WO2015141148A1 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- WO2015141148A1 WO2015141148A1 PCT/JP2015/000986 JP2015000986W WO2015141148A1 WO 2015141148 A1 WO2015141148 A1 WO 2015141148A1 JP 2015000986 W JP2015000986 W JP 2015000986W WO 2015141148 A1 WO2015141148 A1 WO 2015141148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal combustion
- combustion engine
- sensor
- exhaust
- egr
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1493—Details
- F02D41/1494—Control of sensor heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
- F02D41/0072—Estimating, calculating or determining the EGR rate, amount or flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/144—Sensor in intake manifold
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0418—Air humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/06—Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present disclosure relates to a control device for an internal combustion engine including an external EGR device that recirculates a part of exhaust gas to an intake passage via an EGR pipe.
- the oxygen concentration sensor becomes active when heated, and the oxygen concentration can be detected with high accuracy. For this reason, an electric heater is generally attached to the oxygen concentration sensor, and the sensor element is activated by the heat generated by the heater. Energization control of the heater is performed so that this active state is maintained.
- EGR gas contains water generated by combustion.
- the EGR gas is mixed with the relatively low temperature intake air, so that condensed water is likely to be generated in the intake passage.
- the environment in the intake system is likely to change due to the influence of the operating environment, and when the intake passage temperature falls below the dew point temperature, condensed water is generated in the intake passage. Therefore, in an EGR system in which an oxygen concentration sensor (exhaust sensor) is arranged in the intake system, there is a concern that when the heater heats the sensor element, the sensor element is likely to break due to water in the intake passage.
- This disclosure is intended to provide a control device for an internal combustion engine that can continue the introduction of EGR gas while preventing water cracking of an oxygen concentration sensor (exhaust sensor).
- an exhaust sensor that includes a heater that heats the exhaust sensor element and detects an exhaust component is provided in the intake passage.
- the control device for the internal combustion engine includes a wetness determination device that determines whether or not a condensate water generation in the intake passage is predicted, and the predetermined water supply determination device.
- An energization limiting device that limits power to be supplied to the heater when it is determined to be in a water state.
- EGR control can be realized by arranging an exhaust sensor in the intake passage and directly detecting the actual EGR rate.
- the exhaust gas contains a lot of water produced by the combustion of fuel
- the EGR gas is mixed with intake air, so that condensed water is generated in the intake passage. It tends to occur.
- the ease with which condensed water is generated in the intake passage changes according to the temperature and humidity of the outside air, and the more the outside air temperature deviates from the predetermined range, the more easily the condensed water is generated.
- the control device of the present disclosure determines whether or not it is in a predetermined wet state in which the generation of condensed water in the intake passage is predicted. If the generation of condensed water is predicted, the heater of the exhaust sensor Limiting energization. Thereby, EGR introduction can be continued while preventing element cracks in the exhaust sensor due to water.
- the block diagram which shows the outline of an engine control system.
- the flowchart which shows the process sequence of EGR control.
- the time chart which shows the specific aspect of EGR control in case water exposure is estimated.
- the figure which shows the relationship between outside temperature and a target EGR rate.
- the figure which shows the relationship between humidity and a target EGR rate.
- a multi-cylinder four-cycle gasoline engine (internal combustion engine) mounted on a vehicle is controlled, and electronic control of various actuators in this engine is performed.
- the overall schematic configuration of the engine control system will be described with reference to FIG.
- an air flow meter 12 for detecting the amount of intake air is provided upstream of the intake pipe 11.
- a throttle valve 14 whose opening degree is adjusted by a throttle actuator 13 such as a DC motor is provided on the downstream side of the air flow meter 12.
- the opening (throttle position) of the throttle valve 14 is detected by a throttle position sensor 15 built in the throttle actuator 13.
- a surge tank 16 is provided on the downstream side of the throttle valve 14, and an intake manifold 17 that is connected to an intake port of each cylinder is attached to the surge tank 16.
- the intake port and the exhaust port of the engine 10 are provided with an intake valve and an exhaust valve (not shown), respectively. Further, the engine 10 is provided with a fuel injection valve 23 and a spark plug 24 for each cylinder.
- An exhaust manifold 25 is connected to the exhaust port of the engine 10, and an exhaust pipe 26 is connected to a collective portion of the exhaust manifold 25.
- the exhaust pipe 26 is provided with a three-way catalyst 28 that purifies three components of CO, HC, and NOx in the exhaust.
- an air-fuel ratio sensor 29 is provided that detects the air-fuel ratio of the air-fuel mixture using exhaust as a detection target.
- the air-fuel ratio sensor 29 has an output characteristic proportional to the air-fuel ratio.
- a turbocharger 30 is provided between the intake pipe 11 and the exhaust pipe 26.
- the turbocharger 30 includes an intake compressor 31 disposed on the upstream side of the throttle valve 14 in the intake pipe 11, an exhaust turbine 32 disposed on the upstream side of the catalyst 28 in the exhaust pipe 26, and the intake compressor 31 and the exhaust turbine 32. And a rotating shaft 33 to be connected.
- the intake compressor 31 rotates with the rotation of the exhaust turbine 32.
- the intake air is supercharged by the rotation of the intake compressor 31.
- the intake pipe 11 is provided with an intercooler 34 for cooling the supercharged intake air downstream of the throttle valve 14.
- the intake air is cooled by the intercooler 34, so that a decrease in air charging efficiency is suppressed.
- the intercooler 34 is disposed in a cooling water path (I / C cooling water path) different from the cooling water path of the engine 10.
- the intake air is cooled by circulating the cooling water through the I / C cooling water path.
- the cooling capacity of the intercooler 34 is adjusted according to the flow rate of the cooling water.
- the coolant flow rate of the intercooler 34 is adjusted by drive control of a water pump (not shown) disposed in the I / C cooling water path.
- the intercooler 34 is provided integrally with the surge tank 16, but the intercooler 34 is provided separately from the surge tank 16 on the upstream side of the surge tank 16 or the upstream side of the throttle valve 14. Also good.
- the upstream side and the downstream side of the exhaust turbine 32 are communicated by the exhaust bypass passage 21.
- the exhaust bypass passage 21 is provided with a waste gate valve (WGV) 22 that opens and closes the exhaust bypass passage 21.
- the exhaust amount flowing through the exhaust pipe 26 is increased or decreased according to the opening degree of the WGV 22, and the rotational speed of the exhaust turbine 32 and the rotational speed of the intake compressor 31 are adjusted.
- the upstream side and the downstream side of the intake compressor 31 are communicated with each other by an intake bypass passage 48.
- An air bypass valve (ABV) 49 that opens and closes the intake bypass passage 48 is provided in the intake bypass passage 48. By opening the ABV 49, the excess pressure between the turbocharger 30 and the throttle valve 14 can be released.
- the engine 10 is provided with an external EGR device 35 that introduces a part of the exhaust gas into the intake passage as EGR gas.
- the EGR device 35 includes an EGR pipe 36 that connects the intake pipe 11 and the exhaust pipe 26, an electromagnetically driven EGR valve 37 that adjusts the amount of EGR gas flowing through the EGR pipe 36, and an EGR cooler 38 that cools the EGR gas.
- the EGR cooler 38 is a water-cooled exhaust cooling device, and is disposed in the cooling water path 39 of the engine 10. In the EGR cooler 38, the EGR gas is cooled by circulating the cooling water through the cooling water passage 39. The cooling capacity of the EGR cooler 38 is adjusted according to the flow rate of the cooling water. In the present embodiment, the flow rate of the cooling water flowing through the EGR cooler 38 is adjusted by adjusting the opening degree of the flow rate control valve 40 disposed in the cooling water path 39.
- the EGR pipe 36 is provided in the exhaust pipe 26 so as to connect the downstream side of the exhaust turbine 32 (downstream side of the catalyst 28) and the upstream side of the intake compressor 31 in the intake pipe 11.
- LPL low-pressure loop
- an exhaust sensor 18 for detecting an exhaust component in the intake air is disposed.
- the exhaust sensor 18 is attached to the downstream side of the connection portion of the intake pipe 11 with the EGR pipe 36 and the upstream side of the intake compressor 31.
- the exhaust sensor 18 is an A / F sensor that detects an oxygen concentration as an exhaust component.
- the exhaust sensor 18 is an A / F sensor in which a current value generated by applying a voltage to the sensor element changes depending on the oxygen concentration in the gas and the unburned gas concentration.
- This sensor is composed of a laminate of a sensor element made of a solid electrolyte such as zirconia (ZrO2) and a heater 19 for heating the sensor element.
