WO2015133313A1 - シール構造、及び回転機械 - Google Patents

シール構造、及び回転機械 Download PDF

Info

Publication number
WO2015133313A1
WO2015133313A1 PCT/JP2015/055029 JP2015055029W WO2015133313A1 WO 2015133313 A1 WO2015133313 A1 WO 2015133313A1 JP 2015055029 W JP2015055029 W JP 2015055029W WO 2015133313 A1 WO2015133313 A1 WO 2015133313A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
seal
peripheral surface
steam
seal fin
Prior art date
Application number
PCT/JP2015/055029
Other languages
English (en)
French (fr)
Inventor
松本 和幸
祥弘 桑村
大山 宏治
田中 良典
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020167017190A priority Critical patent/KR101843299B1/ko
Priority to CN201580003433.5A priority patent/CN105849369B/zh
Priority to DE112015001111.0T priority patent/DE112015001111T5/de
Priority to US15/111,422 priority patent/US10557363B2/en
Publication of WO2015133313A1 publication Critical patent/WO2015133313A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3248Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports
    • F16J15/3252Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports with rigid casings or supports
    • F16J15/3256Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports with rigid casings or supports comprising two casing or support elements, one attached to each surface, e.g. cartridge or cassette seals
    • F16J15/3264Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings provided with casings or supports with rigid casings or supports comprising two casing or support elements, one attached to each surface, e.g. cartridge or cassette seals the elements being separable from each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other

