WO2015139251A1 - 真空玻璃的真空抽取车及真空玻璃生产线 - Google Patents
真空玻璃的真空抽取车及真空玻璃生产线 Download PDFInfo
- Publication number
- WO2015139251A1 WO2015139251A1 PCT/CN2014/073724 CN2014073724W WO2015139251A1 WO 2015139251 A1 WO2015139251 A1 WO 2015139251A1 CN 2014073724 W CN2014073724 W CN 2014073724W WO 2015139251 A1 WO2015139251 A1 WO 2015139251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum
- vacuum glass
- extraction vehicle
- furnace
- cavity
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 231
- 238000000605 extraction Methods 0.000 title claims abstract description 110
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 238000007789 sealing Methods 0.000 claims abstract description 93
- 239000000463 material Substances 0.000 claims abstract 5
- 238000010438 heat treatment Methods 0.000 claims description 89
- 238000009413 insulation Methods 0.000 claims description 66
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims 11
- 230000007423 decrease Effects 0.000 claims 4
- 238000000034 method Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 15
- 238000002955 isolation Methods 0.000 description 12
- 238000003032 molecular docking Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000005086 pumping Methods 0.000 description 8
- 210000001503 joint Anatomy 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005816 glass manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/66—Units comprising two or more parallel glass or like panes permanently secured together
- E06B3/677—Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
- E06B3/6775—Evacuating or filling the gap during assembly
Definitions
- the invention relates to a vacuum glass making device.
- it relates to vacuum extraction vehicles and vacuum glass production lines used in continuous automated production lines that can process multiple vacuum glasses simultaneously. Background technique
- the above-mentioned prior Chinese patent application with the application number 201210291474.7 provides an automated vacuum glass manufacturing system and related methods under the premise of ensuring the quality of the vacuum glass product, and the structure of the vacuum glass and the vacuum extraction device is as shown in the figure. 1 and Figure 2.
- the core of this is: In the production line, the vacuum glass suction port sealing device of the continuous vacuum furnace is improved, thus realizing continuous, efficient and energy-saving production.
- This prior application is an important epoch-making invention in the field of vacuum glass making.
- this application has the drawback that it is impossible to perform vacuum extraction operation and/or sealing operation on a plurality of vacuum glasses simultaneously in one vacuum furnace.
- the small-volume vacuum glass suction port sealing device provided by the application is placed in the two processed pieces by mechanical or manual means. Between the empty glass (shown in Figure 3, placed between the processed vacuum glass P1 and P2, denoted by A), and aligned with the suction port of the vacuum glass being processed.
- the vacuum glass suction port sealing device A is brought into contact with the processed vacuum glass P2 by a vacuum pre-extraction operation and fixed in position.
- a first driving force F is applied to the vacuum glass suction port sealing device A in a direction parallel to the surface of the processed vacuum glass P2, and the first driving force F is converted into a processed portion by the driving force steering device.
- the second driving force f of the surface of the vacuum glass P2 is vertical.
- the second driving force f can push the sealing head inside the vacuum glass suction port sealing device A toward the surface of the processed vacuum glass P2, and press the sealing piece disposed on the sealing head against the processed vacuum glass P2.
- the suction port is closed so that the suction port can be closed.
- the technical solution disclosed by the present invention provides a vacuum glass vacuum drawing vehicle and a vacuum glass production line, which can not only perform vacuum extraction operation or sealing operation on a plurality of vacuum glasses at the same time, but also has a structural unit, thereby Conducive to the processing and maintenance of equipment.
- a vacuum glass vacuum pump comprising: a rack device comprising a plurality of support platforms spaced apart in a vertical direction, each of which is provided with a vacuum glass for carrying the vacuum glass And the size and the matching position of the target, and the support of each layer and the bearing thereon The positions are staggered in a direction parallel to the surface of the vacuum glass such that the suction ports of the vacuum glass placed on the respective carrying positions are not blocked by the support table located below and the vacuum glass thereon; the exhaust sealing device, And performing a vacuuming operation and a suction port closing operation respectively through a suction port of the vacuum glass in a direction perpendicular to a surface of the vacuum glass; the number of the exhaust sealing devices corresponds to the number of the bearing positions; Means for fixing the vacuum glass and the exhaust sealing device to a bearing position of the support table, and the exhaust sealing device is located below the vacuum glass, and the exhaust sealing device a top opening is opposite to the suction port of the vacuum glass; a base, the
- the number of the bearing positions is plural, and the plurality of the bearing positions are arranged in a rectangular array in a direction parallel to the surface of the vacuum glass; and, between the support platforms of different layers
- the number of i ⁇ carriers is the same as that of the arrangement, and the support stations of each layer and the same carrier positions on the same row are sequentially arranged in a direction parallel to the surface of the vacuum glass.
- the support layers of each layer have different sizes in the staggered direction, and are sequentially reduced from top to bottom in a direction perpendicular to the surface of the vacuum glass; and for each load of the same number of rows between the support stages of different layers
- the one side edges in the staggered direction are flush with each other, and the respective carrying positions of the same row and order are different in the staggered direction, and are sequentially decreased from top to bottom in a direction perpendicular to the surface of the vacuum glass.
- the support layers of the respective layers have different sizes in the staggered direction, and are sequentially decreased from top to bottom in a direction perpendicular to the surface of the vacuum glass; and for each support table, the number of the load positions is one, and Between the support stages of different layers, the side positions of the respective load-bearing positions in the staggered direction are flush with each other, and the respective load-bearing positions of the same rank and order are different in the staggered direction, and are perpendicular to the surface of the vacuum glass. The direction is reduced from top to bottom.
- a first insulation layer is disposed on an outer surface of the base and the bearing cavity thereof for The vacuum system and control system within the load bearing chamber are protected from ambient temperature.
- a support frame is further disposed on the base, the support frame includes a step plate and four side plates, and the step plate, the four side plates and the base form a closed space; wherein the step The plate has a plurality of steps in a staggered direction of the carrying position, the number of the steps corresponding to the number of layers of the support table, and the support table is disposed on the step in a one-to-one correspondence; a top opening of the gas sealing device penetrates the step in a direction perpendicular to a surface of the vacuum glass and reaches below the vacuum glass, and in the exhaust sealing device, a top opening thereof is required to be in contact with the vacuum glass The portion in contact is above the step; the remainder is located in the enclosed space below the step.
- a second insulating layer is disposed on an outer surface of the step plate and the four side plates to protect a portion of the exhaust sealing device located in the closed space from external temperature.
- the vacuum system comprises a vacuuming line and a vacuum pump
- the vacuuming line comprises a main road and a plurality of branches connected in parallel, the number of the branches corresponding to the number of the exhaust sealing devices And one end of the branch is connected correspondingly to the exhaust sealing device; the other end of the branch is connected to one end of the main road; the other end of the main road is connected to the vacuum pump
- the vacuum pump is configured to sequentially extract air in the vacuum glass through the vacuuming line and the exhaust sealing device when the exhaust sealing device performs a vacuuming operation.
- the present invention further provides a vacuum glass production line, comprising: a heating furnace, a rail and a vacuum extraction vehicle, wherein the rail is disposed through a furnace cavity of the heating furnace;
- the roller travels along the track and travels to a heating position in the furnace cavity of the heating furnace when the exhaust sealing device performs a vacuuming operation and a suction port closing operation;
- the vacuum drawing vehicle adopts the present invention
- a vacuum pump for vacuum glass as described above is provided; the furnace chamber of the heating furnace is configured to heat the vacuum glass on the vacuum extraction vehicle when the vacuum extraction vehicle is in the heating position.
- the furnace chamber of the heating furnace is a single-type cavity that accommodates only one vacuum extraction vehicle; or the furnace chamber of the heating furnace is continuous to accommodate a plurality of the vacuum extraction vehicles that are connected end to end. Style Cavity.
- the furnace chamber includes an opening for the vacuum extraction vehicle to enter and exit, and a furnace door for opening or closing the opening; and a third insulation layer is disposed on the inner surface of the furnace chamber; The furnace door, the third insulation layer and the base form a sealed space when the vacuum extraction vehicle is in the heating position.
- the furnace chamber includes a first opening and a second opening for the vacuum extraction vehicle to enter and exit, and first and second furnace doors for opening or closing the first opening and the second opening, respectively
- a third insulation layer is disposed on the inner surface of the furnace chamber; the first furnace door, the second furnace door, the third insulation layer and the base are located at the heating position of the vacuum extraction vehicle Form a sealed space.
- the furnace chamber includes an opening for the vacuum extraction vehicle to enter and exit, and a third insulation layer is disposed on the inner surface of the furnace chamber; on the base of the vacuum extraction vehicle, and located at the A rear facade insulation layer is disposed on a rear side of the traveling direction of the vacuum extraction vehicle, and the rear facade insulation layer, the third insulation layer, and the base form a sealed space when the vacuum extraction vehicle is in the heating position.
- the furnace chamber includes a first opening and a second opening for the vacuum extraction vehicle to enter and exit; and, a third insulation layer is disposed on an inner surface of the furnace chamber; and a base of the vacuum extraction vehicle And a front facade insulation layer and a rear facade insulation layer respectively disposed on the front side and the rear side of the traveling direction of the vacuum extraction vehicle, the front facade insulation layer, the rear facade insulation layer, and the third insulation
- the layer and the base form a sealed space when the vacuum extraction cart is in the heated position.
- heat-insulating protrusions are respectively disposed on the inner surface of the cavity and located at the A heat-insulating slider is disposed on each side of the traveling direction of the vacuum pump, and one end of the heat-insulating slider and the inner surface of the furnace chamber are slidably connected in a vertical direction, and the other end of the heat-insulating slider is An inner surface of the furnace cavity extends below the thermal insulation convex portion on the same side thereof; when the vacuum extraction vehicle is in the heating position, the thermal insulation slider is vertically raised to contact the thermal insulation convex portion Positioning; when the vacuum pumping vehicle travels relative to the furnace chamber, causing the thermal insulation slider to be vertically Dropped to a position that is not in contact with the heat retaining projection.
- a plurality of heat-insulating protrusions are respectively disposed on two sides of the base of the vacuum pump and/or the outer peripheral wall of the load-bearing cavity, and the plurality of heat-insulating protrusions are respectively disposed on two sides of the vacuum pump traveling direction.
- a heat retaining block is provided, one end of the heat insulating block and the cavity of the heat insulating block
- the inner surface is fixedly connected, and the other end of the heat retaining block extends from the inner surface of the furnace cavity to below the heat insulating convex portion on the same side thereof; and the number of the heat insulating block and the heat insulating convex portion
- the number of the heat retention blocks and the heat retention protrusions are spaced apart from each other in the vertical direction and disposed therebetween.
- a hot air inlet is disposed on the left side or the right side of the traveling direction of the vacuum extraction vehicle, and correspondingly, on the third insulation layer, and located at the a hot air outlet is disposed on a right side or a left side of a traveling direction of the vacuum drawing vehicle;
- the heating furnace further includes a hot air circulation passage, a heating device, and a blowing device, wherein the hot air circulation passage is disposed outside the third thermal insulation layer And respectively connected to the hot air inlet and the hot air outlet; the heating device is configured to heat air in the hot air circulation passage; and the air blowing device is configured to pass the heated air through the hot air inlet Delivered into the sealed space in the furnace chamber; the hot air outlet is for discharging air in the sealed space into the hot air circulation passage.
- the track is a closed circular track.
- the vacuum glass production line further comprises an automatic control system, the automatic control system comprising a driving unit, a heating unit and a control unit, wherein the driving unit is configured to drive the vacuum extraction vehicle to advance, retreat or stop along the circular track
- the heating unit is configured to heat the furnace cavity according to a preset temperature curve; the control unit is configured to control the operation of the driving unit and the heating unit.
- the vacuum glass vacuum drawing vehicle provided by the invention can be placed on each bearing position by sequentially arranging the support platforms of the layers and the bearing positions thereon in a direction parallel to the surface of the vacuum glass.
- the suction port of the vacuum glass is not blocked by the support table located underneath and the vacuum glass thereon, so that the vacuum sealing operation can be separately performed through the suction port of the vacuum glass in the direction perpendicular to the surface of the vacuum glass by the exhaust sealing device and
- the suction port closing operation that is, when the exhaust sealing device performs corresponding operations on the target vacuum glass in a direction perpendicular to the surface of the vacuum glass, the action is not blocked by the vacuum glass located under the target vacuum glass.
- the vacuum pump of the vacuum glass provided by the present invention is not only structurally simple, but also beneficial to processing and maintenance of the equipment, and can also utilize multiple exhaust sealing devices simultaneously perpendicular to the vacuum glass.
