WO2015141794A1 - 垂直磁化膜用下地、垂直磁化膜構造、垂直mtj素子及びこれらを用いた垂直磁気記録媒体 - Google Patents
垂直磁化膜用下地、垂直磁化膜構造、垂直mtj素子及びこれらを用いた垂直磁気記録媒体 Download PDFInfo
- Publication number
- WO2015141794A1 WO2015141794A1 PCT/JP2015/058306 JP2015058306W WO2015141794A1 WO 2015141794 A1 WO2015141794 A1 WO 2015141794A1 JP 2015058306 W JP2015058306 W JP 2015058306W WO 2015141794 A1 WO2015141794 A1 WO 2015141794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy
- film
- orientation
- thin film
- layer
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 81
- 239000010408 film Substances 0.000 claims abstract description 141
- 239000000758 substrate Substances 0.000 claims abstract description 83
- 239000000956 alloy Substances 0.000 claims abstract description 55
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 53
- 229910052751 metal Inorganic materials 0.000 claims abstract description 51
- 239000002184 metal Substances 0.000 claims abstract description 51
- 239000010409 thin film Substances 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 36
- 229910001291 heusler alloy Inorganic materials 0.000 claims abstract description 18
- 229910003321 CoFe Inorganic materials 0.000 claims abstract description 17
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 16
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 14
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 8
- 230000005415 magnetization Effects 0.000 claims description 106
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical group [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 99
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 87
- 239000000395 magnesium oxide Substances 0.000 claims description 87
- 239000013078 crystal Substances 0.000 claims description 54
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 39
- 238000010438 heat treatment Methods 0.000 claims description 26
- 229910052748 manganese Inorganic materials 0.000 claims description 20
- 239000011572 manganese Substances 0.000 claims description 20
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 19
- 230000004888 barrier function Effects 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 229910052733 gallium Inorganic materials 0.000 claims description 14
- 229910000510 noble metal Inorganic materials 0.000 claims description 14
- 229910052697 platinum Inorganic materials 0.000 claims description 14
- 229910052727 yttrium Inorganic materials 0.000 claims description 14
- 229910000914 Mn alloy Inorganic materials 0.000 claims description 13
- 229910052763 palladium Inorganic materials 0.000 claims description 13
- 229910000979 O alloy Inorganic materials 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 9
- 229910052732 germanium Inorganic materials 0.000 claims description 9
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 9
- 229910020068 MgAl Inorganic materials 0.000 claims description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- WWFYEXUJLWHZEX-UHFFFAOYSA-N germanium manganese Chemical compound [Mn].[Ge] WWFYEXUJLWHZEX-UHFFFAOYSA-N 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052596 spinel Inorganic materials 0.000 claims description 5
- 239000011029 spinel Substances 0.000 claims description 5
- YVRGRDDGRSFXCH-UHFFFAOYSA-N magnesium;dioxido(oxo)titanium Chemical compound [Mg+2].[O-][Ti]([O-])=O YVRGRDDGRSFXCH-UHFFFAOYSA-N 0.000 claims description 4
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 130
- 239000011651 chromium Substances 0.000 description 18
- 238000002441 X-ray diffraction Methods 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910015372 FeAl Inorganic materials 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- ZDZZPLGHBXACDA-UHFFFAOYSA-N [B].[Fe].[Co] Chemical compound [B].[Fe].[Co] ZDZZPLGHBXACDA-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 238000002128 reflection high energy electron diffraction Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- QHCOZCIZCMGJBI-UHFFFAOYSA-N Cl.[O-2].[Mg+2] Chemical compound Cl.[O-2].[Mg+2] QHCOZCIZCMGJBI-UHFFFAOYSA-N 0.000 description 1
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910005335 FePt Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DTJAVSFDAWLDHQ-UHFFFAOYSA-N [Cr].[Co].[Pt] Chemical compound [Cr].[Co].[Pt] DTJAVSFDAWLDHQ-UHFFFAOYSA-N 0.000 description 1
- FOPBMNGISYSNED-UHFFFAOYSA-N [Fe].[Co].[Tb] Chemical compound [Fe].[Co].[Tb] FOPBMNGISYSNED-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910002064 alloy oxide Inorganic materials 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- -1 cobalt-iron-aluminum Chemical compound 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000000097 high energy electron diffraction Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7377—Physical structure of underlayer, e.g. texture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3909—Arrangements using a magnetic tunnel junction
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/65—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/65—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
- G11B5/653—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Fe or Ni
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/65—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
- G11B5/656—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/66—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/736—Non-magnetic layer under a soft magnetic layer, e.g. between a substrate and a soft magnetic underlayer [SUL] or a keeper layer
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
- G11B5/73911—Inorganic substrates
- G11B5/73917—Metallic substrates, i.e. elemental metal or metal alloy substrates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/851—Coating a support with a magnetic layer by sputtering
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/26—Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
- H01F10/30—Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the intermediate layers, e.g. seed, buffer, template, diffusion preventing, cap layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3286—Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Magnetic active materials
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B2005/0002—Special dispositions or recording techniques
- G11B2005/0026—Pulse recording
- G11B2005/0029—Pulse recording using magnetisation components of the recording layer disposed mainly perpendicularly to the record carrier surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/123—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/90—Magnetic feature
Definitions
- the present invention relates to an underlayer for perpendicular magnetization film and a perpendicular magnetization film structure using a nonmagnetic material having a hexagonal close-packed structure as an underlayer for growing a ferromagnetic thin film.
- the present invention also relates to a perpendicular MTJ element and a perpendicular magnetic recording medium using the perpendicular magnetization film structure.
- a perpendicular magnetization film is effective.
- the magnetic property is improved by improving the quality of the perpendicular magnetization film. It is necessary to increase the isotropic energy density Ku.
- the presence of an underlayer that plays important roles such as controlling crystal orientation and crystal grain size, reducing stacking faults, and ensuring flatness is extremely important.
- Non-Patent Document 1 a Ru-based close-packed (hcp) structure is used for perpendicular magnetic recording media of a Co-based alloy such as a cobalt-platinum-chromium (Co-Pt-Cr) alloy.
- a Co-based alloy such as a cobalt-platinum-chromium (Co-Pt-Cr) alloy.
- the use of a substrate is disclosed.
- very high L1 0 type iron Ku application to future recording medium and the MTJ element because the resulting expected - For platinum (FePt) alloy, as the active substance as a base in Non-Patent Document 2 chloride
- Magnesium oxide (MgO) having a sodium structure (NaCl structure) is disclosed
- Patent Document 1 discloses magnesium-titanium oxide (MgTiO x ).
- the interface effect of the ultra-thin film structure is utilized. Since it is possible to realize perpendicular magnetization, it has been proposed that it can be used as a recording layer (interface-induced perpendicular magnetization layer).
- a microcrystalline or body-centered cubic (bcc) material such as tantalum (Ta) or chromium (Cr) is used as the underlayer.
- the above conventional the L1 0 type alloy and MgO underlayer has nearly 10% lattice mismatch, it is impossible to realize a flat membrane having a high crystallinity and the degree of order.
- the base of the conventional interface-induced perpendicular magnetization layer has poor heat resistance, and there is a problem that the heat treatment necessary for ensuring the tunnel magnetoresistance (TMR) ratio of the MTJ element cannot be performed.
- TMR tunnel magnetoresistance
- the present invention eliminates the conventional problems, and enables the growth of a cubic or tetragonal perpendicular magnetization film with high quality and a perpendicular magnetization film using a base film having high heat resistance.
- the challenge is to provide a structure.
- Another object of the present invention is to provide a perpendicular magnetization film and a perpendicular MTJ element formed using the perpendicular magnetization film structure.
- the present inventor found a Ru base having an hcp structure having a high crystal orientation obtained by controlling growth conditions on an MgO layer, and grown on the Ru base. It has been found that a cubic cobalt-iron-aluminum (Co 2 FeAl) alloy thin film is formed with a (001) orientation and becomes a perpendicular magnetization film. In addition, the present inventor has found that this perpendicular magnetization film has significantly higher perpendicular magnetic anisotropy than the case where the perpendicular magnetization film is formed on a Cr layer which is a general base material. It has been found that an improvement in TMR ratio can be obtained when used as an element.
