WO2015145896A1 - アルミナバリア層を有する鋳造製品 - Google Patents

アルミナバリア層を有する鋳造製品 Download PDF

Info

Publication number
WO2015145896A1
WO2015145896A1 PCT/JP2014/083417 JP2014083417W WO2015145896A1 WO 2015145896 A1 WO2015145896 A1 WO 2015145896A1 JP 2014083417 W JP2014083417 W JP 2014083417W WO 2015145896 A1 WO2015145896 A1 WO 2015145896A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum oxide
barrier layer
cast product
alumina barrier
layer
Prior art date
Application number
PCT/JP2014/083417
Other languages
English (en)
French (fr)
Inventor
国秀 橋本
慎一 浦丸
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54194463&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015145896(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to ES14887198T priority Critical patent/ES2765349T3/es
Priority to CN201480077579.XA priority patent/CN106460144B/zh
Priority to US15/116,738 priority patent/US20170306468A1/en
Priority to CA2940179A priority patent/CA2940179C/en
Priority to EP14887198.1A priority patent/EP3124645B1/en
Publication of WO2015145896A1 publication Critical patent/WO2015145896A1/ja
Priority to US17/493,298 priority patent/US11674212B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a cast product having an alumina barrier layer, and more specifically to a cast product having an alumina barrier layer having a stable structure.
  • Heat-resistant cast steel products such as reaction tubes and cracking tubes for ethylene production, carburizing heat treatment furnace hearth rolls, radiant tubes, and metal dusting-resistant materials are exposed to high-temperature atmospheres, so austenitic heat-resistant alloys with excellent high-temperature strength It is used.
  • a metal oxide layer is formed on the surface during use in a high temperature atmosphere, and this oxide layer serves as a barrier to protect the base material in a high temperature atmosphere.
  • Patent Document 3 the inner surface is processed so that the surface roughness (Ra) of the cast body becomes 0.05 to 2.5 ⁇ m, and then heat treatment is performed in an oxidizing atmosphere to thereby form Al on the inner surface of the cast body.
  • a casting product is proposed in which an alumina barrier layer containing 2 O 3 is formed, and Cr-based particles having a higher Cr concentration than the base material base are dispersed at the interface between the alumina barrier layer and the cast body (for example, Patent Document 3). reference).
  • Patent Document 3 can maintain excellent oxidation resistance, carburization resistance, nitridation resistance, corrosion resistance, etc. over a long period of time when used in a high temperature atmosphere due to the presence of a stable alumina barrier layer. it can.
  • the casting product according to the present invention is A casting product having an alumina barrier layer containing aluminum oxide on a base surface,
  • the aluminum oxide is (Al (1-x) M (x) ) 2 O 3 , where M: at least one of Cr, Ni, Si, and Fe, and 0 ⁇ x ⁇ 0.5.
  • the casting product according to the present invention is A casting product having an alumina barrier layer containing aluminum oxide on a base surface, In the aluminum oxide, at least one of Cr, Ni, Si, and Fe is in solid solution, and at least one Cr, Ni, Si, and Fe in solid solution with Al is Al / (Cr + Ni + Si + Fe in atomic percent ratio). ) ⁇ 2.0.
  • the alumina barrier layer formed on the base surface has a stable structure of the aluminum oxide phase by solid solution of at least one of Cr, Ni, Si, and Fe. Can do.
  • This aluminum oxide can suppress the bond between the matrix and oxygen and suppress the formation of oxides mainly composed of Cr, Ni, Si, Fe, etc. on the matrix surface.
  • the cast product of the present invention can exhibit further excellent oxidation resistance, carburization resistance, nitridation resistance, corrosion resistance, etc. when used in a high temperature atmosphere.
  • the cast product of the present invention when employed in, for example, a reaction tube for ethylene production, the occurrence of coking can be suppressed, and the decrease in yield due to the decrease in heat exchange rate and thermal conductivity due to the occurrence of coking can be prevented. And continuous operation time can be lengthened. Further, since it is difficult for coking to occur, the number and time of coking removal work can be shortened, and the operation efficiency can be increased.
  • FIG. 1 is a cross-sectional view of a cast product before heat treatment.
  • FIG. 2 is a cross-sectional view schematically showing a state where an Al thinned layer is formed by low-temperature heat treatment.
  • FIG. 3 is a cross-sectional view schematically showing a state in which an Al concentrated layer is formed between the Al thinned layer and the base by high-temperature heat treatment.
  • FIG. 4 shows a graph of a coating TEM photograph of Example 2 and an EDX analysis result.
  • FIG. 5 shows a film TEM photograph of Example 7 and a graph of EDX analysis results.
  • the cast product of the present invention has an alumina barrier layer containing aluminum oxide on the base surface.
  • the aluminum oxide of the alumina barrier layer is (Al (1-x) M (x) ) 2 O 3 , where M: at least one of Cr, Ni, Si, and Fe, and 0 ⁇ x ⁇ 0.5 Adjusted to
  • the aluminum oxide of the alumina barrier layer has at least one of Cr, Ni, Si, and Fe as a solid solution, and at least one of Cr, Ni, Si, and Fe as a solid solution with Al has an atomic% ratio.
  • the cast product of the present invention can achieve the effects of the present invention as long as it is a heat-resistant alloy containing 15% Cr or more, 18% Ni or more, and 1 to 5% Al by mass%.
  • % means “% by mass” unless otherwise indicated.
  • C 0.05% to 0.7% C has the effect of improving castability and increasing the high temperature creep rupture strength. For this reason, at least 0.05% is contained.
  • the content is too large, the primary carbide of Cr 7 C 3 is likely to be widely formed, and the movement of Al forming the alumina barrier layer is suppressed, so there is insufficient supply of Al to the surface portion of the cast body. As a result, local breakage of the alumina barrier layer occurs, and the continuity of the alumina barrier layer is impaired.
  • the upper limit is set to 0.7%.
  • the C content is more preferably 0.3% to 0.5%.
  • Si more than 0% and 2.5% or less Si is included as a deoxidizer for molten alloy and to increase the fluidity of the molten alloy. However, if the content is too high, the high temperature creep rupture strength is reduced. Therefore, the upper limit is 2.5%.
  • the Si content is more preferably 2.0% or less.
  • Mn more than 0% and 3.0% or less Mn is included as a deoxidizer for molten alloy and for fixing S in the molten metal, but if the content is too large, the high temperature creep rupture strength is reduced. Therefore, the upper limit is set to 3.0%.
  • the Mn content is more preferably 1.6% or less.
  • Cr 15.0% to 50.0% Cr is contained in an amount of 15.0% or more for the purpose of contributing to improvement of high temperature strength and repeated oxidation resistance. However, if the content is too large, the high temperature creep rupture strength is lowered, so the upper limit is made 50.0%.
  • the Cr content is more preferably 23.0 to 35.0%.
  • Ni 18.0% to 70.0%
  • Ni is an element necessary for ensuring repeated oxidation resistance and stability of the metal structure.
  • the Fe content is relatively high, and as a result, Cr—Fe—Mn oxide is easily generated on the surface of the cast body. . For this reason, it shall contain at least 18.0% or more. Even if the content exceeds 70.0%, the effect corresponding to the increase cannot be obtained, so the upper limit is made 70.0%.
  • the Ni content is more preferably 28.0 to 45.0%.
  • Al 1.0% to 5.0%