- the vacuum glass production line provided by the invention can not only perform vacuum extraction operation or sealing operation on a plurality of vacuum glasses at the same time by using the vacuum vacuum drawing vehicle provided by the invention, but also can enclose the structure of the device, thereby facilitating the process. Processing and maintenance of equipment. DRAWINGS
- Figure 1 is a schematic view showing a vacuum glass as a processing object
- Figure 2 is a schematic view showing the operation of the vacuum pump of the vacuum glass in the vacuum glass processing process of the prior application;
- Figure 3 is a schematic view of a vacuum glass suction port sealing device improved in the prior application for processing a multi-layer vacuum glass;
- FIG. 4A is a front view of a vacuum pumping vehicle for vacuum glass according to an embodiment of the present invention
- FIG. 4B is a side view taken along line A-A of FIG. 4A;
- Figure 4C is a bottom plan view of the vacuum glass arrangement of Figure 4A;
- Figure 4D is a perspective view of one of the support frames of Figure 4A;
- Figure 4E is a front elevational view of the support frame of Figure 4A;
- FIG. 4F is a top plan view of the support frame of FIG. 4A;
- Figure 5 is a front elevational view of a vacuum glass production line provided by an embodiment of the present invention
- Figure 6A is a side view of the vacuum pump using the first isolation method
- Figure 6B is a side view of the vacuum pump of the first type of isolation in a single furnace chamber
- Figure 6C is a side view of the vacuum pump of the first type of isolation in a single furnace chamber
- Figure 7A is a side view of the vacuum pump using the second isolation method
- Figure 7B is a side view of the vacuum extraction vehicle in the single furnace chamber using the second isolation method
- Figure 8A is a side view of the vacuum extraction vehicle using the third isolation method
- Figure 8B is a side elevational view of the vacuum extraction vehicle in the single furnace chamber using the third isolation method
- Figure 9A is a front elevational view of the vacuum extraction vehicle in the first chamber, in the heating position of the furnace chamber;
- Figure 9B is a front elevational view of the vacuum pump of the first type of docking when moving relative to the oven cavity;
- Figure 10 is a front elevational view of the vacuum pickup vehicle adopting the second docking method
- Figure 11A is a side view of the continuous furnace chamber when there is no vacuum pump in each sub-furnace chamber
- Figure 11B is a side view of the continuous furnace chamber when there is a vacuum pump in each sub-furnace chamber
- Figure 12 is an embodiment of the present invention
- the vacuum suction truck of the vacuum glass comprises: a rack device 1, an exhaust sealing device 2, a clamping device 3 and a base 51.
- the rack device 1 includes a plurality of support platforms spaced apart in a vertical direction.
- the support platform has three layers, from top to bottom: a first layer support table 11A and a second layer support table. 11B and third floor support table 11C, the three-layer support table is supported by The frame 12 is supported, and the support frame 12 is fixed to the base 51.
- each of the support tables is provided with a load-bearing position for carrying the vacuum glass and having a size adapted thereto.
- the so-called carrying position refers to the area on the upper surface of the preset support table for carrying the vacuum glass, and when the vacuum glass is placed on the area, the projection of the area and the vacuum glass on the upper surface of the support table respectively coincide. . It is easy to understand that the number, size and arrangement of the above-mentioned bearing positions can be regarded as the quantity, size and arrangement of the vacuum glass.
- the first horizontal direction perpendicular to the traveling direction of the vacuum drawing vehicle is set to the X direction;
- the second horizontal direction in which the traveling direction of the vehicle is parallel is the Y direction;
- the direction perpendicular to the X direction and the Y direction is the Z direction, as shown in FIGS. 4A-4C, and the X direction and the Y direction are both parallel to The direction of the vacuum glass surface;
- the Z direction is the direction perpendicular to the surface of the vacuum glass.
- the support table functions to carry the vacuum glass.
- each support table except the uppermost support table
- the suction port of the vacuum glass carried by the support table located above it It is also possible to stably support the vacuum glass without defining the shape and structure of the support table.
- the shape and structure of the support table can be adaptively designed according to the number, size and arrangement of the bearing positions.
- the number of bearing positions is plural, and the plurality of bearing positions are arranged in a rectangular array in a direction parallel to the surface of the vacuum glass; and, for different layers of support Between the stages, the number of carrying positions and the arrangement are the same, and the respective carrying positions of the same row and order are sequentially arranged alternately in a direction parallel to the surface of the vacuum glass.
- the number of vacuum glasses is four, and four vacuum glasses are arranged in a rectangular array in the X direction and the Y direction, wherein the number of rows and columns of the rectangular array is 2 x 2 .
- the number and arrangement of the vacuum glass are the same, so that the position of the vacuum glass with the same number of ranks on the support table is corresponding to each layer, that is, The position in the z direction corresponds.
- the four vacuum glasses on the first layer support table 11A are from right to left in FIG. 4C, and are from front to back: 4A1, 4A2, 4A3, 4A4; four blocks on the second layer support table 11B.
- the vacuum glass is from right to left in Figure 4C, and from front to back: 4B1, 4B2, 4B3, 4B4;
- the four vacuum glasses on the third support table 11B are from right to left in Figure 4C, and from the front
- the order is: 4C1, 4C2, 4C3, 4C4.
- the positions of the vacuum glasses 4 ⁇ 1, 4B1 and 4C1 in the ⁇ direction correspond; the positions of the vacuum glasses 4 ⁇ 2, 4 ⁇ 2 and 4C2 in the ⁇ direction correspond; vacuum glass 4 ⁇ 3, 4 ⁇ 3 and 4C3 Corresponding to the position in the ⁇ direction; the positions of the vacuum glasses 4 ⁇ 4, 4 ⁇ 4 and 4C4 in the ⁇ direction correspond.
- the support layers of the respective layers are alternately arranged in the X direction (i.e., the direction parallel to the surface of the vacuum glass).
- each of the vacuum glasses having the same number of ranks in each layer is sequentially arranged in the X direction, that is, each of the vacuum glasses corresponding to each other in the x direction is staggered in the X direction, so that the support is placed in each layer.
- the suction port 41 of the vacuum glass on the table (except for the lowermost support table) is not blocked by the support table located below it and the vacuum glass thereon.
- the so-called staggered arrangement means that the vacuum glass on each support table is staggered layer by layer, and finally has a stepped structure.
- each load bearing position is the same; and, for the support platforms of different layers, the side positions of the same load-bearing positions in the staggered direction are flush with each other. And the respective carrier positions having the same rank and order are different in the staggered direction, and are sequentially decreased from top to bottom in a direction perpendicular to the surface of the vacuum glass. That is to say, for the different layers of the support table, the one side edge of each vacuum glass corresponding to the position in the x direction (the left side edge of the vacuum glass 4A1, 4B1 and 4C1 in the X direction in Fig.
- the vacuum glass 4A1, 4B1, and 4C1 are on the left side in the X direction.
- the edge alignment is set; and, the vacuum glass 4A1 on the first layer support table 11A (corresponding to the size of the bearing position of the layer support table) has a side length of La in the X direction; the vacuum glass on the second layer support table 11A
- the side length of 4B1 in the X direction is Lb; the side length of the vacuum glass 4C1 on the third layer support table 11A in the X direction is Lc, and La > Lb > Lc.
- the side lengths D of the vacuum glasses 4A1, 4B1, and 4C1 in the Y direction may be set to be the same or different depending on different applications.
- the one side edges of the respective vacuum glasses corresponding to the positions in the Z direction are aligned, and the other side edges are staggered to have the advantage that the body of the vacuum extraction vehicle can be saved in a direction parallel to the surface of the vacuum glass.
- Dimensions which can reduce the manufacturing cost of the device.
- the size of each load bearing position can be arbitrarily set according to the size of the vacuum glass to be processed, and the staggered manner should not be limited to the above manner provided by the present invention, as long as the vacuum on each support table can be ensured.
- the suction port of the glass is not blocked by the vacuum glass located below it.
- the size and arrangement of the supporting table in the embodiment are as follows: the size of each layer of the supporting table in the staggered direction is different, and the direction perpendicular to the surface of the vacuum glass From top to bottom, as shown in FIG. 4C, the side length of the support table 11A in the X direction is Ha; the side length of the support table 11B in the X direction is Hb; the side length of the support table 11C in the X direction Is He, and Ha > Hb > Hc.
- the three-layer support tables (11A, 11B, 11C) are alternately arranged on the left and right sides in the X direction. Further, the side lengths B of the three-layer support tables (11A, 11B, 11C) in the Y direction may be set to be the same or different depending on different applications.
- each layer of the support table may coincide with the projected outline of the rectangular array formed by the respective carrier positions on the layer support table, that is, each A diagonal of the carrying position is aligned with the corresponding diagonal of the support table.
- each layer of the support table is arranged with three or more vacuum glasses arranged in the X direction, the support table except the uppermost layer may be used according to the number of vacuum glasses.
- a groove is provided through which the exhaust sealing device can pass, and the groove of each groove is placed on the support table on the support table and the vacuum glass on the support table above and above it.
- the positions of the ports are opposite, that is, the grooves corresponding to the Z direction on the support platforms of the layers are sequentially staggered along the X direction.
- the top opening of the vent sealing device can pass through the groove and the corresponding vacuum glass.
- the suction port is positioned concentrically.
- the clamping device 3 is used for fixing the vacuum glass and the exhaust sealing device 2 on the bearing position of the support table, and the exhaust sealing device 2 is located below the vacuum glass, and the opening of the exhaust sealing device 2 and the suction port of the vacuum glass 41 relative settings.
- the vent sealing device 2 is for performing a vacuuming operation and a suction port closing operation respectively through the suction port 41 of the vacuum glass in a direction perpendicular to the surface of the vacuum glass (ie, the Z direction), and the number of the vent sealing device 2 and the vacuum
- the number of glasses i.e., the carrying positions
- the working principle and structure of the venting sealing device 2 in the embodiment of the present application are similar to those in the prior Chinese patent application No. 201210291474.7. Since the exhaust sealing device 2 has been described in detail in the prior Chinese patent application, it will not be described again.
- the interdigitated dimensions of the corresponding load-bearing phases between the layers can be set according to the specific dimensions of the venting closure, and the projection profile of each of the stepped plates on a plane parallel to the surface of the vacuum glass.
- the projected profile of each of the step plates parallel to the plane of the vacuum glass surface shall include a projected profile of the venting sealing means on a plane parallel to the surface of the vacuum glass.
- the vacuum drawing vehicle of the vacuum glass provided by the embodiment of the present invention not only has a structural unit, but is advantageous for processing and maintenance of the equipment, and can also utilize a plurality of exhaust sealing devices simultaneously perpendicular to the vacuum glass.
- the structure and function of the support frame 12 will be described in detail below with reference to Figs.
- the support frame 12 includes a step plate (having three step plates 125A, 125B, and 125C) and four side plates 126.
- the step plates, the four side plates 126, and the base 51 form a closed space 127, as shown in FIGS. 4D and 4E. Shown. It is easy to understand that the plate surface of the step plate is parallel to the surface of the vacuum glass; the plate faces of the four side plates 126 are perpendicular to the plate faces of the step plate.
- the three step plates 125A, 125B and 125C extend in the staggered direction (ie, the X direction) along the carrying position, and the three steps are lowered layer by layer from the edge of the base 51 to the center, thereby making the three-layer support table (11A) , 11B and 11C) are arranged to be spaced apart in the vertical direction (i.e., the Z direction) by correspondingly disposed on three steps.
- a mounting hole 1251 is further disposed on each step, and a top opening of the exhaust sealing device 2 passes through the mounting hole 1251 in the Z direction and reaches below the vacuum glass so that the top opening and the suction port of the vacuum glass relatively.
- a portion 21 of the top opening which is required to be in contact with the vacuum glass is located above the step; the remaining portion 22 is located in the closed space 127 below the step, as shown in Fig. 4E.
- the closed space 127 is formed by the step plate, the four side plates 126 and the base 51 together, and the lower half 22 of the exhaust sealing device 2 can be isolated from the outside, so that the lower half 22 can be protected from external forces such as external forces.
- the influence of factors such as temperature ensures the normal operation of the components and can improve the service life of the exhaust sealing device 2.
- a second insulating layer (not shown) is provided on the outer surfaces of the step plate and the four side plates 126 to further protect the lower half 22 of the vent sealing device from external temperatures.
- each of the support platforms is supported by four support frames 12, and there is a gap between the two support frames 12 adjacent in the Y direction and the X direction, respectively.
- This gap not only provides space for loading the vacuum glass, but also provides space for the flow of hot gas during the process.
- the hot gas flows from one side of the support table to the other side in the X direction (for example, the direction of the arrow in FIG. 4F), and is heated while flowing through each of the vacuum glasses, thereby improving Uniform heating.
