WO2015137212A1 - 鋳型形成用スラリー、鋳型、および、鋳型の製造方法 - Google Patents

鋳型形成用スラリー、鋳型、および、鋳型の製造方法 Download PDF

Info

Publication number
WO2015137212A1
WO2015137212A1 PCT/JP2015/056360 JP2015056360W WO2015137212A1 WO 2015137212 A1 WO2015137212 A1 WO 2015137212A1 JP 2015056360 W JP2015056360 W JP 2015056360W WO 2015137212 A1 WO2015137212 A1 WO 2015137212A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
slurry
layer
forming
stucco
Prior art date
Application number
PCT/JP2015/056360
Other languages
English (en)
French (fr)
Inventor
英隆 小熊
一剛 森
一郎 永野
志田 雅人
岡田 郁生
良太 沖本
上村 好古
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020167021655A priority Critical patent/KR101885445B1/ko
Priority to US15/116,628 priority patent/US10259034B2/en
Priority to DE112015001193.5T priority patent/DE112015001193B4/de
Priority to CN201580003968.2A priority patent/CN105899309B/zh
Publication of WO2015137212A1 publication Critical patent/WO2015137212A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/183Sols, colloids or hydroxide gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the present invention relates to a mold forming slurry, a mold, and a method for producing the mold.
  • This application claims priority on March 12, 2014 based on Japanese Patent Application No. 2014-049226 for which it applied to Japan, and uses the content here.
  • a mold formed by baking a mixture of silica sol with zircon, alumina or the like is known.
  • Such a mold generally has little shrinkage due to a decrease in temperature, and its linear expansion coefficient becomes a value that is an order of magnitude different from that of a metal that is a casting. Therefore, due to shrinkage when the casting is cooled, tensile stress may act on the casting and defects such as cracks may occur in the casting.
  • Patent Document 1 proposes a technique for forming a mold using a material containing 10% by weight or more of zirconia.
  • the technique of this patent document 1 utilizes the property of zirconia whose crystal structure changes according to temperature. That is, by utilizing the fact that the mold becomes hot due to the pouring of molten metal, countless fine cracks are generated in the mold to self-collapse the mold.
  • the above-mentioned zirconia has a crystal structure that changes from an orthorhombic crystal to a tetragonal crystal, for example, and the volume changes when the temperature reaches around 1100 ° C. Therefore, in the process of pouring the molten metal into the mold, there is a possibility that volume change occurs in the mold and it becomes difficult to perform precision casting.
  • An object of the present invention is to provide a slurry for forming a mold, a mold, and a method for manufacturing the mold, which can stably mold a casting and can easily self-collapse the mold.
  • the mold forming slurry includes silica sol as a dispersion medium and niobium stabilized zirconia dispersed in the silica sol.
  • the mold includes a primary layer and a backup layer stacked in order from the inside, and at least one of the primary layer and the backup layer includes the mold forming slurry of the first aspect. It is formed by heat treatment.
  • a method for producing a mold includes a slurry generating step of generating a slurry by dispersing niobium-stabilized zirconia in a silica sol as a dispersion medium, and attaching the slurry to the surface of a wax mold.
  • the mold manufacturing method further includes a stucco layer forming step of forming a stucco layer by attaching particles of a refractory material to the surface of the slurry layer, and a heat treatment step of heat treating the slurry layer and the stucco layer. Including.
  • the casting can be stably formed and the mold can be easily self-collapsed.
  • the slurry for forming a mold (hereinafter simply referred to as slurry) of this embodiment includes silica sol as a dispersion medium, and niobium stabilized zirconia (NbO 2 .ZrO 2 ) dispersed in the silica sol.
  • slurry includes silica sol as a dispersion medium, and niobium stabilized zirconia (NbO 2 .ZrO 2 ) dispersed in the silica sol.
  • Niobia-stabilized zirconia becomes a slurry by being dispersed in silica sol as a dispersion medium.
  • Niobia-stabilized zirconia is stable up to about 1100 ° C. without changing its crystal structure.
  • the niobium-stabilized zirconia when the niobium-stabilized zirconia reaches about 1200 ° C., it is destabilized and liberated into niobia and zirconia.
  • the liberated zirconia undergoes a change in crystal structure depending on the temperature, similar to general zirconia. That is, the zirconia crystal structure becomes tetragonal at a high temperature (for example, more than 1000 ° C.), while it becomes orthorhombic at a low temperature (for example, 1000 ° C. or less).
  • a wetting improver can be added to improve the wettability of the slurry to the wax mold.
  • Victor Wet 12 registered trademark, manufactured by Nippon Freeman Co., Ltd.
  • the Victor wet 12 is a surfactant that is added during mold making such as precision casting.
  • An antifoaming agent can be added to prevent foam from being generated in the slurry.
  • ANTIFOAM1410 made by Dow Corning