  • Al is an element effective for improving carburization resistance and coking resistance. Moreover, in this invention, it is an indispensable element in order to produce an alumina barrier layer on the surface of a casting. For this reason, it is made to contain at least 1.0% or more. However, if the content exceeds 5%, ductility deteriorates, so the upper limit is specified to 5.0% in the present invention.
  • the Al content is more preferably 2.5% to 3.8%.
  • the rare earth element means 17 kinds of elements obtained by adding Y and Sc to 15 kinds of lanthanum series from La to Lu in the periodic table, but the rare earth element contained in the heat-resistant alloy of the present invention is Ce, It is preferable that at least one of the groups consisting of La and Nd is included. This rare earth element contributes to the generation and stabilization of the alumina barrier layer. When the production of the alumina barrier layer is carried out by heat treatment in a high-temperature oxidizing atmosphere, the rare earth element is contained in an amount of 0.005% or more, which contributes effectively to the production of the alumina barrier layer. On the other hand, if the content is too large, ductility and toughness deteriorate, so the upper limit is made 0.4%.
  • W 0.5% to 10.0% and / or Mo: 0.1% to 5.0% W and Mo are dissolved in the matrix and strengthen the austenite phase of the matrix, thereby improving the creep rupture strength.
  • at least one of W and Mo is contained.
  • W 0.5% or more is contained
  • Mo 0.1% or more is contained.
  • the content of W and Mo is too large, the ductility is lowered and the carburization resistance is deteriorated.
  • primary carbides of (Cr, W, Mo) 7 C 3 are easily formed widely, and the movement of Al that forms the alumina barrier layer is suppressed.
  • W and Mo have a large atomic radius, they dissolve in the matrix, thereby suppressing the movement of Al and Cr and preventing the formation of an alumina barrier layer. Therefore, W is 10.0% or less, and Mo is 5.0% or less. Even when both elements are contained, the total content is preferably 10.0% or less.
  • Ti, Zr and Nb are It is an element that easily forms carbides, and does not dissolve in the matrix as much as W and Mo. Therefore, no special action is observed in the formation of the alumina barrier layer, but it has the action of improving the creep rupture strength.
  • at least one of Ti, Zr and Nb can be contained. The contents of Ti and Zr are 0.01% or more and Nb is 0.1% or more. However, if added excessively, ductility is reduced. Nb further reduces the peel resistance of the alumina barrier layer. For this reason, the upper limits are 0.6% for Ti and Zr, and 1.8% for Nb.
  • B More than 0% and 0.1% or less B has an effect of strengthening the grain boundary of the cast body, and can be contained as required. In addition, since the fall of creep rupture strength will be caused when content increases, even when adding, it shall be 0.1% or less.
  • the heat-resistant alloy constituting the cast body of the present invention contains the above components and the balance is Fe, but P, S and other impurities inevitably mixed during the melting of the alloy are usually allowed in this type of alloy material. As long as it is within the range, it may be present.
  • the cast product of the present invention is prepared by melting a molten metal having the above component composition, and casting to the above composition by centrifugal casting, stationary casting, or the like.
  • the resulting cast product can be shaped according to the intended application.
  • the casting product can be exemplified by a tube, particularly a reaction tube used in a high temperature environment.
  • the casting product of the present invention is particularly suitable for production by centrifugal casting. This is because, by applying centrifugal casting, a fine metal structure grows in the radial direction with the progress of cooling by the mold, and an alloy structure in which Al easily moves can be obtained.
  • the cast product is subjected to the heat treatment described later.
  • the heat treatment By this heat treatment, an alumina barrier layer having a stable phase structure is formed.
  • the cast product of the present invention is heat-treated in an oxidizing atmosphere.
  • the heat treatment can be divided into a low temperature heat treatment and a high temperature heat treatment. Note that the low-temperature heat treatment and the high-temperature heat treatment can be performed in separate steps, or after the low-temperature heat treatment, the high-temperature heat treatment may be performed continuously.
  • the low-temperature heat treatment is a treatment for forming an aluminum oxide layer on the surface of the base in an oxidizing atmosphere.
  • the low temperature can be exemplified by less than 1050 ° C. Desirably, the temperature is 600 ° C to 900 ° C.
  • the low temperature heat treatment is desirably performed for 5 to 15 hours.
  • the base 10 comes into contact with oxygen and oxidizes Al, Cr, Ni, Si, Fe diffused from the base 10 to the base surface, as shown in FIG.
  • the oxide layer 22 is formed. Since this heat treatment is performed at a low temperature, Al forms an oxide in preference to Cr, Ni, Si, and Fe. Therefore, the oxide layer is an aluminum oxide layer 22 mainly composed of Al and in which at least one of Cr, Ni, Si, and Fe diffused from the base is dissolved.
  • At least one kind of Cr, Ni, Si, and Fe dissolved in Al has an atomic% ratio of Al / (Cr + Ni + Si + Fe) ⁇ 2.0.
  • the composition thereof is (Al (1-x) M (x) ) 2 O 3 , provided that M: at least one of Cr, Ni, Si, and Fe, and 0 ⁇ x ⁇ 0.5. Is desirable.
  • at least Cr is solid-solved in the aluminum oxide, and it is more preferable that Cr solid-dissolved with Al is Al / Cr ⁇ 10 in terms of atomic% ratio, and Al / Cr ⁇ 15. Is more preferable.
  • it is more desirable that at least one of Ni, Si, and Fe is in solid solution, and the total atomic% of at least one of Ni, Si, and Fe dissolved in Al is 10 atomic% or less.
  • the aluminum oxide formed by the low-temperature heat treatment described above has a metastable ⁇ or ⁇ alumina structure and a porous structure. Therefore, the strength is not sufficient.
  • the high-temperature heat treatment is a heat treatment performed after the low-temperature heat treatment.
  • the aluminum oxide formed by the low-temperature heat treatment is transformed into an ⁇ -alumina structure (corundum structure), and the aluminum oxidation is performed.
  • An aluminum oxide layer having a high Al concentration is formed between the material layer and the base.
  • the high-temperature heat treatment can be performed by heating a cast product that has been subjected to a low-temperature heat treatment and has an alumina barrier layer having a ⁇ or ⁇ alumina structure at a high temperature in an oxidizing atmosphere.
  • the high temperature can be exemplified by 1050 ° C or higher.
  • the high temperature heat treatment is desirably performed for 3 hours to 15 hours.
  • the aluminum oxide having the ⁇ or ⁇ alumina structure formed first is transformed into a stable ⁇ alumina structure (corundum structure).
  • at least one of Cr, Ni, Si, and Fe is dissolved in the aluminum oxide layer having a ⁇ or ⁇ alumina structure.
  • the casting product having the aluminum oxide layer transformed into the ⁇ -alumina structure (corundum structure) is further subjected to high-temperature heat treatment, whereby the oxygen-containing aluminum oxide layer 22 is obtained as shown in FIG. Pass through.
  • the oxygen that has passed through the layer of the aluminum oxide 22 oxidizes Al diffused from the base to form an aluminum oxide layer 24 having a high Al concentration.
  • an aluminum oxide layer in which at least one of Cr, Ni, Si, and Fe formed by low-temperature heat treatment is dissolved is an “Al thinned layer”, an Al thinned layer, A layer of aluminum oxide having a high Al concentration formed between the base surface and the base surface is referred to as an “Al concentrated layer”. That is, the Al concentrated layer 24 is a layer having a larger Al / (Cr + Ni + Si + Fe) than the Al thinned layer 22.
