WO2015133792A1 - 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도 - Google Patents

체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도 Download PDF

Info

Publication number
WO2015133792A1
WO2015133792A1 PCT/KR2015/002039 KR2015002039W WO2015133792A1 WO 2015133792 A1 WO2015133792 A1 WO 2015133792A1 KR 2015002039 W KR2015002039 W KR 2015002039W WO 2015133792 A1 WO2015133792 A1 WO 2015133792A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
vector
nucleic acid
vascular
differentiation
Prior art date
Application number
PCT/KR2015/002039
Other languages
English (en)
French (fr)
Inventor
김정범
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to EP15758822.9A priority Critical patent/EP3117839A4/en
Priority to CN201580011343.0A priority patent/CN106163572B/zh
Priority to US15/120,171 priority patent/US10174287B2/en
Priority claimed from KR1020150029725A external-priority patent/KR101702629B1/ko
Publication of WO2015133792A1 publication Critical patent/WO2015133792A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0692Stem cells; Progenitor cells; Precursor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention is directed to a somatic cell comprising one or more selected from the group consisting of a direct cross-differentiation factor ETV2, each protein of FLI1, a nucleic acid molecule encoding a protein, and a nucleic acid molecule encoding a protein to express a protein.
  • the present invention relates to a composition for inducing direct cross-differentiation into vascular progenitor cells and a method for direct cross-differentiation into vascular progenitor cells and vascular cells from the somatic cell comprising the step of treating the composition.
  • the present invention is a pharmaceutical composition for preventing or treating ischemic vascular disease, including vascular progenitor cells and vascular cells induced by differentiation directly from the somatic cells, cell therapy, drug screening composition, or artificial tissue preparation It relates to a 3D printing biomaterial composition for.
  • angiogenesis vascular progenitor cells differentiate into endothelial cells to form major blood vessels, and vascular endothelial cells are formed when blood vessels in the body are formed according to differentiation patterns of vascular progenitor cells.
  • Type 2 angiogenesis which causes differentiation in situ
  • type 2 angiogenesis in which vascular progenitor cells migrate and differentiate in a wide range, such as when blood vessels form on the endocardium or head. Can be divided. This is an important mechanism in various pathological conditions such as inflammation, tumors, as well as physiological conditions such as wound healing, ovulation, pregnancy, including the development of the fetus, research has been conducted.
  • Vascular damage induces a variety of ischemic diseases, and can be treated by restoring endogenous cells or transplanting functional blood cells to form blood vessels as a method for treating blood vessel damage.
  • functional vascular cells in the transplantation and treatment of functional vascular cells, not only the effective differentiation method of the vascular cells was not clear, but also a problem of obtaining a large amount of cells was difficult.
  • ESCs embryonic stem cells
  • induced pluripotent stem cells into vascular cells
  • the induction efficiency into the desired cells is low and when the embryonic stem cells or when differentiated into specific cells
  • oncogenes may be present from pluripotent stem cells.
  • dedifferentiated stem cells like embryonic stem cells, still contain the possibility of teratoma formation. .
  • somatic cells through transduction of ETS2 (Ets variant gene 2) or FLI1 (Friend leukemia virus integration 1)
  • ETS2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • An object of the present invention is a somatic cell comprising any one or more proteins selected from Ets2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), a nucleic acid molecule encoding the protein, or a vector into which the nucleic acid molecules are introduced. It is to provide a composition for inducing direct cross-differentiation from vascular progenitor cells.
  • Another object of the present invention is any one or more proteins selected from Ets2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), the nucleic acid molecule encoding the protein, the vector into which the nucleic acid molecule is introduced or induces direct cross-differentiation
  • Ets2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the nucleic acid molecule encoding the protein the vector into which the nucleic acid molecule is introduced or induces direct cross-differentiation
  • a pharmaceutical composition for the prevention or treatment of ischemic vascular disease comprising the vascular progenitor cells as an active ingredient, a cell therapy for the prevention or treatment of ischemic vascular disease, a composition for screening the drug for ischemic vascular disease and artificial tissue for treating ischemic vascular disease
  • a pharmaceutical composition for the prevention or treatment of ischemic vascular disease comprising the vascular progenitor cells as an active ingredient, a cell therapy for the prevention or treatment of ischemic vascular
  • Another object of the present invention is to provide a method for direct cross-differentiation of somatic cells into vascular progenitor cells.
  • the present invention is effective for any one or more proteins selected from Ets2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), a nucleic acid molecule encoding the protein or a vector into which the nucleic acid molecules are introduced. It provides a composition for inducing direct cross-differentiation from a somatic cell comprising a component to vascular progenitor cells.
  • the present invention is directly cross-linked by introducing any one or more proteins selected from Ets2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), a nucleic acid molecule encoding the protein or a vector into which the nucleic acid molecules are introduced into somatic cells.
  • Ets2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the present invention is any one or more proteins selected from ETS2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), the nucleic acid molecule encoding the protein, the vector into which the nucleic acid molecule is introduced or the direct cross-differentiation induced It provides a pharmaceutical composition for preventing or treating ischemic vascular disease comprising vascular progenitor cells as an active ingredient.
  • ETS2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the present invention is any one or more proteins selected from ETS2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), the nucleic acid molecule encoding the protein, the vector into which the nucleic acid molecule is introduced, the direct cross-differentiation induced
  • ETS2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the nucleic acid molecule encoding the protein the vector into which the nucleic acid molecule is introduced, the direct cross-differentiation induced
  • a cell therapy agent for the prevention or treatment of ischemic vascular diseases comprising vascular progenitor cells or the direct cross-differentiation induced vascular progenitor cells as an active ingredient.
  • the present invention is any one or more proteins selected from ETS2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), the nucleic acid molecule encoding the protein, the vector into which the nucleic acid molecule is introduced or the direct cross-differentiation induced It provides a composition for screening a drug for ischemic vascular disease comprising vascular progenitor cells as an active ingredient.
  • ETS2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the present invention is any one or more proteins selected from ETS2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), the nucleic acid molecule encoding the protein, the vector into which the nucleic acid molecule is introduced or the direct cross-differentiation induced
  • ETS2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the nucleic acid molecule encoding the protein the vector into which the nucleic acid molecule is introduced or the direct cross-differentiation induced