  • ANTIFOAM1410 made by Dow Corning
  • FIG. 1 is a cross-sectional view showing a slurry and a stucco in an embodiment of the present invention.
  • the mold 1 in this embodiment includes a primary layer 3 and a backup layer 4 laminated on the surface 2 a of the wax mold 2.
  • the primary layer 3 and the backup layer 4 are formed by alternately laminating a niobium-stabilized zirconia layer 5 formed of slurry and a stucco layer 6 formed of heat-resistant material particles (hereinafter simply referred to as stucco). Is formed.
  • the primary layer 3 refers to one to two layers from the inside of the mold 1 among the stacked layers of the niobium stabilized zirconia layer 5 and the stucco layer 6. Since the primary layer 3 is a layer in contact with the casting, it is preferably formed from fine particles that do not react with the casting.
  • the backup layer 4 is a layer mainly responsible for the strength in the mold. The backup layer 4 is disposed outside the primary layer 3. The backup layer 4 is formed with a thickness corresponding to the required strength.
  • the stucco layer 6 is formed by particles 7 of a refractory material adhering to the surface 5 a of the niobia stabilized zirconia layer 5.
  • the refractory particles 7 include coarse particles (particle diameters of 0.2 to 1.0 mm) called stucco such as mullite and alumina.
  • FIG. 2 is a flowchart of the mold manufacturing method according to the embodiment of the present invention.
  • the wax mold 2 is formed in advance by injection molding or the like. Specifically, first, wax is poured into a mold in which a core material is embedded. Next, the mold is removed, and the molded part in which the outer side of the core material is covered with the wax is taken out from the mold. Thereafter, a wax mold 2 and a seal are attached to the wax molded part to form a wax mold 2.
  • step S01 particles of niobia stabilized zirconia are dispersed in silica sol as a dispersion medium to generate a slurry.
  • step S02 particles of niobia stabilized zirconia are dispersed in silica sol as a dispersion medium to generate a slurry.
  • the stucco layer 6 is formed by sprinkling the refractory material particles 7 on the surface of the slurry layer (step S03). Since the refractory material is excellent in water absorption, the water in the slurry layer is absorbed and the slurry layer is in a dry state.
  • the wax mold 2 in which the slurry layer and the stucco layer 6 are laminated is put in a drying chamber and dried, for example, for about 2 hours.
  • a drying step the wax mold 2 in which the slurry layer and the stucco layer 6 are laminated is put in a drying chamber and dried, for example, for about 2 hours.
  • step S05 The series of steps including the slurry layer forming step, the stucco layer forming step, and the drying step are repeated a predetermined number of times (for example, several to a dozen times) (step S05).
  • step S06 the wax mold 2 is removed (step S06) and firing is performed (heat treatment step; step S07).
  • the wax mold is removed by melting the wax using heated steam at about 10 atm and 150 ° C. using an autoclave or the like. The firing is performed at a temperature of 980 ° C. for 1 to 10 hours.
  • a casting process is performed in which a molten metal is poured into a mold. Moreover, after taking out a casting from a casting_mold
  • the mold is preheated at 1100 ° C. or higher and quickly set in the furnace. Thereafter, a molten alloy (molten metal) of about 1500 ° C. is poured into the mold in a vacuum. In the core removal step, the pouring gate and cough are cut and finished, and then the obtained alloy is put into a high-temperature alkaline solution.
  • a high-temperature alkaline solution for example, a solution of about 40 to 50 wt% sodium hydroxide (NaOH) or potassium hydroxide (KOH) heated to a temperature of about 180 ° C. can be used. The alloy is immersed in this solution for about 12 to 24 hours, and pressurization and depressurization are repeated.
  • the core material in the alloy and the coating on the surface of the core material are eluted, and a hollow turbine blade made of the alloy can be obtained.
  • Turbine blades are finished by sandblasting or grinder, and dimensional inspection, zygro inspection, X-ray inspection, etc. are performed.
  • the cooled and solidified casting is taken out from the mold 1 before moving to the core removing process. More specifically, the mold 1 is cooled and self-collapsed, and the casting is taken out.
  • the niobium-stabilized zirconia forming the mold 1 is destabilized when heated to about 1200 ° C. with molten metal. This liberates to niobia and zirconia as described above.
  • zirconia is tetragonal because it is 1000 ° C. or higher.
  • zirconia changes to orthorhombic crystals.
  • zirconia undergoes volume expansion and the strength is extremely reduced. Therefore, when a force is applied to the mold due to a difference in coefficient of linear expansion between the mold and the casting, the mold self-collapses.
  • the self-disintegration is not sufficient, a large number of cracks are formed in the mold, so that the mold can be easily broken with a minimum impact.
