ樹脂などの樹脂成分とガラス繊維などの強化成分とを含む繊維強化樹脂などとすると、強度にも優れる。絶縁部25の常温側領域は、常温側(図2では上側)に向かって先細りした形状であり、この傾斜部分がストレスコーンとして機能する。絶縁部25中に金属箔(図示せず)を同心状に多層に設けることで、電界を調整できる。一方、絶縁部25のケーブル側領域は、その外周面は一様な筒状面であるが、その内周面は周縁から常温側に向かって傾斜している。この内側傾斜面によって補強絶縁層80の常温側のストレスコーン部分を、適宜な間隔をあけて取り囲むようにブッシング20が配置されている(図1)。この配置によって、ブッシング20と補強絶縁層80との双方によって、電界を良好に緩和できる。
 固定部27は、絶縁部25の外周(この例では長手方向の中央部分であって、ストレスコーン部分ではない領域)に上述の樹脂成分によって接合されている。固定部27は、絶縁部25の外方に延びるフランジ部を備える。ボルトなどによって、このフランジ部を碍管30(底板部34、図1)に締結することで、ブッシング20を碍管30に固定できる。固定部27は、碍管30の密閉、ブッシング20のケーブル側領域が収納されるケーブル側冷媒容器61(後述、図1)の密閉にも利用される。固定部27の構成材料は、適宜な金属や樹脂などが挙げられる。
 上述の絶縁部25の内側に内管21及び外管22を備える。内管21は、その内周に挿通配置されるケーブルコア110(特に超電導導体層112、図1)を冷却する冷媒130が充填されて流路に利用されると共に、外管22と共に真空空間を形成する。外管22は、その外周面に絶縁部25が設けられており、絶縁部25に一体化されている。内管21は、その一端部が連結部材240を介して外管22に一体化され、結果として、絶縁部25に一体化される。
 この例では、内管21及び外管22はいずれもフラット管としている。フラット管とすると、コルゲート管などを利用する場合よりも絶縁部25の外径を小さくし易く、小型化に寄与できる。更に、フラット管とすると、内管21では冷媒130の流通抵抗が小さい上に、ケーブルコア110を挿入し易く施工性に優れる、外管22では絶縁部25を形成し易い、という効果も奏する。内管21及び外管22の双方をコルゲート管やベローズ管とすると、可撓性に優れるものの、施工性に劣る。ブッシング20部分には、過度な曲げが求められないことからフラット管でも問題ない。内管21及び外管22の構成材料は、フォーマの項で述べたようにステンレス鋼などの金属が挙げられる。
 内管21及び外管22は、ブッシング20(絶縁部25)内から碍管30内を経て常温側に延びるように設けられている。この例では、内管21は、常電導引出部40(図1)のケーブル側領域が収納される常温側冷媒容器71(後述、図1)に接続され、外管22は、常温側冷媒容器71の外周に設けられる常温側真空容器72(後述、図1)に接続される。この例では、内管21が外管22よりも長く、内管21の端部が外管22の端部から突出している。この構成によって、内管21と冷媒容器71との接続作業後に、外管22と真空容器72との接続作業を行い易く、施工性に優れる。また、上述の接続によって、この例に示す端末構造1は、内管21と外管22との間の空間と、常温側冷媒容器71と常温側真空容器72との間の空間とが連通する空間を備える。
 内管21と外管22との間は真空引きされて真空空間を形成する。この真空空間によって、冷媒130を断熱保持できる。この例では、内管21と外管22との間から常温側冷媒容器71と常温側真空容器72との間に連通する真空空間を備えることになる。
 この例では、内管21と外管22との間にスーパーインシュレーション(商品名)などの断熱材23を備えており、より高い断熱性を有する。図1、図3では、断熱材23を省略している。
 この例に示す内管21及び外管22は、施工前の中間部品の段階では、断熱材23を備えておらず、図2に示すようにその一端側(図2では上側、常温側)が開口し、他端側(図2では下側、ケーブル側)が閉じられた有底筒状に構成されている。即ち、工場などで、内管21におけるケーブル側端部と外管22におけるケーブル側端部とを、連結部材240を介して接続している。連結部材240は環状の板材である。この接続には、溶接などが利用できる。溶接を利用することで、シール性に優れる接合部分を構築できる。内管21と外管22とを備え、工場などで有底筒状に形成された中間部品を利用することで、取り扱い易い、施工現場に搬送し易い、施工現場での工程数を低減できることから、施工性に優れる。詳細な施工手順は後述する。
 ・・ケーブル側断熱容器
