WO2015133501A1 - 発光材料、有機発光素子および化合物 - Google Patents

発光材料、有機発光素子および化合物 Download PDF

Info

Publication number
WO2015133501A1
WO2015133501A1 PCT/JP2015/056286 JP2015056286W WO2015133501A1 WO 2015133501 A1 WO2015133501 A1 WO 2015133501A1 JP 2015056286 W JP2015056286 W JP 2015056286W WO 2015133501 A1 WO2015133501 A1 WO 2015133501A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
general formula
compound
electron
Prior art date
Application number
PCT/JP2015/056286
Other languages
English (en)
French (fr)
Inventor
大貴 野田
将嗣 種田
功將 志津
田中 啓之
安達 千波矢
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2016506519A priority Critical patent/JP6526625B2/ja
Priority to CN201580012014.8A priority patent/CN106062127B/zh
Priority to US15/124,119 priority patent/US9773982B2/en
Publication of WO2015133501A1 publication Critical patent/WO2015133501A1/ja
Priority to US15/671,617 priority patent/US10043981B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a compound useful as a light emitting material and an organic light emitting device using the compound.
  • organic light emitting devices such as organic electroluminescence devices (organic EL devices)
  • organic electroluminescence devices organic electroluminescence devices
  • various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element.
  • studies on organic electroluminescence devices using tertiary amines substituted with carbazolyl groups can also be found.
  • Patent Document 1 discloses a light emitting layer in which a carbazolyl group substituted at the N-position with an ethyl group and a tertiary amine substituted with two substituted phenyl groups are present between a pair of electrodes constituting an organic electroluminescence device Examples used as light-emitting materials are described in FIG. However, Patent Document 1 does not describe a compound in which the N-position of a carbazolyl group substituted with a tertiary amine is substituted with a substituent other than an ethyl group.
  • Patent Document 2 describes that a compound represented by the following formula is used as a material for a hole injection layer or a hole transport layer of an organic electroluminescence element.
  • R 4 and R 5 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted carbon number.
  • Patent Document 3 describes an example in which a compound represented by the following formula is used as a phosphorescent host. However, Patent Document 3 does not describe the usefulness of this compound as a light emitting material. Further, this document does not describe specific examples of compounds in which the phenyl group of the N-phenylcarbazolyl group substituted with a tertiary amine is substituted with a substituent.
  • Patent Document 1 describes that a carbazolyl group substituted with an ethyl group at the N-position and a tertiary amine substituted with two substituted phenyl groups can be used as a light emitting material.
  • the present inventors actually evaluated the light emission characteristics of this compound, it was found that the light emission characteristics are not sufficiently satisfactory, and it is necessary to provide a light emitting material having better light emission characteristics.
  • the present inventors have begun various studies on tertiary amines substituted with carbazolyl groups, and tertiary amines having a carbazolyl group substituted at the N-position with a group containing an electron-withdrawing group from a number of similar skeletons.
  • the group found it useful as a luminescent material, and decided to proceed further.
  • the tertiary amine substituted with an N-phenylcarbazolyl group is disclosed in Patent Documents 2 and 3, in which a hole injection layer of an organic electroluminescence element, a hole transport material of a hole transport layer, or a host material It is described as being useful.
  • Patent Documents 2 and 3 no investigation has been made as to whether or not the compounds described in Patent Documents 2 and 3 can function as light emitting materials. Since the light emitting material has different properties and functions from those required for the hole transport material and the host material, the usefulness of the compounds described in Patent Documents 2 and 3 as the light emitting material is unknown.
  • Patent Document 1 relates to a light-emitting material, but does not describe a compound in which the N-position of a carbazolyl group substituted with a tertiary amine is substituted with a group containing an electron-withdrawing group. For this reason, about the tertiary amine which has the carbazolyl group substituted by the group containing an electron withdrawing group in N position, the usefulness as a luminescent material is unpredictable.
  • the present inventors have further investigated the usefulness of a tertiary amine having a carbazolyl group substituted at the N-position with a group containing an electron-withdrawing group as a light-emitting material, and had excellent light-emitting properties. Research was conducted with the aim of finding compounds. And the general formula of the compound useful as a luminescent material was derived, and the earnest examination was advanced for the purpose of generalizing the structure of the organic light emitting element with high luminous efficiency.
  • a tertiary amine having a carbazolyl group substituted at the N-position with a group containing an electron-withdrawing group has excellent properties as a light-emitting material.
  • a group of compounds is useful as a delayed fluorescent material, and it has been clarified that an organic light-emitting device having high emission efficiency can be provided at low cost.
  • a light emitting material comprising a compound represented by the following general formula (1).
  • Ar 1 to Ar 3 each independently represents a substituted or unsubstituted aryl group, and at least one of Ar 1 to Ar 3 independently represents an electron withdrawing group at the N position.
  • the light-emitting material according to [1], wherein the carbazolyl group substituted at the N-position with a group containing an electron-withdrawing group is an N-substituted carbazol-3-yl group.
  • One or two of Ar 1 to Ar 3 in the general formula (1) is a carbazolyl group substituted at the N-position with a group containing an electron-withdrawing group, and the other one is substituted or unsubstituted
  • Any one of [1] to [9], wherein the carbazolyl group substituted at the N-position with a group containing an electron-withdrawing group is a group represented by the following general formula (2):
  • R 1 to R 7 and R 11 to R 15 each independently represent a hydrogen atom or a substituent, and at least one of R 11 to R 15 is each independently a substituent.
  • R 11 to R 15 may be bonded to each other to form a cyclic structure.
  • R 1 and R 2 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 may be bonded to each other to form a cyclic structure.
  • a delayed phosphor comprising a compound represented by the following general formula (1).
  • Ar 1 to Ar 3 each independently represents a substituted or unsubstituted aryl group, and at least one of Ar 1 to Ar 3 independently represents an electron withdrawing group at the N position.
  • a carbazolyl group substituted with a containing group [12] An organic light-emitting device comprising the light-emitting material according to any one of [1] to [10]. [13] The organic light-emitting device according to [12], which emits delayed fluorescence. [14] The organic light-emitting device according to [12] or [13], which is an organic electroluminescence device. [15] A compound represented by the following general formula (1 ′).
  • Ar 1 ′ to Ar 3 ′ each independently represents a substituted or unsubstituted aryl group, and at least one of Ar 1 ′ to Ar 3 ′ is independently N-position Is a carbazolyl group substituted with a group containing an electron withdrawing group.
  • the compound of the present invention is useful as a light emitting material.
  • the compounds of the present invention include those that emit delayed fluorescence.
  • An organic light emitting device using the compound of the present invention as a light emitting material can realize high luminous efficiency.
  • FIG. 2 is an emission absorption spectrum of a toluene solution of compound 1 of Example 1.
  • 2 is a transient decay curve of a toluene solution of Compound 1 of Example 1.
  • FIG. 2 is an emission absorption spectrum of a thin-film organic photoluminescence device of Compound 1 of Example 1.
  • 2 is a transient decay curve of a thin film type organic photoluminescence device of Compound 1 of Example 1.
  • FIG. It is the energy profile by the photoelectron analysis of the thin film type organic photoluminescence element of the compound 1 of Example 1. It is an emission spectrum of the thin film type organic photoluminescence element of the compound 1 of Example 1 and DPEPO.
  • 3 is an extinction coefficient in the plane (x, y) and normal direction (z) of the thin film obtained by ellipsometry spectroscopy of the thin film type organic photoluminescence device of the compound 3 of Example 3. It is an emission spectrum of the thin film type organic photoluminescence element of the compound 3 of Example 3 and mCP. It is an emission spectrum of the thin film type organic photoluminescence element of the compound 3 of Example 3 and TPBi. It is the transient attenuation
  • 6 is a graph showing voltage-current density characteristics of an organic electroluminescent element of Compound 1 of Example 4. 6 is a graph showing current density-external quantum efficiency characteristics of an organic electroluminescent device of Compound 1 of Example 4.
  • 7 is an emission spectrum of an organic electroluminescent element of the compound 3 of Example 6. 6 is a graph showing voltage-current density characteristics of an organic electroluminescence element of the compound 3 of Example 6. 6 is a graph showing current density-external quantum efficiency characteristics of an organic electroluminescence device of Compound 3 of Example 6.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of them are 2 H. (Deuterium D) may be used.
  • the luminescent material of the present invention is characterized by comprising a compound represented by the following general formula (1).
  • Ar 1 to Ar 3 each independently represents a substituted or unsubstituted aryl group. However, at least one of Ar 1 to Ar 3 is each independently a carbazolyl group substituted at the N-position with a group containing an electron withdrawing group. The number of carbazolyl groups substituted at the N-position with a group containing an electron-withdrawing group is 1 to 3 of Ar 1 to Ar 3 , and preferably 2 or 3.
  • the carbazolyl group substituted at the N-position with a group containing an electron-withdrawing group may be the same or different, but are preferably the same.
  • the carbazolyl group substituted at the N-position with a group containing an electron-withdrawing group may be one in which the electron-withdrawing group is directly bonded to the N-position of the carbazolyl group, or the electron-withdrawing group is linked like a phenyl group. It may be bonded to the N-position of the carbazolyl group via a group.
  • the binding site with the nitrogen atom in the carbazolyl group is not particularly limited, but is preferably the 2nd or 3rd position of the phenyl group, and the 3rd position. Is more preferable. That is, an N-substituted phenylcarbazol-2-yl group or an N-substituted phenylcarbazol-3-yl group is preferable, and an N-substituted phenylcarbazol-3-yl group is more preferable.
  • N-substituted phenylcarbazol-3-yl group can be represented by the following general formula (2)
  • R 1 to R 7 and R 11 to R 15 each independently represent a hydrogen atom or a substituent, and at least one of R 11 to R 15 is each independently a substituent. There may be only one substituent among R 11 to R 15 , or two or more. When one of R 11 to R 15 is a substituent, any one of R 12 to R 14 is preferably a substituent, and R 13 is more preferably a substituent. On the other hand, when two or more of R 11 to R 15 are substituents, at least R 12 and R 13 are preferably substituents, or at least R 13 and 14 are preferably substituents.
  • R 11 ⁇ R 15 is a substituent
  • R 12 ⁇ R 15 is a substituent
  • R 11 ⁇ When three of R 15 are substituents, R 12 to R 14 are preferably substituents, and when two of R 11 to R 15 are substituents, R 12 and R 13 are substituted. It is preferable that R 13 and R 14 are substituents.
  • R 11 to R 15 Of the substituents among R 11 to R 15 , at least one of them is preferably an electron withdrawing group, and at least R 13 (the 4-position of the phenyl group) is preferably an electron withdrawing group.