- the present inventor has also grown rhenium (Re), which is a noble metal similar to Ru and has an hcp structure, with a high crystal orientation equivalent to that of Ru on the MgO layer, and the base of the cubic ferromagnet. I also found it available. This indicates that not only Ru but a material having an hcp structure is widely effective. The present invention has been completed based on such new findings.
- the underlayer for the perpendicular magnetization film of the present invention is a metal having an hcp structure, and is applied to a (001) -oriented cubic single crystal substrate or a (001) -oriented cubic oriented film.
- the orientation is an angle in the range of 42 ° to 54 °.
- the metal having the hcp structure may be various, and examples of preferable metals include noble metals such as Ru and Re.
- the metal is Ru, it is Ru having the hcp structure illustrated in FIGS.
- the Ru [0001] orientation is at an angle in the range of 42 ° to 54 ° with respect to the (001) orientation cubic single crystal substrate or the cubic orientation film grown in the (001) orientation.
- the perpendicular magnetic film base of the present invention preferably has a structure having any one of an outer surface, an outer surface, and an outer surface. Outer 1, outer 2, outer 3, and outer 7 in this paragraph are the following Miller indices.
- the perpendicular magnetic film structure of the present invention has a (001) orientation cubic single crystal substrate or a substrate having a (001) orientation grown cubic orientation film, for example, as shown in FIG. (5) and an hcp-structured metal thin film formed on the substrate 5 with a [0001] orientation of 42 ° to 54 ° with respect to the ⁇ 001> orientation or the (001) plane orientation of the substrate 5.
- the perpendicular magnetic film structure of the present invention is preferably characterized in that it further has a nonmagnetic layer (8) positioned on the perpendicular magnetic layer.
- the vertical MTJ element film of the present invention is a substrate having a (001) orientation cubic single crystal or a substrate having a (001) orientation grown cubic orientation film. (10) and a metal thin film having an hcp structure formed on the substrate 10, wherein the [0001] orientation is in the range of 42 ° to 54 ° with respect to the ⁇ 001> orientation or the (001) plane orientation of the substrate 10.
- the first perpendicular magnetic layer (12) made of a cubic material grown in the selected (001) orientation is positioned on the first perpendicular magnetic layer 12, and MgO, spinel (MgAl 2 O) is used as a composition material.
- the above-described perpendicular MTJ element film preferably has an upper electrode (15) which is located on the second perpendicular magnetization layer 14 and contains at least one of Ta and the metal as a composition material.
- the perpendicular magnetic recording medium of the present invention is characterized by having at least one of the above-described perpendicular magnetic film base, the above-mentioned perpendicular magnetic film structure, or the above-mentioned perpendicular MTJ element film.
- the method of manufacturing a perpendicular magnetic film structure according to the present invention includes a step of providing a (001) -oriented cubic single crystal substrate 5, a step of forming the metal thin film on the substrate 5, and the metal Ru thin film. Is subjected to a post heat treatment in vacuum at 200 to 600 ° C. to form a metal underlayer 6, a Co-based Heusler alloy, a bcc-structured cobalt-iron (CoFe) alloy, L1 on the metal underlayer 6.
- the upper electrode 15 is preferably formed on the second perpendicular magnetic layer 14 and includes at least one of Ta and the metal as a composition material. It is good to have a process.
- a ferromagnetic material belonging to a cubic or tetragonal system can be grown in the (001) plane orientation to realize a perpendicular magnetization film having high heat resistance, and a perpendicular magnetization type perpendicular MTJ element using the same can be provided.
- FIG. 1 is a cross-sectional view showing a basic structure of a base structure according to an embodiment of the present invention.
- FIG. 2 is a view showing the relationship among the Ru atom arrangement, crystal orientation, and crystal plane of the underlying structure according to one embodiment of the present invention.
- FIG. 3 is a diagram showing the relative relationship between Ru grown in one outer direction and the substrate surface.
- 4A and 4B are a bird's-eye view and a side view showing the atomic arrangement on the surface of the Ru base, wherein FIG. 4A shows the Ru outer surface 1 and (B) Ru outer surface 3.
- FIG. 5 is a cross-sectional view showing a basic structure of a perpendicular magnetization film structure according to an embodiment of the present invention.
- FIG. 6 is a sectional view showing a basic structure of a perpendicular magnetoresistive element structure according to an embodiment of the present invention.
- FIG. 7A is a graph showing the magnetic characteristics of the perpendicular magnetization film structure using the Ru underlayer structure.
- FIG. 7B is a graph showing the magnetic characteristics of the perpendicular magnetization film structure using the existing Cr underlayer structure.
- FIG. 8 is a graph showing a comparison between the Ru underlayer structure and the existing Cr underlayer structure regarding the relationship between the perpendicular magnetic anisotropy Ku and the heat treatment temperature Tex.
- FIG. 9A is a graph showing the relationship between the CFA film thickness t CFA and the magnetic characteristics of the perpendicular magnetization film structure using the Ru underlayer structure.
- FIG. 9B is a graph in which the product of perpendicular magnetic anisotropy Ku and CFA film thickness t CFA is plotted against t CFA .
- FIG. 10 is a graph plotting the TMR ratio and element resistance of a vertical MTJ element using a Ru underlayer structure against an external magnetic field.
- 11A and 11B show an X-ray diffraction pattern (Cu ⁇ K ⁇ ray source) of a Ru underlayer structure / CFA 20 nm laminated structure, where FIG. 11A is a film surface direction scan result, and FIG. 11B is a film in the MgO substrate [100] orientation.
- In-plane scan result, (C) is a graph showing the in-plane scan result in the MgO substrate [110] orientation.
- FIG. 12A and 12B show X-ray polar scan measurement results (Cu ⁇ K ⁇ radiation source) of the Ru underlayer structure.
- FIG. 12A is a graph showing the results at 5 peaks outside Ru
- FIG. 12B is a graph showing the results at 6 peaks outside Ru. is there.
- FIG. 13 shows an X-ray rocking curve measurement result (Cu K ⁇ radiation source) of one Ru outer peak of the Ru underlayer structure.
- (A) shows the result without heat treatment
- FIG. 14 is a graph showing an X-ray in-plane diffraction pattern (Mo K ⁇ radiation source) of the Ru underlayer structure.
- FIG. 12A is a graph showing the results at 5 peaks outside Ru
- FIG. 12B is a graph showing the results at 6 peaks outside Ru. is there.
- FIG. 13 shows an X-ray rocking curve measurement result (Cu K ⁇ radiation source)
- FIG. 15 is a graph showing an X-ray polar scan measurement result (Cu K ⁇ radiation source) of the (202) peak of CFA (20 nm) formed on the Ru underlayer structure.
- FIG. 16 is an overhead view and a side view schematically reproducing the atomic arrangement of MgO and CFA on one outer surface of Ru.
- FIG. 17 is a diagram showing an atomic force microscope image of the Ru underlayer structure / CFA (1 nm) sample surface.
- FIG. 18 is a diagram showing a high-angle scattering annular dark field scanning transmission microscope image of a cross section of a vertical MTJ element using a Ru underlayer structure.
- FIG. 19 shows a high-resolution transmission electron microscope image of a cross section of a vertical MTJ element using a Ru underlayer structure.
- FIG. 19A shows the case of MgO [100] orientation
- FIG. 19B shows the case of MgO [110] orientation.
- FIG. 20A is a high-resolution transmission electron microscope image of the MgO [110] orientation in the vicinity of the interface between the MgO substrate and the Ru underlayer structure.
- FIG. 20B is a diagram schematically showing the Ru atom arrangement and the MgO (001) plane of FIG.
- FIG. 20C is a graph obtained by rotating FIG. 20B in the plane by 180 °.
- FIG. 20A is a high-resolution transmission electron microscope image of the MgO [110] orientation in the vicinity of the interface between the MgO substrate and the Ru underlayer structure.
- FIG. 20B is a diagram schematically showing the Ru atom arrangement and the MgO (001) plane of FIG.
- FIG. 20C is a graph obtained by rotating FIG. 20B in the plane by 180 °.
- FIG. 20A is a high-resolution transmission electron microscope image of the Mg
- FIG. 21 shows an X-ray diffraction pattern (Cu K ⁇ ray source) of a Ru underlayer structure / Fe 20 nm laminated structure, where (A) is the in-film direction scan result, and (B) is a polar scan of (101) peak. It is a graph which shows a result.