 上述のケーブル断熱管120の端部から出されたケーブルコア110の一部(補強絶縁層80が設けられたケーブル側領域)とブッシング20のケーブル側領域とは、ケーブル側断熱容器に収納される。ケーブル側断熱容器は、断熱管120の端部から碍管30の底板部34に亘って設けられ、この間に存在するコア110の一部の外周とブッシング20のケーブル側領域の外周とを覆う。より具体的には、ケーブル側断熱容器は、一端部が接合され、他端側の開口部が底板部34によって塞がれる有底筒状体であり、コア110(超電導導体層112)を冷却する冷媒130が充填されるケーブル側冷媒容器61と、冷媒容器61の外周を覆うように設けられるケーブル側真空容器62とを備える。これらの容器61,62の構成材料は、断熱管の項などで述べたようにステンレス鋼などの金属が挙げられる。
 ケーブル側冷媒容器61とケーブル側真空容器62との間は真空引きされて真空空間を形成する。この真空空間によって、冷媒130を断熱保持できる。両容器61,62間に上述の断熱材(図示せず)を備えることができる。
 そして、実施形態1の端末構造1では、ケーブル側冷媒容器61とケーブル側真空容器62との間の真空空間と、上述のブッシング20に内蔵する内管21と外管22との間の真空空間とがケーブルコア110の長手方向に重複して設けられている点を特徴の一つとする。
 ・・碍管
 碍管30は、ブッシング20の常温側領域を収納して、このブッシング20内に挿通される導体部と外部との電気的絶縁に利用される。実施形態1の端末構造1では、この導体部がケーブルコア110の超電導導体層112である点を特徴の一つとする。この例に示す碍管30は、碍子を有する筒状の本体部32と、本体部32の一端部に設けられて、ブッシング20の固定部27が取り付けられる環状の底板部34と、本体部32の他端部に設けられて、ブッシング20に内蔵する外管22が挿通固定される環状の上板部36とを備える。本体部32、底板部34、及び上板部36で囲まれる密閉空間(碍管30の内部空間)には、絶縁油やSFなどの絶縁流体(図示せず)が充填される。本体部32などに絶縁流体の導入・排出口(図示せず)を備える。碍管30の基本的構成は、公知の構成を利用することができる。
 ・・常電導引出部
 常電導引出部40は、銅やその合金、アルミニウムやその合金などの常電導材料から構成されて、上述のケーブルコア110の先端部において露出された超電導導体層112が電気的に接続される。実施形態1の端末構造1では、超電導導体層112と常電導引出部40との接続箇所が碍管30外に配置されていることを特徴の一つとする。この構成により、端末構造1は、常電導電力機器に至るまでの間において超電導導体層の通電領域が大きく(長く)、複数の常電導材料からなる部材を介在する場合やこれらの接続箇所が多い場合に比較して、ジュール損を低減し易い。
 この例に示す常電導引出部40は、超電導導体層112が直接接続される棒状の導体接合部42と、一端部が導体接合部42に接続され、他端部が常温環境に配置される棒状の導体引出部44とを備える。
 導体接合部42は、その一端部にケーブルコア110の先端部(この例ではフォーマ111、接続金具111a及び固定金具111b、超電導導体層112)が挿入され、上述の圧縮接続領域を有する挿入穴と、フォーマ111の中空孔に連通する中空孔42hとを備える。フォーマ111の中空孔から導体接合部42の中空孔42hに連通した冷媒132の流路を形成する。フォーマ111が中実体の場合には、中空孔42hを省略できる。導体接合部42の他端部は、導体引出部44との接続端である。この接続には、ボルトなどによる機械的な締結や溶接などが利用できる。導体接合部42と導体引出部44とを独立した部材とすることで、導体接合部42を比較的短い部材にできるため、挿入穴や中空孔42hを形成し易く、製造性に優れる。導体接合部42が比較的小さいことで、フォーマ111(固定金具111b)と導体接合部42との圧縮接続も行い易く、施工性に優れる。その他、導体接合部42と導体引出部44とが連続した一体部材とすることができる。
 ・・常温側断熱容器
 上述のケーブルコア110の超電導導体層112との接続箇所を含み、常電導引出部40は、常温側断熱容器に収納される。常温側断熱容器は、碍管30内から常温側に突出するように設けられて、上記接続箇所から導体接合部42を経て、導体引出部44の一部の外周を覆う。より具体的には、常温側断熱容器は、上記接続箇所を冷却する冷媒130などが充填される常温側冷媒容器71と、冷媒容器71の外周を覆うように設けられる常温側真空容器72とを備える。更に、この例に示す常温側断熱容器は、導体引出部44の概ねの外周を覆うように設けられた端末真空容器752を備える。端末真空容器752において冷媒130に近いケーブル側領域の外周を覆うように常温側真空容器72が設けられている。即ち、両真空容器72,752は重複する部分を有する。これらの容器71,72,752の構成材料は、断熱管の項などで述べたようにステンレス鋼などの金属が挙げられる。
