WO2015136609A1 - ボイラ用燃焼バーナ - Google Patents
ボイラ用燃焼バーナ Download PDFInfo
- Publication number
- WO2015136609A1 WO2015136609A1 PCT/JP2014/056243 JP2014056243W WO2015136609A1 WO 2015136609 A1 WO2015136609 A1 WO 2015136609A1 JP 2014056243 W JP2014056243 W JP 2014056243W WO 2015136609 A1 WO2015136609 A1 WO 2015136609A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- burner
- swirler
- combustion
- air supply
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/20—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
- F23D14/22—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
- F23D14/24—Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/24—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
- F23C7/004—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/38—Nozzles; Cleaning devices therefor
- F23D11/383—Nozzles; Cleaning devices therefor with swirl means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/10—Air inlet arrangements for primary air
- F23R3/12—Air inlet arrangements for primary air inducing a vortex
- F23R3/14—Air inlet arrangements for primary air inducing a vortex by using swirl vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/06041—Staged supply of oxidant
Definitions
- the present invention relates to a combustion burner that injects fuel and combustion air to generate a flame in the combustion space of the boiler furnace and burns the fuel, and more particularly to a boiler combustion burner provided with a swirler that swirls the combustion air. About.
- FIGS. 10 and 11 As shown in FIGS. 10 and 11, as a combustion burner 80 attached to a boiler furnace, it is known that an air supply nozzle 84, 86 for supplying combustion air is provided on the outer periphery of a fuel supply nozzle 82 for supplying fuel. It is done. In such a combustion burner 80, a swirler 88 is often provided in the air supply path for the purpose of securing the turning and flame holding property.
- the swirler 88 swirls the combustion air and supplies it to the combustion space 100 of the boiler furnace to form a swirl flow 92 of air centered on the fuel flow injected from the fuel supply nozzle 82 in the combustion space 100. .
- the swirling flow 92 of air is rapidly expanded by the centrifugal force as it goes away from the combustion burner 80.
- the swirl flow 92 has a reverse pressure gradient in which the pressure decreases toward the center.
- the reverse pressure gradient causes the swirling flow 92 to flow toward the center of the swirling flow 92 at a certain distance from the combustion burner 80.
- the burnt gas is circulated, and the high temperature causes the unburned mixture (fuel + air) to be ignited to hold the flame.
- Patent Document 1 discloses a liquid fuel burner in which an air supply passage for supplying primary air is provided on the outer periphery of an oil spray nozzle, and a swirler for swirling the primary air is provided at the tip of the air supply passage.
- Patent Document 2 discloses a nozzle assembly in which an air supply passage is provided on the outer periphery of a liquid supply nozzle for supplying a liquid flow. The nozzle assembly is configured to atomize the liquid supplied from the liquid supply nozzle with air and jet it.
- a collision pin is provided to promote further liquid particle destruction, and also has a function to prevent the accumulation of liquid around the bottom of the collision pin.
- JP-A-8-61609 Japanese Patent Publication No. 2008-510618
- At least one embodiment of the present invention can provide a combustion burner capable of maintaining the flame holding function for a long time without melting of the swirler even when using a fuel containing a flame-retardant component. Intended to be provided.
- FIGS. 10 is a front view of the combustion burner showing a state in which fuel adheres to the swirler
- FIG. 11 is a cross-sectional view for explaining the air flow in the conventional combustion burner
- FIG. 12 is an air flow in the vicinity of the conventional swirler. Is a perspective view.
- the swirler 88 swirls air to form a swirling flow 92 in the combustion space 100, but a part of the air flow separates from the swirling flow 92, and the separated air flow generates a backflow 94 toward the swirler 88 side .
- fine particles are conveyed to the back flow 94, are rewound, and collide with and adhere to the swirler 88.
- the deposited oil is heated by the radiant heat of the flame, and residual carbon 90 mainly adheres to the inner peripheral side of the swirler 88 as shown in FIG.
- the residual carbon 90 deposits and blocks between adjacent blades 88 a of the swirler 88 to attract a flame, and the adhering oil is heated to lead to melting of the swirler 88. Furthermore, as a result of investigating the cause of the separation of the air flow from the swirling flow 92, the inventors of the present invention have a negative pressure region 95 at the end face of each blade 88a of the swirler 88 and the end face of the fuel supply nozzle (inner pipe) 82. It was found that formation was the main cause. That is, the negative pressure region 95 separates the air flow from the swirling flow 92, and a strong backflow 94 is generated to the base (inner pipe side) of the blade 88 a of the swirler 88. Then, the presence of the backflow 94 causes the swirler 88 to be melted away by the mechanism described above.
- the combustion burner is a boiler combustion burner that injects fuel and air to form a flame in the combustion space of the boiler furnace, and the fuel supply passage for supplying the fuel has an inner periphery.
- An inner cylinder formed on the side and an outer cylinder which is disposed so as to surround the inner cylinder and which forms an air supply passage between the inner cylinder and the inner cylinder are provided in the air supply passage, passing through the air supply passage
- a swirler for swirling the air wherein the swirler extends from the air supply side of the air supply passage toward the combustion space, and a plurality of the swirlers are provided radially between the inner cylinder and the outer cylinder.
- the blade there is a part having a different blade, and at least on the inner cylinder side of the blade, there is a portion where the thickness of the blade differs in the burner axial direction, and the thickness of the blade at the end of the combustion space is the blade It is characterized by being thinner than the thickness of the largest thick part of The largest thickness portion of the blade refers to a portion having the largest thickness between the air supply side end of the blade and the combustion space side end.
- the thickness of the combustion space side end of the swirler blade is formed to be thinner than the thickness of the largest thick portion of the blade, the negative pressure formed on the combustion space side end surface of the blade The area can be reduced. Therefore, the separation of the swirling flow caused by the negative pressure region can be suppressed, and the generation of the backflow toward the swirler side can be suppressed. And, since the adhesion of fuel to the swirler can be reduced, it is possible to prevent the erosion of the swirler and to maintain the flame holding function of the swirler for a long time.