Definitions

  • the present invention relates to a seal structure that seals a gap between a rotor and a stator, and a rotary machine.
  • the present application claims priority on Japanese Patent Application No. 2014-042142 filed on March 4, 2014, the contents of which are incorporated herein by reference.
  • a radial gap is formed between the tip of the rotor blade and a casing that surrounds the rotor blade to form a steam flow path, and the tip of the stationary blade and the shaft body are formed.
  • a radial gap is also formed between the two.
  • the leaked steam that passes through the gap between the blade tip and the casing downstream does not impart a rotational force to the blade.
  • the leaked steam that passes through the gap between the tip of the stationary blade and the shaft downstream does not convert the pressure energy into velocity energy by the stationary blade, and therefore gives little rotational force to the downstream blade. . Therefore, in order to improve the performance of the steam turbine, it is important to reduce the flow rate (leakage flow rate) of the leaked steam passing through the gap.
  • Patent Document 1 a plurality of step portions whose height gradually increases from the axial upstream side toward the downstream side are provided at the tip of the moving blade, and the casing extends toward each step portion.
  • a turbine having a structure in which a plurality of sealing fins are provided and a minute gap is formed between each step portion and the tip of each sealing fin.
  • the fluid that has entered the gap from the upstream side collides with the step surface of the step part, so that a main vortex is generated on the upstream side of the step surface and on the downstream side of the step surface (near the upstream side of the minute gap). A peeling vortex is generated.
  • An object of the present invention is to provide a high-performance seal structure in which a leakage flow rate is further reduced and a rotating machine in a seal structure that seals a gap between a rotor and a stator.
  • the seal structure includes a gap between the outer peripheral surface of the rotor that rotates about the axis and the inner peripheral surface of the stator that is disposed so as to surround the rotor from the outer peripheral side in the radial direction.
  • a step structure that is provided side by side in the axial direction on one of the outer peripheral surface of the rotor and the inner peripheral surface of the stator and faces the upstream side in the axial direction of the rotor.
  • the seal fin is characterized in that the vicinity of the tip on the one side further inclines toward the upstream side from a region at a predetermined distance from the other in the radial direction.
  • the fluid that has entered the gap from the upstream side collides with the step surface of each step portion, thereby generating a main vortex on the upstream side of the step surface.
  • the step surface is positioned on the peripheral surface of each step portion on the downstream side.
  • the fluid flowing from the other side toward the one side on the seal fin returns to the upstream side by the inclination near the tip end of the seal fin, and passes through the minute gap so that the fluid bypasses the vicinity of the tip end of the seal fin. It flows like.
  • the fluid flow and the separation vortex can enhance the contraction effect and reduce the leakage flow rate.
  • the angle of the seal fin may be continuously changed from the other side to a predetermined distance region in the radial direction.
  • the present invention also provides a rotating machine having any one of the above-described seal structures.
  • the seal structure that seals the gap between the outer peripheral surface of the rotor and the inner peripheral surface of the stator that is disposed so as to surround the rotor from the outer peripheral side in the radial direction, Can be reduced.
  • FIG. 1 It is a schematic structure sectional view of a steam turbine of an embodiment of the present invention. It is a figure which shows embodiment of this invention, Comprising: It is an expanded sectional view which shows the principal part I in FIG. It is a figure which shows embodiment of this invention, Comprising: It is an expanded sectional view which shows the seal fin of FIG. It is operation
  • FIG. 5 is a graph showing a relationship between an aspect ratio L / H between a distance L and a minute gap H and a flow coefficient Cd of steam passing through the minute gap H.
  • the steam turbine 1 of the present embodiment is provided with a casing 10 (stator) and a rotating shaft 30 that is rotatably provided inside the casing 10 and transmits power to a machine such as a generator (not shown). And a stationary blade 40 held in the casing 10, a moving blade 50 provided on the rotary shaft 30, and a bearing portion 60 that supports the rotary shaft 30 so as to be rotatable about the axis.
  • the steam S is introduced from a main inlet 21 formed in the casing 10 through a steam supply pipe 20 connected to a steam supply source (not shown) and discharged from a steam discharge pipe 22 connected to the downstream side of the steam turbine 1. Is done.
  • the casing 10 has an internal space hermetically sealed and a flow path for the steam S.
  • a ring-shaped partition plate outer ring 11 through which the rotary shaft 30 is inserted is firmly fixed to the inner wall surface of the casing 10.
  • the bearing unit 60 includes a journal bearing device 61 and a thrust bearing device 62, and supports the rotary shaft 30 in a freely rotatable manner.
  • the stationary blades 40 extend from the casing 10 toward the inner peripheral side, and constitute a group of annular stationary blades arranged radially so as to surround the rotating shaft 30.
  • the plurality of stationary blades 40 are respectively held by the partition plate outer ring 11.
  • a plurality of annular stator blade groups composed of a plurality of stator blades 40 are formed at intervals in the axial direction of the rotating shaft 30 (hereinafter simply referred to as the axial direction).
  • the plurality of stationary blades 40 convert the pressure energy of the steam into velocity energy and flow into the moving blade 50 adjacent to the downstream side.
  • the moving blades 50 are firmly attached to the outer peripheral portion of the rotating shaft main body 31 of the rotating shaft 30, and a large number of the moving blades 50 are radially arranged on the downstream side of each annular stationary blade group to constitute an annular moving blade group.
  • These annular stator blade groups and annular rotor blade groups are grouped into one stage. Among these, the tip part of the moving blade 50 in the final stage is connected to the tip parts of the moving blades 50 adjacent to each other in the circumferential direction of the rotating shaft 30 (hereinafter simply referred to as “circumferential direction”). being called.
  • the shroud 51 that forms the tip of the moving blade 50 is disposed opposite to the partition plate outer ring 11 of the casing 10 via a radial gap.
  • a seal structure 2 is provided between the shroud 51 and the partition plate outer ring 11 of the casing 10.
  • the components of the seal structure 2 will be described in detail.
  • the shroud 51 is provided with three step portions 52 (52A to 52C) having step surfaces 53 (53A to 53C) and protruding toward the partition plate outer ring 11 side by side in the axial direction.
  • the projecting heights of the three step portions 52A to 52C from the rotor blade 50 to the outer peripheral surfaces (peripheral surfaces) 54A to 54C (54) of the three step portions 52A to 52C are directed from the upstream side toward the downstream side in the axial direction. Therefore, it is set to gradually increase. Thereby, the level
