WO2015145914A1 - アンカーボルトの診断システム、その方法およびプログラム - Google Patents

アンカーボルトの診断システム、その方法およびプログラム Download PDF

Info

Publication number
WO2015145914A1
WO2015145914A1 PCT/JP2014/084616 JP2014084616W WO2015145914A1 WO 2015145914 A1 WO2015145914 A1 WO 2015145914A1 JP 2014084616 W JP2014084616 W JP 2014084616W WO 2015145914 A1 WO2015145914 A1 WO 2015145914A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor bolt
vibration
power
clip
detection
Prior art date
Application number
PCT/JP2014/084616
Other languages
English (en)
French (fr)
Inventor
三木 清一
宝珠山 治
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016509918A priority Critical patent/JPWO2015145914A1/ja
Priority to US15/129,817 priority patent/US10261052B2/en
Publication of WO2015145914A1 publication Critical patent/WO2015145914A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2691Bolts, screws, heads

Definitions

  • the present invention relates to an anchor bolt diagnosis system, method and program thereof.
  • Patent Document 1 discloses a technique for diagnosing an anchor bolt by natural vibration.
  • Patent Document 2 discloses a technique for viewing a property change surface based on the arrival time of a reflected wave.
  • Non-Patent Document 1 discloses a method of observing the amplitude by installing a vibration sensor on a concrete surface instead of an anchor bolt.
  • Non-Patent Document 2 discloses a technique for checking the amplitude of the hitting sound in order to examine the peeling of the concrete surface layer.
  • the technique described in the above document cannot diagnose the strength of the anchor bolt itself with high accuracy. This is because the resonance of the accessory (which is fastened by the anchor bolt) is dominant and is fixed by friction with the accessory, and the anchor bolt does not vibrate sufficiently. Moreover, the nonpatent literatures 1 and 2 cannot diagnose the intensity
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • an anchor bolt diagnosis system comprises: While sandwiching the anchor bolt, a vibration detection clip for detecting the power of vibration of the anchor bolt, A striking detection hammer that detects striking strength while striking the anchor bolt in a state of being pinched by the vibration sensing clip, Obtaining the impact strength and the vibration power output from the vibration detection clip and the impact detection hammer, and depending on whether the ratio of the vibration power to the impact strength is greater than a predetermined value Diagnostic means for diagnosing the health of the anchor bolt; Equipped with.
  • the anchor bolt diagnosis method comprises: A vibration detection step of detecting the power of vibration of the anchor bolt while holding the anchor bolt with a vibration detection clip; A striking detection step for detecting striking strength while striking with a striking detection hammer against the anchor bolt held by the vibration detection clip, Obtaining the impact strength and the vibration power output from the vibration detection clip and the impact detection hammer, and determining whether the ratio of the vibration power to the impact strength is greater than a predetermined value.
  • a diagnostic step to diagnose the health of the bolt including.
  • an anchor bolt diagnosis program comprises: A vibration detection step of detecting the power of vibration of the anchor bolt while holding the anchor bolt with a vibration detection clip; A striking detection step for detecting striking strength while striking with a striking detection hammer against the anchor bolt held by the vibration detection clip, Obtaining the impact strength and the vibration power output from the vibration detection clip and the impact detection hammer, and determining whether the ratio of the vibration power to the impact strength is greater than a predetermined value.
  • the soundness of the anchor bolt can be diagnosed with high accuracy, effectively and efficiently.
  • the anchor bolt diagnosis system 100 includes a vibration detection clip 101, a hit detection hammer 102, and a diagnosis unit 103.
  • the vibration detection clip 101 includes a sensor 111 that detects the vibration power of the anchor bolt 120 while holding the anchor bolt 120 therebetween.
  • the hit detection hammer 102 hits the anchor bolt 120 held by the vibration detection clip 101, and includes a sensor 121 that detects the hit strength.
  • the diagnosis unit 103 acquires the vibration power and the impact strength from the vibration detection clip 101 and the impact detection hammer 102, acquires the impact strength and the vibration power, and the ratio of the vibration power to the impact strength is predetermined.
  • the soundness of the anchor bolt 120 is diagnosed according to whether or not it is larger than the value.
  • the anchor bolt soundness can be diagnosed with high accuracy, effectiveness and efficiency.
  • FIG. 2 is an external perspective view for explaining a schematic configuration of the anchor bolt diagnosis system according to the present embodiment.
  • the anchor bolt 220 is driven into the concrete 221, and the accessory 223 is fixed to the concrete 221 by tightening the nut 222.
  • the anchor bolt 220 is sandwiched between the clips 201 and 202 with the vibration sensor, and the nut 222 is struck with the hammer 210 with the acceleration sensor 211, and the response vibration in at least two directions is normalized with the strength of the hit. And make a diagnosis.
  • the clip 201 sandwiches the anchor bolt 220 from the tip end side of the axial bolt toward the concrete 221 side (in the direction of the arrow 240).
  • the clip 202 sandwiches the anchor bolt 220 in a direction perpendicular to the bolt axis (in the direction of the arrow 250).
  • the acceleration sensor 211 is provided on the hammer 210 here, the present invention is not limited to this, and a speed sensor may be used.
