WO2015141068A1 - Touch panel - Google Patents
Touch panel Download PDFInfo
- Publication number
- WO2015141068A1 WO2015141068A1 PCT/JP2014/081539 JP2014081539W WO2015141068A1 WO 2015141068 A1 WO2015141068 A1 WO 2015141068A1 JP 2014081539 W JP2014081539 W JP 2014081539W WO 2015141068 A1 WO2015141068 A1 WO 2015141068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- conductive film
- high refractive
- touch panel
- metal conductive
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/208—Touch screens
Definitions
- the present invention relates to a touch panel in which the occurrence of burn-in is suppressed even when a constant menu screen display is maintained.
- a touch panel is an electronic component that combines a display device such as a liquid crystal panel or an organic EL panel and a position input device such as a touch pad, and has become widespread as an operation panel. Recently, the value has increased as a PC input device. Yes.
- Patent Document 1 proposes a new color filter material. Further, Patent Document 2 proposes improvement by a control system.
- Patent Documents 1 and 2 have not been sufficient to improve image sticking caused by the transparent resin substrate.
- the present invention has been made in view of such a situation, and the problem to be solved is to provide a touch panel in which the occurrence of burn-in is suppressed even when a certain menu display screen is held. .
- a touch panel having a menu screen display program, a transparent resin substrate, a transparent metal conductive film, and a backlight.
- the touch panel of the present invention includes a menu screen display program, a transparent resin substrate, a transparent metal conductive film, and a backlight.
- the touch panel 1 includes a display device 2 having a backlight and a position input device 3.
- the position input device 3 includes a transparent metal conductive film 5 and a transparent resin substrate 4 from the display device 2 side.
- the transparent metal conductive film 5 has plasmon absorption, a component having a lower wavelength than the visible light of the backlight provided in the display device 2 is absorbed, and the low wavelength component that affects the transparent resin substrate 4 is absorbed. It is thought that the occurrence of seizure could be suppressed.
- FIG. 2B shows an example having the first high refractive index layer 6 and the second high refractive index layer 7 that sandwich the transparent metal conductive film 5 and the base layer 8 in addition to the configuration shown in FIG. 2A. .
- first high-refractive index layer 6 and the second high-refractive index layer 7 By providing the first high-refractive index layer 6 and the second high-refractive index layer 7, light transmittance (optical admittance) can be adjusted.
- the program for displaying a menu screen according to the present invention refers to a program for displaying a specific menu screen as an initial screen on a stationary touch panel, such as a bank ATM device, and instructing to enter a holding standby state. Therefore, as long as it has such a function, it is not particularly necessary to be incorporated in the touch panel body, and it may be incorporated in a device attached to the touch panel and instructed to the touch panel. In the present invention, the same display is held for 30 seconds or longer.
- the position input device has a transparent resin substrate and a transparent metal conductive film.
- polyester resins such as polyethylene terephthalate and polynaphthalene terephthalate, polycarbonate resins (refractive index: 1.58 to 1.60), and triacetyl.
- Cellulose ester resins such as cellulose and acetylpropionyl cellulose (refractive index 1.45 to 1.50), cycloolefin resins (refractive index 1.51 to 1.54), acrylic resins such as polymethyl methacrylate (refractive index 1.49) To 1.57) and the like are usually used for touch panels.
- the transparent resin substrate preferably has high transparency to visible light, and the average light transmittance at a wavelength of 450 to 800 nm is preferably 70% or more, and more preferably 80% or more.
- the haze value of the transparent resin substrate is preferably in the range of 0.01 to 2.5, and more preferably in the range of 0.1 to 1.2.
- the film thickness can be appropriately selected depending on the intended use, but is preferably in the range of 10 to 200 ⁇ m.
- each member (layer) in the present invention can be measured with a wavelength 590 nm, VB-250 type VASE ellipsometer in an environment of 23 ° C. and 55% RH, and the refractive index n is , X, y, z-axis average.
- the x-axis is the direction with the highest refractive index in the plane.
- Transparent metal conductive film In a normal touch panel, ITO is used as a transparent conductive film, but in the present invention, baking is improved by using a transparent metal conductive film.
- the transparent metal conductive film according to the present invention may be formed on the entire surface of a transparent resin substrate, a high refractive index layer and an underlayer described later, or may be patterned into a desired shape.
- the material constituting the transparent metal conductive film can exert the effect of the present invention as long as it is a metal that causes plasmon absorption when formed into a film, but silver or copper (hereinafter referred to as silver or the like) from the viewpoint of conductivity. .) Is the main component.
- a main component means containing 50 at% or more with respect to the quantity of all the atoms which comprise a transparent metal electrically conductive film.
- the metal contained in the transparent conductive film together with silver, etc. is germanium, bismuth, platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, neodymium, titanium, aluminum, tungsten, manganese, iron Nickel, yttrium and magnesium. Germanium, bismuth, palladium, copper, gold and neodymium are preferred. One or more of these metals may be contained in the transparent metal conductive film according to the present invention.
- the amount of metal other than silver or the like contained in the transparent metal conductive film is preferably 0.01 at% or more and less than 50 at% with respect to the total amount of atoms constituting the transparent metal conductive film, more preferably 0.8. It is in the range of 1 to 30 at%, more preferably in the range of 0.2 to 10 at%.
- the silver alloy include an APC alloy (Ag—Pd—Cu alloy), an APC-TR alloy and the like (manufactured by Furuya Metal Co., Ltd.), an Ag—Bi—Ge—Au alloy and the like.
- the plasmon absorptance of the transparent metal conductive film is preferably in the range of 0.1 to 10%, more preferably in the range of 0.5 to 7%, over the entire wavelength band of 400 to 800 nm. More preferably, it is in the range of 1 to 5%.
- the plasmon absorptance of the transparent metal conductive film in the entire band having a wavelength of 400 to 800 nm is measured by the following procedure.
- the thickness of the transparent metal conductive film is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm.
- the film forming method of the transparent metal conductive film is not particularly limited, and examples thereof include general vapor phase film forming methods such as vacuum deposition, sputtering, ion plating, plasma CVD, thermal CVD, and ion assist. However, it is preferable to form a film by a vacuum deposition method, a sputtering method, or an ion assist method from the viewpoint of transparency.
- the type of sputtering method is not particularly limited, and examples include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, bias sputtering, and counter sputtering.
- the transparent metal conductive film is particularly preferably a film formed by a counter sputtering method.
- an alloy in which silver or the like and other metals are mixed in a desired ratio may be used as the sputtering target, or silver or other metal may be used as the sputtering target.
- the transparent metal conductive film is a film formed on an underlayer described later, since the underlayer becomes a growth nucleus when forming the transparent metal conductive film, the transparent metal conductive film tends to be a smooth film.
- the patterning method is not particularly limited, and may be a film patterned by arranging a mask having a desired pattern. It may be a film patterned by the method.
- the surface specific resistance of the position input device is preferably 50 ⁇ / ⁇ or less, and more preferably 30 ⁇ / ⁇ or less.
- the surface specific resistance value of the conduction region is adjusted by the thickness of the transparent metal conductive film.
- the surface specific resistance value can be measured according to JIS K 7194. Specifically, it is measured using a Loresta GP (MCP-T610 manufactured by Mitsubishi Chemical Corporation) in an environment of 23 ° C. and 55% RH. .
- the average light transmittance of the position input device is preferably 80% or more within the range of 400 to 800 nm.
- the backlight according to the present invention includes a cold cathode tube (CCFL), a hot cathode tube (HCFL), an external electrode fluorescent tube (EEFL), a flat fluorescent tube (FFL), a light emitting diode element (LED), an organic light emitting diode element ( OLED) and the like.
- the backlight is incorporated in at least one of the display device and the position input device. These backlights emit light having a wavelength of 450 nm or less, thereby degrading the transparent resin substrate, and burning occurs when the transparent resin substrate turns yellow.
- the high refractive index layer according to the present invention has a refractive index higher than that of the transparent resin substrate, and has a form in which a transparent metal conductive film is sandwiched between the first high refractive index layer and the second high refractive index layer.
- the first high refractive index layer is a layer that adjusts light transmittance (optical admittance) of a region where the transparent metal conductive film is formed. Therefore, the first high refractive index layer is preferably formed in the conductive region (see FIG. 3) of the transparent metal conductive film.
- the first high-refractive index layer may be formed also in the insulating region (see FIG. 3) of the transparent metal conductive film, but from the viewpoint of making it difficult to see the pattern made of the conductive region and the insulating region. It is preferable to form only in.
- the first high refractive index layer has a refractive index higher than that of the transparent resin substrate, and is preferably formed of at least one of a dielectric material or an oxide semiconductor material.
- the refractive index of the first high refractive index layer is preferably 0.1 to 1.1 greater than the refractive index of the transparent resin substrate, and more preferably 0.4 to 1.0.
- the refractive index of the dielectric material or oxide semiconductor material forming the first high refractive index layer is preferably greater than 1.5, more preferably in the range of 1.7 to 2.5. More preferably, it is within the range of 8 to 2.5. These materials may be insulating materials or conductive materials.
- Specific materials for forming the first high refractive index layer according to the present invention include ZnS, TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), IGZO (indium, gallium, zinc oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , In 2 O 3 , a-GIO (amorphous oxide composed of gallium, indium and oxygen) and the like, and ZnS is particularly preferable.
- ITO indium tin oxide
- the first high refractive index layer is preferably an amorphous layer containing ZnS and a metal oxide or metal fluoride.
- the metal oxide or metal fluoride contained in the amorphous layer include SiO 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , Al 2 O 3 , YF 3 , LaF 3 , CeF 3 , NdF 3 , ZrO 2 , SiO, MgO, Y 2 O 3 and the like may be mentioned, and one or more of these may be contained. Of these, SiO 2 is preferred.
- the first high refractive index layer preferably contains ZnS in the range of 0.1 to 95% by volume, more preferably in the range of 50 to 90% by volume, and is appropriately selected.
- the thickness of the first high refractive index layer is preferably in the range of 15 to 150 nm, more preferably in the range of 20 to 80 nm.
- the thickness of the first high refractive index layer is measured by the ellipsometer.
- the first high refractive index layer can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
- the patterning method is not particularly limited.
- it may be a layer formed by depositing a mask or the like having a desired pattern on the deposition surface and patterned in a vapor phase deposition method, or a layer patterned by a known etching method. May be.
- the second high refractive index layer according to the present invention is equivalent to the first high refractive index layer, and may be the same or different.
- ZnS is contained in at least one of the first high refractive index layer or the second high refractive index layer. Moreover, the wavelength transmittance of 450 nm or less can be suppressed by appropriately selecting the refractive index and the layer thickness of the first high refractive index layer and the second high refractive index layer.
- an underlayer serving as a growth nucleus when the transparent metal conductive film is formed may be included between the high refractive index layer and the transparent metal conductive film.