- FIG. 22 is a graph showing an in-plane X-ray diffraction pattern (Cu K ⁇ ray source) of a Ru base structure formed on an MgO (001), MgAl 2 O 4 (001), or SrTiO 3 (001) substrate.
- FIG. 23 is a diagram showing a reflected high-energy electron diffraction image.
- FIG. 24 shows an X-ray diffraction pattern (Cu K ⁇ ray source) of a Re underlayer structure / Fe (0.7 nm) / MgO (2 nm) laminated structure, where (A) is the in-plane direction scan result, (B) Is a graph showing the polar scan result of the Re (0002) peak.
- a base structure 1 includes a substrate 2 and a base layer 3.
- the substrate 2 is a (001) -oriented magnesium oxide (MgO) single crystal having a sodium chloride (NaCl) structure.
- the substrate 2 may be an in-plane polycrystalline MgO film oriented in the (001) plane direction, and magnesium-titanium oxide (MgTiO x ) having a NaCl structure instead of MgO and having an equivalent lattice constant. Also good.
- MgTiO x magnesium-titanium oxide
- the underlayer 3 is made of a metal such as ruthenium (Ru) or rhenium (Re), and the [0001] orientation (c-axis) of the crystal is inclined from the direction perpendicular to the film surface, and the thin film surface has a high orientation surface.
- ruthenium Ru
- the crystal plane of Ru has an orientation plane in the vicinity of outer 7 to outer 3, which is 42 ° to 54 ° from the (0001) plane (c-plane).
- an outer surface and an outer surface are included in this range.
- FIG. 3 schematically shows the relationship between a hexagonal close packed lattice of Ru grown in one outer direction and the substrate surface as a representative example. Due to the difference in crystal structure between MgO and Ru, the Ru layer is composed of regions (variants) having different crystallographic orientations. When epitaxial MgO is used as a substrate, the entire film has in-plane four-fold symmetry.
- FIG. 4A schematically shows the crystal arrangement when the outer surface is viewed from the outer surface and FIG. 4B is the outer surface when viewed from the top of the Ru film and the side surface.
- FIG. 4A and 4B there are lattices in which atoms are arranged substantially in a square shape on the crystal surface as the underlying layer 3 of the Ru layer.
- This square lattice is constituted by a pair of two atomic planes on the outer three surfaces (for example, a pair of Ru1 and Ru2).
- the perpendicular magnetization film structure 4 which is one Embodiment of this invention is demonstrated.
- the perpendicular magnetization film structure 4 is formed by laminating a substrate 5, an underlayer 6, a perpendicular magnetization layer 7, and a nonmagnetic layer 8 in this order.
- the substrate 5 and the foundation layer 6 are the same as the substrate 2 and the foundation layer 3 of the foundation structure 1 in the case of FIG.
- the perpendicular magnetic layer 7 is a cubic material grown with a (001) orientation, such as a cobalt (Co) -based full Heusler alloy or a cobalt-iron (CoFe) alloy having a bcc structure (Co 1-x Fe x (0 ⁇ x ⁇ 1). )).
- the Co-based full Heusler alloy may have a B2 structure in which X and Y atom sites are irregular.
- the CoFe alloy also includes a cobalt-iron-boron (CoFeB) alloy containing boron.
- the perpendicular magnetic layer 7 When a cubic material is used for the perpendicular magnetic layer 7, an ultrathin film having a thickness of about 0.5 to 2 nm is formed, and an oxide film such as MgO is disposed as the nonmagnetic layer 8 to form a metal base structure such as Ru or Re. A perpendicular magnetization film is formed between the oxide films. In the case of a tetragonal perpendicular magnetization film, this nonmagnetic layer 8 is not necessarily required.
- the perpendicular MTJ element film 9 which is an embodiment of the present invention will be described.
- the perpendicular MTJ element film 9 includes a substrate 10, a base layer 11, a first perpendicular magnetization layer 12, a nonmagnetic layer 13, a second perpendicular magnetization layer 14, and an upper electrode 15. Yes.
- the substrate 10, the underlayer 11, and the first perpendicular magnetization layer 12 are the same as the substrate 5, the underlayer 6, and the perpendicular magnetization layer 7 of the perpendicular magnetization film structure 4, respectively.
- the second perpendicular magnetization layer 14 is in direct contact with the nonmagnetic layer 13, and the same structure and material as the first perpendicular magnetization layer 12 can be used.
- This layer may also include a perpendicular magnetization film having an amorphous structure, for example, a terbium-cobalt-iron (Tb—Co—Fe) alloy film.
- the nonmagnetic layer 13 is an oxide layer and serves not only for providing perpendicular magnetic anisotropy but also as a tunnel barrier in the MTJ element.
- the nonmagnetic layer 13 is referred to as a tunnel barrier layer.
- MgO, spinel (MgAl 2 O 4 ), and aluminum oxide (Al 2 O 3 ) can be adopted as the composition material, and the film thickness is about 0.8 nm to 3 nm.
- MgAl 2 O 4 and Al 2 O 3 may have an irregular structure of cation sites as long as they are cubic.
- the tunnel barrier layer 13 is preferably grown in the (001) plane and a plane orientation equivalent thereto. As a result, a high TMR ratio is realized because the first perpendicular magnetic layer 12 and the second perpendicular magnetic layer 14 function as an MTJ element having a (001) plane orientation.
- the upper electrode 15 is provided on the second perpendicular magnetization layer 14. It has a laminated structure of metals such as tantalum (Ta) / Ru and Re.
- the thickness of each layer of Ta and metal is, for example, 5 nm and 10 nm, respectively.
- Ru has a high melting point (2334 ° C.)
- it is less affected by atomic diffusion due to heat treatment than conventional chromium (Cr)
- heat resistance is improved. Therefore, when it is used as the underlying structure 11, sufficient heat treatment can be performed on the constituent layers of the MTJ element and the magnetic recording medium layer to improve the characteristics.
- the Ru layer has an hcp structure and has a crystal structure different from that of the cubic and tetragonal perpendicular magnetization layers. Therefore, the connection between the crystals is moderately weaker than in the case of the combination of the same crystal structures. Accordingly, it is possible to weaken the influence of strain received from the underlayer, and it is possible to improve the characteristics of the perpendicular magnetization layer depending on the manufacturing conditions. For example, in the MTJ element of this embodiment, the magnetic anisotropy Ku and the TMR ratio characteristics can be improved.
- the metal having the hcp structure may be various kinds other than ruthenium (Ru), including rhenium (Re).
- Examples include Ru, Re, noble metals such as osmium (Os), rhodium (Rh), and alloys thereof, as well as titanium (Ti), zirconium (Zr), hafnium (Hf), and zinc (Zn). Can be mentioned.
- the underlayer structure and the perpendicular magnetization layer require a thin film structure composed of fine crystal grains having a crystal orientation oriented.
- a polycrystalline film of MgO or MgTiO x with (001) crystal orientation can be formed on a Si substrate with a thermal oxide film having an amorphous structure or a glass substrate by sputtering, and used as the base of the base structure of this embodiment.
- a Si substrate with a thermal oxide film / MgO / Ru / Co—Fe—Al alloy (Co 2 FeAl): CFA structure can be used.
- the substrates 2, 5, and 10 are made of MgO having a (001) plane orientation, and an ultrahigh vacuum magnetron sputtering apparatus (degree of ultimate vacuum of 3 ⁇ 10 is used).
- the Ru thin film is formed by radio frequency (RF) sputtering using about ⁇ 7 Pa.
- the Ru film thickness is 40 nm, for example, but it may be thinner if it becomes a flat film.
- the crystal orientation plane is controlled by performing a post heat treatment in vacuum at 200 to 600 ° C. At this time, the angle formed by the c-axis direction of Ru and the MgO substrate surface forms an angle in the range of 42 ° to 54 °.
- the CFA which is a Co-based Heusler alloy, is formed on the Ru underlayer.
- This CFA layer constitutes the perpendicular magnetic layer 7 and the first perpendicular magnetic layer 12.
- CFA is known as a material having a high spin polarization, and an extremely large TMR ratio can be obtained by using it as a ferromagnetic layer of an MTJ element.
- the CFA layer generally has a B2 structure and has irregularities between Fe and Al sites. The higher the B2 order, the higher the spin polarizability and the higher the TMR ratio obtained.