  • the portion hit with the hammer 210 is not limited to the nut 222, but may be the anchor bolt 220 directly above the nut 222.
  • the vibration sensor and the acceleration sensor 211 are connected to a diagnostic unit 230 such as a computer, and the diagnostic unit 230 measures the strength of the impact with the acceleration of the hammer 210, normalizes it, and compares it with a predetermined threshold value. Diagnose the fixing soundness of the anchor bolt 220.
  • the diagnosis unit 230 uses only the initial impact response within a predetermined time after the impact among the acquired response vibrations during measurement. Thereby, the influence of resonance and reverberation due to the accessory 223 can be avoided.
  • the clip type it becomes possible to measure easily on site. It is important that the sensor is in close contact with a diagnosis target (an anchor bolt or the like), and this can be realized by softly fixing the vibration sensor to the clips 201 and 202 using, for example, a spring or a flexible material.
  • the diagnosis unit 230 notifies an error message when the strength of the hammer 210 is low. It is intended to obtain an appropriate vibration response of the anchor bolt by overcoming the friction of the accessory by causing the worker to strike it to some extent.
  • FIG. 3A is an enlarged view of the tip portion (contact surface with the anchor bolt) of the clip 201.
  • a vibration sensor 311 that detects vibration in a direction perpendicular to the axis of the anchor bolt 220 is provided on the contact surface 301 of the tip of the clip 201 with the anchor bolt 220.
  • a vibration sensor 321 that detects vibration in the axial direction of the anchor bolt 220 is provided on the contact surface 302 of the clip 201 at the tip with the anchor bolt 220.
  • FIG. 3B is an enlarged view of the tip end portion (contact surface with the anchor bolt) of the clip 202.
  • a vibration sensor 3331 for detecting vibration in a direction perpendicular to the axis of the anchor bolt 220 is provided on the contact surface 303 of the clip 202 at the tip with the anchor bolt 220.
  • a vibration sensor 341 (not shown) that detects vibration in a direction perpendicular to the axis of the anchor bolt 220 is provided on the contact surface 304 of the clip 201 with the anchor bolt 220 at the tip.
  • FIG. 4A is a longitudinal sectional view schematically showing the present system.
  • the cord extending from the sensor is omitted and the clip 202 is shown through.
  • the vibration sensor 311 provided in the clip 201 is in close contact with the anchor bolt 220 and detects the vibration in the Y direction.
  • the vibration sensor 321 provided at the tip of the other arm of the clip 201 is also in close contact with the anchor bolt 220 and detects the vibration in the X direction.
  • the vibration sensor 331 provided on the clip 202 is in close contact with the anchor bolt 220 and detects the vibration in the Z direction.
  • the hammer 210 is provided with an acceleration sensor 211 and detects the magnitude of the impact force applied to the nut 222. Thereby, the connectivity between the concrete 221 and the anchor bolt 220 and the soundness of the anchor bolt itself are diagnosed.
  • FIG. 4B is a cross-sectional view schematically showing the present system. For clarity, the clip is omitted and only the sensors 311, 321, 331, 341 and the anchor bolt 220 and nut 222 and the hammer 210 are shown.
  • vibration sensors are provided in the X, Y, and Z directions, and the nut 222 is hit with a hammer 210 from various directions to diagnose the soundness of the anchor bolt.
  • you can see the relationship between the striking strength and vibration response (for example, the presence or absence of non-linearity and the degree), know more in detail about friction and ease of movement, and more accurate Diagnosis can be performed.
  • diagnosis results can be made more accurate, and the variation and size of the results (by friction) itself Diagnosis of soundness can also be performed using as an index. It is also possible to use a highly accurate technique that excludes extreme outliers (vibration response) by numerous hits.
  • FIG. 5 is a diagram showing a functional configuration of this system.
  • the anchor bolt diagnosis system 200 includes clips 201 and 202, a hammer 210, and a diagnosis unit 230. The function of each element of this system will be described again with reference to FIG.
  • Clips 201 and 202 are vibration detection clips that detect the power of vibration in at least two directions of the anchor bolt 220 while holding the anchor bolt 220 therebetween.
  • the clips 201 and 202 include vibration sensors 311, 321, 331, and 341 that detect the vibration power in the axial direction (X axis) of the anchor bolt 220 and the directions orthogonal to the axis (Y and Z axes).
  • the hammer 210 is a hammer detecting hammer that detects the hammering strength while giving a hammer to the anchor bolt 220 held between the clips 201 and 202.
  • the hammer 210 includes a sensor 211 as an acceleration sensor.
  • the diagnosis unit 230 acquires the impact strength and vibration power output from the clips 201 and 202 and the hammer, and determines whether the anchor bolt is in proportion to whether the ratio of the vibration power to the impact strength is greater than a predetermined value. Diagnose the health of Further, the diagnosis unit 230 normalizes the response vibration acquired by the sensor 211 with the strength of the hit.
  • the diagnosis unit 230 diagnoses the soundness of the anchor bolt 220 using the vibration power within a predetermined time after hitting the anchor bolt 220 with the hammer 210.
  • the diagnosis unit 203 diagnoses the soundness of the anchor bolt based on the low frequency component of the vibration power.
  • the diagnosis part 203 diagnoses the soundness of the anchor bolt 220, when the impact strength with respect to the anchor bolt 220 is a predetermined value or more.