  • the step surfaces 53 of the respective step portions 52 are parallel to the radial direction, and the heights of the three step surfaces 53A to 53C are set to be the same. Furthermore, in this embodiment, the outer peripheral surface 54 of each step part 52 is parallel to the axial direction.
  • the partition plate outer ring 11 is formed with an annular groove 12 extending in the circumferential direction at a portion corresponding to the shroud 51.
  • the annular groove 12 is formed to be recessed radially outward from the inner peripheral surface of the partition plate outer ring 11.
  • the shroud 51 is disposed so as to enter the annular groove 12.
  • Three annular recesses 13 (13A to 13C, inner peripheral surfaces) are formed side by side in the axial direction at the bottom of the annular groove 12 facing radially inward so as to face the three step portions 52A to 52C. .
  • the three annular recesses 13A to 13C are formed so as to gradually expand in diameter from the upstream side toward the downstream side by a step.
  • seal fins 5 (5A to 5C) extending radially inward toward the shroud 51 are provided on the casing-side end edges 14 positioned at the boundary between the two annular recesses 13 adjacent in the axial direction. Is provided.
  • the axial positions of the casing side edge portion 14 and the seal fin 5 are set so as to face the outer peripheral surface 54 of each step portion 52.
  • the three seal fins 5A to 5C are arranged at intervals in the axial direction, and are provided so as to correspond to the three step portions 52A to 52C at a ratio of 1: 1.
  • the three seal fins 5A to 5C are arranged at equal intervals in the axial direction.
  • a small radial gap H (H1 to H3) is defined between the outer peripheral surface 54 of each step portion 52 and the tip of each seal fin 5.
  • Each dimension of the minute gap H is set to the minimum within a safe range where the casing 10 and the moving blade 50 are not in contact with each other in consideration of the thermal elongation amount of the casing 10 and the moving blade 50, the centrifugal elongation amount of the moving blade 50 and the like.
  • the dimensions of the three minute gaps H1 to H3 are set to be the same.
  • each cavity C is formed between the seal fin 5 corresponding to each step portion 52 and a partition wall facing the seal fin 5 on the upstream side in the axial direction.
  • the ratio D / W between the radial dimension D and the axial dimension W (cavity aspect ratio D / W) of each cavity C is the size of the separation vortex SV generated in the same cavity C, as will be described later. Is preferably set to be close to 1.0 so that the length is smaller than the main vortex MV (see FIG. 4).
  • the vicinity of the tip on the shroud 51 side further inclines toward the upstream side from the region R1 having a predetermined distance from the annular recess 13 in the radial direction. That is, in the seal fin 5 of this embodiment, only the vicinity of the tip of the seal fin 5 is partially bent, and a bent portion 19 that is inclined upstream is formed in the vicinity of the tip.
  • the distance between the seal fin 5 and the stepped surface 53 on the upstream side in the axial direction of the corresponding step portion 52 (the outer peripheral surface of each stepped portion 52 extending from each minute gap H to the upstream stepped surface 53.
  • the length dimension (54) is L
  • at least one of the distances L is formed to satisfy the following expression (1). 1.25 ⁇ L / H ⁇ 2.75 (1) That is, the distance L is set to about twice the minute gap H.
  • the angle of the entire seal fin 5 continuously changes from the annular recess 13 to the region R1 having a predetermined distance in the radial direction. That is, no protrusions are formed on the seal fin 5 in the region R1 in the radial direction of the seal fin 5.
  • steam S flows into the internal space of the casing 10 through a steam supply pipe 20 from a steam supply source such as a boiler (not shown).
  • the steam S flowing into the internal space of the casing 10 sequentially passes through the annular stator blade group and the annular rotor blade group in each stage.
  • pressure energy is converted into velocity energy by the stationary blade 40, and most of the steam S passing through the stationary blade 40 flows between the moving blades 50 constituting the same stage.
  • the velocity energy and pressure energy of S are converted into rotational energy, and rotation is applied to the shaft body 30.
  • the steam S that has flowed into the annular groove 12 first flows into the first cavity C ⁇ b> 1, collides with the step surface 53 ⁇ / b> A of the first step portion 52 ⁇ / b> A, and flows back to the upstream side. .
  • a main vortex MV1 that rotates counterclockwise (first rotation direction) is generated in the first cavity C1.
  • a part of the flow is separated from the main vortex MV1 particularly at the corner (edge) between the step surface 53A and the outer peripheral surface 54A of the first step portion 52A, thereby the outer periphery of the first step portion 52A.
  • a separation vortex SV1 that rotates clockwise (second rotation direction) opposite to the main vortex MV1 is generated.
  • the separation vortex SV1 is located in the vicinity of the upstream side of the first minute gap H1 between the first-stage step portion 52A and the seal fin 5A.
  • the separation vortex SV1 since the down flow toward the inside in the radial direction in the separation vortex SV1 occurs immediately before the first minute gap H1, the leakage flows from the first cavity C1 through the first minute gap H1 into the second cavity C2 on the downstream side. A contraction effect for reducing the flow is obtained by the separation vortex SV1.
  • the steam S flowing from the radially outer peripheral side toward the radially inner peripheral side on the seal fin 5 is returned to the upstream side by the inclination of the bent portion 19 near the tip of the seal fin, By passing through the minute gap H, the steam S flows so as to bypass the vicinity of the tips of the seal fins 5. Due to the flow of the steam S and the separation vortex SV, the contraction effect is strengthened and the pseudo gap V1 is reduced, so that the leakage flow rate can be reduced.
  • the steam S flowing from the radially outer periphery side toward the radially inner periphery side on the seal fin 105 has a small detour amount.
  • the pseudo gap V2 is large, and the leakage flow rate is larger than that of the seal structure of the present embodiment.
  • the steam S flowing from the upstream side to the downstream side on the seal fin 5 passes through the minute gap H while being returned to the upstream side by the inclination near the tip of the seal fin 5.
  • steam S flows so that the front-end
  • the flow of the steam S and the separation vortex SV can strengthen the contraction effect and reduce the leakage flow rate.
  • the formula 1.8 ⁇ L / H ⁇ 2.2 is satisfied. Set to. Thereby, as shown in the simulation result mentioned later, the contraction effect by peeling vortex SV becomes higher, and it can further reduce a leakage flow rate.
  • the graph shown in FIG. 6 is a result of an experiment on the relationship between the aspect ratio L / H in the step unit 52 and the flow coefficient Cd of the steam S passing through the corresponding minute gap H.
  • This graph indicates that the smaller the flow coefficient Cd, the smaller the flow rate of the steam S passing through the minute gap H. According to this graph, it is understood that there is an optimum value of the aspect ratio L / H that minimizes the flow coefficient Cd for the minute gap H.
  • the optimum value of the aspect ratio L / H in the minute gap H is 2.0.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