- the backflow of the air flow based on the separation of the swirling flow mainly occurs on the inner cylinder side, so by making the thickness of the vane at least on the inner cylinder side thinner than the largest thickness portion, Fuel adhesion can be reliably prevented.
- a thin portion of the blade may be provided from the inner cylinder side to the outer cylinder side.
- the thickness of the combustion space side end of the blade to which fuel is easily attached is reduced to reduce the adhesion area, even if there is fuel that is rewound back to the blade by backflow starting from peeling at the blade end face It is possible to further reduce the amount of fuel attached to the swirler.
- the blade may be provided with an inclined portion that is inclined at least on the side surface on the inner cylinder side so as to decrease in thickness toward the end portion on the combustion space side.
- the inclined portion is provided on at least one of the side surfaces of the blade.
- the inclined portions may be provided on both side surfaces of the blade, and an end on the combustion space side may be formed into a tapered shape by the two inclined portions.
- the swirler is designed to swirl the blowing air at an appropriate angle in order to provide adequate flame stabilization in the boiler furnace. If an inclined portion is provided to thin the end on the combustion space side of the blade, there is a possibility that the angle of the blown air may be out of an appropriate angle range. Therefore, by providing the sloped portions on both side surfaces of the blade, the angle of one sloped portion can be reduced, and it becomes easy to set the angle of the air to be blown out within an appropriate angle range. That is, the influence of the inclined portion on the angle of the air blown out from the swirler can be minimized. In addition, since the angle of one inclined portion can be reduced, the possibility of air flow separation at the taper start position can also be avoided.
- the combustion burner is attached to the blade at an angle with respect to the axial direction of the burner, and the blade is bent such that the air supply side has a center of curvature on the air supply side. It may have a bending area and a linear area in which the combustion space side is formed in a linear shape, and the inclined portion may be formed in the linear area.
- the vanes are introduced between the vanes by having the bending region on the upstream side (air flow direction) on the air supply side and the linear region on the downstream side on the combustion space side.
- the inclined portion is formed in the linear region, it is possible to improve the processing accuracy (for example, the angle or the like) of the inclined portion as compared with the case where the inclined portion is formed in the bent region.
- the inclined portion may be inclined at an angle of 5 to 10 ° with respect to the blade side surface of the linear region.
- separation of the swirling flow can be prevented, and separation of the air flow at the inclined portion can be prevented. That is, when the slope value of the inclined portion is less than 5 °, it is difficult to make the combustion space side end of the blade sufficiently thin, and separation of the swirling flow occurs.
- the slope value of the inclined portion exceeds 10 °, the air flow may be separated at the inclined portion.
- the blade may have an end face with a thickness that ensures mechanical strength at the end on the combustion space side.
- the thickness at which mechanical strength is secured refers to a thickness that is maintained without being damaged for a long time even if it is exposed to heat or air flow from a boiler furnace.
- the durability of the swirler can be improved by forming the combustion space side end of the blade with the end surface.
- At least a portion of the blade facing the combustion space on the inner cylinder side may include a notch that is notched in the axial direction of the burner. In this way, by providing the notch on at least the inner cylinder side of the blade, the notch prevents the fuel from adhering to the blade by the notch even if there is fuel that is rewound from the blade at the end face of the blade. It is possible.
- the plurality of blades are inclined in the same direction with respect to the axial direction of the burner and are spaced apart from each other in the circumferential direction of the burner, and the end portion on the air supply side of the adjacent blades
- the end of the combustion space may be arranged so as to overlap in the axial direction of the burner, and the notch may be formed so that the overlapping region remains. If there is an axially penetrating space between the adjacent vanes and vanes of the swirler, the formation of the swirling flow may be hindered. Therefore, the adhesion of fuel to the swirler can be suppressed without affecting the formation of the swirling flow by forming the cutout so that the region where the adjacent blades overlap is left.
- adhesion of fuel to the swirler can be suppressed even when using a fuel containing a non-combustible component such as SDA pitch or VR fuel (vacuum residue), and the erosion damage of the swirler Can be prevented. This makes it possible to maintain the flame stabilizing function of the swirler for a long time.
- FIG. 1 is a cross-sectional view showing an entire configuration of a combustion burner according to a first embodiment
- FIG. 2 is a perspective view of a swirler in the first embodiment
- FIG. 3 is an enlarged view of vanes seen in the radial direction of the swirler.
- the combustion burner 1 includes an inner cylinder 2, an outer cylinder 4 disposed so as to surround a part of the inner cylinder 2, and a space between the inner cylinder 2 and the outer cylinder 4. And a provided swirler 20.
- a fuel supply passage 10 is formed on the inner peripheral side of the inner cylinder 2.
- the fuel supplied to the fuel supply passage 10 is, for example, a liquid fuel, and a fuel containing a non-combustible component such as an SDA pitch or a VR fuel (Vacuum Residue) can also be used.
- One end of the inner cylinder 2 faces the combustion space 100 of the boiler furnace.
- a primary air nozzle 6 is provided on the outer peripheral side of the outer cylinder 4, and a secondary air nozzle 8 is provided on the outer peripheral side of the primary air nozzle 6.
- a primary air supply passage 14 to which primary air for combustion is supplied is provided between the inner peripheral surface of the primary air nozzle 6 and the outer peripheral surface of the inner cylinder 2, and the inner peripheral surface of the secondary air nozzle 8 and the primary
- a secondary air supply passage 16 to which secondary air for combustion is supplied is provided between the air nozzle 6 and the outer peripheral surface of the air nozzle 6.
- a primary vane 17 and a secondary vane 18 are provided on the air supply side of the primary air supply passage 14 and the secondary air supply passage 16, respectively. The amount of air supplied to each air supply passage is adjusted by these vanes 17 and 18.