  • the diagnosis unit 203 diagnoses the soundness of the anchor bolt 220 based on the impact strength of the multiple hits by the hammer 210 and the vibration power detected by the vibration sensors 311, 321, 331, and 341 at that time.
  • the diagnosis unit 230 diagnoses the soundness of the anchor bolt 220 according to the speed of attenuation of the vibration power detected by the vibration sensors 311, 321, 331, and 341. Judge that soundness has declined.
  • the clips 201 and 202 have vibration sensors 311, 321, 331, and 341 for acquiring the vibration power of the anchor bolt 220 on the contact surface with the anchor bolt 220. Look at the power of the first few waveforms.
  • the degree of bending of the anchor bolt 220 is known from the vibration in the X-axis direction (bolt axis direction), and the soundness is also known from the vibration in the YZ-axis direction (direction perpendicular to the bolt axis). In particular, if there are many low-frequency components of vibration in the YZ axis direction (direction perpendicular to the bolt axis), it can be determined that the anchor bolt 220 is not firmly fixed.
  • Diagnostic unit 230 analyzes the height of the sound waveform in the time domain as shown in FIG. 6A. To avoid the effects of incidental resonances, the second half of the waveform is not seen. Further, frequency analysis is performed to determine whether the YZ axis is direct current, but the frequency analysis result is not used for soundness diagnosis. As shown in FIG. 6A, when sound, the vibration in the X-axis direction (bolt axis direction) is immediately attenuated, and the vibration in the YZ-axis direction (direction perpendicular to the bolt axis) is basically immediately attenuated. .
  • the vibration may resonate with a plate or the like to be attenuated slowly.
  • the vibration amplitude in the X-axis direction is large or the attenuation is slow.
  • the attenuation in the YZ axis direction is slow or DC.
  • the ratio of the response vibration to the impact strength increases as the strength decreases.
  • the response vibration waveform in the case of high strength and no cracks 701, the response vibration waveform is a tall triangle, but in the case of low strength 702 and directly above the crack 703, the response vibration waveform is It becomes a trapezoid.
  • the soundness diagnosis of the anchor bolt may be performed using such a waveform.
  • a ratio between the peak height of the nut waveform and the peak height of the hammer waveform may be analyzed as a relationship between the peak height of the hammer waveform (strike strength). When this ratio is small, the strength is high, and when the ratio is large, it can be determined that the strength is low.
  • diagnosis may be made more accurate using machine learning. Furthermore, sound / unhealthy may be identified using SVM (support vector machine) or the like. Further, the diagnosis result may be normalized by the bolt diameter.
  • SVM support vector machine
  • FIG. 7B is a flowchart for explaining the flow of processing performed by the diagnosis unit 230.
  • the diagnosis unit 230 acquires the hammering sound from the hammer, and then acquires and analyzes the hammering sound in step 713. Further, in step S715, the diagnosis unit 230 calculates the vibration power immediately after the impact, the vibration attenuation rate, and Get the DC component of the vibration.
  • the soundness of the anchor bolt is determined using the parameters obtained in S715.
  • the soundness of the anchor bolt can be diagnosed with high accuracy, effectively and efficiently using the clip and the hammer provided with the sensor.
  • FIG. 8 is an external perspective view for explaining a schematic configuration of the anchor bolt diagnosis system 800 according to the present embodiment.
  • the anchor bolt diagnosis system 800 according to the present embodiment differs from the second embodiment in that it has only one clip 801 and does not have the clip 202. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 9 is an enlarged view of the tip portion (contact surface with the anchor bolt) of the clip 801.
  • Two vibration sensors 911 and 912 that detect vibration in a direction perpendicular to the axis of the anchor bolt 220 are provided on the contact surface 901 of the clip 801 with the anchor bolt 220 at the tip, and vibrations in different directions are provided. To detect.
  • a vibration sensor 321 that detects vibration in the axial direction of the anchor bolt 220 is provided on the contact surface 902 of the clip 801 with the anchor bolt 220 at the tip.
  • FIG. 10 is a diagram showing a functional configuration of this system.
  • the anchor bolt diagnosis system 800 includes a clip 801, a hammer 210, and a diagnosis unit 230.
  • the clip 801 detects the power of vibration in at least two directions of the anchor bolt 220 while holding the anchor bolt 220.
  • the clip 801 includes vibration sensors 321, 911, and 912 that detect vibration power in the axial direction (X axis) of the anchor bolt 220 and in the directions orthogonal to the axis (Y and Z axes).
  • the health of the anchor bolt can be diagnosed more simply by using only one clip 801.
  • FIG. 11 is an external perspective view for explaining a schematic configuration of an anchor bolt diagnosis system 11000 according to the present embodiment.
  • the hammer 1110 provided with the acceleration sensor 111 is connected to the clip 1101 and applies an impact to the nut 222 with a constant urging force by the spring 1102 as compared with the second embodiment. It is different in point. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 アンカーボルトの診断システムであって、アンカーボルトを狭持しつつ、アンカーボルトの振動のパワーを検知する振動検知クリップと、振動検知クリップで狭持された状態のアンカーボルトに対して打撃を与えつつ、打撃強さを検知する打撃検知ハンマーと、振動検知クリップと打撃検知ハンマーとから出力された、打撃強さおよび振動のパワーを取得して、打撃強さに対する振動のパワーの割合が所定値より大きいか否かに応じて前記アンカーボルトの健全性を診断する診断手段と、を備えた。