- the heater 19 generates heat by supplying power from a battery power source (not shown). The entire sensor element is heated by generating heat. This heating activates the sensor element and keeps the sensor element in an activated state.
- the exhaust sensor 18 is the same as the A / F sensor employed for the air-fuel ratio sensor 29.
- the system includes a crank angle sensor 41 that outputs a crank angle signal for each predetermined crank angle of the engine 10, a water temperature sensor 42 that detects the coolant temperature of the engine 10, an intake air temperature sensor 43 that detects the temperature of the intake air, A humidity sensor 44 that detects humidity, an outside air temperature sensor 45 that detects outside air temperature, and an atmospheric pressure sensor 46 that detects atmospheric pressure are provided.
- the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 correspond to an environment detecting device that detects outside air environment parameters.
- the ECU 50 is mainly configured by a microcomputer 51 including a CPU, a ROM, a RAM, and the like, and executes various controls of the engine 10 by executing various control programs stored in the ROM.
- the microcomputer 51 receives detection signals from the various sensors described above, and based on the input detection signals, the throttle valve 14, the fuel injection valve 23, the spark plug 24, the EGR valve 37, the WGV 22, and the ABV 49.
- the drive of the flow control valve 40 and the like is controlled.
- drive signals are input from the wiper switch 55, the defogger switch 56, the glass heater switch 57, and the like, and the drive of the wiper, the glass heater, and the defogger is controlled based on the input drive signal.
- ECU 50 sets a target EGR rate based on the engine operating state (for example, engine rotation speed, load, etc.), and controls the opening degree of the EGR valve 37 so as to realize the target EGR rate.
- the actual EGR rate is directly detected by the exhaust sensor 18, and the drive duty ratio of the EGR valve 37 is calculated so that the actual EGR rate calculated based on the detection result of the exhaust sensor 18 becomes the target EGR rate. Then, the EGR valve 37 is driven.
- the external EGR is precisely controlled by directly detecting the actual EGR rate.
- the introduction of EGR gas is performed in a predetermined EGR application operation region excluding the idle operation region and the high load operation region.
- the microcomputer 51 performs energization control of the heater 19 based on the element temperature of the exhaust sensor 18. Specifically, heater energization control is performed so that the element temperature becomes a predetermined target temperature (for example, 750 ° C.). At this time, the element impedance is detected as a parameter correlated with the element temperature, and the heater energization amount is controlled by the control duty ratio calculated based on the deviation between the element impedance detection value and the target value.
- a predetermined target temperature for example, 750 ° C.
- the exhaust gas contains a large amount of water generated by the combustion of fuel
- the exhaust gas is recirculated by the external EGR device 35
- condensed water is generated by mixing the exhaust gas as EGR gas with the intake air in the intake passage. It becomes easy.
- the environment in the intake passage is likely to change due to changes in the outside air environmental parameters such as the temperature of the outside air, the humidity of the outside air, and the atmospheric pressure, which makes it easy to generate condensed water. Specifically, condensate tends to be generated as the outside air temperature deviates from a predetermined range. Further, the higher the humidity, the easier it is to generate condensed water, and the lower the atmospheric pressure, the easier it is to generate condensed water.
- FIG. 2 is a flowchart showing a processing procedure of EGR control according to the present embodiment. This process is executed by the microcomputer 51 at predetermined intervals.
- step S100 it is determined whether or not an abnormality has occurred in the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46. If the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 are all normal, the process proceeds to step S101.
- the abnormality diagnosis process for the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 is executed in a separate routine (not shown).
- step S ⁇ b> 101 it is determined whether or not a predetermined water-immersed state in which the occurrence of condensed water in the intake passage is predicted (water determination).
- environmental judgment conditions condition (1): The outside air environment parameter is a value indicating a predetermined wet condition.
- Condition (2) It includes that the driver has operated in a high humidity environment. When at least one of these conditions (1) and (2) is satisfied, it is determined that the vehicle is in a predetermined wet state.
- condition (1) is determined based on the sensor values of the outside air temperature sensor 45, the humidity sensor 44, and the atmospheric pressure sensor 46.
- Condition (a) The outside air temperature detected by the outside air temperature sensor 45 is a predetermined low temperature determination value (for example, 10 ° C.) or less or a predetermined high temperature determination value (for example, 30 ° C.)
- Condition (b) The humidity of the outside air detected by the humidity sensor 44 is equal to or higher than a predetermined high humidity determination value (for example, 70%)
- the low pressure judgment value for example, 85 kPa
- condition (2) when at least one of the wiper switch 55, the defogger switch 56, and the glass heater switch 57 is turned on, it is determined that the operation of the driver in a high humidity environment has occurred.
- step S101 If it is determined in step S101 that there is no possibility of the occurrence of condensed water in the intake passage, the process proceeds to step S107, and normal EGR control is performed by another routine (not shown).
- the normal EGR control the actual EGR rate is calculated using the detection value of the exhaust sensor 18, and the amount of EGR gas recirculated to the intake passage is adjusted using the calculated sensor detection value.
- the exhaust sensor 18 is kept active by heater energization control based on the element temperature. Since the exhaust sensor 18 disposed in the intake passage is in an environment cooled by the intake air of the engine 10, the heater 19 is basically always energized when performing normal EGR control.
- step S101 If it is determined in step S101 that condensed water may be generated in the intake passage, the process proceeds to step S102, and energization of the heater 19 is stopped (energization restriction).
- step S103 the cooling capacity of the intercooler 34 and the EGR cooler 38 is reduced. Specifically, the circulation of the cooling water in the intercooler 34 is stopped by stopping the driving of the water pump, and the circulation of the engine cooling water in the EGR cooler 38 is stopped by driving the flow control valve 40 to be closed. Thereby, generation
- step S104 the rotational speed of the intake compressor 31 is reduced.
- the opening degree of the WGV 22 is changed to the opening side, and the opening degree of the ABV 49 is changed to the opening side. If the intake compressor 31 is rotating at a high speed, the condensed water existing in the EGR pipe 36 is likely to be sucked into the intake passage and water may enter the intake passage.
- the rotational speed of the intake compressor 31 is lowered
- a target EGR rate is set (target value setting).
- a target EGR rate setting map that defines the relationship between the engine operating state and the target EGR rate is stored in advance in the ROM, and the target EGR rate is set using this setting map.
- the target EGR rate setting map a normal time map used in normal time EGR control and a wet time map used in EGR control in a wet condition are set.
- the target EGR rate corresponding to the current engine operating state is set using the flooded map. According to this flooded time map, the target EGR rate in the same engine operating state is set lower than when the normal time map is used.
- step S106 the opening degree of the EGR valve 37 is controlled so as to realize the set target EGR rate.
- the actual EGR rate is an estimated value based on the engine operating state without using the detection value by the exhaust sensor 18.
- the estimated value of the actual EGR rate is calculated based on, for example, the opening degree of the EGR valve 37, the detected value of the air flow meter 12, and the throttle opening degree.
- the heater energization is resumed after a predetermined time Td has elapsed from the time when it is determined that the water is not wet.
- step S100 when at least one of the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 is abnormal, the power supplied to the heater 19 is limited. Specifically, if it is determined in step S100 that any one of the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 is abnormal, an affirmative determination is made in step S100, and the steps after step S102 are performed. Execute the process. Thereby, the energization of the heater 19 is stopped when at least one of the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 is abnormal.
- FIG. 3 is a time chart showing a specific mode of control when the generation of condensed water in the intake passage is predicted.
- (a) shows the transition of the result of the determination of water exposure
- (b) shows the transition of heater energization / energization stop
- (c) shows the transition of water pump drive / drive stop
- (d) shows the flow rate of the EGR cooler 38.
- the transition of the valve opening / closing of the control valve 40 (e) shows the transition of the opening / closing of the ABV 49
- (f) shows the transition of the opening degree of the WGV 22.
- FIG. 3 it is assumed that the engine 10 is operating in the EGR application operation region.
- the energization of the heater 19 is resumed at the time t13 when the predetermined time Td has elapsed from the time t12. Further, the water pump, the flow control valve 40, the ABV 49, and the WGV 22 are shifted to normal drive control. Note that during the period t11 to t12 in which the generation of condensed water in the intake passage is predicted, the cooling capacity of the intercooler 34 and the EGR cooler 38 is reduced, and the rotational speed of the intake compressor 31 is reduced. As a result, when energization of the heater 19 is resumed, water does not exist in the intake passage, and the concern about the wetness of the exhaust sensor 18 is eliminated.