  • the alumina barrier layer has a higher Al concentration in the Al concentrated layer formed between the matrix and the Al thinned layer than the Al thinned layer on the surface.
  • the formed Al thinned layer 22 allows a small amount of oxygen to pass in an oxidizing atmosphere. From the base 10 side, as shown in FIG. 3, Al, Cr, Ni, Si, and Fe diffuse to the base surface side. However, since Al requires less energy for bonding with oxygen than Cr, Ni, Si, and Fe, Al preferentially bonds with oxygen, and a high concentration aluminum oxide layer (Al enrichment) This is because the layer 24) is formed between the base 10 and the Al thinned layer 22.
  • the Al concentrated layer 24 Since the Al concentrated layer 24 is generated by heat treatment at a high temperature, it has a stable ⁇ -alumina structure (corundum structure). Desirably, the aluminum oxide of the Al thinned layer 22 and the Al concentrated layer 24 has an ⁇ -alumina structure (corundum structure) with a crystal structure of 80% by volume or more.
  • the alumina barrier layer 20 composed of the Al thinned layer 22 and the Al concentrated layer 24 formed between the base 10 and the Al thinned layer 22 has a stable ⁇ -alumina structure (corundum structure), Casting products that have high density and have these functions as a barrier to prevent oxygen, carbon, and nitrogen from entering the base metal from the outside when used in high-temperature atmospheres, providing excellent oxidation resistance and carburization resistance Further, nitriding resistance, corrosion resistance, etc. can be maintained over a long period of time.
  • the Al concentrated layer 24 is preferably formed to be thicker than the Al thinned layer 22, and the Al concentrated layer 24 is formed to be 1/5 or more of the thickness of the alumina barrier layer 20. It is preferable to do.
  • the Al thinned layer 22 is 0.04 ⁇ m to 8.0 ⁇ m
  • the Al concentrated layer 24 is 0.01 ⁇ m to 2.0 ⁇ m.
  • the alumina product may be subjected to a surface treatment on the cast product.
  • polishing can be exemplified as the surface treatment.
  • the raw material hydrocarbon and the cast product Fe, Ni, etc. come into contact with each other, and coke (carbon) tends to adhere to the inner surface of the tube due to the catalytic action of Fe or Ni.
  • the treatment to reduce the surface roughness (Ra) of the alumina barrier layer, adhesion of coke can be suppressed.
  • the surface roughness (Ra) of the alumina barrier layer be 15 ⁇ m or less. More desirably, the surface roughness (Ra) is 0.05 ⁇ m to 10 ⁇ m.
  • the molten metal was melted by air melting in a high frequency induction melting furnace, and a tube having an alloy chemical composition listed in Table 1 below was cast by mold centrifugal casting.
  • the tube had an inner diameter of 80 mm, an outer diameter of 100 mm, and a length of 250 mm.
  • Examples 1 to 8 which are invention examples, all satisfy Al / (Cr + Ni + Si + Fe) ⁇ 2.0 in atomic percent ratio. Further, Al / Cr ⁇ 10. On the other hand, since Comparative Example 1 does not contain Al in the base, aluminum oxide is not generated, and Al / (Cr + Ni + Si + Fe) and Al / Cr are both zero.
  • the atomic percent of Fe + Ni + Si is 10 atomic percent or less in Examples 1 to 4, Example 6, Example 7, and Comparative Example 3, and the other Examples and Comparative Examples exceed 10 atomic percent. ing.
  • the thickness of the Al concentrated layer with respect to the thickness of the alumina barrier layer is 0.3 or more, that is, 1/5 or more, but the comparative example has a maximum of 0.15. You can see that In Comparative Example 1, since the base does not contain Al, an alumina barrier layer is not formed.
  • the low-temperature heat treatment temperature was less than 1050 ° C. and the high-temperature heat treatment temperature was 1050 ° C. or higher, so an Al thinned layer was formed on the surface of the base by the low-temperature heat treatment. Thereafter, it is shown that an Al concentrated layer was formed between the Al thinned layer and the base by high-temperature heat treatment.
  • Comparative Examples 2 to 6 in which the alumina barrier layer was formed it is considered that the Al concentrated layer remained at a maximum of 0.15 for the following reason.
  • Comparative Example 2 is because Al contained in the cast body is as low as 0.9%, and Al for forming a film on the surface of the cast body is insufficient.
  • Comparative Example 3 since the low-temperature heat treatment temperature is as high as 1200 ° C., an oxide mainly composed of Cr, Ni, Si, Fe, etc. was formed before the formation of the alumina barrier layer having the ⁇ or ⁇ alumina structure. It is.
  • Comparative Example 4 is because the low-temperature heat treatment temperature was as low as 500 ° C., and thus an alumina barrier layer having a ⁇ or ⁇ alumina structure was not formed. This is because Comparative Example 5 and Comparative Example 6 have a low temperature of high-temperature heat treatment as low as 1000 ° C. As a result, after the Al thinned layer is formed by the low-temperature heat treatment, less oxygen passes through the Al thinned layer in the high-temperature heat treatment, and the incorporated oxygen and Al are sufficiently bonded because the temperature is low. This is because a large amount of energy was not obtained.
  • the caulking test was performed by installing a test tube in an electric furnace, supplying hydrocarbon (ethane) to the test tube, and heating at a high temperature (955 ° C.) for a predetermined time (12 to 24 hours). And after completion
  • Examples 1 to 8 are excellent in carburization resistance because a stable ⁇ -alumina structure (corundum structure) alumina barrier layer comprising an Al concentrated layer and an Al thinned layer is suitably formed on the surface of the base. Because. In particular, Example 1, Example 3, Example 4, and Examples 6 to 8 have carburization resistance that is extremely superior to other examples. This is considered because Example 2 and Example 5 had less formation of Al concentration layer compared with the other Example.
  • the surface roughness (Ra) of these test tubes was measured. The results are shown in Table 4. Referring to Table 4, it can be seen that there is a substantially proportional relationship between the weight ratio of the produced coke and the surface roughness (Ra). Accordingly, the surface roughness (Ra) is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the surface roughness (Ra) can be adjusted by performing heat treatment while rotating the cast product, and the surface roughness (Ra) of Comparative Example 3 and Comparative Example 6 exceeds 15 ⁇ m. This is probably because the heat treatment for generating the film was not appropriate, and the surface roughness became rough due to peeling and regeneration of the film.
  • the Al thinned layer 22 formed on the surface side is mainly an oxide of Al, but a small amount of Cr, Fe, and Ni are observed.
  • the Al concentrated layer 24 Cr, Fe, Ni and the like other than Al are not observed. Therefore, it can be seen that the Al concentrated layer 24 is formed of an aluminum oxide having a very high purity.
  • the Al thinned layer 22 formed on the surface is mainly an oxide of Al, but a small amount of Cr is observed.
  • the Al concentrated layer 24 is not observed except for Al. Therefore, it can be seen that the Al concentrated layer 24 is formed of an aluminum oxide having a very high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、アルミナバリア層の安定性をさらに高め、高温雰囲気下での使用において、さらにすぐれた耐酸化性、耐浸炭性、耐窒化性、耐食性等を発揮できる鋳造製品を提供する。 本発明に係る鋳造製品は、基地表面にアルミニウム酸化物を含むアルミナバリア層を有する鋳造製品であって、前記アルミニウム酸化物は、(Al(1-x)(x)、但し、M:Cr、Ni、Si、Feの少なくとも1種、且つ、0<x<0.5である。また、本発明に係る鋳造製品は、基地表面にアルミニウム酸化物を含むアルミナバリア層を有する鋳造製品であって、前記アルミニウム酸化物は、Cr、Ni、Si、Feの少なくとも1種が固溶しており、Alと固溶した少なくとも1種のCr、Ni、Si、Feは、原子%比でAl/(Cr+Ni+Si+Fe)≧2.0である。