- the outer cylinder 4 is disposed on the combustion space 100 side of the primary air supply passage 14 and divides the primary air supply passage 14 into an inner circumferential side flow passage 12 and an outer circumferential side flow passage 13.
- the primary air that has flowed into the outer peripheral side flow passage 13 is blown out to the combustion space 100 as it is.
- the primary air having flowed into the inner peripheral side flow passage 12 is swirled through the swirler 20 described later and blows out to the combustion space 100.
- the swirler 20 is provided in the inner circumferential side flow passage 12 of the primary air supply passage 14 and swirls the primary air mainly for the purpose of flame holding.
- the swirler 20 extends from the air supply side of the primary air supply path 14 (inner peripheral side flow path 12) toward the combustion space 100 side.
- the swirler 20 may be provided near the end of the combustion space side 100 of the primary air supply passage 14.
- the swirler 20 has a plurality of vanes 26 radially provided between the inner cylinder 2 and the outer cylinder 4.
- the case where seven blades 26 are provided is illustrated in FIG.
- the swirler 20 may be integrated with the blade 26 attached between the swirler inner cylinder 22 corresponding to the inner cylinder 2 and the swirler outer cylinder 24 corresponding to the outer cylinder 4. In that case, the swirler 20 is fitted and fixed between the inner cylinder 2 and the outer cylinder 4.
- the plurality of blades 26 are inclined in the same direction with respect to the burner axial direction O, and are spaced apart from each other in the circumferential direction of the burner 1.
- each blade 26 has a bending region 42 where the upstream side (air supply side) in the air flow direction is bent, and a linear region 44 where the downstream side (the combustion space 100 side) is formed linearly.
- one side surface 32 of the swirler 20 faces the combustion space 100 at an angle (see FIGS. 2 and 4).
- the air introduced between the blades 26 of the swirler 20 swirls due to the inclination of the blades 26 to form a swirling flow of air in the combustion space 100.
- the bending region 42 is bent so as to have a curvature center on the air supply side of the blade 26.
- the air introduced between the adjacent vanes 26 is changed in direction in the bending area 42 and then rectified in the linear area 44 and injected into the combustion space 100, so that the swirling flow is effectively performed in the combustion space 100. It becomes possible to form.
- the present embodiment is provided with the following configuration in order to prevent the swirling flow of air from peeling off and flowing back to the swirler 20 side.
- the blade 26 of the swirler 20 has a portion where the thickness of the blade 26 differs in the burner axial direction O at least on the inner cylinder 2 (swirler inner cylinder 22) side.
- the thickness d 1 of the combustion space-side end portion 30 is formed to be thinner than the thickness d 2 of the maximum wall thickness portion of the vanes 26.
- the thickness of the blade 26 between the inner cylinder 2 and the outer cylinder 4 may be set to the above-mentioned configuration as well as the inner cylinder 2 side.
- the thickest portion of the blade 26 refers to the thickest portion from the air supply side end 40 of the blade 26 to the combustion space side end 30.
- the thickness of the air supply side end 40 is shown as the largest thickness portion in FIG. 3, the portion of the largest thickness portion is not limited to this, for example, a central portion of the burner axial direction O In some cases, the largest thick part may be another part.
- At least one side surface 32 (or 34) of the side surfaces 32 and 34 on the inner cylinder 2 (swirler inner cylinder 22) side is inclined so as to become thinner toward the combustion space side end 30.
- the inclined portion 36 (or 38) may be provided.
- the inclined portions 36 and 38 may be provided on both side surfaces 32 and 34 of the blade 26, and the combustion space side end 30 may be formed into a tapered shape by these two inclined portions 36 and 38.
- FIG. 1 of the combustion space-side end portion 30 of the blade 26 of the swirler 20 is formed to be thinner than the thickness d 2 of the largest thickness portion, FIG. As shown in 4, the negative pressure region 54 formed on the combustion space side end face of the blade 26 can be reduced. Therefore, the separation of the swirling flow 50 caused by the negative pressure region 54 can be suppressed, and the generation of the backflow 52 in which the separated flow is directed to the swirler 20 side can be suppressed. Thereby, the adhesion of fuel to the swirler 20 can be reduced, so that the erosion of the swirler 20 can be prevented, and the flame holding function of the swirler 20 can be maintained for a long time.
- FIG. 4 is a perspective view for explaining the air flow in the vicinity of the swirler in the first embodiment.
- the swirler is reduced by reducing the thickness of the blades 26 at least on the inner cylinder 2 side.
- the fuel adhesion to 20 can be reliably prevented.
- the thickness of the combustion space side end 30 of the vane 26 to which fuel tends to adhere easily is reduced to reduce the adhesion area, the fuel that is wound back to the vane 26 by the backflow 52 starting from the separation at the vane end face Even if there is, it is possible to further reduce the amount of fuel attached to the swirler 20.
- the inclined portions 36 and 38 may be formed in the linear region 44 of the blade 26.
- the processing accuracy for example, the angle or the like
- the inclination angle ⁇ of the inclined portions 36 and 38 may be in the range of 5 ° to 10 ° with respect to the side surfaces 32 and 34 of the linear region 44. Accordingly, separation of the swirling flow can be prevented, and separation of the air flow at the inclined portions 36 and 38 can be prevented.
- the blade 26 may have an end face with a thickness d 1 that ensures mechanical strength at the combustion space side end 30.
- the durability of the swirler 20 can be improved by forming the combustion space side end 30 of the blade 26 with the end face. Further, it is more advantageous in processing that the combustion space side end 30 of the blade 26 is an end face, and the resistance to corrosion is also improved.
- FIGS. 5 and 6 A combustion burner according to a second embodiment of the present invention will be described with reference to FIGS. 5 and 6.