 常温側冷媒容器71と常温側真空容器72との間は真空引きされて真空空間を形成する。この真空空間によって、冷媒130などを断熱保持できる。端末真空容器752内も真空引きされて真空空間を形成する。この真空空間によって導体引出部44の概ねは、外部(常温環境)と熱絶縁される。特に、この例では、導体引出部44のケーブル側領域が二つの真空容器72,752に覆われるため、良好に熱絶縁される。両容器71,72間、端末真空容器752内に上述の断熱材(図示せず)を備えることができる。
 その他、この例に示す常温側断熱容器は、常温側冷媒容器71内を区画する仕切り板47を備える。仕切り板47によって、冷媒容器71内の冷媒充填領域は、冷媒130が充填される往路領域と、冷媒132が充填される復路領域との二つに分けられる。仕切り板47の中央部には貫通孔を有しており、導体接合部42が液密に挿通固定される。冷媒容器71には、冷媒130を往路領域に導入する冷媒導入口71iと、フォーマ111及び中空孔42hを経て復路領域に吐露された冷媒132を外部に排出する冷媒排出口71oとを備える。なお、フォーマ111を中実体とする場合、仕切り板47を省略したり、仕切り板47を導体接合部42の固定部材として利用し、仕切り板47に冷媒130が流通するための貫通孔を備えたりすることができる。
 ・・冷媒層及び真空層
 上述の構成を備える実施形態1の端末構造1は、以下の空間α~εを冷媒層として備え、以下の空間Α~Εを真空層として備える。
(冷媒層)
 ケーブル断熱管120の内管121の内周空間α
 ケーブル側断熱容器の冷媒容器61の内周空間β
 ブッシング20のケーブル側領域の内周空間γ
 ブッシング20に内蔵する内管21の内周空間δ
 常温側断熱容器の冷媒容器71の内周空間ε
(真空層)
 ケーブル断熱管120の内管121と外管122との間の空間Α
 ケーブル側断熱容器の冷媒容器61と真空容器62との間の空間Β
 ブッシング20に内蔵する内管21と外管22との間の空間Γ
 常温側断熱容器の冷媒容器71と真空容器72との間の空間Δ
 端末真空容器752内の空間Ε
 この例に示す冷媒層を構成する上述の空間α~εは、連通した空間である。そのため、常温側断熱容器の冷媒導入口71iから冷媒130を導入すると、常温側冷媒容器71における仕切り板47で区切られた往路領域(空間εの一部)から、ブッシング20に内蔵する内管21(空間δ)、ブッシング20の一端部(空間γ)、ケーブル側冷媒容器61(空間β)を経て、超電導ケーブル100のケーブル断熱管120(空間α)に至る冷媒流路(往路)を構築することができる。
 上述の真空空間Αをケーブル真空層、真空空間Γを内側真空層50、真空空間Βをケーブル側真空層60、真空空間Δを常温側真空層70、真空空間Εを端末真空層75と呼ぶ。特に、この例では、ケーブル真空層とケーブル側真空層60の一部とが重複するように設けられ、内側真空層50とケーブル側真空層60の一部とが重複するように設けられ、更に常温側真空層70と端末真空層75の一部とが重複するように設けられている。このように真空層の少なくとも一部が重複して設けられることで、端末構造1は、真空断熱特性を高められる。また、ブッシング20の内外に位置する内側真空層50とケーブル側真空層60とがケーブルコア110の長手方向に重複することで、ブッシング20における碍管30内に配置される常温側領域と、冷媒130に浸漬されるケーブル側領域とを熱絶縁し易い。そのため、ブッシング20のケーブル側領域が冷媒130に冷却されるものの、ブッシング20の常温側領域は、良好に熱絶縁されて、冷媒130による過冷却に起因する不具合(霜の発生など)を防止できる。なお、ブッシング20の絶縁部25を構成する樹脂成分などは一般に熱伝導性に劣り、絶縁部25自体が熱経路になり難く、絶縁部25を介してケーブル側領域から常温側領域への熱伝導(冷熱)が少ない。特に、ケーブル側冷媒容器61が金属からなり、ブッシング20の外周面も金属層で構成されると、容器61の内周面とブッシング20の外周面との双方が金属であるため、いわゆるバイヨネット方式の構造を利用でき、両者の隙間を極細くできる。この場合、上記の細い隙間に冷媒130が気化したガスが充填され、液相と気相との熱絶縁部分を構築でき、ブッシング20の過冷却をより防止できる。その他、導体引出部44が二重の真空層に覆われることで、導体引出部44の一端部が常温環境に曝されるものの、導体引出部44を介した熱侵入量を効果的に低減できる。
 ・超電導ケーブルの端末構造の製造方法
 上述の実施形態1の超電導ケーブルの端末構造1は、例えば、以下のコア処理工程と、ケーブル側断熱容器の形成工程と、ブッシング準備工程と、碍管の配置工程と、コアと常電導引出部との接続工程と、常温側断熱容器の形成工程と、真空引き工程とを備える製造方法によって構築できる。以下、主として図2,図3を参照して工程ごとに説明する。
 ・・コア処理工程