Description

アンカーボルトの診断システム、その方法およびプログラム
 本発明は、アンカーボルトの診断システム、その方法およびプログラムに関する。
 上記技術分野において、特許文献1には、固有振動でアンカーボルトを診断する技術が開示されている。特許文献2には、反射波の到達時間を手がかりに物性変化面をみる技術が開示されている。非特許文献1には、振動センサをアンカーボルトではなくコンクリート面に設置して振幅をみる方法が開示されている。非特許文献2には、コンクリート表層部の剥離を調べるため、打音の振幅を見る技術が開示されている。
特開2004-325224号公報 特開2010-203810号公報
平成25年秋季講演大会講演概要集 平成25年11月 P33-36「電磁パルス法に基づくアンカーボルト固着部の健全度評価に関する実験的検討」 土木学会論文集No.704V55,65-79 2002年5月「コンクリート表層部欠陥の定量的非破壊検査への打音法の適用」
 しかしながら、上記文献に記載の技術では、アンカーボルトそのものの強度を高精度に診断できるものではなかった。なぜなら、付帯物(アンカーボルトにより留められているもの)の共振が支配的であり、付帯物との摩擦で固定され、アンカーボルトが十分に振動しないからである。また、非特許文献1、2は、アンカーボルト自体の強度を診断できない。
 本発明の目的は、上述の課題を解決する技術を提供することにある。
 上記目的を達成するため本発明に係るアンカーボルトの診断システムは、
 前記アンカーボルトを狭持しつつ、前記アンカーボルトの振動のパワーを検知する振動検知クリップと、
 前記振動検知クリップで狭持された状態の前記アンカーボルトに対して打撃を与えつつ、打撃強さを検知する打撃検知ハンマーと、
 前記振動検知クリップと打撃検知ハンマーとから出力された、前記打撃強さおよび前記振動のパワーを取得して、前記打撃強さに対する前記振動のパワーの割合が所定値より大きいか否かに応じて前記アンカーボルトの健全性を診断する診断手段と、
 を備えた。
 上記目的を達成するため本発明に係るアンカーボルトの診断方法は、
 前記アンカーボルトを振動検知クリップで狭持しつつ、前記アンカーボルトの振動のパワーを検知する振動検知ステップと、
 前記振動検知クリップで狭持された状態の前記アンカーボルトに対して打撃検知ハンマーで打撃を与えつつ、打撃強さを検知する打撃検知ステップと、
 前記振動検知クリップと打撃検知ハンマーとから出力された、前記打撃強さおよび前記振動パワーを取得して、前記打撃強さに対する前記振動パワーの割合が所定値より大きいか否かに応じて前記アンカーボルトの健全性を診断する診断ステップと、
 を含む。
 上記目的を達成するため本発明に係るアンカーボルトの診断プログラムは、
 前記アンカーボルトを振動検知クリップで狭持しつつ、前記アンカーボルトの振動のパワーを検知する振動検知ステップと、
 前記振動検知クリップで狭持された状態の前記アンカーボルトに対して打撃検知ハンマーで打撃を与えつつ、打撃強さを検知する打撃検知ステップと、
 前記振動検知クリップと打撃検知ハンマーとから出力された、前記打撃強さおよび前記振動パワーを取得して、前記打撃強さに対する前記振動パワーの割合が所定値より大きいか否かに応じて前記アンカーボルトの健全性を診断する診断ステップと、
 を実行させる。
 本発明によれば、アンカーボルトの健全度を高精度、効果的かつ効率的に診断できる。
本発明の第1実施形態に係るアンカーボルトの健全性診断システムの構成を示すブロック図である。 本発明の第2実施形態に係るアンカーボルトの健全性診断システムの構成を示す図である。 本発明の第2実施形態に係るクリップの構成を示す図である。 本発明の第2実施形態に係るクリップの構成を示す図である。 本発明の第2実施形態に係るアンカーボルトの健全性診断システムの構成を示す図である。 本発明の第2実施形態に係るアンカーボルトの健全性診断システムの構成を示す図である。 本発明の第2実施形態に係るアンカーボルトの健全性診断システムの機能構成を示すブロック図である。 本発明の第2実施形態に係るアンカーボルトの健全性診断システムの診断方法を説明する図である。 本発明の第2実施形態に係るアンカーボルトの健全性診断システムの診断方法を説明する図である。 本発明の第2実施形態に係るアンカーボルトの健全性診断システムの診断方法を説明する図である。 本発明の第2実施形態に係るアンカーボルトの健全性診断システムの診断方法を説明するフローチャートである。 本発明の第3実施形態に係るアンカーボルトの健全性診断システムの構成を示す図である。 本発明の第3実施形態に係るクリップの構成を示す図である。 本発明の第3実施形態に係るアンカーボルトの健全性診断システムの機能構成を示すブロック図である。 本発明の第4実施形態に係るアンカーボルトの健全性診断システムの構成を示す図である。
 以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素はあくまで例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。
 [第1実施形態]
 本発明の第1実施形態としてのアンカーボルト診断システム100について、図1を用いて説明する。図1に示すように、アンカーボルト診断システム100は、振動検知クリップ101と打撃検知ハンマー102と診断部103とを含む。
 振動検知クリップ101は、アンカーボルト120を狭持しつつ、アンカーボルト120の振動のパワーを検知するセンサ111を有する。打撃検知ハンマー102は、振動検知クリップ101で狭持された状態のアンカーボルト120に対して打撃を与えるものであり、打撃強さを検知するセンサ121を備える。
 また診断部103は、振動検知クリップ101および打撃検知ハンマー102から、振動のパワーおよび打撃強さを取得して、打撃強さおよび振動パワーを取得して、打撃強さに対する振動パワーの割合が所定値より大きいか否かに応じてアンカーボルト120の健全性を診断する。
 このような構成により、アンカーボルトの健全度を高精度、効果的かつ効率的に診断できる。
 [第2実施形態]
 次に本発明の第2実施形態に係るアンカーボルト診断システム200について、図2乃至図4を用いて説明する。図2は、本実施形態に係るアンカーボルト診断システムの概略構成を説明するための外観斜視図である。
 図2に示すように、アンカーボルト220は、コンクリート221に打ち込まれ、ナット222を締め付けることにより付帯物223を、コンクリート221に固定している。