- FIG. 5 is a cross-sectional view of the swirler in the second embodiment
- FIG. 6 is a view of the swirler in FIG.
- the present embodiment has the following configuration for the purpose of suppressing the adhesion of fuel even if there is fuel that is rewound back to the blades by backflow starting from the separation at the blade end face of the swirler 20.
- the blade 26 at least on the side of the inner cylinder 2 (swirler inner cylinder 22) has a notch 46 where a portion facing the combustion space 100 is cut away in the burner axial direction O.
- the notch portion 46 has a shape such that the notch width is the largest at the central portion in the radial direction, and the notch width decreases toward both ends.
- the shape of the notch part 46 is not limited to this.
- FIG. 7 is a cross-sectional view for explaining the air flow in the vicinity of the swirler in the second embodiment.
- the blade 26 is wound back to the blade by the backflow 52 starting from peeling at the blade end surface. Even if fuel is present, it is possible to suppress the adhesion of the fuel to the blades 26 by the notch 46.
- the plurality of blades 26 are inclined in the same direction with respect to the burner axial direction O and are spaced apart from each other in the circumferential direction of the burner and adjacent to each other.
- the notch 46 is formed so that the overlapping region 60 remains. Good. If there is a space penetrating in the axial direction O of the burner 1 between the adjacent vanes 26 and the vanes 26 of the swirler 20, the formation of the swirling flow may be disturbed. Then, adhesion of fuel to the swirler 20 can be suppressed without affecting the formation of the swirling flow by forming the notch 46 so that the region 60 where the adjacent blades 26 overlap is left.
- FIGS. 8 and 9 A modification of the second embodiment will be described with reference to FIGS. 8 and 9.
- 8 is a cross-sectional view of a swirler in a modification of the second embodiment
- FIG. 9 is a view in which the blades of the swirler in FIG. 8 are expanded in the circumferential direction.
- the portion shown by the dotted line is the shell shape of the conventional blade 26 '.
- the length of the burner axial direction O of the blade 26 is made shorter than that of the conventional blade 26 'while keeping the pitch of the blade 26 identical to that of the conventional blade 26'. Increase the radial length of 26.
- the notch 48 has the same notch width from the radial center to the swirler inner cylinder 22 side as viewed from the side of the blade 26, and the notch width from the center to the swirler outer cylinder 24
- the shape is such that
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
- Air Supply (AREA)
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
- Spray-Type Burners (AREA)
Abstract
Description
また、スワラを備えた構成ではないが、特許文献2には、液体流を供給する液体供給ノズルの外周に空気供給路が設けられたノズルアセンブリが開示されている。このノズルアセンブリは、液体供給ノズルから供給される液体を空気で微粒化させて噴射する構成となっている。これに加えて、衝突ピンを設けてさらなる液体粒子破壊を促し、且つ衝突ピン底部周囲への液体の蓄積を防止する機能も有している。
さらに本発明者らは、旋回流92からの空気流れの剥離が発生する原因を探求した結果、スワラ88の各羽根88aの端面及び燃料供給ノズル(内管)82の端面に負圧領域95が形成されることが主な原因であることを見出した。すなわち、この負圧領域95によって旋回流92から空気流れが剥離し、スワラ88の羽根88aの基部(内管側)へ強い逆流94が発生することとなる。そしてこの逆流94の存在によって、上記したメカニズムによりスワラ88が溶損する。
また、上述したように旋回流の剥離に基づく空気流れの逆流は主に内筒側で発生するので、少なくとも内筒側における羽根の厚さを最大肉厚部より薄くすることによって、スワラへの燃料の付着を確実に防止できる。なお、内筒側のみでなく、内筒側から外筒側まで羽根の薄い部分を設けてもよいことは勿論である。
さらに、燃料が付着しやすい羽根の燃焼空間側端部の厚さを薄くして付着面積を小さくしているので、羽根端面での剥離を起点にした逆流で羽根へ巻き戻る燃料があっても、スワラへの燃料の付着量をより一層低減することが可能である。
このように、羽根の側面に傾斜部を設けて羽根の燃焼空間側端部を薄くするようにしたので、スワラの羽根と羽根の間の空気流れを妨げることなく円滑に旋回流を形成することが可能である。