  • a 3D printed biomaterial composition for the preparation of artificial tissue for treating ischemic vascular disease comprising vascular progenitor cells as an active ingredient.
  • the present invention provides a method for introducing into a somatic cell any one or more proteins selected from Ets2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), a nucleic acid molecule encoding the protein or a vector into which the nucleic acid molecules are introduced.
  • Ets2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • vascular progenitor cells by producing vascular progenitor cells through direct cross-differentiation from somatic cells, it is possible to reduce the production period of vascular progenitor cells and to avoid teratoma formation, which is a side effect of induced pluripotent stem cells, and side effects of stem cell therapeutics. Can be minimized.
  • FIG. 1 shows a cleavage map of a lentiviral encoding the complementary DNA of ETV2 .
  • Figure 2 shows a cleavage map of a lentiviral encoding the complementary DNA of FLI1 .
  • Figure 3 shows the results of confirming the expression of ETV2 and FLI1 5 days after infection using RT-PCR.
  • Figure 4 shows a phase-contrast image (time-contrast image) of vascular progenitor cells prepared by transforming with ETV2 , FLI1 or ETV2 / FLI1 .
  • Figure 5 shows an immunofluorescence image showing the expression of the differentiated markers vWF, ⁇ -SMA and CD31 of the prepared vascular progenitor cells.
  • FIG. 6 illustrates transplantation of the prepared vascular progenitor cells into mice, and the blood flow over time is calculated based on histogram pixels.
  • Figure 7 shows the blood flow ratio of the ischemic to non-ischemic leg after transplanting the prepared vascular progenitor cells as a LDPI index.
  • the present invention provides a blood vessel from a somatic cell comprising any one or more proteins selected from Ets2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), nucleic acid molecules encoding the proteins, or vectors into which the nucleic acid molecules are introduced.
  • Ets2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • ETV2 (Ets variant gene 2) is ETS (E26 transformation-specific or E-twenty-six) One of the families, registered under NCBI registration number NM_014209.3. ETS factors are known to be involved in embryonic vascular development. In particular, ETV2 is known to play an essential regulatory role in vascular endothelial differentiation, but there is no known function to induce direct cross-differentiation from somatic cells to vascular progenitor cells.
  • FLI1 Friend leukemia virus integration 1
  • NM_002017.4 NCBI accession number NM_002017.4. It is known to exhibit constitutive activation in erythoblasts, thereby inhibiting the differentiation of red blood cells.
  • FLI1 is no bar at all is known about the ability to induce transdifferentiation of vascular progenitor cells similarly to the ETV2.
  • ETV2 , FLI1 or a combination thereof of the present invention may be provided in the form of a protein or nucleic acid encoding a protein thereof, which protein may be human and animal such as mouse, horse, sheep, pig, goat, camel, nutrition, dog, etc. May include all ETV2 or FLI1 derived.
  • the ETV2 or FLI1 protein used in the present invention includes not only proteins having their wild type amino acid sequence, but also variants of the ETV2 or FLI1 protein.
  • a variant of the protein means a protein in which the natural amino acid sequence of the ETV2 or FLI1 protein and one or more amino acid residues have different sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof.
  • the variant may be a functional equivalent that exhibits the same biological activity as a natural protein or a variant in which the physicochemical properties of the protein are modified as necessary, and may be a variant in which structural stability to physical and chemical environments is increased or physiological activity is increased. have.
  • nucleic acid encoding the ETV2 or FLI1 in the present invention is a nucleotide sequence encoding a mutant form of ETV2 or FLI1 protein as a wild-type or above, more than one base is to be mutated by substitution, deletion, insertion or a combination thereof It may be isolated from nature or prepared using chemical synthesis.
  • the nucleic acid having a nucleotide sequence encoding the ETV2 or FLI1 protein may be a single chain or a double chain, and may be a DNA molecule (genomic DNA, cDNA) or an RNA molecule.
  • the 'vector' in the present invention includes a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals, enhancers, and variously prepared according to the purpose.
  • the promoter of the vector may be constitutive or inducible.
  • the expression vector includes a selectable marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, a replication origin. Vectors can self replicate or integrate into host DNA.
  • Vectors include plasmid vectors, cosmid vectors, viral vectors and epismal vectors and the like. Preferably, it may be a viral vector.
  • Viral vectors are retroviruses such as Human immunodeficiency virus (HIV), Murineleukemia virus (MLV), Avian sarcoma / leukosis (ASLV), Spleen necrosis virus (SNV), Rous sarcoma virus (RSV), and Mouse mammary (MMTV).
  • tumor viruses adenoviruses (Adenovirus), adeno-associated virus (Adeno-associated virus) or herpes simplex virus (herpes simplex virus), and the like derived from vectors, but is not limited thereto.
  • the vector is used for the purpose of improving the efficiency of direct cross-differentiation, and any vector may be used as long as it overexpresses the genes related to the cells to be changed in general somatic cells.
  • the vector may be a lentiviral vector expressing ETV2 or FLI1 , and more specifically, may be an SF based lentiviral vector which is an SFFV promoter.
  • nucleic acid encoding the ETV2 or FLI1 protein is delivered intracellularly by known methods in the art, for example, naked DNA in the form of a vector, or into cells using liposomes, cationic polymers, and the like. Can be introduced.
  • the liposomes are phospholipid membranes prepared by mixing cationic phospholipids such as DOTMA or DOTAP for gene transfer. When liposomes and anionic nucleic acids are mixed at a predetermined ratio, the liposomes can be introduced into cells by forming a nucleic acid-liposomal complex. .
  • the nucleic acid molecule encoding a ETV2 FLI1 or protein in the present invention may be introduced into the somatic cells with a viral vector comprising a nucleic acid coding for a protein with FLI1 ETV2 or packaging-defective helper plasmid.
  • viruses include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes simplex viruses, and the like.
  • the term "somatic cell” may mean any cell except germ cells.
  • fibroblasts, muscle cells, neurons, gastric mucosa, goblet cells, G cells, pericyte, astrocytes, B cells, blood cells, epithelial neural stem cells, hematopoietic stem cells, intermediate Leaf stem cells or umbilical cord blood stem cells may be used.
  • the direct cross-differentiation is not limited to the above, because if the starting cells are somatic cells can be applied regardless of the specific tissue cells. In the present invention, direct cross-differentiation was induced using fibroblasts.
  • vascular progenitor cells refer to progenitor cells having the ability to differentiate into endothelial cells, vascular smooth muscle cells, perivascular cells, or vascular cells, which are components of blood vessels in the body.
  • iVPC means induced vascular progenitor cells, for example, means vascular progenitor cells derived from somatic cells through direct cross-differentiation according to the method of the present invention.
  • the present invention provides any one or more proteins selected from ETS2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), nucleic acid molecules encoding the proteins, vectors into which the nucleic acid molecules are introduced, or the direct cross-differentiation-induced vascular progenitors. It provides a pharmaceutical composition for the prevention or treatment of ischemic vascular disease comprising a cell as an active ingredient.