  • Example 1 niobia stabilized zirconia powder (NbO 2 .ZrO 2 ) was added to silica sol as a dispersion medium to form a slurry. Further, OT-75 was added as a wettability improving agent and ANTIFOAM1410 was added as an antifoaming agent to obtain a slurry for forming a mold.
  • the wax mold was pulled up, and excess slurry was dropped.
  • stucco coarse particles (0.2-1 mm) made of mullite or alumina were sprinkled on the slurry on the wax mold.
  • the total thickness of the slurry layer and the stucco layer was 0.5-2 mm.
  • the slurry layer and the stucco layer were laminated to a thickness at which sufficient strength was obtained by repeating this several times to a dozen times to form a primary layer and a backup layer. Thereafter, the wax was removed by an autoclave at 150 ° C., and heat treatment (baking) was performed at 980 ° C. to obtain a mold.
  • This mold was preheated at 1100 ° C. or more and warmed to pour molten metal. Then, the niobium stabilized zirconia was destabilized. Thereafter, when the mold was cooled, the crystal structure of zirconia changed from tetragonal to orthorhombic, and the mold was self-collapsed and the casting could be easily taken out. Observation of the self-collapsed mold revealed volume expansion and a large number of cracks, and the entire mold was brittle.
  • Niobia stabilized zirconia powder (NbO 2 .ZrO 2 ) was added to a silica sol as a dispersion medium to form a slurry. Further, OT-75 as a wettability improving agent and ANTIFOAM1410 as an antifoaming agent were added to form a backup slurry for forming a backup layer. Further, zircon flour (ZrSiO 4 ) was dispersed in silica sol as a dispersion medium to form a slurry. Further, Victor Wet 12 was added as a wetting improver, and ANTIFOAM 1410 was added as an antifoaming agent to form a primary slurry for forming a primary layer.
  • the wax mold After immersing the wax mold in the primary slurry, the wax mold was pulled up, and excess primary slurry was dropped. Next, stucco coarse particles (0.2-1 mm) made of mullite or alumina were sprinkled on the slurry on the wax mold. As a result, the stucco adhered to the wet slurry, and at the same time, excess water was absorbed from the slurry, so that the slurry became dry. Next, this was put in a drying room for 2 hours or more and dried. As a result, the total thickness of the slurry layer and the stucco layer was 0.5-2 mm. This was repeated once or twice to form a primary layer.
  • the wax mold was dipped in the backup slurry and then pulled up, and excess backup slurry was dropped.
  • stucco coarse particles (0.2-1 mm) made of mullite or alumina were sprinkled on the slurry on the wax mold.
  • the slurry layer and the stucco layer were laminated to such a thickness that sufficient strength was obtained by repeating this several times to a dozen times to form a backup layer.
  • the wax was removed by an autoclave at 150 ° C., and heat treatment (baking) was performed at 980 ° C. to obtain a mold.
  • This mold was preheated at 1100 ° C. or more and warmed to pour molten metal. Then, the niobium stabilized zirconia was destabilized. Thereafter, when the mold was cooled, the crystal structure of zirconia changed from tetragonal to orthorhombic, and the mold was self-collapsed and the casting could be easily taken out. When the self-destructed mold was observed, volume expansion and a large number of cracks were confirmed in the backup layer, and the backup layer was fragile as a whole.
  • Zircon flour was dispersed into a slurry using silica sol as a dispersion medium. Further, Victor Wet 12 was added as a wetting improver, and ANTIFOAM1410 was added as an antifoaming agent to form a slurry for mold formation.
  • the molten metal was poured into the mold and cooled to form a casting. After cooling, impacts such as hammering were repeatedly applied to the mold to break the mold and take out the casting. Inspection of the casting removed from the mold found defects.
  • the niobium-stabilized zirconia when the molten metal is poured and becomes high temperature, the niobium-stabilized zirconia can be destabilized. Furthermore, this destabilization can liberate niobia and zirconia. Therefore, when the casting is cooled, the crystal structure of zirconia changes to cause a volume change and a strength reduction, and the self-disintegration property of the mold 1 can be enhanced. As a result, it is possible to suppress the volume change in the process of pouring the molten metal and stably mold the casting, and the mold 1 can be easily self-collapsed.
  • the self-disintegration property of the mold 1 can be sufficiently enhanced.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
  • niobia-stabilized zirconia is used only for the backup layer 4
  • niobia-stabilized zirconia may be used only for the primary layer 3.
  • the self-disintegration property of the mold can be enhanced.
  • the present invention can also be applied to castings other than the turbine blade.
  • the present invention can be applied to a slurry for forming a mold, a mold, and a method for producing the mold, and can stably form a casting and can easily self-collapse the mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