 このようなアンカーボルト220が健全にコンクリートに打ち込まれていなければ、付帯物223の離脱、落下などの事故が起こる原因となってしまう。そこで、アンカーボルトの健全性を高精度に調べる方法が求められる。かといって、全国の構造物においてアンカーボルト220は無数に使用されているため、その一本一本の健全性を調べるにあたって大きな作業負担や作業時間はかけられず、高い効率性が求められる。
 そこで、本実施形態では、振動センサ付きのクリップ201、202でアンカーボルト220を挟み込み、さらに加速度センサ211付きのハンマー210でナット222を叩き、その少なくとも2方向の応答振動を打撃の強さで正規化して、診断を行なう。クリップ201は、アンカーボルト220を、軸方向ボルト先端側からコンクリート221側に向けて(矢印240方向に)挟みこんでいる。一方、クリップ202は、アンカーボルト220を、ボルトの軸と直角をなす方向(矢印250方向に)挟みこんでいる。ここでは、ハンマー210に加速度センサ211を設けたが、本発明はこれに限定されるものではなく、速度センサでもよい。
 ハンマー210で叩く部分は、ナット222に限定されるものではなく、ナット222直上のアンカーボルト220でもよい。このようにアンカーボルト220の根本を叩くことにより、応答振動に対するボルト220の長さなどの影響が少なくなる。振動センサおよび加速度センサ211はコンピュータなどの診断部230に接続されており、診断部230は、ハンマー210の加速度で打撃の強さを計測し、正規化した上で所定の閾値と比較して、アンカーボルト220の固定の健全性を診断する。
 診断部230は、計測に際して、取得した応答振動のうち、打撃後、所定時間以内の、初期打撃応答だけを用いる。これにより、付帯物223による、共振・残響の影響を回避できる。
 クリップ型を採用したことにより、現場で簡単に計測可能となる。センサを診断対象(アンカーボルト等)に密着させることが重要であり、クリップ201、202に例えばバネや柔軟な素材を用いて振動センサを柔らかく固定することでこれを実現することができる。
 また、本実施形態では、診断部230は、ハンマー210による打撃の強度が低い場合には、エラーメッセージを報知する。作業者にある程度強く叩かせることにより、付帯物の摩擦に打ち勝って適切なアンカーボルトの振動応答を得ることを意図するものである。
 図3Aは、クリップ201の先端部(アンカーボルトとの当接面)の拡大図である。クリップ201先端部のアンカーボルト220との当接面301には、アンカーボルト220の軸と直角をなす方向の振動を検出する振動センサ311が設けられている。
 一方、クリップ201先端部のアンカーボルト220との当接面302には、アンカーボルト220の軸方向の振動を検出する振動センサ321が設けられている。
 図3Bは、クリップ202の先端部(アンカーボルトとの当接面)の拡大図である。クリップ202先端部のアンカーボルト220との当接面303には、アンカーボルト220の軸と直角をなす方向の振動を検出する振動センサ3331が設けられている。
 一方、クリップ201先端部のアンカーボルト220との当接面304には、同様に、アンカーボルト220の軸と直角をなす方向の振動を検出する振動センサ341(不図示)が設けられている。
 図4Aは、本システムを模式的に示す縦断面図である。分かりやすいように、センサから延びたコードを省略し、クリップ202を透過させて示している。図4に示すように、クリップ201に設けられた振動センサ311は、アンカーボルト220に密着して、そのY方向の振動を検出する。一方、クリップ201の他方の腕の先端に設けられた振動センサ321は、やはりアンカーボルト220に密着して、そのX方向の振動を検出する。
 さらに、クリップ202に設けられた振動センサ331は、アンカーボルト220に密着して、そのZ方向の振動を検出する。
 ハンマー210には、加速度センサ211が設けられ、ナット222に加えた衝撃力の大きさを検出する。これにより、コンクリート221とアンカーボルト220との結合性、アンカーボルト自体の健全性を診断する。
 図4Bは、本システムを模式的に示す横断面図である。分かりやすいように、クリップを省略し、センサ311、321、331、341およびアンカーボルト220およびナット222ならびにハンマー210のみを示している。
 図4Bに示すように、X、Y、Zそれぞれの方向に振動センサを設け、様々な方向からナット222をハンマー210で叩くことにより、アンカーボルトの健全性を診断する。この図のように、方向を変えてハンマー210で多数回打撃を行なうことが望ましく、センサ取り付け方向の影響を緩和できる。また、強さを変えて打撃を行なうことにより、劣化が生じている場合にその方向性を検知することができる。劣化の生じている方向への打撃はより大きな振動応答を得る。また、強さを変えて打撃を行うことにより、打撃強さと振動応答の関係(例えば非線形性の有無や度合)を見ることができ、摩擦や動きやすさをより詳細に知り、より精度の高い診断を行なうことが可能となる。
 さらに多数回打撃を行なうことにより、毎回の打撃でランダムにばらつく摩擦の影響を平均化するといった統計処理により、診断結果をより高精度化したり、その(摩擦による)ばらつきの多さ・大きさそのものを指標として健全性の診断を行うこともできる。多数回の打撃により、極端な外れ値(振動応答)は除外するといった高精度化手法も使用できる。
 図5は、本システムの機能構成を示す図である。図5に示すように、アンカーボルトの診断システム200は、クリップ201、202とハンマー210と診断部230とを備える。図5を用いて改めて本システムの各要素の機能について説明する。
 クリップ201、202は、アンカーボルト220を狭持しつつ、アンカーボルト220の少なくとも2方向の振動のパワーを検知する振動検知クリップである。クリップ201、202は、アンカーボルト220の軸方向(X軸)および軸と直交する方向(Y、Z軸)の振動のパワーを検知する振動センサ311、321、331、341を備えている。 また、ハンマー210は、クリップ201、202で狭持された状態のアンカーボルト220に対して打撃を与えつつ、打撃強さを検知する打撃検知ハンマーである。ハンマー210は、加速度センサとしてのセンサ211を備える。
 診断部230は、クリップ201、202とハンマーとから出力された、打撃強さおよび振動パワーを取得して、打撃強さに対する振動パワーの割合が所定値より大きいか否かに応じて前記アンカーボルトの健全性を診断する。また、診断部230は、センサ211で取得した応答振動を打撃の強さで正規化する。