 軸線回りに回転するロータ(51)の外周面(54)と、ロータ51)を径方向外周側から囲うように配置されたステータ(10)の内周面(13)との間の間隙をシールするシール構造(2)であって、ロータ(51)の外周面(54)とステータ(10)の内周面(13)のうちの一方に軸線方向に並べて設けられ、ロータ(51)の軸線方向の上流側を向く段差面(53)と、を有して他方側に突出する複数のステップ部(52)と、他方に設けられ、各々のステップ部(52)の周面(54)に向けて延出し、対応するステップ部(52)の周面(54)との間に微小隙間(H)を形成するシールフィン(5)と、を有し、シールフィン(5)は、径方向において他方から所定距離の領域よりさらに一方側の先端近傍が、上流側に向けて傾斜しているシール構造。

Description

シール構造、及び回転機械
 本発明は、ロータとステータとの間の間隙をシールするシール構造、及び回転機械に関する。
 本願は、2014年3月4日に出願された特願2014-042142号について優先権を主張し、その内容をここに援用する。
 周知のように、回転機械である蒸気タービンの一種として、ケーシングと、ケーシングの内部に回転自在に設けられた軸体(ロータ)と、ケーシングの内周部に固定配置された複数の静翼と、これら複数の静翼の下流側において軸体に放射状に設けられた複数の動翼とを備えたものがある。このような蒸気タービンのうち衝動タービンの場合は、蒸気(流体)の圧力エネルギーを静翼によって速度エネルギーに変換し、この速度エネルギーを動翼によって回転エネルギー(機械エネルギー)に変換している。また、反動タービンの場合は、動翼内でも圧力エネルギーが速度エネルギーに変換され、蒸気が噴出する反動力により回転エネルギー(機械エネルギー)に変換される。
 この種の蒸気タービンでは、動翼の先端部と、動翼を囲繞して蒸気の流路を形成するケーシングとの間に径方向の間隙が形成され、また、静翼の先端部と軸体との間にも径方向の間隙が形成されている。しかし、動翼先端部とケーシングとの間隙を下流側に通過する漏洩蒸気は、動翼に対して回転力を付与しない。また、静翼先端部と軸体との間隙を下流側に通過する漏洩蒸気は、その圧力エネルギーが静翼によって速度エネルギーに変換されないため、下流側の動翼に対して回転力をほとんど付与しない。したがって、蒸気タービンの性能向上のためには、間隙を通過する漏洩蒸気の流量(漏洩流量)を低減することが重要となる。
 従来、例えば特許文献1のように、動翼の先端部に、軸方向上流側から下流側に向かって高さが次第に高くなる複数のステップ部を設け、ケーシングに、各ステップ部に向けて延出する複数のシールフィンを設け、各ステップ部と各シールフィンの先端との間に微小隙間を形成した構造のタービンが提案されている。
 このタービンでは、上流側から間隙に入り込んだ流体がステップ部の段差面に衝突することで、段差面の上流側に主渦が発生し、段差面の下流側(微小隙間の上流側近傍)に剥離渦が発生する。そして、微小隙間の上流側近傍に生じる剥離渦によって、微小隙間を通り抜ける漏れ流れの低減化が図られている。すなわち、動翼の先端部とケーシングとの間隙を通過する漏洩流体の流量の低減化が図られている。
特開2011-080452号公報
 しかしながら、蒸気タービンの性能向上に対する要望は強く、したがって漏洩流量をさらに低減化することが求められている。
 本発明は、ロータとステータとの間の間隙をシールするシール構造において、漏洩流量をより低減化した高性能なシール構造、及び回転機械を提供することを目的としている。
 本発明の第一の態様によれば、シール構造は、軸線回りに回転するロータの外周面と、前記ロータを径方向外周側から囲うように配置されたステータの内周面との間の間隙をシールするシール構造であって、前記ロータの外周面と前記ステータの内周面のうちの一方に軸線方向に並べて設けられ、前記ロータの軸線方向の上流側を向く段差面と、を有して他方側に突出する複数のステップ部と、前記他方に設けられ、各々の前記ステップ部の周面に向けて延出し、対応するステップ部の周面との間に微小隙間を形成するシールフィンと、を有し、前記シールフィンは、径方向において前記他方から所定距離の領域よりさらに前記一方側の先端近傍が、上流側に向けて傾斜していることを特徴としている。
 このような構成によれば、従来の場合と同様に、上流側から間隙に入り込んだ流体が各々のステップ部の段差面に衝突することで、段差面の上流側には主渦が発生する。また、各々のステップ部の段差面と周面との角部(エッジ)において主渦から一部の流れが剥離することにより、段差面の下流側に位置する各々のステップ部の周面上には、主渦と反対方向に回る剥離渦が発生する。この剥離渦は、シールフィンの先端からステップ部の周面に向かうダウンフローを生じさせるため、剥離渦がシールフィンの先端とステップ部との間の微小隙間を通過する流体を低減する縮流効果を奏する。
 そして、シールフィン上において他方側から一方側に向かって流れる流体が、シールフィンの先端近傍の傾斜により上流側に戻されつつ、微小隙間を通り抜けることによって、流体がシールフィンの先端近傍を迂回するように流れる。この流体の流れと剥離渦とにより、縮流効果を強め、漏洩流量を低減することができる。
 上記シール構造において、前記微小隙間をHとし、前記シールフィンと、前記ステップ部の前記軸線方向上流側における段差面との間の距離をLとすると、以下の式を満足する構成としてもよい。
 1.8<L/H<2.2
 このような構成によれば、後述するシミュレーション結果に示すように、剥離渦による縮流効果がより高くなり、漏洩流量をさらに低減することができる。
 上記シール構造において、前記シールフィンの角度は、径方向において前記他方から所定距離の領域まで連続的に変化している構成としてもよい。
 このような構成によれば、発生した主渦や剥離渦の流れがシールフィンによって阻害されにくくなるため、シールフィンの先端部近傍の傾斜の効果をより強めることができる。
 また、本発明は上記いずれかのシール構造を備える回転機械を提供する。
 本発明によれば、ロータの外周面と、ロータを径方向外周側から囲うように配置されたステータの内周面との間の間隙をシールするシール構造において、縮流効果を強め、漏洩流量を低減することができる。