通常、スワラは、ボイラ火炉で適切な保炎を行うために、吹き出す空気を適切な角度で旋回するよう設計されている。羽根の燃焼空間側端部を薄くするために傾斜部を設けようとすると、吹き出す空気の角度が適切な角度範囲から外れてしまう可能性がある。そこで、羽根の両側面に傾斜部を設けることによって一つの傾斜部の角度を小さくすることができ、吹き出す空気の角度を適正な角度範囲内に設定し易くなる。すなわち、スワラから吹き出す空気の角度に対して傾斜部が与える影響を最小限とすることができる。また、一つの傾斜部の角度を小さくすることができることから、テーパ開始位置で空気流れが剥離してしまう可能性も回避できる。
このように、羽根が、空気供給側である上流側(空気流れ方向)に屈曲領域を有し、燃焼空間側である下流側に直線領域を有することによって、羽根と羽根の間に導入された空気流れが屈曲領域で円滑に方向を変え、その後直線領域で整流化されるので、効果的に旋回流を形成することが可能となる。また、傾斜部が直線領域に形成されるようにしたので、屈曲領域に形成される場合に比べて傾斜部の加工精度(例えば角度等)を向上させることが可能である。
これにより、旋回流の剥離を防ぐとともに、空気流れが傾斜部で剥離してしまうことを防止できる。すなわち、傾斜部の勾配値が5°未満である場合、羽根の燃焼空間側端部を十分に薄くすることが難しく、旋回流の剥離が発生してしまう。一方、傾斜部の勾配値が10°を超える場合、空気流れが傾斜部で剥離してしまう可能性がある。
なお、「機械的強度が確保される厚さ」とは、ボイラ火炉からの熱や空気流れに晒されても長期間破損せずに保持される厚さをいう。
このように、羽根の燃焼空間側端部が端面で形成されることによって、スワラの耐久性を向上させることができる。また、羽根の燃焼空間側端部が端面である方が加工上有利であり、且つ腐食に対する耐久性も向上する。
このように、羽根の少なくとも内筒側に切欠部を設けることによって、羽根端面での剥離を起点にした逆流で羽根へ巻き戻る燃料があっても、切欠部によって羽根への燃料の付着を抑制することが可能である。
スワラの隣り合う羽根と羽根の間に、バーナの軸方向に貫通する空間が存在すると旋回流の形成に支障をきたす可能性がある。そこで、隣り合う羽根同士が重なり合う領域が残存するようにして切欠部を形成することで、旋回流の形成に影響を及ぼすことなくスワラへの燃料の付着を抑制できる。
図1は第1実施形態に係る燃焼バーナの全体構成を示す断面図で、図2は第1実施形態におけるスワラの斜視図で、図3はスワラの半径方向に見た羽根の拡大図である。
一実施形態では、図1に示すように、燃焼バーナ1は、内筒2と、内筒2の一部を囲むように配置される外筒4と、内筒2と外筒4の間に設けられるスワラ20とを備えている。
外筒4の外周側には一次空気ノズル6が設けられ、一次空気ノズル6のさらに外周側には二次空気ノズル8が設けられている。一次空気ノズル6の内周面と内筒2の外周面との間には、燃焼用の一次空気が供給される一次空気供給路14が設けられ、二次空気ノズル8の内周面と一次空気ノズル6の外周面との間には、燃焼用の二次空気が供給される二次空気供給路16が設けられる。一次空気供給路14、二次空気供給路16の空気供給側には、それぞれ、一次ベーン17、二次ベーン18が設けられている。そして各空気供給路への空気供給量はこれらのベーン17,18によって調整される。
図3に示すように、スワラ20の羽根26は、少なくとも内筒2(スワラ内筒22)側にて、バーナ軸方向Oにおいて羽根26の厚さが異なる部位が存在する。さらに、少なくとも内筒2(スワラ内筒22)側にて、燃焼空間側端部30の厚さd1が羽根26の最大肉厚部の厚さd2より薄くなるように形成されている。このとき、内筒2側のみでなく、内筒2から外筒4までの間の羽根26の厚さを上記構成としてもよいことは勿論である。なお、羽根26の最大肉厚部とは、羽根26の空気供給側端部40から燃焼空間側端部30までの間で最も肉厚が厚い部位をいう。図3では最大肉厚部として空気供給側端部40の厚さを示しているが、最大肉厚部の部位はここに限定されるものではなく、例えばバーナ軸方向Oの中央部位等のように最大肉厚部が他の部位である場合もあり得る。
この場合、羽根26の両側面32,34にそれぞれ傾斜部36,38が設けられ、これら2つの傾斜部36,38によって燃焼空間側端部30がテーパ形状に形成されてもよい。
また、旋回流50の剥離に基づく空気流れの逆流52は主に内筒2(スワラ内筒22)側で発生するので、少なくとも内筒2側における羽根26の厚さを薄くすることによって、スワラ20への燃料の付着を確実に防止できる。
さらに、燃料が付着しやすい羽根26の燃焼空間側端部30の厚さを薄くして付着面積を小さくしているので、羽根端面での剥離を起点にした逆流52で羽根26へ巻き戻る燃料があっても、スワラ20への燃料の付着量をより一層低減することが可能である。
この場合、傾斜部36,38の傾斜角度θは、直線領域44の側面32,34に対して5~10°の範囲であってもよい。これにより、旋回流の剥離を防ぐとともに、空気流れが傾斜部36,38で剥離してしまうことを防止できる。
さらに、羽根26は、燃焼空間側端部30に機械的強度が確保される厚さd1の端面を有していてもよい。このように、羽根26の燃焼空間側端部30が端面で形成されることによって、スワラ20の耐久性を向上させることができる。また、羽根26の燃焼空間側端部30が端面である方が加工上有利であり、且つ腐食に対する耐久性も向上する。
図5及び図6を参照して、本発明の第2実施形態に係る燃焼バーナについて説明する。本実施形態は、第1実施形態と組み合わせて用いることにより、スワラのより一層の長寿命化を図ることができる。なお、図5は第2実施形態におけるスワラの断面図で、図6は図5のスワラをA方向から視た図である。
図5及び図6に示すように、羽根26は、少なくとも内筒2(スワラ内筒22)側にて、燃焼空間100に面する部位が、バーナ軸方向Oに切り欠かれた切欠部46を有している。例えば切欠部46は、羽根26の側面から視て、半径方向中央部が最も切欠幅が大きく、両端に向かう程切欠幅が小さくなるような形状となっている。なお、切欠部46の形状はこれに限定されるものではない。
上述したように本実施形態によれば、羽根26の少なくとも内筒2(スワラ内筒22)側に切欠部46を設けることによって、羽根端面での剥離を起点にした逆流52で羽根へ巻き戻る燃料があっても、切欠部46によって羽根26への燃料の付着を抑制することが可能である。
スワラ20の隣り合う羽根26と羽根26の間に、バーナ1の軸方向Oに貫通する空間が存在すると旋回流の形成に支障をきたす可能性がある。そこで、隣り合う羽根26同士が重なり合う領域60が残存するようにして切欠部46を形成することで、旋回流の形成に影響を及ぼすことなくスワラ20への燃料の付着を抑制できる。
図8及び図9に示すように、羽根26のピッチは従来の羽根26’と同一に維持したまま、羽根26のバーナ軸方向Oの長さを従来の羽根26’より短くし、且つ、羽根26の半径方向の長さを長くする。これにより、隣り合う羽根26同士が重なり合う領域60が広がり、切欠部48を形成可能な領域を増大させることができる。ここでは一例として、切欠部48は、羽根26の側面から視て、半径方向中央部からスワラ内筒22側まで同一の切欠幅を有し、且つ、中央部からスワラ外筒24側まで切欠幅が小さくなるような形状となっている。
2 内筒
4 外筒
6 一次空気ノズル
8 二次空気ノズル
10 燃料供給路
12 内周側流路
13 外周側流路
14 一次空気供給路
16 二次空気供給路
17 一次ベーン
18 二次ベーン
20 スワラ
22 スワラ内筒
24 スワラ外筒
26 羽根
30 燃焼空間側端部
32,34 側面
36,38 傾斜部
40 空気供給側端部
42 屈曲領域
44 直線領域
46,48 切欠部
50 旋回流
52 逆流
54 負圧領域
100 燃焼空間
Claims (8)
- 燃料と空気とを噴射してボイラ火炉の燃焼空間に火炎を形成するボイラ用燃焼バーナであって、
前記燃料を供給する燃料供給路が内周側に形成された内筒と、
前記内筒を囲むように配置され、該内筒との間に空気供給路を形成する外筒と、