Description

アルミナバリア層を有する鋳造製品
 本発明は、アルミナバリア層を有する鋳造製品に関するものであり、より具体的には、安定な構造のアルミナバリア層を有する鋳造製品に関するものである。
 エチレン製造用反応管や分解管、浸炭熱処理炉のハースロール、ラジアントチューブ、耐メタルダスティング材などの耐熱鋳鋼品では、高温雰囲気に曝されるため、高温強度にすぐれるオーステナイト系の耐熱合金が用いられている。
 この種オーステナイト系耐熱合金では、高温雰囲気での使用中に表面に金属酸化物層が形成され、この酸化物層がバリアとなって、高温雰囲気下で母材を保護する。
 一方、これら金属酸化物としてCr酸化物(主にCrからなる)が形成されてしまうと、緻密性が低いため、酸素や炭素の侵入防止機能が十分ではなく、高温雰囲気下で内部酸化を起こし、酸化物皮膜が肥大化する。また、これらCr酸化物は、加熱と冷却の繰り返しサイクルにおいて剥離し易く、剥離に到らない場合であっても、外部雰囲気からの酸素や炭素の侵入防止機能が十分でないから、皮膜を通過して母材に内部酸化や浸炭を生じる不都合がある。
 これに対し、一般的なオーステナイト系耐熱合金よりもAlの含有量を増やすことで、緻密性が高く、酸素や炭素を透過し難いアルミナ(Al)を主体とする酸化物層を母材の表面に形成することが提案されている(例えば、特許文献1及び特許文献2参照)。
 しかしながら、Alはフェライト生成元素であるため、含有量が多くなると材料の延性が劣化して高温強度が低下してしまう。この延性の低下傾向は、特にAlの含有量が5%を越えると観察される。
 このため、上記特許文献のオーステナイト系耐熱合金は、Alによるバリア機能の向上を期待することはできても、母材の延性低下を招来する不都合がある。
 そこで、Alの高温安定性を確保することができ、さらに、材料の延性を低下させることなく、高温雰囲気下ですぐれたバリア機能を発揮することのできる鋳造製品を提供するために、特許文献3では、鋳造体の表面粗さ(Ra)が0.05~2.5μmとなるように内面加工を行なった後、酸化性雰囲気下で熱処理を施すことにより、鋳造体の内面にAlを含むアルミナバリア層が形成され、アルミナバリア層と鋳造体との界面に母材基地よりもCr濃度の高いCr基粒子が分散した鋳造製品を提案している(例えば、特許文献3参照)。
 特許文献3の鋳造製品は、安定したアルミナバリア層の存在により、高温雰囲気下での使用において、すぐれた耐酸化性、耐浸炭性、耐窒化性、耐食性等を長期に亘って維持することができる。
特開昭52-78612号公報 特開昭57-39159号公報 国際公開第WO2010/113830号公報
 本発明は、アルミナバリア層の安定性をさらに高め、高温雰囲気下での使用において、さらにすぐれた耐酸化性、耐浸炭性、耐窒化性、耐食性等を発揮できる鋳造製品を提供することを目的とする。
 本発明に係る鋳造製品は、
 基地表面にアルミニウム酸化物を含むアルミナバリア層を有する鋳造製品であって、
 前記アルミニウム酸化物は、(Al(1-x)(x)、但し、M:Cr、Ni、Si、Feの少なくとも1種、且つ、0<x<0.5である。
 また、本発明に係る鋳造製品は、
 基地表面にアルミニウム酸化物を含むアルミナバリア層を有する鋳造製品であって、
 前記アルミニウム酸化物は、Cr、Ni、Si、Feの少なくとも1種が固溶しており、Alと固溶した少なくとも1種のCr、Ni、Si、Feは、原子%比でAl/(Cr+Ni+Si+Fe)≧2.0である。
 本発明の鋳造製品によれば、基地表面に形成されるアルミナバリア層は、Cr、Ni、Si、Feの少なくとも1種が固溶することで、アルミニウム酸化物の相を安定な構造とすることができる。このアルミニウム酸化物は、基地と酸素との結合を抑制し、基地表面にCr、Ni、Si、Fe等を主体とする酸化物が形成されることを抑制することができる。
 これにより、本発明の鋳造製品は、高温雰囲気下での使用において、さらにすぐれた耐酸化性、耐浸炭性、耐窒化性、耐食性等を発揮できる。
 従って、本発明の鋳造製品をたとえばエチレン製造用反応管に採用した場合、コーキングの発生を抑えることができ、コーキングの発生による熱交換率や熱伝導率の低下による収率の低下を防ぐことができ、連続操業時間を長くすることができる。また、コーキングが発生し難いから、コーキング除去作業の回数や時間を短縮でき、操業効率を高めることができる。
図1は、加熱処理前の鋳造製品の断面図である。 図2は、低温加熱処理にてAl薄化層の形成されている状態を模式的に示す断面図である。 図3は、高温加熱処理にてAl薄化層と基地との間にAl濃化層が形成されている状態を模式的に示す断面図である。 図4は、実施例2の被膜TEM写真とEDX分析結果のグラフを示している。 図5は、実施例7の被膜TEM写真とEDX分析結果のグラフを示している。
 以下、本発明の実施の形態について詳細に説明する。
 本発明の鋳造製品は、基地表面にアルミニウム酸化物を含むアルミナバリア層を有する。
 アルミナバリア層のアルミニウム酸化物は、(Al(1-x)(x)、但し、M:Cr、Ni、Si、Feの少なくとも1種、且つ、0<x<0.5に調整される。
 また、アルミナバリア層のアルミニウム酸化物は、Cr、Ni、Si、Feの少なくとも1種が固溶しており、Alと固溶した少なくとも1種のCr、Ni、Si、Feは、原子%比でAl/(Cr+Ni+Si+Fe)≧2.0に調整される。
<成分限定理由の説明>
 本発明の鋳造製品は、質量%にて、Cr15%以上Ni18%以上、Alを1~5%含有する耐熱合金であれば、本発明の効果を得ることができ、たとえば以下の成分により作製される。なお、以下の説明で、「%」は、特に表示がないときは、全て質量%である。
C:0.05%~0.7%
 Cは、鋳造性を良好にし、高温クリープ破断強度を高める作用がある。このため、少なくとも0.05%を含有させる。しかし、含有量があまり多くなると、Crの一次炭化物が幅広く形成され易くなり、アルミナバリア層を形成するAlの移動が抑制されるため、鋳造体の表面部へのAlの供給不足が生じて、アルミナバリア層の局部的な寸断が起こり、アルミナバリア層の連続性が損なわれる。また、二次炭化物が過剰に析出するため、延性、靱性の低下を招く。このため、上限は0.7%とする。なお、Cの含有量は0.3%~0.5%がより望ましい。
Si:0%を超えて2.5%以下
 Siは、溶湯合金の脱酸剤として、また溶湯合金の流動性を高めるために含有させるが、含有量があまり多くなると高温クリープ破断強度の低下を招くので上限は2.5%とする。なお、Siの含有量は2.0%以下がより望ましい。
Mn:0%を超えて3.0%以下
 Mnは、溶湯合金の脱酸剤として、また溶湯中のSを固定するために含有させるが、含有量があまり多くなると高温クリープ破断強度の低下を招くので上限は3.0%とする。なお、Mnの含有量は1.6%以下がより望ましい。
Cr:15.0%~50.0%
 Crは、高温強度及び繰返し耐酸化性の向上への寄与の目的のため、15.0%以上含有させる。しかし、含有量があまり多くなると高温クリープ破断強度の低下を招くので上限は50.0%とする。なお、Crの含有量は23.0~35.0%がより望ましい。
Ni:18.0%~70.0%
 Niは、繰返し耐酸化性及び金属組織の安定性の確保に必要な元素である。また、Niの含有量が少ないと、Feの含有量が相対的に多くなる結果、鋳造体の表面にCr-Fe-Mn酸化物が生成され易くなるため、アルミナバリア層の生成が阻害される。このため、少なくとも18.0%以上含有させるものとする。70.0%を超えて含有しても増量に対応する効果が得られないので、上限は70.0%とする。なお、Niの含有量は28.0~45.0%がより望ましい。
Al:1.0%~5.0%
 Alは耐浸炭性及び耐コーキング性の向上に有効な元素である。また、本発明では、鋳造体の表面にアルミナバリア層を生じさせるために必要不可欠の元素である。このため、少なくとも1.0%以上含有させる。しかし、含有量が5%を超えると延性が劣化するため、本発明では上限を5.0%に規定する。なお、Alの含有量は2.5%~3.8%がより望ましい。
希土類元素:0.005%~0.4%
