WO2015129870A1 - 尿試料分析方法及び尿試料分析用試薬キット - Google Patents

尿試料分析方法及び尿試料分析用試薬キット Download PDF

Info

Publication number
WO2015129870A1
WO2015129870A1 PCT/JP2015/055900 JP2015055900W WO2015129870A1 WO 2015129870 A1 WO2015129870 A1 WO 2015129870A1 JP 2015055900 W JP2015055900 W JP 2015055900W WO 2015129870 A1 WO2015129870 A1 WO 2015129870A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
urine sample
sample analysis
surfactant
urine
Prior art date
Application number
PCT/JP2015/055900
Other languages
English (en)
French (fr)
Inventor
雅典 川野
Original Assignee
シスメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シスメックス株式会社 filed Critical シスメックス株式会社
Priority to JP2016505331A priority Critical patent/JP6316935B2/ja
Priority to CN201580010656.4A priority patent/CN106062557B/zh
Priority to SG11201607148QA priority patent/SG11201607148QA/en
Priority to EP15755678.8A priority patent/EP3112864B1/en
Priority to US15/121,241 priority patent/US20160363588A1/en
Priority to KR1020167026681A priority patent/KR101890050B1/ko
Publication of WO2015129870A1 publication Critical patent/WO2015129870A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56961Plant cells or fungi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/689Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to pregnancy or the gonads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/37Assays involving biological materials from specific organisms or of a specific nature from fungi
    • G01N2333/39Assays involving biological materials from specific organisms or of a specific nature from fungi from yeasts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/37Assays involving biological materials from specific organisms or of a specific nature from fungi
    • G01N2333/39Assays involving biological materials from specific organisms or of a specific nature from fungi from yeasts
    • G01N2333/40Assays involving biological materials from specific organisms or of a specific nature from fungi from yeasts from Candida

Definitions

  • the present invention relates to a urine sample analysis method and a urine sample analysis reagent kit for detecting at least sperm and yeast-like fungi as urine components.
  • Patent Document 1 As a reagent for detecting erythrocytes, sperm and yeast-like fungi in urine, the reagent described in Patent Document 1 is known.
  • a urine sample is treated with a reagent containing a substance that does not damage red blood cells but damages yeast-like fungi, and a dye for staining red blood cells, yeast-like fungi, and sperm in a distinguishable manner. It is described that a measurement sample is prepared, measured with a flow cytometer, and erythrocytes, yeast-like fungi and sperm are discriminated and analyzed based on the obtained optical information.
  • a preservative is added to the reagent in order to stably store the reagent.
  • the present invention comprises a step of preparing a measurement sample by mixing a urine sample, a first reagent containing a fluorescent dye capable of staining a nucleic acid, and a second reagent containing acetic acid and / or a salt thereof as a preservative. Irradiating the urine formed component contained in the measurement sample obtained in the preparation step with light, obtaining optical information, and based on the optical information obtained in the obtaining step, A method for analyzing urine samples, comprising at least a step of detecting sperm and yeast-like fungi.
  • the present invention also provides a first reagent containing a fluorescent dye capable of staining a nucleic acid, acetic acid and / or a salt thereof as an antiseptic, and red blood cells, and the fluorescent dye is contained in a urine component having a nucleic acid.
  • the storage stability of the reagent can be maintained by the preservative, and sperm and yeast-like fungi in the urine sample can be discriminated and accurately detected.
  • preservative It is a histogram of the fluorescence intensity when the measurement sample containing the sperm or yeast-like fungi prepared using the reagent for dilution which added the acetic acid as a preservative is measured. It is a histogram of the fluorescence intensity when measuring the measurement sample containing the sperm or yeast-like fungi prepared using the reagent for dilution which added the triazine type
  • preservative It is a histogram of the fluorescence intensity when measuring the measurement sample containing the sperm or yeast-like fungi prepared using the reagent for dilution which added the triazine type
  • preservative It is a histogram of the fluorescence intensity
  • the urine sample analysis method of the present embodiment (hereinafter also simply referred to as “method”) is intended for analysis of urine formed components having nucleic acids, and analysis of sperm and yeast-like fungi among such urine formed components. Is particularly suitable. Examples of yeast-like fungi include Candida fungi. Examples of the urinary component having a nucleic acid include leukocytes, epithelial cells, atypical cells, bacteria, fungi, trichomonas and the like in addition to sperm and yeast-like fungi.
  • a urine sample a first reagent containing a fluorescent dye capable of staining nucleic acid, and a second reagent containing acetic acid and / or a salt thereof as a preservative are mixed to prepare a measurement sample.