  • the present invention is any one or more proteins selected from ETS2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), the nucleic acid molecule encoding the protein, the vector into which the nucleic acid molecule is introduced or the direct cross-differentiation induced It provides a cell therapy for the prevention or treatment of ischemic vascular diseases comprising vascular progenitor cells as an active ingredient.
  • ETS2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the present invention is any one or more proteins selected from ETS2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), the nucleic acid molecule encoding the protein, the vector into which the nucleic acid molecule is introduced or the direct cross-differentiation induced It provides a composition for screening a drug for ischemic vascular disease comprising vascular progenitor cells as an active ingredient.
  • ETS2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the ischemic vascular disease refers to all diseases in which blood vessels are damaged due to external factors or internal factors, and blood flow disorders are not limited thereto.
  • the ischemic vascular disease may be cerebrovascular disease, cardiovascular disease, lower limb ischemic disease, peripheral vascular disease or ischemic muscle necrosis, but is not limited thereto.
  • the cerebrovascular disease may be cerebral infarction, stroke or hemorrhage, but may include any disease caused by blood flow disorder due to cerebrovascular injury, but is not limited to the disease.
  • the cardiovascular disease is atherosclerosis, ischemic reperfusion injury, restenosis, arterial inflammation, vascular wall remodeling, ventricular remodeling, ventricular tuning, percutaneous microembolism, tachycardia, bradycardia, pressure overload, coronary artery ligation , Arrhythmia, stroke, angina pectoris, myocardial infarction, heart failure or hypertension, but can be included if the disease caused by blood flow disorder due to cardiovascular damage, all but not limited to the disease.
  • the "cell therapeutic agent” is a medicine (US FDA regulation) used for the purpose of treatment, diagnosis, and prevention of cells and tissues prepared through isolation, culture, and special chewing from humans. It refers to a medicine used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferating, selecting, or otherwise changing the biological characteristics of a living autologous, allogeneic, or heterologous cell in vitro.
  • the present invention is any one or more proteins selected from ETS2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), the nucleic acid molecule encoding the protein, the vector into which the nucleic acid molecule is introduced or the direct cross-differentiation induced
  • ETS2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • the nucleic acid molecule encoding the protein the vector into which the nucleic acid molecule is introduced or the direct cross-differentiation induced
  • a 3D printed biomaterial composition for the preparation of artificial tissue for treating ischemic vascular disease comprising vascular progenitor cells as an active ingredient.
  • the present invention provides a method for introducing into a somatic cell any one or more proteins selected from Ets2 (Ets variant gene 2) and FLI1 (Friend leukemia virus integration 1), a nucleic acid molecule encoding the protein or a vector into which the nucleic acid molecules are introduced.
  • Ets2 Ets variant gene 2
  • FLI1 Friend leukemia virus integration 1
  • culturing somatic cells in a medium transducing the vector with ETV2 , FLI1 or a combination gene thereof in the cultured somatic cells, and direct cross-differentiation of the infected somatic cells can be induced. Culturing in a culture condition.
  • the medium used for culturing the somatic cells may include all of the medium conventionally used for culturing stem cells and progenitor cells as well as somatic cell culture in the art.
  • the medium used for culturing generally contains a carbon source, a nitrogen source and a trace element component.
  • the transduced fibroblasts were cultured in a medium supplemented with protamine sulfate (Sigma), and in addition to the protamine sulfate, elements necessary for culturing the cells may be included without limitation.
  • the culture conditions that can induce direct cross-differentiation of the somatic cells may include a medium commonly used to induce direct cross-differentiation of somatic cells in the art, as a specific example of the present invention, 10% FBS Vascular progenitor cell growth medium containing minimal essential media (MEM), 2mM L-glutamine, ⁇ -mercaptoethanol, penicillin / streptomycin and 10ng / ml VEGF 165 can be used.
  • MEM minimal essential media
  • 2mM L-glutamine 2mM L-glutamine
  • ⁇ -mercaptoethanol penicillin / streptomycin
  • 10ng / ml VEGF 165 10ng / ml VEGF 165
  • the vascular progenitor cells induced by direct cross-differentiation are involved in the differentiation of existing blood vessels and related vascular cell proliferation, thereby helping to form new blood vessels, and by increasing the number and density of vascular cells simultaneously, they are excellent for ischemic diseases. May have a therapeutic effect.
  • Dermal fibroblasts were cultured in fibroblast medium (DMEM high glucose with 10% FBS, 2 mM L-glutamine, 1x MEM nonessential amino acid, ⁇ -mercaptoethanol, 1x penicillin / streptomycin).
  • DMEM high glucose with 10% FBS, 2 mM L-glutamine, 1x MEM nonessential amino acid, ⁇ -mercaptoethanol, 1x penicillin / streptomycin
  • SF-based lentiviral vectors, SFFV promoters, encoding the complementary DNA of ETV2 and FLI1 were infected with 293 cells using a Fugene 6 transfection reagent (Roche) with a packaging-defective helper plasmid. After 48 hours, virus supernatants were obtained according to the methods described in Zaehres, H. & Daley, GQ, (2006), Methods Enzymol 420, 49-64.
  • Viruses of ETV2 and FLI1 (1: 1), seeded with dermal fibroblasts at a density of 1 ⁇ 10 mm cells per 0.1% gelatin coated 6-well plate and supplemented with 6 ⁇ g / ml protamine sulfate (Sigma) Incubated for 24 hours with the supernatant. Transduction efficiency was calculated with SF-GFP control virus.
  • the cells were re-dispensed with fresh fibroblast medium, and the medium was vascular progenitor cell growth medium (minimal essential media (MEM, Sigma) containing 10% FBS, 2 mM L-glutamine, ⁇ -mercapto Ethanol, penicillin / streptomycin, 10 ng / ml VEGF 165 (Peprotech). Thereafter, it was replaced with fresh medium every three days, and the colonies were physically separated for growth.
  • MEM minimal essential media
  • ETV2 and FLI1 Five days after infection, expression of ETV2 and FLI1 was confirmed using RT-PCR.
  • RT-PCR was then loaded onto agarose gel to confirm expression, and GAPDH was used as a control (FIG. 3).
  • Vascular progenitor cells have the property of differentiation into vascular endothelial cells and smooth muscle cells.
  • the CD31 and vWF were used as markers of vascular endothelial cells, and ⁇ -SMA was used as smooth muscle cell markers.
  • induced-VPC, iVPC induced-vascular progenitor cells prepared through transformation by ETV2 , FLI1 and ETV2 / FLI1 were identified (FIG. 5).
  • induced-vascular progenitor cells induced-VPC, iVPC
  • induced-VPC induced-vascular progenitor cells
  • CM-Dil Invitrogen
  • CM-Dil Invitrogen
  • Each mouse was then intramuscularly injected with 4 ⁇ 10 6 cells (80 ⁇ L) or HBSS at the four points of the groin muscle in the central thigh.
  • Ischemic blood flow and normal limbs were measured using a laser Doppler perfusion imaging (LDPI) analyzer, Moor instruments, Devon, UK after 7, 14 and 28 days of cell transplantation (FIG. 6). .
  • LDPI laser Doppler perfusion imaging
  • Blood flow of the ischemic and non-ischemic legs was calculated based on colored histogram pixels. Red and blue showed high and low blood flow, respectively. Blood flow is expressed as an LDPI index representing the ratio of ischemic to non-ischemic leg blood flow. In Figure 7, the ratio before surgery, 1 shows the same blood flow in both legs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도에 관한 것으로서, 상세하게는 체세포로부터 혈관 전구 세포(vascular progenitor cell)로의 직접교차분화 유도용 조성물, 허혈성 혈관질환의 예방 또는 치료용 약학 조성물, 허혈성 혈관질환의 예방 또는 치료용 세포치료제, 허혈성 혈관질환 치료 약물 스크리닝용 조성물, 허혈성 혈관질환 치료용 인공조직 제작을 위한 3D 프린팅 생체 소재 조성물 및 체세포를 혈관 전구 세포로 직접교차분화하는 방법에 대한 것이다. 본 발명에 따라 체세포로부터 직접교차분화를 통해 혈관 전구 세포를 제조함으로써, 혈관 전구 세포의 제조기간을 줄일 수 있으며, 유도만능줄기세포의 부작용인 기형종 형성을 피해갈 수 있도록 하여, 줄기세포 치료제의 부작용을 최소화할 수 있다.