  • the compound represented by the general formula (1) has a sufficient radiation rate constant k T from the excited singlet state S 1 to the ground state S 0 because at least one of R 11 to R 15 is an electron withdrawing group. while maintaining the a value, there is a tendency that the energy difference Delta] E ST decreases the excited singlet state and excited triplet state, which is advantageous in enhancing the luminous efficiency.
  • HOMO and LUMO can be appropriately separated by introducing a phenyl group having an electron-withdrawing group while keeping the structural twist of the molecule small.
  • the plurality of electron-withdrawing groups may be the same or different, but are preferably the same.
  • Examples of the electron withdrawing group include a heterocyclic group containing a nitrogen atom, a cyano group, a carboxyl group, a group bonded by an ester (for example, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group), and a group bonded by a carbonyl (for example, an acyl group).
  • Group, a carbamoyl group) and the like, and a heterocyclic group containing a nitrogen atom and a cyano group are preferable.
  • a heterocyclic group containing a nitrogen atom the heterocyclic group represented by a following formula can be mentioned, for example.
  • the heterocyclic group containing a nitrogen atom that can be used in the present invention is not limited to those represented by the following formula.
  • R 11 ⁇ R 15 When at least one of R 11 ⁇ R 15 is an electron withdrawing group, the substituent of R 11 ⁇ R 15 is, may be only electron withdrawing group, contain substituents other than electron-withdrawing group Also good.
  • the substituent of R 11 to R 15 includes a substituent other than the electron withdrawing group, the number of substituents other than the electron withdrawing group is not particularly limited, and may be one or two or more. There may be. When there are two or more substituents other than the electron withdrawing group among R 11 to R 15 , these substituents may be the same or different, but are preferably the same.
  • the substituent other than the electron withdrawing group is not particularly limited, and examples thereof include an alkyl group.
  • the number of substituents in R 1 to R 7 is not particularly limited, and all of R 1 to R 7 may be unsubstituted (that is, hydrogen atoms).
  • the plurality of substituents may be the same as or different from each other.
  • the substituent is preferably any one of R 4 to R 6 .
  • R 1 to R 7 can take include, for example, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, carbon An alkyl-substituted amino group having 1 to 20 carbon atoms, an acyl group having 2 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, a heteroaryl group having 3 to 40 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and 2 carbon atoms -10 alkynyl group, C2-C10 alkoxycarbonyl group, C1-C10 alkylsulfonyl group, C1-C10 haloalkyl group, amide group, C2-C10 alkylamide group, carbon number A trialkylsilyl group having 3 to 20 carbon atoms, a trial
  • Shiriruarukiniru group and a nitro group and the like may be further substituted. More preferred substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, and a dialkyl-substituted amino group having 1 to 20 carbon atoms.
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl
  • substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, and a substituted group having 6 to 15 carbon atoms.
  • it is an unsubstituted aryl group or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 1 and R 2 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 may be bonded to each other to form a cyclic structure.
  • the cyclic structure may be an aromatic ring or an alicyclic ring, may contain a hetero atom, and the cyclic structure may be a condensed ring of two or more rings.
  • the hetero atom here is preferably selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom.
  • Examples of cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole And a ring, an isothiazole ring, a cyclohexadiene ring, a cyclohexene ring, a cyclopentaene ring, a cycloheptatriene ring, a cycloheptadiene ring, and a cycloheptaene ring.
  • any one of Ar 1 to Ar 3 in the general formula (1) is an N-substituted phenylcarbazolyl group having a bond site with a nitrogen atom other than the 3-position
  • the N-substituted phenylcarbazolyl group For the explanation and preferred range of substituents that can be substituted on the group, and preferred examples of the cyclic structure formed by bonding of the substituents, the corresponding explanation for the general formula (2) can be referred to. However, in the explanation of the substituents that R 1 to R 3 can take in the general formula (2), the substitution is made on the benzene ring corresponding to the benzene ring to which R 1 to R 3 are bonded except for the bonding site with the nitrogen atom. It shall be read as an explanation of the substituent.
  • the carbazolyl group substituted at the N position with a group containing an electron withdrawing group contained in the general formula (1) may be a carbazolyl group directly substituted at the N position with an electron withdrawing group.
  • Such an electron-withdrawing group directly bonded to the N-position can be selected from electron-withdrawing groups that can be bonded to the N-position of the carbazolyl group.
  • an electron-withdrawing group having a cyclic structure, a benzene ring, or a complex can be selected. Mention may be made of electron-withdrawing groups containing aromatic rings. Specific examples include the following electron-withdrawing groups.
  • Ar 1 to Ar 3 in the general formula (1) is a carbazolyl group substituted at the N position with a group containing an electron withdrawing group
  • the N position is substituted with a group containing an electron withdrawing group
  • Ar 1 to Ar 3 other than the carbazolyl group are preferably a substituted or unsubstituted aryl group having 1 to 4 carbon atoms, and more preferably a substituted or unsubstituted phenyl group.
  • substituents that can be substituted on the aryl group reference can be made to descriptions and preferred ranges of substituents that R 1 to R 7 can take.
  • two of Ar 1 to Ar 3 are groups represented by the general formula (2), and the other is a substituted or unsubstituted phenyl group.
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by vapor deposition. Preferably, it is preferably 1200 or less, more preferably 1000 or less, and even more preferably 800 or less.
  • the lower limit of the molecular weight is the molecular weight of the minimum compound represented by the general formula (1).
  • the compound represented by the general formula (1) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
  • a compound containing a plurality of structures represented by the general formula (1) in the molecule as a light emitting material.
  • a polymer obtained by previously polymerizing a polymerizable group in the structure represented by the general formula (1) and polymerizing the polymerizable group as a light emitting material.
  • a monomer containing a polymerizable functional group in any of Ar 1 to Ar 3 of the general formula (1) and polymerizing it alone or copolymerizing with other monomers, It is conceivable to obtain a polymer having a repeating unit and use the polymer as a light emitting material.
  • dimers and trimers are obtained by reacting compounds having a structure represented by the general formula (1) and used as a luminescent material.
  • polymer having a repeating unit including the structure represented by the general formula (1) a polymer including a structure represented by the following general formula (3) or (4) can be given.
  • Q represents a group including the structure represented by General Formula (1)
  • L 1 and L 2 represent a linking group.
  • the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the linking group represented by L 1 and L 2 is any one of Ar 1 to Ar 3 having the structure of the general formula (1) constituting R, R 1 to R 7 and R 11 having the structure of the general formula (2). To any of R 15 . Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
  • repeating unit examples include structures represented by the following formulas (5) to (8).
  • a hydroxy group is introduced into any one of Ar 1 to Ar 3 in the structure of the general formula (1), and this is used as a linker as described below. It can be synthesized by reacting a compound to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units.
  • the repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
  • A represents an electron withdrawing group.
  • X represents a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom, a bromine atom, and an iodine atom are preferable.
  • the above reaction is an application of a known reaction, and known reaction conditions can be appropriately selected and used. The details of the above reaction can be referred to the synthesis examples described below.
  • the compound represented by the general formula (1 ′) can also be synthesized by combining other known synthesis reactions.
  • the compound represented by the general formula (1) of the present invention is useful as a light emitting material of an organic light emitting device. For this reason, the compound represented by General formula (1) of this invention can be effectively used as a luminescent material for the light emitting layer of an organic light emitting element.
  • the compound represented by the general formula (1) includes a delayed fluorescent material (delayed phosphor) that emits delayed fluorescence. That is, the present invention relates to a delayed phosphor having a structure represented by the general formula (1), an invention using a compound represented by the general formula (1) as a delayed phosphor, and a general formula (1).
  • An invention of a method for emitting delayed fluorescence using the represented compound is also provided.
  • An organic light emitting device using such a compound as a light emitting material emits delayed fluorescence and has a feature of high luminous efficiency. The principle will be described below by taking an organic electroluminescence element as an example.
  • the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • excitons in the excited singlet state emit fluorescence as usual.
  • excitons in the excited triplet state absorb heat generated by the device and cross between the excited singlets to emit fluorescence.
  • the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
  • the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
  • the compound represented by the general formula (1) of the present invention as a light-emitting material of a light-emitting layer, excellent organic light-emitting devices such as an organic photoluminescence device (organic PL device) and an organic electroluminescence device (organic EL device) Can be provided.
  • the compound represented by the general formula (1) of the present invention may have a function of assisting light emission of another light emitting material included in the light emitting layer as a so-called assist dopant. That is, the compound represented by the general formula (1) of the present invention contained in the light emitting layer includes the lowest excitation singlet energy level of the host material contained in the light emitting layer and the lowest excitation of other light emitting materials contained in the light emitting layer.
  • the organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • each member and each layer of an organic electroluminescent element are demonstrated.
  • substrate and a light emitting layer corresponds also to the board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material. As a luminescent material, the 1 type (s) or 2 or more types chosen from the compound group of this invention represented by General formula (1) can be used. In order for the organic electroluminescence device and the organic photoluminescence device of the present invention to exhibit high luminous efficiency, it is important to confine singlet excitons and triplet excitons generated in the light emitting material in the light emitting material.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound having at least one of excited singlet energy and excited triplet energy higher than that of the light emitting material of the present invention can be used.
  • singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
  • high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
  • the organic light emitting device or organic electroluminescent device of the present invention light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