 希土類元素とは、周期律表のLaからLuに至る15種類のランタン系列に、YとScを加えた17種類の元素を意味するが、本発明の耐熱合金に含有させる希土類元素は、Ce、La及びNdからなる群のうち少なくとも一種以上が含まれることが好ましい。この希土類元素は、アルミナバリア層の生成と安定化の促進に寄与する。
 アルミナバリア層の生成を高温の酸化性雰囲気下での加熱処理によって行なう場合は、希土類元素を0.005%以上含有させることでアルミナバリア層生成に有効に寄与する。
 一方、あまりに多く含有すると、延性、靱性が悪化するので、上限は0.4%とする。
W:0.5%~10.0%及び/又はMo:0.1%~5.0%
 W、Moは、基地中に固溶し、基地のオーステナイト相を強化することにより、クリープ破断強度を向上させる。この効果を発揮させるために、W及びMoの少なくとも一種を含有させるものとし、Wの場合は0.5%以上、Moの場合は0.1%以上含有させる。
 しかし、W及びMoは、含有量があまり多くなると、延性の低下や、耐浸炭性の劣化を招く。また、Cが多い場合と同じように、(Cr,W,Mo)の一次炭化物が幅広く形成され易くなり、アルミナバリア層を形成するAlの移動が抑制されるため、鋳造体の表面部分へのAlの供給不足が生じ、アルミナバリア層の局部的な寸断が起こり、アルミナバリア層の連続性が損なわれ易くなる。また、WやMoは原子半径が大きいため、基地中に固溶することにより、AlやCrの移動を抑制してアルミナバリア層の生成を妨げる作用がある。
 このため、Wは10.0%以下、Moは5.0%以下とする。なお、両元素を含有する場合でも、合計含有量は10.0%以下とすることが好ましい。
 また、以下の成分をさらに含むことができる。
Ti:0.01%~0.6%、Zr:0.01%~0.6%及びNb:0.1%~1.8%からなる群から選択される少なくとも一種
 Ti、Zr及びNbは、炭化物を形成し易い元素であり、WやMoほど基地中には固溶しないため、アルミナバリア層の形成には特段の作用は認められないが、クリープ破断強度を向上させる作用がある。必要に応じて、Ti、Zr及びNbの少なくとも一種を含有させることができる。含有量は、Ti及びZrが0.01%以上、Nbが0.1%以上である。
 しかし、過剰に添加すると、延性の低下を招く。Nbは、さらに、アルミナバリア層の耐剥離性を低下させる。このため、上限は、Ti及びZrは0.6%、Nbは1.8%とする。
B:0%を越えて0.1%以下
 Bは、鋳造体の粒界を強化する作用があるので、必要に応じて含有させることができる。なお、含有量が多くなるとクリープ破断強度の低下を招くため、添加する場合でも0.1%以下とする。
 本発明の鋳造体を構成する耐熱合金は、上記成分を含み、残部Feであるが、合金の溶製時に不可避的に混入するP、Sその他の不純物は、この種の合金材に通常許容される範囲であれば存在しても構わない。
<鋳造製品>
 本発明の鋳造製品は、上記成分組成の溶湯を溶製し、遠心力鋳造、静置鋳造等により上記組成に鋳造される。
 得られる鋳造製品は、目的とする用途に応じた形状とすることができる。
 たとえば、鋳造製品として、管、特に高温環境下で使用される反応管を例示することができる。
 本発明の鋳造製品は、遠心力鋳造での作製が特に好適である。遠心力鋳造を適用することで、金型による冷却の進行によって径方向に微細な金属組織が配向性をもって成長し、Alが移動し易い合金組織を得ることができるためである。
 そして、鋳造製品には、後述する加熱処理が施される。この加熱処理により、安定した相構造を有するアルミナバリア層が形成される。
<加熱処理>
 本発明の鋳造製品は、酸化性雰囲気下で加熱処理を行なう。加熱処理は、低温加熱処理と高温加熱処理に分けることができる。なお、低温加熱処理と高温加熱処理は、別工程で行なうこともできるし、低温加熱処理の後、続けて高温加熱処理を行なってもよい。
<低温加熱処理>
 低温加熱処理は、酸化性雰囲気下で基地の表面にアルミニウム酸化物の層を形成する処理である。低温とは、1050℃未満を例示できる。望ましくは、600℃~900℃である。低温加熱処理は、5時間~15時間実施することが望ましい。
 低温加熱処理を施すことにより、図1に示すように、基地10は酸素と接触し、基地10から基地表面に拡散したAl、Cr、Ni、Si、Feを酸化させて、図2に示すように酸化物層22を形成する。この加熱処理では、低温で行なわれるから、Cr、Ni、Si、Feよりも優先してAlが酸化物を形成する。従って、酸化物の層は、Alを主体とし、同じく基地から拡散したCr、Ni、Si、Feの少なくとも1種が固溶するアルミニウム酸化物の層22となる。
 低温加熱処理により形成されるアルミニウム酸化物は、Alと固溶した少なくとも1種のCr、Ni、Si、Feは、原子%比でAl/(Cr+Ni+Si+Fe)≧2.0となっている。また、その組成は、(Al(1-x)(x)、但し、M:Cr、Ni、Si、Feの少なくとも1種、且つ、0<x<0.5であることが望ましい。また、アルミニウム酸化物は、少なくともCrが固溶しており、Alと固溶したCrは、原子%比でAl/Cr≧10であることがより好適であり、Al/Cr≧15であることがより好ましい。さらに、Ni、Si、Feの少なくとも1種が固溶しており、Alと固溶した少なくとも1種のNi、Si、Feの合計原子%は、10原子%以下であることがより望ましい。
 上記した低温加熱処理で形成されるアルミニウム酸化物は、準安定なγ又はθアルミナ構造であり、ポーラスな構造である。従って、強度が十分ではない。
<高温加熱処理>
 高温加熱処理は、低温加熱処理の後に実施される熱処理であって、後述するとおり、低温加熱処理にて形成されたアルミニウム酸化物をαアルミナ構造(コランダム構造)に相変態させると共に、このアルミニウム酸化物の層と基地との間にAlの濃度の高いアルミニウム酸化物層を形成するものである。
 高温加熱処理は、低温加熱処理が施され、γ又はθアルミナ構造を有するアルミナバリア層の形成された鋳造製品を、酸化性雰囲気下において高温で加熱することにより行なうことができる。高温とは、1050℃以上を例示できる。高温加熱処理は、3時間~15時間実施することが望ましい。
 高温加熱処理を行なうことで、最初に形成されたγ又はθアルミナ構造を有するアルミニウム酸化物は、安定したαアルミナ構造(コランダム構造)に相変態する。本発明では、γ又はθアルミナ構造を有するアルミニウム酸化物の層にCr、Ni、Si、Feの少なくとも1種が固溶している。これにより、アルミニウム酸化物の層がAlの純度の高い場合に比して、γ又はθアルミナ構造からαアルミナ構造(コランダム構造)への相変態を早めることができる。
 そして、αアルミナ構造(コランダム構造)に相変態したアルミニウム酸化物の層を有する鋳造製品に対して、高温加熱処理をさらに続けることにより、図3に示すように、酸素がアルミニウム酸化物の層22を通過する。
 上記アルミニウム酸化物22の層を通過した酸素は、基地から拡散されるAlを酸化し、Alの濃度の高いアルミニウム酸化物の層24を形成する。
 ここで、図3に示すように、低温加熱処理により形成されたCr、Ni、Si、Feの少なくとも1種が固溶するアルミニウム酸化物の層を「Al薄化層」、Al薄化層と基地表面との間に形成されたAlの濃度の高いアルミニウム酸化物の層を「Al濃化層」と称する。すなわち、Al濃化層24は、Al薄化層22に比してAl/(Cr+Ni+Si+Fe)が大きい層である。
 アルミナバリア層は、表面のAl薄化層に比べて、基地とAl薄化層との間に形成されるAl濃化層のAlの濃度が高くなる理由として、以下の理由が考えられる。
 形成されたAl薄化層22は、酸化性雰囲気にて、少量の酸素の通過を許容する。
 そして、基地10側からは、図3に示すように、Al、Cr、Ni、Si、Feが基地表面側に拡散する。しかしながら、Alは、Cr、Ni、Si、Feに比べて、酸素との結合に必要なエネルギーが小さいから、Alが優先して酸素と結合し、濃度の高いアルミニウム酸化物の層(Al濃化層24)が、基地10とAl薄化層22との間に形成されるためである。