- the exhaust sensor 18 of the intake system is constantly affected by the outside air environment, it is necessary to take measures against water exposure not only when the engine 10 is cold started but also during operation. In particular, during the period when the EGR gas is being introduced, the exhaust sensor 18 of the intake system is likely to get wet. In the above configuration, since the power input to the heater 19 is limited during the period including the introduction of the EGR gas, it is possible to suitably suppress the flooding of the exhaust sensor 18.
- Ease of condensate generation in the intake passage varies depending on changes in outside air environmental parameters such as outside air temperature, humidity, and atmospheric pressure. Condensed water is more likely to be generated as the outside air temperature is outside the predetermined range, condensed water is more likely to be generated as the humidity is higher, or condensed water is more likely to be generated as the atmospheric pressure is lower.
- the wetness determination corresponding appropriately also to the change of an external air environment can be performed.
- the determination condition (1) cannot be accurately determined.
- the input power to the heater 19 is limited. According to this configuration, heater energization in a state where the possibility of water exposure cannot be accurately specified is limited, so that it is possible to more reliably avoid sensor element cracking due to water exposure.
- At least one of the wiper switch 55, the defogger switch 56, and the glass heater switch 57 is based on not only the sensor detection result of the ambient temperature, humidity, and atmospheric pressure, but also the operation of the driver in a high humidity environment. It was set as the structure which determines whether it is a predetermined
- the heater 19 is energized and the cooling capacity of the intercooler 34 and the EGR cooler 38 is reduced. According to such a configuration, even if EGR gas is introduced, the generation of condensed water can be suppressed, so that EGR gas can be continuously introduced. Further, even in the environment where the condensed water is likely to be generated in the intake passage, it is possible to prevent water from being present in the intake passage as much as possible. The influence of water on each part of the engine can be suppressed.
- the supercharging capability of the supercharger 30 is reduced by reducing the rotational speed of the intake compressor 31. If the intake compressor 31 is rotated at a high speed when the intake passage is in an environment where condensed water is likely to be generated, the condensed water in the EGR passage may be sucked out to the intake passage.
- the intake compressor 31 is rotated at a high speed when the intake passage is in an environment where condensed water is likely to be generated, the condensed water in the EGR passage may be sucked out to the intake passage.
- the target EGR rate is set lower than normal.
- the generation of condensed water can be suppressed by reducing the amount of EGR gas itself recirculated to the intake passage. Moreover, it can suppress that the exhaust sensor 18 and each other engine site
- the heater 19 is deenergized, and the estimated value based on the engine operating state is used as the actual EGR rate.
- the heater 19 is deenergized, and the estimated value based on the engine operating state is used as the actual EGR rate.
- EGR gas introduction can be continued by using the estimated value as the actual EGR rate.
- a configuration in which energization of the heater 19 is stopped is employed as a configuration that restricts the input power to the heater 19 when it is determined that the water is in a predetermined wet state.
- the configuration for limiting the heater input power is not limited to this, and the heater energization may be performed with a power smaller than that in a normal state in which it is determined that the predetermined flooded state is not achieved.
- the target EGR rate is set to a smaller value as the outside air temperature is a temperature at which condensed water is likely to be generated.
- a predetermined low temperature determination value Tm1 for example, 10 ° C.
- the target EGR rate is set to a smaller value as the outside air temperature is higher. If a large amount of EGR gas is introduced, water may be generated in each part of the engine 10 including the exhaust sensor 18 to cause damage or the like. However, with the above configuration, the influence of condensed water on each part of the engine including the exhaust sensor 18 can be reduced.
- the target EGR rate is set to a smaller value as the humidity of the outside air is higher.
- a predetermined high humidity determination value Hm1 for example, 70%
- the target EGR rate is constant regardless of the humidity, and the high humidity At the determination value Hm1 or higher
- the target EGR rate is set to a smaller value as the humidity is higher. Even in such a configuration, the influence of condensed water on each part of the engine can be reduced.
- the target EGR rate is set to a smaller value as the atmospheric pressure is lower.
- a predetermined low pressure determination value Pm1 for example, 85 kPa
- the target EGR rate is constant regardless of the atmospheric pressure, and the low pressure determination is performed.
- Pm1 for example 85 kPa
- the target EGR rate is set to a smaller value as the atmospheric pressure is lower. Even in such a configuration, the influence of condensed water on each part of the engine can be reduced.
- the normal time map and the wet time map are stored in advance as the target EGR rate setting map, and when it is determined that the water is in a predetermined wet state, the target EGR is used using the wet time map.
- the rate is set.
- only the normal time map is stored as the target EGR rate setting map, and when it is determined that it is in a predetermined wet state, the value set using the normal time map is corrected. It is good also as a structure which sets a target EGR rate. At this time, when it is determined that the water is in a predetermined wet state, it is desirable that the target EGR rate in the same engine operation state is set lower than in the normal state.
- the two conditions (1) and (2) are set as the environment determination conditions, but only one of them may be set as the environment determination condition.
- step S100 of FIG. 2 it is determined whether the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 are normal. However, it is determined whether the sensors other than the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 are normal. Further consideration may be given. For example, the air flow meter 12, the exhaust sensor 18, and the intake air temperature sensor 43 may be determined to be normal, and the process of step S101 may be executed on condition that all the sensors are normal.
- step S101 the processing after step S101 is executed on condition that the humidity sensor 44, the outside air temperature sensor 45, and the atmospheric pressure sensor 46 are all normal.
- the water determination is performed using the detection value of the normal sensor, and the result of the water determination It is good also as a structure which implements energization restriction of heater 19 based on this.
- step S103 in FIG. 2 the cooling capacity of the intercooler 34 is decreased and / or the cooling capacity of the EGR cooler 38 is decreased, and cooling is performed according to at least one of the outside air temperature, humidity, and atmospheric pressure. It is good also as a structure which changes the degree of the fall of capability. Specifically, when the outside air temperature detected by the outside air temperature sensor 45 is a predetermined low temperature determination value Tm1 or less, the cooling capacity is reduced as the outside air temperature is low, and when the outside air temperature is above the predetermined high temperature determination value Tm2, the outside air temperature is higher. Reduce cooling capacity. Further, the higher the outside air humidity detected by the humidity sensor 44, the lower the cooling capacity. Further, the lower the atmospheric pressure detected by the atmospheric pressure sensor 46, the lower the cooling capacity.
- the rotational speed of the intake compressor 31 may be variable according to at least one of the outside air temperature, humidity, and atmospheric pressure. Specifically, when the outside air temperature detected by the outside air temperature sensor 45 is equal to or lower than a predetermined low temperature determination value Tm1, the rotational speed of the intake compressor 31 is decreased as the outside air temperature is lower. The higher the temperature, the lower the rotational speed of the intake compressor 31. The higher the outside air humidity detected by the humidity sensor 44 is, the lower the rotational speed of the intake compressor 31 is. The lower the atmospheric pressure detected by the atmospheric pressure sensor 46, the lower the rotational speed of the intake compressor 31.
- step S104 of FIG. 2 the rotational speed of the intake compressor 31 is lowered by changing the opening of the WGV 22 and the ABV 49 to the open side.
- the rotational speed of the intake compressor 31 may be lowered by changing the opening of only one of the WGV 22 and the ABV 49 to the open side.
- the exhaust sensor 18 is attached upstream of the intake compressor 31 in the intake pipe 11.
- the attachment position of the exhaust sensor 18 is not limited to this, and may be a position in the intake pipe 11 where the EGR gas concentration in the intake air can be detected.
- the exhaust sensor 18 may be attached to the downstream side of the intake compressor 31.
- the present disclosure is applied to an engine with a supercharger that employs an EGR device of an LPL method (low pressure loop method) has been described.
- the EGR pipe 36 is connected to connect the upstream side of the exhaust turbine 32 in the exhaust pipe 26 and the downstream side of the intake compressor 31 (for example, downstream of the intercooler 34) in the intake pipe 11.
- the present disclosure may be applied to an engine with a supercharger that employs an HPL (high-pressure loop) EGR device provided.
- the attachment position of the exhaust sensor 18 is not particularly limited as long as it is a position where EGR gas can be detected.
- the exhaust sensor 18 is disposed downstream of the connection portion between the intake pipe 11 and the EGR pipe 36 (for example, downstream of the intercooler 34).
- the intercooler 34 is water-cooled, but may be air-cooled. In that case, the cooling capacity of the intercooler 34 can be adjusted by operating a grill shutter that adjusts the amount of air sent to the intercooler 34.
- an A / F sensor is employed as the exhaust sensor 18.
- any sensor other than the A / F sensor may be used as long as it has a heater 19 for heating the sensor element and can detect a component contained in the exhaust gas.
- a CO2 sensor capable of detecting CO2 as an exhaust component. May be adopted.
- the present invention is not limited to an engine equipped with a turbocharger, and a mechanically driven supercharger or an electric supercharger It may be applied to an engine equipped with. Further, the present invention is not limited to an engine with a supercharger, and may be applied to a naturally aspirated engine (NA engine) not equipped with a supercharger.
- NA engine naturally aspirated engine
- This disclosure can be applied not only to gasoline engines but also to diesel engines. It can also be applied to engines other than those for vehicles.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Supercharger (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
エンジン制御システムは、エンジン(10)と、EGR配管(36)を介してエンジン(10)の排気の一部を吸気通路に還流させるEGR装置(35)とを備えている。また、吸気通路には、センサ素子を加熱するヒータ(19)を有し排気成分を検出する排気センサ(18)が設けられている。ECU(50)のマイクロコンピュータ(51)は、吸気通路内での凝縮水の発生が予測される所定の被水状態であるか否かを判定し、所定の被水状態であると判定された場合にヒータ(19)に投入する電力を制限する。
Description
本開示は、2014年3月17日に出願された日本出願番号2014-53961号に基づくもので、ここにその記載内容を援用する。
本開示は、EGR配管を介して排気の一部を吸気通路に還流させる外部EGR装置を備える内燃機関の制御装置に関する。
燃費の改善や排気エミッションの低減等を行うために、排気の一部をEGRガスとして吸気通路に還流させる外部EGR装置を搭載した内燃機関が知られている。特許文献1に記載された外部EGR装置では、内燃機関の吸気通路に固体電解質酸素ポンプ式の酸素濃度センサを配置し、この酸素濃度センサの出力に基づいて、吸気通路に還流させるEGRガス量を制御している。
酸素濃度センサは、加熱されることで活性状態になり、酸素濃度を高い精度で検出可能になる。このため、酸素濃度センサには一般に電気式ヒータが付設されており、ヒータの発熱によりセンサ素子が活性状態にされる。この活性状態が保持されるようにヒータの通電制御が実施される。
EGRガスは燃焼によって生じた水を含んでいる。吸気通路にEGRガスを導入した場合には、EGRガスが比較的低温の吸気と混合されることで、吸気通路内で凝縮水が発生しやすい。吸気系内の環境は運転環境の変化の影響を受けて変化しやすく、吸気通路内温度が露点温度を下回った場合には吸気通路内に凝縮水が発生する。そのため、酸素濃度センサ(排気センサ)を吸気系に配置したEGRシステムでは、ヒータがセンサ素子を加熱した際に、吸気通路内の水が原因でセンサ素子の割れが発生しやすくなることが懸念される。
本開示は、酸素濃度センサ(排気センサ)の被水割れを防止しつつ、EGRガスの導入を継続することができる内燃機関の制御装置を提供することを目的とする。
本開示の一態様によれば、排気センサ素子を加熱するヒータを有し且つ排気成分を検出する排気センサが吸気通路に設けられている。内燃機関の制御装置は、前記吸気通路内での凝縮水の発生が予測される所定の被水状態であるか否かを判定する被水判定装置と、前記被水判定装置により前記所定の被水状態であると判定された場合に前記ヒータに投入する電力を制限する通電制限装置と、を備える。
外部EGR装置を備える内燃機関では、吸気通路に排気センサを配置して実EGR率を直接検出することで、精密なEGR制御を実現することが可能である。一方、排気には燃料の燃焼により生じた水が多く含まれているため、排気の一部をEGRガスとして還流するシステムでは、EGRガスが吸気と混合されることで吸気通路内において凝縮水が発生しやすくなる。また、吸気通路内での凝縮水の発生しやすさは、外気の温度や湿度に応じて変化し、外気温度が所定範囲から外れるほど凝縮水が発生しやすくなる。また、外気の湿度が高いほど、又は大気圧が低いほど、凝縮水が発生しやすくなる。そのため、排気センサが吸気系に搭載されているシステムでは、吸気通路内で生じる凝縮水が原因で排気センサの素子割れが発生する可能性が高い。燃費改善の観点からは、EGRガスの導入はできるだけ継続して実施することが望ましい。
本開示の制御装置は、吸気通路内での凝縮水の発生が予測される所定の被水状態であるか否かを判定し、凝縮水の発生が予測される場合には、排気センサのヒータの通電を制限する。これにより、被水による排気センサの素子割れを未然に防止しつつEGR導入を継続して実施することができる。
以下、一実施形態を図面に基づいて説明する。本実施形態は、車両に搭載される多気筒4サイクルガソリンエンジン(内燃機関)を制御対象とし、このエンジンにおける各種アクチュエータの電子制御を実施する。図1によりエンジン制御システムの全体概略構成を説明する。
図1に示すエンジン10において、吸気管11の上流部には吸入空気量を検出するためのエアフロメータ12が設けられている。エアフロメータ12の下流側には、DCモータ等のスロットルアクチュエータ13によって開度調節されるスロットル弁14が設けられている。スロットル弁14の開度(スロットル位置)は、スロットルアクチュエータ13に内蔵されたスロットル位置センサ15により検出される。スロットル弁14の下流側にはサージタンク16が設けられ、サージタンク16には、各気筒の吸気ポートに通じる吸気マニホールド17が取り付けられている。
エンジン10の吸気ポート及び排気ポートには、それぞれ吸気弁及び排気弁(図示略)が設けられている。また、エンジン10には気筒ごとに燃料噴射弁23と点火プラグ24とが設けられている。
エンジン10の排気ポートには排気マニホールド25が接続され、その排気マニホールド25の集合部に排気管26が接続されている。排気管26には、排気中のCO、HC、NOxの三成分を浄化する三元触媒28設けられている。三元触媒28の上流側には、排気を検出対象として混合気の空燃比を検出する空燃比センサ29が設けられている。空燃比センサ29は、空燃比に比例した出力特性を有する。
吸気管11と排気管26との間には、ターボチャージャ30が設けられている。ターボチャージャ30は、吸気管11においてスロットル弁14の上流側に配置された吸気コンプレッサ31と、排気管26において触媒28の上流側に配置された排気タービン32と、吸気コンプレッサ31及び排気タービン32を連結する回転軸33とを備えている。排気管26を流れる排気によって排気タービン32が回転されると、排気タービン32の回転に伴い吸気コンプレッサ31が回転する。吸気コンプレッサ31の回転により吸気が過給される。
吸気管11には、スロットル弁14の下流側に、過給された吸気を冷却するインタークーラ34が設けられている。このインタークーラ34により吸気が冷却されることで、空気の充填効率の低下が抑制される。インタークーラ34は、エンジン10の冷却水経路とは別の冷却水経路(I/C冷却水経路)に配置されている。インタークーラ34では、I/C冷却水経路を冷却水が循環することで吸気が冷却される。インタークーラ34の冷却能力は冷却水の流量に応じて調整される。本実施形態では、I/C冷却水経路に配置されたウォーターポンプ(図示略)の駆動制御によってインタークーラ34の冷却水流量を調整される。本実施形態では、サージタンク16と一体にインタークーラ34が設けられているが、サージタンク16の上流側又はスロットル弁14の上流側に、サージタンク16とは別にインタークーラ34が設けられていてもよい。
排気タービン32の上流側と下流側とは排気バイパス通路21によって連通されている。排気バイパス通路21に、排気バイパス通路21を開閉するウエイストゲートバルブ(WGV)22が設けられている。このWGV22の開度に応じて排気管26を流れる排気量が増減され、排気タービン32の回転速度及び吸気コンプレッサ31の回転速度が調整される。また、吸気コンプレッサ31の上流側と下流側とは吸気バイパス通路48によって連通されている。吸気バイパス通路48に、吸気バイパス通路48を開閉するエアバイパスバルブ(ABV)49が設けられている。このABV49が開弁されることによって、ターボチャージャ30とスロットル弁14との間の余剰圧力を開放できるようになっている。
エンジン10には、排気の一部をEGRガスとして吸気通路内に導入する外部EGR装置35が設けられている。このEGR装置35は、吸気管11と排気管26とを接続するEGR配管36と、EGR配管36を流れるEGRガス量を調節する電磁駆動式のEGR弁37と、EGRガスを冷却するEGRクーラ38とを備えている。EGRクーラ38は、水冷式の排気冷却装置であり、エンジン10の冷却水経路39に配置されている。EGRクーラ38では、冷却水経路39を冷却水が循環することでEGRガスが冷却される。EGRクーラ38の冷却能力は冷却水の流量に応じて調整される。本実施形態では、冷却水経路39に配置された流量制御弁40の開度を調整することによってEGRクーラ38を流れる冷却水の流量を調整する。
EGR配管36は、排気管26において排気タービン32の下流側(触媒28の下流側)と、吸気管11において吸気コンプレッサ31の上流側とを接続するように設けられている。これにより、いわゆるLPL方式(低圧ループ方式)のEGRシステムを構築するものとなっている。
吸気通路には、吸気中の排気成分を検出する排気センサ18が配置されている。本実施形態では、吸気管11のうちEGR配管36との接続部分よりも下流側であって吸気コンプレッサ31よりも上流側に排気センサ18が取り付けられている。
排気センサ18は、排気成分として酸素濃度を検出するA/Fセンサである。詳しくは、排気センサ18は、センサ素子への電圧印加により発生する電流値が気体中の酸素濃度及び未燃焼ガス濃度により変化するA/Fセンサである。このセンサは、ジルコニア(ZrO2)等の固体電解質からなるセンサ素子と、センサ素子を加熱するヒータ19との積層体により構成されている。ヒータ19は、図示しないバッテリ電源からの給電により発熱する。発熱することによりセンサ素子全体を加熱する。この加熱によりセンサ素子を活性化し、センサ素子を活性化状態に保持する。なお、排気センサ18としては、空燃比センサ29に採用されるA/Fセンサと同様のものが用いられる。
本システムには、エンジン10の所定クランク角ごとにクランク角信号を出力するクランク角センサ41、エンジン10の冷却水温度を検出する水温センサ42、吸気の温度を検出する吸気温センサ43、外気の湿度を検出する湿度センサ44、外気温を検出する外気温センサ45、大気圧を検出する大気圧センサ46が設けられている。なお、湿度センサ44、外気温センサ45及び大気圧センサ46が、外気環境パラメータを検出する環境検出装置に相当する。
ECU50は、CPU、ROM、RAM等よりなるマイクロコンピュータ51を主体として構成され、ROMに記憶された各種の制御プログラムを実行することでエンジン10の各種制御を実施する。具体的には、マイクロコンピュータ51は、前述した各種センサから検出信号を入力し、その入力した検出信号に基づいて、スロットル弁14や燃料噴射弁23、点火プラグ24、EGR弁37、WGV22、ABV49、流量制御弁40等の駆動を制御する。また、ワイパースイッチ55や、デフォッガスイッチ56、ガラスヒータスイッチ57等から駆動信号を入力し、その入力した駆動信号に基づいて、ワイパーやガラスヒータ、デフォッガの駆動を制御する。
ECU50は、エンジン運転状態(例えばエンジン回転速度や負荷等)に基づいて、目標EGR率を設定し、この目標EGR率を実現するようにEGR弁37の開度を制御する。特に本実施形態では、排気センサ18により実EGR率を直接検出しており、排気センサ18の検出結果に基づき演算した実EGR率が目標EGR率になるようにEGR弁37の駆動デューティ比を算出してEGR弁37を駆動する。本システムでは、実EGR率を直接検知することにより外部EGRを精密に制御している。なお、EGRガスの導入は、アイドル運転領域及び高負荷運転領域を除く所定のEGR適用運転領域で実施される。
排気センサ18によりEGRガス量を正確に検出するには排気センサ18を所定の活性状態に保持する必要がある。マイクロコンピュータ51は、排気センサ18の素子温度に基づいてヒータ19の通電制御を実施している。具体的には、素子温度が所定の目標温度(例えば750℃)となるようにヒータ通電制御を行う。このとき、素子温度に相関するパラメータとして素子インピーダンスを検出し、その素子インピーダンス検出値と目標値との偏差に基づいて算出した制御デューティ比によりヒータ通電量を制御する。
排気には燃料の燃焼により生じた水が多く含まれているため、外部EGR装置35によって排気を還流させる場合、吸気通路においてEGRガスとしての排気が吸気と混合されることで凝縮水が発生しやすくなる。また、吸気通路では、外気の温度や、外気の湿度、大気圧といった外気環境パラメータの変化によって吸気通路内の環境が変化しやすく、これにより凝縮水の発生のしやすさが相違する。具体的には、外気温度が所定範囲から外れるほど凝縮水が発生しやすい。また、湿度が高いほど凝縮水が発生しやすく、大気圧が低いほど凝縮水が発生しやすくなる。そのため、排気センサ18を吸気系に備えるEGRシステムにおいては、吸気通路内で生じる凝縮水が原因で排気センサ18の素子割れが発生する可能性が高い。燃費改善や排気エミッション改善の観点からすると、EGRガスの導入はできるだけ継続して実施することが望ましい。
本実施形態では、エンジン10の吸気通路内での凝縮水の発生が予測される所定の被水状態であるか否かを判定し、凝縮水の発生が予測される場合には、排気センサ18のヒータ19の通電を制限することとしている。
図2は、本実施形態のEGR制御の処理手順を示すフローチャートである。この処理はマイクロコンピュータ51により所定周期毎に実行される。
図2において、ステップS100では、湿度センサ44、外気温センサ45及び大気圧センサ46に異常が生じているか否かを判定する。湿度センサ44、外気温センサ45及び大気圧センサ46が全て正常であればステップS101へ進む。なお、湿度センサ44、外気温センサ45及び大気圧センサ46の異常診断処理は図示しない別ルーチンで実行される。
ステップS101では、吸気通路内での凝縮水の発生が予測される所定の被水状態であるか否かを判定する(被水判定)。本実施形態では、外気環境を判定するための条件(環境判定条件)に基づき所定の被水状態であるか否かを判定する。環境判定条件としては、
条件(1):外気環境パラメータが所定の被水状態を示す値であること
条件(2):高湿度環境に対する運転者の動作があったこと
を含む。これら条件(1)及び条件(2)の少なくともいずれかの条件が成立した場合に所定の被水状態であると判定する。
条件(1):外気環境パラメータが所定の被水状態を示す値であること
条件(2):高湿度環境に対する運転者の動作があったこと
を含む。これら条件(1)及び条件(2)の少なくともいずれかの条件が成立した場合に所定の被水状態であると判定する。
ここで、条件(1)は、外気温センサ45、湿度センサ44及び大気圧センサ46の各センサ値に基づき判定する。具体的には、
条件(a):外気温センサ45により検出される外気温が所定の低温判定値(例えば10℃)以下であるか又は所定の高温判定値(例えば30℃)以上であること、
条件(b):湿度センサ44により検出される外気の湿度が所定の高湿度判定値(例えば70%)以上であること、及び
条件(c):大気圧センサ46により検出される大気圧が所定の低圧判定値(例えば85kPa)以下であること、
の少なくともいずれかの条件を満たす場合に、外気環境パラメータが所定の被水状態を示す値であるものと判定する。
条件(a):外気温センサ45により検出される外気温が所定の低温判定値(例えば10℃)以下であるか又は所定の高温判定値(例えば30℃)以上であること、
条件(b):湿度センサ44により検出される外気の湿度が所定の高湿度判定値(例えば70%)以上であること、及び
条件(c):大気圧センサ46により検出される大気圧が所定の低圧判定値(例えば85kPa)以下であること、
の少なくともいずれかの条件を満たす場合に、外気環境パラメータが所定の被水状態を示す値であるものと判定する。
また、条件(2)は、ワイパースイッチ55、デフォッガスイッチ56及びガラスヒータスイッチ57の少なくともいずれかがオンされた場合に、高湿度環境に対する運転者の動作があったものと判定する。
ステップS101で吸気通路内での凝縮水発生の可能性なしと判定された場合には、ステップS107へ進み、図示しない別ルーチンにより通常時EGR制御を実施する。この通常時EGR制御では、排気センサ18の検出値を用いて実EGR率を算出するとともに、その算出したセンサ検出値を用いて、吸気通路に還流するEGRガス量を調整する。このとき、排気センサ18については、素子温度に基づくヒータ通電制御により活性状態が保持されるようにする。なお、吸気通路に配置された排気センサ18はエンジン10の吸気によって冷やされる環境下にあるため、通常時EGR制御を実施する場合には、基本的にはヒータ19は常時通電オンの状態とされる。
ステップS101で吸気通路内での凝縮水発生の可能性ありと判定された場合には、ステップS102へ進み、ヒータ19の通電を停止する(通電制限)。ステップS103では、インタークーラ34及びEGRクーラ38の冷却能力を低下させる。具体的には、ウォーターポンプの駆動を停止することによってインタークーラ34における冷却水の循環を停止させるとともに、流量制御弁40を閉駆動することによってEGRクーラ38におけるエンジン冷却水の循環を停止させる。これにより、吸気及びEGRガスの過冷却による凝縮水の発生を抑制する。なお、ウォーターポンプの駆動を停止する構成に代えて、ウォーターポンプは駆動した状態としつつ冷却水流量を少なくする構成としてもよい。また、流量制御弁40は全閉にしなくてもよく、微少開度とすることによって冷却水流量を少なくする構成としてもよい。
ステップS104では、吸気コンプレッサ31の回転速度を低減する。ここでは、WGV22の開度を開き側に変更するとともに、ABV49の開度を開き側に変更する。吸気コンプレッサ31が高回転であると、EGR配管36の内部に存在する凝縮水が吸気通路内に吸い出されやすくなり、吸気通路に水が入り込むおそれがある。本実施形態では、所定の被水状態であると判定された場合には、吸気コンプレッサ31の回転速度を落とし、EGR通路からの凝縮水の吸出しを抑制するようにしている。これにより、被水に起因する吸気コンプレッサ31の破損や劣化を抑制することも可能になる。
ステップS105では、目標EGR率を設定する(目標値設定)。本実施形態では、エンジン運転状態と目標EGR率との関係を規定した目標EGR率設定マップが予めROMに記憶されており、この設定マップを用いて目標EGR率を設定する。目標EGR率設定マップとしては、通常時EGR制御で使用する通常時マップと、被水状態でのEGR制御で使用する被水時マップとが設定されている。ステップS105では、被水時マップを用いて、今現在のエンジン運転状態に対応する目標EGR率を設定する。この被水時マップによれば、通常時マップを用いた場合に比べて、同一のエンジン運転状態における目標EGR率が低く設定されるようになっている。
ステップS106では、設定した目標EGR率を実現するようにEGR弁37の開度を制御する。被水状態であると判定されている場合、実EGR率は排気センサ18による検出値を用いずに、エンジン運転状態に基づく推定値とする。実EGR率の推定値は、例えばEGR弁37の開度とエアフロメータ12の検出値とスロットル開度とに基づいて算出する。なお、本実施形態では、ステップS101で被水状態でないと判断され、ステップS107へ進んだ場合には、被水状態でないと判定された時点から所定時間Tdが経過した後にヒータ通電を再開する。
ここで、湿度センサ44、外気温センサ45及び大気圧センサ46の少なくともいずれかに異常が生じている場合には、被水判定における条件(1)について正確に判定することができない。そこで本実施形態では、湿度センサ44、外気温センサ45及び大気圧センサ46の少なくともいずれかに異常がある場合には、ヒータ19に投入する電力を制限している。具体的には、ステップS100で湿度センサ44、外気温センサ45及び大気圧センサ46のうちの1つでも異常があると判定された場合には、ステップS100で肯定判定されて、ステップS102以降の処理を実行する。これにより、湿度センサ44、外気温センサ45及び大気圧センサ46の少なくともいずれかのセンサ異常時にはヒータ19の通電が停止される。
図3は、吸気通路内での凝縮水の発生が予測される場合の制御の具体的態様を示すタイムチャートである。図中、(a)は被水判定の結果の推移、(b)はヒータ通電/通電停止の推移、(c)はウォーターポンプの駆動/駆動停止の推移、(d)はEGRクーラ38の流量制御弁40の開弁/閉弁の推移、(e)はABV49の開弁/閉弁の推移、(f)はWGV22の開度の推移をそれぞれ示す。なお、図3では、EGR適用運転領域でエンジン10の運転が行われている場合を想定している。
図3において、時刻t11で被水判定条件(1)及び(2)の少なくともいずれかが成立すると、ヒータ19の通電が停止される。また、時刻t11では、ウォーターポンプの駆動が停止されるとともに、流量制御弁40が閉弁状態にされる。また、ABV49及びWGV22の開度が開き側にそれぞれ変更される。これにより、インタークーラ34及びEGRクーラ38の冷却能力が低下されるとともに、吸気コンプレッサ31の回転速度が低減される。こうした制御により、吸気通路内での凝縮水の発生及び吸気通路内への凝縮水の流入が抑制され、排気センサ18の被水が抑制される。
その後、条件(1)及び(2)が不成立になると、その時刻t12から所定時間Tdが経過した時刻t13でヒータ19の通電が再開される。また、ウォーターポンプ、流量制御弁40、ABV49及びWGV22については通常時の駆動制御に移行される。なお、吸気通路内での凝縮水発生が予測される期間t11~t12では、インタークーラ34及びEGRクーラ38の冷却能力が低下されており、また吸気コンプレッサ31の回転速度が低減されている。これにより、ヒータ19の通電を再開するときには吸気通路内に水が存在せず、排気センサ18の被水の懸念が取り除かれる。
以上詳述した本実施形態によれば、次の優れた効果が得られる。
吸気通路内での凝縮水の発生が予測される所定の被水状態であるか否かを判定し、凝縮水の発生が予測される所定の被水状態であると判定された場合には、排気センサ18のヒータ19に投入する電力を制限する構成とした。こうした構成によれば、被水による排気センサ18の素子割れを未然に防止しつつEGR導入を継続して実施することができる。
また、吸気系の排気センサ18は外気環境の影響を常時受けることから、被水対策はエンジン10の冷間始動時だけでなく運転中にも講じる必要がある。特にEGRガスの導入を実施している期間では、吸気系の排気センサ18が被水しやすくなる。上記構成では、EGRガスの導入中を含む期間においてヒータ19への投入電力の制限を実施することから、排気センサ18の被水を好適に抑制することができる。
吸気通路での凝縮水の発生のしやすさは、外気の温度や湿度、大気圧といった外気環境パラメータの変化によっても相違する。外気温度が所定範囲から外れるほど凝縮水が発生しやすく、湿度が高いほど凝縮水が発生しやすく、又は大気圧が低いほど凝縮水が発生しやすくなる。本実施形態では、外気環境パラメータに基づいて所定の被水状態であるか否かを判定する構成としたことから、外気環境の変化にも適切に対応した被水判定を行うことができる。
湿度センサ44、外気温センサ45及び大気圧センサ46の少なくともいずれかに異常が生じている場合には、判定条件(1)を正確に判定できない。湿度センサ44、外気温センサ45及び大気圧センサ46の少なくともいずれかが異常であり、センサの検出性能を保証できない場合には、ヒータ19への投入電力を制限する。この構成によれば、被水の可能性を正確に特定できない状態でのヒータ通電が制限されることから、被水によるセンサ素子割れをより確実に回避するようにすることができる。
外気の温度や湿度、大気圧のセンサ検出結果だけでなく、高湿度環境に対する運転者の動作に基づいて、より具体的には、ワイパースイッチ55、デフォッガスイッチ56及びガラスヒータスイッチ57の少なくともいずれかがオンされたか否かによって、所定の被水状態であるか否かを判定する構成とした。外気環境が高湿度環境であるか否かは運転者の動作としても現れることから、こうした構成によっても外気環境の状態を把握することができ、好適な被水対策を講じることができる。
吸気通路内での凝縮水の発生が予測される状況下では、ヒータ19の通電制限を行うと共に、インタークーラ34及びEGRクーラ38の冷却能力を低下させる構成とした。こうした構成によれば、EGRガスを導入しても凝縮水発生を抑制できることから、EGRガスの導入を継続して行うことができる。また、吸気通路内が凝縮水の発生しやすい環境である場合にも、吸気通路内に水が極力存在しないようにできるため、次回のヒータ19の通電時においてセンサの素子割れを回避できるとともに、エンジン各部位の被水による影響を抑えることができる。
また、吸気通路内での凝縮水の発生が予測される状況下では、吸気コンプレッサ31の回転速度を低減することによって過給機30の過給能力を低下させる構成とした。吸気通路内が凝縮水の発生しやすい環境であるときに吸気コンプレッサ31を高速回転させると、EGR通路内の凝縮水が吸気通路側に吸い出されるおそれがある。しかし、上記構成とすることにより、排気センサ18及びその他エンジン各部位の被水を極力抑制することができる。
吸気通路内での凝縮水の発生が予測される状況では目標EGR率を通常時よりも低く設定する構成とした。この場合、吸気通路に還流させるEGRガス量自体を減らすことで凝縮水の発生を抑制できる。またこれにより、排気センサ18及びその他のエンジン各部位が被水することを抑制することができる。
特に本実施形態では、吸気通路内での凝縮水の発生が予測される状況ではヒータ19の通電を停止し、実EGR率としてエンジン運転状態に基づく推定値を用いる構成とした。ヒータ通電停止とすることにより、排気センサ18の素子割れをより確実に抑制することが可能となり、センサ保護の観点から好適である。また、実EGR率として推定値を用いることでEGRガス導入を継続して実施することができる。
LPL方式のEGRシステムでは、吸気管11の上流部にEGRガスが導入されるため、EGRガスが外気の変化の影響をより受けやすく、凝縮水が発生しやすい。したがって、本実施形態のようにLPL方式のEGRシステムに本開示を適用することにより、被水による悪影響を抑制できる。
(他の実施形態)
本開示は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
本開示は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
上記実施形態では、所定の被水状態であると判定された場合にヒータ19への投入電力を制限する構成として、ヒータ19の通電を停止する構成を採用した。ヒータ投入電力を制限する構成はこれに限定されず、所定の被水状態でないと判定されている通常時よりも小さい電力でヒータ通電を行う構成としてもよい。
所定の被水状態であると判定された場合の目標EGR率を外気温度に応じて変更する構成としてもよい。このとき、外気温度が、凝縮水が発生しやすい温度であるほど目標EGR率を小さい値に設定する。具体的には、図4に示すように、外気温センサ45により検出される外気温が所定の低温判定値Tm1(例えば10℃)以下では、外気温が低いほど目標EGR率を小さい値に設定する。また、外気温センサ45により検出される外気温が所定の高温判定値Tm2(例えば30℃)以上では、外気温が高いほど目標EGR率を小さい値に設定する。EGRガスを多く入れると、排気センサ18を含むエンジン10の各部位で被水が生じ、破損等を招くことが懸念される。しかし、上記構成とすることにより、排気センサ18を含むエンジン各部位に対する凝縮水の影響を低減することができる。
所定の被水状態であると判定された場合の目標EGR率を外気の湿度に応じて変更する構成としてもよい。このとき、外気の湿度が高いほど目標EGR率を小さい値に設定する。具体的には、図5に示すように、湿度センサ44により検出される外気の湿度が所定の高湿度判定値Hm1(例えば70%)未満では湿度にかかわらず目標EGR率を一定とし、高湿度判定値Hm1以上では、湿度が高いほど目標EGR率を小さい値に設定する。こうした構成とした場合にも、エンジン各部位に対する凝縮水の影響を低減することができる。