 診断部230は、ハンマー210でアンカーボルト220に対して打撃を与えてから、所定時間内の振動パワーを用いてアンカーボルト220の健全性を診断する。診断部203は、特に、振動パワーの低周波成分に基づいてアンカーボルトの健全性を診断する。また、診断部203は、アンカーボルト220に対する打撃強さが所定値以上の場合に、アンカーボルト220の健全性を診断する。診断部203は、ハンマー210による、複数回の打撃の打撃強さおよびその際に振動センサ311、321、331、341で検出した振動パワーに基づいて、アンカーボルト220の健全性を診断する。特に、診断部230は、振動センサ311、321、331、341で検出した振動パワーの減衰の速さに応じてアンカーボルト220の健全性を診断し、減衰が遅い場合には、アンカーボルト220の健全性が低下していると判断する。
 クリップ201、202は、アンカーボルト220の振動のパワーを取得するための振動センサ311、321、331、341を、アンカーボルト220との当接面に有する
 診断部230は、ハンマー210による打音の初めのごく一部の波形のパワーを見る。X軸方向(ボルト軸方向)の振動からアンカーボルト220の曲がり具合が分かり、YZ軸方向(ボルト軸に直角をなす方向)の振動からも健全度がわかる。特にYZ軸方向(ボルト軸に直角をなす方向)の振動の低周波成分が多いとアンカーボルト220がしっかりと固定されていないと判断できる。
 診断部230は、図6Aに示すように、時間領域で打音波形の高さを解析する。付帯物共振の影響を避けるため、波形の後半は見ない。またYZ軸が直流的かどうかを判定するために周波数解析を行なうが、健全性診断には周波数解析結果を用いない。図6Aに示すように、健全な場合には、X軸方向(ボルト軸方向)の振動がすぐ減衰し、YZ軸方向(ボルト軸に直角をなす方向)の振動が基本的にはすぐ減衰する。YZ軸方向(ボルト軸に直角をなす方向)の振動については、板などで共振して減衰が遅い場合もある。一方、不健全な場合には、X軸方向の振動の振幅が大きく、あるいは減衰が遅い。また、図6Bに示すように、YZ軸方向の減衰が遅く、あるいは直流的となる。一方、打撃強度に対する応答振動の割合は、低強度であるほど大きくなる。
 ここで、ハンマー210での打撃の際には、付帯物の摩擦よりも強い力で叩くことが好ましい。
 図7Aに示すように、高強度でヒビのない場合701には、応答振動の波形は背の高い三角になるが、低強度の場合702やヒビ直上の場合703には、応答振動の波形は台形になる。このような波形を用いて、アンカーボルトの健全性診断を行なってもよい。ナット波形のピーク高と、ハンマー波形のピーク高の比を、ハンマー波形ピーク高さ(打撃強さ)との関係として分析してもよい。この比が小さい場合、高強度であり、比が大きい場合、低強度であると判定できる。
 なお、機械学習を用いて診断を高精度化してもよい。さらにSVM(サポートベクターマシン)等用いて健全・不健全を識別してもよい。また、ボルト径によって診断結果を正規化してもよい。
 図7Bは、診断部230が行なう処理の流れを説明するフローチャートである。ステップS711で診断部230は、ハンマーからの打撃音を取得すると、次いで、ステップ713で打音を取得して解析し、さらにステップS715で打撃直後の振動のパワー、その振動の減衰速度および、その振動の直流成分を取得する。ステップS717では、S715で求めたパラメータを用いて、アンカーボルトの健全性を判断する。
 以上説明したように、本実施形態によれば、センサを備えたクリップおよびハンマーを用いて、アンカーボルトの健全度を高精度、効果的かつ効率的に診断できる。
 [第3実施形態]
 次に本発明の第3実施形態に係るアンカーボルト診断システム800について、図8を用いて説明する。図8は、図2は、本実施形態に係るアンカーボルト診断システム800の概略構成を説明するための外観斜視図である。本実施形態に係るアンカーボルト診断システム800は、上記第2実施形態と比べると、クリップ801を一つだけ有し、クリップ202を有さない点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
 図9は、クリップ801の先端部(アンカーボルトとの当接面)の拡大図である。クリップ801先端部のアンカーボルト220との当接面901には、アンカーボルト220の軸と直角をなす方向の振動を検出する2つの振動センサ911、912が設けられておりそれぞれ異なる方向の振動を検出する。
 一方、クリップ801先端部のアンカーボルト220との当接面902には、アンカーボルト220の軸方向の振動を検出する振動センサ321が設けられている。
 図10は、本システムの機能構成を示す図である。図10に示すように、アンカーボルトの診断システム800は、クリップ801とハンマー210と診断部230とを備える。クリップ801は、アンカーボルト220を狭持しつつ、アンカーボルト220の少なくとも2方向の振動のパワーを検知する。クリップ801は、アンカーボルト220の軸方向(X軸)および軸と直交する方向(Y、Z軸)の振動のパワーを検知する振動センサ321、911、912を備えている。
 以上のように構成された本実施形態によれば、一つのクリップ801を用いるだけで、より簡易にアンカーボルトの健全性を診断することができる。
 [第4実施形態]
 次に本発明の第4実施形態に係るアンカーボルト診断システム1100について、図11を用いて説明する。図11は、本実施形態に係るアンカーボルト診断システム11000の概略構成を説明するための外観斜視図である。本実施形態に係るアンカーボルト診断システム1100は、上記第2実施形態と比べると、加速度センサ111を備えたハンマー1110が、クリップ1101と接続されバネ1102によって一定の付勢力でナット222に衝撃を与える点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
 本実施形態によれば、ハンマーによってアンカーボルトに与える打撃の強さを一定にすることができる。
 [他の実施形態]
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
 また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する情報処理プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。
 この出願は、2014年3月28日に出願された日本出願特願2014-069330を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 