- the projection shape of the support frame 12 on the support table is rectangular, that is, the step plate and the four side plates 126 are spliced to form a rectangular closed space, but the present invention is not limited thereto. Therefore, in practical applications, the projection shape of the support frame on the support table may also be any other shape such as a circle, an ellipse, a triangle, etc., and the side plates can be adapted according to different shapes, for example, if the support frame The projection shape on the support table can also be circular, and the side plates can be arranged as a closed annular structure, and the projection contour of the step plate on the support table is correspondingly designed to be circular.
- the base 51 is for supporting the rack device 1, and a load chamber 52 is provided at the bottom of the base 51 for placing a vacuum system and a control system (not shown) connected to the exhaust sealing device 2.
- the vacuum system includes an evacuation line and a vacuum pump 63.
- the vacuuming pipeline comprises a main road 62 and a plurality of branches 61 connected in parallel, the number of the branches 61 corresponding to the number of the exhaust sealing device 2, and one end of the branch 61 and the exhaust sealing device 2 - Correspondingly connected; the other end of the branch 61 is connected to one end of the main path 62; the other end of the main path 62 is connected to the vacuum pump 63.
- the vacuum pump 63 sequentially extracts the air in the vacuum glass via the evacuation line and the exhaust sealing device 2.
- the number of vacuum pumps may be set to one or more according to specific conditions, and a plurality of vacuum pumps may be connected in parallel or independent of each other, that is, multiple vacuum pumps may be used to simultaneously extract air in each vacuum glass, or A portion or all of the air in the vacuum glass is separately extracted by a plurality of vacuum pumps.
- the outer surface of the base 51 and its load-bearing cavity 52 is covered with a first insulating layer for protecting the vacuum system and control system within the load-bearing cavity 52 from external temperatures.
- a roller 8 is disposed at the bottom of the carrying chamber 52 for driving the carrying chamber 52, the base 51 and the rack device 1 to move.
- the roller 8 is driven by a drive unit 7 provided in the carrying chamber 52 for driving the roller 8 to advance, retreat or stop.
- the number of bearing positions on each supporting platform is four, but the present invention is not limited thereto. In practical applications, the number may also be one, two, three. One or five or more.
- FIG. 5 A front view of a vacuum glass production line provided by an embodiment of the present invention.
- the vacuum glass production line includes: a heating furnace, a rail 9 and a vacuum pump.
- the rail 9 is disposed through the furnace chamber 100; the vacuum pump travels along the rail 9 through the roller 8, and travels to the heating position in the furnace chamber 100 when the exhaust sealing device performs the vacuuming operation and the suction port closing operation (as shown in the figure).
- the position of the vacuum pump in the middle of the vacuum pump is the same as that provided in the embodiment of the present invention.
- the furnace chamber 100 of the heating furnace is a unitary chamber containing only one vacuum extraction vehicle for heating the vacuum glass on the vacuum extraction vehicle when the vacuum extraction vehicle is in the above-described heating position.
- the furnace chamber 100 is heated by means of hot air circulation heating.
- a hot air inlet 103 is further disposed, and correspondingly, on the third insulation layer, and
- a hot air outlet 104 is provided on the right side of the traveling direction of the vacuum pump.
- the heating furnace further includes a hot air circulation passage 105, a heating device 106, and a blowing device 107.
- the hot air circulation passage 105 is disposed outside the third insulation layer and is connected to the hot air inlet 103 and the hot air outlet 104, respectively.
- the heating device 106 is for heating the air in the hot air circulation passage 105; the air blowing device 107 is for conveying the heated air to the heating space 101 in the furnace chamber via the hot air inlet 103.
- the heated air forms a flow of hot gas in the heating space 101, and the hot gas flows horizontally toward the hot air outlet 104 in the X direction and is heated as it flows through the respective vacuum glass; then, the hot air flow is discharged from the hot air outlet 104.
- the hot air circulation passage 105 is configured to realize hot air circulation heating.
- the positions and numbers of the hot air inlet, the hot air outlet, and the hot air circulation passage are not limited to the manner shown in the embodiment, and the flow direction of the hot air flow is not limited to the X direction, and may be along the Y direction. Simultaneous or timing conversion in both directions, as long as heating of the vacuum glass can be achieved.
- the furnace chamber 100 is heated by hot air circulation heating.
- the present invention is not limited thereto.
- the furnace chamber may be heated by any other means such as heat radiation.
- the bearing chamber 52 is required. Separating from the heating space above it, that is, as shown in FIG. 5, the space above the base 51 in the cavity 100 is used as the heating space 101; the space below the base 51 in the cavity 100 is taken as the lower space 102, and the heating space 101 It is isolated from the lower space 102.
- the vacuum glass production line provided by the embodiment of the present invention isolates the heating space 101 and the lower space 102 in the following manners.
- the furnace chamber 100 includes an opening for the vacuum extraction vehicle to enter and exit (located on the right side of the furnace chamber 100 in FIG. 6B), and is used to open or close the opening.
- the third insulating layer 110 covers the upper surface of the cavity 100 and the portions of the three side surfaces above the base 51.
- a furnace door control device 121 is provided at the top of the furnace chamber 100 for controlling the opening or closing of the furnace door 120.
- the door control device includes a fixed pulley, a rope, and a winding device. Wherein one end of the rope is connected to the winding device, and the other end of the rope is connected to the furnace door 120 around the fixed pulley. The winding or unwinding of the rope is performed by the winding device to open or close the door 120.
- the present invention is not limited to such a furnace door control method, and the opening or closing of the furnace door may be controlled by any other means such as pneumatic.
- the furnace chamber 100 includes a first opening and a second opening for the vacuum extraction vehicle to enter and exit (i.e., the furnace in Fig. 6B).
- An opening is provided on the left side of the cavity 100, and a first furnace door 120 and a second furnace door 122 for opening or closing the first opening and the second opening, respectively; and a third surface is disposed on the inner surface of the furnace cavity
- the insulating layer 110 covers the upper surface of the furnace chamber 100 and the portions of the two side surfaces above the base 51.
- the furnace chamber 100 includes an opening for the vacuum extraction vehicle to enter and exit (on the left side of the furnace chamber 100 in Fig. 7B), and is disposed on the inner surface of the furnace chamber 100.
- a rear facade insulating layer 53 is provided on the base 51 of the vacuum pickup vehicle and on the rear side in the traveling direction of the vacuum pickup vehicle.
- the furnace chamber 100 includes a first opening and a second opening for the vacuum extraction vehicle to enter and exit (the left and right sides of the furnace chamber 100 in FIG. 7B, respectively);
- a third heat insulating layer 110 is disposed on the inner surface of the furnace chamber 100, and the third heat insulating layer 110 covers the upper surface of the furnace chamber 100, and portions of the two side surfaces above the base 51.
- the front and rear facade insulation layers 53 are respectively disposed on the front side and the rear side of the traveling direction of the vacuum pickup vehicle.
- the inner spaces of the third heat insulating layer 110, the vertical heat insulating layer 53, the base 51 and the furnace chamber 100 are respectively adapted in the X, Y and Z directions to ensure the furnace.
- the door 120, the facade insulation layer 53, the third insulation layer 110 and the base 51 can form a sealed space after the corresponding butt joints are faced.
- the base 51 and the third insulation layer 110 need to be in the above-mentioned heating position when the vacuum extraction vehicle is located in the above-mentioned heating position, a closed heating space 101 is formed above the base 51 by the sealing butt joint, which not only causes the vacuum extraction vehicle to be
- the movement interference occurs when moving relative to the furnace chamber 100, and the seal failure of the base 51 and the third insulation layer 110 due to mutual friction is also caused.
- the base 51 and the third heat insulating layer 110 can adopt the following two docking methods, and the two pairs The connection method can ensure that no motion interference occurs when the vacuum extraction vehicle moves relative to the furnace chamber 100, and it can ensure that the vacuum connection vehicle is in the above-mentioned heating position to achieve sealing docking.
- the first type of docking is on the outer peripheral wall of the base 51 of the vacuum pump, and is located on both sides of the traveling direction of the vacuum pump (i.e., the base 51 of Figs. 9A and 9B).
- the left and right sides are respectively provided with heat-insulating protrusions 511, and on the inner surface of the furnace chamber 100, and on both sides of the traveling direction of the vacuum pumping vehicle (that is, the inner surface of the furnace chamber 100 and the heat-insulating convex portion 511, respectively)
- the opposite surfaces are respectively provided with a heat insulating slider 111.
- One end of the heat insulating slider 111 and the inner surface of the furnace chamber 100 are slidably connected in a vertical direction, and the other end of the heat insulating slider 111 extends from the inner surface of the furnace chamber 100 to Below the thermal insulation convex portion 511 on the same side.
- the heat insulating slider 111 is vertically raised (in the direction of the arrow in Fig. 9A) to a position in contact with the heat insulating convex portion 511, so that the two are superposed on each other to achieve a sealing butt joint.
- the heat insulating slider 111 When the vacuum pumping vehicle travels relative to the furnace chamber 100, the heat insulating slider 111 is vertically lowered to a position that is not in contact with the heat insulating convex portion 511, that is, the two are separated from each other, thereby vacuuming the vehicle relative to the furnace chamber 100. No motion interference occurs when moving.
- the second docking mode is on the outer peripheral wall of the vacuum pumping vehicle base and/or the bearing chamber, and is located on both sides of the vacuum drawing vehicle traveling direction (ie, the left and right sides of the base in FIG. 10)
- the side is respectively provided with a plurality of heat-insulating protrusions 511, and the plurality of heat-insulating protrusions 511 are spaced apart in the vertical direction; and on the inner surface of the furnace cavity, the two sides of the vacuum extraction vehicle are respectively provided with heat retention Block 113, one end of the heat retaining block 113 is fixedly connected to the inner surface of the furnace chamber, and the other end of the heat insulating block 113 extends from the inner surface of the furnace chamber to the lower side of the heat insulating convex portion 511 on the same side thereof; and, the heat retaining block 113
- the number corresponds to the number of the heat insulating convex portions 511, and the heat insulating block 113 and the heat insulating convex portion 511 are
- the plurality of heat insulating convex portions 511 and the plurality of heat insulating fixed blocks 113 are disposed to intersect each other, and the adjacent two heat insulating convex portions 511 and the heat insulating fixed blocks 113 have a gap in the vertical direction.
- the shape of the gap in the vertical plane is labyrinth, so that even if the heat-insulating protrusion 511 and the heat-insulating block 113 are not in contact, the sealing butt joint can be realized, thereby ensuring that the vacuum pump is opposite to the vacuum pump. There is no motion interference when the cavity moves, It is also ensured that the sealing of the vacuum extraction vehicle is achieved when the vacuum extraction vehicle is in the above-mentioned heating position.
- the manner of disposing the heat-insulating protrusion and the heat-insulating block is not limited to the above-mentioned manner provided by the embodiment of the present invention. In practical applications, a setting of a labyrinth gap capable of sealing is formed between the heat-insulating protrusion and the heat-insulating block. The method can be adopted.
- the present invention is not limited to the above two docking modes provided by the above embodiments. In practical applications, it can ensure that no motion interference occurs when the vacuum pump is moved relative to the furnace cavity, and the vacuum can be ensured. Sealing means for sealing butt joints when the extraction vehicle is in the above heating position can be used.
- the furnace chamber 100 of the heating furnace is a single-type cavity that accommodates only one vacuum extraction vehicle, but the present invention is not limited thereto.
- the furnace of the heating furnace The cavity can also be a continuous cavity that can accommodate multiple vacuum extraction vehicles in series.
- the continuous furnace chamber 200 is different from the above-mentioned single furnace chamber 100 only in that: the continuous furnace chamber is similar to the tunnel structure, and along the traveling direction of the vacuum extraction vehicle (Fig. The direction of the arrow shown in 11A is divided into a plurality of sub-cavities that are connected end to end. When there is no vacuum pump in the cavity, the adjacent two sub-cavities are connected to each other, as shown in FIG. 11A; when there is a vacuum pump in the sub-cavity, each sub-cavity is replaced by the third insulation layer 110.
- the facade insulation layer 53, the oven door 120 and/or the base 51 are separated to form a plurality of mutually independent and sealed heating spaces 101, thereby achieving isolation of the heating space 101 and the lower space 102, as shown in FIG. 11B.
- the heating temperature of each sub-furnace chamber can be sequentially set according to the preset temperature profile along the direction of travel of the vacuum extraction vehicle, so that when the process is performed, the vacuum extraction vehicle can sequentially enter different stages during the traveling process. Temperature zone to achieve different processes.
- the continuous furnace chamber 200 can also adopt the above three methods of isolating the heating space 101 and the lower space 102 used in the single furnace chamber 100, and the above two docking manners of the base of the vacuum extraction vehicle and the third insulation layer 110. . Since these methods have been described in detail in the foregoing, they will not be described again here.