  • the amount of the compound of the present invention, which is a light emitting material is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% or more. It is preferably no greater than wt%, more preferably no greater than 20 wt%, and even more preferably no greater than 10 wt%.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission, and includes a hole injection layer and an electron injection layer, Further, it may be present between the cathode and the light emitting layer or the electron transport layer.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the compound represented by the general formula (1) may be used not only for the light emitting layer but also for layers other than the light emitting layer.
  • the compound represented by General formula (1) used for a light emitting layer and the compound represented by General formula (1) used for layers other than a light emitting layer may be same or different.
  • the compound represented by the general formula (1) may be used for the injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like. .
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the material that can be used in the present invention is not limited to the following exemplary compounds.
  • R and R 1 to R 10 in the structural formulas of the following exemplary compounds each independently represent a hydrogen atom or a substituent.
  • n represents an integer of 3 to 5.
  • the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • the excited triplet energy is unstable and is converted into heat and the like, and the lifetime is short and it is immediately deactivated.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light emitting device with greatly improved light emission efficiency can be obtained by containing the compound represented by the general formula (1) in the light emitting layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • source meter manufactured by Keithley: 2400 series
  • semiconductor parameter analyzer manufactured by Agilent Technologies: E5273A
  • optical power meter measuring device manufactured by Newport: 1930C
  • optical spectrometer Ocean Optics, USB2000
  • spectroradiometer Topcon, SR-3
  • streak camera Haamamatsu Photonics C4334
  • N, N-bis (9H-carbazol-3-yl) aniline (0.68 g, 1.6 mmol) and potassium carbonate (0.96 g, 7.2 mmol) were added to a 100 ml two-necked flask and purged with nitrogen. Thereafter, 4-fluorobenzonitrile (0.58 g, 4.8 mmol) and dimethylformamide (20 ml) were added, and the mixture was heated and stirred at 100 ° C. for 24 hours. The mixture was allowed to cool to room temperature, water was added and stirred for 10 minutes, and the precipitated solid was filtered. This solid was dissolved in dichloromethane and filtered while hot.
  • Example 1 Production and Evaluation of Organic Photoluminescence Device Using Compound 1
  • a toluene solution of Compound 1 (concentration 1 ⁇ 10 ⁇ 5 mol / L) was prepared in a glove box under an Ar atmosphere. Further, a thin film of Compound 1 having a thickness of 50 nm was formed on a quartz substrate by a vacuum vapor deposition method under a vacuum degree of 5 ⁇ 10 ⁇ 4 Pa or less to obtain an organic photoluminescence device.
  • Compound 1 and DPEPO are deposited on a quartz substrate by a vacuum deposition method under a condition of a vacuum degree of 5 ⁇ 10 ⁇ 4 Pa or less from different deposition sources, and the concentration of Compound 1 is 6% by weight.
  • a certain thin film was formed with a thickness of 100 nm to obtain an organic photoluminescence element.
  • an emission spectrum, an absorption spectrum, and a transient decay curve with 300 nm and 355 nm excitation light were measured.
  • an emission spectrum and an absorption spectrum by 337 nm excitation light are shown in FIG. 2, and a transient attenuation curve is shown in FIG.
  • This transient decay curve shows the result of measuring the luminescence lifetime obtained by measuring the process in which the emission intensity is deactivated by applying excitation light to the compound.
  • the light emission intensity decays in a single exponential manner.
  • the photoluminescence quantum efficiency was 13.5% (355 nm excitation light) with a bubbling toluene solution, 20.5% (355 nm excitation light) or 32.7% (300 nm excitation light) with a nitrogen bubbling toluene solution. .
  • delayed fluorescence could be confirmed from FIG.
  • the organic photoluminescent element which has a thin film only of the compound 1 the result of having measured the emission spectrum and absorption spectrum by 365 nm excitation light is shown in FIG. 4, the measurement result of a transient decay curve is shown in FIG.
  • the energy profile is shown in FIG.
  • the photoluminescence quantum efficiency was 35.4%, and delayed fluorescence was confirmed from FIG. In addition, it is confirmed from FIG.
  • the HOMO energy level is 5.63 eV
  • the LUMO energy level is 2.85 eV
  • the HOMO-LUMO gap is 2.78 eV, so that HOMO and LUMO are appropriately separated. It was done.
  • emission spectra by excitation light of 290 nm, 300 nm and 310 nm were measured. Among these, the emission spectrum by 290 nm excitation light is shown in FIG. The photoluminescence quantum efficiency was 52.3% with 290 nm excitation light, 44.2% with 300 nm excitation light, and 44.5% with 310 nm excitation light.
  • the measurement result of the transient decay curve is shown in FIG. 8, and the measurement result of the fluorescence spectrum and the phosphorescence spectrum is shown in FIG. From FIG. 8, it was confirmed that the delayed fluorescence component is a thermally activated delayed fluorescence that increases with increasing temperature. Further, from FIG. 9, the energy difference Delta] E ST of the excited singlet state and excited triplet state was 0.21EV.
  • Example 2 Production and Evaluation of Organic Photoluminescence Device Using Compound 2
  • a toluene solution of Compound 2 was prepared by changing the point where Compound 2 was used instead of Compound 1.
  • an organic photoluminescence device having a thin film of compound 2 and mCP and an organic compound having a thin film of compound 2 and CBP are changed by using compound 2 instead of compound 1 and using mCP or CBP instead of DPEPO.
  • a photoluminescence element was produced.
  • FIG. 10 shows the results of measuring the emission spectrum and absorption spectrum of the compound 2 in a toluene solution with 399 nm excitation light
  • FIG. 11 shows the results of measuring the transient decay curve.
  • FIG. 12 shows the results of measuring the emission spectrum of the organic photoluminescence device having the compound 2 and mCP thin film and the organic photoluminescence device having the compound 2 and CBP thin film by 337 nm excitation light.
  • FIG. 13 shows transient decay curves measured at temperatures of 100 K, 200 K, and 300 K for the organic photoluminescence device having the compound 2 and mCP thin film, from the excited triplet state T 1 to the excited singlet state S 1 .
  • the photoluminescence quantum efficiency is 76% for the organic photoluminescence device having the thin film of compound 2 and mCP, and 73% for the organic photoluminescence device having the thin film of compound 2 and CBP.
  • the fluorescence was a thermally activated delayed fluorescence in which the fluorescent component increased.
  • the energy difference Delta] E ST excited triplet state and the excited singlet state was 0.025 eV.
  • Example 3 Preparation and evaluation of organic photoluminescence device using compound 3
  • Organic photoluminescence having a toluene solution of compound 3 and a thin film only of compound 3 by changing the point of using compound 3 instead of compound 1 An element was produced.
  • an organic photoluminescence device having a thin film of compound 3 and mCP and an organic material having a thin film of compound 3 and TPBi are obtained by changing the point that compound 3 is used instead of compound 1 and mCP or TPBi is used instead of DPEPO.
  • a photoluminescence element was produced.
  • the measurement results of the emission spectrum and the absorption spectrum by 377 nm excitation light are shown in FIG.
  • FIG. 15 shows the measurement result of the transient decay curve.
  • the photoluminescence quantum efficiency was 34.6% with a toluene solution without bubbling and 56.1% with a toluene solution bubbling with nitrogen.
  • delayed fluorescence was confirmed from FIG.
  • FIG. 17 shows extinction coefficients in the plane (x, y) and normal direction (z) of the thin film obtained by ellipsometry spectroscopy.
  • FIG. 18 confirms that the HOMO energy level is 5.42 eV, the LUMO energy level is 2.83 eV, the HOMO-LUMO gap is 2.59 eV, and HOMO and LUMO are appropriately separated. .
  • the result of measuring the emission spectrum of the organic photoluminescence device having a thin film of compound 3 and mCP is shown in FIG. 20, and the result of measuring the emission spectrum of the organic photoluminescence device having a thin film of compound 3 and TPBi is shown in FIG.
  • the photoluminescence quantum efficiency was 59.7% for the organic photoluminescence device having a thin film of compound 3 and mCP, and 54.7% for the organic photoluminescence device having a thin film of compound 3 and TPBi.
  • FIG. 22 shows transient decay curves measured at various temperatures in the range of 5 K to 300 K for the organic photoluminescence device having a thin film of compound 3 and mCP
  • FIG. 23 shows the fluorescence spectrum and phosphorescence spectrum. From FIG. 22, it was confirmed that the delayed fluorescence component is a thermally activated delayed fluorescence with an increase in temperature. Further, from FIG. 23, the energy difference Delta] E ST excited triplet state and the excited singlet state was 0.36 eV.
  • Example 4 Production and evaluation of organic electroluminescence element using compound 1 Each thin film was formed by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed. And a degree of vacuum of 5 ⁇ 10 ⁇ 4 Pa or less. First, ⁇ -NPD was formed on ITO to a thickness of 35 nm, and mCBP was formed to a thickness of 10 nm. Next, Compound 1 and DPEPO were co-evaporated from different vapor deposition sources to form a layer having a thickness of 15 nm as a light emitting layer. At this time, the concentration of Compound 1 was x wt%.
  • ITO indium tin oxide
  • TPBi is formed to a thickness of 40 nm
  • lithium fluoride (LiF) is further vacuum-deposited to 0.5 nm
  • aluminum (Al) is evaporated to a thickness of 100 nm to form a cathode.
  • a luminescence element was obtained.
  • the emission spectrum of the manufactured organic electroluminescence device is shown in FIG. 24, the voltage-current density characteristic is shown in FIG. 25, and the current density-external quantum efficiency characteristic is shown in FIG.
  • the organic electroluminescence device using Compound 1 as the light emitting material achieved a high external quantum efficiency of 6.64% under the conditions of a voltage of 3.66 V and a current density of 1.451 ⁇ 10 ⁇ 3 mA / cm 2 .
  • Example 5 Production and evaluation of organic electroluminescence device using compound 3 Each thin film was formed by vacuum deposition on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed. And a degree of vacuum of 5 ⁇ 10 ⁇ 4 Pa or less. First, ⁇ -NPD was formed on ITO to a thickness of 35 nm, and mCP was formed to a thickness of 10 nm. Next, Compound 3 and mCP were co-evaporated from different deposition sources to form a 10 nm thick layer as a first light emitting layer. At this time, the concentration of Compound 3 was 6% by weight.
  • ITO indium tin oxide
  • FIG. 27 shows an emission spectrum of the manufactured organic electroluminescence device measured under conditions of 1 mA, 10 mA, and 100 mA, FIG.
  • FIG. 28 shows a voltage-current density characteristic
  • FIG. 29 shows a current density-external quantum efficiency characteristic.
  • the organic electroluminescence device using Compound 3 as a light emitting material achieved a high external quantum efficiency of 14.07% under the conditions of a voltage of 3.88 V and a current density of 0.005 mA / cm 2 .
  • the compound of the present invention is useful as a luminescent material. For this reason, the compound of this invention is effectively used as a luminescent material for organic light emitting elements, such as an organic electroluminescent element. Since the compounds of the present invention include those that emit delayed fluorescence, it is also possible to provide an organic light-emitting device with high luminous efficiency. For this reason, this invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 一般式(1)で表される化合物は発光材料として有用である。一般式(1)において、Ar1~Ar3は置換もしくは無置換のアリール基を表し、Ar1~Ar3のうちの少なくとも1つは、N位が電子吸引基を含む基で置換されたカルバゾリル基である。