Description

체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도
본 발명은 체세포로부터 직접교차분화인자 ETV2, FLI1의 각 단백질, 단백질을 코딩하는 핵산분자 및 단백질을 코딩하는 핵산분자가 도입되어 단백질을 발현하는 벡터로 이루어진 군에서 선택되는 1이상을 포함하는 체세포로부터 혈관 전구 세포(vascular progenitor cell)로의 직접교차분화 유도용 조성물 및 상기 조성물을 처리하는 단계를 포함하는 체세포로부터 혈관 전구 세포 및 혈관세포로 직접교차분화하는 방법에 관한 것이다. 또한, 본 발명은 상기 체세포로부터 직접교차분화하는 방법에 의해 분화 유도된 혈관 전구 세포 및 혈관세포를 포함하는 허혈성 혈관질환의 예방 또는 치료용 약학 조성물, 세포치료제, 약물 스크리닝용 조성물, 또는 인공조직 제작을 위한 3D 프린팅 생체 소재 조성물에 관한 것이다.
혈관의 생성은 크게 혈관모세포(angioblast)나 혈관 전구 세포(vascular progenitor cell)가 분화하여 혈관망상구조(primitive vascular network)를 이루는 혈관형성(vasculogenesis)과 기존의 혈관으로부터 새로운 혈관이 생성되는 혈관신생(angiogenesis)으로 구분할 수 있다. 혈관형성과정 동안 혈관 전구 세포는 혈관내피세포(endothelial cell) 등으로 분화하여 주요 혈관을 형성하게 되며, 혈관형성과정은 혈관 전구 세포의 분화 양상에 따라 몸통의 혈관이 생성될 때와 같이 혈관내피세포가 제자리에서 분화하게 되는 제1형 혈관형성 및 심장내막(endocardium)이나 머리부분에 혈관이 형성되는 경우와 같이 혈관 전구 세포가 넓은 범위에서 이동하며 분화하게 되는 제2형 혈관형성, 2가지 형태로 나뉘어질 수 있다. 이는 태아의 발생과정을 포함하여 상처치유, 배란, 임신과 같은 생리적 상태 뿐 아니라, 염증, 종양 등의 다양한 병리적 상태에서도 중요한 기전으로 작용하고 있어, 이에 대한 연구가 진행되어왔다.
혈관의 손상은 다양한 허혈성 질환을 유도하며, 혈관의 손상을 치료하기 위한 방법으로 내생(endogenous) 세포를 재생(restoration)하거나, 혈관을 형성하는 기능성 혈관 세포를 이식하는 방법을 통해 근본적으로 치료할 수 있다. 이와 관련하여, 기능성 혈관세포를 이식하여 치료함에 있어서, 혈관세포의 효과적인 분화방법이 명확하지 않았을 뿐 아니라, 많은 양의 세포를 얻는 것이 어려운 문제가 있었다.
또한, 배아줄기세포(embryonic stem cells, ESCs) 및 유도된 만능줄기세포에서 혈관세포로의 분화를 유도하는 방법도 있으나, 목적하는 세포로의 유도효율이 낮고 특정 세포로 분화 시 상기 배아줄기세포 또는 만능줄기세포로부터 종양유전자가 존재할 수 있는 위험성이 있기 때문에 문제가 있다. 또한, 역분화 줄기세포는 배아 파괴와 관련된 윤리적인 문제점 및 이식과정의 면역거부반응을 해결할 수 있는 장점을 나타냄에도 불구하고, 배아줄기세포와 마찬가지로 여전히 기형종 형성의 가능성을 내포하고 있다는 단점이 있다.
또한, 체세포로부터 직접교차방법을 통해 혈관 전구 세포를 제조하는 방법은 아직 보고된 바 없으며, 특히, ETV2(Ets variant gene 2) 또는 FLI1(Friend leukemia virus integration 1)의 트랜스덕션(tranduction)을 통한 체세포의 직접교차분화에 의한 혈관세포의 다능성(Multipotency)의 확립은 알려진 바 없다.
본 발명의 목적은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 유효성분으로 포함하는 체세포로부터 혈관 전구 세포(vascular progenitor cell)로의 직접교차분화 유도용 조성물을 제공하는데 있다.
본 발명의 다른 목적은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환의 예방 또는 치료용 약학 조성물, 허혈성 혈관질환의 예방 또는 치료용 세포치료제, 허혈성 혈관질환 치료 약물 스크리닝용 조성물 및 허혈성 혈관질환 치료용 인공조직 제작을 위한 3D 프린팅 생체 소재 조성물을 제공하는데 있다.
본 발명의 또 다른 목적은 체세포를 혈관 전구 세포로 직접교차분화하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 유효성분으로 포함하는 체세포로부터 혈관 전구 세포(vascular progenitor cell)로의 직접교차분화 유도용 조성물을 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 체세포에 도입하여 직접교차분화 유도된 혈관 전구 세포(vascular progenitor cell)를 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환의 예방 또는 치료용 약학 조성물을 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터, 상기 직접교차분화 유도된 혈관 전구 세포 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환의 예방 또는 치료용 세포치료제를 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환 치료 약물 스크리닝용 조성물을 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환 치료용 인공조직 제작을 위한 3D 프린팅 생체 소재 조성물을 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 체세포에 도입하는 단계를 포함하는 체세포를 혈관 전구 세포로 직접교차분화하는 방법을 제공한다.
본 발명은 체세포로부터 직접교차분화를 통해 혈관 전구 세포를 제조함으로써, 혈관 전구 세포의 제조기간을 줄일 수 있으며, 유도만능줄기세포의 부작용인 기형종 형성을 피해갈 수 있도록 하여, 줄기세포 치료제의 부작용을 최소화할 수 있다.
도 1은 ETV2의 상보적 DNA를 암호화하는 렌티바이러스의 개열지도를 나타낸 것이다.
도 2는 FLI1의 상보적 DNA를 암호화하는 렌티바이러스의 개열지도를 나타낸 것이다.
도 3은 감염 5일 후 ETV2FLI1의 발현을 RT-PCR을 이용하여 확인한 결과를 나타낸 것이다.
도 4는 ETV2, FLI1 또는 ETV2/FLI1로 형질전환하여 제조된 혈관 전구 세포의 시간에 따른 위상대비 이미지(phase-contrast image)를 나타낸 것이다.
도 5는 제조된 혈관 전구 세포의 분화된 마커인 vWF, α-SMA 및 CD31의 발현을 나타낸 면역형광 이미지를 나타낸 것이다.
도 6은 제조된 혈관 전구 세포를 마우스에 이식한 후, 시간에 따른 혈류를 히스토그램 픽셀(colored histogram pixels)을 기초로 계산하여 나타낸 것이다.
도 7은 제조된 혈관 전구 세포를 마우스에 이식한 후, 허혈성 대 비허혈성 다리의 혈류 비율을 LDPI index로서 나타낸 것이다.
본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 유효성분으로 포함하는 체세포로부터 혈관 전구 세포(vascular progenitor cell)로의 직접교차분화 유도용 조성물을 제공한다.
본 발명에서, ETV2(Ets variant gene 2)는 ETS(E26 transformation-specific 또는 E-twenty-six) 패밀리 중 하나로, NCBI 등록번호 NM_014209.3으로 등록되어 있다. ETS 인자는 배아 혈관발달에 관여하는 것으로 알려져 있다. 특히, ETV2는 혈관내피분화에 있어서 필수적인 조절 역할을 하는 것으로 알려져 있으나, 체세포로부터 혈관 전구 세포로의 직접교차분화를 유도하는 기능에 대해서는 전혀 알려진 바가 없다.
또한, FLI1(Friend leukemia virus integration 1) 역시 ETS 패밀리 중 하나이며, NCBI 등록번호 NM_002017.4로 등록되어 있다. 적아세포(erythoblast)에서 구조 활성화(constitutive activation)를 나타내어, 적혈구의 분화를 억제하는 것으로 알려져 있다. 특히, FLI1이 혈관 전구 세포로의 직접교차분화를 유도하는 기능에 대해서는 상기 ETV2와 마찬가지로 전혀 알려진 바가 없다.