  • the process to perform is performed.
  • the urine sample is not particularly limited as long as it is a liquid sample containing a urine formed component, but is preferably urine collected from a subject.
  • urine collected from a subject is used as a sample, the urine formed component may be deteriorated over time. Therefore, a urine sample is collected within 24 hours after collection, particularly within 3 to 12 hours. It is desirable to use it.
  • the first reagent used in the method of the present embodiment is a reagent for staining urine formed components containing at least sperm and yeast-like fungi
  • the second reagent is a reagent for diluting a urine sample.
  • the order in which the urine sample, the first reagent, and the second reagent are mixed is not particularly limited, and these can be mixed at the same time.
  • the second reagent contains a surfactant and / or a chelating agent, which will be described later, it is preferable that the urine sample and the second reagent are mixed first, and the first reagent is further mixed there.
  • the first reagent and the second reagent may be mixed first, and the urine sample may be further mixed there.
  • the mixing ratio of the urine sample, the first reagent, and the second reagent is not particularly limited, and may be appropriately determined according to the component concentration contained in each reagent.
  • the mixing ratio of the urine sample and the first reagent can be determined from a range of 1: 0.01 to 1 by volume ratio.
  • the mixing ratio of the urine sample and the second reagent can be determined from the range of 1: 0.5 to 10 by volume ratio.
  • the amount of the urine sample may be appropriately determined according to the first reagent and the second reagent.
  • the amount of the urine sample is preferably 1000 ⁇ L or less from the viewpoint of preventing the measurement time from becoming too long.
  • the amount of urine sample is about 10 to 1000 ⁇ L, which is sufficient for measurement.
  • the temperature condition in the preparation process is 10 to 60 ° C, preferably 37 to 44 ° C.
  • Each reagent may be preheated so as to reach these temperatures. Further, after mixing the urine sample with the first reagent and / or the second reagent, the sample may be incubated for 1 to 5 minutes, preferably 3 to 60 seconds.
  • the first reagent contains a fluorescent dye capable of staining nucleic acid.
  • the fluorescent dye is not particularly limited as long as it can stain nucleic acid, and can be selected from fluorescent dyes known in the art according to the wavelength of excitation light.
  • fluorescent dyes include intercalators that can specifically stain nucleic acids, and dyes that bind to minor grooves of DNA.
  • intercalators include cyanine dyes, acridine dyes, phenanthridium dyes, and the like.
  • SYBR Green I SYBR Green I
  • thiazole orange acridine orange
  • propidium iodide ethidium bromide
  • ethidium-acridine heterodimer ethidium diazide
  • Trimethylenebis [[3-[[4-[[(3-methylbenzothiazol-3-ium) -2-yl] methylene] -1,4-dihydroquinolin] -1-yl] propyl] dimethylaminium ] Tetraiodide cage (TOTO-1), 4-[(3-Methylbenzothiazole-2 (3H) -ylidene) methyl] -1- [3- (trimethylaminio) propyl] quinolinium diiodide cage (TO-PRO-1) ), N, N, N ′, N′-tetramethyl-N
  • a 1 is —O—, —S—, —Se— or —C (CH 3 ) 2 —
  • R 1 is a lower alkyl group
  • X is halogen or perchloric acid
  • Y is —CH ⁇ Or —NH—
  • m is 1 or 2
  • n is 0 or 1
  • B is the following formula
  • a 2 is —O—, —S— or —C (CH 3 ) 2 —
  • R 2 is a lower alkyl group, two lower alkoxy groups or one di-lower alkylamino group (this lower alkyl Is a phenyl group substituted with a cyano group))
  • a 1 and A 2 may be the same or different.
  • R 1 and R 2 may be the same or different.
  • the above-mentioned lower alkyl group means an alkyl group having 1 to 6 carbon atoms, and examples thereof include methyl, ethyl, propyl, butyl, isobutyl, pentyl, hexyl and the like.
  • Examples of the halogen atom for X include fluorine, chlorine, bromine and iodine.
  • the phenyl group substituted with two lower alkoxy groups in B is a phenyl group substituted with two alkoxy groups having 1 to 3 carbon atoms, preferably an alkoxy group having 1 or 2 carbon atoms, such as a methoxy group or an ethoxy group. Refers to the group.
  • the phenyl group substituted with a di-lower alkylamino group in B is an alkylamino group having 1 to 3 carbon atoms, preferably 1 or A phenyl group substituted with two alkylamino groups.
  • the alkyl group here may be substituted with a cyano group, and includes, for example, methyl, ethyl, cyanomethyl, cyanoethyl and the like.