前記空気供給路に設けられ、該空気供給路を通る前記空気に旋回をかけるスワラとを備え、
前記スワラは、前記空気供給路の空気供給側から前記燃焼空間側に向けて延在し、前記内筒と前記外筒との間に放射状に複数設けられた羽根を有し、
前記羽根の少なくとも前記内筒側にて、バーナ軸方向において前記羽根の厚さが異なる部位が存在し、前記燃焼空間側の端部の前記羽根の厚さが該羽根の最大肉厚部の厚さより薄いことを特徴とするボイラ用燃焼バーナ。 - 前記羽根は、少なくとも前記内筒側の側面に、前記燃焼空間側の端部に向けて厚さが薄くなるように傾斜した傾斜部が設けられていることを特徴とする請求項1に記載のボイラ用燃焼バーナ。
- 前記羽根の両側面にそれぞれ前記傾斜部が設けられ、これら2つの前記傾斜部によって前記燃焼空間側の端部がテーパ形状に形成されていることを特徴とする請求項2に記載のボイラ用燃焼バーナ。
- 前記バーナの軸方向に対して傾斜して前記羽根が取り付けられており、
前記羽根は、前記空気供給側に曲率中心を有するように該空気供給側が屈曲した屈曲領域と、前記燃焼空間側が直線状に形成された直線領域とを有し、
前記傾斜部は前記直線領域に形成されていることを特徴とする請求項2または3に記載のボイラ用燃焼バーナ。 - 前記傾斜部は、前記直線領域の羽根側面に対して5~10°の範囲で傾斜していることを特徴とする請求項4に記載のボイラ用燃焼バーナ。
- 前記羽根は、前記燃焼空間側の端部に機械的強度が確保される厚さの端面を有することを特徴とする請求項1乃至5のいずれか一項に記載のボイラ用燃焼バーナ。
- 前記羽根は、少なくとも前記内筒側にて前記燃焼空間に面する部位が、前記バーナの軸方向に切り欠かれた切欠部を含むことを特徴とする請求項1乃至6のいずれか一項に記載のボイラ用燃焼バーナ。
- 複数の前記羽根が前記バーナの軸方向に対して同一方向に傾斜するとともに前記バーナの周方向に互いに離間して配置され、且つ、隣り合う前記羽根の前記空気供給側の端部と前記燃焼空間側の端部とが前記バーナの軸方向に重なり合うように配置されており、
前記重なり合う領域が残存するように前記切欠部が形成されていることを特徴とする請求項7に記載のボイラ用燃焼バーナ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/056243 WO2015136609A1 (ja) | 2014-03-11 | 2014-03-11 | ボイラ用燃焼バーナ |
KR1020167010793A KR101895137B1 (ko) | 2014-03-11 | 2014-03-11 | 보일러용 연소 버너 |
JP2016507153A JP6104459B2 (ja) | 2014-03-11 | 2014-03-11 | ボイラ用燃焼バーナ |
CN201480058833.1A CN105683656B (zh) | 2014-03-11 | 2014-03-11 | 锅炉用燃烧喷烧器 |
US15/028,793 US10197270B2 (en) | 2014-03-11 | 2014-03-11 | Combustion burner for boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/056243 WO2015136609A1 (ja) | 2014-03-11 | 2014-03-11 | ボイラ用燃焼バーナ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015136609A1 true WO2015136609A1 (ja) | 2015-09-17 |
Family
ID=54071089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056243 WO2015136609A1 (ja) | 2014-03-11 | 2014-03-11 | ボイラ用燃焼バーナ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10197270B2 (ja) |
JP (1) | JP6104459B2 (ja) |
KR (1) | KR101895137B1 (ja) |
CN (1) | CN105683656B (ja) |
WO (1) | WO2015136609A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105910102A (zh) * | 2016-05-27 | 2016-08-31 | 中国科学技术大学 | 一种火旋风式燃烧器 |
WO2018021248A1 (ja) * | 2016-07-26 | 2018-02-01 | Jfeスチール株式会社 | 電気炉用助燃バーナー |
WO2018021249A1 (ja) * | 2016-07-26 | 2018-02-01 | Jfeスチール株式会社 | 電気炉用助燃バーナー |
CN109973992A (zh) * | 2019-05-06 | 2019-07-05 | 西安交通大学 | 一种二次风轴向叶片角度可调的工业煤粉锅炉燃烧器 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2639505A1 (en) * | 2012-03-13 | 2013-09-18 | Siemens Aktiengesellschaft | Gas Turbine Combustion System and Method of Flame Stabilization in such a System |
US10502425B2 (en) * | 2016-06-03 | 2019-12-10 | General Electric Company | Contoured shroud swirling pre-mix fuel injector assembly |
US11020758B2 (en) * | 2016-07-21 | 2021-06-01 | University Of Louisiana At Lafayette | Device and method for fuel injection using swirl burst injector |
CZ201783A3 (cs) * | 2017-02-13 | 2018-04-04 | Vysoké Učení Technické V Brně | Hořáková hlava na nízkovýhřevná paliva |
DE202018101400U1 (de) * | 2017-05-11 | 2018-04-12 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Brenner zur Synthesegaserzeugung |
CA3066935C (en) | 2017-06-19 | 2023-07-04 | Selas Heat Technology Company Llc | Baffle assembly for modifying transitional flow effects between different cavities |
JP7152957B2 (ja) * | 2019-01-08 | 2022-10-13 | 三菱重工マリンマシナリ株式会社 | 舶用ボイラ及び舶用ボイラの改造方法 |
CN111121090B (zh) * | 2020-01-17 | 2024-08-16 | 中国科学院工程热物理研究所 | 一种改善掺混的旋流燃烧室结构 |
CN115200039B (zh) * | 2022-07-21 | 2023-08-22 | 中国航发沈阳发动机研究所 | 一种用双分流支板整流和遮挡的加力燃烧室 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07217888A (ja) * | 1994-02-09 | 1995-08-18 | Ishikawajima Harima Heavy Ind Co Ltd | ガスタービン燃焼器の空気旋回器 |