본 발명의 ETV2, FLI1 또는 이들의 조합체는 단백질 또는 이의 단백질을 코딩하는 핵산의 형태로 제공될 수 있는데, 상기 단백질은 인간과 마우스, 말, 양, 돼지, 염소, 낙타, 영양, 개 등의 동물 유래의 모든 ETV2 또는 FLI1을 포함할 수 있다. 또한, 본 발명에 사용되는 ETV2 또는 FLI1 단백질은 이의 야생형(wild type)의 아미노산 서열을 갖는 단백질뿐만 아니라 ETV2 또는 FLI1 단백질의 변이체를 포함한다.
상기 단백질의 변이체란, ETV2 또는 FLI1 단백질의 천연 아미노산 서열과 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 단백질을 의미한다. 상기 변이체는 천연 단백질과 동일한 생물학적 활성을 나타내는 기능적 등가물이거나 필요에 의해서 단백질의 물리 화학적 성질이 변형된 변이체일 수 있고, 물리, 화학적 환경에 대한 구조적 안정성이 증대되거나 생리학적 활성이 증대된 변이체일 수 있다.
또한, 본 발명에서 ETV2 또는 FLI1을 코딩하는 핵산은 야생형 또는 상기한 바와 같은 변이체 형태의 ETV2 또는 FLI1 단백질을 코딩하는 염기서열로서, 하나 이상의 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 천연에서 분리되거나 화학적 합성법을 이용하여 제조할 수 있다. 상기 ETV2 또는 FLI1 단백질을 코딩하는 염기서열을 갖는 핵산은 단쇄 또는 이중쇄일 수 있으며, DNA 분자(genomic DNA, cDNA) 또는 RNA 분자일 수 있다.
또한, 본 발명에서 ‘벡터’는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함한다. 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다.
벡터는 플라스미드 벡터, 코즈미드 벡터, 바이러스 벡터 및 에피조말(episomal) 벡터 등을 포함한다. 바람직하게는, 바이러스 벡터일 수 있다. 바이러스 벡터는 레트로바이러스(Retrovirus), 예를 들어 HIV(Human immunodeficiency virus), MLV(Murineleukemia virus) ASLV(Avian sarcoma/leukosis), SNV(Spleen necrosis virus), RSV(Rous sarcoma virus), MMTV(Mouse mammary tumor virus), 아데노바이러스(Adenovirus), 아데노 관련 바이러스(Adeno-associatedvirus) 또는 헤르페스 심플렉스 바이러스(Herpes simplex virus) 등에서 유래한 벡터를 포함하나, 이에 제한되지 않는다. 특히, 벡터는 직접교차분화의 효율을 높이고자 하는 목적에서 사용하는 것으로서, 바꾸고자 하는 세포에 관련된 유전자를 일반 체세포에 과발현시키는 것이면 어떤 벡터를 사용하더라도 본 발명의 효과를 나타낼 수 있다. 본 발명의 구체적인 일례로서, 상기 벡터는 ETV2 또는 FLI1을 발현하는 렌티바이러스 벡터일 수 있으며, 더욱 구체적으로, SFFV 프로모터인 SF 기반의 렌티바이러스 벡터일 수 있다.
또한, ETV2 또는 FLI1 단백질을 암호화하는 핵산은 당 분야의 공지 방법, 예를 들어 벡터 형태의 네이키드 DNA로 세포내로 전달하거나, 리포좀(Liposome), 양이온성 고분자(Cationic polymer)등을 이용하여 세포 내로 도입할 수 있다.
상기 리포좀은 유전자 전달을 위하여 DOTMA나 DOTAP 등의 양이온성 인지질을 혼합하여 제조한 인지질 막으로, 양이온성의 리포좀과 음이온성의 핵산이 일정 비율로 혼합하면 핵산-리포좀 복합체를 형성하여 세포 내로 도입될 수 있다.
구체적으로, 본 발명에서 ETV2 또는 FLI1 단백질을 암호화하는 핵산분자는, ETV2 또는 FLI1 단백질을 암호화하는 핵산을 포함하는 바이러스 벡터를 packaging-defective 헬퍼 플라스미드와 함께 체세포 내로 도입될 수 있다. 상기 바이러스는 레트로바이러스, 아데노바이러스, 아데노 관련 바이러스, 헤르페스 심플렉스 바이러스 등을 포함하며 이에 제한되지 않는다.
본 발명에서 용어 “체세포”는, 생식세포를 제외한 모든 세포를 의미할 수 있다. 예를 들어, 섬유아세포, 근육세포, 신경세포, 위점막세포, 배상세포, G세포, 주피세포(pericyte), 성상교세포(astrocyte), B세포, 혈액세포, 상피세포 신경줄기세포, 조혈모세포, 중간엽줄기세포 또는 제대혈 줄기세포 등을 사용할 수 있다. 그러나, 직접교차분화는 시작세포가 체세포이면 특정 조직세포 여부에 상관없이 적용할 수 있으므로, 상기에 제한되지 않는다. 본 발명 실시예에서는 섬유아세포(fibroblast)를 이용하여 직접교차분화를 유도하였다.
본 발명에서, 혈관 전구 세포는 체내에서 혈관의 구성요소인 혈관내피세포(endothelial cell), 혈관평활근세포, 혈관주위세포 또는 혈관세포 등으로 분화할 수 있는 능력을 지닌 전구세포를 의미한다. 또한, 본 발명에서 “iVPC”는 유도된 혈관 전구 세포를 의미하며, 예를 들어, 본 발명의 방법에 따른 직접교차분화를 통하여 체세포로부터 유도된 혈관 전구 세포를 의미한다.
본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환의 예방 또는 치료용 약학 조성물을 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환의 예방 또는 치료용 세포치료제를 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환 치료 약물 스크리닝용 조성물을 제공한다.
상기 허혈성 혈관질환은 혈관이 외부적 요인 또는 내부적 요인으로 인하여 손상되어 혈류장애가 발생하는 모든 질환을 의미하며, 체내 특정 부위에서의 발생에 제한되는 것이 아니다. 구체적인 일례로, 상기 허혈성 혈관질환은 뇌혈관질환, 심혈관질환, 하지허혈성질환, 말초혈관질환 또는 허혈성 근육괴사일 수 있으나, 이에 제한되는 것은 아니다. 보다 구체적인 일례로, 상기 뇌혈관질환은 뇌경색, 뇌졸중 또는 뇌출혈일 수 있으나, 뇌혈관 손상에 따른 혈류장애에 의한 질환이면 모두 포함될 수 있으며, 상기 질환에 제한되는 것은 아니다. 또 다른 보다 구체적인 일례로, 상기 심혈관질환은 동맥경화증, 허혈성 재관류 손상, 재발협착증, 동맥 염증, 혈관벽 재형성, 심실 재형성, 속심실 조율, 관산 미세색전증, 빈맥, 서맥, 압력 과부하, 관상 동맥 결찰, 부정맥, 뇌졸중, 협심증, 심근경색, 심부전 또는 고혈압일 수 있으나, 심혈관 손상에 따른 혈류장애에 의한 질환이면 모두 포함될 수 있으며, 상기 질환에 제한되는 것은 아니다.
본 발명에서 있어서, "세포치료제"는 사람으로부터 분리, 배양 및 특수한 저작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종세포를 체외에서 증식, 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 지칭한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 상기 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환 치료용 인공조직 제작을 위한 3D 프린팅 생체 소재 조성물을 제공한다.
또한, 본 발명은 ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 체세포에 도입하는 단계를 포함하는 체세포를 혈관 전구 세포로 직접교차분화하는 방법을 제공한다.
보다 구체적으로, 체세포를 배지에서 배양하는 단계, 상기 배양한 체세포에 ETV2, FLI1 또는 이들의 조합 유전자를 삽입한 벡터로 형질도입(transduction) 시키는 단계, 및 상기 감염된 체세포를 직접교차분화를 유도할 수 있는 배양조건에서 배양하는 단계를 포함한다.
상기 체세포의 배양에 사용되는 배지는 당해 분야에서 체세포 배양 뿐 아니라 줄기세포(stem cell) 및 전구세포(progenitor cell) 배양에 통상적으로 사용되는 배지를 모두 포함할 수 있다. 배양에 사용되는 배지는 일반적으로 탄소원, 질소원 및 미량원소 성분을 포함한다. 본 발명의 구체적인 실시예에서는 형질도입된 섬유아세포를 황산프로타민(protamine sulfate, Sigma)을 보충한 배지에서 배양하였으며, 상기 황산프로타민 외에도, 세포의 배양에 있어서 필요한 요소들은 제한없이 포함할 수 있다.