 Al濃化層24は、高温での加熱処理により生成されるから、安定なαアルミナ構造(コランダム構造)を有する。望ましくは、Al薄化層22とAl濃化層24のアルミニウム酸化物は、80体積%以上の結晶構造が、αアルミナ構造(コランダム構造)である。
 Al薄化層22と、基地10とAl薄化層22との間に形成されたAl濃化層24からなるアルミナバリア層20は、何れも安定なαアルミナ構造(コランダム構造)であるから、緻密性が高く、これらを具備する鋳造製品は、高温雰囲気下での使用において、外部から酸素、炭素、窒素の母材への侵入を防ぐバリアとして作用し、すぐれた耐酸化性、耐浸炭性、耐窒化性、耐食性等を長期に亘って維持することができる。
 なお、Al濃化層24は、Al薄化層22よりも層厚に形成されることが望ましく、Al濃化層24は、アルミナバリア層20の厚さの1/5以上となるように形成することが好適である。
 より望ましくは、Al薄化層22は、0.04μmから8.0μm、Al濃化層24は、0.01μm~2.0μmである。
 上記した低温加熱処理及び高温加熱処理において、アルミニウム酸化物の層を好適に形成するために、鋳造製品を回転させながら加熱することが望ましい。これにより、鋳造製品にムラ無く加熱が施されると共に、酸素と良好な状態で接触することができる。そしてその結果、生成されるアルミナバリア層20の表面粗さ(Ra)を小さくすることができる。
<表面処理>
 必要に応じて、鋳造製品には、アルミナバリア層に表面処理を行なうことができる。たとえば表面処理として研磨を例示できる。たとえば、鋳造製品を反応管に使用したときに、原料の炭化水素と鋳造製品のFeやNi等が触れて、FeやNiの触媒作用によりコーク(炭素)が管内面に付着し易いが、表面処理を施して、アルミナバリア層の表面粗さ(Ra)を小さくすることで、コークの付着を抑えることができる。
 アルミナバリア層の表面粗さ(Ra)は、15μm以下となるように実施することが望ましい。より望ましくは、表面粗さ(Ra)は0.05μm~10μmとする。
 高周波誘導溶解炉の大気溶解により溶湯を溶製し、金型遠心力鋳造により、下記表1に掲げる合金化学組成の管体を鋳造した。管体は、内径80mm、外径100mm、長さ250mmとした。
Figure JPOXMLDOC01-appb-T000001
 得られた発明である実施例1乃至実施例8と、比較例1乃至比較例6について、夫々酸化性雰囲気下で、加熱温度の異なる2段階の加熱処理を施した。加熱処理は、先に低温、続けて高温で実施した。低温加熱処理は、5時間、高温加熱処理は、5時間である。
Figure JPOXMLDOC01-appb-T000002
 加熱処理の施された実施例1乃至実施例8、比較例1乃至比較例6の供試管について、表面に形成されたアルミナバリア層に含まれる元素(Al、Cr、Fe、Ni、Si、O)の原子パーセントをEDX分析(エネルギー分散型X線分光分析)により測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 発明例である実施例1乃至実施例8を参照すると、何れも原子%比でAl/(Cr+Ni+Si+Fe)≧2.0を満足している。また、Al/Cr≧10である。一方、比較例は、比較例1が基地にAlを含有していないため、アルミニウム酸化物は生成されず、Al/(Cr+Ni+Si+Fe)、Al/Crは何れもゼロとなっている。
 また、比較例2乃至比較例6については、何れもAl/(Cr+Ni+Si+Fe)<2.0、Al/Cr<10である。
 さらに、Fe+Ni+Siの原子%は、実施例1乃至実施例4、実施例6、実施例7と、比較例3は10原子%以下であり、その他の実施例及び比較例は、10原子%を越えている。
 また、得られた実施例1乃至実施例8、比較例1乃至比較例6について、生成されたアルミナバリア層の厚みに対するAl濃化層の厚みを測定した。結果を上記表3に示している。
 表3を参照すると、実施例は何れも、アルミナバリア層の厚みに対するAl濃化層の厚みが、0.3以上、即ち1/5以上であるが、比較例は最大で0.15となっていることがわかる。なお、比較例1は、基地にAlを含有していないため、アルミナバリア層は形成されていない。
 これは、発明例である実施例は、低温加熱処理温度が1050℃未満、高温加熱処理温度が1050℃以上で実施されたため、低温加熱処理により、基地の表面にAl薄化層が形成された後、高温加熱処理によって、Al薄化層と基地との間にAl濃化層が形成できたことを示している。
 一方、アルミナバリア層の形成された比較例2乃至比較例6については、以下の理由により、Al濃化層が最大で0.15に留まったと考えられる。
 比較例2は、鋳造体に含まれるAlが0.9%と低く、鋳造体表面に皮膜を形成するためのAlが不足しているためである。比較例3は、低温加熱処理温度が1200℃と高いため、γ又はθアルミナ構造を有するアルミナバリア層が形成される前にCr、Ni、Si、Fe等を主体とする酸化物が形成されたためである。比較例4は、低温加熱処理温度が500℃と低いために、γ又はθアルミナ構造を有するアルミナバリア層が形成されなかったためである。比較例5及び比較例6は、高温加熱処理の温度が1000℃と低いからである。この結果、低温加熱処理にてAl薄化層が形成された後、高温加熱処理においてAl薄化層を通過する酸素が少なく、また、温度が低いから取り込まれた酸素とAlが結合するに十分なエネルギーを得られなかったためである。
 次に、得られた供試管にコーキング試験を実施した。
 コーキング試験は、供試管を電気炉内に設置し、供試管に炭化水素(エタン)を供給して、所定の時間(12~24時間)、高温加熱(955℃)することにより行なった。そして、試験終了後、供試管の内面の浸炭度合いを比較すると共に、供試管の内面に付着したコーク(炭素)の重量比を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4を参照すると、発明例である実施例1乃至実施例8は、何れも良好な耐浸炭性を有していることがわかる。一方、比較例は、何れも供試管の内部まで浸炭されていた。
 実施例1乃至実施例8が耐浸炭性にすぐれるのは、基地の表面にAl濃化層とAl薄化層からなる安定なαアルミナ構造(コランダム構造)のアルミナバリア層が好適に形成されているからである。特に、実施例1、実施例3、実施例4、実施例6乃至実施例8は、他の実施例に比べて極めてすぐれる耐浸炭性を具備している。これは、実施例2、実施例5が、他の実施例に比してAl濃化層の形成が少なかったためであると考えられる。
 また、これら供試管の表面粗さ(Ra)を測定した。結果を合わせて表4に示している。表4を参照すると、生成されたコークの重量比と表面粗さ(Ra)に略比例関係が存在していることがわかる。これより、表面粗さ(Ra)は、15μm以下が好ましく、より好ましくは10μm以下である。
 表面粗さ(Ra)は、鋳造製品を回転させながら加熱処理をして表面粗さを調整することができ、比較例3と比較例6の表面粗さ(Ra)が15μmを越えていのは、皮膜生成の加熱処理が適正ではなく、皮膜の剥離と再生などにより、表面粗さが粗くなったためであると考えられる。
 発明例2と発明例7について、透過型顕微鏡(TEM)を用いてアルミナバリア層の被膜TEM観察を行なった。また、Al薄化層とAl濃化層について、夫々EDX分析を行なった。発明例2の結果を図4、発明例7の結果を図5に示している。
 図4を参照すると、発明例2は、表面側に形成されたAl薄化層22は、主としてAlの酸化物であるが、少量のCr、Fe、Niが観察されていることがわかる。一方、Al濃化層24は、Al以外にCr、Fe、Ni等は観察されない。従って、Al濃化層24は、非常に純度の高いアルミニウム酸化物から形成されていることがわかる。
 図5を参照すると、発明例7は、表面に形成されたAl薄化層22は、主としてAlの酸化物であるが、少量のCrが観察されていることがわかる。一方、Al濃化層24は、Al以外は観察されない。従って、Al濃化層24は、非常に純度の高いアルミニウム酸化物から形成されていることがわかる。
10 基地
20 アルミナバリア層
22 Al薄化層
24 Al濃化層