  • Examples of the phenyl group substituted with a preferable di-lower alkylamino group include 4-dimethylaminophenyl group, 4-diethylaminophenyl group, 4- (cyanoethylmethylamino) A phenyl group etc. are mentioned.
  • Examples of the dye that binds to the minor groove of DNA include Hoechst33342, Hoechst33258, and 4 ′, 6-diamidino-2-phenylindole dihydrochloride (DAPI).
  • DAPI 6-diamidino-2-phenylindole dihydrochloride
  • the fluorescent dye in the first reagent may be one type or two or more types.
  • the concentration of the fluorescent dye in the first reagent is such that the fluorescent dye is included in the measurement sample prepared as described above at a final concentration capable of appropriately staining at least sperm and yeast-like fungi. It is desirable to set.
  • the final concentration in the measurement sample is appropriately set according to the type of the fluorescent dye. For example, when thiazole orange is used as the fluorescent dye, the final concentration in the measurement sample is 0.1 ⁇ g / mL to 200 ⁇ g / mL, preferably 0.5 ⁇ g / mL to 50 ⁇ g / mL.
  • the first reagent can be obtained by dissolving the above fluorescent dye in an appropriate solvent.
  • the solvent is not particularly limited as long as it is an aqueous solvent capable of dissolving the fluorescent dye, and examples thereof include water, a water-soluble organic solvent, and a mixture thereof. Among these, a water-soluble organic solvent is particularly preferable.
  • the water-soluble organic solvent include lower alcohols having 1 to 3 carbon atoms, ethylene glycol, dimethyl sulfoxide (DMSO) and the like.
  • the second reagent can be obtained by dissolving acetic acid and / or a salt thereof as a preservative in an appropriate solvent.
  • a preservative is added to the reagent in order to stably store the reagent.
  • the present inventor suppresses a change in the form of the yeast-like fungus and changes in the dyeability of the yeast-like fungus, and the sperm It was also found that yeast-like fungi can be detected more accurately.
  • the acetic acid used for the preparation of the second reagent may be a solution or a solid (glacial acetic acid). When the solvent is water or contains water, the second reagent may be prepared using acetic anhydride instead of acetic acid.
  • the type of acetate is not particularly limited as long as it has a bacteriostatic action against fungi such as bacteria and mold, but an alkali metal or alkaline earth metal salt is preferable.
  • an alkali metal or alkaline earth metal salt is preferable.
  • sodium acetate, potassium acetate, calcium acetate, magnesium acetate and the like can be mentioned, among which sodium acetate is particularly preferable.
  • sodium diacetate (CAS No. 126-96-5) obtained by mixing acetic acid and sodium acetate at 1: 1 may be used as a preservative.
  • the acetate contained in the second reagent may be one type or two or more types.
  • the concentration of acetic acid or acetate in the second reagent is not particularly limited as long as an effect as a preservative can be obtained.
  • the concentration in the reagent is usually 100 to 3000 ppm, preferably 200 to 1000 ppm.
  • the acetic acid concentration in the reagent can be calculated based on the purity of acetic acid used for the preparation.
  • the solvent used for the second reagent is not particularly limited as long as it can dissolve acetic acid and / or a salt thereof, and examples thereof include water, a water-soluble organic solvent, and a mixture thereof.
  • examples of the water-soluble organic solvent include lower alcohols having 1 to 3 carbon atoms, ethylene glycol, DMSO and the like. In the present embodiment, water is particularly preferable.
  • the second reagent further includes a surfactant for lysing red blood cells and damaging the urinary component having nucleic acid so that the fluorescent dye can permeate.
  • a surfactant for lysing red blood cells and damaging the urinary component having nucleic acid so that the fluorescent dye can permeate.
  • Such surfactants can be selected from cationic surfactants and nonionic surfactants known in the art.
  • the surfactant contained in the second reagent may be one type or two or more types. When two or more kinds of surfactants are included, the combination can be arbitrarily selected from cationic surfactants and / or nonionic surfactants.
  • At least one selected from a quaternary ammonium salt type surfactant and a pyridinium salt type surfactant can be used as the cationic surfactant.
  • the quaternary ammonium salt type surfactant include a surfactant having a total carbon number of 9 to 30 and represented by the following formula (I).
  • R 1 is an alkyl group or alkenyl group having 6 to 18 carbon atoms
  • R 2 and R 3 are the same or different from each other, and are an alkyl group or alkenyl group having 1 to 4 carbon atoms.
  • R 4 is an alkyl or alkenyl group having 1 to 4 carbon atoms, or a benzyl group
  • X ⁇ is a halogen ion.