또한, 상기 체세포를 직접교차분화를 유도할 수 있는 배양조건은 당해 분야에서 체세포에 대하여 직접교차분화를 유도하는 데 통상적으로 사용되는 배지를 포함할 수 있으며, 본 발명의 구체적인 일례로서, 10% FBS를 포함하는 minimal essential media(MEM), 2mM L-글루타민, β-머캅토에탄올, 페니실린/스트렙토마이신 및 10ng/ml VEGF165 를 포함하는 혈관 전구세포 성장배지를 사용할 수 있다.
본 발명에서 직접교차분화로 유도된 혈관 전구 세포는 기존 혈관의 분화 및 이에 관련된 혈관세포증식에 관여하여 새로운 혈관형성에 도움을 주며, 혈관세포의 수와 밀도를 동시에 증가시킴으로써, 허혈성 질환에 대해 우수한 치료효과를 나타낼 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1. 유도된-혈관 전구 세포(induced-vascular progenitor cells, iVPC)의 제조
진피 섬유아세포를 섬유아세포 배지(10% FBS를 포함하는 DMEM high glucose, 2mM L-글루타민, 1x MEM 비필수적 아미노산(nonessential amino acid), β-머캅토에탄올, 1x페니실린/스트렙토마이신)에서 배양하였다.
ETV2FLI1의 상보적 DNA를 암호화하는, SFFV 프로모터인 SF 기반의 렌티바이러스 벡터를 packaging-defective 헬퍼 플라스미드와 함께 Fugene 6 transfection reagent (Roche)를 이용하여 293 세포에 감염시켰다. 48시간 후, Zaehres, H. & Daley, G. Q., (2006), Methods Enzymol 420, 49-64에 기재된 방법대로, 바이러스 상층액을 얻었다.
0.1% 젤라틴 코팅된 6-웰 플레이트 당 세포수 1x10⁴개의 밀도로 진피 섬유아세포를 분주하고, 6μg/ml의 황산프로타민(protamine sulfate, Sigma)을 보충한, ETV2FLI1 (1:1)의 바이러스를 포함한 상층액과 함께 24시간동안 배양하였다. 형질도입(transduction) 효율을 SF-GFP 대조군 바이러스로 계산하였다.
감염 2일 후, 상기 세포들을 새로운 섬유아세포 배지로 다시 분주하고, 상기 배지를 혈관 전구세포 성장배지(10% FBS 를 포함하는 minimal essential media(MEM, Sigma), 2mM L-글루타민, β-머캅토에탄올, 페니실린/스트렙토마이신, 10ng/ml VEGF165 (Peprotech))로 교체하였다. 이후, 3일마다 새로운 배지로 교체하였으며, 증식을 위해 콜로니를 물리적으로 분리하였다.
실시예 2. RT-PCR 및 위상차 현미경(phase-contrast microscopy)을 이용한 ETV2 FLI1 의 발현 확인
감염 5일 후 ETV2FLI1의 발현을 RT-PCR을 이용하여 확인하였다.
구체적으로, 감염 5일 후 RNeasy kit (Qiagen)를 이용하여 전체 RNA를 각 세포로부터 추출하고, Omniscript RT (Qiagen) 를 이용하여 cDNA를 합성하였다. Taq DNA polymerase, recombinant (Invitrogen)를 이용하여 PCR을 수행하였다.
RT-PCR 후 아가로즈 젤에 로딩하여 발현여부를 확인하였으며, GAPDH를 대조군으로 사용하였다(도 3).
또한, 위상차 현미경(phase-contrast microscopy)을 이용하여 촬영한 도 4에 나타난 바와 같이, 감염된 후 10~11일 이내에 ETV2ETV2/FLI1 에 의해 감염된 세포군에서 콜로니가 나타나기 시작하였으며, 시간이 지날수록 콜로니의 수가 증가하는 것을 확인하였다.
본 발명자들은 감염된 후 30일 이내, FLI1으로 감염된 세포군에서 콜로니를 관찰하였다. 콜로니를 증식시키기 위하여, 상기 세포군을 물리적으로 분리하여 젤라틴 코팅 접시(gelatin-coated dish)에서 배양하였다.
실시예 3. 면역세포화학을 이용한 혈관전구세포의 In vitro 분석
면역세포화학을 수행하기 위하여, 세포를 4% 파라-포름알데하이드 (para-formaldehyde)에서 10분간 고정하고 0.1% Triton X-100으로 10분동안 처리하여 투과성으로 만들었다. 세포는 4% FBS/PBS 블라킹(blocking) 용액에서 30분간 배양하고 그 뒤에 상온에서 블라킹 용액으로 희석시킨 1차 항체와 1시간 동안 반응시켰다. 사용한 1차 항체는 다음과 같다; vWF (1:400, abcam), CD31 (1:200, Chemicon) 및 α-SMA(1:200, abcam).
1차 항체와 반응시킨 후, 0.05% PBST(tween20/PBS)로 3회 세척하였다. 이후 2차 형광항체를 PBS로 희석하여 1시간 동안 세포와 반응시켰다(Alexa Fluor 488 및 568; 1:1000, Molecular Probes). 0.05% PBST 로 3번 세척한 후, 핵을 Hoechst 33342 (Thermo Scientific)을 이용하여 15초간 대비염색(counterstained)하였다. 염색 후 Olympus Cell^TIRF (UOBC center, UNIST) 현미경을 이용하여 관찰하였다.
혈관전구세포는 혈관내피세포와 평활근세포로 분화가 가능한 성질을 가지고 있으며, 상기 CD31과 vWF 는 혈관내피세포의 마커로 사용하였으며, α-SMA는 평활근세포 마커로서 사용하였다. 면역세포화학 분석을 통하여, ETV2, FLI1ETV2/ FLI1에 의한 형질전환을 통해 제조된 각 유도된-혈관 전구 세포(induced-VPC, iVPC)들을 확인하였다(도 5).
실시예 4. 유도된-혈관 전구 세포(induced-VPC, iVPC)의 허혈성 질환 치료효과 확인
허혈성 다리 모델에서 ETV2, FLI1ETV2/FLI1로 형질전환하여 제조한, 각 유도된-혈관 전구 세포(induced-VPC, iVPC)군이 혈류회복에 치료효과를 나타내는지 알아보기 위하여, 각각의 유도된-혈관 전구 세포(induced-VPC, iVPC)를 이식하고 일정 기간 후 혈류를 측정하였다.
구체적으로, 넙다리 동맥의 절제 및 레이저 도플러 관류 이미징(laser Doppler perfusion imaging)을 위해 흉선이 없는 누드마우스(수컷, 8-10주령, 몸무게 17-22g)를 160 mg/kg의 펜토바비탈을 주입하여 마비시켰다. 외장골동맥의 곁가지로서 근위(proximal) 조직부터 복재(saphenous)정맥 및 슬와(popliteal)정맥으로 나뉘어지는 원위지점(distal point)까지 넙다리 동맥을 절개하였다. 동맥결찰법(arterial ligation) 후에, 다음과 같은 실험군으로 마우스를 나누었다; ETV2, FLI1ETV2/FLI1 iVPC 및 대조군(HBSS; 식염수 주입) (n=8 per each group).
이식하기 전, 상기 세포들을 CM-Dil (Invitrogen)로 표지하였다. 이후 각 마우스에 1 × 106 cells (80μL) 또는 HBSS를 중앙대퇴부에 있는 박근(薄筋)의 4지점에 근육내 주입하였다. 허혈성 혈류 및 정상 다리에 세포 이식 당일, 7일, 14일 및 28일 후 레이저 도플러 관류 이미지 분석기(laser Doppler perfusion imaging (LDPI) analyzer, Moor instruments, Devon, UK)를 이용하여 측정하였다(도 6).
허혈성 다리 및 비허혈성 다리의 혈류를 유색의 히스토그램 픽셀(colored histogram pixels)을 기초로 계산하였다. 붉은색 및 파란색은 각각 높고 낮은 혈류를 나타내었다. 혈액의 흐름을 허혈성 대 비허혈성 다리 혈류의 비율을 나타내는 LDPI index로서 나타내었다. 도 7에서 수술 전의 비율, 1은 양 다리의 동일한 혈액의 흐름을 나타낸 것이다.
상기 측정결과와 관련, 도 6 및 도 7에서 나타난 바와 같이, 이식된 모든 iVPC 세포군들이 허혈성 다리 모델에서 혈류의 회복을 나타내었다. 특히, ETV2/FLI1 세포군에서 대조군에 비해 눈에 띄게 증가한 혈류회복을 나타내는 것을 확인하였다.