 鋳型形成用スラリーは、分散媒としてのシリカゾルと、シリカゾルに分散されたニオビア安定化ジルコニアと、を含む。

Description

鋳型形成用スラリー、鋳型、および、鋳型の製造方法
 この発明は、鋳型形成用スラリー、鋳型、および、鋳型の製造方法に関する。
 本願は、2014年3月12日に、日本に出願された特願2014-049226号に基づき優先権を主張し、その内容をここに援用する。
 金属、合金等の鋳造を行う鋳型にあっては、鋳物を取り出すときに鋳型の強度が高すぎて鋳型を割ることが困難になる場合がある。このような鋳型から鋳物を取り出す際には、ハンマーによる打撃、サンドブラスト、又は、スチールショット等により鋳型を破壊すこととなる。そのため、鋳物に対して鋳型破壊による衝撃のダメージが加わり欠陥が生じる可能性がある。
 鋳型としては、シリカゾルに対してジルコンやアルミナ等を混合したものを焼成して形成される鋳型が知られている。このような鋳型は、一般に温度低下による収縮が少なく、その線膨張係数が、鋳物である金属の線膨張係数と一桁違う値になってしまう。そのため、鋳物が冷却される際の収縮により、鋳物に引張応力が作用して鋳物に割れなどの欠陥が生じる可能性がある。
 特許文献1には、ジルコニアを10重量%以上含む材料を用いて鋳型を形成する技術が提案されている。この特許文献1の技術は、温度に応じて結晶構造が変化するジルコニアの性質を利用している。つまり、金属溶湯の注湯により鋳型が高温になることを利用して、鋳型中に微細なクラックを無数に発生させて、鋳型を自己崩壊させている。
特開平6-015404号公報
 ところで、上述したジルコニアは、温度が1100℃付近になると結晶構造が、例えば、斜方晶から正方晶に変化して体積が変化してしまう。そのため、溶湯を鋳型に注湯する過程で、鋳型に体積変化が生じて精密鋳造が困難になる可能性がある。
 この発明は、鋳物を安定して成形することができるとともに、鋳型を容易に自己崩壊させることができる鋳型形成用スラリー、鋳型、および、鋳型の製造方法を提供することを目的とする。
 この発明の第一態様によれば、鋳型形成用スラリーは、分散媒としてのシリカゾルと、前記シリカゾルに分散されたニオビア安定化ジルコニアと、を含む。
 この発明の第二態様によれば、鋳型は、内側から順にプライマリ層とバックアップ層とを積層して備え、前記プライマリ層と前記バックアップ層との少なくとも一方が、第一態様の鋳型形成用スラリーを熱処理して形成されている。
 この発明の第三態様によれば、鋳型の製造方法は、分散媒としてのシリカゾルにニオビア安定化ジルコニアを分散させてスラリーを生成するスラリー生成工程と、ワックス型の表面に前記スラリーを付着させてスラリー層を形成するスラリー層形成工程と、を含む。この鋳型の製造方法は、前記スラリー層の表面に耐火材の粒子を付着させてスタッコ層を形成するスタッコ層形成工程と、前記スラリー層、および、前記スタッコ層を熱処理する熱処理工程と、を更に含む。
 上述した鋳型形成用スラリー、鋳型、および、鋳型の製造方法によれば、鋳物を安定して成形することができるとともに、鋳型を容易に自己崩壊させることができる。
この発明の実施形態におけるスラリーおよびスタッコを示す断面図である。 この発明の実施形態における鋳型の製造方法のフローチャートである。
 以下、この発明の一実施形態に係る鋳型形成用スラリー、鋳型、および、鋳型の製造方法について説明する。
 この実施形態の鋳型形成用スラリー(以下、単にスラリーと称する)は、分散媒としてのシリカゾルと、シリカゾルに分散されるニオビア安定化ジルコニア(NbO・ZrO)と、を備えている。ニオビア安定化ジルコニアは、分散媒であるシリカゾルに分散されることでスラリーとなる。ニオビア安定化ジルコニアは、1100℃程度までは、結晶構造が変化せず安定した状態となる。一方で、ニオビア安定化ジルコニアは、1200℃程度になると、脱安定化されて、ニオビアとジルコニアとに遊離する。遊離したジルコニアは、一般的なジルコニアと同様に、温度に応じて結晶構造の変化が生じる。すなわち、ジルコニア結晶構造は、高温(例えば、1000℃超)時に正方晶となる一方で、低温時(例えば、1000℃以下)時に斜方晶となる。
 スラリーには、濡れ改善剤、および、消泡剤等を添加しても良い。
 濡れ改善剤は、ワックス型に対するスラリーの濡れ性を改善するために添加することができる。例えば、濡れ改善剤としては、ビクターウェット12(登録商標、日本フリーマン(株)製)等を用いることができる。ビクターウェット12は、精密鋳造などの鋳型造型の際に添加される界面活性剤である。
 消泡剤は、スラリーに泡が発生することを防ぐために添加することができる。例えば、消泡剤としては、ANTIFOAM1410(ダウ・コーニング社製)等を用いることができる。
 図1は、この発明の実施形態におけるスラリーおよびスタッコを示す断面図である。
 図1に示すように、この実施形態における鋳型1は、ワックス型2の表面2aに積層されるプライマリ層3と、バックアップ層4とを備えている。これらプライマリ層3とバックアップ層4とは、スラリーにより形成されるニオビア安定化ジルコニア層5と、耐熱材の粒子(以下、単にスタッコと称する)により形成されるスタッコ層6とが交互に積層されて形成されている。
 プライマリ層3は、ニオビア安定化ジルコニア層5、および、スタッコ層6が積層されたもののうち、鋳型1内側から1~2層を指す。このプライマリ層3は、鋳物と接する層であるため、鋳物と反応しない細かい粒子から形成されることが好ましい。