- the track 9 may be a closed circular track. As shown in FIG. 12, the circular track is sequentially divided into a plurality of working areas along the traveling direction of the vacuum extraction vehicle, respectively: The loading zone in which the 400 is located, the heating zone in which the continuous furnace chamber 200 is located, and the unloading zone in which the unloading device 300 is located.
- the vacuum glass to be processed on the loading device 400 is loaded onto the vacuum pump by hand or machine; when the vacuum pump advances to the heating zone, continuous
- Each sub-furnace chamber in the furnace chamber 200 sequentially performs a corresponding process on the vacuum glass to be processed on the vacuum extraction vehicle, for example, pre-pumping operation, vacuum extraction operation and sealing operation of the vacuum glass by using three sub-furnace chambers.
- the vacuum pickup car advances to the unloading zone, the finished vacuum glass is unloaded by the manual or machine onto the unloading device 300, thereby completing one process cycle.
- a service area 500 may be separately provided and a bypass rail 91 leading to the service area 500 may be provided on the circular track for transferring the vacuum pump to be repaired to the service area 500 via the road track.
- the automatic control system can also be used to automatically control the movement of the vacuum extraction vehicle and the temperature of the furnace chamber.
- the automatic control system includes a driving unit, a heating unit, and a control unit.
- the driving unit is used to drive the vacuum extraction vehicle to advance, retreat or stop along the circular track.
- the driving unit may be a driving motor. As shown in Fig. 5, two driving motors 7 are provided in the carrying chamber 52 for driving the roller 8 to advance, retreat or stop along the circular track.
- the heating unit is used to heat the furnace chamber according to a preset temperature profile; the control unit is used to control the operation of the drive unit and the heating unit.
- the track 9 is a closed circular track, but the present invention is not limited thereto. In practical applications, the track may also be a track of any shape such as a straight line or a curved shape, as long as It is possible to bring the vacuum pump to the designated end point from the specified starting point.
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
本发明提供的真空玻璃的真空抽取车及真空玻璃生产线,料架装置包括沿竖直方向间隔设置的多层支撑台,每层支撑台上设置有用于承载真空玻璃且尺寸与之相适配的承载位,并且各层支撑台及其上的承载位依次沿平行于真空玻璃表面的方向交错设置,以使置于各个承载位上的真空玻璃的抽气口不被位于其下方的支撑台及其上的真空玻璃遮挡;夹紧装置用于将真空玻璃和排气封口装置固定在支撑台的承载位上,且排气封口装置位于真空玻璃的下方,并且排气封口装置的顶部开口与真空玻璃的抽气口相对设置;在底座的底部设置有承载腔,承载腔用于放置与排气封口装置连接的真空系统和控制系统;并且在承载腔的底部设置有滚轮,用于带动承载腔、底座和料架装置移动。
Description
真空玻璃的真空抽取车及真空玻璃生产线 技术领域
本发明涉及一种真空玻璃制作设备。尤其涉及在可同时加工多块真 空玻璃的连续自动化生产线中使用的真空抽取车及真空玻璃生产线。 背景技术
本发明是本申请人的在先中国专利申请 201210291474.7 和 201310175507.6的继续申请, 而本申请的权利要求所限定、 并由随后说明书 所公开和保护的技术方案是在中国专利申请 201210291474.7 和 201310175507.6基础上的进一步改进的新发明。
具体地说, 申请号为 201210291474.7的上述在先中国专利申请, 其在 保证真空玻璃产品质量的前提下提供了一种自动化的真空玻璃制作系统以 及相关方法, 真空玻璃以及真空抽取装置的结构如图 1和图 2所示。 其核心 在于: 在生产流水线中对于连续式真空炉的真空玻璃抽气口封口装置的改 进, 从而真正实现了连续、 高效、 节能生产。 该在先申请是真空玻璃制作领 域中的一个具有划时代意义的重要发明。 然而, 该申请存在无法在一个真空 炉中同时对多块真空玻璃进行真空抽取操作和 /或封口操作的缺陷。
为此, 申请号为 201310175507.6的上述在先中国专利申请, 其提供了 一种改进的真空玻璃抽气口封口装置,该装置可以在一个真空炉中同时对多 块真空玻璃进行真空抽取操作和 /或封口操作, 从而提高了生产效率并节省 能源。
具体地,如图 3所示,图中示例地示出了同时加工三块真空玻璃的情况, 即同时对于三块真空玻璃 Pl、 P2和 P3进行真空抽取和封口。 在申请号为 201310175507.6的上述在先中国专利申请的技术方案中,通过机械或人工地 将该申请提供的小体积的真空玻璃抽气口封口装置放置在被加工的两块真
空玻璃之间 (如图 3所示, 放置在被加工的真空玻璃 P1与 P2之间, 以 A 表示), 并使其与被加工的真空玻璃的抽气口对准。 通过真空预抽取操作使 得真空玻璃抽气口封口装置 A与被加工的真空玻璃 P2相接触并固定位置。 然后, 沿着与被加工的真空玻璃 P2的表面平行的方向对真空玻璃抽气口封 口装置 A施加第一驱动力 F,并借助驱动力转向装置将该第一驱动力 F转换 成与被加工的真空玻璃 P2的表面垂直的第二驱动力 f。该第二驱动力 f可以 将真空玻璃抽气口封口装置 A内部的封口头推向被加工的真空玻璃 P2的表 面,并将布置在封口头上的封口片挤压在被加工的真空玻璃 P2的抽气口上, 从而可以完成抽气口的封闭。
虽然上述在先中国专利申请 201310175507.6可以在一个真空炉中同时 对多块真空玻璃进行真空抽取操作和 /或封口操作, 但是其在实际应用中不 可避免的存在以下问题, 即:
为了实现将沿着与被加工的真空玻璃 P2的表面平行的第一驱动力 F转 换成与被加工的真空玻璃 P2的表面垂直的第二驱动力 f,不仅需要在真空玻 璃抽气口封口装置 A的内部增设驱动力转向装置, 而且还需要对应地在其 外部组件的壳体侧壁上设置驱动力施加通路,这使得真空玻璃抽气口封口装 置 A 的结构较为复杂, 从而增加了真空玻璃抽气口封口装置的加工和维护 的难度。 发明内容
为了解决上述技术问题,本发明公开的技术方案提供了一种真空玻璃的 真空抽取车及真空玻璃生产线,其不仅可以同时对多块真空玻璃进行真空抽 取操作或封口操作, 而且结构筒单, 从而有利于设备的加工和维护。
为实现本发明的目的而提供一种真空玻璃的真空抽取车,其包括:料架 装置, 包括沿竖直方向间隔设置的多层支撑台, 每层支撑台上设置有用于承 载所述真空玻璃且尺寸与^ =目适配的承载位,并且各层支撑台及其上的承载
位依次沿平行于所述真空玻璃表面的方向交错设置,以使置于各个承载位上 的真空玻璃的抽气口不被位于其下方的支撑台及其上的真空玻璃遮挡;排气 封口装置,用于沿垂直于真空玻璃的表面的方向经由所述真空玻璃的抽气口 分别进行抽真空操作和抽气口封闭操作;所述排气封口装置的数量与所述承 载位的数量相对应; 夹紧装置, 用于将所述真空玻璃和所述排气封口装置固 定在所述支撑台的承载位上, 且所述排气封口装置位于所述真空玻璃的下 方, 并且所述排气封口装置的顶部开口与所述真空玻璃的抽气口相对设置; 底座, 所述底座用于支撑所述料架装置, 在所述底座的底部设置有承载腔, 所述承载腔用于放置与所述排气封口装置连接的真空系统和控制系统; 并 且, 在所述承载腔的底部设置有滚轮, 用于带动所述承载腔、 底座和料架装 置移动。
其中, 对于每层支撑台, 所述承载位的数量为多个, 且多个所述承载位 沿平行于真空玻璃的表面的方向呈矩形阵列排布; 并且, 对于不同层的支撑 台之间, 所 i ^载位的数量和排布方式相同, 并且各层支撑台及其上的行列 序数相同的各个承载位依次沿平行于所述真空玻璃表面的方向交错设置。
优选的,各层支撑台在其交错方向上的尺寸不同,且沿垂直于真空玻璃 的表面的方向由上而下依次减小; 并且对于不同层的支撑台之间, 行列序数 相同的各个承载位在其交错方向上的一侧边缘相互平齐,并且行列序数相同 的各个承载位在其交错方向上的尺寸不同,且沿垂直于真空玻璃的表面的方 向由上而下依次减小。
其中,各层支撑台在其交错方向上的尺寸不同,且沿垂直于真空玻璃的 表面的方向由上而下依次减小; 并且对于每层支撑台, 所述承载位的数量为 一个, 并且对于不同层的支撑台之间, 各个承载位在其交错方向上的一侧边 互平齐, 并且行列序数相同的各个承载位在其交错方向上的尺寸不同, 且沿垂直于真空玻璃的表面的方向由上而下依次减小。
优选的,在所述底座及其承载腔的外表面上设置有第一保温层,用以保
护所述承载腔内的所述真空系统和控制系统不受外界温度的影响。
优选的,在所述底座上还设置有支撑架,所述支撑架包括一个台阶板和 四个侧板, 所述台阶板、 四个侧板以及所述底座形成封闭空间; 其中, 所述 台阶板具有在所述承载位的交错方向上的多个台阶,所述台阶的数量与所述 支撑台的层数相对应, 所述支撑台一一对应地设置在所述台阶上; 所述排气 封口装置的顶部开口沿垂直于真空玻璃的表面的方向贯穿所述台阶,且到达 所述真空玻璃的下方, 并且在所述排气封口装置中, 其顶部开口的需要与所 述真空玻璃相接触的部分位于所述台阶以上;其余部分位于所述台阶以下的 所述封闭空间内。
优选的,在所述台阶板和四个侧板的外表面上设置有第二保温层,用以 保护所述排气封口装置中位于所述封闭空间内的部分不受外界温度的影响。