Claims (10)

  1. ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 유효성분으로 포함하는 체세포로부터 혈관 전구 세포(vascular progenitor cell)로의 직접교차분화 유도용 조성물.
  2. 제1항에 있어서, 상기 벡터는 플라스미드 벡터, 코즈미드 벡터, HIV(Human immunodeficiency virus) 벡터, MLV(Murineleukemia virus) 벡터, ASLV(Avian sarcoma/leukosis) 벡터, SNV(Spleen necrosis virus) 벡터, RSV(Rous sarcoma virus) 벡터, MMTV(Mouse mammary tumor virus) 벡터, 아데노바이러스(Adenovirus) 벡터 및 헤르페스 심플렉스 바이러스(Herpes simplex virus) 및 에피조말(episomal) 벡터로 이루어진 군에서 선택된 어느 하나의 벡터인 것을 특징으로 하는 체세포로부터 혈관 전구 세포(vascular progenitor cell)로의 직접교차분화 유도용 조성물.
  3. 제1항에 있어서, 상기 체세포는 섬유아세포, 근육세포, 신경세포, 위점막세포, 배상세포, G세포, 주피세포(pericyte), 성상교세포(astrocyte), B세포, 혈액세포, 상피세포, 신경줄기세포, 조혈모세포, 중간엽줄기세포 및 제대혈 줄기세포로 이루어진 군에서 선택된 어느 하나의 세포인 것을 특징으로 하는 체세포로부터 혈관 전구 세포(vascular progenitor cell)로의 직접교차분화 유도용 조성물.
  4. ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 체세포에 도입하여 직접교차분화 유도된 혈관 전구 세포(vascular progenitor cell).
  5. ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 제4항에 따른 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환의 예방 또는 치료용 약학 조성물.
  6. 제5항에 있어서, 상기 허혈성 혈관질환은 뇌혈관질환, 심혈관질환, 하지허혈성질환, 말초혈관질환 또는 허혈성 근육괴사인 것을 특징으로 하는 허혈성 혈관질환의 예방 또는 치료용 약학 조성물.
  7. ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 제4항에 따른 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환의 예방 또는 치료용 세포치료제.
  8. ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 제4항에 따른 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환 치료 약물 스크리닝용 조성물.
  9. ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자, 상기 핵산분자가 도입된 벡터 또는 제4항에 따른 직접교차분화 유도된 혈관 전구 세포를 유효성분으로 포함하는 허혈성 혈관질환 치료용 인공조직 제작을 위한 3D 프린팅 생체 소재 조성물.
  10. ETV2(Ets variant gene 2) 및 FLI1(Friend leukemia virus integration 1) 중에서 선택된 어느 하나 이상의 단백질, 상기 단백질을 코딩하는 핵산분자 또는 상기 핵산분자가 도입된 벡터를 체세포에 도입하는 단계를 포함하는 체세포를 혈관 전구 세포로 직접교차분화하는 방법.
PCT/KR2015/002039 2014-03-03 2015-03-03 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도 WO2015133792A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15758822.9A EP3117839A4 (en) 2014-03-03 2015-03-03 Composition for inducing direct transdifferentiation of somatic cell into vascular progenitor cell, and use thereof
CN201580011343.0A CN106163572B (zh) 2014-03-03 2015-03-03 用于诱导体细胞直接转分化为血管祖细胞的组合物及其用途
US15/120,171 US10174287B2 (en) 2014-03-03 2015-03-03 Composition for inducing direct transdifferentiation of somatic cell into vascular progenitor cell, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140025095 2014-03-03
KR10-2014-0025095 2014-03-03
KR10-2015-0029725 2015-03-03
KR1020150029725A KR101702629B1 (ko) 2014-03-03 2015-03-03 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도