 バックアップ層4は、主に鋳型中の強度を受け持つ層である。バックアップ層4は、プライマリ層3の外側に配されている。バックアップ層4は、必要な強度に応じた厚さで形成される。
 スタッコ層6は、ニオビア安定化ジルコニア層5の表面5aに付着した耐火材の粒子7により形成される。耐火材の粒子7としては、ムライト、アルミナ等のスタッコと称される粗粒(粒子径が0.2から1.0mm)を例示できる。
(鋳型の製造方法)
 次に、この実施形態における鋳型の製造方法について図面を参照しながら説明する。
 図2は、この発明の実施形態における鋳型の製造方法のフローチャートである。
 この実施形態の鋳型製造方法は、予めワックス型2を射出成型等により形成する。具体的には、まず、中子材が埋め込まれた金型にろうを流し込む。次いで、金型を外し、中子材の外側がろうで覆われたろう成形部品を金型から取り出す。その後、ろう成形部品にろう成形の湯口とセキを取り付けて、ワックス型2とする。
 図2に示すように、まず、スラリー生成工程として、ニオビア安定化ジルコニアの粒子を分散媒であるシリカゾルに分散させてスラリーを生成する(ステップS01)。
 次いで、スラリー層形成工程として、ワックス型2をスラリーに浸漬させた後、引きあげてワックス型2の表面2aにスラリー層を形成する(ステップS02)。
 さらに、スタッコ層形成工程として、耐火材の粒子7をスラリー層の表面に振り掛けてスタッコ層6を形成する(ステップS03)。耐火材は吸水性に優れるため、スラリー層の水分が吸収され、スラリー層が生乾きの状態となる。
 その後、乾燥工程として、スラリー層とスタッコ層6とが積層されたワックス型2を乾燥室に入れて、例えば2時間程度乾燥させる。上記スラリー層形成工程、スタッコ層形成工程、および、乾燥工程からなる一連の工程を一回行うことで、0.5~2mm程度の層がワックス型2の表面2aに形成される。
 これらスラリー層形成工程、スタッコ層形成工程、および、乾燥工程からなる一連の工程は、所定回数(例えば、数回から十数回)繰り返される(ステップS05)。
 その後、ワックス型2を除去して(ステップS06)、焼成を行う(熱処理工程;ステップS07)。ワックス型の除去は、オートクレーブ等を用いて、10気圧、150℃程度の加熱蒸気により、ろうを溶融させて除去する。また、焼成は、980℃の温度で、1~10時間行う。
 ここで、例えば、タービン翼などの鋳物を製造する際には、鋳型内に溶湯を流し込む鋳込み工程を行う。また、鋳物を鋳型から取り出した後、鋳物内の中子材を高温アルカリ溶液中にて溶出させる中子除去工程を行う。
 鋳込み工程は、鋳型を1100℃以上で予熱して、炉内に素早くセットする。その後、真空中にて、約1500℃の溶融合金(溶湯)を、鋳型内に流し込む。
 中子除去工程は、湯口とセキを切断して、仕上げ作業を行った後、得られた合金を高温アルカリ溶液の中に入れる。高温アルカリ溶液は、例えば、約180℃の温度に熱した約40~50wt%の水酸化ナトリウム(NaOH)又は水酸化カリウム(KOH)の溶液を用いることができる。この溶液に上記合金を約12~24時間に渡って浸し、加圧・減圧を繰り返す。これにより、合金内の中子材と、中子材の表面上のコーティングとが溶出されて、合金からなる中空構造のタービン翼を得ることができる。タービン翼は、サンドブラストやグラインダーにより仕上げを行い、寸法検査、ザイグロ検査、X線検査等を行う。
 ところで、上述した鋳込み工程が完了した後、中子除去工程に移行する前に、冷却凝固した鋳物を鋳型1から取り出す。より具体的には、鋳型1を冷却して自己崩壊させて、鋳物を取り出す。
 鋳型1を形成するニオビア安定化ジルコニアは、溶湯により1200℃程度まで加熱されると脱安定化する。これによって上述したように、ニオビアとジルコニアとに遊離する。脱安定化した際、ジルコニアは、1000℃以上であるため正方晶となっている。一方で、冷却により鋳物、および、鋳型の温度が低下して1000℃を下回ると、ジルコニアは、斜方晶へと変化する。この際、ジルコニアは、体積膨張するとともに、強度が極端に低下する。そのため、鋳型と鋳物との線膨張係数の違いなどによって鋳型に力が加わると、鋳型が自己崩壊する。ここで、自己崩壊が十分でなかった場合であっても、鋳型には多数のクラック入るため、最小限の衝撃により容易に鋳型を破壊することができる。
 次に、上述した鋳型の実施例、および、比較例について説明する。
 [実施例1]
 まず、分散媒としてシリカゾルにニオビア安定化ジルコニア粉末(NbO・ZrO)を投入してスラリー化した。さらに、濡れ性改善剤としてOT-75、消泡剤としてANTIFOAM1410をそれぞれ添加して鋳型形成用スラリーを得た。
 さらに、ワックス型をスラリーに浸した後、引き上げて、余分のスラリーを滴下させた。次に、ムライト、又は、アルミナからなるスタッコの粗粒(0.2-1mm)をワックス型上のスラリーに振り掛けた。これによりスタッコは、濡れたスラリーに付着すると同時に、スラリーから余分な水を吸い取り、スラリーが生乾きの状態になった。
 次いで、これを2時間以上乾燥室に入れて乾燥した。これにより、スラリー層とスタッコ層との厚さ合計は、0.5-2mmとなった。これを数回から十数回繰り返して十分な強度が得られる厚さまでスラリー層とスタッコ層とを積層して、プライマリ層とバックアップ層とを形成した。
 その後、150℃のオートクレーブでワックスを除去し、980℃で熱処理(焼成)して鋳型を得た。
