WO2015146022A1 - 配線形成方法 - Google Patents

配線形成方法 Download PDF

Info

Publication number
WO2015146022A1
WO2015146022A1 PCT/JP2015/001276 JP2015001276W WO2015146022A1 WO 2015146022 A1 WO2015146022 A1 WO 2015146022A1 JP 2015001276 W JP2015001276 W JP 2015001276W WO 2015146022 A1 WO2015146022 A1 WO 2015146022A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
printed wiring
group
surface treatment
printing
Prior art date
Application number
PCT/JP2015/001276
Other languages
English (en)
French (fr)
Inventor
大介 熊木
智仁 関根
時任 静士
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Priority to JP2016509975A priority Critical patent/JPWO2015146022A1/ja
Publication of WO2015146022A1 publication Critical patent/WO2015146022A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1173Differences in wettability, e.g. hydrophilic or hydrophobic areas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing

Definitions

  • the present invention relates to a wiring forming method.
  • conductive ink can form wiring by coating film formation, it can significantly reduce costs and reduce environmental burden compared to conventional vacuum processes. For this reason, conductive ink is positioned as a very important technology in industry, and active material development is progressing.
  • metal nanoparticle inks have been developed that exhibit high conductivity with a resistivity of 10 ⁇ 5 ⁇ cm or less by firing at a temperature of 150 ° C. or less.
  • various electronic circuits can be formed on a plastic film having a low heat-resistant temperature.
  • the migration that occurs when the wiring is energized may cause a short circuit or a disconnection, which reduces the reliability of the device.
  • Patent Document 1 describes a method of mixing a filler with a conductive paste.
  • Patent Document 2 proposes core-shell type nanoparticles in which copper that is resistant to migration is hybridized with silver.
  • Patent Document 3 describes a method for surface-treating using a silane coupling agent.
  • Patent Document 4 describes a method of cleaning the surface of a wiring with an aqueous solution mixed with a triazole-based thiol.
  • Patent Document 1 when a filler is mixed in the conductive paste, the conductivity of the wiring is lowered by the filler. Moreover, since the core-shell type nanoparticles as described in Patent Document 2 contain copper that is difficult to sinter, firing at a high temperature is required, and the synthesis is complicated, resulting in an increase in cost. There is also a problem.
  • the present invention has been made to solve the above technical problem, and can effectively and easily suppress migration of printed wiring, and is suitably applied to conductive circuits and semiconductor integrated circuits by a printing process. It is an object of the present invention to provide a wiring forming method that can be used.
  • the present invention Forming printed wiring using metal nanoparticles or metal paste; Treating the surface of the printed wiring with a surface treating agent having a fluorine substituent; A wiring forming method is provided.
  • the wiring forming method according to the present invention migration of printed wiring formed using a printing apparatus such as an ink jet apparatus can be more effectively and simply suppressed.
  • the method according to the present invention can be suitably applied to the formation of fine wiring, in particular, the formation of conductive circuits, semiconductor integrated circuits, etc. by a printing process, and contributes to the efficient production of electronic devices. It is.
  • the wiring forming method according to the present embodiment is a method of forming printed wiring using metal nanoparticles or metal paste. Then, the surface of the printed wiring is treated with a surface treatment agent having a fluorine substituent.
  • a surface treatment agent having a fluorine substituent In the present specification, the term “wiring” is used in the sense of widely including conductor elements such as electrodes and terminals.
  • the printed wiring is surface-treated with a surface treating agent having a fluorine substituent which is a highly water-repellent substituent. That is, the printed wiring is subjected to a water repellent surface treatment (surface treatment for imparting water repellency).
  • a surface treatment agent compound
  • a self-assembled monolayer can be formed on the surface of the wiring.