- the underlayer is preferably formed at least in the conductive region (see FIG. 3) of the transparent metal conductive film, but may be formed in the insulating region (see FIG. 3).
- the underlayer preferably contains palladium, molybdenum, zinc, germanium, niobium or indium, an alloy of these metals with other metals, or an oxide or sulfide of these metals.
- the above may be included.
- palladium or molybdenum is included.
- the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, based on the total mass of the material constituting the underlayer. More preferably, it is 60 mass% or more.
- the layer thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably has a layer thickness as a monoatomic film. These layer thicknesses are average values, and in some cases, they are not film-like, and may be island-like.
- the presence or absence of the underlayer is confirmed by the ICP-MS method.
- the layer thickness of the underlayer is calculated by multiplying the film formation speed and the film formation time.
- the underlayer is preferably a layer formed by sputtering or vapor deposition.
- the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method.
- the sputtering time during the formation of the underlayer is appropriately selected according to the desired average layer thickness and deposition rate of the underlayer.
- the sputter deposition rate is preferably in the range of 0.1 to 15 ⁇ / second, and more preferably in the range of 0.1 to 7 ⁇ / second.
- examples of the vapor deposition method include a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, and an ion beam vapor deposition method.
- the deposition time is appropriately selected according to the desired thickness of the underlayer and the film formation rate.
- the deposition rate is preferably in the range of 0.1 to 15 ⁇ / sec, more preferably in the range of 0.1 to 7 ⁇ / sec.
- the patterning method is not particularly limited.
- the present invention provides a low refractive index having a layer thickness of 10 to 150 nm containing MgF 2 and SiO 2 , for example, in order to adjust the light transmission (optical admittance) of the conductive region of the transparent metal conductive film on the high refractive index layer.
- a rate layer may be formed.
- the anti-sulfurization layer is a layer containing at least one compound selected from metal oxides, metal nitrides, metal fluorides, and Zn, and one or more of these may be contained.
- examples of the metal (including Si) oxide include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O. 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 etc., examples of metal nitrides are Si 3 N 4 , AlN etc., examples of metal fluorides are LaF 3 , BaF 2 , Examples thereof include Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , CeF 3 , NdF 3 , and YF 3. Among them,
- the layer thickness of the sulfidation preventing layer is preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably in the range of 1 to 3 nm.
- the sulfidation preventing layer is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
- n the refractive index
- a first high refractive index layer (ZnS) / transparent metal conductive film (Ag) / second high refractive index layer (ZnS) were laminated in this order by the following method. Thereafter, the laminate was patterned by the following method. In addition, the average layer thickness of the underlayer was calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus.
- first high refractive index layer (ZnS)
- a magnetron sputtering apparatus of Osaka Vacuum Co. Ar 20 sccm (Standard Cubic Centimeter per Minute), sputtering pressure 0.1 Pa, room temperature (25 ° C.), target side power 150 W, film formation rate 3.0 mm / ZnS was RF sputtered with s to form a first high refractive index layer.
- the target-substrate distance was 90 mm.
- a resist layer is formed in a pattern, and the first high refractive index layer, the transparent metal conductive film, and the second high refractive index layer are formed in the pattern (a plurality of conductive regions) shown in FIG. 9 and a line-shaped insulating region 10 that divides the pattern 9), and was patterned with an etching solution (manufactured by Hayashi Junyaku).
- the insulating region 10 includes only a transparent resin substrate. Moreover, the width
- Samples 2 to 27 and comparative samples 101 to 104 were prepared in the same manner as Sample 1 as shown in Table 1.
- the second antisulfurization layer between the high refractive index layers was formed as follows.
- first and second antisulfurization layer materials were formed at an Ar of 20 sccm, a sputtering pressure of 0.1 Pa, a room temperature (25 ° C.), a target-side power of 150 W, and a deposition rate of 1.1 kg / s.
- RF sputtering was performed to form first and second antisulfurization layers.
- the target-substrate distance was 90 mm.
- underlayer material was deposited by resistance heating deposition at 240 A and a film formation rate of 0.1 ⁇ / s to form an underlayer.
- the thickness of the underlayer was calculated from the film formation rate and the film formation time.
- Each sample produced was used as a position input device, and the following evaluation was performed.
- Example evaluation ⁇ ⁇ Evaluation of seizure> A light guide plate made of acrylic with white LED light source at the end, MS-P Gothic with thick black paper, alphabet E, T, A, O, I, N, Q, S, W to be 24 points , X is prepared and pasted, and each sample prepared is placed thereon, followed by lighting for 1000 hours in an atmosphere of 45 ° C. and 5% RH, and then visually observing the seizure of the transparent resin substrate. Evaluation was made according to criteria. The evaluation results are shown in Table 1.
- the present invention can be used particularly suitably for providing a touch panel that can suppress the occurrence of burn-in even when a certain menu display screen is held.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Abstract
The present invention addresses the problem of providing a touch panel with which the occurrence of burn-in can be suppressed even when a constant menu display screen is maintained. This touch panel (1) is characterized by having a menu screen display program, a transparent resin substrate (4), a transparent metal conductive film (5), and a backlight.
Description
本発明は、一定のメニュー画面表示を保持した場合であっても、焼き付きの発生が抑制されたタッチパネルに関する。
The present invention relates to a touch panel in which the occurrence of burn-in is suppressed even when a constant menu screen display is maintained.
タッチパネルは、液晶パネル、有機ELパネルのような表示装置とタッチパッドのような位置入力装置とを組み合わせた電子部品であり、操作盤として普及し、最近ではPCの入力装置としても価値も上がっている。
A touch panel is an electronic component that combines a display device such as a liquid crystal panel or an organic EL panel and a position input device such as a touch pad, and has become widespread as an operation panel. Recently, the value has increased as a PC input device. Yes.
従来の操作盤では、特定のメニュー画面に命令を入力するのではなく、メニュー画面から命令を選択する方式が取られていることが多いため、そのメニュー画面が同じ状態で保持されることとなり、いわゆる焼き付きが起こってしまうという問題があった。
また、メニュー選択式の画面では、大きな文字が表示され、視認性を向上させるためにコントラストが強くなるように設定されていることが多く、文字の焼き付きが起こる頻度が高い。 In conventional operation panels, a method of selecting an instruction from the menu screen rather than inputting an instruction to a specific menu screen is often taken, so that the menu screen is held in the same state, There was a problem that so-called burn-in occurred.
In addition, on a menu selection type screen, large characters are displayed, and the contrast is often set to increase in order to improve the visibility, and the character burn-in occurs frequently.
また、メニュー選択式の画面では、大きな文字が表示され、視認性を向上させるためにコントラストが強くなるように設定されていることが多く、文字の焼き付きが起こる頻度が高い。 In conventional operation panels, a method of selecting an instruction from the menu screen rather than inputting an instruction to a specific menu screen is often taken, so that the menu screen is held in the same state, There was a problem that so-called burn-in occurred.
In addition, on a menu selection type screen, large characters are displayed, and the contrast is often set to increase in order to improve the visibility, and the character burn-in occurs frequently.
焼き付きには種々あるが、透明樹脂基板に発生する焼き付きではバックライトの低波長成分の影響が大きいとされている。
There are various types of burn-in, but it is said that the low-wavelength component of the backlight has a large effect on the burn-in generated on the transparent resin substrate.
液晶表示装置の焼き付きを防止するため、特許文献1では新規カラーフィルター材料が提案されている。また、特許文献2では制御系により改善することが提案されている。
In order to prevent burn-in of the liquid crystal display device, Patent Document 1 proposes a new color filter material. Further, Patent Document 2 proposes improvement by a control system.
しかしながら、上記特許文献1及び2に開示されている技術では、透明樹脂基板を原因とする焼き付きの改善は十分ではなかった。
However, the techniques disclosed in Patent Documents 1 and 2 have not been sufficient to improve image sticking caused by the transparent resin substrate.
本発明は、このような状況を鑑みてなされたものであり、その解決課題は、一定のメニュー表示画面を保持した場合であっても、焼き付きの発生が抑制されるタッチパネルを提供することである。
The present invention has been made in view of such a situation, and the problem to be solved is to provide a touch panel in which the occurrence of burn-in is suppressed even when a certain menu display screen is held. .
本発明の上記課題は、下記手段によって解決される。
The above-mentioned problem of the present invention is solved by the following means.
(1)メニュー画面表示用プログラム、透明樹脂基板、透明金属導電膜及びバックライトを有することを特徴とするタッチパネル。
(1) A touch panel having a menu screen display program, a transparent resin substrate, a transparent metal conductive film, and a backlight.
(2)前記透明金属導電膜が、銀又は銅の少なくとも1種を主成分とすることを特徴とする前記(1)に記載のタッチパネル。
(2) The touch panel according to (1), wherein the transparent metal conductive film contains at least one of silver and copper as a main component.
(3)前記透明金属導電膜が、前記透明樹脂基板よりも屈折率の高い高屈折率層に挟持されていることを特徴とする前記(1)又は(2)に記載のタッチパネル。
(3) The touch panel according to (1) or (2), wherein the transparent metal conductive film is sandwiched between high refractive index layers having a higher refractive index than the transparent resin substrate.
(4)前記高屈折率層の少なくとも一方には、ZnSが含有されていることを特徴とする前記(3)に記載のタッチパネル。
(4) The touch panel according to (3), wherein ZnS is contained in at least one of the high refractive index layers.
本発明によれば、一定のメニュー表示画面を保持した場合であっても、焼き付きの発生が抑制されたタッチパネルを得ることができる。
According to the present invention, it is possible to obtain a touch panel in which image sticking is suppressed even when a certain menu display screen is held.
≪タッチパネル≫
本発明のタッチパネルは、メニュー画面表示用プログラム、透明樹脂基板、透明金属導電膜及びバックライトを有することを特徴とする。 ≪Touch panel≫
The touch panel of the present invention includes a menu screen display program, a transparent resin substrate, a transparent metal conductive film, and a backlight.
本発明のタッチパネルは、メニュー画面表示用プログラム、透明樹脂基板、透明金属導電膜及びバックライトを有することを特徴とする。 ≪Touch panel≫
The touch panel of the present invention includes a menu screen display program, a transparent resin substrate, a transparent metal conductive film, and a backlight.
以下に、本発明のタッチパネルの一例として、図1、2A及び2Bを用いて、その構成について説明する。
図1に示すとおり、タッチパネル1は、バックライトを備える表示装置2と位置入力装置3とから構成されている。図2Aに示すとおり、位置入力装置3は、表示装置2側から、透明金属導電膜5と透明樹脂基板4とを有している。 Hereinafter, as an example of the touch panel of the present invention, the configuration will be described with reference to FIGS.
As shown in FIG. 1, thetouch panel 1 includes a display device 2 having a backlight and a position input device 3. As shown in FIG. 2A, the position input device 3 includes a transparent metal conductive film 5 and a transparent resin substrate 4 from the display device 2 side.
図1に示すとおり、タッチパネル1は、バックライトを備える表示装置2と位置入力装置3とから構成されている。図2Aに示すとおり、位置入力装置3は、表示装置2側から、透明金属導電膜5と透明樹脂基板4とを有している。 Hereinafter, as an example of the touch panel of the present invention, the configuration will be described with reference to FIGS.
As shown in FIG. 1, the
本発明においては、透明金属導電膜5がプラズモン吸収をもつことから、表示装置2に備えられたバックライトの可視光よりも低波長の成分が吸収され、透明樹脂基板4に影響する低波長成分が減少し、焼き付きの発生を抑制できたのではないかと考えられる。
In the present invention, since the transparent metal conductive film 5 has plasmon absorption, a component having a lower wavelength than the visible light of the backlight provided in the display device 2 is absorbed, and the low wavelength component that affects the transparent resin substrate 4 is absorbed. It is thought that the occurrence of seizure could be suppressed.
図2Bには、図2Aで示される構成に加えて、透明金属導電膜5を挟持する第1高屈折率層6及び第2高屈折率層7、並びに下地層8を有する例を示している。
第1高屈折率層6及び第2高屈折率層7を設けることで、光透過性(光学アドミッタンス)を調整することができる。 FIG. 2B shows an example having the first highrefractive index layer 6 and the second high refractive index layer 7 that sandwich the transparent metal conductive film 5 and the base layer 8 in addition to the configuration shown in FIG. 2A. .
By providing the first high-refractive index layer 6 and the second high-refractive index layer 7, light transmittance (optical admittance) can be adjusted.
第1高屈折率層6及び第2高屈折率層7を設けることで、光透過性(光学アドミッタンス)を調整することができる。 FIG. 2B shows an example having the first high
By providing the first high-
<メニュー画面表示用プログラム>
本発明に係るメニュー画面表示用プログラムとは、銀行ATM装置等、据え置き型のタッチパネルにおいて、特定のメニュー画面を初期画面として表示し、保持待機する状態とすることを命令するプログラムをいう。したがって、かかる機能を有する形態であれば、特にタッチパネル本体に組み込まれている必要はなく、タッチパネルに付属する機器に組み込まれ、タッチパネルに指令する形態のものでもよい。
本発明において、同じ表示が保持される時間は30秒以上である。 <Program for displaying the menu screen>
The program for displaying a menu screen according to the present invention refers to a program for displaying a specific menu screen as an initial screen on a stationary touch panel, such as a bank ATM device, and instructing to enter a holding standby state. Therefore, as long as it has such a function, it is not particularly necessary to be incorporated in the touch panel body, and it may be incorporated in a device attached to the touch panel and instructed to the touch panel.
In the present invention, the same display is held for 30 seconds or longer.
本発明に係るメニュー画面表示用プログラムとは、銀行ATM装置等、据え置き型のタッチパネルにおいて、特定のメニュー画面を初期画面として表示し、保持待機する状態とすることを命令するプログラムをいう。したがって、かかる機能を有する形態であれば、特にタッチパネル本体に組み込まれている必要はなく、タッチパネルに付属する機器に組み込まれ、タッチパネルに指令する形態のものでもよい。
本発明において、同じ表示が保持される時間は30秒以上である。 <Program for displaying the menu screen>
The program for displaying a menu screen according to the present invention refers to a program for displaying a specific menu screen as an initial screen on a stationary touch panel, such as a bank ATM device, and instructing to enter a holding standby state. Therefore, as long as it has such a function, it is not particularly necessary to be incorporated in the touch panel body, and it may be incorporated in a device attached to the touch panel and instructed to the touch panel.
In the present invention, the same display is held for 30 seconds or longer.
<位置入力装置>
位置入力装置は、透明樹脂基板と透明金属導電膜とを有している。 <Position input device>
The position input device has a transparent resin substrate and a transparent metal conductive film.
位置入力装置は、透明樹脂基板と透明金属導電膜とを有している。 <Position input device>
The position input device has a transparent resin substrate and a transparent metal conductive film.
(透明樹脂基板)
本発明に係る透明樹脂基板の材料としては、ポリエチレンテレフタレート、ポリナフタレンテレフタレート等のポリエステル樹脂(屈折率1.58~1.64)、ポリカーボネート樹脂(屈折率1.58~1.60)、トリアセチルセルロース、アセチルプロピオニルセルロース等のセルロースエステル樹脂(屈折率1.45~1.50)、シクロオレフィン樹脂(屈折率1.51~1.54)、ポリメチルメタクリレート等のアクリル樹脂(屈折率1.49~1.57)等、通常タッチパネルに使用される樹脂が挙げられる。 (Transparent resin substrate)
Examples of the material of the transparent resin substrate according to the present invention include polyester resins (refractive index: 1.58 to 1.64) such as polyethylene terephthalate and polynaphthalene terephthalate, polycarbonate resins (refractive index: 1.58 to 1.60), and triacetyl. Cellulose ester resins such as cellulose and acetylpropionyl cellulose (refractive index 1.45 to 1.50), cycloolefin resins (refractive index 1.51 to 1.54), acrylic resins such as polymethyl methacrylate (refractive index 1.49) To 1.57) and the like are usually used for touch panels.
本発明に係る透明樹脂基板の材料としては、ポリエチレンテレフタレート、ポリナフタレンテレフタレート等のポリエステル樹脂(屈折率1.58~1.64)、ポリカーボネート樹脂(屈折率1.58~1.60)、トリアセチルセルロース、アセチルプロピオニルセルロース等のセルロースエステル樹脂(屈折率1.45~1.50)、シクロオレフィン樹脂(屈折率1.51~1.54)、ポリメチルメタクリレート等のアクリル樹脂(屈折率1.49~1.57)等、通常タッチパネルに使用される樹脂が挙げられる。 (Transparent resin substrate)
Examples of the material of the transparent resin substrate according to the present invention include polyester resins (refractive index: 1.58 to 1.64) such as polyethylene terephthalate and polynaphthalene terephthalate, polycarbonate resins (refractive index: 1.58 to 1.60), and triacetyl. Cellulose ester resins such as cellulose and acetylpropionyl cellulose (refractive index 1.45 to 1.50), cycloolefin resins (refractive index 1.51 to 1.54), acrylic resins such as polymethyl methacrylate (refractive index 1.49) To 1.57) and the like are usually used for touch panels.
透明樹脂基板は、可視光に対する透明性が高いことが好ましく、波長450~800nmにおける光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましい。
The transparent resin substrate preferably has high transparency to visible light, and the average light transmittance at a wavelength of 450 to 800 nm is preferably 70% or more, and more preferably 80% or more.
透明樹脂基板のヘイズ値は、0.01~2.5の範囲内であることが好ましく、より好ましくは0.1~1.2の範囲内である。
The haze value of the transparent resin substrate is preferably in the range of 0.01 to 2.5, and more preferably in the range of 0.1 to 1.2.
膜厚は、使用用途により適宜選択することができるが、10~200μmの範囲内が好ましい。
The film thickness can be appropriately selected depending on the intended use, but is preferably in the range of 10 to 200 μm.
なお、本発明における各部材(層)の厚さ、屈折率は、23℃55%RHの環境下、波長590nm、VB-250型VASEエリプソメーターで測定することができ、また、屈折率nは、x、y、z軸の平均である。x軸は、面内で最も屈折率の大きい方向である。
The thickness and refractive index of each member (layer) in the present invention can be measured with a wavelength 590 nm, VB-250 type VASE ellipsometer in an environment of 23 ° C. and 55% RH, and the refractive index n is , X, y, z-axis average. The x-axis is the direction with the highest refractive index in the plane.
(透明金属導電膜)
通常のタッチパネルでは透明導電膜としてITOが使用されているが、本発明では透明金属導電膜を使用することにより、焼き付けを改善している。 (Transparent metal conductive film)
In a normal touch panel, ITO is used as a transparent conductive film, but in the present invention, baking is improved by using a transparent metal conductive film.
通常のタッチパネルでは透明導電膜としてITOが使用されているが、本発明では透明金属導電膜を使用することにより、焼き付けを改善している。 (Transparent metal conductive film)
In a normal touch panel, ITO is used as a transparent conductive film, but in the present invention, baking is improved by using a transparent metal conductive film.
本発明に係る透明金属導電膜は、透明樹脂基板又は後述する高屈折率層、下地層の全面に形成されていてもよく、また、所望の形状にパターニングされていてもよい。
The transparent metal conductive film according to the present invention may be formed on the entire surface of a transparent resin substrate, a high refractive index layer and an underlayer described later, or may be patterned into a desired shape.
透明金属導電膜を構成する材料は、膜とした場合にプラズモン吸収を生じさせる金属であれば本発明の効果を発揮することができるが、導電性の点から銀又は銅(以下、銀等という。)を主成分とすることが好ましい。
ここで、主成分とは、透明金属導電膜を構成する全原子の量に対して、50at%以上含有することをいう。 The material constituting the transparent metal conductive film can exert the effect of the present invention as long as it is a metal that causes plasmon absorption when formed into a film, but silver or copper (hereinafter referred to as silver or the like) from the viewpoint of conductivity. .) Is the main component.
Here, a main component means containing 50 at% or more with respect to the quantity of all the atoms which comprise a transparent metal electrically conductive film.
ここで、主成分とは、透明金属導電膜を構成する全原子の量に対して、50at%以上含有することをいう。 The material constituting the transparent metal conductive film can exert the effect of the present invention as long as it is a metal that causes plasmon absorption when formed into a film, but silver or copper (hereinafter referred to as silver or the like) from the viewpoint of conductivity. .) Is the main component.
Here, a main component means containing 50 at% or more with respect to the quantity of all the atoms which comprise a transparent metal electrically conductive film.
透明金属導電膜に銀等とともに含まれる金属は、具体的には、ゲルマニウム、ビスマス、白金族、銅、金、モリブデン、亜鉛、ガリウム、スズ、インジウム、ネオジム、チタン、アルミニウム、タングステン、マンガン、鉄、ニッケル、イットリウム及びマグネシウムである。好ましくはゲルマニウム、ビスマス、パラジウム、銅、金及びネオジムである。
本発明に係る透明金属導電膜には、これらの金属が1種以上含まれてもよい。 Specifically, the metal contained in the transparent conductive film together with silver, etc. is germanium, bismuth, platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, neodymium, titanium, aluminum, tungsten, manganese, iron Nickel, yttrium and magnesium. Germanium, bismuth, palladium, copper, gold and neodymium are preferred.
One or more of these metals may be contained in the transparent metal conductive film according to the present invention.
本発明に係る透明金属導電膜には、これらの金属が1種以上含まれてもよい。 Specifically, the metal contained in the transparent conductive film together with silver, etc. is germanium, bismuth, platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, neodymium, titanium, aluminum, tungsten, manganese, iron Nickel, yttrium and magnesium. Germanium, bismuth, palladium, copper, gold and neodymium are preferred.
One or more of these metals may be contained in the transparent metal conductive film according to the present invention.
透明金属導電膜に含まれる銀等以外の金属の量は、透明金属導電膜を構成する全原子の量に対して、0.01at%以上50at%未満であることが好ましく、より好ましくは0.1~30at%の範囲内であり、更に好ましくは0.2~10at%の範囲内である。
銀合金としては、APC合金(Ag-Pd-Cu合金)、APC-TR合金等((株)フルヤ金属製)、Ag-Bi-Ge-Au合金等が挙げられる。 The amount of metal other than silver or the like contained in the transparent metal conductive film is preferably 0.01 at% or more and less than 50 at% with respect to the total amount of atoms constituting the transparent metal conductive film, more preferably 0.8. It is in the range of 1 to 30 at%, more preferably in the range of 0.2 to 10 at%.
Examples of the silver alloy include an APC alloy (Ag—Pd—Cu alloy), an APC-TR alloy and the like (manufactured by Furuya Metal Co., Ltd.), an Ag—Bi—Ge—Au alloy and the like.
銀合金としては、APC合金(Ag-Pd-Cu合金)、APC-TR合金等((株)フルヤ金属製)、Ag-Bi-Ge-Au合金等が挙げられる。 The amount of metal other than silver or the like contained in the transparent metal conductive film is preferably 0.01 at% or more and less than 50 at% with respect to the total amount of atoms constituting the transparent metal conductive film, more preferably 0.8. It is in the range of 1 to 30 at%, more preferably in the range of 0.2 to 10 at%.
Examples of the silver alloy include an APC alloy (Ag—Pd—Cu alloy), an APC-TR alloy and the like (manufactured by Furuya Metal Co., Ltd.), an Ag—Bi—Ge—Au alloy and the like.
透明金属導電膜のプラズモン吸収率は、波長400~800nmの全帯域にわたって、0.1~10%の範囲内であることが好ましく、0.5~7%の範囲内であることがより好ましく、1~5%の範囲内であることが更に好ましい。
The plasmon absorptance of the transparent metal conductive film is preferably in the range of 0.1 to 10%, more preferably in the range of 0.5 to 7%, over the entire wavelength band of 400 to 800 nm. More preferably, it is in the range of 1 to 5%.
透明金属導電膜の波長400~800nmの全帯域におけるプラズモン吸収率は、以下の手順で測定される。
(i)樹脂基板上に、白金パラジウムをマグネトロンスパッタ装置にて厚さ0.1nmで成膜する。白金パラジウムの平均厚さは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を厚さ20nmで成膜する。
(ii)次いで、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして、各波長における透過率及び反射率から、吸収率(=100-(透過率+反射率))を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。
(iii)続いて、測定対象の透明金属導電膜について、同様に透過率及び反射率を測定する。そして、得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 The plasmon absorptance of the transparent metal conductive film in the entire band having a wavelength of 400 to 800 nm is measured by the following procedure.
(I) Platinum palladium is formed into a film with a thickness of 0.1 nm on a resin substrate by a magnetron sputtering apparatus. The average thickness of platinum-palladium is calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of metal is formed with a thickness of 20 nm on the substrate to which platinum palladium is adhered by sputtering.
(Ii) Next, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and the reflectance of the metal film are measured. Then, an absorptance (= 100− (transmittance + reflectance)) is calculated from the transmittance and reflectance at each wavelength, and this is used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
(Iii) Subsequently, the transmittance and the reflectance are similarly measured for the transparent metal conductive film to be measured. Then, the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
(i)樹脂基板上に、白金パラジウムをマグネトロンスパッタ装置にて厚さ0.1nmで成膜する。白金パラジウムの平均厚さは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を厚さ20nmで成膜する。
(ii)次いで、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして、各波長における透過率及び反射率から、吸収率(=100-(透過率+反射率))を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。
(iii)続いて、測定対象の透明金属導電膜について、同様に透過率及び反射率を測定する。そして、得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 The plasmon absorptance of the transparent metal conductive film in the entire band having a wavelength of 400 to 800 nm is measured by the following procedure.
(I) Platinum palladium is formed into a film with a thickness of 0.1 nm on a resin substrate by a magnetron sputtering apparatus. The average thickness of platinum-palladium is calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of metal is formed with a thickness of 20 nm on the substrate to which platinum palladium is adhered by sputtering.
(Ii) Next, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and the reflectance of the metal film are measured. Then, an absorptance (= 100− (transmittance + reflectance)) is calculated from the transmittance and reflectance at each wavelength, and this is used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
(Iii) Subsequently, the transmittance and the reflectance are similarly measured for the transparent metal conductive film to be measured. Then, the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
透明金属導電膜の厚さは、10nm以下であることが好ましく、より好ましくは3~9nmの範囲内であり、更に好ましくは5~8nmの範囲内である。透明金属導電膜の厚さを10nm以下とすることで、透明金属導電膜における金属本来の反射が抑制される。
The thickness of the transparent metal conductive film is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm. By setting the thickness of the transparent metal conductive film to 10 nm or less, the original reflection of the metal in the transparent metal conductive film is suppressed.
透明金属導電膜の成膜方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法、イオンアシスト法等、一般的な気相成膜法が挙げられるが、透明性の点から、真空蒸着法、スパッタ法又はイオンアシスト法で成膜することが好ましい。
The film forming method of the transparent metal conductive film is not particularly limited, and examples thereof include general vapor phase film forming methods such as vacuum deposition, sputtering, ion plating, plasma CVD, thermal CVD, and ion assist. However, it is preferable to form a film by a vacuum deposition method, a sputtering method, or an ion assist method from the viewpoint of transparency.
スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等が挙げられる。透明金属導電膜は、特に、対向スパッタ法で成膜された膜であることが好ましい。
スパッタ法で透明金属導電膜を成膜する場合、銀等及び他の金属を所望の比率で混合した合金をスパッタリングターゲットにしてもよく、銀等及び他の金属をそれぞれスパッタリングターゲットにしてもよい。 The type of sputtering method is not particularly limited, and examples include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, bias sputtering, and counter sputtering. The transparent metal conductive film is particularly preferably a film formed by a counter sputtering method.
When the transparent metal conductive film is formed by sputtering, an alloy in which silver or the like and other metals are mixed in a desired ratio may be used as the sputtering target, or silver or other metal may be used as the sputtering target.
スパッタ法で透明金属導電膜を成膜する場合、銀等及び他の金属を所望の比率で混合した合金をスパッタリングターゲットにしてもよく、銀等及び他の金属をそれぞれスパッタリングターゲットにしてもよい。 The type of sputtering method is not particularly limited, and examples include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, bias sputtering, and counter sputtering. The transparent metal conductive film is particularly preferably a film formed by a counter sputtering method.
When the transparent metal conductive film is formed by sputtering, an alloy in which silver or the like and other metals are mixed in a desired ratio may be used as the sputtering target, or silver or other metal may be used as the sputtering target.
透明金属導電膜が後述する下地層上に成膜された膜である場合、透明金属導電膜の成膜時に下地層が成長核となるため、透明金属導電膜が平滑な膜になりやすい。
When the transparent metal conductive film is a film formed on an underlayer described later, since the underlayer becomes a growth nucleus when forming the transparent metal conductive film, the transparent metal conductive film tends to be a smooth film.
また、透明金属導電膜が所望の形状にパターニングされた膜である場合、パターニング方法は特に制限されず、所望のパターンを有するマスクを配置してパターニングされた膜であってもよく、公知のエッチング法によってパターニングされた膜であってもよい。
Further, when the transparent metal conductive film is a film patterned into a desired shape, the patterning method is not particularly limited, and may be a film patterned by arranging a mask having a desired pattern. It may be a film patterned by the method.
(位置入力装置の特性)
位置入力装置の表面比抵抗は、50Ω/□以下であることが好ましく、より好ましくは30Ω/□以下である。導通領域(図3参照。)の表面比抵抗値は、透明金属導電膜の厚さ等によって調整される。
表面比抵抗値は、JIS K 7194に準拠して測定することができ、具体的には、ロレスタGP(MCP-T610 三菱化学製)を用いて、23℃55%RHの環境下で測定される。 (Characteristics of position input device)
The surface specific resistance of the position input device is preferably 50Ω / □ or less, and more preferably 30Ω / □ or less. The surface specific resistance value of the conduction region (see FIG. 3) is adjusted by the thickness of the transparent metal conductive film.
The surface specific resistance value can be measured according to JIS K 7194. Specifically, it is measured using a Loresta GP (MCP-T610 manufactured by Mitsubishi Chemical Corporation) in an environment of 23 ° C. and 55% RH. .
位置入力装置の表面比抵抗は、50Ω/□以下であることが好ましく、より好ましくは30Ω/□以下である。導通領域(図3参照。)の表面比抵抗値は、透明金属導電膜の厚さ等によって調整される。
表面比抵抗値は、JIS K 7194に準拠して測定することができ、具体的には、ロレスタGP(MCP-T610 三菱化学製)を用いて、23℃55%RHの環境下で測定される。 (Characteristics of position input device)
The surface specific resistance of the position input device is preferably 50Ω / □ or less, and more preferably 30Ω / □ or less. The surface specific resistance value of the conduction region (see FIG. 3) is adjusted by the thickness of the transparent metal conductive film.
The surface specific resistance value can be measured according to JIS K 7194. Specifically, it is measured using a Loresta GP (MCP-T610 manufactured by Mitsubishi Chemical Corporation) in an environment of 23 ° C. and 55% RH. .
位置入力装置の光の平均透過率としては、400~800nmの範囲内において80%以上であることが好ましい。
The average light transmittance of the position input device is preferably 80% or more within the range of 400 to 800 nm.
<バックライト>
本発明に係るバックライトとしては、冷陰極管(CCFL)や熱陰極管(HCFL)、外部電極蛍光管(EEFL)、平面蛍光管(FFL)、発光ダイオード素子(LED)、有機発光ダイオード素子(OLED)などの有機エレクトロルミネッセンス素子等が挙げられる。
バックライトは、表示装置又は位置入力装置の少なくとも一方に組み込まれる。
これらのバックライトは、450nm以下の波長の光を出すことにより、透明樹脂基板を劣化させ、透明樹脂基板が黄変することにより焼き付けが発生する。 <Backlight>
The backlight according to the present invention includes a cold cathode tube (CCFL), a hot cathode tube (HCFL), an external electrode fluorescent tube (EEFL), a flat fluorescent tube (FFL), a light emitting diode element (LED), an organic light emitting diode element ( OLED) and the like.
The backlight is incorporated in at least one of the display device and the position input device.
These backlights emit light having a wavelength of 450 nm or less, thereby degrading the transparent resin substrate, and burning occurs when the transparent resin substrate turns yellow.
本発明に係るバックライトとしては、冷陰極管(CCFL)や熱陰極管(HCFL)、外部電極蛍光管(EEFL)、平面蛍光管(FFL)、発光ダイオード素子(LED)、有機発光ダイオード素子(OLED)などの有機エレクトロルミネッセンス素子等が挙げられる。
バックライトは、表示装置又は位置入力装置の少なくとも一方に組み込まれる。
これらのバックライトは、450nm以下の波長の光を出すことにより、透明樹脂基板を劣化させ、透明樹脂基板が黄変することにより焼き付けが発生する。 <Backlight>
The backlight according to the present invention includes a cold cathode tube (CCFL), a hot cathode tube (HCFL), an external electrode fluorescent tube (EEFL), a flat fluorescent tube (FFL), a light emitting diode element (LED), an organic light emitting diode element ( OLED) and the like.
The backlight is incorporated in at least one of the display device and the position input device.
These backlights emit light having a wavelength of 450 nm or less, thereby degrading the transparent resin substrate, and burning occurs when the transparent resin substrate turns yellow.
<高屈折率層>
本発明に係る高屈折率層は、透明樹脂基板よりも屈折率が高く、第1高屈折率層及び第2高屈折率層の間に透明金属導電膜を挟む形態を有する。 <High refractive index layer>
The high refractive index layer according to the present invention has a refractive index higher than that of the transparent resin substrate, and has a form in which a transparent metal conductive film is sandwiched between the first high refractive index layer and the second high refractive index layer.
本発明に係る高屈折率層は、透明樹脂基板よりも屈折率が高く、第1高屈折率層及び第2高屈折率層の間に透明金属導電膜を挟む形態を有する。 <High refractive index layer>
The high refractive index layer according to the present invention has a refractive index higher than that of the transparent resin substrate, and has a form in which a transparent metal conductive film is sandwiched between the first high refractive index layer and the second high refractive index layer.
(第1高屈折率層)
第1高屈折率層は、透明金属導電膜が成膜されている領域の光透過性(光学アドミッタンス)を調整する層である。したがって、第1高屈折率層は、透明金属導電膜の導通領域(図3参照。)に形成されることが好ましい。 (First high refractive index layer)
The first high refractive index layer is a layer that adjusts light transmittance (optical admittance) of a region where the transparent metal conductive film is formed. Therefore, the first high refractive index layer is preferably formed in the conductive region (see FIG. 3) of the transparent metal conductive film.
第1高屈折率層は、透明金属導電膜が成膜されている領域の光透過性(光学アドミッタンス)を調整する層である。したがって、第1高屈折率層は、透明金属導電膜の導通領域(図3参照。)に形成されることが好ましい。 (First high refractive index layer)
The first high refractive index layer is a layer that adjusts light transmittance (optical admittance) of a region where the transparent metal conductive film is formed. Therefore, the first high refractive index layer is preferably formed in the conductive region (see FIG. 3) of the transparent metal conductive film.
第1高屈折率層は、透明金属導電膜の絶縁領域(図3参照。)にも形成されていてもよいが、導通領域及び絶縁領域からなるパターンを視認されにくくするとの観点から、導通領域のみに形成されていることが好ましい。
The first high-refractive index layer may be formed also in the insulating region (see FIG. 3) of the transparent metal conductive film, but from the viewpoint of making it difficult to see the pattern made of the conductive region and the insulating region. It is preferable to form only in.
第1高屈折率層は、透明樹脂基板の屈折率より高い屈折率を有し、誘電性材料又は酸化物半導体材料の1種以上によって形成されることが好ましい。第1高屈折率層の屈折率は、透明樹脂基板の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。
The first high refractive index layer has a refractive index higher than that of the transparent resin substrate, and is preferably formed of at least one of a dielectric material or an oxide semiconductor material. The refractive index of the first high refractive index layer is preferably 0.1 to 1.1 greater than the refractive index of the transparent resin substrate, and more preferably 0.4 to 1.0.
第1高屈折率層を形成する誘電性材料又は酸化物半導体材料の屈折率は、1.5より大きいことが好ましく、1.7~2.5の範囲内であることがより好ましく、1.8~2.5の範囲内であることが更に好ましい。
これらの材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。 The refractive index of the dielectric material or oxide semiconductor material forming the first high refractive index layer is preferably greater than 1.5, more preferably in the range of 1.7 to 2.5. More preferably, it is within the range of 8 to 2.5.
These materials may be insulating materials or conductive materials.
これらの材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。 The refractive index of the dielectric material or oxide semiconductor material forming the first high refractive index layer is preferably greater than 1.5, more preferably in the range of 1.7 to 2.5. More preferably, it is within the range of 8 to 2.5.
These materials may be insulating materials or conductive materials.
本発明に係る第1高屈折率層を形成する具体的な材料としては、ZnS、TiO2、ITO(酸化インジウムスズ)、ZnO、Nb2O5、ZrO2、CeO2、Ta2O5、Ti3O5、Ti4O7、Ti2O3、TiO、SnO2、La2Ti2O7、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、IGZO(インジウム、ガリウム、亜鉛の酸化物)、Bi2O3、Ga2O3、GeO2、WO3、HfO2、In2O3、a-GIO(ガリウム、インジウム及び酸素からなる非晶質酸化物)等が挙げられ、中でもZnSが好ましい。
Specific materials for forming the first high refractive index layer according to the present invention include ZnS, TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), IGZO (indium, gallium, zinc oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , In 2 O 3 , a-GIO (amorphous oxide composed of gallium, indium and oxygen) and the like, and ZnS is particularly preferable.
また、第1高屈折率層は、ZnSと金属酸化物又は金属フッ化物とを含むアモルファス層であることが好ましい。アモルファス層に含まれる金属酸化物又は金属フッ化物としては、SiO2、Na5Al3F14、Na3AlF6、AlF3、MgF2、CaF2、BaF2、Al2O3、YF3、LaF3、CeF3、NdF3、ZrO2、SiO、MgO、Y2O3等が挙げられ、これらは1種以上含まれてもよい。これらのうち、SiO2が好ましい。
The first high refractive index layer is preferably an amorphous layer containing ZnS and a metal oxide or metal fluoride. Examples of the metal oxide or metal fluoride contained in the amorphous layer include SiO 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , Al 2 O 3 , YF 3 , LaF 3 , CeF 3 , NdF 3 , ZrO 2 , SiO, MgO, Y 2 O 3 and the like may be mentioned, and one or more of these may be contained. Of these, SiO 2 is preferred.
第1高屈折率層としては、ZnSが0.1~95体積%の範囲内で含まれていることが好ましく、より好ましくは50~90体積%の範囲内であり、適宜選択される。
The first high refractive index layer preferably contains ZnS in the range of 0.1 to 95% by volume, more preferably in the range of 50 to 90% by volume, and is appropriately selected.
第1高屈折率層の厚さは、15~150nmの範囲内であることが好ましく、より好ましくは20~80nmの範囲内である。
第1高屈折率層の厚さは、上記エリプソメーターで測定される。
第1高屈折率層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜することができる。 The thickness of the first high refractive index layer is preferably in the range of 15 to 150 nm, more preferably in the range of 20 to 80 nm.
The thickness of the first high refractive index layer is measured by the ellipsometer.
The first high refractive index layer can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
第1高屈折率層の厚さは、上記エリプソメーターで測定される。
第1高屈折率層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜することができる。 The thickness of the first high refractive index layer is preferably in the range of 15 to 150 nm, more preferably in the range of 20 to 80 nm.
The thickness of the first high refractive index layer is measured by the ellipsometer.
The first high refractive index layer can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
第1高屈折率層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。
When the first high refractive index layer is a layer patterned into a desired shape, the patterning method is not particularly limited. For example, it may be a layer formed by depositing a mask or the like having a desired pattern on the deposition surface and patterned in a vapor phase deposition method, or a layer patterned by a known etching method. May be.
(第2高屈折率層)
本発明に係る第2高屈折率層は、第1高屈折率層と同等のものであり、同じでも異なっていてもよい。 (Second high refractive index layer)
The second high refractive index layer according to the present invention is equivalent to the first high refractive index layer, and may be the same or different.
本発明に係る第2高屈折率層は、第1高屈折率層と同等のものであり、同じでも異なっていてもよい。 (Second high refractive index layer)
The second high refractive index layer according to the present invention is equivalent to the first high refractive index layer, and may be the same or different.
本発明においては、第1高屈折率層又は第2高屈折率層の少なくとも一方に、ZnSが含まれていることが好ましい。
また、第1高屈折率層と第2高屈折率層との屈折率、層厚を適宜選択することにより、450nm以下の波長透過率を抑制することができる。 In the present invention, it is preferable that ZnS is contained in at least one of the first high refractive index layer or the second high refractive index layer.
Moreover, the wavelength transmittance of 450 nm or less can be suppressed by appropriately selecting the refractive index and the layer thickness of the first high refractive index layer and the second high refractive index layer.
また、第1高屈折率層と第2高屈折率層との屈折率、層厚を適宜選択することにより、450nm以下の波長透過率を抑制することができる。 In the present invention, it is preferable that ZnS is contained in at least one of the first high refractive index layer or the second high refractive index layer.
Moreover, the wavelength transmittance of 450 nm or less can be suppressed by appropriately selecting the refractive index and the layer thickness of the first high refractive index layer and the second high refractive index layer.
<その他構成層>
(下地層)
本発明では、高屈折率層と透明金属導電膜との間に、透明金属導電膜の成膜時に成長核となる下地層が含まれてもよい。下地層は、少なくとも透明金属導電膜の導通領域(図3参照。)に成膜されていることが好ましいが、絶縁領域(図3参照。)に成膜されていてもよい。 <Other constituent layers>
(Underlayer)
In the present invention, an underlayer serving as a growth nucleus when the transparent metal conductive film is formed may be included between the high refractive index layer and the transparent metal conductive film. The underlayer is preferably formed at least in the conductive region (see FIG. 3) of the transparent metal conductive film, but may be formed in the insulating region (see FIG. 3).
(下地層)
本発明では、高屈折率層と透明金属導電膜との間に、透明金属導電膜の成膜時に成長核となる下地層が含まれてもよい。下地層は、少なくとも透明金属導電膜の導通領域(図3参照。)に成膜されていることが好ましいが、絶縁領域(図3参照。)に成膜されていてもよい。 <Other constituent layers>
(Underlayer)
In the present invention, an underlayer serving as a growth nucleus when the transparent metal conductive film is formed may be included between the high refractive index layer and the transparent metal conductive film. The underlayer is preferably formed at least in the conductive region (see FIG. 3) of the transparent metal conductive film, but may be formed in the insulating region (see FIG. 3).
下地層には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウム、あるいはこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物が含まれることが好ましく、これらの1種以上が含まれてもよい。特に、パラジウム又はモリブデンが含まれることが特に好ましい。
The underlayer preferably contains palladium, molybdenum, zinc, germanium, niobium or indium, an alloy of these metals with other metals, or an oxide or sulfide of these metals. The above may be included. In particular, it is particularly preferable that palladium or molybdenum is included.
下地層に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムの量は、下地層を構成する材料の全質量に対して、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、更に好ましくは60質量%以上である。
The amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, based on the total mass of the material constituting the underlayer. More preferably, it is 60 mass% or more.
下地層の層厚は、3nm以下であり、好ましくは0.5nm以下であり、より好ましくは単原子膜としての層厚を有していることである。これらの層厚は平均値であり、場合によっては膜状になっておらず、島状であってもよい。
The layer thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably has a layer thickness as a monoatomic film. These layer thicknesses are average values, and in some cases, they are not film-like, and may be island-like.
下地層の有無は、ICP-MS法で確認される。また、下地層の層厚は、成膜速度と成膜時間とを乗じて算出される。
The presence or absence of the underlayer is confirmed by the ICP-MS method. The layer thickness of the underlayer is calculated by multiplying the film formation speed and the film formation time.
下地層は、スパッタ法又は蒸着法で成膜された層であることが好ましい。
スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。下地層成膜時のスパッタ時間は、所望の下地層の平均層厚及び成膜速度に合わせて適宜選択される。スパッタ成膜速度は、好ましくは0.1~15Å/秒の範囲内であり、より好ましくは0.1~7Å/秒の範囲内である。
一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の下地層の層厚及び成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒の範囲内であり、より好ましくは0.1~7Å/秒の範囲内である。 The underlayer is preferably a layer formed by sputtering or vapor deposition.
Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time during the formation of the underlayer is appropriately selected according to the desired average layer thickness and deposition rate of the underlayer. The sputter deposition rate is preferably in the range of 0.1 to 15 Å / second, and more preferably in the range of 0.1 to 7 Å / second.
On the other hand, examples of the vapor deposition method include a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, and an ion beam vapor deposition method. The deposition time is appropriately selected according to the desired thickness of the underlayer and the film formation rate. The deposition rate is preferably in the range of 0.1 to 15 Å / sec, more preferably in the range of 0.1 to 7 Å / sec.
スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。下地層成膜時のスパッタ時間は、所望の下地層の平均層厚及び成膜速度に合わせて適宜選択される。スパッタ成膜速度は、好ましくは0.1~15Å/秒の範囲内であり、より好ましくは0.1~7Å/秒の範囲内である。
一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の下地層の層厚及び成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒の範囲内であり、より好ましくは0.1~7Å/秒の範囲内である。 The underlayer is preferably a layer formed by sputtering or vapor deposition.
Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time during the formation of the underlayer is appropriately selected according to the desired average layer thickness and deposition rate of the underlayer. The sputter deposition rate is preferably in the range of 0.1 to 15 Å / second, and more preferably in the range of 0.1 to 7 Å / second.
On the other hand, examples of the vapor deposition method include a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, and an ion beam vapor deposition method. The deposition time is appropriately selected according to the desired thickness of the underlayer and the film formation rate. The deposition rate is preferably in the range of 0.1 to 15 Å / sec, more preferably in the range of 0.1 to 7 Å / sec.
下地層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。
When the ground layer is a layer patterned into a desired shape, the patterning method is not particularly limited.
(低屈折率層)
本発明は、高屈折率層上に、透明金属導電膜の導通領域の光透過性(光学アドミッタンス)を調整するために、例えば、MgF2及びSiO2を含有する層厚10~150nmの低屈折率層が形成されていてもよい。 (Low refractive index layer)
The present invention provides a low refractive index having a layer thickness of 10 to 150 nm containing MgF 2 and SiO 2 , for example, in order to adjust the light transmission (optical admittance) of the conductive region of the transparent metal conductive film on the high refractive index layer. A rate layer may be formed.
本発明は、高屈折率層上に、透明金属導電膜の導通領域の光透過性(光学アドミッタンス)を調整するために、例えば、MgF2及びSiO2を含有する層厚10~150nmの低屈折率層が形成されていてもよい。 (Low refractive index layer)
The present invention provides a low refractive index having a layer thickness of 10 to 150 nm containing MgF 2 and SiO 2 , for example, in order to adjust the light transmission (optical admittance) of the conductive region of the transparent metal conductive film on the high refractive index layer. A rate layer may be formed.
(硫化防止層)
本発明では、高屈折率層にZnSのような硫化物を使用する場合、高屈折率層に接して硫化防止層を設けることが好ましい。
硫化防止層は、金属酸化物、金属窒化物、金属フッ化物及びZnから選択される少なくとも1種の化合物を含む層であり、これらが1種以上含まれてもよい。 (Sulfurization prevention layer)
In the present invention, when a sulfide such as ZnS is used for the high refractive index layer, it is preferable to provide an antisulfurization layer in contact with the high refractive index layer.
The anti-sulfurization layer is a layer containing at least one compound selected from metal oxides, metal nitrides, metal fluorides, and Zn, and one or more of these may be contained.
本発明では、高屈折率層にZnSのような硫化物を使用する場合、高屈折率層に接して硫化防止層を設けることが好ましい。
硫化防止層は、金属酸化物、金属窒化物、金属フッ化物及びZnから選択される少なくとも1種の化合物を含む層であり、これらが1種以上含まれてもよい。 (Sulfurization prevention layer)
In the present invention, when a sulfide such as ZnS is used for the high refractive index layer, it is preferable to provide an antisulfurization layer in contact with the high refractive index layer.
The anti-sulfurization layer is a layer containing at least one compound selected from metal oxides, metal nitrides, metal fluorides, and Zn, and one or more of these may be contained.
具体的には、金属(Siを含む。)酸化物の例には、TiO2、ITO、ZnO、Nb2O5、ZrO2、CeO2、Ta2O5、Ti3O5、Ti4O7、Ti2O3、TiO、SnO2、La2Ti2O7、IZO、AZO、GZO、ATO、ICO、Bi2O3、a-GIO、Ga2O3、GeO2、SiO2、Al2O3、HfO2、SiO、MgO、Y2O3、WO3等、金属窒化物の例には、Si3N4、AlN等、金属フッ化物の例には、LaF3、BaF2、Na5Al3F14、Na3AlF6、AlF3、MgF2、CaF2、CeF3、NdF3、YF3等が挙げられ、中でもZnOが好ましい。
Specifically, examples of the metal (including Si) oxide include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O. 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 etc., examples of metal nitrides are Si 3 N 4 , AlN etc., examples of metal fluorides are LaF 3 , BaF 2 , Examples thereof include Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , CeF 3 , NdF 3 , and YF 3. Among them, ZnO is preferable.
硫化防止層の層厚は、0.1~10nmの範囲内であることが好ましく、より好ましくは0.5~5nmの範囲内であり、更に好ましくは1~3nmの範囲内である。
硫化防止層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜される。 The layer thickness of the sulfidation preventing layer is preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably in the range of 1 to 3 nm.
The sulfidation preventing layer is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
硫化防止層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜される。 The layer thickness of the sulfidation preventing layer is preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably in the range of 1 to 3 nm.
The sulfidation preventing layer is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
以下、本発明を実施例により更に詳細に説明する。使用素材(nは屈折率を表す。)は、下記のとおりである。
Hereinafter, the present invention will be described in more detail with reference to examples. The materials used (n represents the refractive index) are as follows.
(透明樹脂基板)
1.TAC1:コニカミノルタ(株)製コニカミノルタタック40μm n=1.48
2.TAC2:コニカミノルタ(株)製ゼロタック 40μm n=1.50
3.COP:日本ゼオン(株)製ゼオノアZF14 100μm n=1.53
4.PC:帝人化成(株)製ピュアエースC110-100 100μm n=1.585.PET:東洋紡(株)製コスモシャインA4300 50μm n=1.60 (Transparent resin substrate)
1. TAC1: Konica Minolta Co., Ltd. Konica Minolta Tack 40 μm n = 1.48
2. TAC2: Konica Minolta Co., Ltd. zero tack 40 μm n = 1.50
3. COP: Nippon Zeon Co., Ltd. ZEONOR ZF14 100 μm n = 1.53
4). PC: Pure Ace C110-100 manufactured by Teijin Chemicals Ltd. 100 μm n = 1.585. PET: Toyobo Co., Ltd. Cosmo Shine A4300 50 μm n = 1.60
1.TAC1:コニカミノルタ(株)製コニカミノルタタック40μm n=1.48
2.TAC2:コニカミノルタ(株)製ゼロタック 40μm n=1.50
3.COP:日本ゼオン(株)製ゼオノアZF14 100μm n=1.53
4.PC:帝人化成(株)製ピュアエースC110-100 100μm n=1.585.PET:東洋紡(株)製コスモシャインA4300 50μm n=1.60 (Transparent resin substrate)
1. TAC1: Konica Minolta Co., Ltd. Konica Minolta Tack 40 μm n = 1.48
2. TAC2: Konica Minolta Co., Ltd. zero tack 40 μm n = 1.50
3. COP: Nippon Zeon Co., Ltd. ZEONOR ZF14 100 μm n = 1.53
4). PC: Pure Ace C110-100 manufactured by Teijin Chemicals Ltd. 100 μm n = 1.585. PET: Toyobo Co., Ltd. Cosmo Shine A4300 50 μm n = 1.60
(高屈折率層)
1.ZnS:n=2.37
2.ZnS-SiO21(95:5体積%):n=2.25
3.ZnS-SiO22(80:20体積%):n=2.12
4.ZnS-SiO23(70:30体積%):n=2.05
5.ITO:n=1.80
6.IZO:n=2.10
7.Nb2O5:n=2.33
8.ZnO:n=1.95 (High refractive index layer)
1. ZnS: n = 2.37
2. ZnS—SiO 2 1 (95: 5% by volume): n = 2.25
3. ZnS—SiO 2 2 (80: 20% by volume): n = 2.12
4). ZnS—SiO 2 3 (70:30 vol%): n = 2.05
5. ITO: n = 1.80
6). IZO: n = 2.10
7). Nb 2 O 5 : n = 2.33
8). ZnO: n = 1.95
1.ZnS:n=2.37
2.ZnS-SiO21(95:5体積%):n=2.25
3.ZnS-SiO22(80:20体積%):n=2.12
4.ZnS-SiO23(70:30体積%):n=2.05
5.ITO:n=1.80
6.IZO:n=2.10
7.Nb2O5:n=2.33
8.ZnO:n=1.95 (High refractive index layer)
1. ZnS: n = 2.37
2. ZnS—SiO 2 1 (95: 5% by volume): n = 2.25
3. ZnS—SiO 2 2 (80: 20% by volume): n = 2.12
4). ZnS—SiO 2 3 (70:30 vol%): n = 2.05
5. ITO: n = 1.80
6). IZO: n = 2.10
7). Nb 2 O 5 : n = 2.33
8). ZnO: n = 1.95
(透明金属導電材料)
1.Ag:Ag100at%
2.Ag合1:APC合金(Ag-Pd-Cu合金)((株)フルヤ金属製)
3.Ag合2:APC-TR合金((株)フルヤ金属製)
4.Ag合3:Ag-Bi-Ge-Au合金((株)フルヤ金属製) (Transparent metal conductive material)
1. Ag: Ag100at%
2. Ag alloy 1: APC alloy (Ag-Pd-Cu alloy) (Furuya Metal Co., Ltd.)
3. Ag go 2: APC-TR alloy (Furuya Metal Co., Ltd.)
4). Ag composite 3: Ag-Bi-Ge-Au alloy (Furuya Metal Co., Ltd.)
1.Ag:Ag100at%
2.Ag合1:APC合金(Ag-Pd-Cu合金)((株)フルヤ金属製)
3.Ag合2:APC-TR合金((株)フルヤ金属製)
4.Ag合3:Ag-Bi-Ge-Au合金((株)フルヤ金属製) (Transparent metal conductive material)
1. Ag: Ag100at%
2. Ag alloy 1: APC alloy (Ag-Pd-Cu alloy) (Furuya Metal Co., Ltd.)
3. Ag go 2: APC-TR alloy (Furuya Metal Co., Ltd.)
4). Ag composite 3: Ag-Bi-Ge-Au alloy (Furuya Metal Co., Ltd.)
(硫化防止層)
1.ZnO
2.GZO
(下地層)
1.Mo:Mo100at%
2.Pb:Pb100at% (Sulfurization prevention layer)
1. ZnO
2. GZO
(Underlayer)
1. Mo: Mo100at%
2. Pb: Pb 100 at%
1.ZnO
2.GZO
(下地層)
1.Mo:Mo100at%
2.Pb:Pb100at% (Sulfurization prevention layer)
1. ZnO
2. GZO
(Underlayer)
1. Mo: Mo100at%
2. Pb: Pb 100 at%
≪試料の作製≫
<試料1の作製>
TAC1フィルム上に、下記の方法で、第1高屈折率層(ZnS)/透明金属導電膜(Ag)/第2高屈折率層(ZnS)をこの順に積層した。その後、当該積層体を下記の方法でパターニングした。なお、下地層の平均層厚は、スパッタ装置のメーカー公称値の成膜速度から算出した。 ≪Sample preparation≫
<Preparation ofSample 1>
On the TAC1 film, a first high refractive index layer (ZnS) / transparent metal conductive film (Ag) / second high refractive index layer (ZnS) were laminated in this order by the following method. Thereafter, the laminate was patterned by the following method. In addition, the average layer thickness of the underlayer was calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus.
<試料1の作製>
TAC1フィルム上に、下記の方法で、第1高屈折率層(ZnS)/透明金属導電膜(Ag)/第2高屈折率層(ZnS)をこの順に積層した。その後、当該積層体を下記の方法でパターニングした。なお、下地層の平均層厚は、スパッタ装置のメーカー公称値の成膜速度から算出した。 ≪Sample preparation≫
<Preparation of
On the TAC1 film, a first high refractive index layer (ZnS) / transparent metal conductive film (Ag) / second high refractive index layer (ZnS) were laminated in this order by the following method. Thereafter, the laminate was patterned by the following method. In addition, the average layer thickness of the underlayer was calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus.
(第1高屈折率層(ZnS)の形成)
TAC1フィルム上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm(Standard Cubic Centimeter per Minute)、スパッタ圧0.1Pa、室温(25℃)下、ターゲット側電力150W、成膜レート3.0Å/sでZnSをRFスパッタし、第1高屈折率層を形成した。ターゲット-基板間距離は、90mmであった。 (Formation of first high refractive index layer (ZnS))
On a TAC1 film, using a magnetron sputtering apparatus of Osaka Vacuum Co., Ar 20 sccm (Standard Cubic Centimeter per Minute), sputtering pressure 0.1 Pa, room temperature (25 ° C.), target side power 150 W, film formation rate 3.0 mm / ZnS was RF sputtered with s to form a first high refractive index layer. The target-substrate distance was 90 mm.
TAC1フィルム上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm(Standard Cubic Centimeter per Minute)、スパッタ圧0.1Pa、室温(25℃)下、ターゲット側電力150W、成膜レート3.0Å/sでZnSをRFスパッタし、第1高屈折率層を形成した。ターゲット-基板間距離は、90mmであった。 (Formation of first high refractive index layer (ZnS))
On a TAC1 film, using a magnetron sputtering apparatus of Osaka Vacuum Co., Ar 20 sccm (Standard Cubic Centimeter per Minute), sputtering pressure 0.1 Pa, room temperature (25 ° C.), target side power 150 W, film formation rate 3.0 mm / ZnS was RF sputtered with s to form a first high refractive index layer. The target-substrate distance was 90 mm.
(透明金属導電膜(Ag)の形成)
第1高屈折率層上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温(25℃)下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタし、透明金属導電膜を形成した。ターゲット-基板間距離は、86mmであった。 (Formation of transparent metal conductive film (Ag))
On the first high refractive index layer, Anelva L-430S-FHS was used, Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature (25 ° C.), target side power 100 W, and film formation rate 2.5 Å / s. Ag was RF-sputtered to form a transparent metal conductive film. The target-substrate distance was 86 mm.
第1高屈折率層上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温(25℃)下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタし、透明金属導電膜を形成した。ターゲット-基板間距離は、86mmであった。 (Formation of transparent metal conductive film (Ag))
On the first high refractive index layer, Anelva L-430S-FHS was used, Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature (25 ° C.), target side power 100 W, and film formation rate 2.5 Å / s. Ag was RF-sputtered to form a transparent metal conductive film. The target-substrate distance was 86 mm.
(第2高屈折率層(ZnS)の形成)
透明金属導電膜上に、第1高屈折率層と同様にして、第2高屈折率層を形成し、積層体1を得た。 (Formation of Second High Refractive Index Layer (ZnS))
A second high refractive index layer was formed on the transparent metal conductive film in the same manner as the first high refractive index layer, to obtain alaminate 1.
透明金属導電膜上に、第1高屈折率層と同様にして、第2高屈折率層を形成し、積層体1を得た。 (Formation of Second High Refractive Index Layer (ZnS))
A second high refractive index layer was formed on the transparent metal conductive film in the same manner as the first high refractive index layer, to obtain a
(積層体1のパターニング)
得られた積層体1上に、レジスト層をパターン状に成膜し、第1高屈折率層、透明金属導電膜及び第2高屈折率層を、図3に示されるパターン(複数の導通領域9と、これを区切るライン状の絶縁領域10とを含むパターン)状にエッチング液(林純薬製)でパターニングした。絶縁領域10には、透明樹脂基板のみが含まれるものとした。また、ライン状の絶縁領域10の幅を16μmとし、試料1を得た。 (Patterning of laminated body 1)
On the obtainedlaminate 1, a resist layer is formed in a pattern, and the first high refractive index layer, the transparent metal conductive film, and the second high refractive index layer are formed in the pattern (a plurality of conductive regions) shown in FIG. 9 and a line-shaped insulating region 10 that divides the pattern 9), and was patterned with an etching solution (manufactured by Hayashi Junyaku). The insulating region 10 includes only a transparent resin substrate. Moreover, the width | variety of the line-shaped insulation area | region 10 was 16 micrometers, and the sample 1 was obtained.
得られた積層体1上に、レジスト層をパターン状に成膜し、第1高屈折率層、透明金属導電膜及び第2高屈折率層を、図3に示されるパターン(複数の導通領域9と、これを区切るライン状の絶縁領域10とを含むパターン)状にエッチング液(林純薬製)でパターニングした。絶縁領域10には、透明樹脂基板のみが含まれるものとした。また、ライン状の絶縁領域10の幅を16μmとし、試料1を得た。 (Patterning of laminated body 1)
On the obtained
<試料2~27及び比較試料101~104の作製>
試料2~27及び比較試料101~104は、表1に示すよう構成を試料1と同様にして作製した。
なお、第1高屈折率層と透明金属導電膜又は下地層との間の第1硫化防止層、第1硫化防止層と透明金属導電膜との間の下地層、透明金属導電膜と第2高屈折率層との間の第2硫化防止層は、以下のようにして形成した。 <Preparation ofSamples 2 to 27 and Comparative Samples 101 to 104>
Samples 2 to 27 and comparative samples 101 to 104 were prepared in the same manner as Sample 1 as shown in Table 1.
The first antisulfurization layer between the first high refractive index layer and the transparent metal conductive film or the base layer, the base layer between the first antisulfurization layer and the transparent metal conductive film, the transparent metal conductive film and the second The second antisulfurization layer between the high refractive index layers was formed as follows.
試料2~27及び比較試料101~104は、表1に示すよう構成を試料1と同様にして作製した。
なお、第1高屈折率層と透明金属導電膜又は下地層との間の第1硫化防止層、第1硫化防止層と透明金属導電膜との間の下地層、透明金属導電膜と第2高屈折率層との間の第2硫化防止層は、以下のようにして形成した。 <Preparation of
The first antisulfurization layer between the first high refractive index layer and the transparent metal conductive film or the base layer, the base layer between the first antisulfurization layer and the transparent metal conductive film, the transparent metal conductive film and the second The second antisulfurization layer between the high refractive index layers was formed as follows.
(第1及び第2硫化防止層の形成)
大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、スパッタ圧0.1Pa、室温(25℃)下、ターゲット側電力150W、成膜レート1.1Å/sで第1及び第2硫化防止層材料をRFスパッタし、第1及び第2硫化防止層を形成した。ターゲット-基板間距離は、90mmであった。 (Formation of first and second antisulfurization layers)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., the first and second antisulfurization layer materials were formed at an Ar of 20 sccm, a sputtering pressure of 0.1 Pa, a room temperature (25 ° C.), a target-side power of 150 W, and a deposition rate of 1.1 kg / s. RF sputtering was performed to form first and second antisulfurization layers. The target-substrate distance was 90 mm.
大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、スパッタ圧0.1Pa、室温(25℃)下、ターゲット側電力150W、成膜レート1.1Å/sで第1及び第2硫化防止層材料をRFスパッタし、第1及び第2硫化防止層を形成した。ターゲット-基板間距離は、90mmであった。 (Formation of first and second antisulfurization layers)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., the first and second antisulfurization layer materials were formed at an Ar of 20 sccm, a sputtering pressure of 0.1 Pa, a room temperature (25 ° C.), a target-side power of 150 W, and a deposition rate of 1.1 kg / s. RF sputtering was performed to form first and second antisulfurization layers. The target-substrate distance was 90 mm.
(下地層の形成)
シンクロン社製のBMC-800T蒸着機を用い、240A、成膜レート0.1Å/sで下地層材料を抵抗加熱式蒸着し、下地層を形成した。下地層の層厚は、成膜レート及び成膜時間から算出した。 (Formation of underlayer)
Using a BMC-800T vapor deposition machine manufactured by SYNCHRON, the underlayer material was deposited by resistance heating deposition at 240 A and a film formation rate of 0.1 Å / s to form an underlayer. The thickness of the underlayer was calculated from the film formation rate and the film formation time.
シンクロン社製のBMC-800T蒸着機を用い、240A、成膜レート0.1Å/sで下地層材料を抵抗加熱式蒸着し、下地層を形成した。下地層の層厚は、成膜レート及び成膜時間から算出した。 (Formation of underlayer)
Using a BMC-800T vapor deposition machine manufactured by SYNCHRON, the underlayer material was deposited by resistance heating deposition at 240 A and a film formation rate of 0.1 Å / s to form an underlayer. The thickness of the underlayer was calculated from the film formation rate and the film formation time.
作製した各試料を位置入力装置とし、下記の評価を行った。
Each sample produced was used as a position input device, and the following evaluation was performed.
≪試料の評価≫
<焼き付き性の評価>
端部に白色LED光源を配置したアクリル製導光板に、厚手の黒色紙でMS-Pゴチック体、24ポイントとなるようにアルファベットE、T、A、O、I、N、Q、S、W、Xの文字を作製し貼り付け、その上に作製した各試料を配置し、45℃5%RHの雰囲気下1000時間点灯を続け、その後目視により透明樹脂基板の焼き付きを観察し、下記の評価基準に従って評価した。
評価結果を表1に示す。 ≪Sample evaluation≫
<Evaluation of seizure>
A light guide plate made of acrylic with white LED light source at the end, MS-P Gothic with thick black paper, alphabet E, T, A, O, I, N, Q, S, W to be 24 points , X is prepared and pasted, and each sample prepared is placed thereon, followed by lighting for 1000 hours in an atmosphere of 45 ° C. and 5% RH, and then visually observing the seizure of the transparent resin substrate. Evaluation was made according to criteria.
The evaluation results are shown in Table 1.
<焼き付き性の評価>
端部に白色LED光源を配置したアクリル製導光板に、厚手の黒色紙でMS-Pゴチック体、24ポイントとなるようにアルファベットE、T、A、O、I、N、Q、S、W、Xの文字を作製し貼り付け、その上に作製した各試料を配置し、45℃5%RHの雰囲気下1000時間点灯を続け、その後目視により透明樹脂基板の焼き付きを観察し、下記の評価基準に従って評価した。
評価結果を表1に示す。 ≪Sample evaluation≫
<Evaluation of seizure>
A light guide plate made of acrylic with white LED light source at the end, MS-P Gothic with thick black paper, alphabet E, T, A, O, I, N, Q, S, W to be 24 points , X is prepared and pasted, and each sample prepared is placed thereon, followed by lighting for 1000 hours in an atmosphere of 45 ° C. and 5% RH, and then visually observing the seizure of the transparent resin substrate. Evaluation was made according to criteria.
The evaluation results are shown in Table 1.
◎ 全く観察されない。
○ 実用上問題程度観察される。
△ いくつかの文字が判別できる。
× 全ての文字が判別できる。 ◎ Not observed at all.
○ Observed to a practical extent.
Δ Some characters can be distinguished.
× All characters can be identified.
○ 実用上問題程度観察される。
△ いくつかの文字が判別できる。
× 全ての文字が判別できる。 ◎ Not observed at all.
○ Observed to a practical extent.
Δ Some characters can be distinguished.
× All characters can be identified.
<表面比抵抗の測定>
作製した各試料について、ダイアインスツルメンツ製抵抗率計ロレスタGPを用い、四端子法により表面比抵抗を測定した。
測定結果を表1に示す。 <Measurement of surface resistivity>
About each produced sample, the surface resistivity was measured by the four-terminal method using the resistivity meter Loresta GP made from Dia Instruments.
The measurement results are shown in Table 1.
作製した各試料について、ダイアインスツルメンツ製抵抗率計ロレスタGPを用い、四端子法により表面比抵抗を測定した。
測定結果を表1に示す。 <Measurement of surface resistivity>
About each produced sample, the surface resistivity was measured by the four-terminal method using the resistivity meter Loresta GP made from Dia Instruments.
The measurement results are shown in Table 1.
表1から明らかなとおり、本発明のタッチパネルは、焼き付きの発生が抑制され、表面比抵抗が十分に小さいことが分かった。これにより、本発明のタッチパネルの有用性が確認された。
As is clear from Table 1, it was found that the touch panel of the present invention was suppressed in the occurrence of image sticking and the surface specific resistance was sufficiently small. Thereby, the usefulness of the touch panel of this invention was confirmed.
本発明は、一定のメニュー表示画面を保持した場合であっても、焼き付きの発生が抑制されるタッチパネルを提供することに、特に好適に利用することができる。
The present invention can be used particularly suitably for providing a touch panel that can suppress the occurrence of burn-in even when a certain menu display screen is held.
1 タッチパネル
2 表示装置
3 位置入力装置
4 透明樹脂基板
5 透明金属導電膜
6 第1高屈折率層
7 第2高屈折率層
8 下地層
9 導通領域
10 絶縁領域 1Touch Panel 2 Display Device 3 Position Input Device 4 Transparent Resin Substrate 5 Transparent Metal Conductive Film 6 First High Refractive Index Layer 7 Second High Refractive Index Layer 8 Underlayer 9 Conductive Region 10 Insulating Region
2 表示装置
3 位置入力装置
4 透明樹脂基板
5 透明金属導電膜
6 第1高屈折率層
7 第2高屈折率層
8 下地層
9 導通領域
10 絶縁領域 1
Claims (4)
- メニュー画面表示用プログラム、透明樹脂基板、透明金属導電膜及びバックライトを有することを特徴とするタッチパネル。 A touch panel comprising a program for displaying a menu screen, a transparent resin substrate, a transparent metal conductive film, and a backlight.
- 前記透明金属導電膜が、銀又は銅の少なくとも1種を主成分とすることを特徴とする請求項1に記載のタッチパネル。 The touch panel according to claim 1, wherein the transparent metal conductive film contains at least one of silver and copper as a main component.
- 前記透明金属導電膜が、前記透明樹脂基板よりも屈折率の高い高屈折率層に挟持されていることを特徴とする請求項1又は2に記載のタッチパネル。 3. The touch panel according to claim 1, wherein the transparent metal conductive film is sandwiched between high refractive index layers having a higher refractive index than the transparent resin substrate.
- 前記高屈折率層の少なくとも一方には、ZnSが含有されていることを特徴とする請求項3に記載のタッチパネル。 The touch panel according to claim 3, wherein ZnS is contained in at least one of the high refractive index layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016508453A JPWO2015141068A1 (en) | 2014-03-17 | 2014-11-28 | Touch panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014053258 | 2014-03-17 | ||
JP2014-053258 | 2014-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141068A1 true WO2015141068A1 (en) | 2015-09-24 |
Family
ID=54144064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081539 WO2015141068A1 (en) | 2014-03-17 | 2014-11-28 | Touch panel |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015141068A1 (en) |
WO (1) | WO2015141068A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03230946A (en) * | 1990-02-06 | 1991-10-14 | Sumitomo Bakelite Co Ltd | Laminated film |
JP2002015623A (en) * | 2000-04-27 | 2002-01-18 | Mitsui Chemicals Inc | Transparent electrode |
JP2005144769A (en) * | 2003-11-13 | 2005-06-09 | Nakai Kogyo Kk | Polyfunctional laminate and its manufacturing method |
WO2007004577A1 (en) * | 2005-06-30 | 2007-01-11 | Fujifilm Corporation | Transparent conductive film and dispersion-type electroluminescent device using such film |
JP2013041566A (en) * | 2011-07-15 | 2013-02-28 | Alps Electric Co Ltd | Touch panel integrated display device and manufacturing method therefor |
WO2014010433A1 (en) * | 2012-07-11 | 2014-01-16 | コニカミノルタ株式会社 | Transparent electrode for touch panel, touch panel, and display device |
-
2014
- 2014-11-28 WO PCT/JP2014/081539 patent/WO2015141068A1/en active Application Filing
- 2014-11-28 JP JP2016508453A patent/JPWO2015141068A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03230946A (en) * | 1990-02-06 | 1991-10-14 | Sumitomo Bakelite Co Ltd | Laminated film |
JP2002015623A (en) * | 2000-04-27 | 2002-01-18 | Mitsui Chemicals Inc | Transparent electrode |
JP2005144769A (en) * | 2003-11-13 | 2005-06-09 | Nakai Kogyo Kk | Polyfunctional laminate and its manufacturing method |
WO2007004577A1 (en) * | 2005-06-30 | 2007-01-11 | Fujifilm Corporation | Transparent conductive film and dispersion-type electroluminescent device using such film |
JP2013041566A (en) * | 2011-07-15 | 2013-02-28 | Alps Electric Co Ltd | Touch panel integrated display device and manufacturing method therefor |
WO2014010433A1 (en) * | 2012-07-11 | 2014-01-16 | コニカミノルタ株式会社 | Transparent electrode for touch panel, touch panel, and display device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015141068A1 (en) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6314463B2 (en) | Transparent conductor | |
JP4961786B2 (en) | Transparent conductive film and transparent conductive film using the same | |
JP4888119B2 (en) | Transparent conductive film and method for producing the same, transparent conductive substrate, and light-emitting device | |
JP2005347235A (en) | Manufacturing method of organic luminescent surface device and organic luminescent surface device | |
JP6292225B2 (en) | Transparent conductor | |
US20160224151A1 (en) | Electrode to be used in input device and method for producing same | |
JP6319302B2 (en) | Transparent conductor and method for producing the same | |
WO2015068738A1 (en) | Transparent conductive body | |
CN109243678A (en) | A kind of composite transparent conductive film | |
JP4168689B2 (en) | Thin film laminate | |
WO2015141068A1 (en) | Touch panel | |
JP6344095B2 (en) | Transparent conductor and touch panel | |
JP2015219690A (en) | Transparent conductive device and touch panel | |
WO2015087895A1 (en) | Transparent conductive body | |
JP2016146052A (en) | Transparent conductor, and touch panel including the same | |
WO2015053371A1 (en) | Transparent conductor | |
WO2015025525A1 (en) | Transparent conductive body | |
WO2014196460A1 (en) | Transparent conductor and method for producing same | |
JPWO2016052158A1 (en) | Transparent conductor and touch panel including the same | |
JP2016169420A (en) | Apparatus and method for manufacturing transparent conductive member | |
JP2016144884A (en) | Transparent conductor and touch panel including the same | |
JP2016044356A (en) | Production method of transparent conductive body | |
WO2015133007A1 (en) | Method for producing transparent conductor | |
WO2014181538A1 (en) | Transparent conductor and method for producing same | |
WO2015125677A1 (en) | Transparent conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14885996 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016508453 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14885996 Country of ref document: EP Kind code of ref document: A1 |