Description

発光材料、有機発光素子および化合物
 本発明は、発光材料として有用な化合物とそれを用いた有機発光素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、正孔輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、カルバゾリル基で置換された3級アミンを利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。
 特許文献1には、N位がエチル基で置換された1つのカルバゾリル基と2つの置換フェニル基で置換された3級アミンを、有機エレクトロルミネッセンス素子を構成する一対の電極間に存在する発光層の中に発光材料として用いた例が記載されている。しかしながら、特許文献1には、3級アミンに置換したカルバゾリル基のN位が、エチル基以外の置換基で置換された化合物は記載されていない。
 特許文献2には、下記式で表される化合物を、有機エレクトロルミネッセンス素子の正孔注入層やホール輸送層の材料として用いることが記載されている。ここで、R4、R5はそれぞれ独立に水素原子、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の炭素数6~30のアリール基、置換もしくは無置換の炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数2~30の複素環、置換もしくは無置換の炭素数5~30の多環縮合環、水酸基、シアノ基、置換もしくは無置換のアミノ基であると規定され、Ar2は置換もしくは無置換の炭素数6~30のアリール基、置換もしくは無置換の炭素数2~30の芳香族複素環基であると規定されている。しかしながら、特許文献2には、この一般式で表される化合物の発光材料としての有用性については記載されていない。また、同文献には、3級アミンに置換したN-フェニルカルバゾリル基のフェニル基に、置換基が置換した化合物の具体例は記載されていない。
Figure JPOXMLDOC01-appb-C000006
 特許文献3には、下記式で表される化合物を燐光ホストとして用いた例が記載されている。しかし、特許文献3には、この化合物の発光材料としての有用性については記載されていない。また、同文献には、3級アミンに置換したN-フェニルカルバゾリル基のフェニル基に、置換基が置換した化合物の具体例は記載されていない。
Figure JPOXMLDOC01-appb-C000007
米国特許公報第2003/0129448号公報 米国特許公報第2007/0231503号公報 特開2006-28176号公報
 上記のように、特許文献1にはN位がエチル基で置換された1つのカルバゾリル基と2つの置換フェニル基で置換された3級アミンが発光材料として用い得ることが記載されている。しかしながら、本発明者らがこの化合物の発光特性を実際に評価したところ、発光特性は十分に満足しうるものではなく、より優れた発光特性を有する発光材料を提供する必要があることが判明した。
 そこで本発明者らは、カルバゾリル基で置換された3級アミンについて種々の検討を始め、多数の類似骨格の中からN位が電子吸引基を含む基で置換されたカルバゾリル基を有する3級アミン群に発光材料として有用性があることを初めて見出し、さらに検討を進めることにした。上記のように、N-フェニルカルバゾリル基で置換された3級アミンについては、特許文献2、3において有機エレクトロルミネッセンス素子の正孔注入層や正孔輸送層の正孔輸送材料、ホスト材料として有用であることが記載されている。しかしながら、特許文献2、3に記載される化合物が、発光材料として機能しうるものであるか否かについては検討がなされていない。発光材料は、正孔輸送材料やホスト材料とは要求される性質や機能が異なるため、特許文献2、3に記載される化合物の発光材料としての有用性は不明である。一方、特許文献1は発光材料に関するものであるが、同文献には3級アミンに置換したカルバゾリル基のN位が電子吸引基を含む基で置換された化合物については記載されていない。このため、N位が電子吸引基を含む基で置換されたカルバゾリル基を有する3級アミンについては、発光材料としての有用性は予測がつかない。
 このような状況下において本発明者らは、N位が電子吸引基を含む基で置換されたカルバゾリル基を有する3級アミンの発光材料としての有用性についてさらに検討を進め、発光特性が優れた化合物を見出すことを目指して研究を重ねた。そして、発光材料として有用な化合物の一般式を導きだし、発光効率が高い有機発光素子の構成を一般化することを目的として鋭意検討を進めた。
 鋭意検討を進めた結果、本発明者らは、N位が電子吸引基を含む基で置換されたカルバゾリル基を有する3級アミンが発光材料として優れた性質を有することを見出した。また、そのような化合物群の中に、遅延蛍光材料として有用なものがあることを見出し、発光効率が高い有機発光素子を安価に提供しうることを明らかにした。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
[1] 下記一般式(1)で表される化合物からなる発光材料。
Figure JPOXMLDOC01-appb-C000008
[一般式(1)において、Ar1~Ar3は各々独立に置換もしくは無置換のアリール基を表し、Ar1~Ar3のうちの少なくとも1つは、各々独立にN位が電子吸引基を含む基で置換されたカルバゾリル基である。]
[2] 前記N位が電子吸引基を含む基で置換されたカルバゾリル基が、N-置換カルバゾール-3-イル基であることを特徴とする[1]に記載の発光材料。
[3] 前記電子吸引基が、少なくとも1つの電子吸引基で置換されたフェニル基であることを特徴とする[1]または[2]に記載の発光材料。
[4] 前記電子吸引基の置換部位が、前記フェニル基の4位であることを特徴とする[3]に記載の発光材料。
[5] 前記電子吸引基が、環の構成原子として窒素原子を含む複素環基またはシアノ基であることを特徴とする[3]または[4]に記載の発光材料。
[6] 前記環の構成原子として窒素元素を含む複素環基が、下記式のいずれかで表される複素環基であることを特徴とする[5]に記載の発光材料。
Figure JPOXMLDOC01-appb-C000009
[7] 前記一般式(1)のAr1~Ar3のうちの2つまたは3つが、前記N位が電子吸引基を含む基で置換されたカルバゾリル基であることを特徴とする[1]~[6]のいずれか1項に記載の発光材料。
[8] 前記N位が電子吸引基を含む基で置換されたカルバゾリル基が、互いに同一の構造を有する[7]に記載の発光材料。
[9] 前記一般式(1)のAr1~Ar3のうちの1つまたは2つが前記N位が電子吸引基を含む基で置換されたカルバゾリル基であり、他の1つが置換もしくは無置換のフェニル基である[1]~[6]のいずれか1項に記載の発光材料。
[10] 前記N位が電子吸引基を含む基で置換されたカルバゾリル基が、下記一般式(2)で表される基であることを特徴とする[1]~[9]のいずれか1項に記載の発光材料。
Figure JPOXMLDOC01-appb-C000010
[一般式(2)において、*は一般式(1)における窒素原子への結合部位を表す。R1~R7及びR11~R15は各々独立に水素原子または置換基を表し、R11~R15の少なくとも1つは、各々独立に置換基である。R11~R15は互いに結合して環状構造を形成していてもよい。R1とR2、R4とR5、R5とR6、R6とR7は互いに結合して環状構造を形成していてもよい。]
[11] 下記一般式(1)で表される化合物からなる遅延蛍光体。
Figure JPOXMLDOC01-appb-C000011
[一般式(1)において、Ar1~Ar3は各々独立に置換もしくは無置換のアリール基を表し、Ar1~Ar3のうちの少なくとも1つは、各々独立にN位が電子吸引基を含む基で置換されたカルバゾリル基である。]
[12] [1]~[10]のいずれか1項に記載の発光材料を含むことを特徴とする有機発光素子。
[13] 遅延蛍光を放射することを特徴とする[12]に記載の有機発光素子。
[14] 有機エレクトロルミネッセンス素子であることを特徴とする[12]または[13]に記載の有機発光素子。
[15] 下記一般式(1’)で表される化合物。
Figure JPOXMLDOC01-appb-C000012
[一般式(1’)において、Ar1’~Ar3’は各々独立に置換もしくは無置換のアリール基を表し、Ar1’~Ar3’のうちの少なくとも1つは、各々独立にN位が電子吸引基を含む基で置換されたカルバゾリル基である。]
 本発明の化合物は、発光材料として有用である。また、本発明の化合物の中には遅延蛍光を放射するものが含まれている。本発明の化合物を発光材料として用いた有機発光素子は、高い発光効率を実現しうる。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 実施例1の化合物1のトルエン溶液の発光吸収スペクトルである。 実施例1の化合物1のトルエン溶液の過渡減衰曲線である。 実施例1の化合物1の薄膜型有機フォトルミネッセンス素子の発光吸収スペクトルである。 実施例1の化合物1の薄膜型有機フォトルミネッセンス素子の過渡減衰曲線である。 実施例1の化合物1の薄膜型有機フォトルミネッセンス素子の光電子分析法によるエネルギープロファイルである。 実施例1の化合物1とDPEPOの薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例1の化合物1とDPEPOの薄膜型有機フォトルミネッセンス素子の過渡減衰曲線である。 実施例1の化合物1とDPEPOの薄膜型有機フォトルミネッセンス素子の蛍光スペクトルおよびりん光スペクトルである。 実施例2の化合物2のトルエン溶液の発光吸収スペクトルである。 実施例2の化合物2のトルエン溶液の過渡減衰曲線である。 実施例2の化合物2とmCPの薄膜型有機フォトルミネッセンス素子および化合物2とCBPの薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例2の化合物2とmCPの薄膜型有機フォトルミネッセンス素子の過渡減衰曲線である。 実施例2の化合物2とmCPの薄膜型有機フォトルミネッセンス素子の速度定数kRISCについてのアレニウスプロットである。 実施例3の化合物3のトルエン溶液の発光吸収スペクトルである。 実施例3の化合物3のトルエン溶液の過渡減衰曲線である。 実施例3の化合物3の薄膜型有機フォトルミネッセンス素子の吸収スペクトルである。 実施例3の化合物3の薄膜型有機フォトルミネッセンス素子の光電子分析法によるエネルギープロファイルである。 実施例3の化合物3の薄膜型有機フォトルミネッセンス素子のエリプソメトリ-分光法により得られた、薄膜の平面(x、y)および法線方向(z)の消衰係数である。 実施例3の化合物3とmCPの薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例3の化合物3とTPBiの薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例3の化合物3とmCPの薄膜型有機フォトルミネッセンス素子の過渡減衰曲線である。 実施例3の化合物3とmCPの薄膜型有機フォトルミネッセンス素子の蛍光スペクトルおよびりん光スペクトルである。 実施例4の化合物1の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例4の化合物1の有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例4の化合物1の有機エレクトロルミネッセンス素子の電流密度-外部量子効率特性を示すグラフである。 実施例6の化合物3の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例6の化合物3の有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例6の化合物3の有機エレクトロルミネッセンス素子の電流密度-外部量子効率特性を示すグラフである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべて1Hであってもよいし、一部または全部が2H(デューテリウムD)であってもよい。
[一般式(1)で表される化合物]
 本発明の発光材料は、下記一般式(1)で表される化合物からなることを特徴とする。
Figure JPOXMLDOC01-appb-C000013
 一般式(1)において、Ar1~Ar3は各々独立に置換もしくは無置換のアリール基を表す。ただし、Ar1~Ar3のうちの少なくとも1つは、各々独立にN位が電子吸引基を含む基で置換されたカルバゾリル基である。N位が電子吸引基を含む基で置換されたカルバゾリル基は、Ar1~Ar3のうちの1~3つであり、2つまたは3つであることが好ましい。Ar1~Ar3のうちの2つまたは3つがN位が電子吸引基を含む基で置換されたカルバゾリル基であるとき、それらのN位が電子吸引基を含む基で置換されたカルバゾリル基は同一であっても異なっていてもよいが、同一であることが好ましい。
 N位が電子吸引基を含む基で置換されたカルバゾリル基は、カルバゾリル基のN位に電子吸引基が直接結合しているものであってもよいし、電子吸引基がフェニル基のような連結基を介してカルバゾリル基のN位に結合しているものであってもよい。好ましいのは、電子吸引基がフェニル基を介して結合している場合と、電子吸引基が直接N位に結合している場合である。
 電子吸引基がフェニル基を介して結合している場合、カルバゾリル基における窒素原子との結合部位は、特に限定されないが、フェニル基の2位または3位であることが好ましく、3位であることがより好ましい。すなわち、N-置換フェニルカルバゾール-2-イル基またはN-置換フェニルカルバゾール-3-イル基であることが好ましく、N-置換フェニルカルバゾール-3-イル基であることがより好ましい。また、Ar1~Ar3のうちの2つまたは3つがN-置換フェニルカルバゾリル基であるとき、それらのN-置換フェニルカルバゾリル基における窒素原子との結合部位は同じであっても異なっていてもよいが、同じであることが好ましい。