本発明の実施形態の蒸気タービンの概略構成断面図である。 本発明の実施形態を示す図であって、図1における要部Iを示す拡大断面図である。 本発明の実施形態を示す図であって、図2のシールフィンを示す拡大断面図である。 本発明の実施形態の蒸気タービンの作用説明図である。 微小隙間を流れる蒸気の挙動を説明する図であり、本発明の実施形態のシールフィンにおける蒸気の挙動を説明する図である。 微小隙間を流れる蒸気の挙動を説明する図であり、従来の傾斜の無いシールフィンにおける蒸気の挙動を説明する図である。 距離Lと微小隙間Hとの縦横比L/Hと、微小隙間Hを通過する蒸気の流量係数Cdとの関係を示すグラフである。
 以下、本発明の実施形態の回転機械である蒸気タービンについて図面を参照して詳細に説明する。
 図1に示すように、本実施形態の蒸気タービン1は、ケーシング10(ステータ)と、ケーシング10の内方に回転自在に設けられ、動力を図示しない発電機等の機械に伝達する回転軸30と、ケーシング10に保持された静翼40と、回転軸30に設けられた動翼50と、回転軸30を軸回りに回転可能に支持する軸受部60とを備えている。
 蒸気Sは、図示しない蒸気供給源と接続された蒸気供給管20を介して、ケーシング10に形成された主流入口21から導入され、蒸気タービン1の下流側に接続された蒸気排出管22から排出される。
 ケーシング10は、内部空間が気密に封止されていると共に、蒸気Sの流路とされている。ケーシング10の内壁面には、回転軸30が挿通されるリング状の仕切板外輪11が強固に固定されている。
 軸受部60は、ジャーナル軸受装置61及びスラスト軸受装置62を備えており、回転軸30を回転自在に支持している。
 静翼40は、ケーシング10から内周側に向かって伸び、回転軸30を囲繞するように放射状に多数配置される環状静翼群を構成している。複数の静翼40は、それぞれ仕切板外輪11に保持されている。
 複数の静翼40からなる環状静翼群は、回転軸30の軸方向(以下、単に軸方向と呼ぶ)に間隔を空けて複数形成されている。複数の静翼40は、蒸気の圧力エネルギーを速度エネルギーに変換して、下流側に隣接する動翼50に流入させる。
 動翼50は、回転軸30の回転軸本体31の外周部に強固に取り付けられ、各環状静翼群の下流側において、放射状に多数配置されて環状動翼群を構成している。
 これら環状静翼群と環状動翼群とは、一組一段とされている。このうち、最終段における動翼50の先端部は、回転軸30の周方向(以下、単に周方向と呼ぶ)に隣接する動翼50の先端部同士と連結されておりシュラウド51(ロータ)と呼ばれている。
 図2に示すように、動翼50の先端部をなすシュラウド51は、ケーシング10の仕切板外輪11との間に径方向の間隙を介して対向配置されている。そして、シュラウド51とケーシング10の仕切板外輪11との間には、シール構造2が設けられている。以下、シール構造2の構成要素について詳細に説明する。
 シュラウド51には、段差面53(53A~53C)を有して仕切板外輪11側に突出する三つのステップ部52(52A~52C)が、軸方向に並べて設けられている。
 動翼50から三つのステップ部52A~52Cの外周面(周面)54A~54C(54)に至る三つのステップ部52A~52Cの突出高さは、軸方向の上流側から下流側に向かうにしたがって漸次高くなるように設定されている。これにより、各々のステップ部52の段差面53は、軸方向の上流側に向いている。また、本実施形態では、各々のステップ部52の段差面53が径方向に平行しており、三つの段差面53A~53Cの高さが同一に設定されている。さらに、本実施形態では、各々のステップ部52の外周面54が軸方向に平行している。
 一方、仕切板外輪11には、シュラウド51に対応する部位に周方向に延びる環状溝12が形成されている。本実施形態では、環状溝12が仕切板外輪11の内周面から径方向外側に窪んで形成されている。シュラウド51は、この環状溝12内に入り込むように配されている。
 そして、三つのステップ部52A~52Cに対向するように径方向内側に向く環状溝12の底部には、三つの環状凹部13(13A~13C、内周面)が軸方向に並べて形成されている。三つの環状凹部13A~13Cは、上流側から下流側に向かって、段差により漸次拡径して形成されている。
 また、軸方向に隣り合う二つの環状凹部13,13の境界に位置する各々のケーシング側端縁部14には、シュラウド51に向けて径方向内側に延出するシールフィン5(5A~5C)が設けられている。これらケーシング側端縁部14及びシールフィン5の軸方向位置は、各々のステップ部52の外周面54に対向するように設定されている。具体的には、三つのシールフィン5A~5Cは、軸方向に間隔をあけて配列され、三つのステップ部52A~52Cに1:1で対応するように設けられている。そして、本実施形態では、三つのシールフィン5A~5Cが軸方向に等間隔で配列されている。
 各々のステップ部52の外周面54と各々のシールフィン5の先端との間には、径方向の微小隙間H(H1~H3)が画成されている。微小隙間Hの各寸法は、ケーシング10や動翼50の熱伸び量、動翼50の遠心伸び量等を考慮した上で、両者が接触しない安全な範囲で、最小のものに設定されている。そして、本実施形態では、三つの微小隙間H1~H3の寸法が同一に設定されている。
 シールフィン5が設けられることで、シュラウド51と仕切板外輪11との間には、三つのキャビティC(C1~C3)が軸方向に配列して形成される。各々のキャビティCは、各々のステップ部52に対応するシールフィン5と、このシールフィン5に対して軸方向上流側に対向する隔壁との間に形成されている。
 なお、各キャビティCの径方向寸法Dと軸方向寸法Wとの比D/W(キャビティの縦横比D/W)は、後述するように、同一のキャビティC内に発生する剥離渦SVの大きさが主渦MVよりも小さくなるように、1.0に近くなるように設定されることが好ましい(図4参照)。
 図3に示すように、本実施形態のシールフィン5は、径方向における環状凹部13から所定距離の領域R1よりさらにシュラウド51側の先端近傍が、上流側に向けて傾斜している。即ち、本実施形態のシールフィン5は、シールフィン5の先端近傍だけが部分的に曲げられており、先端部近傍に上流側に傾斜する折曲部19が形成されている。