  • the surface treatment agent for imparting water repellency to the printed wiring has at least one functional group selected from the group consisting of a thiol group, an alkoxysilane group, a trichlorosilane group, a phosphonic acid group, and a carboxylic acid group. Is preferred. These functional groups are preferable because they are excellent in affinity with the metal constituting the printed wiring, can form a strong bond with the surface of the printed wiring, and can perform effective surface treatment. That is, when the surface of the printed wiring is treated with the surface treatment agent, the functional group of the surface treatment agent is bonded to the surface of the printed wiring. Thereby, a water-repellent surface treatment layer is formed on the surface of the printed wiring.
  • the compound as the surface treatment agent may be an aromatic compound or a linear alkyl compound.
  • the compound as the surface treatment agent may have a plurality of fluorine substituents in the molecule, or may have only one fluorine substituent.
  • a compound as a surface treatment agent has any of the functional groups described above in combination with at least one fluorine substituent in the molecule.
  • the compound as the surface treating agent desirably has a plurality of fluorine substituents in the molecule. As the number of fluorine substituents increases, water repellency is expected to improve.
  • the ratio of the number of fluorine (F) to the number of protons (H) exceeds 60%.
  • the above functional group when the above functional group is bonded to the surface of the printed wiring, if the fluorine substituent is directed to the outside of the surface treatment layer, the water repellency based on the surface treatment agent can be sufficiently exhibited.
  • a structure in which a fluorine substituent is bonded to the para-position of the benzene ring with respect to the above-described functional group Alternatively, a structure in which the functional group described above is bonded to carbon at one end of the linear alkyl compound and a fluorine substituent is bonded to carbon at the other end of the linear alkyl compound can be given.
  • a silane coupling agent as described in Patent Document 3 is difficult to bond to a metal such as silver which causes migration, and a sufficient surface treatment effect cannot be obtained.
  • the surface treatment agent having the above functional group is easily bonded to a metal such as silver and can exhibit a sufficient surface treatment effect.
  • Representative examples of the surface treatment agent having the functional group as described above include pentafluorobenzenethiol (1), pentafluorobenzoic acid (2), pentafluorobenzenephosphonic acid (3), and pentafluorophenyl as shown below.
  • Examples include trimethoxysilane (4) and pentafluorophenyltrichlorosilane (5).
  • R 1 is a thiol group, an alkoxysilane group, a trichlorosilane group, a phosphonic acid group or a carboxylic acid group.
  • the surface treatment agent is preferably used in the form of a solution from the viewpoint of uniformly performing the surface treatment. That is, the solution containing the surface treatment agent is brought into contact with the surface of the printed wiring.
  • a solvent used when preparing the solution an organic solvent having excellent volatility is preferable from the viewpoint of operability.
  • the organic solvent alcohol, ether, straight chain hydrocarbon, aromatic solvent, halogen solvent and the like can be used.
  • it since it aims at water-repellent surface treatment, it is desirable not to use water.
  • the surface treatment method using the surface treatment agent solution is not particularly limited.
  • Surface treatment can be performed by bringing the solution into contact with the printed wiring.
  • the surface treatment of the printed wiring can be performed by immersing a substrate having the printed wiring in a solution or spraying the solution toward the printed wiring.
  • the time for contacting the printed wiring with the solution is not particularly limited, and is, for example, 10 seconds to 30 minutes.
  • the temperature of the solution is, for example, normal temperature (20 ° C. ⁇ 15 ° C. (JIS Z 8703)).
  • Metal nanoparticles or metal paste can be used for forming the printed wiring.
  • the metal constituting the metal nanoparticles or the metal paste is not particularly limited, and examples thereof include copper, silver, aluminum, zirconium, niobium, gold, iron, nickel, cobalt, magnesium, tin, zinc, titanium, hafnium, Examples include tantalum, platinum, palladium, chromium, vanadium, and alloys thereof. Of these, gold, silver, copper and the like are suitable.
  • a known metal nanoparticle ink in which the metal nanoparticles are dispersed in an organic solvent or the like can be used.