- the CFA layer can be formed by sputtering from a Co—Fe—Al alloy target (melt target, typical composition 50:25:25 atomic%).
- the thickness of the CFA layer is about 0.5 to 1.5 nm suitable for obtaining perpendicular magnetization.
- an electron beam evaporation method in vacuum or a simultaneous sputtering film forming method from a plurality of targets can be used.
- cubic (001) growth is promoted using the Ru square lattice as a template for crystal growth.
- the substrate temperature is set to 150 ° C., so that a B2 ordered structure can be obtained during film formation and the flatness of the film can be secured.
- materials having a cubic structure and a close lattice constant for example, a Co-based Heusler alloy other than CFA and CoFe having a bcc structure can be used.
- an MgO layer is formed as a tunnel barrier layer 13 with a film thickness of, for example, about 1 to 2 nm on the fabricated CFA layer.
- a direct RF sputtering film formation from an MgO target or a method of oxidizing metal magnesium (Mg) after the sputtering film formation can be used.
- the crystal quality can be improved by performing post-heating treatment at about 200 ° C. after the formation of the MgO layer, and a higher TMR ratio can be obtained by improving the (001) orientation.
- a CoFeB amorphous layer is formed as the second perpendicular magnetization layer 14 by sputtering, and the film thickness is set to 1.3 nm, for example.
- a Ta layer with a thickness of 5 nm and a Ru layer with a thickness of 10 nm, for example, are similarly formed by sputtering.
- Boron (B) in the Co—Fe—B layer is atomically diffused into the Ta layer by heat treatment, and the concentration is reduced, so that it is crystallized from the MgO tunnel barrier layer and changes to a (001) plane orientation bcc structure.
- the structure of the first perpendicular magnetic layer 12 / tunnel barrier layer 13 / second perpendicular magnetic layer 14 grows in the (001) plane orientation, so that a high TMR ratio is obtained.
- a crystalline CoFe layer of 0.1 to 0.3 nm can be inserted between the MgO layer and the CoFeB layer.
- FIG. 7A shows a curve of the magnetization (M) at room temperature with respect to the external magnetic field (H) when the CFA layer thickness t CFA is 1 nm and the heating temperature Tex is 350 ° C. in the MgO substrate / Ru / CFA / MgO structure.
- Magnetic curve is shown. Both the film surface magnetic field and the film surface magnetic field are shown. In the case of the film surface perpendicular magnetic field direction, the magnetization is easily reversed with respect to the external magnetic field, and the magnetization is saturated with a small magnetic field, but it is difficult to magnetize in the in-film magnetic field direction. Therefore, it has a large perpendicular magnetic anisotropy.
- the perpendicular magnetic anisotropy energy density (Ku) is a value corresponding to a region surrounded by a straight line on the film surface and a curve in the film surface, and means that when this area is wide, it has a large Ku value.
- the value of Ku when using the Ru underlayer of the embodiment of the present invention was 3.1 ⁇ 10 6 emu / cm 3 .
- FIG. 7B shows a magnetization curve when Cr, which is an existing base, is used as a comparative example.
- Cr 40 nm
- CFA 1 nm
- MgO 2 nm
- heating temperature Tex A laminated structure of 350 ° C is used.
- Ku was smaller than that in the case of using the Ru underlayer, and the value of Ku was 8 ⁇ 10 5 emu / cm 3 . Therefore, according to the embodiment of the present invention, the value of Ku was increased by a factor of four by using the Ru base instead of Cr of the comparative example.
- FIG. 8 shows the dependence of Tex on Ku for both the Ru base and the Cr base.
- t CFA was set to 1 nm.
- positive Ku indicates a perpendicular magnetization film
- negative Ku indicates an in-plane magnetization film.
- perpendicular magnetization is obtained at all Tex of 250 to 400 ° C.
- the Ku value is always larger than that of the Cr base, and the perpendicular magnetic anisotropy is not deteriorated in the range of Tex shown. That is, it is shown that the heat treatment at a high Tex can be applied when a Ru base is used.
- FIG. 9A shows a magnetization curve when t CFA is changed in the MgO substrate / Ru / CFA / MgO structure. From this figure, it can be seen that t CFA changes from a perpendicular magnetization film to an in-plane magnetization film between 1.2 nm and 1.3 nm.
- FIG. 9B is a diagram in which the product of Ku and t CFA at each Tex is plotted against t CFA . As-depo. Means a sample not subjected to heat treatment after the film structure is formed. A positive product of Ku and t CFA indicates perpendicular magnetization.
- a perpendicular magnetization film is obtained with a t CFA in the range of 0.6 to 1.2 nm. As-depo. However, perpendicular magnetization is hardly obtained, but this is not due to the Ru underlayer, but because the quality of the crystal structure at the CFA / MgO interface is insufficient.
- the solid line in FIG. 9B is a straight line obtained by fitting using the following equation.
- Ms saturation magnetization (in the case of a CGS unit system, unit: emu / cm 3 )
- Kv is a magnetocrystalline anisotropy energy density (unit: erg / cm 3 )
- Ks is an interface anisotropy of the MgO / CFA interface. It is a sex energy density (unit: erg / cm 2 ).
- Kv is negative, and the CFA layer itself exhibits in-plane magnetic anisotropy when there is no MgO tunnel barrier layer.
- Ks is an intercept in FIG. 9B and is positive in any Tex.
- Ks was the maximum value of 2.2 erg / cm 2 . This value was twice or more compared to 1.0 erg / cm 2 when using the Cr underlayer as a comparative example.
- MgO substrate / Ru 40 nm
- CFA 1.2 nm
- MgO 1.8 nm
- Fe 0.1 nm
- Co 20 Fe 60 B 20 1.3 nm
- a / Ta (5 nm) / Ru protective layer (10 nm) structure is shown as an example. Heating temperature Tex after film structure fabrication was 325 ° C.
- FIG. 10 shows the results at room temperature and low temperature (10K) of the dependence of magnetoresistance change (TMR) ratio on the external magnetic field (H) in the direction perpendicular to the film surface.
- Black and white arrows in the figure indicate the magnetization directions of the CFA layer and the Fe / CoFeB layer, respectively. Since a steep resistance change with respect to the magnetic field is observed, both the CFA layer as the first perpendicular magnetization layer and the Fe / CoFeB layer as the second perpendicular magnetization layer are completely perpendicular magnetization films. This shows that the parallel magnetization arrangement state and the antiparallel magnetization arrangement state are realized in the magnetic field range used for the measurement.
- the TMR ratio defined by the rate of change in tunnel resistance between the parallel magnetization arrangement and the antiparallel magnetization arrangement was 132% at room temperature. This value is significantly larger than 91% when the Cr underlayer as a comparative example is used. Further, the TMR ratio at low temperature was 237%.
- the increase in the TMR ratio by using this Ru underlayer promotes the improvement of the quality of the CFA / MgO / Fe / CoFeB structure grown thereon because the influence of the Ru crystal is relatively small. )
- the main factors are that the degree of orientation orientation is increased and that the influence of atomic diffusion with the base is small.
- FIG. 11 shows the results of X-ray diffraction using a copper (Cu) K ⁇ radiation source in a sample in which a CFA of 20 nm is formed on a 40 nm Ru base on an MgO substrate.
- 11A shows the diffraction pattern of X-ray scanning in the direction perpendicular to the film surface (2 ⁇ - ⁇ scan), and
- FIG. 11B shows the in-plane scanning in the direction of the X-ray incident parallel to the [100] direction of the MgO substrate.
- FIG. 11C shows a diffraction pattern of 2 out of 4 scans when incident on the MgO substrate [110] orientation.
- FIG. 11A shows that the diffraction peak from Ru is only the outer one.
- FIG. 14 shows the results of a 2 ⁇ - ⁇ scan using a molybdenum (Mo) K ⁇ radiation source in order to obtain a diffraction pattern from the high plane direction of the Ru underlayer.
- the sample used was grown on MgO with Ru 40 nm, and Tex was grown as-depo. 400 ° C. and 600 ° C. It can be seen that an outer peak appears in any sample, and an outer peak appears at 600 ° C. in addition to this. In addition, since no other Ru peak was observed, it was confirmed that a Ru underlayer structure having a crystal plane in the vicinity of outer 1 to outer 3 was realized.