Claims (11)

  1.  アンカーボルトの診断システムであって、
     前記アンカーボルトを狭持しつつ、前記アンカーボルトの振動のパワーを検知する振動検知クリップと、
     前記振動検知クリップで狭持された状態の前記アンカーボルトに対して打撃を与えつつ、打撃強さを検知する打撃検知ハンマーと、
     前記振動のパワーおよび前記打撃強さを取得して、前記打撃強さに対する前記振動のパワーの割合が所定値より大きいか否かに応じて前記アンカーボルトの健全性を診断する診断手段と、
     を備えたアンカーボルトの診断システム。
  2.  前記診断手段は、前記打撃検知ハンマーで前記アンカーボルトに対して打撃を与えてから、所定時間内の前記振動のパワーを用いて前記アンカーボルトの健全性を診断する請求項1に記載のアンカーボルトの診断システム。
  3.  振動検知クリップは、前記アンカーボルトの軸方向および軸と直交する方向の振動のパワーを検知する請求項1または2に記載のアンカーボルトの診断システム。
  4.  前記診断手段は、前記振動のパワーの低周波成分に基づいてアンカーボルトの健全性を診断する請求項1、2または3に記載のアンカーボルトの診断システム。
  5.  前記診断手段は、前記アンカーボルトに対する前記打撃強さが所定値以上の場合に、前記アンカーボルトの健全性を診断する請求項1、2または3に記載のアンカーボルトの診断システム。
  6.  前記診断手段は、前記打撃検知ハンマーによる、複数回の打撃の打撃強さおよびその際の前記振動のパワーに基づいて、前記アンカーボルトの健全性を診断する請求項1乃至5のいずれか1項に記載のアンカーボルトの診断システム。
  7.  前記診断手段は、前記振動のパワーの減衰の速さに応じて前記アンカーボルトの健全性を診断する請求項1乃至6のいずれか1項に記載のアンカーボルトの診断システム。
  8.  前記振動検知クリップは、前記アンカーボルトの振動のパワーを取得するための振動センサを、前記アンカーボルトとの当接面に有する請求項1乃至7のいずれか1項に記載のアンカーボルトの診断システム。
  9.  前記打撃検知ハンマーは、速度センサまたは加速度センサを備え、該加速度センサで取得した応答振動を打撃の強さで正規化する請求項1乃至8のいずれか1項に記載のアンカーボルトの診断システム。
  10.  アンカーボルトの診断方法であって、
     前記アンカーボルトを振動検知クリップで狭持しつつ、前記アンカーボルトの振動のパワーを検知する振動検知ステップと、
     前記振動検知クリップで狭持された状態の前記アンカーボルトに対して打撃検知ハンマーで打撃を与えつつ、打撃強さを検知する打撃検知ステップと、
     前記振動のパワーおよび前記打撃強さを取得して、前記打撃強さに対する前記振動パワーの割合が所定値より大きいか否かに応じて前記アンカーボルトの健全性を診断する診断ステップと、
     を含むアンカーボルトの診断方法。
  11.  アンカーボルトの診断プログラムであって、
     前記アンカーボルトを振動検知クリップで狭持しつつ、前記アンカーボルトの振動のパワーを検知する振動検知ステップと、
     前記振動検知クリップで狭持された状態の前記アンカーボルトに対して打撃検知ハンマーで打撃を与えつつ、打撃強さを検知する打撃検知ステップと、
     前記振動のパワーおよび前記打撃強さを取得して、前記打撃強さに対する前記振動パワーの割合が所定値より大きいか否かに応じて前記アンカーボルトの健全性を診断する診断ステップと、
     を実行させるアンカーボルトの診断プログラム。
PCT/JP2014/084616 2014-03-28 2014-12-26 アンカーボルトの診断システム、その方法およびプログラム WO2015145914A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016509918A JPWO2015145914A1 (ja) 2014-03-28 2014-12-26 アンカーボルトの診断システム、その方法およびプログラム
US15/129,817 US10261052B2 (en) 2014-03-28 2014-12-26 Anchor bolt diagnosing system, method of the same, and program of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-069330 2014-03-28
JP2014069330 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015145914A1 true WO2015145914A1 (ja) 2015-10-01

Family

ID=54194479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084616 WO2015145914A1 (ja) 2014-03-28 2014-12-26 アンカーボルトの診断システム、その方法およびプログラム

Country Status (3)