  • the thing of a well-known aspect can also be used for a metal paste.
  • the wiring formation using the metal nanoparticles or the metal paste is, for example, coating by spin coating, bar coating, spray coating, etc., various printing such as screen printing, gravure offset printing, direct gravure printing, letterpress reverse printing, inkjet printing, etc. This can be done by printing on a machine. Among these, it is preferable to form the wiring by printing. According to the printing method as described above, it is possible to efficiently and easily form printed wiring, and it is possible to cope with a fine wiring configuration.
  • the printed wiring is formed on, for example, an insulating layer formed on the substrate.
  • the structure and material of the substrate are not particularly limited.
  • an inorganic material such as glass, ceramics, or metal, or an organic material such as resin or paper can be used.
  • the method according to the present embodiment can be applied to a flexible substrate.
  • the structure of the substrate is not particularly limited.
  • the substrate has, for example, a flat plate structure.
  • the insulating layer formed on the substrate is not particularly limited as long as the printed wiring can be formed thereon. From the viewpoint of preventing contact between the printed wiring and moisture, the insulating layer is preferably water-repellent, and preferably capable of being formed by coating.
  • a fluororesin such as Teflon (registered trademark) or Cytop (registered trademark) is preferably used.
  • the insulating layer has high water repellency, such as an insulating layer made of a fluororesin, it can prevent moisture from reaching the printed wiring through the insulating layer, so that further improvement in the effect of suppressing migration can be expected.
  • the method for forming the insulating layer is not particularly limited.
  • the insulating layer is formed by, for example, application by spin coating, bar coating, spray coating, etc., printing by various printing machines such as screen printing, gravure offset printing, letterpress reverse printing, and ink jet printing. It is preferable. Note that the insulating layer can also be regarded as part of the substrate.
  • a sample having a structure as shown in FIG. 1 was produced. After spin-coating a solution prepared by dissolving Teflon (registered trademark) (Mitsui / DuPont Fluorochemical Co., Ltd .; AF1600) in Fluorinert (registered trademark) (Sumitomo 3M; FC-43) on the glass substrate 1, 150 Heat-dried at a temperature of 300 ° C. to form a fluororesin layer 2 having a thickness of 300 nm. The surface of the fluororesin layer 2 was subjected to oxygen plasma treatment for 10 W for 10 seconds to make the surface of the fluororesin layer 2 lyophilic.
  • Teflon registered trademark
  • Fluorinert registered trademark
  • FC-43 Fluorinert
  • a silver nanoparticle ink (manufactured by Harima Kasei Co., Ltd .; NPS-JL) is applied to the substrate 1 having the fluororesin layer 2 by an ink jet apparatus (Fuji Film Co., Ltd .; Dimatics Material Printer DMP-2831), and the wiring width is about 150 ⁇ m. Then, two lines were printed in parallel so that the wiring length was 3 mm and the distance between the wirings was 20 ⁇ m, and heat treatment was performed at 150 ° C. for 30 minutes to form the silver wiring 3.
  • the substrate 1 having the silver wiring 3 is dipped in a solution of pentafluorobenzenethiol (PFBT) dissolved in isopropanol at a concentration of 30 mmol / ml for 6 minutes, and then surface-treated by blow drying to cover the silver wiring 3.
  • PFBT pentafluorobenzenethiol
  • the sample prepared as described above was placed in an environment of 80 ° C. and humidity 85%, and while applying a voltage of 1 V between the two silver wirings 3, the change over time of the current value was measured to determine the ease of migration. evaluated. For comparison, the same evaluation was performed when the silver wiring 3 was not surface-treated.
  • FIG. 2 shows a graph of the change over time in the current value in the above evaluation.
  • the current value increased from around 7000 seconds. That is, migration between wirings occurred even in a short time.
  • no increase in current value was observed even after the voltage was continuously applied for 10,000 seconds.
  • FIG. 3 and 4 show micrographs of the two wires after the above evaluation.
  • 3 shows the case with surface treatment
  • FIG. 4 shows the case without surface treatment.
  • FIG. 3 shows the case with surface treatment
  • FIG. 4 shows the case without surface treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