所定の被水状態であると判定された場合の目標EGR率を大気圧に応じて変更する構成としてもよい。このとき、大気圧が低いほど目標EGR率を小さい値に設定する。具体的には、図6に示すように、大気圧センサにより検出される大気圧が所定の低圧判定値Pm1(例えば85kPa)より高圧側では大気圧にかかわらず目標EGR率を一定とし、低圧判定値Pm1以下では、大気圧が低いほど目標EGR率を小さい値に設定する。こうした構成とした場合にも、エンジン各部位に対する凝縮水の影響を低減することができる。外気の温度、湿度及び大気圧のうちの2つ以上に基づいて、所定の被水状態であると判定された場合の目標EGR率を変更する構成としてもよい。
上記実施形態では、目標EGR率設定マップとして通常時マップと被水時マップとを予め記憶しておき、所定の被水状態であると判定された場合には被水時マップを用いて目標EGR率を設定する構成とした。これを変更し、目標EGR率設定マップとして通常時マップのみを記憶しておき、所定の被水状態であると判定された場合には、通常時マップを用いて設定した値を補正することにより目標EGR率を設定する構成としてもよい。このとき、所定の被水状態であると判定されている場合には、通常時よりも、同一のエンジン運転状態における目標EGR率が低く設定されるようにすることが望ましい。
上記実施形態では、環境判定条件として(1)及び(2)の2つの条件が設定されていたが、いずれか一つのみが環境判定条件として設定されていてもよい。
図2のステップS100では、湿度センサ44、外気温センサ45及び大気圧センサ46が正常か否かを判定したが、湿度センサ44、外気温センサ45及び大気圧センサ46以外のセンサが正常か否かについて更に考慮してもよい。例えば、エアフロメータ12、排気センサ18及び吸気温センサ43についても正常か否かを判定し、全てのセンサが正常であることを条件にステップS101の処理を実行する構成としてもよい。
上記実施形態では、湿度センサ44、外気温センサ45及び大気圧センサ46が全て正常であることを条件にステップS101以降の処理を実行した。湿度センサ44、外気温センサ45及び大気圧センサ46のうち1つでも正常なセンサがある場合には、その正常なセンサの検出値を用いた被水判定を実施するとともに、被水判定の結果に基づいてヒータ19の通電制限を実施する構成としてもよい。
図2のステップS103でインタークーラ34の冷却能力を低下させる場合、及びEGRクーラ38の冷却能力を低下させる場合の少なくともいずれかにおいて、外気温度、湿度及び大気圧の少なくともいずれかに応じて、冷却能力の低下の度合いを変更する構成としてもよい。具体的には、外気温センサ45により検出される外気温が所定の低温判定値Tm1以下では、外気温が低いほど冷却能力を低下させ、所定の高温判定値Tm2以上では、外気温が高いほど冷却能力を低下させる。また、湿度センサ44により検出される外気の湿度が高いほど冷却能力を低下させる。また、大気圧センサ46により検出される大気圧が低いほど冷却能力を低下させる。
図2のステップS104で吸気コンプレッサ31の回転速度を低減させる場合、外気温度、湿度及び大気圧の少なくともいずれかに応じて、吸気コンプレッサ31の回転速度を可変にする構成としてもよい。具体的には、外気温センサ45により検出される外気温が所定の低温判定値Tm1以下では、外気温が低いほど吸気コンプレッサ31の回転速度を低くし、所定の高温判定値Tm2以上では、外気温が高いほど吸気コンプレッサ31の回転速度を低くする。湿度センサ44により検出される外気の湿度が高いほど、吸気コンプレッサ31の回転速度を低くする。大気圧センサ46により検出される大気圧が低いほど、吸気コンプレッサ31の回転速度を低くする。
上記実施形態では、所定の被水状態であると判定されてヒータ19の通電制限を行った後に所定の被水状態が解消した場合には、所定時間Tdが経過した後にヒータ通電を再開する構成とした。しかし、所定の被水状態が解消したタイミングでヒータ通電を再開する構成としてもよい。
図2のステップS104では、WGV22及びABV49の開度を開き側に変更することによって吸気コンプレッサ31の回転速度を低くする構成とした。しかし、WGV22及びABV49のいずれかのみの開度を開き側に変更することによって吸気コンプレッサ31の回転速度を低くする構成としてもよい。
上記実施形態では、吸気管11において吸気コンプレッサ31の上流側に排気センサ18を取り付けた。排気センサ18の取り付け位置はこれに限定されず、吸気管11のうち吸気中のEGRガス濃度を検出可能な位置であればよい。例えば、吸気コンプレッサ31の下流側に排気センサ18を取り付けてもよい。
上記実施形態では、LPL方式(低圧ループ方式)のEGR装置を採用した過給機付きエンジンに本開示を適用する場合について説明した。しかし、図7に示すように、排気管26において排気タービン32の上流側と、吸気管11において吸気コンプレッサ31の下流側(例えばインタークーラ34の下流側)とを接続するようにEGR配管36が設けられたHPL方式(高圧ループ方式)のEGR装置を採用した過給機付きエンジンに本開示を適用してもよい。この場合の排気センサ18の取り付け位置はEGRガスを検知可能な位置であれば特に限定しない。例えば図7に示すように、吸気管11とEGR配管36との接続部分よりも下流側(例えばインタークーラ34の下流側)に排気センサ18を配置する。
上記実施形態では、インタークーラ34を水冷式としたが空冷式としてもよい。その場合、インタークーラ34の冷却能力は、インタークーラ34に送る風量を調整するグリルシャッターを作動させることにより調整することが可能である。
上記実施形態では、排気センサ18としてA/Fセンサを採用した。しかし、センサ素子を加熱するヒータ19を有し、かつ排気中に含まれる成分を検出可能なセンサであればA/Fセンサ以外であってもよく、例えば排気成分としてCO2を検出可能なCO2センサを採用してもよい。
上記実施形態では、ターボチャージャを搭載したエンジンに適用する場合について説明したが、ターボチャージャを搭載したエンジンに限定せず、機械駆動式の過給機(スーパーチャージャ)や、電動式の過給機を搭載したエンジンに適用してもよい。また、過給機付きのエンジンに限定せず、過給機を搭載していない自然吸気エンジン(NAエンジン)に適用してもよい。
本開示は、ガソリンエンジンだけでなくディーゼルエンジンにも適用できる。また、車両用以外のエンジンにも適用できる。
Claims (9)
- EGR配管(36)を介して内燃機関(10)の排気の一部を吸気通路(11)に還流させるEGR装置(35)と、前記吸気通路に設けられ排気成分を検出する排気センサ(18)と、排気センサのセンサ素子を加熱するヒータ(19)を備える内燃機関の制御装置であって、
前記吸気通路内での凝縮水の発生が予測される所定の被水状態であるか否かを判定する被水判定装置(50)と、
前記被水判定装置により前記所定の被水状態であると判定された場合に前記ヒータに投入する電力を制限する通電制限装置(50)と、
を備えることを特徴とする内燃機関の制御装置。 - 外気の温度、外気の湿度及び大気圧の少なくともいずれかである外気環境パラメータを検出する環境検出装置(44,45,46)を備え、
前記被水判定装置は、前記環境検出装置により検出した外気環境パラメータに基づいて、前記所定の被水状態であるか否かを判定する請求項1に記載の内燃機関の制御装置。 - 前記環境検出装置による前記外気環境パラメータの検出性能に異常があるか否かを判定する異常判定装置を備え、
前記通電制限装置は、前記異常判定装置により前記外気環境パラメータの検出性能に異常ありと判定された場合には、前記被水判定装置による判定結果に関わらず前記ヒータに投入する電力を制限する請求項2に記載の内燃機関の制御装置。 - 前記被水判定装置は、高湿度環境に対する運転者の動作に基づいて、前記所定の被水状態であるか否かを判定する請求項1~3のいずれか一項に記載の内燃機関の制御装置。
- 前記内燃機関の吸入空気を過給する過給機(30)と、前記過給機により過給された吸入空気を冷却する吸気冷却装置(34)とが前記内燃機関のガス通路(11,26)に設けられており、
前記被水判定装置により前記所定の被水状態であると判定された場合には、前記吸気冷却装置の冷却能力を低下させる請求項1~4のいずれか一項に記載の内燃機関の制御装置。 - 前記内燃機関の吸入空気を過給する過給機(30)が前記内燃機関のガス通路(11,26)に設けられており、
前記被水判定装置により前記所定の被水状態であると判定された場合には、前記過給機の過給能力を低下させる請求項1~5のいずれか一項に記載の内燃機関の制御装置。 - 前記内燃機関におけるEGR率の目標値である目標EGR率を設定する目標値設定装置を備え、
前記目標値設定装置は、前記被水判定装置により前記所定の被水状態であると判定された場合に、前記所定の被水状態であると判定されていない通常時よりも前記目標EGR率を低く設定する請求項1~6のいずれか一項に記載の内燃機関の制御装置。 - 前記通電制限装置は、前記被水判定装置により前記所定の被水状態であると判定された場合に前記ヒータの通電を停止する請求項1~7のいずれか一項に記載の内燃機関の制御装置。
- 前記吸気通路に還流する排気を冷却する排気冷却装置(38)が前記EGR配管に設けられており、
前記被水判定装置により凝縮水発生の可能性ありと判定された場合に、前記排気冷却装置の冷却能力を低下させる請求項1~8のいずれか一項に記載の内燃機関の制御装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-053961 | 2014-03-17 | ||
JP2014053961A JP6379548B2 (ja) | 2014-03-17 | 2014-03-17 | 内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141148A1 true WO2015141148A1 (ja) | 2015-09-24 |