 N-置換フェニルカルバゾール-3-イル基は、下記一般式(2)で表すことができる
Figure JPOXMLDOC01-appb-C000014
 一般式(2)において、*は一般式(1)における窒素原子への結合部位を表す。R1~R7及びR11~R15は各々独立に水素原子または置換基を表し、R11~R15の少なくとも1つは、各々独立に置換基である。R11~R15のうちの置換基は、1つのみであってもよいし、2つ以上であってもよい。
 R11~R15のうちの1つが置換基であるときは、R12~R14のいずれか1つが置換基であることが好ましく、R13が置換基であることがより好ましい。
 一方、R11~R15のうちの2つ以上が置換基であるときは、少なくともR12とR13が置換基であるか、少なくともR1314が置換基であることが好ましい。具体的には、R11~R15のうちの4つが置換基であるときはR11~R14が置換基であるか、R12~R15が置換基であることが好ましく、R11~R15のうちの3つが置換基であるときはR12~R14が置換基であることが好ましく、R11~R15のうちの2つが置換基であるときはR12とR13が置換基であるか、R13とR14が置換基であることが好ましい。
 R11~R15のうちの置換基は、その少なくとも1つが電子吸引基であることが好ましく、少なくともR13(フェニル基の4位)が電子吸引基であることが好ましい。一般式(1)で表される化合物は、R11~R15の少なくとも1つが電子吸引基であることにより、その励起一重項状態S1から基底状態S0への輻射速度定数kTを十分な値に確保しつつ、励起一重項状態と励起三重項状態とのエネルギー差ΔESTが小さくなる傾向があり、発光効率を高める上で有利となる。これは、電子吸引基を有するフェニル基の導入によって、分子の構造的なねじれを小さく抑えながらHOMOとLUMOを適度に分離できることによるものと推測される。
 R11~R15のうちの電子吸引基は、1つであってもよいし、2つ以上であってもよいが、1つであることが好ましい。R11~R15のうち電子吸引基が2つ以上である場合、複数の電子吸引基は、同一であっても異なっていてもよいが、同一であることが好ましい。電子吸引基としては、窒素原子を含む複素環基、シアノ基、カルボキシル基、エステルにて結合する基(例えばアルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基)、カルボニルにて結合する基(例えばアシル基、カルバモイル基)等を挙げることができ、窒素原子を含む複素環基、シアノ基であることが好ましい。窒素原子を含む複素環基としては、例えば下記式で表される複素環基を挙げることができる。ただし、本発明において用いることができる窒素原子を含む複素環基は、下記式で表されるものに限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
 R11~R15の少なくとも1つが電子吸引基であるとき、R11~R15のうちの置換基は、電子吸引基のみであってもよいし、電子吸引基以外の置換基を含んでいてもよい。R11~R15のうちの置換基が電子吸引基以外の置換基を含む場合、電子吸引基以外の置換基の数は特に制限されず、1つであってもよいし、2つ以上であってもよい。また、R11~R15のうち電子吸引基以外の置換基が2つ以上である場合、それらの置換基は同一であっても異なっていてもよいが、同一であることが好ましい。電子吸引基以外の置換基は、特に限定されないが、例えばアルキル基等を挙げることができる。
 一方、R1~R7における置換基の数は特に制限されず、R1~R7のすべてが無置換(すなわち水素原子)であってもよい。R1~R7のうちの2つ以上が置換基である場合、複数の置換基は互いに同一であっても異なっていてもよい。また、R1~R7のうちのいずれかが置換基である場合、その置換基はR4~R6のいずれかであることが好ましい。
 R1~R7がとりうる置換基として、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数1~20のジアルキル置換アミノ基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 R1とR2、R4とR5、R5とR6、R6とR7は互いに結合して環状構造を形成していてもよい。環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに環状構造は2環以上の縮合環であってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環などを挙げることができる。
 なお、一般式(1)におけるAr1~Ar3のいずれかが、3位以外を窒素原子との結合部位とするN-置換フェニルカルバゾリル基である場合、そのN-置換フェニルカルバゾリル基に置換し得る置換基の説明と好ましい範囲、置換基同士が結合して形成する環状構造の好ましい例については、一般式(2)についての対応する説明を参照することができる。但し、一般式(2)のR1~R3がとりうる置換基ついての説明は、R1~R3が結合するベンゼン環に対応するベンゼン環の、窒素原子との結合部位以外に置換する置換基の説明に読み替えるものとする。
 一般式(1)に含まれる、N位が電子吸引基を含む基で置換されたカルバゾリル基は、N位が電子吸引基で直接置換されたカルバゾリル基であってもよい。そのようなN位に直接結合する電子吸引基は、カルバゾリル基のN位に結合しうる電子吸引基の中から選択することが可能であり、例えば環状構造を有する電子吸引基やベンゼン環や複素芳香環を含む電子吸引基を挙げることができる。具体例として以下の電子吸引基を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 一般式(1)におけるAr1~Ar3のうち1つまたは2つがN位が電子吸引基を含む基で置換されたカルバゾリル基であるとき、N位が電子吸引基を含む基で置換されたカルバゾリル基以外のAr1~Ar3は、炭素数1~4の置換もしくは無置換のアリール基であることが好ましく、置換もしくは無置換のフェニル基であることがより好ましい。アリール基に置換し得る置換基の説明と好ましい範囲については、R1~R7がとりうる置換基の説明と好ましい範囲を参照することができる。
 一般式(1)で表される化合物のうち好ましいものは、Ar1~Ar3の2つが一般式(2)で表される基であり、他の1つが置換もしくは無置換のフェニル基である化合物である。
 以下において、一般式(1)で表される化合物の具体例を例示する。ただし、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)のAr1~Ar3のいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしを反応させることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(3)または(4)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000040
 一般式(3)または(4)において、Qは一般式(1)で表される構造を含む基を表し、L1およびL2は連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(3)または(4)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 L1およびL2で表される連結基は、Qを構成する一般式(1)の構造のAr1~Ar3のいずれか、一般式(2)の構造のR1~R7及びR11~R15のいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
 繰り返し単位の具体的な構造例として、下記式(5)~(8)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000041
 これらの式(5)~(8)を含む繰り返し単位を有する重合体は、一般式(1)の構造のAr1~Ar3のいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000042
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
[一般式(1’)で表される化合物]
 下記一般式(1’)で表される化合物は新規化合物である。
Figure JPOXMLDOC01-appb-C000043
 一般式(1’)において、Ar1’~Ar3’は各々独立に置換もしくは無置換のアリール基を表し、Ar1’~Ar3’のうちの少なくとも1つは、各々独立にN位が電子吸引基を含む基で置換されたカルバゾリル基である。
 一般式(1’)におけるAr1’~Ar3’の説明と好ましい範囲については、一般式(1)で表される化合物の説明を参照することができる。
[一般式(1’)で表される化合物の合成方法]
 一般式(1’)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、一般式(1’)のAr1’とAr2’が一般式(2)で表される基であり、R13が電子吸引基である化合物は、以下の2つの化合物を反応させることにより合成することが可能である。
Figure JPOXMLDOC01-appb-C000044
 上記の反応式におけるAr3’R1~R7、R11、R12、R14、R15の説明については、一般式(1’)における対応する記載を参照することができる。Aは電子吸引基を表す。電子吸引基の好ましい例については、R11~R15がとりうる電子吸引基の好ましい例を参照することができる。Xはハロゲン原子を表し、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子、ヨウ素原子が好ましい。
 上記の反応は、公知の反応を応用したものであり、公知の反応条件を適宜選択して用いることができる。上記の反応の詳細については、後述の合成例を参考にすることができる。また、一般式(1’)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。
[有機発光素子]
 本発明の一般式(1)で表される化合物は、有機発光素子の発光材料として有用である。このため、本発明の一般式(1)で表される化合物は、有機発光素子の発光層に発光材料として効果的に用いることができる。一般式(1)で表される化合物の中には、遅延蛍光を放射する遅延蛍光材料(遅延蛍光体)が含まれている。すなわち本発明は、一般式(1)で表される構造を有する遅延蛍光体の発明と、一般式(1)で表される化合物を遅延蛍光体として使用する発明と、一般式(1)で表される化合物を用いて遅延蛍光を発光させる方法の発明も提供する。そのような化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 本発明の一般式(1)で表される化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。このとき、本発明の一般式(1)で表される化合物は、いわゆるアシストドーパントとして、発光層に含まれる他の発光材料の発光をアシストする機能を有するものであってもよい。すなわち、発光層に含まれる本発明の一般式(1)で表される化合物は、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位の間の最低励起一重項エネルギー準位を有するものであってもよい。
 有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、一般式(1)で表される本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる一般式(1)で表される化合物と、発光層以外の層に用いる一般式(1)で表される化合物は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも一般式(1)で表される化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。なお、以下の例示化合物の構造式におけるR、R1~R10は、各々独立に水素原子または置換基を表す。nは3~5の整数を表す。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000050
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000057
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000058
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000062
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000063
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に一般式(1)で表される化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。
(合成例1) 化合物1の合成
Figure JPOXMLDOC01-appb-C000064
 N,N-ビス(9H-カルバゾール-3-イル)アニリン(0.68g、1.6mmol)、炭酸カリウム(0.96g、7.2mmol)を100ml二口フラスコに加え、窒素置換した。その後、4-フルオロベンゾニトリル(0.58g、4.8mmol)、ジメチルホルムアミド(20ml)を加え、100℃で24時間加熱撹拌した。室温まで放冷し、水を加えて10分間撹拌し、析出した固体をろ過した。この固体をジクロロメタンに溶かし、熱時ろ過を行った。ろ液をn-ヘキサンを用いて再沈殿を行い、白色粉末として化合物1を0.688g(1.1mmol、収率69%)得た。