Claims (12)

  1.  基地表面にアルミニウム酸化物を含むアルミナバリア層を有する鋳造製品であって、
     前記アルミニウム酸化物は、(Al(1-x)(x)、但し、M:Cr、Ni、Si、Feの少なくとも1種、且つ、0<x<0.5である、
     ことを特徴とする鋳造製品。
  2.  基地表面にアルミニウム酸化物を含むアルミナバリア層を有する鋳造製品であって、
     前記アルミニウム酸化物は、Cr、Ni、Si、Feの少なくとも1種が固溶しており、Alと固溶した少なくとも1種のCr、Ni、Si、Feは、原子%比でAl/(Cr+Ni+Si+Fe)≧2.0である、
     ことを特徴とする鋳造製品。
  3.  前記アルミニウム酸化物は、80体積%以上の結晶構造が、コランダム構造である、
     請求項1又は請求項2に記載の鋳造製品。
  4.  前記アルミニウム酸化物は、少なくともCrが固溶しており、Alと固溶したCrは、原子%比でAl/Cr≧10である、
     請求項1乃至請求項3の何れかに記載の鋳造製品。
  5.  前記アルミニウム酸化物は、Ni、Si、Feの少なくとも1種が固溶しており、Alと固溶した少なくとも1種のNi、Si、Feの合計原子%は、10原子%以下である、
     請求項1乃至請求項4の何れかに記載の鋳造製品。
  6.  前記アルミニウム酸化物は、前記基地側が、表面側に比して、前記Al/(Cr+Ni+Si+Fe)が大きいAl濃化層を有する、
     請求項1乃至請求項5の何れかに記載の鋳造製品。
  7.  前記Al濃化層は、前記アルミナバリア層の厚さの1/5以上である、
     請求項6に記載の鋳造製品。
  8.  前記アルミナバリア層の表面粗さ(Ra)は、15μm以下である、
     請求項1乃至請求項7の何れかに記載の鋳造製品。
  9.  前記基地は、質量%にて、C:0.05%~0.7%、Si:0%を越えて2.5%以下、Mn:0%を越えて3.0%以下、Cr:15.0%~50.0%、Ni:18.0%~70.0%、Al:1.0%~5.0%、希土類元素:0.005%~0.4%、並びに、W:0.5%~10.0%及び/又はMo:0.1%~5.0%を含有し、残部Fe及び不可避的不純物からなる、
     請求項1乃至請求項8の何れかに記載の鋳造製品。
  10.  前記基地は、さらに、質量%にて、Ti:0.01%~0.6%、Zr:0.01%~0.6%及びNb:0.1%~1.8%からなる群から選択される少なくとも一種を含有する、
     請求項9に記載の鋳造製品。
  11.  前記基地は、さらに、質量%にて、B:0%を越えて0.1%以下を含有する
     請求項9又は請求項10に記載の鋳造製品。
  12.  請求項1乃至請求項11の何れかに記載の鋳造製品からなる反応管であって、
     炭化水素原料ガスの流通する管内面に前記アルミナバリア層が形成されている、
     反応管。
PCT/JP2014/083417 2014-03-28 2014-12-17 アルミナバリア層を有する鋳造製品 WO2015145896A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES14887198T ES2765349T3 (es) 2014-03-28 2014-12-17 Producto de fundición que tiene una capa barrera de alúmina
CN201480077579.XA CN106460144B (zh) 2014-03-28 2014-12-17 具有氧化铝阻挡层的铸件
US15/116,738 US20170306468A1 (en) 2014-03-28 2014-12-17 Cast product having alumina barrier layer
CA2940179A CA2940179C (en) 2014-03-28 2014-12-17 Cast product having alumina barrier layer
EP14887198.1A EP3124645B1 (en) 2014-03-28 2014-12-17 Casting product having alumina barrier layer
US17/493,298 US11674212B2 (en) 2014-03-28 2021-10-04 Cast product having alumina barrier layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-067836 2014-03-28
JP2014067836A JP6247977B2 (ja) 2014-03-28 2014-03-28 アルミナバリア層を有する鋳造製品

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/116,738 A-371-Of-International US20170306468A1 (en) 2014-03-28 2014-12-17 Cast product having alumina barrier layer
US17/493,298 Continuation-In-Part US11674212B2 (en) 2014-03-28 2021-10-04 Cast product having alumina barrier layer

Publications (1)

Publication Number Publication Date
WO2015145896A1 true WO2015145896A1 (ja) 2015-10-01

Family

ID=54194463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083417 WO2015145896A1 (ja) 2014-03-28 2014-12-17 アルミナバリア層を有する鋳造製品

Country Status (7)