- FIG. 15 shows the result of ⁇ scan on the (202) plane of CFA. A 4-fold symmetry derived from the B2 structure of CFA is observed, and CFA is obtained as an epitaxial film. Therefore, it is recognized that the Ru layer grown with a high crystal plane is effective as a base layer of a high-quality CFA film ordered with B2.
- FIG. 16 shows the result of schematically reproducing the atomic arrangement of the MgO substrate and the CFA film on the outer surface of Ru.
- the crossing plane with the crystal plane seen in the X-ray diffraction pattern is also shown. It can be seen that the Ru square lattice and the MgO, CFA lattice overlap.
- the reason why the outer 5 polar scan peak is split into two in FIG. 12A is that the intersection surface of the outer Ru 5 is 40.5 ° from the MgO [110] orientation, that is, MgO [100 This is due to having an inclination of 4.5 ° from the azimuth.
- FIG. 17 shows the result of observing the sample surface of MgO substrate / Ru (40 nm, heat treatment at 400 ° C.) / CFA (1 nm) structure using an atomic force microscope (AFM). It can be seen that the average roughness Ra is as flat as 0.24 nm, but has an undulation of about 30 nm. In order to clarify the relationship between this undulation form and the structure of Ru, FIG.
- FIG. 18 shows MgO substrate / Ru (40 nm) / CFA (1.2 nm) / MgO (1.8 nm) / Fe (0.1 nm) /
- a cross section of a vertical MTJ element film having a Co 20 Fe 60 B 20 (1.3 nm) / Ta (5 nm) / Ru protective layer (10 nm) structure (Tex 325 ° C.) is shown as a high angle scattering annular dark field scanning transmission microscope (HAADF- The result observed by STEM) is shown. The black area indicates the CFA / MgO / CoFeB structure.
- the surface of the Ru layer has undulations with a period of about 30 nm, similar to the AFM, and is almost equal to the undulation period with the MgO substrate. Since the local diffraction pattern obtained by nanobeam electrons changes roughly for each undulation, it was found that there is a relationship between the undulation period and the domain size of the variant. From the above results, the undulating structure is related to the unevenness of the substrate and the domain size of the variant, but is not a disorder of the atomic scale structure that affects the perpendicular magnetic anisotropy and the TMR ratio.
- FIG. 19A shows an HRTEM image in the vicinity of the CFA layer with the MgO [100] orientation and FIG. 19B with the MgO [110] orientation. From FIG. 19 (A), lattice fringes in the in-plane direction of Ru are observed, and the interval is about 0.19 nm. This value substantially coincides with 0.189 nm which is the atomic plane distance predicted by the diagonal line of the square array of Ru schematically shown in FIG.
- the CFA crystal lattice was extended by about 3% in the in-plane direction due to the presence of the MgO tunnel barrier layer, and it was found that there was a tetragonal strain that could not be ignored.
- This tensile strain in the in-plane direction serves to weaken the perpendicular magnetic anisotropy.
- Ru underlayer of the present embodiment it is shown that the effect of increasing perpendicular magnetic anisotropy by improving the CFA / MgO interface structure is superior to this tetragonal strain.
- the Ru underlayer functions not only as a cubic system but also as a base of a tetragonal crystal.
- FIG. 19B shows the observation orientation corresponding to FIG. 2, and the same atomic arrangement is predicted. As indicated by the dots in FIG. 19B, the atomic arrangement coincides with the vicinity of the outer surface of Ru. From these, it can be seen that the structure obtained by X-ray diffraction is maintained even in a very fine region. It was also confirmed that the perpendicular magnetization CFA layer had a B2 structure. In addition, it is confirmed that the MgO layer has a NaCl structure and grows in the (001) direction, and there is validity that a large Ku and a high TMR ratio can be obtained.
- FIG. 20B schematically shows this relationship, and this angle corresponds to the fact that Ru grows with two outer directions.
- the outer two surfaces are high azimuth surfaces existing between the outer seven surfaces and the outer one surface.
- Outer 2 is an X-ray and electron beam annihilation line, and cannot be directly confirmed by X-ray diffraction or electron beam diffraction.
- Ru had outer 1, outer 2, and outer 3 surfaces depending on the heat treatment temperature, and rearranged to the optimal surface. Any crystal plane functions effectively as the base of the cubic material due to the presence of the square lattice on the Ru base surface.
- FIG. 21 shows an X-ray diffraction pattern in which iron (Fe) having a bcc structure is formed on Ru as a ferromagnetic layer.
- the Fe layer thickness was 20 nm. From the 2 ⁇ - ⁇ scan of FIG. 21A, only the (002) peak is obtained from the Fe layer, and it is formed by growing in the (001) plane orientation as in the CFA layer. Further, a four-fold symmetry peak is observed from the ⁇ scan of Fe (101) in FIG. 21B, and epitaxial growth can be confirmed. Therefore, even cubic materials other than CFA function effectively as a base.
- Re like Ru, is a noble metal having an hcp structure.
- the atomic plane spacing in the diagonal direction is 0.1195 nm. Since these are about 2% larger than Ru, the lattice matching with MgO is further improved.
- FIGS. 23A and 23B are images obtained by observing the surface immediately after film formation of Re (30 nm) using reflection high-energy electron diffraction (RHEED). A streak-like image is obtained and epitaxial growth is confirmed. It was also found that an image that was four times symmetrical with respect to the substrate rotation and was almost equivalent to the Ru base was obtained.
- FIGS. 23 (C) and 23 (D) show Fe (0.7 nm)
- FIGS. 23 (E) and 23 (F) show RHEED images after forming MgO (2 nm), respectively.
- the substrate may be tilted with respect to the X incident direction and ⁇ scan with respect to the (0002) peak may be performed.
- FIG. 24B shows the ⁇ scan results for the (0002) peak when the substrate is tilted by 49.5 °. A clear four-fold symmetrical peak is obtained, and the tilted substrate angle (49.5 °) is close to the angle (50.6 °, calculated value) between the (0001) plane and the outer plane orientation. It can be concluded that epitaxial growth from 1 to the outer direction of Re has been realized. From the above results, it was confirmed that Re, like Ru, can be epitaxially grown with one surface outside the high crystal orientation and function as an underlayer for the cubic ferromagnetic layer.
- the perpendicular magnetic film according to the present invention can be used as a perpendicular magnetic recording medium, and is particularly suitable for use in a perpendicular magnetic recording disk mounted on a magnetic disk device such as an HDD.
- a perpendicular magnetic recording medium such as an HDD.