 この鋳型を1100℃以上で予熱して温め、溶融金属を流しこんだ。すると、ニオビア安定化ジルコニアが脱安定化した。その後、鋳型を冷却すると、ジルコニアの結晶構造が正方晶から斜方晶へと変化して、鋳型が自己崩壊して鋳物を簡単に取り出すことができた。自己崩壊した鋳型を観察したところ、体積膨張、および、多数のクラックが確認でき、全体的に脆くなっていた。
 [実施例2]
 分散媒としてのシリカゾルにニオビア安定化ジルコニア粉末(NbO・ZrO)を投入してスラリー化した。さらに、濡れ性改善剤としてOT-75、消泡剤としてANTIFOAM1410をそれぞれ添加してバックアップ層を形成するためのバックアップ用スラリーとした。
 また、分散媒としてのシリカゾルにジルコンフラワー(ZrSiO)を分散させてスラリー化した。さらに、濡れ改善剤としてビクターウェット12、消泡剤としてANTIFOAM1410を添加してプライマリ層を形成するためのプライマリ用スラリーとした。
 ワックス型をプライマリ用スラリーに浸した後、引き上げて、余分のプライマリ用スラリーを滴下させた。次に、ムライト、又は、アルミナからなるスタッコの粗粒(0.2-1mm)をワックス型上のスラリーに振り掛けた。これによりスタッコは、濡れたスラリーに付着すると同時に、スラリーから余分な水を吸い取り、スラリーが生乾きの状態になった。
 次いで、これを2時間以上乾燥室に入れて乾燥した。これにより、スラリー層とスタッコ層との厚さ合計は、0.5-2mmとなった。これを1から2回繰り返してプライマリ層を形成した。
 その後、ワックス型をバックアップ用スラリーに浸した後、引きあげて、余分のバックアップ用スラリーを滴下させた。次に、ムライト、又は、アルミナからなるスタッコの粗粒(0.2-1mm)をワックス型上のスラリーに振り掛けた。これによりスタッコは、濡れたスラリーに付着すると同時に、スラリーから余分な水を吸い取り、スラリーが生乾きの状態になった。これを数回から十数回繰り返して十分な強度が得られる厚さまでスラリー層とスタッコ層とを積層して、バックアップ層を形成した。
 その後、150℃のオートクレーブでワックスを除去し、980℃で熱処理(焼成)して鋳型を得た。
 この鋳型を1100℃以上で予熱して温め、溶融金属を流しこんだ。すると、ニオビア安定化ジルコニアが脱安定化した。その後、鋳型を冷却すると、ジルコニアの結晶構造が正方晶から斜方晶へと変化して、鋳型が自己崩壊して鋳物を簡単に取り出すことができた。自己崩壊した鋳型を観察したところ、バックアップ層に体積膨張、および、多数のクラックが確認でき、バックアップ層が全体的に脆くなっていた。
[比較例]
 シリカゾルを分散媒として、ジルコンフラワーを分散させてスラリー化した。さらに、濡れ改善剤としてビクターウェット12、消泡剤としてANTIFOAM1410を添加して鋳型形成用のスラリーとした。
 さらに、ワックス型をスラリーに浸した後、引き上げて、余分のスラリーを落下させた。次に、ムライト、又は、アルミナからなるスタッコの粗粒(粒子径0.2-1mm)をワックス型上のスラリーに振り掛けた。これによりスタッコは、濡れたスラリーに付着すると同時に、スラリーから余分な水を吸い取る形になり、スラリーは、生乾きの状態になった。
 次いで、これを2時間以上乾燥室に入れて乾燥した。これによりスラリー層とスタッコ層との厚さ合計は0.5-2mmとなった。これを数回から十数回繰り返して十分な強度が得られる厚さまでスラリー層とスタッコ層とを積層した。この際、プライマリ層およびバックアップ層の両方を、同一スラリーを用いて形成した。
 その後、150℃のオートクレーブによりワックス型を除去し、900~1200℃で焼成して鋳型を得た。
 さらに、この鋳型に溶湯を流しこみ、冷却し鋳物を形成した。
 冷却後、鋳型にハンマー打撃などの衝撃を繰り返し加えて鋳型を破壊して鋳物を取り出した。鋳型から取り出した鋳物を検査したところ欠陥が見つかった。
 したがって、上述した実施形態によれば、溶湯を注湯して高温になった際に、ニオビア安定化ジルコニアを脱安定化させることができる。さらに、この脱安定化によりニオビアとジルコニアに遊離させることができる。そのため、鋳物が冷却される際に、ジルコニアの結晶構造が変化して体積変化、および、強度低下が生じ、鋳型1の自己崩壊性を高めることができる。その結果、溶湯を注湯する過程で体積変化が生じることを抑制して鋳物を安定して成形することができるとともに、鋳型1を容易に自己崩壊させることができる。
 さらに、プライマリ層3とバックアップ層4とのうち、バックアップ層4のみにニオビア安定化ジルコニアを含むスラリーを用いた場合でも、鋳型1の自己崩壊性を十分に高めることができる。
 本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上述した実施例2においては、バックアップ層4のみにニオビア安定化ジルコニアを用いる場合を一例に説明したが、プライマリ層3のみにニオビア安定化ジルコニアを用いてもよい。このようにプライマリ層3のみにニオビア安定化ジルコニアを用いた場合であっても、鋳型の自己崩壊性を高めることができる。
 また、上述した実施形態においては、鋳物がタービン翼の場合について例示したが、タービン翼以外の鋳物にも適用可能である。
 本発明は、鋳型形成用スラリー、鋳型、および、鋳型の製造方法に適用でき、鋳物を安定して成形することができるとともに、鋳型を容易に自己崩壊させることができる。
 1 鋳型
 2 ワックス型
 2a 表面
 3 プライマリ層
 4 バックアップ層
 5 ニオビア安定化ジルコニア層
 5a 表面
 6 スタッコ層
 7 粒子