Country Link
US (1) US10261052B2 (ja)
JP (1) JPWO2015145914A1 (ja)
WO (1) WO2015145914A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897199B1 (ja) * 2015-11-02 2016-03-30 中日本ハイウェイ・エンジニアリング東京株式会社 アンカーボルト健全度評価判定方法
JP2018091685A (ja) * 2016-12-01 2018-06-14 国立研究開発法人産業技術総合研究所 検査装置および検査方法
JP2021009111A (ja) * 2019-07-02 2021-01-28 株式会社ケー・エフ・シー J型アンカーボルトの定着状態判定装置及び定着状態判定方法
JP7466991B2 (ja) 2020-04-17 2024-04-15 株式会社ケー・エフ・シー 打撃検査対応アンカー及びその検査方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114651A1 (de) * 2017-06-30 2019-01-03 Rudi Hachenberg Verfahren und Vorrichtung zur Bewertung der Verbindungsqualität von Anschlageinrichtungen
AT16526U1 (de) * 2018-06-18 2019-12-15 Fraunhofer Ges Forschung Prüfkopfzange zur Ultraschall-Riss-Detektion, Kit zur Ultraschall-Riss-Detektion und Verwendung der Prüfkopfzange zur Ultraschall-Riss-Detektion
CN110749650B (zh) * 2019-10-16 2021-11-02 四川大学 基于支持向量机的锚杆锚固密实度等级评定方法
DE102019216784B3 (de) * 2019-10-30 2020-12-17 Thyssenkrupp Ag Prüfvorrichtung und Verfahren zur Beurteilung des Geräuschverhaltens einer Baugruppe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102188A (en) * 1978-01-30 1979-08-11 Chunichi Denshi Kogyosha Defective and nonndefective discriminating method of product and its device
WO2002018927A1 (fr) * 2000-08-28 2002-03-07 Mitsubishi Denki Kabushiki Kaisha Dispositif de controle de structure
WO2004011893A1 (ja) * 2002-07-25 2004-02-05 Takanori Nakamura ボルト軸力測定器および方法
JP2004325224A (ja) * 2003-04-24 2004-11-18 Japan Industrial Testing Corp アンカーボルトの腐食減肉の診断方法およびそれに用いる装置
WO2009041139A1 (ja) * 2007-09-26 2009-04-02 Taiyo Nippon Sanso Corporation 超音波探傷検査用探触子および超音波探傷検査用スキャナ
JP2010203810A (ja) * 2009-02-27 2010-09-16 Shimizu Corp コンクリート構造物の非破壊検査方法および装置ならびにアンカーボルト
JP2010271116A (ja) * 2009-05-20 2010-12-02 Applied Research Kk 健全性診断用打撃ハンマ及びこれを用いたコンクリート構造物の健全性診断方法
JP2012168022A (ja) * 2011-02-15 2012-09-06 Sato Kogyo Co Ltd コンクリート系構造物の品質診断方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062227A (en) * 1976-12-23 1977-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration CW ultrasonic bolt tensioning monitor
US4062229A (en) * 1977-02-22 1977-12-13 General Electric Company Method of testing the integrity of installed rock bolts
JP3560830B2 (ja) * 1998-10-23 2004-09-02 東芝三菱電機産業システム株式会社 ボルトの緩み判定装置
CN102207404A (zh) * 2011-03-16 2011-10-05 江苏中矿立兴能源科技有限公司 一种煤矿非全长粘结锚杆横向振动固有频率无损检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102188A (en) * 1978-01-30 1979-08-11 Chunichi Denshi Kogyosha Defective and nonndefective discriminating method of product and its device
WO2002018927A1 (fr) * 2000-08-28 2002-03-07 Mitsubishi Denki Kabushiki Kaisha Dispositif de controle de structure
WO2004011893A1 (ja) * 2002-07-25 2004-02-05 Takanori Nakamura ボルト軸力測定器および方法
JP2004325224A (ja) * 2003-04-24 2004-11-18 Japan Industrial Testing Corp アンカーボルトの腐食減肉の診断方法およびそれに用いる装置
WO2009041139A1 (ja) * 2007-09-26 2009-04-02 Taiyo Nippon Sanso Corporation 超音波探傷検査用探触子および超音波探傷検査用スキャナ
JP2010203810A (ja) * 2009-02-27 2010-09-16 Shimizu Corp コンクリート構造物の非破壊検査方法および装置ならびにアンカーボルト
JP2010271116A (ja) * 2009-05-20 2010-12-02 Applied Research Kk 健全性診断用打撃ハンマ及びこれを用いたコンクリート構造物の健全性診断方法
JP2012168022A (ja) * 2011-02-15 2012-09-06 Sato Kogyo Co Ltd コンクリート系構造物の品質診断方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897199B1 (ja) * 2015-11-02 2016-03-30 中日本ハイウェイ・エンジニアリング東京株式会社 アンカーボルト健全度評価判定方法
JP2018091685A (ja) * 2016-12-01 2018-06-14 国立研究開発法人産業技術総合研究所 検査装置および検査方法
JP2021009111A (ja) * 2019-07-02 2021-01-28 株式会社ケー・エフ・シー J型アンカーボルトの定着状態判定装置及び定着状態判定方法
JP7252698B2 (ja) 2019-07-02 2023-04-05 株式会社ケー・エフ・シー J型アンカーボルトの定着状態判定装置及び定着状態判定方法
JP7466991B2 (ja) 2020-04-17 2024-04-15 株式会社ケー・エフ・シー 打撃検査対応アンカー及びその検査方法

Also Published As

Publication number Publication date
JPWO2015145914A1 (ja) 2017-04-13
US20170138908A1 (en) 2017-05-18
US10261052B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2015145914A1 (ja) アンカーボルトの診断システム、その方法およびプログラム
US20230266274A1 (en) Identifying Structural Defect Geometric Features From Acoustic Emission Waveforms
Ochôa et al. Detection of multiple low-energy impact damage in composite plates using Lamb wave techniques
US8285495B2 (en) Corrosion inspection and monitoring system
JP6308902B2 (ja) アンカーボルトの非破壊検査方法および非破壊検査装置
JP6079776B2 (ja) 構造物の分析装置および構造物の分析方法
Hosoya et al. Axial force measurement of the bolt/nut assemblies based on the bending mode shape frequency of the protruding thread part using ultrasonic modal analysis
JP5896242B2 (ja) アンカーボルトとコンクリートとの固着状態を診断する方法
Alkassar et al. Simulation of Lamb wave modes conversions in a thin plate for damage detection
JP6241927B2 (ja) コンクリート構造物の診断方法
KR20160038493A (ko) 음향 공진 비파괴 검사 시스템
JP2022516440A (ja) 試験対象物の機械的特性を求めるための装置及び方法
JP2015219028A (ja) 構造物の打音検査装置
US11181507B2 (en) Method for an acoustic resonance inspection and diagnosing of defects in solid materials and a diagnostic device
JP2010008151A (ja) 締結状態の検査装置及び方法
JP5897199B1 (ja) アンカーボルト健全度評価判定方法
Bhuiyan et al. Experimental and computational analysis of acoustic emission waveforms for SHM applications
JP2005148064A (ja) 圧力テスト中またはテスト後の圧力容器の変化または損傷の検出装置と検出方法
KR102492667B1 (ko) 공진점의 모드형상 벡터와 주평면의 직교성 분석을 이용한 미소크랙 검사장치 및 방법
WO2015059956A1 (ja) 構造物診断装置、構造物診断方法、及びプログラム
JP2006008385A (ja) エスカレーターハンドレールの劣化診断方法
JP6893161B2 (ja) トンネル内重量物の取付治具の非破壊診断方法
KR100765407B1 (ko) 검진기능을 갖는 능동형 진동측정 시스템
KR101415359B1 (ko) 배관의 원주방향 두께 추정 시스템 및 방법
JP7489638B2 (ja) 非破壊検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509918

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15129817

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887251

Country of ref document: EP

Kind code of ref document: A1