Family
ID=54144139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000986 WO2015141148A1 (ja) | 2014-03-17 | 2015-02-26 | 内燃機関の制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6379548B2 (ja) |
WO (1) | WO2015141148A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015200172B4 (de) * | 2015-01-09 | 2020-03-12 | Ford Global Technologies, Llc | Vorrichtung und Verfahren zum Vermindern der Kondensatbildung vor dem Kompressor eines turbogeladenen Kraftfahrzeug-Verbrennungsmotors mit Niederdruck-Abgasrückführung |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6701786B2 (ja) * | 2016-02-17 | 2020-05-27 | 日産自動車株式会社 | 故障診断方法及び故障診断装置 |
JP6628754B2 (ja) | 2017-03-01 | 2020-01-15 | 株式会社デンソー | 流量測定システム |
JP7054716B2 (ja) * | 2020-03-18 | 2022-04-14 | 本田技研工業株式会社 | 内燃機関の過給圧制御装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003239811A (ja) * | 2002-01-18 | 2003-08-27 | Detroit Diesel Corp | 湿度に基いて排ガス再循環システムを制御する方法 |
US20030192516A1 (en) * | 2002-04-10 | 2003-10-16 | George Brunemann | Condensation protection AECD for an internal combustion engine employing cooled EGR |
JP2006220026A (ja) * | 2005-02-09 | 2006-08-24 | Denso Corp | 内燃機関の制御装置 |
JP2008014144A (ja) * | 2006-07-03 | 2008-01-24 | Toyota Motor Corp | 内燃機関のセンサ制御装置 |
JP2009228564A (ja) * | 2008-03-24 | 2009-10-08 | Toyota Motor Corp | 排気ガスセンサの制御装置 |
JP2013002368A (ja) * | 2011-06-16 | 2013-01-07 | Mitsubishi Motors Corp | エンジン |
JP2013044311A (ja) * | 2011-08-26 | 2013-03-04 | Mitsubishi Motors Corp | センサ配置構造 |
-
2014
- 2014-03-17 JP JP2014053961A patent/JP6379548B2/ja active Active
-
2015
- 2015-02-26 WO PCT/JP2015/000986 patent/WO2015141148A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003239811A (ja) * | 2002-01-18 | 2003-08-27 | Detroit Diesel Corp | 湿度に基いて排ガス再循環システムを制御する方法 |
US20030192516A1 (en) * | 2002-04-10 | 2003-10-16 | George Brunemann | Condensation protection AECD for an internal combustion engine employing cooled EGR |
JP2006220026A (ja) * | 2005-02-09 | 2006-08-24 | Denso Corp | 内燃機関の制御装置 |
JP2008014144A (ja) * | 2006-07-03 | 2008-01-24 | Toyota Motor Corp | 内燃機関のセンサ制御装置 |
JP2009228564A (ja) * | 2008-03-24 | 2009-10-08 | Toyota Motor Corp | 排気ガスセンサの制御装置 |
JP2013002368A (ja) * | 2011-06-16 | 2013-01-07 | Mitsubishi Motors Corp | エンジン |
JP2013044311A (ja) * | 2011-08-26 | 2013-03-04 | Mitsubishi Motors Corp | センサ配置構造 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015200172B4 (de) * | 2015-01-09 | 2020-03-12 | Ford Global Technologies, Llc | Vorrichtung und Verfahren zum Vermindern der Kondensatbildung vor dem Kompressor eines turbogeladenen Kraftfahrzeug-Verbrennungsmotors mit Niederdruck-Abgasrückführung |
Also Published As
Publication number | Publication date |
---|---|
JP2015175329A (ja) | 2015-10-05 |
JP6379548B2 (ja) | 2018-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108979840B (zh) | 内燃机的egr系统 | |
US9303574B2 (en) | Control device of engine with supercharger | |
US10174719B2 (en) | Control device for internal combustion engine | |
US7913674B2 (en) | Abnormality determination device and method for EGR device, and engine control unit | |
US20180334951A1 (en) | Control apparatus for internal combustion engine | |
US20170101968A1 (en) | Internal combustion engine | |
JP4251660B2 (ja) | 内燃機関の排気再循環制御装置 | |
JP2014047627A (ja) | 内燃機関のウェイストゲートバルブ制御装置 | |
JP6364843B2 (ja) | Egr制御装置 | |
US20160131017A1 (en) | Cooling control system for internal combustion engine | |
US20130319382A1 (en) | Exhaust gas recirculation apparatus of internal combustion engine | |
US20130133634A1 (en) | Controller for internal combustion engine | |
WO2015141148A1 (ja) | 内燃機関の制御装置 | |
JP2012149575A (ja) | 内燃機関の冷却装置 | |
US9677485B2 (en) | Exhaust gas recirculation apparatus for engine | |
KR101886095B1 (ko) | Egr 장치가 구비된 엔진 시스템 | |
JP6860313B2 (ja) | エンジンの制御方法、及び、エンジン | |
JP2010168958A (ja) | 内燃機関のegr制御装置 | |
US20110083423A1 (en) | Atmosphere learning device for oxygen concentration sensor | |
KR102006582B1 (ko) | 내연 기관의 제어 장치 및 내연 기관의 제어 방법 | |
JP4621537B2 (ja) | Egr装置の異常判定装置 | |
JP4169237B2 (ja) | 内燃機関の排気再循環制御装置 | |
JP6127906B2 (ja) | 内燃機関の制御装置 | |
JP2012158997A (ja) | 内燃機関の制御装置 | |
JP2008038641A (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764959 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15764959 Country of ref document: EP Kind code of ref document: A1 |