 本発明の配線形成方法は、金属ナノ粒子又は金属ペーストを用いて印刷配線を形成する工程と、印刷配線の表面を、フッ素置換基を有する表面処理剤で処理する工程と、を含む。表面処理剤は、チオール基、アルコキシシラン基、トリクロロシラン基、ホスホン酸基及びカルボン酸基からなる群より選ばれる少なくとも1つの官能基をさらに有していてもよい。表面処理剤の官能基が印刷配線の表面に結合しうる。

Description

配線形成方法
 本発明は、配線形成方法に関する。
 導電インクは、塗布成膜によって配線を形成することができるため、従来の真空プロセスに比べて、大幅な低コスト化や環境負荷の低減を可能とするものである。このため、導電インクは、産業的に非常に重要な技術として位置付けられ、活発な材料開発が進められている。
 例えば、近年、150℃以下の温度での焼成により抵抗率10-5Ωcm以下の高い導電性を発現する金属ナノ粒子インクが開発されている。このようなインクによれば、耐熱温度が低いプラスチックフィルム上にも、種々の電子回路を形成することが可能である。
 一方で、配線への通電時に発生するマイグレーションが短絡や断線を引き起こす場合があり、デバイスの信頼性を低下させることが問題となっている。
 導電性ペーストや金属ナノ粒子インクを用いた印刷配線のマイグレーションを抑制する方法として、例えば、特許文献1には、導電性ペーストにフィラーを混ぜる方法が記載されている。また、特許文献2には、マイグレーションに対して耐性のある銅を、銀とハイブリッドさせたコアシェル型のナノ粒子が提案されている。
 また、配線を表面処理してマイグレーション耐性を向上させる方法として、特許文献3に、シランカップリング剤を用いて表面処理する方法が記載されている。さらに、特許文献4には、トリアゾール系のチオールを混入させた水溶液で配線の表面を洗浄する方法が記載されている。
特開2007-227156号公報 特開2011-68936号公報 特開2013-191757号公報 特開2013-125797号公報
 しかしながら、上記特許文献1に記載されているように、導電性ペーストにフィラーを混ぜた場合には、フィラーにより配線の導電性が低下することとなる。また、上記特許文献2に記載されているようなコアシェル型のナノ粒子は、焼結しにくい銅を含有するため、高温での焼成が必要となり、また、合成が複雑化し、コストの上昇を招くという課題も有している。
 したがって、印刷配線のマイグレーションをより効果的に抑制することができる手段が求められている。
 本発明は、上記技術的課題を解決するためになされたものであり、印刷配線のマイグレーションをより効果的に簡便に抑制することができ、印刷プロセスによる導電回路や半導体集積回路に好適に適用することができる配線形成方法を提供することを目的とするものである。
 本発明は、
 金属ナノ粒子又は金属ペーストを用いて印刷配線を形成する工程と、
 前記印刷配線の表面を、フッ素置換基を有する表面処理剤で処理する工程と、
 を含む、配線形成方法を提供する。
 本発明に係る配線形成方法によれば、インクジェット装置等の印刷装置を用いて形成された印刷配線のマイグレーションをより効果的に簡便に抑制することができる。また、本発明に係る方法は、微細な配線形成、特に、印刷プロセスによる導電回路や半導体集積回路等の形成にも好適に適用することができ、電子デバイスの効率的な製造にも寄与するものである。
実施例のサンプルの構造を示した概略断面図である。 実施例のサンプルについての電圧印加時間と電流値との関係を示したグラフである。 表面処理を行ったサンプルの配線の電圧印加後における顕微鏡写真である。 表面処理を行わなかったサンプルの配線の電圧印加後における顕微鏡写真である。
 以下、本発明の実施形態について、図面を参照して、より詳細に説明する。
 本実施形態に係る配線形成方法は、金属ナノ粒子又は金属ペーストを用いて印刷配線を形成する方法である。そして、印刷配線の表面を、フッ素置換基を有する表面処理剤で処理する。本明細書において、「配線」の用語は、電極、端子などの導体要素を広く含む意味で使用される。
 マイグレーションの主な原因は、大気中の水によって配線を構成する金属がイオン化されて配線間に流出するためであり、最も大きな要因は配線と水との接触である。このため、本実施形態においては、撥水性の高い置換基であるフッ素置換基を有する表面処理剤によって印刷配線を表面処理する。すなわち、印刷配線を撥水表面処理(撥水性を付与するための表面処理)する。このような処理を行うことにより、配線を構成する金属と水との接触が阻止され、印刷配線のマイグレーションを抑制することができる。詳細には、配線を構成する金属に表面処理剤(化合物)が結合し、配線の表面に自己組織化単分子膜を形成することができる。