1H NMR (500 MHz, CDCl3): d = 7.97 (d, J = 7.8 Hz, 2H; ArH), 7.93 (d, J = 8.0 Hz, 2H; ArH), 7.90 (d, J = 8.7 Hz, 4H; ArH), 7.76 (d, J = 8.7 Hz, 4H; ArH), 7.46-7.38 (m, 6H; ArH), 7.31-7.21 (m, 6H; ArH), 7.10 (dd, Jortho = 8.7 Hz, Jmeta = 1.1 Hz, 2H; ArH), 6.95 (t, J = 7.4 Hz, 1H; ArH).
(合成例2) 化合物2の合成
Figure JPOXMLDOC01-appb-C000065
 100mlの三口フラスコにナトリウムtert-ブトキシド(0.29g、3.0mmol)を加え真空乾燥した。その後、窒素置換を行い、得られたN,N-ビス(9H-カルバゾール-3-イル)アニリン(0.21g、0.50mmol)、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(0.427g、1.1mmol)、酢酸パラジウム(II)(13mg、0.060mmol)、トリ-tert-ブチルホスフィン(0.03ml、0.060mmol)、キシレン20mlを加え、110℃で72時間加熱撹拌した。室温まで放冷し、ろ過によって固体を得た。この固体をトルエン、水、メタノールで洗浄し、真空乾燥させることで、黄色粉末として化合物2を0.14g(0.14mmol、収率27%)得た。
1H NMR (500 MHz, Acetone d6): d = 9.14 (d, J = 8.5 Hz, 4H; ArH), 8.88 (d, J = 7.1 Hz, 8H; ArH), 8.13 (d, J = 7.9 Hz, 2H; ArH), 8.12 (s, J = 2.0 Hz, 2H; ArH), 7.99 (d, J = 8.6 Hz, 4H; ArH), 7.74-7.63 (m, 16H; ArH), 7.49 (t, J = 7.3 Hz, 2H; ArH), 7.39 (dd, Jortho = 8.8 Hz, Jmeta = 2.1 Hz 2H; ArH), 7.30-7.24 (m, 4H;ArH), 7.09 (d, J = 7.8 Hz, 2H; ArH), 6.93 (t, J = 7.3 Hz, 1H; ArH).
(合成例3) 化合物3の合成
Figure JPOXMLDOC01-appb-C000066
 300mlの三口フラスコにナトリウムtert-ブトキシド(1.2g、12mmol)を加え真空乾燥した。その後、窒素置換を行い、N,N-ビス(9H-カルバゾール-3-イル)アニリン(0.85g、2.0mmol)、2-(4-ブロモフェニル)-ベンゾチアゾール(1.3g、4.4mmol)、酢酸パラジウム(II)(54mg、0.24mmol)、トリ-tert-ブチルホスフィン(0.12ml、0.24mmol)、キシレン(20ml)を加え、100℃で22時間加熱撹拌した。室温まで冷却し、エバポレーターで反応溶液を濃縮した。ジクロロメタンと水で分液操作を行った。有機層を硫酸マグネシウムで乾燥し、エバポレーターで濃縮した。カラムクロマトグラフ(担体,シリカゲル、展開溶媒,トルエン)によって精製し、得られた目的化合物を昇華精製によって精製することで、黄色のガラス状固体として化合物3を0.90g(1.07mmol、収率54%)得た。
1H NMR (500 MHz, CDCl3): d = 8.34 (d, J = 8.5 Hz, 4H; ArH), 8.11 (d, J = 8.0 Hz, 2H; ArH), 8.01-7.95 (m, 6H; ArH), 7.76 (d, J = 8.5 Hz, 4H; ArH), 7.55-7.50 (m, 4H; ArH), 7.44-7.40 (m, 6H; ArH), 7.33 (d, Jortho = 9.9 Hz, Jmeta = 1.4 Hz, 2H; ArH), 7.25-7.22 (m, 4H; ArH), 7.11 (d, J = 8.6 Hz, 2H; ArH), 6.92 (t, J = 6.9, 1H;ArH).
(実施例1) 化合物1を用いた有機フォトルミネッセンス素子の作製と評価
 Ar雰囲気のグローブボックス中で化合物1のトルエン溶液(濃度1×10-5mol/L)を調製した。
 また、石英基板上に真空蒸着法にて、真空度5×10-4Pa以下の条件にて化合物1の薄膜を50nmの厚さで形成して有機フォトルミネッセンス素子とした。
 これとは別に、石英基板上に真空蒸着法にて、真空度5×10-4Pa以下の条件にて化合物1とDPEPOとを異なる蒸着源から蒸着し、化合物1の濃度が6重量%である薄膜を100nmの厚さで形成して有機フォトルミネッセンス素子とした。
 化合物1のトルエン溶液について、300nmおよび355nm励起光による発光スペクトル、吸収スペクトル、過渡減衰曲線を測定した。このうち337nm励起光による発光スペクトルと吸収スペクトルを図2に示し、過渡減衰曲線を図3に示す。この過渡減衰曲線は、化合物に励起光を当てて発光強度が失活してゆく過程を測定した発光寿命測定結果を示すものである。通常の一成分の発光(蛍光もしくはリン光)では発光強度は単一指数関数的に減衰する。これは、グラフの縦軸がセミlog である場合には、直線的に減衰することを意味している。図3に示す化合物1の過渡減衰曲線では、観測初期にこのような直線的成分(蛍光)が観測されているが、数μ秒以降には直線性から外れる成分が現れている。これは遅延成分の発光であり、初期の成分と加算される信号は、長時間側に裾をひくゆるい曲線になる。このように発光寿命を測定することによって、化合物1は蛍光成分のほかに遅延成分を含む発光体であることが確認された。フォトルミネッセンス量子効率は、バブリングなしのトルエン溶液で13.5%(355nm励起光)、窒素バブリングしたトルエン溶液で20.5%(355nm励起光)または32.7%(300nm励起光)であった。また、図3から遅延蛍光を確認することができた。
 また、化合物1のみの薄膜を有する有機フォトルミネッセンス素子について、365nm励起光による発光スペクトルと吸収スペクトルを測定した結果を図4に示し、過渡減衰曲線の測定結果を図5に示し、光電子分光法によるエネルギープロファイルを図6に示す。フォトルミネッセンス量子効率は35.4%であり、図5より、遅延蛍光が確認された。また、図6より、HOMOのエネルギー準位が5.63eV、LUMOのエネルギー準位が2.85eV、HOMO-LUMOギャップが2.78eVであり、HOMOとLUMOが適度に分離されていることが確認された。
 化合物1とDPEPOの薄膜を有する有機フォトルミネッセンス素子について、290nm、300nmおよび310nm励起光による発光スペクトルを測定した。このうち290nm励起光による発光スペクトルを図7に示す。フォトルミネッセンス量子効率は、290nm励起光で52.3%、300nm励起光で44.2%、310nm励起光で44.5%であった。
 また、化合物1とDPEPOの薄膜を有する有機フォトルミネッセンス素子について、過渡減衰曲線の測定結果を図8に示し、蛍光スペクトルおよびりん光スペクトルの測定結果を図9に示す。図8より、温度上昇に伴って遅延蛍光成分が増加する熱活性型の遅延蛍光であることが確認された。また、図9より、励起一重項状態と励起三重項状態とのエネルギー差ΔESTは0.21eVであった。
(実施例2) 化合物2を用いた有機フォトルミネッセンス素子の作製と評価
 化合物1のかわりに化合物2を用いた点を変更して、化合物2のトルエン溶液を調製した。また、化合物1のかわりに化合物2を用い、DPEPOのかわりにmCPまたはCBPを用いた点を変更して、化合物2とmCPの薄膜を有する有機フォトルミネッセンス素子および化合物2とCBPの薄膜を有する有機フォトルミネッセンス素子を作製した。
 化合物2のトルエン溶液について、399nm励起光による発光スペクトルと吸収スペクトルを測定した結果を図10に示し、過渡減衰曲線を測定した結果を図11に示す。フォトルミネッセンス量子効率は、バブリングなしのトルエン溶液で31.8%、窒素バブリングしたトルエン溶液で49.5%であった。また、図11より、遅延蛍光が確認された。
 また、化合物2とmCPの薄膜を有する有機フォトルミネッセンス素子および化合物2とCBPの薄膜を有する有機フォトルミネッセンス素子について、337nm励起光による発光スペクトルを測定した結果を図12に示す。また、化合物2とmCPの薄膜を有する有機フォトルミネッセンス素子について、100K、200K、300Kの各温度で測定した過渡減衰曲線を図13に示し、励起三重項状態T1から励起一重項状態S1への逆項間交差の速度定数kRISCについてのアレニウスプロットを図14に示す。フォトルミネッセンス量子効率は、化合物2とmCPの薄膜を有する有機フォトルミネッセンス素子で76%、化合物2とCBPの薄膜を有する有機フォトルミネッセンス素子で73%であり、図13より、温度上昇に伴って遅延蛍光成分が増加する熱活性型の遅延蛍光であることが確認された。また、図14より、励起一重項状態と励起三重項状態のエネルギー差ΔESTは、0.025eVであった。
(実施例3) 化合物3を用いた有機フォトルミネッセンス素子の作製と評価
 化合物1のかわりに化合物3を用いた点を変更して、化合物3のトルエン溶液および化合物3のみの薄膜を有する有機フォトルミネッセンス素子を作製した。
 また、化合物1のかわりに化合物3を用い、DPEPOのかわりにmCPまたはTPBiを用いた点を変更して、化合物3とmCPの薄膜を有する有機フォトルミネッセンス素子および化合物3とTPBiの薄膜を有する有機フォトルミネッセンス素子を作製した。
 化合物3のトルエン溶液について、377nm励起光による発光スペクトルと吸収スペクトルの測定結果を図15に示し、過渡減衰曲線の測定結果を図16に示す。フォトルミネッセンス量子効率は、バブリングなしのトルエン溶液で34.6%、窒素バブリングしたトルエン溶液で56.1%であった。また、図16より、遅延蛍光が確認された。
 また、化合物3のみの薄膜を有する有機フォトルミネッセンス素子について、吸収スペクトルを測定した結果を図17に示し、光電子分光法によるエネルギープロファイルを図18に示す。また、エリプソメトリ-分光法により得られた、薄膜の平面(x、y)および法線方向(z)の消衰係数を図19に示す。
 図18より、HOMOのエネルギー準位が5.42eV、LUMOのエネルギー準位が2.83eV、HOMO-LUMOギャップが2.59eVであり、HOMOとLUMOが適度に分離されていることが確認された。
 化合物3とmCPの薄膜を有する有機フォトルミネッセンス素子について発光スペクトルを測定した結果を図20に示し、化合物3とTPBiの薄膜を有する有機フォトルミネッセンス素子について発光スペクトルを測定した結果を図21に示す。フォトルミネッセンス量子効率は、化合物3とmCPの薄膜を有する有機フォトルミネッセンス素子で59.7%、化合物3とTPBiの薄膜を有する有機フォトルミネッセンス素子で54.7%であった。また、化合物3とmCPの薄膜を有する有機フォトルミネッセンス素子について、5K~300Kの範囲の各温度で測定した過渡減衰曲線を図22に示し、蛍光スペクトルおよびりん光スペクトルを図23に示す。図22により、温度上昇に伴って遅延蛍光成分が増加する熱活性型の遅延蛍光であることが確認された。また、図23より、励起一重項状態と励起三重項状態のエネルギー差ΔESTは、0.36eVであった。
(実施例4) 化合物1を用いた有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5×10-4Pa以下で積層した。まず、ITO上にα-NPDを35nmの厚さに形成し、mCBPを10nmの厚さに形成した。次に、化合物1とDPEPOを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、化合物1の濃度はx重量%とした。次に、TPBiを40nmの厚さに形成し、さらにフッ化リチウム(LiF)を0.5nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図24に示し、電圧-電流密度特性を図25に示し、電流密度-外部量子効率特性を図26に示す。化合物1を発光材料として用いた有機エレクトロルミネッセンス素子は、電圧3.66V、電流密度1.451×10-3mA/cm2の条件で6.64%の高い外部量子効率を達成した。
(実施例5) 化合物3を用いた有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5×10-4Pa以下で積層した。まず、ITO上にα-NPDを35nmの厚さに形成し、mCPを10nmの厚さに形成した。次に、化合物3とmCPを異なる蒸着源から共蒸着し、10nmの厚さの層を形成して第1発光層とした。この時、化合物3の濃度は6重量%とした。続いて、化合物3とTPBiを異なる蒸着源から共蒸着し、20nmの厚さの層を形成して第2発光層とした。この時、化合物3の濃度は6重量%とした。次に、TPBiを45nmの厚さに形成し、さらにマグネシウム/銀(Mg/Ag)混合物を100nm真空蒸着し、次いで銀(Ag)を20nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 製造した有機エレクトロルミネッセンス素子について、1mA、10mA、100mAの各条件で測定した発光スペクトルを図27に示し、電圧-電流密度特性を図28に示し、電流密度-外部量子効率特性を図29に示す。化合物3を発光材料として用いた有機エレクトロルミネッセンス素子は、電圧3.88V、電流密度0.005mA/cm2の条件で14.07%の高い外部量子効率を達成した。
Figure JPOXMLDOC01-appb-C000067
 本発明の化合物は発光材料として有用である。このため本発明の化合物は、有機エレクトロルミネッセンス素子などの有機発光素子用の発光材料として効果的に用いられる。本発明の化合物の中には、遅延蛍光が放射するものも含まれているため、発光効率が高い有機発光素子を提供することも可能である。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (15)