Country Link
US (1) US20170306468A1 (ja)
EP (1) EP3124645B1 (ja)
JP (1) JP6247977B2 (ja)
CN (1) CN106460144B (ja)
CA (2) CA2940179C (ja)
ES (1) ES2765349T3 (ja)
WO (1) WO2015145896A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087539A1 (ja) * 2017-11-06 2019-05-09 株式会社クボタ 鋼材と接触して使用される鉄鋼製品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3458620A1 (en) * 2016-05-20 2019-03-27 Sandvik Intellectual Property AB An object comprising a pre-oxidized nickel-based alloy
GB2611082A (en) * 2021-09-27 2023-03-29 Alloyed Ltd A stainless steel
CN115404413B (zh) * 2022-08-22 2023-11-28 北京首钢吉泰安新材料有限公司 一种铁铬铝合金及其制备方法、电热元件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331517A (en) * 1976-09-04 1978-03-24 Mazda Motor Corp Two-phase stain less steel
JPS54125118A (en) * 1978-03-22 1979-09-28 Pompey Acieries Nickel * chromium alloy having very high carburizing resistance under extreme high temperature condition
JPH05195138A (ja) * 1992-01-24 1993-08-03 Kubota Corp すぐれた耐浸炭性と高温低応力条件下における高いクリープ破断強度を備える耐熱合金
US20080163957A1 (en) 2007-01-04 2008-07-10 Ut-Battelle, Llc Oxidation resistant high creep strength austentic stainless steel
JP2013199672A (ja) * 2012-03-23 2013-10-03 Kubota Corp アルミナバリア層を有する鋳造製品及びその製造方法
JP2013227655A (ja) * 2012-03-30 2013-11-07 Kubota Corp アルミナバリア層を有する鋳造製品
JP2014501620A (ja) * 2010-10-21 2014-01-23 エクソンモービル リサーチ アンド エンジニアリング カンパニー 製油所プロセス炉用のアルミナ形成バイメタル管ならびに製造および使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204862A (en) * 1975-10-29 1980-05-27 Nippon Steel Corporation Austenitic heat-resistant steel which forms Al2 O3 film in high-temperature oxidizing atmosphere
US5413642A (en) * 1992-11-27 1995-05-09 Alger; Donald L. Processing for forming corrosion and permeation barriers
KR100372482B1 (ko) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 니켈 베이스 내열합금
JP4841931B2 (ja) * 2005-10-25 2011-12-21 財団法人電力中央研究所 耐熱金属材料の耐酸化性の改善方法および耐熱金属部材の製造方法
US8748008B2 (en) * 2008-06-12 2014-06-10 Exxonmobil Research And Engineering Company High performance coatings and surfaces to mitigate corrosion and fouling in fired heater tubes
US8906170B2 (en) * 2008-06-24 2014-12-09 General Electric Company Alloy castings having protective layers and methods of making the same
DE102008051014A1 (de) 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-Chrom-Legierung
WO2010113830A1 (ja) * 2009-03-31 2010-10-07 株式会社クボタ アルミナバリア層を有する鋳造製品
CN104204268B (zh) * 2012-03-23 2017-05-24 株式会社久保田 具有氧化铝阻挡层的铸造产品及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331517A (en) * 1976-09-04 1978-03-24 Mazda Motor Corp Two-phase stain less steel
JPS54125118A (en) * 1978-03-22 1979-09-28 Pompey Acieries Nickel * chromium alloy having very high carburizing resistance under extreme high temperature condition
JPH05195138A (ja) * 1992-01-24 1993-08-03 Kubota Corp すぐれた耐浸炭性と高温低応力条件下における高いクリープ破断強度を備える耐熱合金
US20080163957A1 (en) 2007-01-04 2008-07-10 Ut-Battelle, Llc Oxidation resistant high creep strength austentic stainless steel
JP2014501620A (ja) * 2010-10-21 2014-01-23 エクソンモービル リサーチ アンド エンジニアリング カンパニー 製油所プロセス炉用のアルミナ形成バイメタル管ならびに製造および使用方法
JP2013199672A (ja) * 2012-03-23 2013-10-03 Kubota Corp アルミナバリア層を有する鋳造製品及びその製造方法
JP2013227655A (ja) * 2012-03-30 2013-11-07 Kubota Corp アルミナバリア層を有する鋳造製品

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C.S. GIGGINS, F.S. PETTIT: "Oxidation of Ni-Cr-AI Alloys Between 1000 °C and 1200 °C", J. ELECTROCHEM. SOC., vol. 118, 1971, pages 1782 - 1790, XP055618191
PER KOFSTAD: "High Temperature Corrosion", 1988, ELSEVIER APPLIED SCIENCE PUBLISHERS LTD, article "Chapter 10 : Oxidation of Alloys: I. Internal Oxidation", pages: 324 - 388, XP055618201
PER KOFSTAD: "High Temperature Corrosion", 1988, ELSEVIER APPLIED SCIENCE PUBLISHERS LTD, article "Chapter 12: Growth and Protective Properties of Chromia (C2O3) and Alumina (Al2O3) Scales, Protective Coatings", pages: 389 - 411, XP055618206
SADAO OTA ET AL.: "Effect of addition of Al, Zr, Y, Ce, La and Hf on the carburization resistance of high-Si-25Cr-35Ni alloy", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 67, no. 13, 10 September 1981 (1981-09-10), pages 1266, XP055356070 *
See also references of EP3124645A4
WANG HAITAO, ZHAO QI, YU HUASHUN, ZHANG ZENYA, CUI HONGWEI, MIN GUANGHUI: "Effect of Aluminium and Silicon on High Temperature Oxidation Resistance of Fe-Cr- Ni Heat Resistant Alloys", TRANS. TIANJIN UNIV., vol. 15, 2009, pages 457 - 462, XP055618187

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087539A1 (ja) * 2017-11-06 2019-05-09 株式会社クボタ 鋼材と接触して使用される鉄鋼製品

Also Published As

Publication number Publication date
EP3124645A1 (en) 2017-02-01
CA2940179C (en) 2022-09-20
CA2940179A1 (en) 2015-10-01
EP3124645B1 (en) 2019-10-23
CA3167432A1 (en) 2015-10-01
ES2765349T3 (es) 2020-06-08
JP6247977B2 (ja) 2017-12-13
CN106460144A (zh) 2017-02-22
CN106460144B (zh) 2019-01-15
JP2015190005A (ja) 2015-11-02
US20170306468A1 (en) 2017-10-26
EP3124645A4 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5451751B2 (ja) アルミナバリア層を有する鋳造製品
JP6068158B2 (ja) アルミナバリア層を有する鋳造製品
KR101965925B1 (ko) 알루미나 배리어층을 가지는 주조 제품
JP6434306B2 (ja) アルミナバリア層を有する耐熱管
JP6309576B2 (ja) アルミナバリア層を有するエチレン製造用反応管
JP6247977B2 (ja) アルミナバリア層を有する鋳造製品
TWI736762B (zh) 堆焊用合金、焊接用粉末及反應管
JPWO2019131954A1 (ja) オーステナイト系耐熱合金
JP6335248B2 (ja) 肉盛溶接用合金及び溶接用粉末
JP6005963B2 (ja) アルミナバリア層を有する鋳造製品の製造方法
JP6534721B2 (ja) アルミナバリア層を有する鋳造製品の製造方法
JP2004052036A (ja) 耐浸炭性にすぐれる加熱炉用部材
US11612967B2 (en) Alloy for overlay welding and reaction tube
US11674212B2 (en) Cast product having alumina barrier layer
JP5977054B2 (ja) アルミナバリア層を有する鋳造製品の製造方法
JP6335247B2 (ja) 内面突起付反応管
JP2009256738A (ja) 真空浸炭熱処理用耐熱鋳鋼ジグ材

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014887198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887198

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15116738

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2940179

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE