WO2015141995A1 - 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러 - Google Patents

온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러 Download PDF

Info

Publication number
WO2015141995A1
WO2015141995A1 PCT/KR2015/002459 KR2015002459W WO2015141995A1 WO 2015141995 A1 WO2015141995 A1 WO 2015141995A1 KR 2015002459 W KR2015002459 W KR 2015002459W WO 2015141995 A1 WO2015141995 A1 WO 2015141995A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heating
direct
water
hot water
Prior art date
Application number
PCT/KR2015/002459
Other languages
English (en)
French (fr)
Inventor
김영모
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to CN201580014464.0A priority Critical patent/CN106104168A/zh
Priority to EP15765464.1A priority patent/EP3128253A4/en
Priority to JP2016555582A priority patent/JP6291590B2/ja
Publication of WO2015141995A1 publication Critical patent/WO2015141995A1/ko
Priority to US15/258,122 priority patent/US10605484B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0078Recirculation systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/02Hot-water central heating systems with forced circulation, e.g. by pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/38Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water contained in separate elements, e.g. radiator-type element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a hot water heating latent heat exchanger and a condensing gas boiler including the same. More particularly, hot water can be rapidly used by preheating direct water using a latent heat exchanger, and the latent heat is recovered from the discharged exhaust gas.
  • the present invention relates to a hot water heating latent heat exchanger and a condensing gas boiler including the same that not only improves the thermal efficiency but also improves the structure of the latent heat exchanger, thereby reducing manufacturing cost and increasing the heat transfer area.
  • boilers are installed in various buildings such as homes, offices or other factories to supply hot water and heating water through heat exchange with heat sources generated by burning mixed fuel mixed with air and gas.
  • the boiler generates a flame by supplying air and gas from the outside and mixing them, and then supplying the mixed fuel to the burner, and receiving the mixed fuel from the fuel supply to combust the ignition device to generate flame.
  • It includes a heat exchanger for heating the heating return water with the heating water by allowing the burner and the heating return water to exchange heat with the heat source supplied from the burner.
  • a sensible heat exchanger that primarily exchanges heat with sensible heat generated from a burner and a condensing heat exchanger having a latent heat exchanger that performs second heat exchange with a combustion gas that has undergone heat exchange in the sensible heat exchanger has recently been heated.
  • the boiler provided with such a condensing heat exchanger is called a condensing boiler.
  • heating and hot water boilers used in homes can be divided into oil boilers and gas boilers according to the fuel used.
  • gas boilers with low air pollution and easy use are mainly used.
  • FIG. 1 is a view showing a downward condensing gas boiler of the conventional condensing gas boiler, as shown in Figure 1, the conventional condensing gas boiler has a heating return inlet pipe (1) and a heating return pipe (2) at the bottom An expansion tank (3) connected and storing the heating return flowed through the heating return inlet pipe (1), and a circulation pump for circulating the heating return discharged through the heating return discharge pipe (2) connected to the expansion tank (3).
  • Heating water is supplied to the heating water supply pipe (8).
  • Class, and the water is in use is composed of the hot water heat exchanger 9, water heat exchanger (9) for supplying hot water heated by heating cheoro required when using the three-way valve 10 and the hot water for supplying heated water stream, such as the side.
  • the heating return is deprived of heat to the heating source is passed through the heating return inlet pipe (1) into the expansion tank (3) and passes through the expansion tank (3)
  • the heating return discharged to the heating return discharge pipe (2) is supplied to the latent heat exchanger (5) via the circulation pump (4) and passes through the heat exchange pipe (5a) installed in the latent heat exchanger (5) to lower the temperature of the combustion gas.
  • the temperature rises primarily by heat exchange with the latent heat generated when condensate is produced.
  • the heating return of which the temperature rises in the latent heat exchanger (5) is heat-exchanged with the combustion gas through the sensible heat exchanger (6) to increase the temperature. Will be discharged.
  • the heating return secondary heated in the sensible heat exchanger (6) is supplied to the heating source through the heating water supply pipe (8) at this time, the heating water supply pipe (8) is provided with a three-way valve (10) three-way valve (10) The heating water is supplied to the hot water heat exchanger (9) to heat the direct water flowing through the direct water inflow pipe (11) into hot water and then discharged through the hot water discharge pipe (12) or supplied to a heating source to provide heat. Done.
  • the conventional condensing gas boiler configured as described above has a problem in that it takes not only a long time to heat the direct water but also consumes too much heat to heat the direct water with hot water because only the heating water is used to heat the direct water with hot water. .
  • the cross section of the heat exchange pipe (5a) that is connected to the heating return discharge pipe (2) to exchange heat while moving the heating return is circular, so there is a problem that the heat transfer efficiency is significantly reduced due to the small heat transfer area where heat exchange and latent heat is exchanged.
  • the present invention has been made in order to solve the problems as described above, by preheating the direct water by using a latent heat exchanger to enable the use of hot water quickly, recover the latent heat from the discharged exhaust gas to improve the heat transfer efficiency as well as It is an object of the present invention to provide a hot water heating latent heat exchanger and a condensing gas boiler comprising the same, by improving the structure of the latent heat exchanger, thereby reducing manufacturing costs and increasing the heat transfer area.
  • the above object of the present invention is a hot water heating latent heat exchanger that uses a combustion gas generated by ignition and combustion of a burner to heat a heating return, wherein a plurality of heating paths having a heating return movement path are formed to move the heating return therein.
  • An upper heat exchanger connected to the return heat exchanger to be disposed adjacent to each other, wherein a combustion gas movement flow path is formed between the heating return heat exchanger and the combustion gas moves; And a plurality of direct heat exchange parts disposed in a lower side of the upper heat exchange part and having a direct water flow passage formed therein so as to move the direct water therein, and arranged to be adjacent to each other. It is achieved by providing a hot water heating latent heat exchanger, characterized in that consisting of.
  • each of the heating return heat exchange unit and each of the direct heat exchange unit is characterized in that the two plates are formed by stacking.
  • each heating return heat exchanger and the upper end of each direct heat exchanger is characterized in that connected through brazing welding.
  • heating return heat exchanger and the direct heat exchanger is characterized in that the two plates are integrally formed by stacking.
  • each plate is characterized in that the uneven portion is formed so that the heat transfer area is increased.
  • Another object of the present invention described above is a condensing gas boiler for heating a heating return using combustion gas generated by ignition and combustion of a burner, the latent heat exchanger according to claim 1;
  • a heating return discharge pipe for introducing the heating return discharged from the expansion tank into the latent heat exchanger;
  • Direct water inlet pipe for introducing direct water into the latent heat exchanger;
  • a heating water inflow pipe for introducing heating water heated through the latent heat exchanger into the sensible heat exchanger;
  • a hot water discharge pipe discharging hot water heated through the latent heat exchanger; It is achieved by providing a condensing gas boiler comprising a; and a hot water heat exchanger for receiving the hot water through the hot water discharge pipe to heat again.
  • the present invention provides a hot water heating latent heat exchanger and a condensing gas boiler including the same, wherein a plurality of heating return heat exchange parts are heat-exchanged with combustion gas while heating return is moved, and a plurality of direct heat exchange parts are heat-exchanged while direct water is moved up and down.
  • a plurality of heating return heat exchangers are connected to be disposed adjacently, and a plurality of direct heat exchangers are disposed to be adjacent to a lower portion, and a combustion gas flow passage is formed between each heating return heat exchanger and between each direct heat exchanger to thereby provide a heating return or
  • the heating return or direct water is exchanged with the combustion gas passing through both sides of the heating return heat exchanger or the direct heat exchanger.
  • 1 is a schematic configuration diagram of a general condensing gas boiler.
  • FIG. 2 is a schematic configuration diagram of a condensing gas boiler according to the present invention.
  • FIG 3 is a perspective view showing a heat exchanger of the condensing gas boiler according to the present invention.
  • Figure 4 is an exploded perspective view showing a state in which a latent heat exchanger is provided inside the condensing gas boiler according to the present invention.
  • FIG. 5 is a perspective view showing a latent heat exchanger used in the condensing gas boiler according to the present invention.
  • FIG. 6 is a perspective view illustrating (a) a heating return inlet and a heating return outlet formed in the heating return heat exchanger and a direct water inlet and a direct discharge outlet formed in the direct heat exchanger; (b) a heating water inlet and a heating water outlet formed in the heating return heat exchanger; A perspective view showing a hot water inlet and a hot water outlet formed in the direct water heat exchanger.
  • Figure 7 is a side view showing a latent heat exchanger used in the condensing gas boiler according to the present invention.
  • FIG. 8 is a cross-sectional view taken along line AA ′ of FIG. 7.
  • FIG. 9 is a cross-sectional view taken along line BB ′ of FIG. 7.
  • FIG. 10 is a schematic view showing another embodiment of a latent heat exchanger used in a condensing gas boiler according to the present invention.
  • combustion gas flow path 110 upper heat exchanger
  • heating return heat exchanger 111a heating return movement euro
  • direct flow path 122 first direct heat exchange plate
  • FIG. 2 is a schematic configuration diagram of a condensing gas boiler according to the present invention.
  • the condensing gas boiler includes an expansion tank 40 for storing the heating return flowed through the heating return inflow pipe 20, and a heating return discharge pipe from the expansion tank 40.
  • the circulation pump 50 for circulating the heating return discharged through, and the heating return and the direct water introduced through the direct water inlet pipe 60 the pressure of the circulating pump 50 is reduced due to the temperature of the combustion gas
  • the heating return and the direct water are introduced into the latent heat exchanger 100 through the heating return discharge pipe 30 and the direct inflow pipe 60, and then preheated first, and then the heating return flows into the sensible heat exchanger 130 and is heated again.
  • the hot water passes through the hot water discharge pipe 70 and passes through the hot water heat exchanger 80 to be heat-exchanged with the heating water to be heated with hot water.
  • the direct water is not only heated by the heating water but is primarily preheated through the latent heat exchanger (100), which not only shortens the time for heating the direct water with hot water, but also saves heat when heating the direct water. Will be.
  • Figure 3 is a perspective view showing a heat exchanger of the condensing gas boiler according to the present invention
  • Figure 4 is an exploded perspective view showing a state that the latent heat exchanger is provided inside the condensing gas boiler according to the present invention
  • Figure 5 is a present invention It is a perspective view which shows the latent heat exchanger used for the condensing gas boiler.
  • the latent heat exchanger 100 includes an upper heat exchanger 110 that exchanges heat with the combustion gas while the heating water is returned, and a lower heat exchanger that exchanges heat with the combustion gas while the direct water moves. 120).
  • the upper heat exchange part 110 is connected so that a plurality of heating return heat exchange parts 111 are disposed adjacent to each other through brazing welding, and the combustion gas flow passages so that combustion gas passes between the heating return heat exchange parts 111. 101 is formed.
  • the lower heat exchanger 120 is connected so that the plurality of direct heat exchangers 121 are disposed adjacent to each other through brazing welding, and the combustion gas moving passage 101 passes the combustion gas between the direct heat exchangers 121. Is formed.
  • FIG. 6 is a perspective view illustrating (a) a heating return inlet and a heating return outlet formed in the heating return heat exchanger and a direct water inlet and a direct discharge outlet formed in the direct heat exchanger; and (b) a heating water inlet and a heating water formed in the heating return heat exchanger. It is a perspective view which shows the hot water inlet and hot water discharge port formed in the discharge port and the direct water heat exchanger.
  • the heating return heat exchange part 111 constituting the upper heat exchange part 110 includes a first heating return water heat exchange plate 112 and a second heating return water heat exchange plate formed of a stainless steel material ( Two plates (112, 113) of the 113 is formed by stacking, and the heating return movement so as to heat exchange with the combustion gas passing through the combustion gas flow passage 101 formed between the heating return heat exchange unit 111 while the heating return is moved therein.
  • the flow path 111a is formed.
  • a heating return inlet 112a is formed at one side of the first heating return heat exchange plate 112 so that the heating return moving the heating return discharge pipe 30 is introduced into the heating return heat exchanger 111.
  • a heating return inlet hole 112a-1 is formed in the heating return inlet 112a so that the heating return passes through the heating return inlet hole 112a-1 and flows into the heating return heat exchanger 111.
  • the other side of the first heating return heat exchange plate 112 the heating water heat exchange with the combustion gas while moving the heating return movement flow path (111a) formed inside the heating return heat exchange unit 111, the temperature of the heating return heat exchange Heating water discharge port 112b is formed to be discharged to the outside of the unit 111, the heating water discharge hole (112b) is formed with a heating water discharge hole (112b-1), the temperature of the heating water is the heating water discharge hole Pass through 112b-1 is discharged to the outside of the heating return heat exchange unit (111).
  • one side of the second heating return heat exchange plate 113 of the heating return flow through the heating return flow inlet (112a) of the heating return of the heating return flow path (111a) does not move to the heating return heat exchange unit (
  • a heating return outlet 113a is formed to be discharged to the outside of the 111, and a heating return discharge hole 113a-1 is formed in the heating return outlet 113a so that the heating return outlet 113a-1 is heated. Pass through it is to be discharged to the outside of the heating return heat exchange unit (111).
  • a heating water inlet 113b is formed at the other side of the second heating and return heat exchange plate 113 so that the heated water is introduced into the heating and return heat exchanger 111, and the heating water inlet 113b is provided at the other side of the second heating and return heat exchanger 113.
  • the heating water inlet hole 113b-1 is formed so that the heating water passes through the heating water inlet hole 113b-1 and flows into the heating return heat exchanger 111, and then the heating is formed in the heating water outlet 112b. It is discharged to the outside through the water discharge hole (112b-1).
  • each of the plates 112 and 113 has an uneven portion 112c along the longitudinal direction of the heating return heat exchanger 111 to increase the heat transfer area of the heating return or direct water and the combustion gas so that the heat transfer efficiency is improved. Is formed.
  • the lower heat exchanger 120 is connected to a plurality of direct heat exchanger 121 is arranged adjacent to each other by brazing welding, etc., combustion gas movement flow path so that the combustion gas passes between each of the direct heat exchanger 121 ( 101 is formed.
  • the direct heat exchanger 121 constituting the lower heat exchanger 120 may include a first direct heat exchanger plate 122 and a second direct heat exchanger plate made of a stainless material, similar to the heating return heat exchanger 111. Two plates of 123 are stacked and formed, and a direct flow passage 121a is formed therein so as to exchange heat with the combustion gas while the direct flow moves.
  • a direct inlet 122a is formed so that the direct water moving the direct inlet pipe 60 flows into the inside of the direct heat exchange part 121, and the direct inlet 122a is formed.
  • Direct water inlet hole (122a-1) is formed in the direct water flows through the direct water inlet hole (122a-1) is introduced into the inside of the direct water heat exchanger (121).
  • the other side of the first direct heat exchange plate 122 moves the direct transfer flow passage 121a formed inside the direct heat exchange unit 121 while heat-exchanging with the combustion gas to increase the temperature of the direct heat exchange unit 121.
  • Hot water outlet 122b is formed to be discharged to the outside of the hot water outlet 122b, a hot water discharge hole 122b-1 is formed to pass through the hot water discharge hole 122b-1, the hot water is the direct water heat exchanger It is discharged to the outside of 121.
  • one side of the second direct heat exchange plate 123 is discharged to the outside of the direct heat exchange unit 121 of the direct water that does not move to the direct flow passage 121a of the direct flow introduced through the direct water inlet 122a.
  • a direct discharge outlet 123a is formed, and a direct discharge hole 123a-1 is formed in the direct discharge outlet 123a so that the direct water passes through the direct discharge hole 123a-1. It will be discharged to the outside.
  • a hot water inlet 123b is formed at the other side of the second direct heat exchange plate 123 so that hot water having an elevated temperature flows into the direct heat exchange unit 121, and a hot water inlet 123b is formed at the hot water inlet 123b. 1) is formed so that hot water passes through the hot water inlet hole 123b-1 and flows into the direct water heat exchanger 121, and then direct water heat exchanger through the hot water discharge hole 122b-1 formed in the hot water outlet 122b. It is discharged to the outside of 121.
  • each of the plates 122 and 123 is formed along the longitudinal direction of the direct heat exchanger 121 to increase the heat transfer area between the direct water and the combustion gas to improve the heat transfer efficiency.
  • the upper part of the latent heat exchanger 100 is formed with a plurality of heating return heat exchange part 111 to which the heating return movement is arranged adjacent to each other, the upper heat exchange part 110 is formed, the lower portion a plurality of direct water to move the direct
  • the lower heat exchanger 120 is connected to the heat exchanger 121 to be disposed adjacent to each other, so that the heating return that moves the heating return pipe 30 passes between the heating return heat exchanger 111 while passing through the upper heat exchanger 110.
  • the direct water moving the direct water inlet pipe 60 is the lower heat exchange unit 120 Heat exchanged with the combustion gas passing between the direct water heat exchanger 121 while passing through the hot water discharge pipe 70 through the hot water discharge pipe 70 and the secondary temperature through the hot water heat exchanger 80 Temperature rises .
  • the plurality of heating return heat exchanger 111 that exchanges heat with the combustion gas while the heating return is moved, and the plurality of direct heat exchanger 121 that exchanges heat with the combustion gas while moving the direct water is up and down 2.
  • the latent heat exchanger 100 is configured to have more than two heats, a larger number of heating return heat exchangers 111 and direct heat exchangers 121 are used, so that the heat transfer area where the heating return or direct water heat exchanges with the combustion gas. To increase the heat transfer efficiency.
  • the plurality of heating return heat exchanger 111 is connected to each other adjacently arranged, and the plurality of direct heat exchanger 121 is connected to each other adjacently arranged, as well as between each heating return heat exchanger 111, and each of the direct heat exchanger
  • the combustion gas flow passage 101 between the 121 and the heating return and direct water heat exchange with the combustion gas passing through the combustion gas flow passage 101 while moving the heating return heat exchanger 111 and the direct water heat exchanger 121.
  • Figure 10 is a schematic diagram showing another embodiment of a latent heat exchanger used in the condensing gas boiler according to the present invention.
  • each heating return heat exchanger 111 and the upper end of each direct heat exchanger 121 are connected to each other by brazing welding, but the heating return heat exchanger 111 and the direct heat exchanger are connected.
  • two plates 112 ′ and 113 ′ having a large area are stacked to form a heating return movement flow passage 111 a ′ at the upper portion and a direct movement flow passage 121 a ′ at the lower portion. Is formed so that the heating return heat exchanger 111 'and the direct heat exchanger 121' are integrally welded when the heating return heat exchanger 111 and the direct heat exchanger 121 are connected by welding. It is also possible to prevent the site from being damaged by external shocks or prolonged use of the boiler.
  • the heating return moving the heating return discharge pipe 30 is introduced into the plurality of heating return heat exchangers 111 constituting the upper heat exchanger 110.
  • the heating return is the heating return inlet of the heating return heat exchanger 111 ( Passes through the heating return inlet hole (112a-1) formed in 112a) is introduced into the heating return heat exchange unit 111 located first.
  • Some of the heating return flows introduced into the first heating return heat exchanger 111 is heat exchanged with the combustion gas passing between the heating return heat exchanger 111 while passing through the heating return flow passage 111a at this time the temperature of the combustion gas
  • the degradation causes heat exchange with the latent heat of condensation that occurs when condensate is produced.
  • Heated water whose temperature is increased by heat exchange with the latent heat of condensation passes through the heating water discharge hole 112b-1 formed in the heating water outlet 112b and then passes through the heating water inlet pipe 180 connected to the heating water outlet 112b.
  • the heating water discharge hole 112b-1 formed in the heating water outlet 112b and then passes through the heating water inlet pipe 180 connected to the heating water outlet 112b.
  • the remaining heating return that does not move the heating return movement flow path (111a) is moved to the second heating return heat exchange unit (111), and then some move the heating return movement flow path (111a) and heat exchange with the combustion gas, the first heating Pass the heating water inlet hole 113b-1 formed in the heating water inlet 113b of the return water heat exchanger 111 and then pass the heating water discharge hole 112b-1, and then use the sensible heat exchanger through the heating water inlet pipe 180.
  • the remaining part is moved to the heating return heat exchange unit 111 in the next position to repeat the above process.
  • the direct heat flowing in the direct heat inlet pipe 60 is introduced into the lower heat exchange part 120 located below the upper heat exchange part 110.
  • the direct water flows into the direct water inlet 122a of the first direct heat heat exchanger 121.
  • Combustion flows through the formed direct inflow hole 122a-1 and flows into the inside of the direct heat exchange part 121, and some of the inflowed direct water moves between the direct flow paths 121a and combustion formed between the direct heat exchange parts 121.
  • the hot water whose temperature is increased by heat exchange with the latent heat of condensation is discharged to the outside through the hot water discharge hole 122b-1 formed in the hot water discharge port 122b and then through the hot water discharge pipe 70 connected to the hot water discharge port 122b. 80 will be provided.
  • the remaining direct water that does not move the direct flow passage 121a moves to the second direct heat exchanger 121, and then a part of the direct heat exchanger 121 is heat-exchanged with the combustion gas to increase the temperature, and then the hot water inlet 123b of the direct heat exchanger 121 located first. Passed through the hot water inlet hole (123b-1) formed in the hot water discharge hole (122b-1) formed in the hot water outlet 122b and then provided to the hot water heat exchanger 80 through the hot water discharge pipe (70), The rest is provided to the direct heat exchanger 121 at the next position and then repeats the above process.
  • the heating return is first increased through the upper heat exchanger 110 formed on the latent heat exchanger 100 and then provided to the sensible heat exchanger 130 to increase the temperature secondly.
  • the direct water is first increased in temperature through the lower heat exchanger 120 formed in the lower portion of the latent heat exchanger 100 and then supplied to the hot water heat exchanger 80 to increase the temperature in the second heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

본 발명은 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러에 관한 것으로, 버너의 점화·연소로 인해 발생되는 연소가스를 이용하여 난방환수를 가열하는 온수난방 잠열열교환기에 있어서, 내부에 난방환수가 이동하도록 난방환수이동유로가 형성된 복수개의 난방환수열교환부가 서로 인접배치되게 연결되고, 상기 각 난방환수열교환부사이에는 연소가스가 이동하도록 연소가스이동유로가 형성된 상부열교환부; 및 상기 상부열교환부의 하측에 위치하고, 내부에 직수가 이동하도록 직수이동유로가 형성된 복수개의 직수열교환부가 인접배치되게 연결되며, 상기 각 직수열교환부사이에는 연소가스가 이동하도록 연소가스이동유로가 형성된 하부열교환부;로 구성되는 것을 특징으로 한다.

Description

온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
본 발명은 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러에 관한 것으로, 더욱 상세하게는 잠열열교환기를 이용하여 직수를 예열함으로써 빠르게 온수를 사용할 수 있게 하고, 배출되는 연소배기가스로부터 잠열을 회수하여 전열효율이 향상되게 할 뿐만 아니라 잠열열교환기의 구조를 개선함으로써 제조비용을 절감시키고, 전열면적이 커지게 하여 전열효율이 향상되게 하는 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러에 관한 것이다.
일반적으로, 보일러는 가정이나 사무실 혹은 그 외 공장 등과 같은 다양한 건축물에 설치되어 공기와 가스가 혼합된 혼합연료를 연소시킴으로써 발생하는 열원과의 열교환을 통해 온수와 난방수를 공급한다.
이를 위해, 보일러는 공기와 가스를 각각 외부로부터 공급받아 혼합한 다음 그 혼합된 혼합연료를 버너에 공급하는 연료공급기와, 상기 연료공급기로부터 혼합연료를 공급받아 점화장치에 의해 연소시킴으로써 화염을 발생시키는 버너 및 난방환수가 버너로부터 공급된 열원과 열교환되도록 하여 난방환수를 난방수로 가열하는 열교환기를 포함한다.
특히, 최근에는 난방환수가 버너에서 발생된 현열과 1차로 열교환을 하는 현열열교환기 및 난방환수가 상기 현열열교환기에서 열교환을 마친 연소가스와 2차로 열교환을 하는 잠열열교환기를 구비한 콘덴싱 열교환기가 많이 사용되고 있으며, 이러한 콘덴싱 열교환기를 구비한 보일러를 콘덴싱 보일러라 한다.
또한 가정에서 사용되고 있는 난방 및 온수 보일러는 사용 연료에 따라 기름보일러와 가스보일러로 나눌 수 있는데, 이 중에서 최근에는 대기오염이 적고 사용이 편리한 가스보일러가 주로 사용되고 있다.
도 1은 종래의 콘덴싱 가스보일러 중 하향식 콘덴싱 가스보일러를 나타내는 도면으로서, 도 1에 도시된 바와 같이, 종래의 콘뎅싱 가스보일러는 하부에 난방환수유입관(1)과 난방환수배출관(2)이 연결되고 난방환수유입관(1)을 통해 유입되는 난방환수를 저장하는 팽창탱크(3)와, 상기 팽창탱크(3)에 연결된 난방환수배출관(2)을 통해 배출된 난방환수를 순환시키는 순환펌프(4)와, 상기 순환펌프(2)에 의해 압송된 난방환수가 상기 잠열열교환기(5)에 설치된 열교환파이프(5a)를 지나면서 연소가스의 온도저하로 인해 응축수가 생성될 때 발생하는 잠열과 열교환되도록 하는 잠열열교환기(5)와, 상기 잠열열교환기(5)를 통해 1차적으로 예열된 난방환수에 버너(7)의 열에너지를 전달하기 위한 현열열교환기(6)와, 난방가동시에는 난방수공급관(8)으로 난방수를 공급하고, 온수사용시에는 온수열교환기(9)측으로 난방수를 공급하는 삼방밸브(10) 및 온수사용시 직수를 가열시켜 난방소요처로 온수를 공급하는 온수열교환기(9)등으로 구성된다.
도 1에 도시된 종래의 콘덴싱 가스보일러의 동작과정을 살펴보면, 난방소요처에 열을 빼앗긴 난방환수는 난방환수유입관(1)을 지나 팽창탱크(3)에 유입되고 팽창탱크(3)를 지나 난방환수배출관(2)으로 배출된 난방환수는 순환펌프(4)를 거쳐 잠열열교환기(5)로 공급되어 잠열열교환기(5)에 설치된 열교환파이프(5a)를 지나면서 연소가스의 온도저하로 응축수가 생성될때 발생하는 잠열과 열교환됨으로써 온도가 1차적으로 상승한다.
또한 잠열열교환기(5)에서 온도가 상승한 난방환수는 현열열교환기(6)를 통해 연소가스와 2차적으로 열교환되어 온도가 상승하게 되며, 이때 발생된 응축수는 응축수배수로(13)를 통해 외부로 배출되게 된다.
한편, 현열열교환기(6)에서 2차로 가열된 난방환수는 난방수공급관(8)을 통해 난방소요처로 공급되는 데 이때 난방수공급관(8)에는 삼방밸브(10)가 구비되어 삼방밸브(10)를 통해 난방수를 온수열교환기(9)로 공급하여 직수유입관(11)을 통해 유입되는 직수를 온수로 가열시킨 후 온수배출관(12)을 통해 배출되게 하거나 난방소요처로 공급하여 열을 제공하게 된다.
하지만 상기와 같이 구성된 종래의 콘덴싱 가스보일러는 난방수만을 이용하여 직수를 온수로 가열하기 때문에 직수를 가열하는 데 오랜 시간이 걸릴 뿐만 아니라 직수를 온수로 가열하는 데 지나치게 많은 열량이 소모되는 문제점이 있었다.
또한 난방환수배출관(2)과 연결되어 난방환수가 이동하면서 열교환되는 열교환파이프(5a)의 단면이 원형으로 되어 있어 난방환수와 잠열이 열교환되는 전열면적이 적어 전열효율이 현저히 떨어지는 문제점이 있었다.
또한 전열면적이 커지도록 하기 위해 열교환파이프(5a)를 다수개 구성한다 할지라도 잠열열교환기의 크기상의 제한으로 인해 열교환파이프(5a)의 개수를 증가시키는 데 제한을 받게 되는 문제점이 있었다.
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 잠열열교환기를 이용하여 직수를 예열함으로써 빠르게 온수를 사용할 수 있게 하고, 배출되는 연소배기가스로부터 잠열을 회수하여 전열효율이 향상되게 할 뿐만 아니라 잠열열교환기의 구조를 개선함으로써 제조비용을 절감시키고, 전열면적이 커지게 하여 전열효율이 향상되게 하는 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러를 제공하는 것을 목적으로 한다.
전술한 본 발명의 목적은, 버너의 점화·연소로 인해 발생되는 연소가스를 이용하여 난방환수를 가열하는 온수난방 잠열열교환기에 있어서, 내부에 난방환수가 이동하도록 난방환수이동유로가 형성된 복수개의 난방환수열교환부가 서로 인접배치되게 연결되고, 상기 각 난방환수열교환부사이에는 연소가스가 이동하도록 연소가스이동유로가 형성된 상부열교환부; 및 상기 상부열교환부의 하측에 위치하고, 내부에 직수가 이동하도록 직수이동유로가 형성된 복수개의 직수열교환부가 인접배치되게 연결되며, 상기 각 직수열교환부사이에는 연소가스가 이동하도록 연소가스이동유로가 형성된 하부열교환부;로 구성되는 것을 특징으로 하는 온수난방 잠열열교환기를 제공함으로써 달성된다.
또한 상기 각 난방환수열교환부와 상기 각 직수열교환부는 2개의 플레이트가 적층되어 형성된 것을 특징으로 한다.
또한 상기 각 난방환수열교환부의 하단과 상기 각 직수열교환부의 상단은 브레이징 용접을 통해 연결된 것을 특징으로 한다.
또한 상기 난방환수열교환부와 상기 직수열교환부는 2개의 플레이트가 적층되어 일체로 형성된 것을 특징으로 한다.
또한 상기 각 플레이트의 외측면에는 전열면적이 증가되도록 요철부가 형성된 것을 특징으로 한다.
전술한 본 발명의 다른 목적은, 버너의 점화·연소로 인해 발생되는 연소가스를 이용하여 난방환수를 가열하는 콘덴싱 가스보일러에 있어서, 제1항에 기재된 잠열열교환기; 팽창탱크로부터 배출된 난방환수를 상기 잠열열교환기로 유입시키는 난방환수배출관; 직수를 상기 잠열열교환기로 유입시키는 직수유입관; 상기 잠열열교환기를 통해 가열된 난방수를 현열열교환기로 유입시키는 난방수유입관; 상기 잠열열교환기를 통해 가열된 온수를 배출하는 온수배출관; 및 상기 온수배출관을 통해 온수를 공급받아 재차 가열하는 온수열교환기;를 포함하는 것을 특징으로 하는 콘덴싱 가스보일러를 제공함으로써 달성된다.
상술한 바와 같이 본 발명인 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러는, 난방환수가 이동하면서 연소가스와 열교환되는 복수개의 난방환수열교환부와, 직수가 이동하면서 열교환되는 복수개의 직수열교환부가 상하 2개의 열로 구성되도록 하여 잠열열교환기를 구성할 때 보다 많은 개수의 난방환수열교환부와 직수열교환부가 사용되도록 함으로써 난방환수 또는 직수가 연소가스와 열교환되는 전열면적이 커지게 하고 전열효율이 향상되게 하는 효과가 있다.
또한 복수개의 난방환수열교환부가 인접배치되도록 연결하고, 복수개의 직수열교환부가 인접된 하부에 배치되도록 연결할 뿐만 아니라, 각 난방환수열교환부사이와, 각 직수열교환부사이에 연소가스이동유로를 형성시킴으로써 난방환수 또는 직수가 난방환수열교환부 또는 직수열교환부를 이동하면서 연소가스이동유로를 지나는 연소가스와 열교환될때 난방환수열교환부 또는 직수열교환부의 양측을 지나가는 연소가스와 열교환되도록 함으로써 난방환수 또는 직수가 연소가스와 2개의 플레이트를 통해 열교환되도록 하여 전열면적이 커지게 하고 전열효율이 향상되게 하는 효과가 있다.
또한 잠열열교환기를 이용하여 직수를 1차적으로 미리 예열함으로써 난방수를 이용하여 직수를 온수로 가열시키는 데 소요되는 시간을 단축시키고 직수를 가열하기 위해 사용되는 열량도 절약되게 하는 효과가 있다.
또한 2개의 플레이트를 결합하여 하나의 열교환부를 구성함으로써 제조공정을 단순화시키고, 제조비용을 절감시키는 효과가 있다.
도 1은 일반적인 콘덴싱 가스보일러의 개략적인 구성도.
도 2는 본 발명에 따른 콘덴싱 가스보일러의 개략적인 구성도.
도 3은 본 발명에 따른 콘덴싱 가스보일러의 열교환기를 나타내는 사시도.
도 4는 본 발명에 따른 콘덴싱 가스보일러의 내부에 잠열열교환기가 구비된 상태를 나타내는 분해 사시도.
도 5는 본 발명에 따른 콘덴싱 가스보일러에 사용되는 잠열열교환기를 나타내는 사시도.
도 6은 (a) 난방환수열교환부에 형성된 난방환수유입구와 난방환수배출구 및 직수열교환부에 형성된 직수유입구와 직수배출구를 나타내는 사시도 (b) 난방환수열교환부에 형성된 난방수유입구와 난방수배출구 및 직수열교환부에 형성된 온수유입구와 온수배출구를 나타내는 사시도.
도 7은 본 발명에 따른 콘덴싱 가스보일러에 사용되는 잠열열교환기를 나타내는 측면도.
도 8은 도 7의 AA'선을 따르는 단면도.
도 9는 도 7의 BB'선을 따르는 단면도.
도 10은 본 발명에 따른 콘덴싱 가스보일러에 사용되는 잠열열교환기의 다른 실시예를 나타내는 개략도.
** 부호의 설명 **
1,20: 난방환수유입관 2,30: 난방환수배출관
3,40: 팽창탱크 4,50: 순환펌프
5,100: 잠열열교환기 6,130: 현열열교환기
7,90: 버너 8,150: 난방수공급관
9,80: 온수열교환기 10,140: 삼방밸브
11,60: 직수유입관 12,160: 온수공급관
70: 온수배출관 13,170: 응축수배수로
180: 난방수유입관 100: 잠열열교환기
101: 연소가스이동유로 110: 상부열교환부
111: 난방환수열교환부 111a: 난방환수이동유로
112: 제1난방환수열교환플레이트 113: 제2난방환수열교환플레이트
112a: 난방환수유입구 112a-1: 난방환수유입홀
112b: 난방수배출구 112b-1: 난방수배출홀
113a: 난방환수배출구 113a-1: 난방환수배출홀
113b: 난방수유입구 113b-1: 난방수유입홀
120: 하부열교환부 121: 직수열교환부
121a: 직수이동유로 122: 제1직수열교환플레이트
123: 제2직수열교환플레이트 122a: 직수유입구
122a-1: 직수유입홀 122b: 온수배출구
122b-1: 온수배출홀 123: 직수배출구
123a-1: 직수배출홀 123b: 온수유입구
123b-1: 온수유입홀
112c,122c:요철부
이하 첨부된 도면을 참조하여 본 발명의 일실시예에 따른 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러에 대해 상세히 설명한다.
도 2는 본 발명에 따른 콘덴싱 가스보일러의 개략적인 구성도이다.
도 2에 도시된 바와 같이, 본 발명에 따른 콘덴싱 가스보일러는 난방환수유입관(20)을 통해 유입된 난방환수를 저장하는 팽창탱크(40)와, 상기 팽창탱크(40)로부터 난방환수배출관(30)을 통해 배출된 난방환수를 순환시키는 순환펌프(50)와, 상기 순환펌프(50)에 의해 압송된 난방환수와 직수유입관(60)을 통해 유입된 직수가 연소가스의 온도저하로 인해 응축수가 생성될 때 발생하는 잠열과 열교환되도록 하는 잠열열교환기(100)와, 상기 잠열열교환기(100)를 통해 1차적으로 예열된 난방수에 버너(90)의 열에너지를 전달하기 위한 현열열교환기(130)와, 상기 잠열열교환기(100)를 통해 1차적으로 예열된 난방수를 상기 현열열교환기(130)로 공급하는 난방수유입관(180)과, 난방가동시에는 난방수공급관(150)으로 난방수를 공급하고 온수사용시에는 온수열교환기(80)측으로 난방수를 공급하는 삼방밸브(140)와, 직수를잠열열교환기(100)로 공급하는 직수유입관(60)과, 잠열열교환기(100)를 통해 가열된 온수를 온수열교환기(80)로 유입시키는 온수배출관(70)과, 온수열교환기(80)를 통해 재차 가열된 온수를 공급하는 온수공급관(60)등으로 구성된다.
따라서 난방환수배출관(30)과 직수유입관(60)을 통해 난방환수와 직수가 잠열열교환기(100)로 유입되어 1차적으로 예열된 다음 난방환수는 현열열교환기(130)로 유입되어 재차 가열되고, 온수는 온수배출관(70)을 지나 온수열교환기(80)를 거치면서 난방수와 열교환되어 온수로 가열되게 된다.
본 발명의 경우 직수가 난방수에 의해서만 가열되는 것이 아니라 1차적으로잠열열교환기(100)를 거쳐 예열되게 됨으로써 직수를 온수로 가열하는 시간을 단축시킬 뿐만 아니라 직수를 가열할 때 소모되는 열량도 절약되게 된다.
한편, 도 3은 본 발명에 따른 콘덴싱 가스보일러의 열교환기를 나타내는 사시도이고, 도 4는 본 발명에 따른 콘덴싱 가스보일러의 내부에 잠열열교환기가 구비된 상태를 나타내는 분해 사시도이며, 도 5는 본 발명에 따른 콘덴싱 가스보일러에 사용되는 잠열열교환기를 나타내는 사시도이다.
도 3 내지 도 5에 도시된 바와 같이, 상기 잠열열교환기(100)는 난방환수가 이동하면서 연소가스와 열교환되는 상부열교환부(110)와, 직수가 이동하면서 연소가스와 열교환되는 하부열교환부(120)로 구성된다.
상기 상부열교환부(110)는 복수개의 난방환수열교환부(111)가 브레이징 용접 등을 통해 인접배치되도록 연결되며, 상기 각 난방환수열교환부(111)사이에는 연소가스가 지나가도록 연소가스이동유로(101)가 형성된다.
상기 하부열교환부(120)는 복수개의 직수열교환부(121)가 브레이징 용접 등을 통해 인접배치되도록 연결되며, 상기 각 직수열교환부(121)사이에도 연소가스가 지나가도록 연소가스이동유로(101)가 형성된다.
한편, 도 6은 (a) 난방환수열교환부에 형성된 난방환수유입구와 난방환수배출구 및 직수열교환부에 형성된 직수유입구와 직수배출구를 나타내는 사시도 (b) 난방환수열교환부에 형성된 난방수유입구와 난방수배출구 및 직수열교환부에 형성된 온수유입구와 온수배출구를 나타내는 사시도이다.
도 6에 도시된 바와 같이, 상기 상부열교환부(110)를 구성하는 상기 난방환수열교환부(111)는 스태인리스재질로 이루어진 제1난방환수열교환플레이트(112)와 제2난방환수열교환플레이트(113)의 2개의 플레이트(112,113)가 적층되어 형성되고, 내부에는 난방환수가 이동하면서 상기 난방환수열교환부(111)사이에 형성된 연소가스이동유로(101)를 지나가는 연소가스와 열교환되도록 난방환수이동유로(111a)가 형성된다.
상기 제1난방환수열교환플레이트(112)의 일측에는 상기 난방환수배출관(30)을 이동하는 난방환수가 상기 난방환수열교환부(111)의 내부로 유입되도록 난방환수유입구(112a)가 형성되고, 상기 난방환수유입구(112a)에는 난방환수유입홀(112a-1)이 형성되어 난방환수는 상기 난방환수유입홀(112a-1)을 통과하여 상기 난방환수열교환부(111)의 내부로 유입되게 된다.
또한 상기 제1난방환수열교환플레이트(112)의 타측에는 상기 난방환수열교환부(111)의 내부에 형성된 난방환수이동유로(111a)를 이동하면서 연소가스와 열교환되어 온도가 상승한 난방수가 상기 난방환수열교환부(111)의 외부로 배출되도록 난방수배출구(112b)가 형성되고, 상기 난방수배출구(112b)에는 난방수배출홀(112b-1)이 형성되어 온도가 상승한 난방수는 상기 난방수배출홀(112b-1)을 통과하여 상기 난방환수열교환부(111)의 외부로 배출되게 된다.
한편, 상기 제2난방환수열교환플레이트(113)의 일측에는 상기 난방환수유입구(112a)를 통해 유입된 난방환수중 상기 난방환수이동유로(111a)로 이동하지 않은 난방환수가 상기 난방환수열교환부(111)의 외부로 배출되도록 난방환수배출구(113a)가 형성되고, 상기 난방환수배출구(113a)에는 난방환수배출홀(113a-1)이 형성되어 난방환수가 상기 난방환수배출홀(113a-1)을 통과하여 상기 난방환수열교환부(111)의 외부로 배출되게 된다.
또한 상기 제2난방환수열교환플레이트(113)의 타측에는 온도가 상승한 난방수가 상기 난방환수열교환부(111)의 내부로 유입되도록 난방수유입구(113b)가 형성되고, 상기 난방수유입구(113b)에는 난방수유입홀(113b-1)이 형성되어 난방수가 상기 난방수유입홀(113b-1)을 통과하여 상기 난방환수열교환부(111)로 유입된 다음 상기 난방수배출구(112b)에 형성된 상기 난방수배출홀(112b-1)을 통해 외부로 배출되게 된다.
이외에 상기 각 플레이트(112,113)의 외측면에는 난방환수 또는 직수와 연소가스의 전열면적이 커지게 하여 전열효율이 향상되게 하는 요철부(112c)가 상기 난방환수열교환부(111)의 길이방향을 따라 형성된다.
한편, 상기 하부열교환부(120)는 복수개의 직수열교환부(121)가 브레이징 용접 등을 통해 인접배치되도록 연결되고, 상기 각 직수열교환부(121)사이에는 연소가스가 지나가도록 연소가스이동유로(101)가 형성된다.
상기 하부열교환부(120)를 구성하는 상기 직수열교환부(121)는 상기 난방환수열교환부(111)와 동일하게 스태인리스재질로 이루어진 제1직수열교환플레이트(122)와 제2직수열교환플레이트(123)의 2개의 플레이트가 적층되어 형성되고, 내부에는 직수가 이동하면서 연소가스와 열교환되도록 직수이동유로(121a)가 형성된다.
상기 제1직수열교환플레이트(122)의 일측에는 직수유입관(60)을 이동하는 직수가 상기 직수열교환부(121)의 내부로 유입되도록 직수유입구(122a)가 형성되고, 상기 직수유입구(122a)에는 직수유입홀(122a-1)이 형성되어, 직수는 상기 직수유입홀(122a-1)을 통과하여 상기 직수열교환부(121)의 내부로 유입되게 된다.
또한 상기 제1직수열교환플레이트(122)의 타측에는 상기 직수열교환부(121)의 내부에 형성된 직수이동유로(121a)를 이동하면서 연소가스와 열교환되어 온도가 상승한 온수가 상기 직수열교환부(121)의 외부로 배출되도록 온수배출구(122b)가 형성되고, 상기 온수배출구(122b)에는 온수배출홀(122b-1)이 형성되어 상기 온수배출홀(122b-1)을 통과하여 온수가 상기 직수열교환부(121)의 외부로 배출되게 된다.
한편, 상기 제2직수열교환플레이트(123)의 일측에는 상기 직수유입구(122a)를 통해 유입된 직수 중 상기 직수이동유로(121a)로 이동하지 않은 직수가 상기 직수열교환부(121)의 외부로 배출되도록 직수배출구(123a)가 형성되고, 상기 직수배출구(123a)에는 직수배출홀(123a-1)이 형성되어 직수가 상기 직수배출홀(123a-1)을 통과하여 상기 직수열교환부(121)의 외부로 배출되게 된다.
또한 상기 제2직수열교환플레이트(123)의 타측에는 온도가 상승한 온수가 상기 직수열교환부(121)로 유입되도록 온수유입구(123b)가 형성되고, 상기 온수유입구(123b)에는 온수유입홀(123b-1)이 형성되어 온수가 상기 온수유입홀(123b-1)을 통과하여 상기 직수열교환부(121)로 유입된 다음 온수배출구(122b)에 형성된 온수배출홀(122b-1)을 통해 직수열교환부(121)의 외부로 배출되게 된다.
이외에 상기 각 플레이트(122,123)의 외측면에는 직수와 연소가스와의 전열면적이 커지게 하여 전열효율이 향상되게 하는 요철부(122c)가 상기 직수열교환부(121)의 길이방향을 따라 형성된다.
따라서, 잠열열교환기(100)의 상부에는 난방환수가 이동하는 복수개의 난방환수열교환부(111)가 서로 인접배치되게 연결된 상부열교환부(110)가 형성되고, 하부에는 직수가 이동하는 복수개의 직수열교환부(121)가 서로 인접배치되게 연결된 하부열교환부(120)가 형성되어, 난방환수배출관(30)을 이동하는 난방환수는 상부열교환부(110)를 지나가면서 난방환수열교환부(111)사이를 지나가는 연소가스와 열교환되어 1차적으로 온도가 상승한 다음 난방수유입관(180)을 통해 현열열교환기(130)로 제공되고, 직수유입관(60)을 이동하는 직수는 하부열교환부(120)를 지나면서 직수열교환부(121)사이를 지나는 연소가스와 열교환되어 온도가 1차적으로 상승한 후 온수배출관(70)을 거쳐 온수열교환기(80)로 제공되고, 온수열교환기(80)를 통해 2차적으로 온도가 상승하게 된다.
상기와 같이 구성된 본 발명의 경우, 난방환수가 이동하면서 연소가스와 열교환되는 복수개의 난방환수열교환부(111)와, 직수가 이동하면서 연소가스와 열교환되는 복수개의 직수열교환부(121)가 상하 2개의 열로 구성되도록 하여 잠열열교환기(100)를 구성할 때 보다 많은 개수의 난방환수열교환부(111)와 직수열교환부(121)가 사용되도록 함으로써 난방환수 또는 직수가 연소가스와 열교환되는 전열면적이 커지게 하고 전열효율이 향상되게 한다.
또한 복수개의 난방환수열교환부(111)가 서로 인접배치되도록 연결하고, 복수개의 직수열교환부(121)가 서로 인접배치되도록 연결할 뿐만 아니라, 각 난방환수열교환부(111)사이와, 각 직수열교환부(121)사이에 연소가스이동유로(101)를 형성시킴으로써 난방환수와 직수가 난방환수열교환부(111)와 직수열교환부(121)를 이동하면서 연소가스이동유로(101)를 지나는 연소가스와 열교환될 때 각 열교환부(111,121)의 양측을 지나가는 연소가스와 열교환되도록 함으로써 난방환수 또는 직수가 연소가스와 2개의 플레이트(112,113,122,123)를 통해 열교환되도록 하여 전열면적이 커지게 하고 전열효율이 향상되게 한다.
또한 2개의 플레이트(112,113,122,123)를 결합하여 하나의 열교환부(111,121)를 구성함으로써 제조공정을 단순화시키고, 제조비용을 절감시킨다.
한편, 도 10은 본 발명에 따른 콘덴싱 가스보일러에 사용되는 잠열열교환기의 다른 실시예를 나타내는 개략도이다.
도 10에 도시된 바와 같이, 상기 각 난방환수열교환부(111)의 하단과 상기 각 직수열교환부(121)의 상단은 브레이징 용접을 통해 서로 연결되지만 상기 난방환수열교환부(111)와 상기 직수열교환부(121)를 각 각 별도로 구성하지 않고 면적이 큰 2개의 플레이트(112',113')를 적층하여 상부에는 난방환수이동유로(111a')가 형성되도록 하고 하부에는 직수이동유로(121a')가 형성되도록 하여 난방환수열교환부(111')와 직수열교환부(121')가 일체가 되도록 구성함으로써 난방환수열교환부(111)와 직수열교환부(121)가 용접을 통해 연결됐을 때 용접된 연결부위가 외부의 충격이나 보일러의 장시간 사용으로 인해 파손되는 것을 방지할 수도 있다.
이하 본 발명에 따른 콘덴싱 보일러에 구성된 잠열열교환기를 난방환수와 직수가 이동하면서 열교환되는 과정을 도 7 내지 도 9를 참조하여 상세히 설명한다.
먼저 난방환수배출관(30)을 이동하는 난방환수는 상부열교환부(110)를 구성하는 복수개의 난방환수열교환부(111)로 유입되는 데 난방환수는 난방환수열교환부(111)의 난방환수유입구(112a)에 형성된 난방환수유입홀(112a-1)을 통과하여 첫번째 위치한 난방환수열교환부(111)의 내부로 유입된다.
첫번째 위치한 난방환수열교환부(111)의 내부로 유입된 난방환수중 일부는 난방환수이동유로(111a)를 지나가면서 난방환수열교환부(111)사이를 지나가는 연소가스와 열교환되는 데 이때 연소가스의 온도저하로 인해 응축수가 생성될 때 발생하는 응축잠열과 열교환되게 된다.
응축잠열과 열교환되어 온도가 상승한 난방수는 난방수배출구(112b)에 형성된 난방수배출홀(112b-1)을 통과한 후 난방수배출구(112b)에 연결된 난방수유입관(180)을 거쳐 현열열교환기(130)로 제공되게 된다.
또한 난방환수이동유로(111a)를 이동하지 않은 나머지 난방환수는 두번째 위치한 난방환수열교환부(111)로 이동한 다음 일부는 난방환수이동유로(111a)를 이동하면서 연소가스와 열교환된 후 첫번째 위치한 난방환수열교환부(111)의 난방수유입구(113b)에 형성된 난방수유입홀(113b-1)을 지나 난방수배출홀(112b-1)을 통과한 후 난방수유입관(180)을 통해 현열열교환기(130)로 제공되고, 나머지 일부는 다음위치의 난방환수열교환부(111)로 이동하여 상기와 같은 과정을 반복하게 된다.
한편, 상부열교환부(110)의 하측에 위치한 하부열교환부(120)에는 직수유입관(60)을 이동하는 직수가 유입되게 되는데 직수는 첫번째 위치한 직수열교환부(121)의 직수유입구(122a)에 형성된 직수유입홀(122a-1)을 통과하여 직수열교환부(121)의 내부로 유입되고, 유입된 직수중 일부는 직수이동유로(121a)를 이동하면서 각 직수열교환부(121)사이에 형성된 연소가스이동유로(101)를 지나는 연소가스와 열교환 되는데, 이때 직수도 연소가스의 온도저하로 응축수가 생성될 때 발생하는 응축잠열과 열교환되게 된다.
응축잠열과 열교환되어 온도가 상승한 온수는 온수배출구(122b)에 형성된 온수배출홀(122b-1)을 통과하여 외부로 배출된 후 온수배출구(122b)에 연결된 온수배출관(70)을 거쳐 온수열교환기(80)로 제공되게 된다.
또한 직수이동유로(121a)를 이동하지 않은 나머지 직수는 두번째 위치한 직수열교환부(121)로 이동한 다음 일부는 연소가스와 열교환되어 온도가 상승한 후 첫번째 위치한 직수열교환부(121)의 온수유입구(123b)에 형성된 온수유입홀(123b-1)을 지나 온수배출구(122b)에 형성된 온수배출홀(122b-1)을 통과한 다음 온수배출관(70)을 통해 온수열교환기(80)로 제공되게 되고, 나머지는 다음 위치의 직수열교환부(121)로 제공된 후 상기와 같은 과정을 반복하게 된다.
상기와 같은 과정을 거치면서 난방환수는 잠열열교환기(100)의 상부에 형성된 상부열교환부(110)를 통해 1차로 온도가 상승한 다음 현열열교환기(130)로 제공되어 2차로 온도가 상승하게 되고, 직수는 잠열열교환기(100)의 하부에 형성된 하부열교환부(120)를 통해 1차로 온도가 상승한 다음 온수열교환기(80)로 제공되어 2차로 온도가 상승하게 된다.
이상에서 본 발명의 바람직한 일실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있고, 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.

Claims (6)

  1. 버너의 점화·연소로 인해 발생되는 연소가스를 이용하여 난방환수를 가열하는 온수난방 잠열열교환기에 있어서,
    내부에 난방환수가 이동하도록 난방환수이동유로가 형성된 복수개의 난방환수열교환부가 서로 인접배치되게 연결되고, 상기 각 난방환수열교환부사이에는 연소가스가 이동하도록 연소가스이동유로가 형성된 상부열교환부; 및
    상기 상부열교환부의 하측에 위치하고, 내부에 직수가 이동하도록 직수이동유로가 형성된 복수개의 직수열교환부가 인접배치되게 연결되며, 상기 각 직수열교환부사이에는 연소가스가 이동하도록 연소가스이동유로가 형성된 하부열교환부;
    로 구성되는 것을 특징으로 하는 온수난방 잠열열교환기.
  2. 제1항에 있어서,
    상기 각 난방환수열교환부와 상기 각 직수열교환부는 2개의 플레이트가 적층되어 형성된 것을 특징으로 하는 온수난방 잠열열교환기.
  3. 제2항에 있어서,
    상기 각 난방환수열교환부의 하단과 상기 각 직수열교환부의 상단은 브레이징 용접을 통해 연결된 것을 특징으로 하는 온수난방 잠열열교환기.
  4. 제1항에 있어서,
    상기 난방환수열교환부와 상기 직수열교환부는 2개의 플레이트가 적층되어 일체로 형성된 것을 특징으로 하는 온수난방 잠열열교환기.
  5. 제2항 또는 제4항에 있어서,
    상기 각 플레이트의 외측면에는 전열면적이 증가되도록 요철부가 형성된 것을 특징으로 하는 온수난방 잠열열교환기.
  6. 버너의 점화·연소로 인해 발생되는 연소가스를 이용하여 난방환수를 가열하는 콘덴싱 가스보일러에 있어서,
    제1항에 기재된 잠열열교환기;
    팽창탱크로부터 배출된 난방환수를 상기 잠열열교환기로 유입시키는 난방환수배출관;
    직수를 상기 잠열열교환기로 유입시키는 직수유입관;
    상기 잠열열교환기를 통해 가열된 난방수를 현열열교환기로 유입시키는 난방수유입관;
    상기 잠열열교환기를 통해 가열된 온수를 배출하는 온수배출관; 및
    상기 온수배출관을 통해 온수를 공급받아 재차 가열하는 온수열교환기;
    를 포함하는 것을 특징으로 하는 콘덴싱 가스보일러.
PCT/KR2015/002459 2014-03-17 2015-03-13 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러 WO2015141995A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580014464.0A CN106104168A (zh) 2014-03-17 2015-03-13 热水供暖潜热热交换器以及包括此的冷凝式燃气锅炉
EP15765464.1A EP3128253A4 (en) 2014-03-17 2015-03-13 Latent-heat exchanger for hot-water heating and condensing gas boiler including same
JP2016555582A JP6291590B2 (ja) 2014-03-17 2015-03-13 温水暖房の潜熱熱交換器及びこれを含むコンデンシングガスボイラー
US15/258,122 US10605484B2 (en) 2014-03-17 2016-09-07 Latent-heat exchanger for hot-water heating and condensing gas boiler including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140031092A KR101586646B1 (ko) 2014-03-17 2014-03-17 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
KR10-2014-0031092 2014-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/258,122 Continuation US10605484B2 (en) 2014-03-17 2016-09-07 Latent-heat exchanger for hot-water heating and condensing gas boiler including same

Publications (1)

Publication Number Publication Date
WO2015141995A1 true WO2015141995A1 (ko) 2015-09-24

Family

ID=54144903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002459 WO2015141995A1 (ko) 2014-03-17 2015-03-13 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러

Country Status (6)

Country Link
US (1) US10605484B2 (ko)
EP (1) EP3128253A4 (ko)
JP (1) JP6291590B2 (ko)
KR (1) KR101586646B1 (ko)
CN (1) CN106104168A (ko)
WO (1) WO2015141995A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295222B2 (en) 2016-09-26 2019-05-21 Noritz Corporation Hot water apparatus
EP3412990A4 (en) * 2016-02-05 2019-12-04 Kyungdong Navien Co., Ltd. HEAT EXCHANGER
US10816222B2 (en) 2017-01-11 2020-10-27 Noritz Corporation Hot water apparatus with flanged connections

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037857A1 (ja) * 2016-08-25 2018-03-01 株式会社ノーリツ 熱交換器および温水装置
JP6848303B2 (ja) * 2016-09-26 2021-03-24 株式会社ノーリツ 熱交換器および温水装置
JP6946822B2 (ja) * 2017-07-27 2021-10-06 株式会社ノーリツ 暖房給湯装置
CN115143631B (zh) 2018-06-05 2023-12-05 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
KR102365698B1 (ko) 2018-06-05 2022-02-22 주식회사 경동나비엔 콘덴싱 보일러
JP7162471B2 (ja) 2018-08-30 2022-10-28 リンナイ株式会社 熱交換装置
JP7128060B2 (ja) 2018-08-30 2022-08-30 リンナイ株式会社 加熱装置
JP7256951B2 (ja) * 2018-10-29 2023-04-13 株式会社ノーリツ プレート式熱交換器およびこれを備えた温水装置
CN109084343A (zh) * 2018-11-06 2018-12-25 南充烽英堂厨房电器设备科技有限公司 多级冷凝式微型热水灶
CN110388839A (zh) * 2019-05-31 2019-10-29 胡志鹏 热交换器及燃气锅炉
USD904589S1 (en) * 2019-08-22 2020-12-08 Noritz Corporation Heat exchanger for water heater
USD904588S1 (en) * 2019-08-22 2020-12-08 Noritz Corporation Heat exchanger for water heater
USD916257S1 (en) * 2019-08-22 2021-04-13 Noritz Corporation Heat exchanger for water heater
JP7365553B2 (ja) * 2019-10-25 2023-10-20 株式会社ノーリツ 暖房給湯装置
KR102210094B1 (ko) * 2020-07-06 2021-02-02 대성쎌틱에너시스 주식회사 콘덴싱 보일러용 열교환기
KR20230087775A (ko) 2021-12-10 2023-06-19 주식회사 귀뚜라미 난방온수 통합 배관장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645734B1 (ko) * 2005-12-14 2006-11-15 주식회사 경동나비엔 난방/온수 겸용 콘덴싱 보일러의 열교환기
KR20090085962A (ko) * 2008-02-05 2009-08-10 주식회사 이노윌 열전달용 박판구조 및 그 열전달장치
JP2010101524A (ja) * 2008-10-21 2010-05-06 Noritz Corp 給湯装置
KR20100066633A (ko) * 2008-12-10 2010-06-18 한라공조주식회사 핀리스 축냉 열교환기

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2952444A (en) * 1956-03-08 1960-09-13 Rosenblads Patenter Ab Heat exchangers of the plate type
US3537165A (en) * 1968-06-26 1970-11-03 Air Preheater Method of making a plate-type heat exchanger
US4002201A (en) * 1974-05-24 1977-01-11 Borg-Warner Corporation Multiple fluid stacked plate heat exchanger
US4327802A (en) * 1979-06-18 1982-05-04 Borg-Warner Corporation Multiple fluid heat exchanger
US4592414A (en) * 1985-03-06 1986-06-03 Mccord Heat Transfer Corporation Heat exchanger core construction utilizing a plate member adaptable for producing either a single or double pass flow arrangement
US5180004A (en) * 1992-06-19 1993-01-19 General Motors Corporation Integral heater-evaporator core
US5462113A (en) * 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
FR2728666A1 (fr) * 1994-12-26 1996-06-28 Valeo Thermique Habitacle Echangeur de chaleur a trois fluides d'encombrement reduit
US5855240A (en) * 1998-06-03 1999-01-05 Ford Motor Company Automotive heat exchanger
US20020148415A1 (en) * 1998-06-15 2002-10-17 Rheem Australia Pty Ltd. Water heater and water heater component construction
EP1001238B1 (en) * 1998-11-09 2003-06-18 Calsonic Kansei Corporation Stack type evaporator
FR2788118B1 (fr) * 1998-12-30 2003-04-18 Valeo Climatisation Dispositif de chauffage, ventilation et/ou climasisation comportant une boulce thermique equipee d'un evaporateur
EP1285203A4 (en) * 1999-12-14 2006-06-21 Rheem Australia Pty Ltd WATER HEATER AND MANUFACTURING OF WATER HEATER COMPONENTS
US6360817B1 (en) * 1999-12-22 2002-03-26 Visteon Global Technologies, Inc. Single heat exchanger
IT1321118B1 (it) * 2000-12-20 2003-12-30 Merloni Termosanitari Spa Apparato scambiatore di calore.
US6629561B2 (en) * 2001-06-08 2003-10-07 Visteon Global Technologies, Inc. Module for a heat exchanger having improved thermal characteristics
FR2831654B1 (fr) * 2001-10-31 2004-02-13 Valeo Climatisation Tubes d'echangeur thermique a plaques optimisees
JP2003343926A (ja) * 2002-05-23 2003-12-03 Kyungdong Boiler Co Ltd コンデンシングガスボイラーの熱交換器配置構造
US20050229871A1 (en) * 2002-10-09 2005-10-20 Alastair Robertson Heating system and boiler therefor
CN100498107C (zh) * 2003-03-27 2009-06-10 北京环能海臣科技有限公司 一种燃烧式热水器排烟热回收装置
JP2005188781A (ja) * 2003-12-24 2005-07-14 Denso Corp 熱交換器
SE527450C2 (sv) * 2004-01-23 2006-03-07 Alfa Laval Corp Ab Värmeväxlare
US20070199687A1 (en) * 2004-03-11 2007-08-30 Behr Gmbh & Co. Kg Stacked-Plate Heat Exchanger
JP2007183029A (ja) * 2006-01-05 2007-07-19 T Rad Co Ltd 潜熱回収用熱交換器
KR200448105Y1 (ko) * 2008-05-26 2010-03-15 대성산업 주식회사 가스 보일러용 열교환 장치 구조
US8899062B2 (en) * 2011-02-17 2014-12-02 Delphi Technologies, Inc. Plate-type heat pump air conditioner heat exchanger for a unitary heat pump air conditioner
JP2014047980A (ja) * 2012-08-31 2014-03-17 Noritz Corp 潜熱回収型給湯装置
KR101427694B1 (ko) * 2012-12-12 2014-08-07 주식회사 경동나비엔 온수 중심의 온수 난방 겸용 보일러
JP6085967B2 (ja) * 2012-12-26 2017-03-01 株式会社ノーリツ 熱交換器およびそれを備えた給湯器
KR101576667B1 (ko) * 2014-03-17 2015-12-11 주식회사 경동나비엔 콘덴싱 가스보일러의 열교환기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645734B1 (ko) * 2005-12-14 2006-11-15 주식회사 경동나비엔 난방/온수 겸용 콘덴싱 보일러의 열교환기
KR20090085962A (ko) * 2008-02-05 2009-08-10 주식회사 이노윌 열전달용 박판구조 및 그 열전달장치
JP2010101524A (ja) * 2008-10-21 2010-05-06 Noritz Corp 給湯装置
KR20100066633A (ko) * 2008-12-10 2010-06-18 한라공조주식회사 핀리스 축냉 열교환기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128253A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412990A4 (en) * 2016-02-05 2019-12-04 Kyungdong Navien Co., Ltd. HEAT EXCHANGER
US10295222B2 (en) 2016-09-26 2019-05-21 Noritz Corporation Hot water apparatus
US10816222B2 (en) 2017-01-11 2020-10-27 Noritz Corporation Hot water apparatus with flanged connections

Also Published As

Publication number Publication date
EP3128253A1 (en) 2017-02-08
CN106104168A (zh) 2016-11-09
JP6291590B2 (ja) 2018-03-14
JP2017512966A (ja) 2017-05-25
KR20150108200A (ko) 2015-09-25
US20170059205A1 (en) 2017-03-02
EP3128253A4 (en) 2017-12-06
KR101586646B1 (ko) 2016-01-19
US10605484B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2015141995A1 (ko) 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
WO2016047859A1 (ko) 고효율 판형 열교환기
KR100645734B1 (ko) 난방/온수 겸용 콘덴싱 보일러의 열교환기
WO2014133261A1 (ko) 급배기 열교환기를 구비한 연소장치
WO2012020909A1 (ko) 콘덴싱 보일러의 잠열 열교환기
WO2017099381A1 (ko) 콘덴싱 방식의 연소기기
JP7135325B2 (ja) 熱交換装置および熱源機
WO2012053713A1 (ko) 급기 예열기와 폐가스 순환구조를 구비한 연소기기
WO2013073814A1 (ko) 급탕열교환기
WO2015141991A1 (ko) 온수난방 다중유로 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
WO2013172547A1 (en) Condensing heat exchanger and boiler/water hearter including the same
CN201866788U (zh) 直接交换式换热器
CN106123340A (zh) 一种等阻均流预热回水冷凝式热交换器
CN210533121U (zh) 一种冷凝式换热器
WO2017039172A1 (ko) 열교환기
WO2010147288A1 (ko) 열교환기
WO2012020908A2 (ko) 급기 예열기가 구비된 잠열 열교환기
WO2019124847A1 (ko) 열교환기
KR200315197Y1 (ko) 급기예열케이싱을 구비한 콘덴싱보일러의 열교환기
CN214665245U (zh) 燃气采暖热水炉
WO2017039173A1 (ko) 열교환기
CN210069808U (zh) 一种蒸汽发生单元机组
KR200287014Y1 (ko) 선박용 건조장치
CN101984290A (zh) 直接交换式换热器
CN110514038A (zh) 一种冷凝式换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555582

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015765464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015765464

Country of ref document: EP