 超電導ケーブル100の端部においてケーブル断熱管120から所定の長さのケーブルコア110を出して段剥ぎなどして、フォーマ111、超電導導体層112、電気絶縁層113などを順に露出する(図3上段参照)。この例では、フォーマ111の先端に接続金具111aを介して固定金具111bを接続する。また、この例では、コア110における断熱管120の近傍に補強絶縁層80を形成した後、遮蔽層114から補強絶縁層80の外周の一部に至るように遮蔽接続部82を設ける。
 ・・ケーブル側断熱容器の形成工程
 ケーブルコア110の補強絶縁層80を覆うようにケーブル側断熱容器を設ける(図3中段参照)。ここでは、上述のようにケーブル断熱管120の外管122の一部とケーブル側冷媒容器61の一部とがコア110の長手方向に重複するようにまず冷媒容器61を構築する。断熱管120の外管122と冷媒容器61とは溶接などして、両者を固定する。冷媒容器61の外周に断熱材(図示せず)を適宜設けた後、ケーブル側真空容器62を形成する。ケーブル側断熱容器における開口した一端部を塞ぐように碍管30の底板部34を取り付ける。
 ・・ブッシング準備工程
 この例では、上述した内管21と外管22とが連結部材240によって有底筒状に構成され、外管22の外周に絶縁部25を備える中間部品を工場などで作製しておく。施工現場では、シート状の断熱材23を筒状に巻回して、この筒体を上述の内管21と外管22とを備える有底筒状体の開口部から挿入して、断熱材23を備えるブッシング20を構築する(図2)。筒状の断熱材23は連結部材240によって当て止めされて、ブッシング20に保持される。この断熱材23を備えるブッシング20をケーブルコア110の外側に嵌める(図3中段参照)。ブッシング20の内管21及び外管22はいずれも、コア110の先端(ここでは固定金具111b)が露出する程度の長さに調整している。こうすることで、後述する超電導導体層112と常電導引出部40(図1)との接続作業を行い易い上に、この挿入作業時にコア110をガイドに利用できる。この挿入作業は、ブッシング20に備える固定部27が底板部34に当接するまで行う。即ち、固定部27が当たり止めとなる。この挿入作業によって、ブッシング20のケーブル側領域は、ケーブル側断熱容器に覆われる。ブッシング20の固定部27は、底板部34に固定しておく。
 ・・碍管の配置工程
 ブッシング20の常温側領域を覆うように碍管30を設ける(図3下段参照)。この例では、本体部32及び上板部36を配置して、上述の底板部34、本体部32及び上板部36を接続する。ケーブルコア110の先端(ここでは固定金具111b)及びブッシング20に内蔵される内管21及び外管22の先端が上板部36から突出するように碍管30を設ける。碍管30内への絶縁流体の導入は適宜な時期に行える。
 ・・コアと常電導引出部との接続工程
 常電導引出部40を用意して、導体接合部42(図1)の挿入穴にケーブルコア110の端部を挿入して、超電導導体層112と常電導引出部40とを電気的に接続する。また、この例では、フォーマ111に接続された固定金具111bと導体接合部42の一部とを圧縮接続して、コア110と常電導引出部40とを機械的に接続する。コア110の先端を碍管30(上板部36)から突出していることで、導体接合部42の挿入、ハンダなどの接合材の流し込みや塗布など、圧縮接続などの接続処理を容易に行える。この例のように導体接合部42と導体引出部44とが着脱可能な構成である場合、上述の接続処理が終わった後、導体接合部42と導体引出部44とを接続すると、導体接合部42のみを取回せばよく、施工性に優れる。工場又は施工現場で導体接合部42と導体引出部44とを予め接続してもよい。
 ・・常温側断熱容器の形成工程
 上述の超電導導体層112と常電導引出部40との接続箇所を含み、常電導引出部40を覆うように常温側断熱容器を構築する。この例では、導体接合部42の外周に仕切り板47を取り付けてから、常温側冷媒容器71をまず形成する。冷媒容器71の一端部は、碍管30の上板部36から突出するブッシング20に内蔵する内管21に接続する。次に、冷媒容器71の他端部を塞ぐように端末真空容器752を形成した後、常温側真空容器72を形成する。真空容器72の一端部は、碍管30の上板部36から突出するブッシング20に内蔵する外管22に接続する。
 ・・真空引き工程
 ケーブル側真空容器62、常温側真空容器72、端末真空容器752にそれぞれ備える真空ポート60p,70p,75pを利用して真空引きを行う。この工程により、ケーブル側真空層60、内側真空層50及び常温側真空層70、端末真空層75を形成できる。上述のようにブッシング20の内管21と外管22との間の空間Γと、常温側真空容器72の空間Δとが連通していることで、真空ポート70pからの真空引きによって、内側真空層50及び常温側真空層70を同時に形成できる。上述の容器を形成するごとに真空引きを行うことができるが、まとめて行うことで真空装置の用意などが一度でよく、施工性に優れる。ケーブル断熱管120は、予め工場などで真空引きを行える。ケーブル断熱管120に備える真空ポート100pを利用して、施工現場や布設後でも真空状態を調整できる。真空層60、50、70、75についても、真空ポート60p,70p,75pを利用して、布設後でも真空状態を調整できる。即ち、真空状態を経時的に管理できる。
 以上の工程を終えたら、冷媒130を導入して超電導導体層112を超電導状態に維持することで、超電導ケーブル線路を運転でき、常電導電力機器との間で電力の授受を行える。
 ・効果
 実施形態1の超電導ケーブルの端末構造1は、超電導ケーブル100のケーブルコア110と常電導引出部40とを直接接続して、上述の超電導線材を有する介在部材やこれらを収納する本体ケースを備えておらず、小型である。また、端末構造1は、コア110とは独立したブッシング20を備えるものの、ケーブル断熱管120の外周に絶縁部25を直接設ける場合に比較して、ブッシング20の外径を小さくでき、小型である。
 更に、実施形態1の超電導ケーブルの端末構造1は、以下の点から、施工性にも優れる。(1)上述の介在部材及び本体ケースを備えておらず、施工現場での接続工程や組立工程が少ない点、(2)上述の本体ケースのような大型な部品を備えておらず、取り扱い易い比較的小型な部品で構成されている点、(3)超電導導体層112と常電導引出部40との接続箇所を碍管30外に備えるため、上述の圧縮接続をも含めて、超電導導体層112と常電導引出部40との接続処理を行い易い点。特に、この例に示す端末構造1は、以下の点からも、施工性に優れる。(4)内側真空層50と常温側真空層70とが連通する空間であり、同時に真空引きできることから、真空引きの工程数が少ない点、(5)ブッシング20に内蔵する内管21の外周に断熱材23を備える構成でありながら、施工現場でも、内管21と外管22との間に断熱材23を容易に収納できる点。
 [実施形態2]
 実施形態1では、ブッシング20に内蔵する内管21と外管22とがつくる密閉空間(内側真空層50)と、常温側断熱容器に備える密閉空間(常温側真空層70)とが連通した一つの密閉空間を構成する例を説明した。また、実施形態1では、内管21と外管22とが有底筒状に形成された中間部品を利用する例を説明した。その他、有底筒状の中間部品を用いずに、施工現場で内管21と外管22とを接続して、内管21と外管22とがつくる密閉空間と常温側断熱容器に備える密閉空間とを独立した密閉空間とすることができる。実施形態2の超電導ケーブルの端末構造は、実施形態1とは異なる中間部品を用いて内側真空層50を形成する密閉空間が構築されて、上述の独立した密閉空間を備える。以下、図5、図6を参照して、実施形態1の端末構造との相違点(中間部品、施工手順、密閉空間)を詳細に説明し、その他の構成及び効果などについては説明を省略する。
 実施形態2の端末構造は、図5に示すブッシング20Bを備える。ブッシング20Bは、実施形態1の端末構造に備えるブッシング20と同様に、繊維強化樹脂などから構成される絶縁部25と、碍管30(図1)に取り付けられる固定部27と、ケーブルコア110(図1)が挿通される内管21と、絶縁部25が形成された外管22とを備える。内管21は、その一端部が連結部材242を介して外管22の一端部に一体化され、別の連結部材244を介して外管22の他端部に一体化されて、結果として、絶縁部25に一体化される。内管21の端部は、常温側冷媒容器71(図1)に接続される。一方、常温側真空容器72(図1)は、外管22に延びる延長部(図示せず)を有しており、外管22にはこの延長部が接続される。
 この例では、一方の連結部材242は、内管21に設けられた部材と外管22に設けられた部材との双方を併せて構成される。連結部材242は、上述の両部材に設けられた溝などを組み合わせて形成される環状のシール孔242aと、両部材がネジ結合し合うネジ部242bとを備える。この例では、連結部材242は、複数のネジ部242b、242bを備える。シール孔242aには、環状の金属シール材(図示せず)が配置される。他方の連結部材244は、実施形態1の連結部材240と同様に環状の板材であり、両管21、22に溶接などによって接続される。内管21と外管22との間が連結部材242、244によって塞がれ、かつ金属シール材や溶接などによって、両管21,22内は密閉空間を形成できる。この密閉空間は真空引きされて実施形態2の端末構造は、内側真空層50を備える。また、両管21,22の間には断熱材23を備える。
 このような実施形態2の端末構造の構築には、内管21を備えておらず、絶縁部25及び固定部27と、連結部材242(一部)が溶接などによって接合された外管22のみとを備える中間部品を利用する。以下、図6を参照して、この中間部品(工場などで作製済み)を用いて、施工現場で、内側真空層50を形成するまでの工程を説明する。図6では、連結部材242を簡略化して記載している。
 図6に示すように内管21の外周面の適宜な位置に連結部材242を溶接などによって接合したものを用意する。この内管21の外周にシート状の断熱材23を適宜巻回する(図6の左上段参照)。連結部材242が内管21の外方に突設されているため、断熱材23の軸方向の移動を規制できるが、巻回した断熱材23を適宜な結束具で固定してもよい(図6の右上段参照)。この断熱材23を備える内管21を外管22に挿入して、外管22の適宜な位置で連結部材242によって内管21と外管22とを接続する。ここでは、内管21又は外管22を回転させてネジ部242b(図5)を結合することで両者を容易に接続できる。かつ、ネジ部242bによる結合によって、シール孔242aに配置しておいた金属シール材が内管21と外管22とを気密にする。次に、連結部材244を接合することで、内管21と外管22とを密閉できる。外管22などに設けておいた真空ポート(図示せず)を利用して、内管21と外管22との間に形成した密閉空間を真空引きする。この工程により、内側真空層50を形成できる。
 実施形態2の端末構造では、施工現場でブッシング20Bに備える外管22と、内管21とを一体化する中間部品を利用するものの、簡単な作業であり、施工性に優れる。また、この中間部品を利用することで、内側真空層50と、常温側真空層70(図1)とが連通しない独立した空間とすることができ、設計の自由度を高められる。なお、連通しなくても、上述のように常温側真空容器72を適宜な形状にして外管22に接続することで、内管21内の冷媒層の外周に真空層を備えることができる。連結部材244を省略して、実施形態1と同様に連通した真空空間とすることもできる。
 なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、多心一括型のケーブルにも適用できる。
 本発明の超電導ケーブルの端末構造は、超電導ケーブルと常温環境に配置される常電導電力機器(代表的には常電導ケーブル)との接続箇所に利用できる。
 1 超電導ケーブルの端末構造
 20,20B ブッシング 21 内管 22 外管 23 断熱材
 240、242、244 連結部材 242a シール孔 
 242b ネジ部
 25 絶縁部 27 固定部
 30 碍管 32 本体部 34 底板部 36 上板部
 40 常電導引出部 42 導体接合部 42h 中空孔 
 44 導体引出部
 47 仕切り板
 50 内側真空層
 60 ケーブル側真空層 61 ケーブル側冷媒容器 
 62 ケーブル側真空容器
 70 常温側真空層 71 常温側冷媒容器 72 常温側真空容器
 71i 冷媒導入口 71o 冷媒排出口 75 端末真空層 
 752 端末真空容器
 80 補強絶縁層 82 遮蔽接続部
 60p,70p,75p,100p 真空ポート
 100 超電導ケーブル 110 ケーブルコア
  111 フォーマ 111a 接続金具 111b 固定金具
  112 超電導導体層 113 電気絶縁層 114 遮蔽層 
  115 保護層
  118 介在層 118a 金属テープ層  118b クッション層
  120 ケーブル断熱管 121 内管 122 外管 
  124 防食層
  130,132 冷媒

Claims (4)

  1.  超電導ケーブルの端部において断熱管の端部から出されたケーブルコアと、
     前記ケーブルコアの一部が挿通されるブッシングと、
     前記ブッシングにおける常温側領域を収納する碍管と、
     前記ブッシングの常温側端部から突出された前記ケーブルコアの端部において、このケーブルコアに備える超電導導体層が接続される常電導引出部と、
     前記ブッシングの内周と前記ケーブルコアの外周との間から前記碍管内を経て常温側に延びるように設けられて、前記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持する内側真空層と、
     前記ブッシングにおけるケーブル側領域の外周から前記断熱管の端部に亘って設けられて、前記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持すると共に、前記内側真空層と重複して設けられるケーブル側真空層と、
     前記碍管外に配置される前記超電導導体層と前記常電導引出部との接続箇所を冷却する冷媒を断熱保持する常温側真空層とを備える超電導ケーブルの端末構造。
  2.  前記ブッシングの絶縁材が設けられた外管と、前記外管との間で前記内側真空層の真空空間を形成し、前記冷媒が充填される内管とを備え、
     前記外管におけるケーブル側端部と前記内管におけるケーブル側端部とが接続されて有底筒状に構成されている請求項1に記載の超電導ケーブルの端末構造。