优选的,所述真空系统包括抽真空管路和真空泵,其中所述抽真空管路 包括一条主路和相互并联的多条支路,所述支路的数量与所述排气封口装置 的数量相对应, 且所述支路的一端与所述排气封口装置——对应地连接; 所 述支路的另一端均与所述主路的一端连接;所述主路的另一端与所述真空泵 连接; 所述真空泵用于在所述排气封口装置进行抽真空操作时, 依次经由所 述抽真空管路和所述排气封口装置抽取所述真空玻璃内的空气。
作为另一个技术方案, 本发明还提供一种真空玻璃生产线, 其包括: 加 热炉、 轨道和真空抽取车, 其中, 所述轨道贯穿所述加热炉的炉腔设置; 所 述真空抽取车通过所述滚轮沿所述轨道行进,并在所述排气封口装置进行抽 真空操作和抽气口封闭操作时, 行进至所述加热炉的炉腔内的加热位置; 所 述真空抽取车采用了本发明提供的上述真空玻璃的真空抽取车;所述加热炉 的炉腔用于在所述真空抽取车位于所述加热位置时,加热所述真空抽取车上 的真空玻璃。
其中, 所述加热炉的炉腔为仅容纳一个所述真空抽取车的单体式腔体; 或者,所述加热炉的炉腔为可容纳首尾相接的多个所述真空抽取车的连续式
腔体。
其中,所述炉腔包括可供所述真空抽取车进出的开口, 以及用于开启或 关闭所述开口的炉门; 并且, 在所述炉腔的内表面上设置有第三保温层; 所 述炉门、第三保温层和所述底座在所述真空抽取车位于所述加热位置时形成 密封空间。
其中, 所述炉腔包括可供所述真空抽取车进出的第一开口和第二开口, 以及分别用于开启或关闭所述第一开口和第二开口的第一炉门和第二炉门; 并且,在所述炉腔的内表面上设置有第三保温层;所述第一炉门、第二炉门、 第三保温层和所述底座在所述真空抽取车位于所述加热位置时形成密封空 间。
其中, 所述炉腔包括可供所述真空抽取车进出的开口, 并且, 在所述炉 腔的内表面上设置有第三保温层; 在所述真空抽取车的底座上, 且位于所述 真空抽取车的行进方向的后侧设置有后立面保温层, 所述后立面保温层、 第 三保温层和所述底座在所述真空抽取车位于所述加热位置时形成密封空间。
其中, 所述炉腔包括可供所述真空抽取车进出的第一开口和第二开口; 并且, 在所述炉腔的内表面上设置有第三保温层; 在所述真空抽取车的底座 上,且位于所述真空抽取车的行进方向的前侧和后侧分别设置有前立面保温 层和后立面保温层, 所述前立面保温层、 后立面保温层、 第三保温层和所述 底座在所述真空抽取车位于所述加热位置时形成密封空间。
优选的,在所述真空抽取车的底座的外周壁上,且位于所述真空抽取车 行进方向的两侧分别设置有保温凸部, 并且在所述炉腔的内表面上, 且位于 所述真空抽取车行进方向的两侧分别设置有保温滑块,所述保温滑块的一端 与所述炉腔的内表面可沿竖直方向滑动地连接,所述保温滑块的另一端自所 述炉腔的内表面延伸至与其同侧的所述保温凸部的下方;在所述真空抽取车 位于所述加热位置时,使所述保温滑块竖直上升至与所述保温凸部相接触的 位置处; 在所述真空抽取车相对于所述炉腔行进时, 使所述保温滑块竖直下
降至与所述保温凸部不相接触的位置处。
优选的, 在所述真空抽取车的底座和 /或承载腔的外周壁上, 且位于所 述真空抽取车行进方向的两侧分别设置有多个保温凸部,且所述多个保温凸 部沿竖直方向间隔设置; 并且在所述炉腔的内表面上, 且位于所述真空抽取 车行进方向的两侧分别设置有保温定块,所述保温定块的一端与所述炉腔的 内表面固定连接,所述保温定块的另一端自所述炉腔的内表面延伸至与其同 侧的所述保温凸部的下方; 并且, 所述保温定块的数量与所述保温凸部的数 量相对应, 且所述保温定块与所述保温凸部沿竖直方向彼此间隔且相间设 置。
优选的,在所述第三保温层上,且位于所述真空抽取车的行进方向的左 侧或者右侧设置有热风入口, 并且对应地, 在所述第三保温层上, 且位于所 述真空抽取车的行进方向的右侧或者左侧设置有热风出口;所述加热炉还包 括热风循环通道、加热装置和送风装置, 其中所述热风循环通道设置于所述 第三保温层的外侧, 且分别与所述热风入口和所述热风出口连接; 所述加热 装置用于对所述热风循环通道内的空气进行加热;所述送风装置用于将加热 后的空气经由所述热风入口输送到所述炉腔中的所述密封空间内;所述热风 出口用于将所述密封空间内的空气排入所述热风循环通道内。
优选的, 所述轨道为闭合的环形轨道。
优选的,所述真空玻璃生产线还包括自控系统,所述自控系统包括驱动 单元、加热单元和控制单元, 其中所述驱动单元用于驱动所述真空抽取车沿 所述环形轨道前进、后退或者停止; 所述加热单元用于按预设的温度曲线对 所述炉腔进行加热; 所述控制单元用于控制所述驱动单元和加热单元的工 作。
本发明具有以下有益效果:
本发明提供的真空玻璃的真空抽取车,其通过使各层支撑台及其上的承 载位依次沿平行于真空玻璃表面的方向交错设置,可以使置于各个承载位上
的真空玻璃的抽气口不被位于其下方的支撑台及其上的真空玻璃遮挡,从而 可以利用排气封口装置沿垂直于真空玻璃的表面的方向经由真空玻璃的抽 气口分别进行抽真空操作和抽气口封闭操作, 也就是说, 在排气封口装置沿 垂直于真空玻璃的表面的方向对目标真空玻璃进行相应的操作时,其动作不 会受到位于该目标真空玻璃下方的真空玻璃的阻挡, 由此, 本发明提供的真 空玻璃的真空抽取车与现有技术相比, 其不仅结构筒单, 有利于设备的加工 和维护,而且还可以利用多个排气封口装置同时沿垂直于真空玻璃的表面的 方向——对应地对多块真空玻璃进行真空抽取操作或封口操作,从而可以提 高工艺效率。
本发明提供的真空玻璃生产线,其通过采用本发明提供的上述真空玻璃 的真空抽取车, 不仅可以同时对多块真空玻璃进行真空抽取操作或封口操 作, 而且还可以筒化设备结构, 从而有利于设备的加工和维护。 附图说明
图 1是示出了作为加工对象的真空玻璃的示意图;
图 2是在先申请的真空玻璃加工过程中的真空玻璃的真空抽取车操作 示意图;
图 3 是在先申请中改进的真空玻璃抽气口封口装置在加工多层真空玻 璃时的示意图;
图 4A是本发明实施例提供的真空玻璃的真空抽取车的主视图; 图 4B是沿图 4A中 A-A线的侧视图;
图 4C是图 4A中真空玻璃排布的仰视图;
图 4D是图 4A中其中一个支撑架的立体图;
图 4E是图 4A中支撑架的主视示意图;
图 4F是图 4A中支撑架的俯视示意图;
图 5是本发明实施例提供的真空玻璃生产线的主视图;
图 6A是采用第一种隔离方式的真空抽取车的侧视图;
图 6B是采用第一种隔离方式的真空抽取车在单体式炉腔内的侧视图; 图 6C是采用第一种隔离方式的变型的真空抽取车在单体式炉腔内的侧 视图;
图 7A是采用第二种隔离方式的真空抽取车的侧视图;
图 7B是采用第二种隔离方式的真空抽取车在单体式炉腔内的侧视图; 图 8A是采用第三种隔离方式的真空抽取车的侧视图;
图 8B是采用第三种隔离方式的真空抽取车在单体式炉腔内的侧视图; 图 9A是采用第一种对接方式的真空抽取车在炉腔的加热位置时的主视 图;
图 9B是采用第一种对接方式的真空抽取车在相对于炉腔移动时的主视 图;
图 10是采用第二种对接方式的真空抽取车的主视图;
图 11A是连续式炉腔当各个子炉腔内没有真空抽取车时的侧视图; 图 11B是连续式炉腔当各个子炉腔内存在真空抽取车时的侧视图; 图 12是本发明实施例提供的真空玻璃生产线的立体图。 具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图进 一步详细说明用于实施本发明的优选方式。
图 4A是本发明实施例提供的真空玻璃的真空抽取车的主视图。 图 4B 是沿图 4A中 A-A线的侧视图。 图 4C是图 4A中真空玻璃排布的仰视图。 请一并参阅图 4A-4C, 真空玻璃的真空抽取车包括: 料架装置 1、 排气封口 装置 2、 夹紧装置 3和底座 51。 其中, 料架装置 1包括沿竖直方向间隔设置 的多层支撑台, 在本实施例中, 该支撑台有三层, 由上而下依次为: 第一层 支撑台 11A、 第二层支撑台 11B和第三层支撑台 11C, 该三层支撑台由支撑
架 12支撑, 并且支撑架 12固定在底座 51上。
而且,每层支撑台上设置有用于承载真空玻璃且尺寸与之相适配的承载 位。 所谓承载位, 是指预设的支撑台上表面上用于承载真空玻璃的区域, 并 且当将真空玻璃放置于该区域上时,该区域和真空玻璃分别在支撑台上表面 上的投影相重合。 容易理解, 上述承载位的数量、 尺寸和排布方式即可视为 真空玻璃的数量、 尺寸和排布方式。
为了便于描述,下文中直接描述置于承载位上的真空玻璃的数量、尺寸 和排布方式, 并设定: 与真空抽取车的行进方向相垂直的第一水平方向为 X 方向; 与真空抽取车的行进方向相平行的第二水平方向为 Y方向;分别与 X 方向和 Y方向相垂直的方向为 Z方向, 如图 4A-4C所示, 并且, 上述 X方 向和 Y方向均为平行于真空玻璃表面的方向; Z方向为垂直于真空玻璃表面 的方向。
下面对上述支撑台及其上的承载位的数量、尺寸和排布方式进行详细描 述。 首先需要说明的是, 支撑台是起到承载真空玻璃的作用, 原则上只要每 层支撑台(除了最上一层支撑台)不会遮挡由位于其上方的支撑台承载的真 空玻璃的抽气口, 且能够稳定地支撑真空玻璃即可, 而不必对支撑台的形状 和结构进行限定。在实际应用中, 支撑台的形状和结构可以根据承载位的数 量、 尺寸和排布方式作适应性设计。
具体地, 在本实施例中, 对于每层支撑台, 承载位的数量为多个, 且多 个承载位沿平行于真空玻璃的表面的方向呈矩形阵列排布; 并且, 对于不同 层的支撑台之间, 承载位的数量和排布方式相同, 并且行列序数相同的各个 承载位依次沿平行于真空玻璃表面的方向交错设置。
如图 4C所示, 对于每层支撑台, 真空玻璃的数量为四块, 且四块真空 玻璃分别沿 X方向和 Y方向呈矩形阵列排布, 其中, 该矩形阵列的行列数 为 2 x 2。 并且, 对于不同层的支撑台之间, 真空玻璃的数量和排布方式相 同, 从而各层间行列序数相同的真空玻璃在支撑台上的位置相对应, 即, 在
z方向上的位置相对应。
具体来说, 第一层支撑台 11A上的四块真空玻璃按图 4C中自右向左, 且自前向后依次为: 4A1、 4A2、 4A3、 4A4; 第二层支撑台 11B上的四块真 空玻璃按图 4C 中自右向左, 且自前向后依次为: 4B1、 4B2、 4B3、 4B4; 第三层支撑台 11B上的四块真空玻璃按图 4C中自右向左, 且自前向后依次 为: 4C1、 4C2、 4C3、 4C4。其中,对于不同层的支撑台之间,真空玻璃 4Α1、 4B1和 4C1在 Ζ方向上的位置相对应; 真空玻璃 4Α2、 4Β2和 4C2在 Ζ方 向上的位置相对应; 真空玻璃 4Α3、 4Β3和 4C3在 Ζ方向上的位置相对应; 真空玻璃 4Α4、 4Β4和 4C4在 Ζ方向上的位置相对应。
而且, 各层支撑台依次沿 X方向 (即, 平行于真空玻璃表面的方向) 交错设置。 并且, 各层间行列序数相同的各块真空玻璃依次沿 X方向交错 设置, 即, 各层间在 Ζ方向上相对应的各块真空玻璃依次沿 X方向交错设 置, 从而使置于每层支撑台 (除了最下一层支撑台)上的真空玻璃的抽气口 41 不被位于其下方的支撑台及其上的真空玻璃遮挡。 所谓依次交错设置, 是指各层支撑台上的真空玻璃逐层错开, 最终呈现阶梯状的结构。
优选的, 对于每层支撑台, 各个承载位的尺寸相同; 并且, 对于不同层 的支撑台之间,行列序数相同的各个承载位在其交错方向上的一侧边^ =目互 平齐, 并且行列序数相同的各个承载位在其交错方向上的尺寸不同, 且沿垂 直于真空玻璃的表面的方向由上而下依次减小。也就是说, 对于不同层的支 撑台之间, 在 Ζ方向上的位置相对应的各个真空玻璃的一侧边缘(图 4C中 真空玻璃 4A1、 4B1和 4C1在 X方向上的左侧边缘)其实是对齐设置的, 而由于这些真空玻璃在 X方向上的尺寸沿 Ζ方向由上而下依次减小, 这使 得其在 X方向上的另一侧边缘 (图 4C中真空玻璃 4A1、 4B1和 4C1在 X方 向上的右侧边缘)依次交错, 从而使真空玻璃上靠近该交错的一侧边缘的抽 气口 41依次交错, 进而实现不被位于其下方的真空玻璃遮挡的目的。
例如, 如图 4C所示, 真空玻璃 4A1、 4B1和 4C1在 X方向上的左侧边
缘对齐设置; 并且, 第一层支撑台 11A上的真空玻璃 4A1 (相当于该层支撑 台的承载位的尺寸)在 X方向上的边长为 La; 第二层支撑台 11A上的真空 玻璃 4B1在 X方向上的边长为 Lb;第三层支撑台 11A上的真空玻璃 4C1在 X方向上的边长为 Lc, 且 La > Lb > Lc。 此外, 真空玻璃 4A1、 4B1和 4C1 在 Y方向上的边长 D可以根据不同的应用设置为相同的, 或者不同的。
使在 Z方向上的位置相对应的各个真空玻璃的一侧边缘对齐设置, 而 另一侧边缘交错设置的优势在于:可以节省真空抽取车的车体在平行于真空 玻璃的表面的方向上的尺寸, 从而可以降低设备的制造成本。 当然, 在实际 应用中, 各个承载位的尺寸可以根据待加工的真空玻璃的尺寸任意设定, 且 交错方式也不应局限于本发明提供的上述方式,只要能够保证每层支撑台上 的真空玻璃的抽气口不被位于其下方的真空玻璃遮挡即可。