- DTM discrete track medium
- BPM bit patterned medium
- It is particularly preferably used as a medium for heat-assisted magnetic recording that can achieve an ultra-high recording density that exceeds the information recording density by the recording method.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computer Hardware Design (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
また、MTJ素子向けの垂直磁化膜では、バルク状では垂直磁化にならないコバルト-鉄-ホウ素(CoFeB)や鉄(Fe)などの軟磁性材料においても、超薄膜構造の界面効果を利用することで、垂直磁化を実現可能なため記録層として用いることができる(界面誘起垂直磁化層)ことが提案されている。この場合、非特許文献3、4によると、タンタル(Ta)やクロム(Cr)といった微結晶状もしくは体心立方構造(body-centered cubic,bcc)系材料が下地層として利用されている。
また、本発明は当該垂直磁化膜構造を用いて形成した垂直磁化膜及び垂直MTJ素子を提供することを課題としてもいる。
本発明は、このような新しい知見に基づいて完成されたものである。
ここで、hcp構造を有する金属は各種であってよく、例えばその好ましい金属としてRuやRe等の貴金属が挙げられる。
例えば、上記金属がRuの場合には、図1~図4に例示したhcp構造のRuである。(001)面方位の立方晶系単結晶基板もしくは(001)面方位に成長した立方晶系配向膜に対し、Ru[0001]方位が42°~54°の範囲の角度をなしている。Ru[0001]方位が42°未満の場合には、Ru外7面よりも低結晶方位となること、また、Ru[0001]方位が54°を超える場合には、Ru外3面よりも高結晶方位となることから、Ruの正方形状格子が現れないために、立方晶系および正方晶系垂直磁化膜の下地として機能しない。
本発明の上記垂直磁化膜用下地においては、好ましくは、前記立方晶系単結晶基板または立方晶系配向膜の少なくとも一方は、酸化マグネシウムまたはマグネシウム-チタン酸化物である。
また、本発明の上記垂直磁化膜用下地においては、好ましくは、外1面、外2面もしくは外3面のいずれかを有する構造である。
尚、本段落の外1、外2、外3、外7は、次のミラー指数である。
本発明の垂直磁化膜構造において、好ましくは、さらに、前記垂直磁化層の上に位置する非磁性層(8)を有することを特徴とする。
好ましくは、上記の垂直MTJ素子膜において、好ましくは、第2の垂直磁化層14の上に位置すると共に、組成材料としてTaと前記金属の少なくとも一方を含む上部電極(15)を有するとよい。
好ましくは、上記の垂直MTJ素子膜の製造方法において、好ましくは、第2の垂直磁化層14の上に形成されると共に、組成材料としてTaと前記金属の少なくとも一方を含む上部電極15を形成する工程を有するとよい。
以下、図1-図6を参照しながら、本発明の各実施形態に係る下地構造1、垂直磁化膜構造4、垂直型磁気抵抗素子(垂直MTJ素子膜9)について詳細に説明する。
図1に示すように、本発明の一実施形態である下地構造1は、基板2と下地層3からなる。基板2は塩化ナトリウム(NaCl)構造を有する(001)面方位の酸化マグネシウム(MgO)単結晶である。さらに、基板2は(001)面方位に配向した面内多結晶MgO膜でもよく、また、MgOの代わりのNaCl構造を持ち同等の格子定数を有するマグネシウム-チタン酸化物(MgTiOx)を用いてもよい。
図5に示すように、垂直磁化膜構造4は基板5、下地層6、垂直磁化層7、非磁性層8の順に積層されている。基板5と下地層6は、それぞれ図1の場合の下地構造1の基板2、下地層3と同一である。垂直磁化層7は(001)面方位をもって成長した立方晶材料、例えばコバルト(Co)基フルホイスラー合金やbcc構造のコバルト-鉄(CoFe)合金(Co1-xFex(0≦x≦1))を有する。フルホイスラー合金とはL21型の構造を持ち、Co2YZ(Yは遷移金属、Zは主に典型元素)の化学組成を持ち、X、Y原子サイトは例えば、X=Fe、Cr、Mn及びその合金、Y=Al、Si、Ge、Ga、Sn及びその合金である。Co基フルホイスラー合金の形態としてL21型以外に、XとY原子サイトが不規則化した構造であるB2構造でも良い。また、CoFe合金にはホウ素を含むコバルト-鉄-ホウ素(CoFeB)合金も含まれる。
例えば、Ruはその融点の高さ(2334℃)から既存材料のクロム(Cr)よりも加熱処理による原子拡散の影響が小さく耐熱性が向上する。それゆえ下地構造11として用いた場合MTJ素子や磁気記録媒体層の構成層に特性向上のために十分な加熱処理が可能になる。
もちろん、本発明においてはhcp構造を有する金属はルテニウム(Ru)以外にも、レニウム(Re)をはじめとして各種のものであってよいことは言うまでもない。例えば、Ru、Reをはじめ、オスミウム(Os)、ロジウム(Rh)等の貴金属やこれらの合金、さらにチタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、亜鉛(Zn)等がその例として挙げられる。
以下、図1、図5、図6を用いて本発明の実施形態である下地構造1、垂直磁化膜構造4、および垂直MTJ素子膜9の製造方法について記述する。
以下Ruを例として説明する。まず、金属下地層3、6、11としてのRu層の作製方法としては、基板2、5、10を(001)面方位をもつMgOとし、超高真空マグネトロンスパッタ装置(到達真空度3×10-7Pa程度)を用い、Ru薄膜を高周波(RF)スパッタにより成膜を行う。Ru膜厚は例えば40nmであるが平坦膜状になればより薄くてもよい。その後200~600℃で真空中ポスト加熱処理を行うことで結晶方位面の制御を行う。このときにRuのc軸方向とMgO基板面がなす角度が42°~54°の範囲の角度をなす。
次に図7ないし図10を参照して、本実施形態の垂直磁化膜とそれを用いた磁気抵抗効果素子の特性について以下の実施例として説明する。
垂直磁化膜構造として、MgO基板/Ru/CFA/MgO構造をスパッタ成膜により形成した例を示す。垂直磁化特性を確認するためにCFA膜厚は0.5nmから2.1nmまで0.1nm間隔で変化させた。MgO膜厚は1.8nmとした。特性改善のため、Tex=250~450°の温度範囲で真空中加熱処理をおこなった。
なお、As-depo.では垂直磁化はほとんど得られていないが、これはRu下地層によるものではなく、CFA/MgO界面における結晶構造の品質が不十分なためである。
垂直磁化膜を用いたMTJ素子として、MgO基板/Ru(40nm)/CFA (1.2nm)/MgO(1.8nm)/Fe(0.1nm)/Co20Fe60B20(1.3nm)/Ta(5nm)/Ru保護層(10nm)構造を例に示す。膜構造作製後の加熱温度Tex は325℃とした。
次に図11ないし図22を参照して、本形態の下地構造および垂直磁化膜構造についての結晶構造について説明する。
尚、本段落の外4は次のイメージデータであり、外5、外6は、次のミラー指数である。
しかし、本実施形態のRu下地層を用いることで、CFA/MgO界面構造が高品質化されることによる垂直磁気異方性の増大効果がこの正方晶ひずみに勝っていることを示している。同時に、Ru下地層が立方晶系のみならず正方晶系結晶の下地としても機能することを示している。
図23(A)、(B)に、Re(30nm)成膜直後の表面を、反射高速電子線回折(RHEED)を用いて観察を行った像である。ストリーク状の像が得られエピタキシャル成長が確認される。また、基板回転に対し4回対称性を有しておりRu下地の場合とほぼ同等の像が得られたこともわかった。次に図23(C)、(D)にはFe(0.7nm)、図23(E)、(F)にはMgO(2nm)成膜後のRHEED像をそれぞれ示した。Fe層はRe下地構造にしたがってエピタキシャル成長し、bcc構造をもって(001)成長していることからRe下地においても立方晶強磁性体の下地として機能していることが確認された。また、MgO層もエピタキシャル成長が確認された。
図24(A)にはこのMgO基板/Re(30nm)/Fe(0.7nm)/MgO(2nm)構造を持つ多層膜のX線回折プロファイル(2θ-ωスキャン)を示す。2θ=110°付近に明確な外1ピークが観察される。なお(0002)、(0004)ピークが見られるものの相対的に強度は弱く、外1面成長が主体である。外1面成長とエピタキシャル成長を確認するためには基板をX入射方向に対して傾け(0002)ピークに対してのφスキャンを行えばよい。図24(B)に基板を49.5°傾けた場合の(0002)ピークに対してのφスキャン結果を示した。明確に4回対称のピークが得られていること、また傾けた基板角度(49.5°)は(0001)面と外1面方位のなす角度(50.6°、計算値)と近いことからReの外1面方位へのエピタキシャル成長が実現されていると結論付けられる。
以上の結果から、ReもRuと同等に、高結晶方位外1面を持ってエピタキシャル成長が可能であり、立方晶の強磁性体層の下地層として機能することが確認された。
2、5、10 基板、
3、6、11 下地層、
4 垂直磁化膜構造、
7 垂直磁化層、
8、13 非磁性層、
9 垂直MTJ素子、
12 第一の垂直磁化層、
14 第二の垂直磁化層、
15 上部電極
Claims (19)
- hcp構造を有する金属であって、(001)面方位の立方晶系単結晶基板もしくは(001)面方位をもって成長した立方晶系配向膜に対して、[0001]方位が42°~54°の範囲の角度をなすことを特徴とする垂直磁化膜用下地。
- 前記立方晶系単結晶基板または立方晶系配向膜の少なくとも一方は、酸化マグネシウムまたはマグネシウム-チタン酸化物であることを特徴とする請求項1に記載の垂直磁化膜用下地。
- 前記金属が外1面、外2面もしくは外3面のいずれかを有する構造であることを特徴とする請求項1または2に記載の垂直磁化膜用下地。
- 前記金属が貴金属のうちの少くとも一種であることを特徴とする請求項1または2に記載の垂直磁化膜用下地。
- 前記貴金属がルテニウム(Ru)またはレニウム(Re)であることを特徴とする請求項4に記載の垂直磁化膜用下地。
- (001)面方位の立方晶系単結晶の基板、または(001)面方位をもって成長した立方晶系配向膜を有する基板の一方と、
前記基板に形成されたhcp構造の金属薄膜であって、前記基板の<001>方位又は(001)面方位に対して、金属[0001]方位が42°~54°の範囲の角度をなす前記金属薄膜からなる下地層と、
前記金属下地層の上に位置すると共に、組成材料としてCo基ホイスラー合金、bcc構造のコバルト-鉄(CoFe)合金、L10系合金XY(X=Fe、Co、Y=Pt、Pd)、DO22型もしくはL10型のマンガン合金、例えばマンガン-ガリウム(Mn-Ga)合金およびマンガン-ゲルマニウム(Mn-Ge)合金からなる群より選ばれた(001)方位に成長した立方晶材料よりなる垂直磁化層と、
を有することを特徴とする垂直磁化膜構造。 - 前記金属薄膜が貴金属の薄膜のうちの少くとも一種であることを特徴とする請求項6に記載の垂直磁化膜構造。
- 前記貴金属の薄膜がルテニウム(Ru)またはレニウム(Re)の薄膜であることを特徴とする請求項7に記載の垂直磁化膜構造。
- 請求項6から8のうちのいずれか一項に記載された垂直磁化膜構造において、さらに、前記垂直磁化層の上に位置する非磁性層を有することを特徴とする垂直磁化膜構造。