  3.  前記内側真空層と前記常温側真空層とが連通している請求項1又は請求項2に記載の超電導ケーブルの端末構造。
  4.  前記ケーブルコアのケーブル側領域の外周に設けられる補強絶縁層を備える請求項1~請求項3のいずれか1項に記載の超電導ケーブルの端末構造。
PCT/JP2015/050519 2014-03-28 2015-01-09 超電導ケーブルの端末構造 WO2015146220A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15769936.4A EP3125387A4 (en) 2014-03-28 2015-01-09 Terminal structure for superconducting cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014068959A JP6169030B2 (ja) 2014-03-28 2014-03-28 超電導ケーブルの端末構造
JP2014-068959 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146220A1 true WO2015146220A1 (ja) 2015-10-01

Family

ID=54194763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050519 WO2015146220A1 (ja) 2014-03-28 2015-01-09 超電導ケーブルの端末構造

Country Status (3)

Country Link
EP (1) EP3125387A4 (ja)
JP (1) JP6169030B2 (ja)
WO (1) WO2015146220A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107466121A (zh) * 2017-09-05 2017-12-12 福建通宇电缆有限公司 一种防火矿物绝缘加热电缆及其加工方法
CN110212460A (zh) * 2019-06-25 2019-09-06 国网上海市电力公司 超导电缆的牵引连接装置
CN110932204A (zh) * 2019-12-25 2020-03-27 国网辽宁省电力有限公司沈阳供电公司 一种引线耐高温密封装置
CN113504442A (zh) * 2021-07-14 2021-10-15 国网北京市电力公司 盘装高压抢修电缆检测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102581659B1 (ko) * 2016-11-17 2023-09-21 한국전기연구원 절연내력 향상용 초전도 케이블 단말장치
EP3386034B1 (de) * 2017-04-07 2019-04-03 Nexans Endverschluss für ein supraleitendes kabel und verfahren zum aufbau eines endverschlusses für ein supraleitendes kabel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238144A (ja) * 2001-02-13 2002-08-23 Sumitomo Electric Ind Ltd 極低温機器の端末構造
JP2002280628A (ja) * 2001-03-16 2002-09-27 Sumitomo Electric Ind Ltd 極低温機器の端末構造
JP2012186890A (ja) * 2011-03-03 2012-09-27 Sumitomo Electric Ind Ltd 常温絶縁型超電導ケーブルの端末構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356646C (zh) * 2001-02-13 2007-12-19 住友电气工业株式会社 低温设备的终端结构
AU2002316937A1 (en) * 2002-05-31 2003-12-19 Pirelli & C. S.P.A. Current lead for superconducting apparatus
KR101556792B1 (ko) * 2009-02-12 2015-10-02 엘에스전선 주식회사 초전도 케이블의 저온유지장치
JP2010287349A (ja) * 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd 超電導ケーブルの端末構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238144A (ja) * 2001-02-13 2002-08-23 Sumitomo Electric Ind Ltd 極低温機器の端末構造