根据承载位的数量、尺寸和排布方式,本实施例中支撑台的尺寸和排布 方式具体为: 各层支撑台在其交错方向上的尺寸不同, 且沿垂直于真空玻璃 的表面的方向由上而下依次减小, 如图 4C所示, 支撑台 11A在 X方向上的 边长为 Ha; 支撑台 11B在 X方向上的边长为 Hb; 支撑台 11C在 X方向上 的边长为 He, 且 Ha > Hb > Hc。 而且, 由于每层支撑台上承载的真空玻璃按 行列数为 2 x 2的矩形阵列排列, 因而三层支撑台 (11A、 11B、 11C )在 X 方向上的左右两侧分别交错设置。 此外, 三层支撑台 (11A、 11B、 11C )在 Y方向上的边长 B可以根据不同的应用设置为相同的, 或者不同的。
另夕卜, 优选的, 在平行于真空玻璃的表面上, 每层支撑台的投影轮廓可 以与在该层支撑台上的各个承载位排布形成的矩形阵列的投影轮廓相重合, 即, 各个承载位的一个对角与支撑台相应的对角对齐。 由此, 可以最大程度 地减小支撑台在平行于真空玻璃的表面的方向上的尺寸,从而可以进一步节 省真空抽取车的车体在平行于真空玻璃的表面的方向上的尺寸。
需要说明的是, 在实际应用中, 若每层支撑台在 X方向上间隔排列有 三块以上的真空玻璃时,可以根据真空玻璃的数量在除了最上一层的支撑台
之夕卜的各层支撑台上, 设置可供排气封口装置穿过的凹槽,每个凹槽在其所 在支撑台上的位置与相邻且位于其上方的支撑台上的真空玻璃抽气口的位 置相对, 即, 各层支撑台上在 Z方向上相对应的凹槽沿 X方向依次交错设 置, 在进行工艺时, 排气封口装置的顶部开口可以经由该凹槽与相应的真空 玻璃的抽气口同心定位。
夹紧装置 3用于将真空玻璃和排气封口装置 2 固定在支撑台的承载位 上, 且排气封口装置 2位于真空玻璃的下方, 并且排气封口装置 2的开口与 真空玻璃的抽气口 41相对设置。 排气封口装置 2用于沿垂直于真空玻璃的 表面的方向 (即, Z方向)经由真空玻璃的抽气口 41分别进行抽真空操作 和抽气口封闭操作, 并且排气封口装置 2的数量与真空玻璃(即, 承载位) 的数量相对应, 以可以——对应地同时对各个真空玻璃进行操作, 从而可以 提高工艺效率。
本申请实施例中的排气封口装置 2 的工作原理和结构与申请号为 201210291474.7的在先中国专利申请中的真空抽取装置相类似。由于排气封 口装置 2在在先中国专利申请中已经有了详细的描述, 在此不再赘述。在实 际应用中,可以根据排气封口装置的具体尺寸来设定各层间对应的承载位相 互交错的尺寸, 以及每层台阶板在平行于真空玻璃表面的平面上的投影轮 廓。每层台阶板平行于真空玻璃表面的平面上的投影轮廓应包含排气封口装 置在平行于真空玻璃表面的平面上的投影轮廓。
如图 4A和 4B所示, 当排气封口装置 2沿 Z方向对目标真空玻璃经由 其抽气口 41分别进行抽真空操作和抽气口封闭操作时, 排气封口装置 2的 动作不会受到位于该目标真空玻璃下方的支撑台及其上的真空玻璃的阻挡。 因此, 本发明实施例提供的真空玻璃的真空抽取车与现有技术相比, 不仅结 构筒单, 有利于设备的加工和维护, 而且还可以利用多个排气封口装置同时 沿垂直于真空玻璃的表面的方向——对应地对多块真空玻璃进行真空抽取 操作或封口操作, 从而可以提高工艺效率。
下面结合图 4D~4F对支撑架 12的结构和功能进行详细描述。 具体地, 支撑架 12包括一个台阶板 (具有三个台阶板 125A、 125B和 125C )和四个 侧板 126, 台阶板、 四个侧板 126以及底座 51形成封闭空间 127, 如图 4D 和 4E所示。 容易理解, 台阶板的板面为平行于真空玻璃表面的方向; 四个 侧板 126的板面与台阶板的板面相互垂直。
其中, 三个台阶板 125A、 125B和 125C在沿承载位的交错方向 (即, X方向)延伸, 并且, 三个台阶由底座 51的边缘向中心逐层降低, 从而使 三层支撑台 (11A、 11B和 11C )通过——对应地设置在三个台阶上, 而实 现在竖直方向 (即, Z方向)上间隔排布。
而且, 在每个台阶上还设置有安装孔 1251 , 排气封口装置 2的顶部开 口沿 Z方向穿过该安装孔 1251 , 并到达真空玻璃的下方, 以使该顶部开口 与真空玻璃的抽气口相对。 并且, 在该排气封口装置 2中, 其顶部开口的需 要与真空玻璃相接触的部分 21位于该台阶以上;其余部分 22位于该台阶以 下的封闭空间 127内, 如图 4E所示。 由此, 通过台阶板、 四个侧板 126以 及底座 51共同形成封闭空间 127, 可以将排气封口装置 2的下半部分 22与 外界隔离, 从而可以保护该下半部分 22不会受到诸如外力、 温度等因素的 影响,保证其零部件的正常工作,并且可以提高排气封口装置 2的使用寿命。
优选的,在台阶板和四个侧板 126的外表面上设置有第二保温层(图中 未示出), 用以进一步保护排气封口装置的下半部分 22 不受外界温度的影 响。
需要说明的是, 在本实施例中, 如图 4A所示, 每层支撑台由四个支撑 架 12支撑, 且分别在 Y方向和 X方向上相邻的两个支撑架 12之间具有间 隙, 该间隙不仅可以给装载真空玻璃提供空间, 而且还可以在进行工艺时, 给热气流的流动提供空间。 具体地, 在进行工艺时, 热气流沿 X方向自支 撑台的一侧流动至另一侧(例如图 4F中的箭头方向), 并在流经各个真空玻 璃时对其进行加热, 从而可以提高加热的均匀性。
还需要说明的是, 在本实施例中, 支撑架 12在支撑台上的投影形状为 矩形, 即, 由台阶板和四个侧板 126拼接形成矩形的封闭空间, 但是本发明 并不局限于此,在实际应用中,支撑架在支撑台上的投影形状也可以为圆形、 椭圆形、三角形等的其他任意形状, 此时侧板可以根据不同形状作适应性设 计, 例如, 若支撑架在支撑台上的投影形状也可以为圆形, 则可以将侧板设 置为闭合环形结构, 且对应地使台阶板在支撑台上的投影轮廓设计为圆形。
底座 51用于支撑料架装置 1 ,在底座 51的底部设置有承载腔 52,其用 于放置与排气封口装置 2连接的真空系统和控制系统(图中未示出)。 在本 实施例中, 该真空系统包括抽真空管路和真空泵 63。 其中, 抽真空管路包 括一条主路 62和相互并联的多条支路 61 ,支路 61的数量与排气封口装置 2 的数量相对应, 且支路 61的一端与排气封口装置 2——对应地连接; 支路 61的另一端均与主路 62的一端连接; 主路 62的另一端与真空泵 63连接。 在需要利用排气封口装置 2进行抽真空操作时, 真空泵 63依次经由抽真空 管路和排气封口装置 2抽取真空玻璃内的空气。在实际应用中, 真空泵的数 量可以根据具体情况设定为一个或者多个, 且多个真空泵可以相互并联, 或 者相互独立, 即, 可以利用多个真空泵同时抽取各个真空玻璃内的空气, 也 可以利用多个真空泵单独抽取一部分或者全部真空玻璃内的空气。
优选的,在底座 51及其承载腔 52的外表面上覆盖有第一保温层,用以 保护承载腔 52内的真空系统和控制系统不受外界温度的影响。
另外, 在承载腔 52的底部设置有滚轮 8, 用于带动承载腔 52、 底座 51 和料架装置 1移动。 优选的, 滚轮 8由设置在承载腔 52内的驱动单元 7驱 动, 该驱动单元 7用于驱动滚轮 8前进、 后退或者停止。
需要说明的是, 在本实施例中, 每层支撑台上承载位的数量为四个, 但 是, 本发明并不局限于此, 在实际应用中, 该数量也可以为一个, 两个, 三 个或者五个以上。
作为另一个技术方案, 本发明实施例提供还一种真空玻璃生产线, 图 5
为本发明实施例提供的真空玻璃生产线的主视图。 请参阅图 5, 真空玻璃生 产线包括: 加热炉、轨道 9和真空抽取车。其中,轨道 9贯穿炉腔 100设置; 真空抽取车通过滚轮 8沿轨道 9行进,并在排气封口装置进行抽真空操作和 抽气口封闭操作时, 行进至炉腔 100内的加热位置(如图 5中真空抽取车所 在的位置), 该真空抽取车采用了本发明实施例提供的上述真空抽取车。
在本实施例中,加热炉的炉腔 100为仅容纳一个真空抽取车的单体式腔 体,用于在真空抽取车位于上述加热位置时,加热真空抽取车上的真空玻璃。
在本实施例中, 为了提高加热的均匀性, 炉腔 100采用热风循环加热的 方式对真空玻璃进行加热。 具体地, 如图 5所示, 在炉腔 100的第三保温层 上, 且位于真空抽取车的行进方向的左侧还设置有热风入口 103, 并且对应 地, 在第三保温层上, 且位于真空抽取车的行进方向的右侧设置有热风出口 104。而且,加热炉还包括热风循环通道 105、加热装置 106和送风装置 107。 其中, 热风循环通道 105设置于第三保温层的外侧, 且分别与热风入口 103 和热风出口 104连接。加热装置 106用于对热风循环通道 105内的空气进行 加热;送风装置 107用于将加热后的空气经由热风入口 103输送到炉腔中的 加热空间 101内。加热后的空气在该加热空间 101内形成热气体流, 热气流 沿 X方向朝向热风出口 104水平流动,并在流经各个真空玻璃时对其进行加 热; 然后, 热气流自热风出口 104排入热风循环通道 105内, 从而实现热风 循环加热。
当然, 在实际应用中, 热风入口、 热风出口和热风循环通道的位置与数 量并不局限于本实施例中示出的方式, 热气流的流动方向也不限于 X方向, 还可以沿 Y方向、 两个方向同时或定时转换等, 只要能够实现对真空玻璃 的加热即可。
需要说明的是,在本实施例中, 炉腔 100采用热风循环加热的方式对真 空玻璃进行加热。 但是本发明并不局限于此, 在实际应用中, 炉腔还可以采 用热辐射等的其他任意方式对真空玻璃进行加热。
此外, 当利用炉腔 100加热真空抽取车上的真空玻璃时, 为了保护承载 腔 52内的诸如真空系统、 控制系统等的系统不受位于其上方的加热空间的 影响, 就需要将承载腔 52与其上方的加热空间隔开, 即, 如图 5所示, 将 炉腔 100中底座 51以上的空间作为加热空间 101; 将炉腔 100中底座 51以 下的空间作为下部空间 102, 且加热空间 101和下部空间 102相互隔离。
为此,本发明实施例提供的真空玻璃生产线采用了以下几种方式对加热 空间 101和下部空间 102进行隔离。
具体地, 第一种方式为: 如图 6A和 6B所示, 炉腔 100包括可供真空 抽取车进出的开口(位于图 6B中炉腔 100的右侧), 以及用于开启或关闭该 开口的炉门 120; 并且, 在炉腔 100的内表面上设置有第三保温层 110。 其 中,第三保温层 110覆盖炉腔 100的上表面, 以及三个侧表面上位于底座 51 以上的部分。 当真空抽取车位于上述加热位置时, 炉门 120、第三保温层 110 和底座 51形成密封空间, 即为上述加热空间 101 , 从而实现加热空间 101 和下部空间 102的隔离。
优选的, 在炉腔 100外的顶部还设置有炉门控制装置 121 , 用于控制炉 门 120开启或关闭。 具体地, 在本实施例中, 如图 6B所示, 该炉门控制装 置包括定滑轮、 绳索和绕线设备。 其中, 绳索的一端与绕线设备连接, 绳索 的另一端绕过定滑轮与炉门 120连接。 利用绕线设备收卷或展开绳索, 来实 现炉门 120的开启或关闭。 当然, 本发明不局限于这种炉门控制方式, 也可 以采用气动等的其他任意方式控制炉门的开启或关闭。
作为上述第一种方式的一个变型, 还可以采用如图 6C所示方式, 即: 炉腔 100 包括可供所述真空抽取车进出的第一开口和第二开口 (即, 在图 6B中炉腔 100的左侧另设一个开口), 以及分别用于开启或关闭第一开口和 第二开口的第一炉门 120和第二炉门 122; 并且在炉腔的内表面上设置有第 三保温层 110, 该第三保温层 110覆盖炉腔 100的上表面, 以及两个侧表面 上位于底座 51以上的部分。 当真空抽取车位于上述加热位置时, 第一炉门
120、 第二炉门 122、 第三保温层 110和底座 51形成密封空间, 从而实现加 热空间 101和下部空间 102的隔离。
第二种方式为, 如图 7A和 7B所示, 炉腔 100包括可供真空抽取车进 出的开口(位于图 7B中炉腔 100的左侧), 并且, 在炉腔 100的内表面上设 置有第三保温层 110, 该第三保温层 110覆盖炉腔 100的上表面, 以及三个 侧表面上位于底座 51以上的部分。 而且, 在真空抽取车的底座 51上, 且位 于真空抽取车的行进方向的后侧设置有后立面保温层 53。 当真空抽取车位 于上述加热位置时, 后立面保温层 53、 第三保温层 110和底座 51形成密封 的加热空间 101 , 从而实现加热空间 101和下部空间 102的隔离。