  1.  下記一般式(1)で表される化合物からなる発光材料。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、Ar1~Ar3は各々独立に置換もしくは無置換のアリール基を表し、Ar1~Ar3のうちの少なくとも1つは、各々独立にN位が電子吸引基を含む基で置換されたカルバゾリル基である。]
  2.  前記N位が電子吸引基を含む基で置換されたカルバゾリル基が、N-置換カルバゾール-3-イル基であることを特徴とする請求項1に記載の発光材料。
  3.  前記電子吸引基が、少なくとも1つの電子吸引基で置換されたフェニル基であることを特徴とする請求項1または2に記載の発光材料。
  4.  前記電子吸引基の置換部位が、前記フェニル基の4位であることを特徴とする請求項3に記載の発光材料。
  5.  前記電子吸引基が、環の構成原子として窒素原子を含む複素環基またはシアノ基であることを特徴とする請求項3または4に記載の発光材料。
  6.  前記環の構成原子として窒素元素を含む複素環基が、下記式のいずれかで表される複素環基であることを特徴とする請求項5に記載の発光材料。
    Figure JPOXMLDOC01-appb-C000002
  7.  前記一般式(1)のAr1~Ar3のうちの2つまたは3つが、前記N位が電子吸引基を含む基で置換されたカルバゾリル基であることを特徴とする請求項1~6のいずれか1項に記載の発光材料。
  8.  前記N位が電子吸引基を含む基で置換されたカルバゾリル基が、互いに同一の構造を有する請求項7に記載の発光材料。
  9.  前記一般式(1)のAr1~Ar3のうちの1つまたは2つが前記N位が電子吸引基を含む基で置換されたカルバゾリル基であり、他の1つが置換もしくは無置換のフェニル基である請求項1~6のいずれか1項に記載の発光材料。
  10.  前記N位が電子吸引基を含む基で置換されたカルバゾリル基が、下記一般式(2)で表される基であることを特徴とする請求項1~9のいずれか1項に記載の発光材料。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(2)において、*は一般式(1)における窒素原子への結合部位を表す。R1~R7及びR11~R15は各々独立に水素原子または置換基を表し、R11~R15の少なくとも1つは、各々独立に置換基である。R11~R15は互いに結合して環状構造を形成していてもよい。R1とR2、R4とR5、R5とR6、R6とR7は互いに結合して環状構造を形成していてもよい。]
  11.  下記一般式(1)で表される化合物からなる遅延蛍光体。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(1)において、Ar1~Ar3は各々独立に置換もしくは無置換のアリール基を表し、Ar1~Ar3のうちの少なくとも1つは、各々独立にN位が電子吸引基を含む基で置換されたカルバゾリル基である。]
  12.  請求項1~10のいずれか1項に記載の発光材料を含むことを特徴とする有機発光素子。
  13.  遅延蛍光を放射することを特徴とする請求項12に記載の有機発光素子。
  14.  有機エレクトロルミネッセンス素子であることを特徴とする請求項12または13に記載の有機発光素子。
  15.  下記一般式(1’)で表される化合物。
    Figure JPOXMLDOC01-appb-C000005
    [一般式(1’)において、Ar1’~Ar3’は各々独立に置換もしくは無置換のアリール基を表し、Ar1’~Ar3’のうちの少なくとも1つは、各々独立にN位が電子吸引基を含む基で置換されたカルバゾリル基である。]
PCT/JP2015/056286 2014-03-07 2015-03-04 発光材料、有機発光素子および化合物 WO2015133501A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016506519A JP6526625B2 (ja) 2014-03-07 2015-03-04 発光材料、有機発光素子および化合物
CN201580012014.8A CN106062127B (zh) 2014-03-07 2015-03-04 发光材料、有机发光元件及化合物
US15/124,119 US9773982B2 (en) 2014-03-07 2015-03-04 Light-emitting material, organic light-emitting device, and compound
US15/671,617 US10043981B2 (en) 2014-03-07 2017-08-08 Light-emitting material, organic light-emitting device, and compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-044863 2014-03-07
JP2014044863 2014-03-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/124,119 A-371-Of-International US9773982B2 (en) 2014-03-07 2015-03-04 Light-emitting material, organic light-emitting device, and compound
US15/671,617 Division US10043981B2 (en) 2014-03-07 2017-08-08 Light-emitting material, organic light-emitting device, and compound