 また、シールフィン5と、それに対応するステップ部52の軸方向上流側における段差面53との間の距離(各々の微小隙間Hから上流側の段差面53に至る各々のステップ部52の外周面54の長さ寸法)をLとすると、この距離Lのうち少なくとも1つは、以下の式(1)を満足して形成されている。
 1.25<L/H<2.75・・・ (1)
 即ち、距離Lは微小隙間Hの2倍程度に設定されている。
 また、シールフィン5全体の角度は、径方向において環状凹部13から所定距離の領域R1まで連続的に変化している。即ち、シールフィン5の径方向における領域R1においては、シールフィン5には突起物は形成されていない。
 ここで、上記の構成からなる蒸気タービン1の動作について説明する。
 まず、図示しないボイラなどの蒸気供給源から蒸気供給管20を介して、蒸気Sがケーシング10の内部空間に流入する。
 ケーシング10の内部空間に流入した蒸気Sは、各段における環状静翼群と環状動翼群とを順次通過する。この際には、圧力エネルギーが静翼40によって速度エネルギーに変換され、静翼40を経た蒸気Sのうちの大部分が同一の段を構成する動翼50間に流入し、動翼50により蒸気Sの速度エネルギー・圧力エネルギーが回転エネルギーに変換されて、軸体30に回転が付与される。一方、蒸気Sのうちの一部(例えば、数%)は、静翼40から流出した後、環状溝12内(動翼50のシュラウド51とケーシング10の仕切板外輪11との間隙)に流入する、いわゆる、漏洩蒸気となる。
 図4に示すように、環状溝12内に流入した蒸気Sは、まず、第一キャビティC1に流入すると共に一段目のステップ部52Aの段差面53Aに衝突して、上流側に戻るように流れる。これにより、第一キャビティC1内には、反時計回り(第一回転方向)に回る主渦MV1が発生する。
 その際、特に一段目のステップ部52Aの段差面53Aと外周面54Aとの角部(エッジ)において、主渦MV1から一部の流れが剥離されることで、一段目のステップ部52Aの外周面54A上には、主渦MV1と反対の時計回り(第二回転方向)に回る剥離渦SV1が発生する。
 この剥離渦SV1は、一段目のステップ部52Aとシールフィン5Aとの間の第一微小隙間H1の上流側近傍に位置している。特に、剥離渦SV1のうち径方向内側に向かうダウンフローが第一微小隙間H1の直前で生じるため、第一キャビティC1から第一微小隙間H1を通って下流側の第二キャビティC2に流入する漏れ流れを低減する縮流効果が、上記剥離渦SV1によって得られる。
 蒸気Sが、第一キャビティC1から第一微小隙間H1を通り抜けて第二キャビティC2内に流入すると、第二キャビティC2内には第一キャビティC1の場合と同様に主渦MV2が発生するとともに、剥離渦SV2が発生する。
 さらに、蒸気Sが第二微小隙間H2を通過して第三キャビティC3内に流入すると、第一、第二キャビティC1,C2の場合と同様に、第三キャビティC3内には、主渦MV3が発生するとともに、剥離渦SV3が発生する。
 図5Aに示すように、シールフィン5上において径方向外周側から径方向内周側に向かって流れる蒸気Sは、シールフィンの先端近傍の折曲部19の傾斜により上流側に戻されつつ、微小隙間Hを通り抜けることによって、蒸気Sがシールフィン5の先端近傍を迂回するように流れる。この蒸気Sの流れと剥離渦SVとにより、縮流効果が強まり、擬似的な隙間V1が小さくなるため、漏洩流量を低減することができる。
 一方、図5Bに示すように、従来の傾斜の無いシールフィン105の場合、シールフィン105上において径方向外周側から径方向内周側に向かって流れる蒸気Sは、迂回量が小さいため、本実施形態のシールフィン5と比較すると擬似的な隙間V2は大きく、漏洩流量は、本実施形態のシール構造よりも大きくなる。
 上記実施形態によれば、シールフィン5上において上流側から下流側に向かって流れる蒸気Sが、シールフィン5の先端近傍の傾斜により上流側に戻されつつ、微小隙間Hを通り抜ける。これにより、蒸気Sがシールフィン5の先端近傍を迂回するように流れる。この蒸気Sの流れと剥離渦SVとにより、縮流効果を強め、漏洩流量を低減することができる。
 また、微小隙間をHとし、シールフィン5と、ステップ部52の軸方向上流側における段差面53との間の距離をLとすると、数式1.8<L/H<2.2を満たすように設定した。これにより、後述するシミュレーション結果に示すように、剥離渦SVによる縮流効果がより高くなり、漏洩流量をさらに低減することができる。
 また、シールフィン5の全体の角度が、径方向において環状凹部13から所定距離の領域R1まで連続的に変化していることにより、発生した主渦MVや剥離渦SVの流れがシールフィン5によって阻害されにくくなる。これにより、シールフィン5の先端部近傍の傾斜の効果をより強めることができる。
 なお、上述した効果は、図6に示すように、発明者が実施した実験の結果からも明らかである。
 図6に示すグラフは、ステップ部52における縦横比L/Hと、対応する微小隙間Hを通過する蒸気Sの流量係数Cdとの関係について実験した結果である。このグラフでは、流量係数Cdが小さいほど、微小隙間Hを通過する蒸気Sの流量が小さいことを示している。
 このグラフによれば、微小隙間Hについて、流量係数Cdを最小とする縦横比L/Hの最適値が存在することが分かる。微小隙間Hにおける縦横比L/Hの最適値は2.0である。
 以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
 1 蒸気タービン
 2 シール構造
 5(5A~5C) シールフィン
 10 ケーシング(ステータ)
 11 仕切板外輪
 12 環状溝
 13(13A~13C) 環状凹部(内周面)
 14 端縁部
 18 折曲点
 19 折曲部
 20 蒸気供給管
 21 主流入口
 22 蒸気排出管
 30 回転軸
 31 回転軸本体
 40 静翼
 50 動翼
 51 シュラウド(ロータ)
 52(52A~52C) ステップ部
 53(53A~53C) 段差面
 54(54A~54C) 外周面
 60 軸受部
 61 ジャーナル軸受装置
 62 スラスト軸受装置
 C(C1~C3) キャビティ
 D 径方向寸法
 H(H1~H3) 微小隙間
 L 距離
 MV 主流
 S 蒸気
 SV 剥離流
 W 軸方向寸法