第三种方式为, 如图 8A和 8B所示, 炉腔 100包括可供真空抽取车进 出的第一开口和第二开口(分别位于图 7B中炉腔 100的左、右两侧);并且, 在炉腔 100的内表面上设置有第三保温层 110, 该第三保温层 110覆盖炉腔 100的上表面, 以及两个侧表面上位于底座 51 以上的部分。 而且, 在真空 抽取车的底座 51上, 且位于真空抽取车的行进方向的前侧和后侧分别设置 有前、 后两个立面保温层 53。 当真空抽取车位于上述加热位置时, 前、 后 两个立面保温层 53、 第三保温层 110和底座 51形成密封的加热空间 101 , 从而实现加热空间 101和下部空间 102的隔离。
容易理解, 在上述三种方式中, 第三保温层 110、 立面保温层 53、 底座 51以及炉腔 100的内部空间分别在 X、 Y和 Z方向上的轮廓尺寸相适配, 以保证炉门 120、 立面保温层 53、 第三保温层 110和底座 51在相应的对接 面对接后能够形成密封空间。
在实际应用中, 由于底座 51与第三保温层 110需要在真空抽取车位于 上述加热位置时, 通过密封对接而实现在底座 51的上方形成封闭的加热空 间 101 , 这不仅会造成在真空抽取车相对于炉腔 100移动时产生运动干涉, 而且还会使底座 51与第三保温层 110因相互摩擦而造成密封失效。 为此, 优选的, 底座 51与第三保温层 110可以采用以下两种对接方式, 这两种对
接方式既能够保证在真空抽取车相对于炉腔 100移动时不会产生运动干涉, 又可以保证在真空抽取车位于上述加热位置时实现密封对接。
具体地, 第一种对接方式, 如图 9A和 9B所示, 在真空抽取车的底座 51的外周壁上, 且位于真空抽取车行进方向的两侧 (即, 图 9A和 9B中底 座 51的左、右两侧)分别设置有保温凸部 511 ,并且在炉腔 100的内表面上, 且位于真空抽取车行进方向的两侧(即, 炉腔 100的内表面上分别与保温凸 部 511相对的表面)分别设置有保温滑块 111 , 保温滑块 111的一端与炉腔 100的内表面可沿竖直方向滑动地连接, 保温滑块 111的另一端自炉腔 100 的内表面延伸至与其同侧的保温凸部 511的下方。在真空抽取车位于上述加 热位置时, 使保温滑块 111竖直上升(图 9A中的箭头方向)至与保温凸部 511相接触的位置处, 从而二者通过相互叠置而实现密封对接。 在真空抽取 车相对于炉腔 100行进时,使保温滑块 111竖直下降至与保温凸部 511不相 接触的位置处, 即, 二者相互分离, 从而在真空抽取车相对于炉腔 100移动 时不会产生运动干涉。
第二种对接方式, 如图 10所示, 在真空抽取车的底座和 /或承载腔的外 周壁上, 且位于真空抽取车行进方向的两侧 (即, 图 10中底座的左、 右两 侧)分别设置有多个保温凸部 511 , 且多个保温凸部 511沿竖直方向间隔设 置; 并且在炉腔的内表面上, 且位于真空抽取车行进方向的两侧分别设置有 保温定块 113,保温定块 113的一端与炉腔的内表面固定连接,保温定块 113 的另一端自炉腔的内表面延伸至与其同侧的保温凸部 511的下方; 并且, 保 温定块 113的数量与保温凸部 511的数量相对应, 且保温定块 113与保温凸 部 511沿竖直方向彼此间隔且相间设置。 也就是说, 多个保温凸部 511和多 个保温定块 113相互交叉地设置,且相邻的两个保温凸部 511和保温定块 113 之间在竖直方向上具有间隙。 如图 10所示, 该间隙在竖直平面上的形状呈 迷宫状, 从而即使保温凸部 511和保温定块 113不相接触, 也能够实现密封 对接, 进而既能够保证在真空抽取车相对于炉腔移动时不会产生运动干涉,
又可以保证在真空抽取车位于上述加热位置时实现密封对接。
上述保温凸部和保温定块的设置方式并不局限于本发明实施例提供的 上述方式, 在实际应用中, 凡是在保温凸部和保温定块之间形成能够实现密 封的迷宫状间隙的设置方式均可以采用。
同样地,本发明也不局限于以上实施例提供的上述两种对接方式,在实 际应用中,凡是既能够保证在真空抽取车相对于炉腔移动时不会产生运动干 涉,又可以保证在真空抽取车位于上述加热位置时实现密封对接的密封方式 均可以采用。
还需要说明的是,在本实施例中,加热炉的炉腔 100为仅容纳一个真空 抽取车的单体式腔体, 但是本发明并不局限于此, 在实际应用中, 加热炉的 炉腔也可以为可容纳串行的多个真空抽取车的连续式腔体。
下面对连续式腔体结构的炉腔(以下筒称连续式炉腔)的结构和工作方 式进行详细描述。 具体地, 请一并参阅图 11A和图 11B, 连续式炉腔 200与 前述单体式炉腔 100的区别仅在于: 连续式炉腔类似于隧道结构, 且沿真空 抽取车的行进方向(图 11A中所示的箭头方向)划分为多个首尾相接的子炉 腔。 当子炉腔内没有真空抽取车时, 相邻的两个子炉腔是相互连通的, 如图 11A所示; 当子炉腔内存在真空抽取车时, 各个子炉腔被第三保温层 110、 立面保温层 53、炉门 120和 /或底座 51分隔形成多个相互独立且密封的加热 空间 101 , 从而实现加热空间 101和下部空间 102的隔离, 如图 11B所示。 在这种情况下,可以沿真空抽取车的行进的方向按预设的温度曲线依次设置 各个子炉腔的加热温度, 从而在进行工艺时, 可以使真空抽取车在行进过程 中依次进入不同的温区, 以实现不同的工序。
连续式炉腔 200同样可以采用单体式炉腔 100所采用的对加热空间 101 和下部空间 102隔离的上述三种方式,以及真空抽取车的底座与第三保温层 110的上述两种对接方式。 由于这些方式在前文中已有了详细的描述, 在此 不再赘述。
优选的, 为了实现可循环的生产线, 轨道 9可以为闭合的环形轨道, 如 图 12所示, 在该环形轨道上沿真空抽取车的行进方向依次划分为多个工作 区, 分别为: 装载装置 400所在的装载区、 连续式炉腔 200所在的加热区以 及卸载装置 300所在的卸载区。在进行工艺的过程中, 当真空抽取车前进至 装载区时, 由人工或机器将装载装置 400上的待加工的真空玻璃装载至真空 抽取车上; 当真空抽取车前进至加热区时, 连续式炉腔 200中的各个子炉腔 依次对真空抽取车上待加工的真空玻璃进行相应的工序, 例如, 利用三个子 炉腔先后对真空玻璃进行预抽操作、真空抽取操作和封口操作。 当真空抽取 车前进至卸载区时, 由人工或机器将完成加工的真空玻璃卸载至卸载装置 300上, 从而完成一次工艺循环。
另外, 还可以单独设置一个维修区 500, 并在环形轨道上另设一个可通 往维修区 500的岔路轨道 91 , 用以将待维修的真空抽取车经由该岔路轨道 转移至维修区 500。
优选的,为了实现生产线的连续自动化,还可以利用自控系统自动控制 真空抽取车的运动以及炉腔的温度。 具体地, 该自控系统包括驱动单元、 加 热单元和控制单元。 其中, 驱动单元用于驱动真空抽取车沿环形轨道前进、 后退或者停止。 具体地, 该驱动单元可以为驱动电机, 如图 5所示, 在承载 腔 52内设置两个驱动电机 7, 用于驱动滚轮 8沿环形轨道前进、 后退或者 停止。加热单元用于按预设的温度曲线对炉腔进行加热; 控制单元用于控制 驱动单元和加热单元的工作。
需要说明的是, 在本实施例中, 轨道 9为闭合的环形轨道, 但是本发明 并不局限于此, 在实际应用中, 轨道还可以为直线形、 曲线形等的任意形状 的轨道, 只要能够将真空抽取车自指定始点到达指定终点即可。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示 例性实施方式, 然而本发明并不局限于此。对于本领域内的普通技术人员而 言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和改进, 这
些变型和改进也视为本发明的保护范围。
Claims
1.一种真空玻璃的真空抽取车, 其特征在于, 包括:
料架装置, 包括沿竖直方向间隔设置的多层支撑台,每层支撑台上设置 有用于承载所述真空玻璃且尺寸与之相适配的承载位,并且各层支撑台及其 上的承载位依次沿平行于所述真空玻璃表面的方向交错设置,以使置于各个 承载位上的真空玻璃的抽气口不被位于其下方的支撑台及其上的真空玻璃 遮挡;
排气封口装置,用于沿垂直于真空玻璃的表面的方向经由所述真空玻璃 的抽气口分别进行抽真空操作和抽气口封闭操作;所述排气封口装置的数量 与所述承载位的数量相对应;
夹紧装置,用于将所述真空玻璃和所述排气封口装置固定在所述支撑台 的承载位上, 且所述排气封口装置位于所述真空玻璃的下方, 并且所述排气 封口装置的顶部开口与所述真空玻璃的抽气口相对设置;
底座,所述底座用于支撑所述料架装置,在所述底座的底部设置有承载 腔, 所 载腔用于放置与所述排气封口装置连接的真空系统和控制系统; 并且, 在所述承载腔的底部设置有滚轮, 用于带动所述承载腔、 底座和料架 装置移动。
2.根据权利要求 1所述的真空玻璃的真空抽取车, 其特征在于, 对于 每层支撑台, 所述承载位的数量为多个, 且多个所述承载位沿平行于真空玻 璃的表面的方向呈矩形阵列排布; 并且, 对于不同层的支撑台之间, 所述承 载位的数量和排布方式相同,并且各层支撑台及其上的行列序数相同的各个 承载位依次沿平行于所述真空玻璃表面的方向交错设置。
3.根据权利要求 2所述的真空玻璃的真空抽取车, 其特征在于, 各层
支撑台在其交错方向上的尺寸不同,且沿垂直于真空玻璃的表面的方向由上 而下依次减小; 并且
对于不同层的支撑台之间,行列序数相同的各个承载位在其交错方向上 的一侧边缘相互平齐,并且行列序数相同的各个承载位在其交错方向上的尺 寸不同, 且沿垂直于真空玻璃的表面的方向由上而下依次减小。
4.根据权利要求 1所述的真空玻璃的真空抽取车, 其特征在于, 各层 支撑台在其交错方向上的尺寸不同,且沿垂直于真空玻璃的表面的方向由上 而下依次减小; 并且
对于每层支撑台,所述承载位的数量为一个,并且对于不同层的支撑台 之间, 各个承载位在其交错方向上的一侧边缘相互平齐, 并且行列序数相同 的各个承载位在其交错方向上的尺寸不同,且沿垂直于真空玻璃的表面的方 向由上而下依次减小。
5.根据权利要求 1所述的真空玻璃的真空抽取车, 其特征在于, 在所 述底座及其承载腔的外表面上设置有第一保温层,用以保护所述承载腔内的 所述真空系统和控制系统不受外界温度的影响。
6.根据权利要求 1所述的真空玻璃的真空抽取车, 其特征在于, 在所 述底座上还设置有支撑架, 所述支撑架包括一个台阶板和四个侧板, 所述台 阶板、 四个侧板以及所述底座形成封闭空间; 其中, 所述台阶板具有在所述 承载位的交错方向上的多个台阶,所述台阶的数量与所述支撑台的层数相对 应, 所述支撑台——对应地设置在所述台阶上;
所述排气封口装置的顶部开口沿垂直于真空玻璃的表面的方向贯穿所 述台阶, 且到达所述真空玻璃的下方, 并且在所述排气封口装置中, 其顶部 开口的需要与所述真空玻璃相接触的部分位于所述台阶以上;其余部分位于 所述台阶以下的所述封闭空间内。
7.根据权利要求 6所述的真空玻璃的真空抽取车, 其特征在于, 在所 述台阶板和四个侧板的外表面上设置有第二保温层,用以保护所述排气封口 装置中位于所述封闭空间内的部分不受外界温度的影响。
8.根据权利要求 1所述的真空玻璃的真空抽取车, 其特征在于, 所述 真空系统包括抽真空管路和真空泵, 其中
所述抽真空管路包括一条主路和相互并联的多条支路,所述支路的数量 与所述排气封口装置的数量相对应,且所述支路的一端与所述排气封口装置 ——对应地连接; 所述支路的另一端均与所述主路的一端连接; 所述主路的 另一端与所述真空泵连接;
所述真空泵用于在所述排气封口装置进行抽真空操作时,依次经由所述 抽真空管路和所述排气封口装置抽取所述真空玻璃内的空气。
9.一种真空玻璃生产线, 其特征在于, 包括: 加热炉、 轨道和真空抽 取车, 其中,
所述轨道贯穿所述加热炉的炉腔设置;
所述真空抽取车通过所述滚轮沿所述轨道行进,并在所述排气封口装置 进行抽真空操作和抽气口封闭操作时,行进至所述加热炉的炉腔内的加热位 置; 所述真空抽取车采用了权利要求 1-8任意一项所述的真空玻璃的真空抽 取车;
所述加热炉的炉腔用于在所述真空抽取车位于所述加热位置时,加热所 述真空抽取车上的真空玻璃。
10.根据权利要求 9所述的真空玻璃生产线, 其特征在于, 所述加热炉 的炉腔为仅容纳一个所述真空抽取车的单体式腔体; 或者,
所述加热炉的炉腔为可容纳首尾相接的多个所述真空抽取车的连续式
腔体。
11.根据权利要求 10所述的真空玻璃生产线, 其特征在于, 所述炉腔 包括可供所述真空抽取车进出的开口, 以及用于开启或关闭所述开口的炉 门; 并且, 在所述炉腔的内表面上设置有第三保温层;
所述炉门、第三保温层和所述底座在所述真空抽取车位于所述加热位置 时形成密封空间。
12.根据权利要求 10所述的真空玻璃生产线, 其特征在于, 所述炉腔 包括可供所述真空抽取车进出的第一开口和第二开口,以及分别用于开启或 关闭所述第一开口和第二开口的第一炉门和第二炉门; 并且, 在所述炉腔的 内表面上设置有第三保温层;
所述第一炉门、第二炉门、第三保温层和所述底座在所述真空抽取车位 于所述加热位置时形成密封空间。