Claims (3)

  1.  分散媒としてのシリカゾルと、
     前記シリカゾルに分散されたニオビア安定化ジルコニアと、
    を含む鋳型形成用スラリー。
  2.  内側から順にプライマリ層とバックアップ層とを積層して備え、
     前記プライマリ層と前記バックアップ層との少なくとも一方が、請求項1に記載の鋳型形成用スラリーを熱処理して形成される鋳型。
  3.  分散媒としてのシリカゾルにニオビア安定化ジルコニアを分散させてスラリーを生成するスラリー生成工程と、
     ワックス型の表面に前記スラリーを付着させてスラリー層を形成するスラリー層形成工程と、
     前記スラリー層の表面に耐火材の粒子を付着させてスタッコ層を形成するスタッコ層形成工程と、
     前記スラリー層、および、前記スタッコ層を熱処理する熱処理工程と、を含む鋳型の製造方法。
PCT/JP2015/056360 2014-03-12 2015-03-04 鋳型形成用スラリー、鋳型、および、鋳型の製造方法 WO2015137212A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167021655A KR101885445B1 (ko) 2014-03-12 2015-03-04 주형 형성용 슬러리, 주형, 및 주형의 제조 방법
US15/116,628 US10259034B2 (en) 2014-03-12 2015-03-04 Slurry for forming mold, mold and method for producing mold
DE112015001193.5T DE112015001193B4 (de) 2014-03-12 2015-03-04 Aufschlämmung zur Ausbildung eines Formwerkzeugs, Formwerkzeug, und Verfahren zur Herstellung eines Formwerkzeugs
CN201580003968.2A CN105899309B (zh) 2014-03-12 2015-03-04 铸模形成用浆料、铸模及铸模的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-049226 2014-03-12
JP2014049226A JP6315377B2 (ja) 2014-03-12 2014-03-12 鋳型形成用スラリー、鋳型、および、鋳型の製造方法

Publications (1)

Publication Number Publication Date
WO2015137212A1 true WO2015137212A1 (ja) 2015-09-17

Family

ID=54071658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056360 WO2015137212A1 (ja) 2014-03-12 2015-03-04 鋳型形成用スラリー、鋳型、および、鋳型の製造方法

Country Status (6)