 印刷配線に撥水性を付与するための表面処理剤は、チオール基、アルコキシシラン基、トリクロロシラン基、ホスホン酸基及びカルボン酸基からなる群より選ばれる少なくとも1つの官能基を有していることが好ましい。これらの官能基は、印刷配線を構成する金属との親和性に優れており、印刷配線の表面との強固な結合を形成し、効果的な表面処理を行うことができるため好ましい。すなわち、表面処理剤で印刷配線の表面を処理すると、表面処理剤の官能基が印刷配線の表面に結合する。これにより、撥水性の表面処理層が印刷配線の表面に形成される。
 表面処理剤としての化合物は、芳香族化合物であってもよいし、直鎖アルキル化合物であってもよい。表面処理剤としての化合物は、その分子内において、複数のフッ素置換基を有していてもよいし、フッ素置換基を1つのみ有していてもよい。典型的には、表面処理剤としての化合物は、その分子内において、上述した官能基のうちのいずれかを少なくとも1つのフッ素置換基とともに有する。撥水性の観点から、表面処理剤としての化合物は、その分子内において、複数のフッ素置換基を有することが望ましい。フッ素置換基の数が増加するにつれて、撥水性の向上が期待される。表面処理剤としての化合物において、例えば、プロトン(H)の数に対するフッ素(F)の数の比率が60%を超える。また、上述の官能基が印刷配線の表面に結合したとき、フッ素置換基が表面処理層の外側を向いていると、表面処理剤に基づく撥水性が十分に発揮されうる。そのような構造として、例えば、上述の官能基に対してフッ素置換基がベンゼン環のパラ位に結合している構造が挙げられる。あるいは、上述の官能基が直鎖アルキル化合物の一方の末端の炭素に結合し、フッ素置換基が直鎖アルキル化合物の他端の炭素に結合している構造が挙げられる。
 特許文献3に記載されているようなシランカップリング剤は、マイグレーションが問題となる銀等の金属と結合しにくく、十分な表面処理効果を得ることができない。これに対し、上記の官能基を有する表面処理剤は、銀等の金属と結合しやすく、十分な表面処理効果を発揮しうる。
 上記のような官能基を有する表面処理剤の代表例としては、下記に示すようなペンタフルオロベンゼンチオール(1)、ペンタフルオロ安息香酸(2)、ペンタフルオロベンゼンホスホン酸(3)、ペンタフルオロフェニルトリメトキシシラン(4)、ペンタフルオロフェニルトリクロロシラン(5)等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 本実施形態における表面処理剤は、下記一般式(6)で表すことができる。R1は、チオール基、アルコキシシラン基、トリクロロシラン基、ホスホン酸基又はカルボン酸基である。
Figure JPOXMLDOC01-appb-C000002
 表面処理剤は、表面処理を均一に行う観点から、溶液の形で使用されることが好ましい。つまり、表面処理剤を含む溶液を印刷配線の表面に接触させる。溶液を調製する際に用いられる溶媒としては、操作性の観点から、揮発性に優れている有機溶媒が好ましい。有機溶媒として、アルコール、エーテル、直鎖炭化水素、芳香族系溶媒、ハロゲン系溶媒などを使用できる。なお、撥水表面処理を目的としているため、水は使用しないことが望ましい。
 特許文献4に記載されているような洗浄方法では、水溶液を用いるため、電極に残存する水分によってマイグレーションを誘発するおそれがある。溶媒として有機溶媒のみを含む溶液を使用すれば、残存する水分がマイグレーションを誘発することを防止できる。
 表面処理剤の溶液を用いた表面処理の方法も特に限定されない。印刷配線に溶液を接触させることによって、表面処理を実施することができる。具体的には、印刷配線を有する基板を溶液に浸漬したり、印刷配線に向けて溶液を噴霧したりすることによって、印刷配線の表面処理を実施することができる。印刷配線を溶液に接触させる時間も特に限定されず、例えば、10秒間~30分間である。溶液の温度は、例えば常温(20℃±15℃(JIS Z 8703))である。
 印刷配線の形成には、金属ナノ粒子又は金属ペーストが使用されうる。金属ナノ粒子又は金属ペーストを構成する金属は、特に限定されるものではなく、例えば、銅、銀、アルミニウム、ジルコニウム、ニオブ、金、鉄、ニッケル、コバルト、マグネシウム、錫、亜鉛、チタン、ハフニウム、タンタル、白金、パラジウム、クロム、バナジウム、これらの合金等が挙げられる。これらのうち、金、銀、銅等が好適である。