Publications (1)

Publication Number Publication Date
WO2015133792A1 true WO2015133792A1 (ko) 2015-09-11

Family

ID=54055540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002039 WO2015133792A1 (ko) 2014-03-03 2015-03-03 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2015133792A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282238A (zh) * 2015-06-08 2017-01-04 深圳市伊思科生物科技有限公司 细胞的转分化方法
WO2019073055A1 (en) 2017-10-13 2019-04-18 Imba - Institut Für Molekulare Biotechnologie Gmbh ENHANCED REPROGRAMMING OF SOMATIC CELLS
CN110042125A (zh) * 2018-01-16 2019-07-23 深圳市伊思科生物科技有限公司 脂肪间充质干细胞转分化制备血管细胞的方法、血管细胞及其应用
EP3558328A4 (en) * 2016-12-22 2020-08-26 Ohio State Innovation Foundation COMPOSITIONS AND METHODS OF REPROGRAMMING SOMATIC CELLS INTO INDUCED VASCULAR CELLS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006440A2 (en) * 2010-07-07 2012-01-12 Cellular Dynamics International, Inc. Endothelial cell production by programming

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006440A2 (en) * 2010-07-07 2012-01-12 Cellular Dynamics International, Inc. Endothelial cell production by programming

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KELLY LAMMERTS VAN BUEREN ET AL.: "Regulation of endothelial and hematopoietic development by the ETS transcription factor Etv2", CURR OPIN HEMATOL, vol. 19, no. 3, May 2012 (2012-05-01), pages 199 - 205, XP055358267 *
MICHAEL GINSBERG ET AL.: "Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFbeta Suppression", CELL, vol. 151, no. 3, 26 October 2012 (2012-10-26), pages 559 - 575, XP028952799, ISSN: 0092-8674 *
See also references of EP3117839A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282238A (zh) * 2015-06-08 2017-01-04 深圳市伊思科生物科技有限公司 细胞的转分化方法
EP3558328A4 (en) * 2016-12-22 2020-08-26 Ohio State Innovation Foundation COMPOSITIONS AND METHODS OF REPROGRAMMING SOMATIC CELLS INTO INDUCED VASCULAR CELLS
US11578107B2 (en) 2016-12-22 2023-02-14 Ohio State Innovation Foundation Compositions and methods for reprogramming somatic cells into induced vasculogenic cells
WO2019073055A1 (en) 2017-10-13 2019-04-18 Imba - Institut Für Molekulare Biotechnologie Gmbh ENHANCED REPROGRAMMING OF SOMATIC CELLS
CN110042125A (zh) * 2018-01-16 2019-07-23 深圳市伊思科生物科技有限公司 脂肪间充质干细胞转分化制备血管细胞的方法、血管细胞及其应用

Similar Documents

Publication Publication Date Title
KR101702629B1 (ko) 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도
AU2014250190B2 (en) Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using HMGA2
WO2015133792A1 (ko) 체세포로부터 혈관 전구 세포로의 직접교차분화 유도용 조성물 및 이의 용도
US10675382B2 (en) Schwann cells and method for preparing same
JP2005151907A5 (ko)
WO2017135795A1 (ko) 간세포성장인자를 발현하는 중간엽줄기세포 및 이의 용도
Liang et al. Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bFGF under doxycycline control
WO2013036969A1 (en) Compositions and methods relating to clonal progenitor cell lines
Lu et al. Retrovirus delivered neurotrophin-3 promotes survival, proliferation and neuronal differentiation of human fetal neural stem cells in vitro
WO2012047037A2 (ko) 배아줄기세포 유래 심근세포 및 이를 유효성분으로 포함하는 세포치료제
KR100765496B1 (ko) 히레귤린 베타1의 egf-성 도메인 펩타이드를 암호화하는dna 서열을 포함하는 재조합 아데노바이러스 및 이를포함하는 신경세포 분화 및 재생용 약학 조성물
US7767201B2 (en) Vascular cells genetically altered to over-express angiogenic proliferation and maturation factors; treatment of atherosclerosis using same
WO2023075557A1 (ko) 연골 항상성 인자를 포함하는 엑소좀 및 이를 포함하는 골관절염 예방 또는 치료용 조성물
WO2016076507A1 (ko) 렙틴을 포함하는 유도만능줄기세포로의 역분화 유도용 조성물 및 이를 이용한 유도만능줄기세포로의 역분화 유도 방법
KR20110124106A (ko) Shh, FGFR 티로신 키나아제 억제제, MEK 억제제와 GSK 억제제를 이용하여 체세포로부터 배아줄기세포 유사세포로의 역분화를 유도하는 조성물 및 이를 이용한 배아줄기세포 유사세포의 제조방법
JP4118236B2 (ja) 中胚葉幹細胞もしくはes細胞、または不死化した中胚葉幹細胞から神経系細胞への分化誘導方法
KR102249776B1 (ko) 개선된 생체 내 리프로그래밍 시스템 및 이를 이용한 세포 전환 방법
WO2022196714A1 (ja) 塩基性繊維芽細胞増殖因子(bFGF)遺伝子が導入されたペリサイト
US20240182858A1 (en) Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein
Sariola et al. Fates of the metanephric mesenchyme
KR102594254B1 (ko) 운동성 신경세포 직접교차 분화용 인자
WO2023286832A1 (ja) 血管内皮増殖因子(vegf)高発現ペリサイト様細胞の製造方法
JP2010051326A (ja) 中胚葉幹細胞を神経系細胞に分化誘導する方法
WO2019088772A2 (ko) 허혈성 심혈관 질환의 치료용 또는 예방용 약학 조성물
KR20190116869A (ko) 샤르코-마리-투스 질환에서 유래한 유도만능 줄기세포로부터 운동신경세포의 분화 유도 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15120171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015758822

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758822

Country of ref document: EP