Country Link
US (1) US10259034B2 (ja)
JP (1) JP6315377B2 (ja)
KR (1) KR101885445B1 (ja)
CN (1) CN105899309B (ja)
DE (1) DE112015001193B4 (ja)
WO (1) WO2015137212A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210032148A1 (en) * 2017-12-01 2021-02-04 Corning Incorporated Apparatus and method for producing glass
FR3089438B1 (fr) 2018-12-11 2020-12-25 Safran Barbotine de fonderie améliorée pour la fabrication de moules carapaces
EP4223472A1 (en) 2020-11-20 2023-08-09 Noritake Co., Limited Laminate molded ceramic core and manufacturing method of said ceramic core
CN114804894A (zh) * 2022-07-01 2022-07-29 中国人民解放军国防科技大学 一种多元复相微纳陶瓷纤维及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130438A (en) * 1978-03-20 1979-10-09 Remet Corp Ceramic shell mold
JPS61222658A (ja) * 1985-03-27 1986-10-03 Kyocera Corp 精密鋳造用鋳型材とそれを用いた鋳造方法
JPH01108162A (ja) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd ジルコニアセラミックス
JPH0615404A (ja) * 1991-01-16 1994-01-25 Agency Of Ind Science & Technol 易崩壊性鋳型及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961968A (en) * 1974-03-28 1976-06-08 Waukesha Foundry Company, Inc. Method for producing hybrid binder for ceramic molds
ES2245683T3 (es) 2000-03-17 2006-01-16 Daniel James Duffey Molde de fusion a la cera perdida.
DE102004014573A1 (de) 2004-03-25 2005-10-27 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Verfahren zur Herstellung einer Muffel für den Fein- oder Modellguss, Verfahren zum Herstellen eines metallischen, keramischen oder glaskeramischen Guss- oder Pressobjekts und Kit zur Herstellung eines solchen Objekts
US7638459B2 (en) * 2005-05-25 2009-12-29 Uop Llc Layered composition and processes for preparing and using the composition
US8227369B2 (en) * 2005-05-25 2012-07-24 Celanese International Corp. Layered composition and processes for preparing and using the composition
CN101143381B (zh) * 2007-10-25 2011-01-19 大连金煤阀门有限公司 钛合金精铸熔炼方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130438A (en) * 1978-03-20 1979-10-09 Remet Corp Ceramic shell mold
JPS61222658A (ja) * 1985-03-27 1986-10-03 Kyocera Corp 精密鋳造用鋳型材とそれを用いた鋳造方法
JPH01108162A (ja) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd ジルコニアセラミックス
JPH0615404A (ja) * 1991-01-16 1994-01-25 Agency Of Ind Science & Technol 易崩壊性鋳型及びその製造方法

Also Published As

Publication number Publication date
CN105899309B (zh) 2017-12-01
CN105899309A (zh) 2016-08-24
KR101885445B1 (ko) 2018-08-03
JP6315377B2 (ja) 2018-04-25
JP2015171724A (ja) 2015-10-01
US20160354836A1 (en) 2016-12-08
US10259034B2 (en) 2019-04-16
KR20160107250A (ko) 2016-09-13
DE112015001193T5 (de) 2016-12-01
DE112015001193B4 (de) 2023-11-23

Similar Documents

Publication Publication Date Title
WO2015137212A1 (ja) 鋳型形成用スラリー、鋳型、および、鋳型の製造方法
JP2005297067A (ja) インベストメント鋳造鋳型形成方法、形成システム、およびインベストメント鋳造方法
KR20070101111A (ko) 세라믹 및 내화 금속 주조 코어를 소성하기 위한 방법
JP2007253237A (ja) 取り付け方法およびインベストメント鋳造方法
CN110280717A (zh) 一种喷墨粘接三维打印砂型钛合金铸造工艺
JP5868865B2 (ja) 鋳造又は射出成形工程によりモノリシックボディを製造するための方法
KR101761048B1 (ko) 정밀 주조용 중자 및 그 제조 방법, 정밀 주조용 주형
US20150273571A1 (en) Precision casting mold and method of producing the same
KR101761046B1 (ko) 정밀 주조용 중자 및 그 제조 방법, 정밀 주조용 주형
JP6344034B2 (ja) TiAl合金の鋳造方法
US20150283601A1 (en) Precision casting mold and method of producing the same
JP6265333B2 (ja) 鋳型の製造方法、および、鋳型
KR101761047B1 (ko) 정밀 주조용 중자 및 그 제조 방법, 정밀 주조용 주형
JP2014231081A (ja) 精密鋳造用中子及びその製造方法、精密鋳造用鋳型
US20060249889A1 (en) Production and use of a sacrificial mold core for metal casting
US20150224569A1 (en) Precision casting mold and method of producing the same
US20150217366A1 (en) Precision casting mold and method of producing the same
JP6196472B2 (ja) 精密鋳造用中子及びその製造方法、精密鋳造用鋳型
CN109475928B (zh) 一种用于制造壳模的方法
JP6576298B2 (ja) 精密鋳造用鋳型、精密鋳造用鋳型の鋳造方法、及び、回転機械翼の製造方法
JP2017087226A (ja) セラミックス鋳型の製造方法
JP2014231077A (ja) 精密鋳造用中子及びその製造方法、精密鋳造用鋳型
US8911824B2 (en) Method of impregnating crucibles and refractory articles
US20150266085A1 (en) Precision casting mold and method of producing the same
JP2014231079A (ja) 精密鋳造用中子及びその製造方法、精密鋳造用鋳型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15116628

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167021655

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015001193

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761239

Country of ref document: EP

Kind code of ref document: A1