13.根据权利要求 10所述的真空玻璃生产线, 其特征在于, 所述炉腔 包括可供所述真空抽取车进出的开口, 并且, 在所述炉腔的内表面上设置有 第三保温层;
在所述真空抽取车的底座上,且位于所述真空抽取车的行进方向的后侧 设置有后立面保温层, 所述后立面保温层、 第三保温层和所述底座在所述真 空抽取车位于所述加热位置时形成密封空间。
14.根据权利要求 10所述的真空玻璃生产线, 其特征在于, 所述炉腔 包括可供所述真空抽取车进出的第一开口和第二开口; 并且, 在所述炉腔的 内表面上设置有第三保温层;
在所述真空抽取车的底座上,且位于所述真空抽取车的行进方向的前侧 和后侧分别设置有前立面保温层和后立面保温层, 所述前立面保温层、后立
面保温层、第三保温层和所述底座在所述真空抽取车位于所述加热位置时形 成密封空间。
15.根据权利要求 11-14任意一项所述的真空玻璃生产线,其特征在于, 在所述真空抽取车的底座的外周壁上,且位于所述真空抽取车行进方向的两 侧分别设置有保温凸部, 并且
在所述炉腔的内表面上,且位于所述真空抽取车行进方向的两侧分别设 置有保温滑块,所述保温滑块的一端与所述炉腔的内表面可沿竖直方向滑动 地连接,所述保温滑块的另一端自所述炉腔的内表面延伸至与其同侧的所述 保温凸部的下方;
在所述真空抽取车位于所述加热位置时,使所述保温滑块竖直上升至与 所述保温凸部相接触的位置处; 在所述真空抽取车相对于所述炉腔行进时, 使所述保温滑块竖直下降至与所述保温凸部不相接触的位置处。
16.根据权利要求 11-14任意一项所述的真空玻璃生产线,其特征在于, 在所述真空抽取车的底座和 /或承载腔的外周壁上, 且位于所述真空抽取车 行进方向的两侧分别设置有多个保温凸部,且所述多个保温凸部沿竖直方向 间隔设置; 并且
在所述炉腔的内表面上,且位于所述真空抽取车行进方向的两侧分别设 置有保温定块, 所述保温定块的一端与所述炉腔的内表面固定连接, 所述保 温定块的另一端自所述炉腔的内表面延伸至与其同侧的所述保温凸部的下 方; 并且, 所述保温定块的数量与所述保温凸部的数量相对应, 且所述保温 定块与所述保温凸部沿竖直方向彼此间隔且相间设置。
17.根据权利要求 11-14任意一项所述的真空玻璃生产线,其特征在于, 在所述第三保温层上,且位于所述真空抽取车的行进方向的左侧或者右侧设 置有热风入口, 并且对应地, 在所述第三保温层上, 且位于所述真空抽取车
的行进方向的右侧或者左侧设置有热风出口;
所述加热炉还包括热风循环通道、 加热装置和送风装置, 其中 所述热风循环通道设置于所述第三保温层的外侧,且分别与所述热风入 口和所述热风出口连接;
所述加热装置用于对所述热风循环通道内的空气进行加热;
所述送风装置用于将加热后的空气经由所述热风入口输送到所述炉腔 中的所述密封空间内;
所述热风出口用于将所述密封空间内的空气排入所述热风循环通道内。
18.根据权利要求 9所述的真空玻璃生产线, 其特征在于, 所述轨道为 闭合的环形轨道。
19.根据权利要求 18所述的真空玻璃生产线, 其特征在于, 所述真空 玻璃生产线还包括自控系统, 所述自控系统包括驱动单元、加热单元和控制 单元, 其中
所述驱动单元用于驱动所述真空抽取车沿所述环形轨道前进、后退或者 停止;
所述加热单元用于按预设的温度曲线对所述炉腔进行加热;
所述控制单元用于控制所述驱动单元和加热单元的工作。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480022442.4A CN105246846B (zh) | 2014-03-19 | 2014-03-19 | 真空玻璃的真空抽取车及真空玻璃生产线 |
PCT/CN2014/073724 WO2015139251A1 (zh) | 2014-03-19 | 2014-03-19 | 真空玻璃的真空抽取车及真空玻璃生产线 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/073724 WO2015139251A1 (zh) | 2014-03-19 | 2014-03-19 | 真空玻璃的真空抽取车及真空玻璃生产线 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015139251A1 true WO2015139251A1 (zh) | 2015-09-24 |
Family
ID=54143672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/073724 WO2015139251A1 (zh) | 2014-03-19 | 2014-03-19 | 真空玻璃的真空抽取车及真空玻璃生产线 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105246846B (zh) |
WO (1) | WO2015139251A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110218003A (zh) * | 2019-05-28 | 2019-09-10 | 洛阳兰迪玻璃机器股份有限公司 | 一种真空玻璃抽气装置及方法 |
EP3517513A4 (en) * | 2016-09-20 | 2020-03-25 | Je Il Park | MANUFACTURING METHOD AND DEVICE FOR VACUUM THERMAL INSULATION PANEL GLASS ARRANGEMENT |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106830712B (zh) * | 2017-04-07 | 2019-11-12 | 北京明日之星玻璃机械有限公司 | 一种真空玻璃立式连续抽真空设备 |
CN113979651B (zh) * | 2021-11-10 | 2023-04-25 | 沃米真玻科技(北京)有限公司 | 真空玻璃全流程连续自动化生产线 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063158A (ja) * | 2006-09-05 | 2008-03-21 | Matsushita Electric Ind Co Ltd | ガラスパネル |
CN102249558A (zh) * | 2011-06-20 | 2011-11-23 | 天津沽上真空玻璃制造有限公司 | 一种真空玻璃的制造系统 |
CN103553314A (zh) * | 2013-10-21 | 2014-02-05 | 天津森宇玻璃制造有限公司 | 一种真空玻璃抽气管多工位抽气平台 |
CN103570229A (zh) * | 2012-08-10 | 2014-02-12 | 北京新立基真空玻璃技术有限公司 | 真空抽取装置、真空玻璃制作系统以及相关方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102531361B (zh) * | 2010-12-31 | 2013-12-25 | 上海镭立激光科技有限公司 | 一种钢化真空玻璃的封边方法和装置 |
-
2014
- 2014-03-19 WO PCT/CN2014/073724 patent/WO2015139251A1/zh active Application Filing
- 2014-03-19 CN CN201480022442.4A patent/CN105246846B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063158A (ja) * | 2006-09-05 | 2008-03-21 | Matsushita Electric Ind Co Ltd | ガラスパネル |
CN102249558A (zh) * | 2011-06-20 | 2011-11-23 | 天津沽上真空玻璃制造有限公司 | 一种真空玻璃的制造系统 |
CN103570229A (zh) * | 2012-08-10 | 2014-02-12 | 北京新立基真空玻璃技术有限公司 | 真空抽取装置、真空玻璃制作系统以及相关方法 |
CN103553314A (zh) * | 2013-10-21 | 2014-02-05 | 天津森宇玻璃制造有限公司 | 一种真空玻璃抽气管多工位抽气平台 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3517513A4 (en) * | 2016-09-20 | 2020-03-25 | Je Il Park | MANUFACTURING METHOD AND DEVICE FOR VACUUM THERMAL INSULATION PANEL GLASS ARRANGEMENT |
US11155497B2 (en) | 2016-09-20 | 2021-10-26 | Je Il PARK | Vacuum insulation glass panel assembly manufacturing method and apparatus |
CN110218003A (zh) * | 2019-05-28 | 2019-09-10 | 洛阳兰迪玻璃机器股份有限公司 | 一种真空玻璃抽气装置及方法 |
CN110218003B (zh) * | 2019-05-28 | 2022-01-07 | 洛阳兰迪玻璃机器股份有限公司 | 一种真空玻璃抽气装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105246846A (zh) | 2016-01-13 |
CN105246846B (zh) | 2017-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2553691C2 (ru) | Устройство для непрерывной обработки элемента из вакуумного стекла | |
WO2015139251A1 (zh) | 真空玻璃的真空抽取车及真空玻璃生产线 | |
TWI540105B (zh) | Forming device and forming method | |
WO2016045289A1 (zh) | 一种全自动真空干燥炉 | |
KR101750261B1 (ko) | 곡면 윈도우 글라스 제조장치 및 이를 이용한 곡면글라스 제조방법 | |
TW202023930A (zh) | 玻璃上下料機 | |
KR101881476B1 (ko) | 진공유리 제조장치 | |
CN113979651B (zh) | 真空玻璃全流程连续自动化生产线 | |
KR20130074145A (ko) | 트레이교환모듈, 기판처리장치 및 기판처리방법 | |
CN109192820B (zh) | 多层多腔层压系统及其使用方法 | |
JP2006093084A (ja) | 平板型蛍光ランプのランプ上板成形システム | |
US20060233908A1 (en) | Single station thermo-forming machine | |
KR101378043B1 (ko) | 고진공을 갖는 진공유리패널 제조장치 및 제조방법 | |
JP4776441B2 (ja) | 横型多段プレス装置の板材搬入構造及び板材搬出構造並びにそれらを用いた横型多段プレス装置 | |
KR102598221B1 (ko) | 진공단열재 제조 장치 | |
CN111619190A (zh) | 一种层压系统及层压方法 | |
TWI577652B (zh) | 成型爐 | |
CN210657054U (zh) | 均质设备 | |
CN210150963U (zh) | 封装装置 | |
CN113880460B (zh) | 真空玻璃封边抽真空封口一体化加热炉和连续生产线 | |
KR102586711B1 (ko) | 진공단열재 자동 제조 장치 | |
KR20160001934A (ko) | 3실형 고진공 브레이징 장치 | |
CN111847903B (zh) | 封装装置 | |
KR101643329B1 (ko) | 기판 냉각 장치 | |
CN220564483U (zh) | 一种无抽气口真空玻璃的模块化封焊生产线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14886011 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14886011 Country of ref document: EP Kind code of ref document: A1 |