JPH0861609A (ja) * | 1994-08-18 | 1996-03-08 | Mitsubishi Heavy Ind Ltd | 舶用液体燃料バーナー |
JPH09119641A (ja) * | 1995-06-05 | 1997-05-06 | Allison Engine Co Inc | ガスタービンエンジン用低窒素酸化物希薄予混合モジュール |
US6141967A (en) * | 1998-01-09 | 2000-11-07 | General Electric Company | Air fuel mixer for gas turbine combustor |
US20030084667A1 (en) * | 2001-11-05 | 2003-05-08 | Miklos Gerendas | Device for the injection of fuel into the flow wake of swirler vanes |
US20100319350A1 (en) * | 2009-06-23 | 2010-12-23 | Landry Kyle L | Flashback Resistant Fuel Injection System |
JP2012237548A (ja) * | 2011-05-11 | 2012-12-06 | Alstom Technology Ltd | ローブスワーラ |
JP2014016151A (ja) * | 2012-07-10 | 2014-01-30 | Alstom Technology Ltd | ガスタービンバーナ用の軸方向スワーラ |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4414607Y1 (ja) * | 1966-08-22 | 1969-06-21 | ||
JPS4529153Y1 (ja) * | 1967-05-24 | 1970-11-10 | ||
JPS5248131A (en) | 1975-10-15 | 1977-04-16 | Mitsubishi Heavy Ind Ltd | Burner swallow |
JPS5620681Y2 (ja) | 1977-02-21 | 1981-05-15 | ||
JPS55175707U (ja) | 1979-06-05 | 1980-12-17 | ||
US4364522A (en) | 1980-07-21 | 1982-12-21 | General Motors Corporation | High intensity air blast fuel nozzle |
JPS6099933A (ja) * | 1983-11-04 | 1985-06-03 | Mitsubishi Heavy Ind Ltd | スワラの製作方法 |
JPS60188687A (ja) * | 1984-03-05 | 1985-09-26 | 齋藤 正保 | ホ−ス接続部用締結バンド |
JPS61110911U (ja) | 1984-12-20 | 1986-07-14 | ||
US4902221A (en) | 1987-05-12 | 1990-02-20 | Control Systems Company | Burner assembly for coal fired furnaces |
JPS648035A (en) | 1987-06-30 | 1989-01-12 | Toray Industries | Metal-laminated resin plate |
JPH0531394Y2 (ja) * | 1987-07-01 | 1993-08-12 | ||
US5365865A (en) * | 1991-10-31 | 1994-11-22 | Monro Richard J | Flame stabilizer for solid fuel burner |
US5131334A (en) * | 1991-10-31 | 1992-07-21 | Monro Richard J | Flame stabilizer for solid fuel burner |
JP3848801B2 (ja) | 1999-07-28 | 2006-11-22 | 三菱重工業株式会社 | 液体燃料焚きバーナ |
AU2003271487A1 (en) * | 2002-10-23 | 2004-05-13 | Swiss E-Technic Ag | Combustion method and burner head, burner comprising one such burner head, and boiler comprising one such burner head |
EP1827707B1 (en) | 2004-08-23 | 2016-12-14 | Spraying Systems Co. | Improved internal mix air atomizing nozzle assembly |
GB2435508B (en) | 2006-02-22 | 2011-08-03 | Siemens Ag | A swirler for use in a burner of a gas turbine engine |
JP4719059B2 (ja) | 2006-04-14 | 2011-07-06 | 三菱重工業株式会社 | ガスタービンの予混合燃焼バーナー |
US20100058767A1 (en) * | 2008-09-05 | 2010-03-11 | General Electric Company | Swirl angle of secondary fuel nozzle for turbomachine combustor |
US9429074B2 (en) * | 2009-07-10 | 2016-08-30 | Rolls-Royce Plc | Aerodynamic swept vanes for fuel injectors |
DE102011006241A1 (de) | 2011-03-28 | 2012-10-04 | Rolls-Royce Deutschland Ltd & Co Kg | Vorrichtung zum Mischen von Treibstoff und Luft eines Strahltriebwerks |
JP5964081B2 (ja) | 2012-02-29 | 2016-08-03 | 三菱重工業株式会社 | 可変容量ターボチャージャ |
US20130255261A1 (en) | 2012-03-30 | 2013-10-03 | General Electric Company | Swirler for combustion chambers |
US8925323B2 (en) * | 2012-04-30 | 2015-01-06 | General Electric Company | Fuel/air premixing system for turbine engine |
-
2014
- 2014-03-11 KR KR1020167010793A patent/KR101895137B1/ko active IP Right Grant
- 2014-03-11 WO PCT/JP2014/056243 patent/WO2015136609A1/ja active Application Filing
- 2014-03-11 CN CN201480058833.1A patent/CN105683656B/zh not_active Expired - Fee Related
- 2014-03-11 US US15/028,793 patent/US10197270B2/en not_active Expired - Fee Related
- 2014-03-11 JP JP2016507153A patent/JP6104459B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07217888A (ja) * | 1994-02-09 | 1995-08-18 | Ishikawajima Harima Heavy Ind Co Ltd | ガスタービン燃焼器の空気旋回器 |