Claims (4)

  1.  軸線回りに回転するロータの外周面と、前記ロータを径方向外周側から囲うように配置されたステータの内周面との間の間隙をシールするシール構造であって、
     前記ロータの外周面と前記ステータの内周面のうちの一方に軸線方向に並べて設けられ、前記ロータの軸線方向の上流側を向く段差面と、を有して他方側に突出する複数のステップ部と、
     前記他方に設けられ、各々の前記ステップ部の周面に向けて延出し、対応するステップ部の周面との間に微小隙間を形成するシールフィンと、を有し、
     前記シールフィンは、径方向において前記他方から所定距離の領域よりさらに前記一方側の先端近傍が、上流側に向けて傾斜しているシール構造。
  2.  前記微小隙間をHとし、
     前記シールフィンと、前記ステップ部の前記軸線方向上流側における段差面との間の距離をLとすると、以下の式を満足する請求項1に記載のシール構造。
     1.25<L/H<2.75
  3.  前記シールフィンの角度は、径方向において前記他方から所定距離の領域まで連続的に変化している請求項1又は請求項2に記載のシール構造。
  4.  請求項1から請求項3のいずれか一項に記載のシール構造を備える回転機械。
PCT/JP2015/055029 2014-03-04 2015-02-23 シール構造、及び回転機械 WO2015133313A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167017190A KR101843299B1 (ko) 2014-03-04 2015-02-23 시일 구조 및 회전 기계
CN201580003433.5A CN105849369B (zh) 2014-03-04 2015-02-23 密封构造及旋转机械
DE112015001111.0T DE112015001111T5 (de) 2014-03-04 2015-02-23 Dichtungsstruktur und Rotationsmaschine
US15/111,422 US10557363B2 (en) 2014-03-04 2015-02-23 Sealing structure and rotary machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-042142 2014-03-04
JP2014042142A JP6296649B2 (ja) 2014-03-04 2014-03-04 シール構造、及び回転機械

Publications (1)

Publication Number Publication Date
WO2015133313A1 true WO2015133313A1 (ja) 2015-09-11

Family

ID=54055122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055029 WO2015133313A1 (ja) 2014-03-04 2015-02-23 シール構造、及び回転機械

Country Status (6)