JP2002280628A (ja) * 2001-03-16 2002-09-27 Sumitomo Electric Ind Ltd 極低温機器の端末構造
JP2012186890A (ja) * 2011-03-03 2012-09-27 Sumitomo Electric Ind Ltd 常温絶縁型超電導ケーブルの端末構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3125387A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107466121A (zh) * 2017-09-05 2017-12-12 福建通宇电缆有限公司 一种防火矿物绝缘加热电缆及其加工方法
CN107466121B (zh) * 2017-09-05 2023-12-12 山西海顺线缆有限公司 一种防火矿物绝缘加热电缆及其加工方法
CN110212460A (zh) * 2019-06-25 2019-09-06 国网上海市电力公司 超导电缆的牵引连接装置
CN110212460B (zh) * 2019-06-25 2021-09-14 国网上海市电力公司 超导电缆的牵引连接装置
CN110932204A (zh) * 2019-12-25 2020-03-27 国网辽宁省电力有限公司沈阳供电公司 一种引线耐高温密封装置
CN113504442A (zh) * 2021-07-14 2021-10-15 国网北京市电力公司 盘装高压抢修电缆检测装置

Also Published As

Publication number Publication date
JP2015192552A (ja) 2015-11-02
JP6169030B2 (ja) 2017-07-26
EP3125387A4 (en) 2017-03-29
EP3125387A1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6169030B2 (ja) 超電導ケーブルの端末構造
EP1732190B1 (en) Terminal structure of multiphase superconducting cable
EP1837925B1 (en) Low temperature container of superconducting apparatus
JP2005210834A (ja) 多相超電導ケーブルの接続構造
JP6791782B2 (ja) 超電導機器の端末構造
JP5920836B2 (ja) 超電導ケーブルの接続構造及びその布設方法並びに超電導ケーブルの接続構造の真空引き方法
KR101148684B1 (ko) 초전도 케이블
JP2005100776A (ja) 超電導ケーブルの端末構造
JP6482358B2 (ja) 超電導ケーブルの端末構造体
US20070169957A1 (en) Splice structure of superconducting cable
JP4374613B2 (ja) 超電導ケーブルの中間接続構造
JP2019129583A (ja) 超電導ケーブルの端末構造
JP5807849B2 (ja) 超電導ケーブルの中間接続部材及び超電導ケーブルの中間接続構造
JP2016195484A (ja) 超電導ケーブルの端末構造体
JP2017063578A (ja) 超電導ケーブルの端末構造
JP2010021260A (ja) 極低温機器用の電流リードおよび端末接続構造
KR100977405B1 (ko) 삼상 초전도 케이블의 중간접속장치
JP4330008B2 (ja) 超電導ケーブル用プーリングアイ及びプーリングアイを用いた超電導ケーブルの布設方法
JP2020028133A (ja) 導体引出部材、超電導機器の端末構造、及び超電導機器の端末構造の製造方法
JP2005341767A (ja) 超電導ケーブルの端末構造
JP6491518B2 (ja) 超電導ケーブルの端末構造体
JP2020028132A (ja) 超電導機器の端末構造
JP5742006B2 (ja) 常温絶縁型超電導ケーブルの端末構造
JP5672634B2 (ja) 超電導ケーブルの中間接続構造
JP2017073387A (ja) 超電導ケーブルの接続構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769936

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769936

Country of ref document: EP