 金属ナノ粒子により印刷配線を形成する場合は、該金属ナノ粒子が有機溶媒等に分散された公知の金属ナノ粒子インクを用いることができる。また、金属ペーストも公知の態様のものを用いることができる。
 また、金属ナノ粒子又は金属ペーストを用いた配線形成は、例えば、スピンコート、バーコート、スプレーコート等による塗布、スクリーン印刷、グラビアオフセット印刷、ダイレクトグラビア印刷、凸版反転印刷、インクジェット印刷等の各種印刷機による印刷等により行うことができる。中でも、印刷により配線を形成することが好ましい。上記のような印刷方法によれば、効率的に簡便に印刷配線を形成することができ、しかも、微細な配線の構成にも対応可能である。
 印刷配線は、例えば、基板上に形成された絶縁層の上に形成される。基板の構造及び材料は、特に限定されるものではない。基板の材料には、ガラス、セラミックス、金属等の無機材料や、樹脂、紙等の有機材料を適用することができる。本実施形態に係る方法は、フレキシブルな基板にも対応し得る。基板の構造も特に限定されない。基板は、例えば、平板状の構造を有する。
 また、基板上に形成される絶縁層は、その上に印刷配線を形成可能なものであれば、特に限定されるものではない。印刷配線と水分との接触を防止する観点から、絶縁層は、撥水性を有するものであることが好ましく、また、塗布成膜可能であるものが好ましい。絶縁層の材料として、例えば、テフロン(登録商標)やサイトップ(登録商標)等のフッ素樹脂が好適に用いられる。フッ素樹脂でできた絶縁層のように、絶縁層の撥水性が高い場合、絶縁層を通じて印刷配線に水分が到達することを妨げることができるため、マイグレーションを抑制する効果の更なる向上を期待できる。絶縁層の形成方法は、特に限定されるものではない。操作性や効率等の観点から、例えば、スピンコート、バーコート、スプレーコート等による塗布、スクリーン印刷、グラビアオフセット印刷、凸版反転印刷、インクジェット印刷等の各種印刷機による印刷等により絶縁層を形成することが好ましい。なお、絶縁層を基板の一部と捉えることもできる。
 以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例に限定されるものではない。
 図1に示すような構造のサンプルを作製した。ガラス基板1上に、テフロン(登録商標)(三井・デュポンフロロケミカル社製;AF1600)をフロリナート(登録商標)(住友スリーエム社製;FC-43)に溶解させた溶液をスピンコートした後、150℃で加熱乾燥し、膜厚300nmのフッ素樹脂層2を形成した。フッ素樹脂層2の表面に、10W、10秒間の酸素プラズマ処理を施し、フッ素樹脂層2の表面を親液化させた。フッ素樹脂層2を有する基板1の上に、銀ナノ粒子インク(ハリマ化成社製;NPS-JL)をインクジェット装置(富士フイルム社;ダイマティックス・マテリアルプリンターDMP-2831)で、配線幅約150μm、配線長さ3mm、配線間距離20μmとなるように平行に2本のライン状に印刷し、150℃で30分間熱処理し、銀配線3を形成した。銀配線3を有する基板1を、ペンタフルオロベンゼンチオール(PFBT)を濃度30mmol/mlでイソプロパノールに溶解させた溶液に6分間浸漬した後、ブロー乾燥することにより表面処理し、銀配線3を被覆する表面処理層4を形成した。
 上記により作製したサンプルを80℃、湿度85%の環境に置き、2本の銀配線3の間に1Vの電圧を印加しながら、その電流値の経時変化を計測し、マイグレーションの起こりやすさを評価した。比較のため、銀配線3を表面処理しない場合についても、同様の評価を行った。
 図2に、上記評価における電流値の経時変化のグラフを示す。図2に示したグラフから分かるように、表面処理なしの場合は、7千秒後付近から電流値が上昇した。つまり、短時間でも配線間のマイグレーションが起きた。これに対して、表面処理ありの場合は、電圧を1万秒間連続して印加した後も、電流値の上昇は見られなかった。
 また、図3,4に、上記評価後の2本の配線の顕微鏡写真を示す。図3は表面処理ありの場合、図4は表面処理なしの場合である。電圧を印加する前の写真と比較したところ、表面処理ありの場合(図3)は、配線の外観の変化は見られなかった。一方、図4に示した写真から分かるように、表面処理なしの場合は、銀が対向する配線に向かって流出している様子が観察された。図2のグラフに示したように配線間を流れる電流値が上昇したのは、電圧印加によってこのようなマイグレーションが起きたためであることが確認された。