Publications (1)

Publication Number Publication Date
WO2015133501A1 true WO2015133501A1 (ja) 2015-09-11

Family

ID=54055304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056286 WO2015133501A1 (ja) 2014-03-07 2015-03-04 発光材料、有機発光素子および化合物

Country Status (4)

Country Link
US (2) US9773982B2 (ja)
JP (1) JP6526625B2 (ja)
CN (1) CN106062127B (ja)
WO (1) WO2015133501A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111196A1 (ja) * 2015-01-08 2016-07-14 国立大学法人九州大学 化合物、混合物、発光層、有機発光素子およびアシストドーパント
JP2016130231A (ja) * 2015-01-08 2016-07-21 国立大学法人九州大学 化合物、混合物、発光層、有機発光素子およびアシストドーパント
WO2020039708A1 (ja) 2018-08-23 2020-02-27 国立大学法人九州大学 有機エレクトロルミネッセンス素子
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2023090288A1 (ja) 2021-11-19 2023-05-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2023140130A1 (ja) 2022-01-19 2023-07-27 株式会社Kyulux 化合物、発光材料および有機発光素子
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element
US12048175B2 (en) 2015-12-28 2024-07-23 Kyushu University, National University Corporation Organic electroluminescent device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190070586A (ko) 2017-12-13 2019-06-21 엘지디스플레이 주식회사 전자수송 재료용 화합물 및 이를 포함하는 유기 발광 다이오드
WO2020111602A1 (ko) 2018-11-27 2020-06-04 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2020111601A1 (ko) * 2018-11-27 2020-06-04 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
US12022730B2 (en) 2018-11-27 2024-06-25 Lg Chem, Ltd. Compound and organic light emitting device comprising the same
KR102331904B1 (ko) 2018-11-27 2021-11-26 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
US20220181552A1 (en) 2019-04-11 2022-06-09 Merck Patent Gmbh Materials for organic electroluminescent devices
US20230002416A1 (en) 2019-11-04 2023-01-05 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202134252A (zh) 2019-11-12 2021-09-16 德商麥克專利有限公司 有機電致發光裝置用材料
CN115244060A (zh) 2020-03-23 2022-10-25 默克专利有限公司 用于有机电致发光器件的材料
WO2024105066A1 (en) 2022-11-17 2024-05-23 Merck Patent Gmbh Materials for organic electroluminescent devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134020A (ja) * 1995-09-06 1997-05-20 Canon Inc 電子写真感光体、この電子写真感光体を備えた電子写真装置及びプロセスカートリッジ
JP2007091722A (ja) * 2005-08-31 2007-04-12 Semiconductor Energy Lab Co Ltd カルバゾール誘導体、発光素子用材料、発光素子、発光装置及び電子機器
US20080169755A1 (en) * 2007-01-15 2008-07-17 Samsung Sdi Co., Ltd. Fluorine-containing compound and organic light-emitting device employing the same
JP2013251480A (ja) * 2012-06-04 2013-12-12 Udc Ireland Ltd 有機電界発光素子用材料、有機電界発光素子並びに該素子を用いた発光装置、表示装置及び照明装置
JP2014101275A (ja) * 2011-10-26 2014-06-05 Tosoh Corp 4−アミノカルバゾール化合物及びその用途

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602619B2 (en) 2001-10-19 2003-08-05 Lightronik Technology Inc. Organic EL device
JP3846382B2 (ja) * 2002-08-27 2006-11-15 松下電工株式会社 インターホンシステム
JP4506086B2 (ja) 2003-03-19 2010-07-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP4682503B2 (ja) * 2003-09-16 2011-05-11 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
KR100669716B1 (ko) 2004-07-14 2007-01-16 삼성에스디아이 주식회사 페닐카르바졸 화합물 및 이를 이용한 유기 전계 발광 소자
US8188315B2 (en) 2004-04-02 2012-05-29 Samsung Mobile Display Co., Ltd. Organic light emitting device and flat panel display device comprising the same
WO2010041872A2 (ko) 2008-10-08 2010-04-15 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20110041727A (ko) 2009-10-16 2011-04-22 에스에프씨 주식회사 카바졸 유도체 및 이를 이용한 유기전계발광소자
KR20110102055A (ko) 2010-03-10 2011-09-16 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR101809898B1 (ko) * 2010-04-02 2017-12-21 에스에프씨 주식회사 헤테로아릴아민 유도체 및 이를 포함하는 유기전계발광소자
JP4741028B1 (ja) 2010-07-09 2011-08-03 富士フイルム株式会社 有機電界発光素子
KR20120009761A (ko) 2010-07-21 2012-02-02 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JP5927875B2 (ja) * 2010-12-20 2016-06-01 東ソー株式会社 アミン化合物及びその用途
KR101427611B1 (ko) 2011-03-08 2014-08-11 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101791161B1 (ko) * 2011-04-06 2017-10-30 에스에프씨 주식회사 유기염료 및 이를 포함하는 광전소자, 염료감응 태양전지
KR102008134B1 (ko) * 2011-05-30 2019-08-09 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013012298A1 (en) * 2011-07-21 2013-01-24 Rohm And Haas Electronic Materials Korea Ltd. 9h-carbazole compounds and electroluminescent devices involving them
KR101944699B1 (ko) * 2011-08-31 2019-02-11 덕산네오룩스 주식회사 유기전기소자용 신규 화합물, 이를 이용하는 유기전기소자 및 그 전자 장치
US9172045B2 (en) 2011-10-26 2015-10-27 Tosoh Corporation 4-aminocarbazole compound and use thereof
EP2787549A4 (en) * 2011-12-02 2015-09-23 Univ Kyushu Nat Univ Corp ORGANIC DEVICE EMITTING LIGHT AND DELAYED FLUORESCENCE MATERIAL AND COMPONENT USED THEREIN
US9461254B2 (en) * 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
KR20130094903A (ko) 2012-02-17 2013-08-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물
KR20130102673A (ko) 2012-03-08 2013-09-23 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 사용하는 유기 전계 발광 소자
KR20140096182A (ko) 2012-05-02 2014-08-04 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN102738413B (zh) * 2012-06-15 2016-08-03 固安翌光科技有限公司 一种有机电致发光器件及其制备方法
KR101554545B1 (ko) 2012-06-22 2015-09-21 에스에프씨 주식회사 방향족 화합물 및 이를 포함하는 유기전계발광소자
KR102102580B1 (ko) * 2012-07-20 2020-04-22 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR101537436B1 (ko) * 2012-08-17 2015-07-17 주식회사 두산 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2012235695A (ja) * 2012-09-05 2012-11-29 Daikin Ind Ltd ブラシレスdcモータ制御方法およびその装置
TWI615389B (zh) * 2013-03-01 2018-02-21 九州有機光材股份有限公司 化合物、發光材料及有機發光元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134020A (ja) * 1995-09-06 1997-05-20 Canon Inc 電子写真感光体、この電子写真感光体を備えた電子写真装置及びプロセスカートリッジ
JP2007091722A (ja) * 2005-08-31 2007-04-12 Semiconductor Energy Lab Co Ltd カルバゾール誘導体、発光素子用材料、発光素子、発光装置及び電子機器
US20080169755A1 (en) * 2007-01-15 2008-07-17 Samsung Sdi Co., Ltd. Fluorine-containing compound and organic light-emitting device employing the same
JP2014101275A (ja) * 2011-10-26 2014-06-05 Tosoh Corp 4−アミノカルバゾール化合物及びその用途
JP2013251480A (ja) * 2012-06-04 2013-12-12 Udc Ireland Ltd 有機電界発光素子用材料、有機電界発光素子並びに該素子を用いた発光装置、表示装置及び照明装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130231A (ja) * 2015-01-08 2016-07-21 国立大学法人九州大学 化合物、混合物、発光層、有機発光素子およびアシストドーパント
WO2016111196A1 (ja) * 2015-01-08 2016-07-14 国立大学法人九州大学 化合物、混合物、発光層、有機発光素子およびアシストドーパント
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
US12048175B2 (en) 2015-12-28 2024-07-23 Kyushu University, National University Corporation Organic electroluminescent device
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
US12089494B2 (en) 2018-08-23 2024-09-10 Kyushu University, National University Corporation Organic electroluminescence element
WO2020039708A1 (ja) 2018-08-23 2020-02-27 国立大学法人九州大学 有機エレクトロルミネッセンス素子
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
WO2021157593A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux 組成物、膜、有機発光素子、発光組成物を提供する方法およびプログラム
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2023090288A1 (ja) 2021-11-19 2023-05-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2023140130A1 (ja) 2022-01-19 2023-07-27 株式会社Kyulux 化合物、発光材料および有機発光素子

Also Published As

Publication number Publication date
US20170047522A1 (en) 2017-02-16
JPWO2015133501A1 (ja) 2017-04-06
CN106062127B (zh) 2019-07-19
US20170338418A1 (en) 2017-11-23
US9773982B2 (en) 2017-09-26
JP6526625B2 (ja) 2019-06-05
US10043981B2 (en) 2018-08-07
CN106062127A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
WO2015133501A1 (ja) 発光材料、有機発光素子および化合物
JP6383538B2 (ja) 発光材料、有機発光素子および化合物
KR102076887B1 (ko) 발광 재료, 유기 발광 소자 및 화합물
JP6263524B2 (ja) 化合物、発光材料および有機発光素子
JP6326050B2 (ja) 化合物、発光材料および有機発光素子
JP6225111B2 (ja) 発光材料、化合物、およびそれらを用いた有機発光素子
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP6469076B2 (ja) 発光材料、有機発光素子および化合物
JP6466913B2 (ja) 発光材料、有機発光素子および化合物
JP6262711B2 (ja) 化合物、発光材料および有機発光素子
JP6367189B2 (ja) 発光材料、有機発光素子および化合物
WO2015080183A1 (ja) 発光材料、有機発光素子および化合物
WO2015002213A1 (ja) 発光材料、遅延蛍光体、有機発光素子および化合物
WO2015137202A1 (ja) 有機発光素子、ホスト材料、発光材料および化合物
JP6647514B2 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
WO2018047948A1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
WO2014126076A1 (ja) 化合物、発光材料および有機発光素子
WO2018043241A1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
JP6622484B2 (ja) 発光材料、有機発光素子および化合物
JP2018111751A (ja) 発光材料、化合物および有機発光素子
JP2016084283A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15124119

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15758423

Country of ref document: EP

Kind code of ref document: A1