JPH0861609A (ja) * | 1994-08-18 | 1996-03-08 | Mitsubishi Heavy Ind Ltd | 舶用液体燃料バーナー |
JPH09119641A (ja) * | 1995-06-05 | 1997-05-06 | Allison Engine Co Inc | ガスタービンエンジン用低窒素酸化物希薄予混合モジュール |
US6141967A (en) * | 1998-01-09 | 2000-11-07 | General Electric Company | Air fuel mixer for gas turbine combustor |
US20030084667A1 (en) * | 2001-11-05 | 2003-05-08 | Miklos Gerendas | Device for the injection of fuel into the flow wake of swirler vanes |
US20100319350A1 (en) * | 2009-06-23 | 2010-12-23 | Landry Kyle L | Flashback Resistant Fuel Injection System |
JP2012237548A (ja) * | 2011-05-11 | 2012-12-06 | Alstom Technology Ltd | ローブスワーラ |
JP2014016151A (ja) * | 2012-07-10 | 2014-01-30 | Alstom Technology Ltd | ガスタービンバーナ用の軸方向スワーラ |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105910102A (zh) * | 2016-05-27 | 2016-08-31 | 中国科学技术大学 | 一种火旋风式燃烧器 |
WO2018021248A1 (ja) * | 2016-07-26 | 2018-02-01 | Jfeスチール株式会社 | 電気炉用助燃バーナー |
WO2018021249A1 (ja) * | 2016-07-26 | 2018-02-01 | Jfeスチール株式会社 | 電気炉用助燃バーナー |
JPWO2018021249A1 (ja) * | 2016-07-26 | 2018-08-02 | Jfeスチール株式会社 | 電気炉用助燃バーナー |
JPWO2018021248A1 (ja) * | 2016-07-26 | 2018-08-02 | Jfeスチール株式会社 | 電気炉用助燃バーナー |
CN109563990A (zh) * | 2016-07-26 | 2019-04-02 | 杰富意钢铁株式会社 | 电炉用助燃燃烧器 |
CN109642724A (zh) * | 2016-07-26 | 2019-04-16 | 杰富意钢铁株式会社 | 电炉用助燃燃烧器 |
CN109563990B (zh) * | 2016-07-26 | 2020-08-14 | 杰富意钢铁株式会社 | 电炉用助燃燃烧器 |
US10935234B2 (en) | 2016-07-26 | 2021-03-02 | Jfe Steel Corporation | Auxiliary burner for electric furnace |
US11041621B2 (en) | 2016-07-26 | 2021-06-22 | Jfe Steel Corporation | Auxiliary burner for electric furnace |
CN109973992A (zh) * | 2019-05-06 | 2019-07-05 | 西安交通大学 | 一种二次风轴向叶片角度可调的工业煤粉锅炉燃烧器 |
Also Published As
Publication number | Publication date |
---|---|
CN105683656A (zh) | 2016-06-15 |
JPWO2015136609A1 (ja) | 2017-04-06 |
JP6104459B2 (ja) | 2017-03-29 |
KR20160064155A (ko) | 2016-06-07 |
US10197270B2 (en) | 2019-02-05 |
CN105683656B (zh) | 2018-05-29 |
US20160252246A1 (en) | 2016-09-01 |
KR101895137B1 (ko) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015136609A1 (ja) | ボイラ用燃焼バーナ | |
JP4719059B2 (ja) | ガスタービンの予混合燃焼バーナー | |
JP4476177B2 (ja) | ガスタービンの燃焼バーナー | |
EP2635846B1 (en) | Combustion chamber with a wall section and a brim element and method for controlling a flow of a cooling medium | |
TWI576509B (zh) | 噴嘴、燃燒器、及燃氣渦輪機 | |
TWI582355B (zh) | 燃燒器、燃氣渦輪機 | |
JP2009198171A (ja) | ガスタービン燃焼器の火炎スタビライザ | |
US11137141B2 (en) | Combustor and gas turbine comprising same | |
JP2012107624A (ja) | 点火電極の保護要素を備えたバーナ | |
US20100269513A1 (en) | Thimble Fan for a Combustion System | |
JP2016035358A (ja) | 予混合バーナ | |
WO2011092779A1 (ja) | ガスタービン燃焼器 | |
JP2011012952A (ja) | リテンションバーナ | |
KR20200090243A (ko) | 고체 연료 버너 및 고체 연료 버너용 보염기 | |
JP2014062679A (ja) | ボイラ用燃焼バーナ | |
CN209857038U (zh) | 火焰稳定器以及锅炉用燃烧器 | |
US20170292705A1 (en) | Combustor and gas turbine | |
JP2007132548A (ja) | 予混合装置 | |
JP2007263452A (ja) | リテンションバーナ | |
JP2011080698A (ja) | バーナ | |
JP7303011B2 (ja) | 燃焼器及びガスタービン | |
JP7429501B2 (ja) | 粉体噴射装置 | |
JP6615252B2 (ja) | 石油ピッチ燃料用バーナおよびその使用方法 | |
JP2006322680A (ja) | パイロットバーナ | |
JP2005171894A (ja) | 燃焼器壁面冷却構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14885364 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016507153 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15028793 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167010793 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14885364 Country of ref document: EP Kind code of ref document: A1 |