- (001)面方位の立方晶系単結晶の基板、または(001)面方位をもって成長した立方晶系配向膜を有する基板の一方と、
前記基板に形成されたhcp構造の金属薄膜であって、前記基板の<001>方位又は(001)面方位に対して、Ru[0001]方位が42°~54°の範囲の角度をなす前記金属薄膜からなる下地層と、
前記金属下地層の上に位置すると共に、組成材料としてCo基ホイスラー合金、bcc構造のコバルト-鉄(CoFe)合金、L10系合金XY(X=Fe、Co、Y=Pt、Pd)、DO22型もしくはL10型のマンガン合金、例えばマンガン-ガリウム(Mn-Ga)合金およびマンガン-ゲルマニウム(Mn-Ge)合金からなる群より選ばれた(001)方位に成長した立方晶材料よりなる第一の垂直磁化層と、
前記第一の垂直磁化層の上に位置すると共に、組成材料としてMgO、スピネル(MgAl2O4)、酸化アルミニウム(Al2O3)からなる群より選ばれた(001)方位およびそれに等価な方位に成長しているトンネルバリア層と、
前記トンネルバリア層の上に位置すると共に、組成材料としてCo基ホイスラー合金、bcc構造のコバルト-鉄(CoFe)合金、L10系合金XY(X=Fe、Co、Y=Pt、Pd)、DO22型もしくはL10型のマンガン合金、例えばマンガン-ガリウム(Mn-Ga)合金およびマンガン-ゲルマニウム(Mn-Ge)合金からなる群より選ばれた(001)面方位に成長した立方晶材料よりなる第2の垂直磁化層と、
を有することを特徴とする垂直MTJ素子膜。 - 前記金属薄膜が貴金属の薄膜のうちの少くとも一種であることを特徴とする請求項10に記載の垂直MTJ素子膜。
- 前記貴金属の薄膜がルテニウム(Ru)またはレニウム(Re)の薄膜であることを特徴とする請求項11に記載の垂直MTJ素子膜。
- 請求項1から5のうちのいずれかに記載された垂直磁化膜用下地、請求項6から9のうちのいずれかに記載された垂直磁化膜構造、請求項10から12のうちのいずれかに6に記載された垂直MTJ素子膜の少なくとも一つを有することを特徴とする垂直磁気記録媒体。
- (001)方位の立方晶系単結晶の基板を提供する工程と、
前記基板に金属薄膜の成膜を行う工程と、
前記金属薄膜を200~600℃で真空中ポスト加熱処理を行うことで、金属下地層を形成する工程と、
前記金属下地層の上に形成されると共に、組成材料としてCo基ホイスラー合金、bcc構造のコバルト-鉄(CoFe)合金、L10系合金XY(X=Fe、Co、Y=Pt、Pd)、DO22型もしくはL10型のマンガン合金、例えばマンガン-ガリウム(Mn-Ga)合金およびマンガン-ゲルマニウム(Mn-Ge)合金からなる群より選ばれた(001)面方位をもって成長した立方晶材料よりなる垂直磁化層を形成する工程と、
を有することを特徴とする垂直磁化膜構造の製造方法。 - 前記金属薄膜が貴金属の薄膜のうちの少なくとも一種であることを特徴とする請求項14に記載の垂直磁化膜構造の製造方法。
- 前記貴金属の薄膜がルテニウム(Ru)またはレニウム(Re)の薄膜であることを特徴とする請求項15に記載の垂直磁化膜構造の製造方法。
- (001)方位の立方晶系単結晶基板を提供する工程と、
前記基板に金属薄膜の成膜を行う工程と、
前記金属薄膜を200~600℃で真空中ポスト加熱処理を行うことで、金属下地層を形成する工程と、
前記Ru下地層の上に形成されると共に、組成材料としてCo基ホイスラー合金、bcc構造のコバルト-鉄(CoFe)合金、L10系合金XY(X=Fe、Co、Y=Pt、Pd)、DO22型もしくはL10型のマンガン合金、例えばマンガン-ガリウム(Mn-Ga)合金およびマンガン-ゲルマニウム(Mn-Ge)合金からなる群より選ばれた(001)面方位をもって成長した立方晶材料よりなる第一の垂直磁化層を形成する工程と、
前記第一の垂直磁化層の上に形成されると共に、組成材料としてMgO、スピネル(MgAl2O4)、酸化アルミニウム(Al2O3)からなる群より選ばれた(001)方位およびそれに等価な方位に成長しているトンネルバリア層を工程と、
前記トンネルバリア層の上に形成されると共に、組成材料としてCo基ホイスラー合金、bcc構造のコバルト-鉄(CoFe)合金、L10系合金XY(X=Fe、Co、Y=Pt、Pd)、DO22型もしくはL10型のマンガン合金、例えばマンガン-ガリウム(Mn-Ga)合金およびマンガン-ゲルマニウム(Mn-Ge)合金からなる群より選ばれた(001)面方位をもって成長した立方晶材料よりなる第2の垂直磁化層を形成する工程と、
を有することを特徴とする垂直MTJ素子の製造方法。 - 前記金属薄膜が貴金属の薄膜の一種以上であることを特徴とする請求項17に記載の垂直MTJ素子の製造方法。
- 前記貴金属の薄膜がルテニウム(Ru)またはレニウム(Re)の薄膜であることを特徴とする請求項18に記載の垂直MTJ素子の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016508805A JP6288658B2 (ja) | 2014-03-20 | 2015-03-19 | 垂直磁化膜用下地、垂直磁化膜構造、垂直mtj素子及びこれらを用いた垂直磁気記録媒体 |
KR1020167025828A KR102067442B1 (ko) | 2014-03-20 | 2015-03-19 | 수직 자화막용 하지, 수직 자화막 구조, 수직 mtj 소자 및 이들을 사용한 수직 자기기록매체 |
US15/127,527 US10199063B2 (en) | 2014-03-20 | 2015-03-19 | Underlayer for perpendicularly magnetized film, perpendicularly magnetized film structure, perpendicular MTJ element, and perpendicular magnetic recording medium using the same |
US16/214,375 US10832719B2 (en) | 2014-03-20 | 2018-12-10 | Underlayer for perpendicularly magnetized film, perpendicularly magnetized film structure, perpendicular MTJ element, and perpendicular magnetic recording medium using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-058440 | 2014-03-20 | ||
JP2014058440 | 2014-03-20 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/127,527 A-371-Of-International US10199063B2 (en) | 2014-03-20 | 2015-03-19 | Underlayer for perpendicularly magnetized film, perpendicularly magnetized film structure, perpendicular MTJ element, and perpendicular magnetic recording medium using the same |
US16/214,375 Division US10832719B2 (en) | 2014-03-20 | 2018-12-10 | Underlayer for perpendicularly magnetized film, perpendicularly magnetized film structure, perpendicular MTJ element, and perpendicular magnetic recording medium using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141794A1 true WO2015141794A1 (ja) | 2015-09-24 |
Family
ID=54144756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/058306 WO2015141794A1 (ja) | 2014-03-20 | 2015-03-19 | 垂直磁化膜用下地、垂直磁化膜構造、垂直mtj素子及びこれらを用いた垂直磁気記録媒体 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10199063B2 (ja) |
JP (1) | JP6288658B2 (ja) |
KR (1) | KR102067442B1 (ja) |
WO (1) | WO2015141794A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019534562A (ja) * | 2016-10-27 | 2019-11-28 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティ オブ アラバマ | Fe−Al系合金磁性薄膜 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170064054A (ko) * | 2015-11-30 | 2017-06-09 | 에스케이하이닉스 주식회사 | 전자 장치 및 그 제조 방법 |
JP6690838B2 (ja) * | 2016-02-02 | 2020-04-28 | 国立研究開発法人物質・材料研究機構 | 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法 |
CN109155360A (zh) | 2016-02-05 | 2019-01-04 | 汉阳大学校产学协力团 | 存储器件 |
US10121960B2 (en) * | 2016-10-17 | 2018-11-06 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic junctions usable in spin transfer torque applications utilizing interstitial glass-forming agent(s) |
US10937953B2 (en) * | 2019-01-28 | 2021-03-02 | Samsung Electronics Co., Ltd. | Tunable tetragonal ferrimagnetic heusler compound with PMA and high TMR |
US10770649B1 (en) | 2019-02-21 | 2020-09-08 | International Business Machines Corporation | Lattice matched tunnel barriers for perpendicularly magnetized Heusler alloys |
CN111074129B (zh) * | 2019-12-05 | 2020-11-24 | 杭州电子科技大学 | 一种稀土基磁性斯格明子材料、制备方法及其应用 |
CN113748526B (zh) * | 2019-12-19 | 2023-09-22 | Tdk株式会社 | 磁阻效应元件和铁磁性层的结晶方法 |
JP7388226B2 (ja) * | 2020-02-13 | 2023-11-29 | 株式会社レゾナック | 磁気記録媒体およびその製造方法ならびに磁気記憶装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006286105A (ja) * | 2005-03-31 | 2006-10-19 | Fujitsu Ltd | 磁気記録媒体および磁気記憶装置 |