Country Link
US (1) US10557363B2 (ja)
JP (1) JP6296649B2 (ja)
KR (1) KR101843299B1 (ja)
CN (1) CN105849369B (ja)
DE (1) DE112015001111T5 (ja)
WO (1) WO2015133313A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530918B2 (ja) 2015-01-22 2019-06-12 三菱日立パワーシステムズ株式会社 タービン
JP6227572B2 (ja) 2015-01-27 2017-11-08 三菱日立パワーシステムズ株式会社 タービン
JP6365467B2 (ja) 2015-08-28 2018-08-01 株式会社デンソー 断線検出装置
JP6209200B2 (ja) 2015-12-09 2017-10-04 三菱日立パワーシステムズ株式会社 ステップシール,シール構造,ターボ機械及びステップシールの製造方法
JP6785041B2 (ja) * 2015-12-10 2020-11-18 三菱パワー株式会社 シール構造及びタービン
JP2017145813A (ja) 2016-02-19 2017-08-24 三菱日立パワーシステムズ株式会社 回転機械
JP6662661B2 (ja) * 2016-02-29 2020-03-11 三菱日立パワーシステムズ株式会社 シール構造及びターボ機械
JP6623138B2 (ja) 2016-10-13 2019-12-18 株式会社神戸製鋼所 ラビリンスシール
JP6706585B2 (ja) 2017-02-23 2020-06-10 三菱重工業株式会社 軸流回転機械
CN107288920B (zh) * 2017-07-07 2023-12-15 衡水中科衡发动力装备有限公司 密封装置及方法
JP7281991B2 (ja) * 2019-07-23 2023-05-26 三菱重工業株式会社 シール部材及び回転機械
JP6808872B1 (ja) * 2020-04-28 2021-01-06 三菱パワー株式会社 シール装置及び回転機械

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068227A (ja) * 2012-12-27 2013-04-18 Mitsubishi Heavy Ind Ltd タービン
JP2013199860A (ja) * 2012-03-23 2013-10-03 Mitsubishi Heavy Ind Ltd タービン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134302A (ja) 1983-01-24 1984-08-02 Toshiba Corp 蒸気タ−ビンの腐蝕防止装置
US5639095A (en) 1988-01-04 1997-06-17 Twentieth Technology Low-leakage and low-instability labyrinth seal
JP2002228014A (ja) * 2001-02-05 2002-08-14 Mitsubishi Heavy Ind Ltd ラビリンスシール
JP2006291967A (ja) * 2006-05-29 2006-10-26 Toshiba Corp 軸流タービン
US20090072487A1 (en) * 2007-09-18 2009-03-19 Honeywell International, Inc. Notched tooth labyrinth seals and methods of manufacture
JP2011080452A (ja) 2009-10-09 2011-04-21 Mitsubishi Heavy Ind Ltd タービン
JP5484990B2 (ja) 2010-03-30 2014-05-07 三菱重工業株式会社 タービン
JP5709447B2 (ja) * 2010-09-28 2015-04-30 三菱日立パワーシステムズ株式会社 タービン
JP5517910B2 (ja) 2010-12-22 2014-06-11 三菱重工業株式会社 タービン、及びシール構造
GB2492546A (en) * 2011-07-04 2013-01-09 Alstom Technology Ltd A labyrinth seal for an axial fluid flow turbomachine
JP5374563B2 (ja) 2011-10-03 2013-12-25 三菱重工業株式会社 軸流タービン
JP6197985B2 (ja) * 2012-02-29 2017-09-20 三菱日立パワーシステムズ株式会社 シール構造、これを備えたタービン装置
JP5827588B2 (ja) 2012-03-28 2015-12-02 公益財団法人鉄道総合技術研究所 床版の補強構造および補強方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199860A (ja) * 2012-03-23 2013-10-03 Mitsubishi Heavy Ind Ltd タービン
JP2013068227A (ja) * 2012-12-27 2013-04-18 Mitsubishi Heavy Ind Ltd タービン

Also Published As

Publication number Publication date
JP2015169077A (ja) 2015-09-28
CN105849369B (zh) 2017-10-03
US20160333714A1 (en) 2016-11-17
US10557363B2 (en) 2020-02-11
DE112015001111T5 (de) 2016-12-01
KR20160091406A (ko) 2016-08-02
JP6296649B2 (ja) 2018-03-20
KR101843299B1 (ko) 2018-03-28
CN105849369A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
JP6296649B2 (ja) シール構造、及び回転機械
JP5484990B2 (ja) タービン
JP5709447B2 (ja) タービン
KR101279191B1 (ko) 터빈
JP5558138B2 (ja) タービン
JP6131177B2 (ja) シール構造、及び回転機械
JP5972374B2 (ja) 軸流流体機械
JP5916458B2 (ja) タービン
JP5725848B2 (ja) タービン
KR102105262B1 (ko) 회전 기계
JP5911151B2 (ja) タービン
JP5518022B2 (ja) タービン
EP2894377B1 (en) Turbo-engine
JP2015001180A (ja) 軸流タービン
JP5911152B2 (ja) タービン
JP5496317B2 (ja) タービン
JP5412571B2 (ja) タービン
JP5783570B2 (ja) タービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167017190

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15111422

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001111

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15759087

Country of ref document: EP

Kind code of ref document: A1