Claims (4)

  1.  金属ナノ粒子又は金属ペーストを用いて印刷配線を形成する工程と、
     前記印刷配線の表面を、フッ素置換基を有する表面処理剤で処理する工程と、
     を含む、配線形成方法。
  2.  前記表面処理剤は、チオール基、アルコキシシラン基、トリクロロシラン基、ホスホン酸基及びカルボン酸基からなる群より選ばれる少なくとも1つの官能基をさらに有する、請求項1に記載の配線形成方法。
  3.  前記表面処理剤の前記官能基が前記印刷配線の表面に結合する、請求項2に記載の配線形成方法。
  4.  前記印刷配線は、インクジェット印刷、スクリーン印刷、グラビアオフセット印刷、ダイレクトグラビア印刷、及び凸版反転印刷のうちのいずれかにより形成される、請求項1~3のいずれか1項に記載の配線形成方法。
     
     
     
     
PCT/JP2015/001276 2014-03-25 2015-03-09 配線形成方法 WO2015146022A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016509975A JPWO2015146022A1 (ja) 2014-03-25 2015-03-09 配線形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014061369 2014-03-25
JP2014-061369 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015146022A1 true WO2015146022A1 (ja) 2015-10-01

Family

ID=54194576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001276 WO2015146022A1 (ja) 2014-03-25 2015-03-09 配線形成方法

Country Status (2)

Country Link
JP (1) JPWO2015146022A1 (ja)
WO (1) WO2015146022A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974759A (zh) * 2010-11-23 2011-02-16 海宁市科泰克金属表面技术有限公司 一种用于稀贵金属的后处理保护剂
JP2012256802A (ja) * 2011-06-10 2012-12-27 Ricoh Co Ltd 電極・配線用導電体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065011A (ja) * 2007-09-07 2009-03-26 Konica Minolta Holdings Inc 有機薄膜トランジスタの製造方法
JP2010177101A (ja) * 2009-01-30 2010-08-12 Tdk Corp 透明導電体
JP5481893B2 (ja) * 2009-03-18 2014-04-23 株式会社リコー 有機トランジスタアクティブ基板、有機トランジスタアクティブ基板の製造方法および有機トランジスタアクティブ基板を用いた電気泳動ディスプレイ
JP5760360B2 (ja) * 2010-09-28 2015-08-12 凸版印刷株式会社 薄膜トランジスタ及び薄膜トランジスタの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974759A (zh) * 2010-11-23 2011-02-16 海宁市科泰克金属表面技术有限公司 一种用于稀贵金属的后处理保护剂
JP2012256802A (ja) * 2011-06-10 2012-12-27 Ricoh Co Ltd 電極・配線用導電体

Also Published As

Publication number Publication date
JPWO2015146022A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
Kamyshny et al. Conductive nanomaterials for printed electronics
Li et al. Printable transparent conductive films for flexible electronics
JP4431543B2 (ja) Ag−Pd合金ナノ粒子を用いる配線基板製造方法
Won et al. A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%
KR102460116B1 (ko) 투명 코팅 및 투명 전도성 필름을 위한 특성 향상 충진제
Yang et al. Printed electrically conductive composites: conductive filler designs and surface engineering
Wu et al. A simple and efficient approach to a printable silver conductor for printed electronics
CN105378854B (zh) 导电浆料
US20090050856A1 (en) Voltage switchable dielectric material incorporating modified high aspect ratio particles
JP2015122310A (ja) 導電性複合材料の調製方法、前記材料及び前記材料を含む装置
TW201117231A (en) Ink for printing, metal nanoparticle utilized in ink, wiring, circuit substrate and semiconductor package
JP5310957B2 (ja) インクジェット記録用導電性水性インク
Deore et al. Formulation of screen-printable Cu molecular ink for conductive/flexible/solderable Cu traces
KR101724064B1 (ko) 전도성 탄소나노튜브-금속 복합체 잉크
Yu et al. Morphology, Electrical, and Rheological Properties of Silane‐Modified Silver Nanowire/Polymer Composites
JP5226715B2 (ja) 有機薄膜トランジスタ、その作製方法、および、それに使用されるゲート絶縁層
Wang et al. Flexible Multifunctionalized Carbon Nanotubes‐Based Hybrid Nanowires
Jeong et al. Printed Cu source/drain electrode capped by CuO hole injection layer for organic thin film transistors
JP2005135982A (ja) 回路基板の製造方法及び回路基板
KR101416579B1 (ko) 도금층을 구비한 도전성 페이스트 인쇄회로기판 및 이의 제조방법
WO2015146022A1 (ja) 配線形成方法
JP2009278045A (ja) 加工体およびその製造方法
JP4792203B2 (ja) 導電性ito膜上への金属薄膜層の形成方法、および該方法による導電性ito膜上の金属薄膜層
KR101748105B1 (ko) 배선 형성 방법
JP5708284B2 (ja) 電極・配線用導電体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770265

Country of ref document: EP

Kind code of ref document: A1