US7282278B1 (en) * | 2003-07-02 | 2007-10-16 | Seagate Technology Llc | Tilted recording media with L10 magnetic layer |
JP2010232499A (ja) * | 2009-03-27 | 2010-10-14 | Toshiba Corp | 磁気抵抗素子および磁気メモリ |
JP2012238631A (ja) * | 2011-05-10 | 2012-12-06 | Sony Corp | 記憶素子、記憶装置 |
US8609263B1 (en) * | 2011-05-20 | 2013-12-17 | WD Media, LLC | Systems and methods for forming magnetic media with an underlayer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07334832A (ja) * | 1994-06-08 | 1995-12-22 | Hitachi Ltd | 垂直磁気記録媒体及び磁気記録装置 |
WO2004097809A1 (en) * | 2003-05-02 | 2004-11-11 | Fujitsu Limited | Magnetic recording medium, magnetic storage apparatus and method of producing magnetic recording medium |
US9093101B2 (en) | 2011-02-28 | 2015-07-28 | Seagate Technology Llc | Stack including a magnetic zero layer |
US8866367B2 (en) * | 2011-10-17 | 2014-10-21 | The United States Of America As Represented By The Secretary Of The Army | Thermally oxidized seed layers for the production of {001} textured electrodes and PZT devices and method of making |
US8993134B2 (en) | 2012-06-29 | 2015-03-31 | Western Digital Technologies, Inc. | Electrically conductive underlayer to grow FePt granular media with (001) texture on glass substrates |
-
2015
- 2015-03-19 JP JP2016508805A patent/JP6288658B2/ja active Active
- 2015-03-19 US US15/127,527 patent/US10199063B2/en active Active
- 2015-03-19 KR KR1020167025828A patent/KR102067442B1/ko active IP Right Grant
- 2015-03-19 WO PCT/JP2015/058306 patent/WO2015141794A1/ja active Application Filing
-
2018
- 2018-12-10 US US16/214,375 patent/US10832719B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7282278B1 (en) * | 2003-07-02 | 2007-10-16 | Seagate Technology Llc | Tilted recording media with L10 magnetic layer |
JP2006286105A (ja) * | 2005-03-31 | 2006-10-19 | Fujitsu Ltd | 磁気記録媒体および磁気記憶装置 |
JP2010232499A (ja) * | 2009-03-27 | 2010-10-14 | Toshiba Corp | 磁気抵抗素子および磁気メモリ |
JP2012238631A (ja) * | 2011-05-10 | 2012-12-06 | Sony Corp | 記憶素子、記憶装置 |
US8609263B1 (en) * | 2011-05-20 | 2013-12-17 | WD Media, LLC | Systems and methods for forming magnetic media with an underlayer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019534562A (ja) * | 2016-10-27 | 2019-11-28 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティ オブ アラバマ | Fe−Al系合金磁性薄膜 |
Also Published As
Publication number | Publication date |
---|---|
US10199063B2 (en) | 2019-02-05 |
US20170140784A1 (en) | 2017-05-18 |
JPWO2015141794A1 (ja) | 2017-04-13 |
US20190172486A1 (en) | 2019-06-06 |
JP6288658B2 (ja) | 2018-03-07 |
US10832719B2 (en) | 2020-11-10 |
KR102067442B1 (ko) | 2020-01-17 |
KR20170008201A (ko) | 2017-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6288658B2 (ja) | 垂直磁化膜用下地、垂直磁化膜構造、垂直mtj素子及びこれらを用いた垂直磁気記録媒体 | |
US10749105B2 (en) | Monocrystalline magneto resistance element, method for producing the same and method for using same | |
JP6647590B2 (ja) | 垂直磁化膜と垂直磁化膜構造並びに磁気抵抗素子および垂直磁気記録媒体 | |
JP2018073934A (ja) | スピン軌道トルク型磁化反転素子及び磁気メモリ | |
US7094483B2 (en) | Magnetic storage media having tilted magnetic anisotropy | |
Chi et al. | Uniaxial magnetic anisotropy in Pd/Fe bilayers on Al2O3 (0001) induced by oblique deposition | |
JP7002134B2 (ja) | 磁気トンネル接合素子およびその製造方法 | |
Hono et al. | L10 FePt Granular Films for Heat-Assisted Magnetic Recording Media | |
Pandey et al. | Structure optimization of FePt–C nanogranular films for heat-assisted magnetic recording media | |
Ohtsuki et al. | Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition | |
US20120141837A1 (en) | Tetragonal manganese gallium films | |
Takeuchi et al. | Crystallization of amorphous CoFeB ferromagnetic layers in CoFeB/MgO/CoFeB magnetic tunnel junctions | |
Dong et al. | Control of microstructure and magnetic properties of FePt films with TiN intermediate layer | |
Verbeno et al. | Cobalt nanowire arrays grown on vicinal sapphire templates by DC magnetron sputtering | |
JP6583814B2 (ja) | 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス | |
Kumar et al. | Cu interfaced Fe/Pt multilayer with improved (001) texture, enhanced L10 transformation kinetics and high magnetic anisotropy | |
Wicht et al. | Modification of the structural and magnetic properties of granular FePt films by seed layer conditioning | |
TWI640644B (zh) | Sputtering target for DC sputtering and perpendicular magnetic recording medium having the same | |
JP4621899B2 (ja) | 磁気媒体 | |
Yang et al. | Structure and magnetic properties of graded (001)-oriented FePt films prepared by magnetron sputtering and rapid thermal annealing | |
JP2006236486A (ja) | 磁気記録媒体及びその製造方法 | |
TWI421353B (zh) | 具奈米級釘紮效應的磁性材料 | |
JP6986729B2 (ja) | 単結晶磁気抵抗素子、及びこれを用いたデバイス | |
Li et al. | The mechanism of texture evolution in annealed L 1 0–FePt thin films | |
TWI616872B (zh) | Heat assisted magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15765462 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016508805 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167025828 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15127527 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15765462 Country of ref document: EP Kind code of ref document: A1 |