  • R 1 is preferably an alkyl group or alkenyl group having 6, 8, 10, 12 and 14 carbon atoms, and particularly preferably a linear alkyl group. More specific R 1 includes an octyl group, a decyl group, and a dodecyl group.
  • R 2 and R 3 are preferably a methyl group, an ethyl group and a propyl group.
  • R 4 is preferably a methyl group, an ethyl group or a propyl group.
  • pyridinium salt type surfactant examples include surfactants represented by the following formula (II).
  • R 1 is an alkyl group or alkenyl group having 6 to 18 carbon atoms;
  • X ⁇ is a halogen ion.
  • R 1 is preferably an alkyl group or alkenyl group having 6, 8, 10, 12 or 14 carbon atoms, and particularly preferably a linear alkyl group. More specific R 1 includes an octyl group, a decyl group, and a dodecyl group.
  • cationic surfactant examples include dodecyltrimethylammonium bromide, decyltrimethylammonium bromide, dodecyltrimethylammonium chloride, octyltrimethylammonium bromide, octyltrimethylammonium chloride, myristyltrimethylammonium bromide, myristyltrimethylammonium chloride, dodecylpyridinium Examples include chloride. Among them, dodecyltrimethylammonium bromide (DTAB) is particularly preferable.
  • a polyoxyethylene nonionic surfactant represented by the following formula (III) is suitably used as the nonionic surfactant.
  • R 1 is an alkyl group, alkenyl group or alkynyl group having 8 to 25 carbon atoms;
  • R 2 is —O—, —COO— or
  • N is an integer from 10 to 50.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene sterol, polyoxyethylene castor oil, polyoxyethylene sorbite fatty acid ester, polyoxyethylene alkylamine, polyoxyethylene polyoxypropylene alkyl Examples include ether.
  • the concentration of the surfactant in the second reagent is such that the erythrocyte is hemolyzed in the measurement sample prepared as described above, and the urinary component (at least sperm and yeast-like fungus) having nucleic acid is added to the fluorescent dye described above. It is desirable to set so that the surfactant is contained at a final concentration that can cause damage to the extent that it can penetrate.
  • the final concentration of the surfactant in the measurement sample is appropriately set according to the type of the surfactant. For example, when DTAB is used as the surfactant, the final concentration in the measurement sample is 100 ppm to 2500 ppm, preferably 500 ppm to 2000 ppm.
  • the pH of the second reagent in order to facilitate hemolysis of red blood cells in the urine sample, can be 3 or more and 6 or less, preferably 5 or more and 6 or less. Therefore, the second reagent may contain a buffering agent in order to keep the pH constant.
  • a buffering agent is not particularly limited as long as it has a buffering action in the above pH range, and examples thereof include a combination of citric acid and its salt, and phosphoric acid and its salt.
  • a combination of acetic acid and sodium acetate or potassium acetate is included as an antiseptic, this combination acts as an acetic acid buffer, so that it is not particularly necessary to further add a buffer to the second reagent.
  • Urine samples may contain amorphous salts such as ammonium phosphate, magnesium phosphate, calcium carbonate.
  • the second reagent may contain a chelating agent in order to reduce the influence of these amorphous salts.
  • the chelating agent is not particularly limited as long as it is a chelating agent capable of removing amorphous salts, and can be appropriately selected from decalcification agents, demagnesium agents, and the like known in the art. Specific examples include ethylenediaminetetraacetate (EDTA salt), CyDTA, DHEG, DPTA-OH, EDDA, EDDP, GEDTA, HDTA, HIDA, Methyl-EDTA, NTA, NTP, NTPO, EDDPO, etc. Of these, EDTA salts are particularly preferred.
  • the concentration of the chelating agent in the second reagent is preferably set so that the chelating agent is contained at a final concentration that can reduce the influence of amorphous salts in the measurement sample prepared as described above. .
  • the final concentration in the measurement sample is appropriately set according to the type of the chelating agent. For example, when EDTA 2 potassium (EDTA-2K) is used as a chelating agent, the final concentration in the measurement sample is 100 to 300 ⁇ m, preferably 150 to 250 ⁇ m.
  • the osmotic pressure of urine is known to be distributed over a wide range of 50 to 1300 mOsm / kg. However, if the osmotic pressure is too low or too high in the measurement sample, cells such as leukocytes may be damaged. is there.
  • An appropriate osmotic pressure in the measurement sample is 100 ⁇ mOsm / kg to 600 ⁇ mOsm / kg, preferably 150 ⁇ mOsm / kg to 500 ⁇ mOsm / kg.
  • the osmotic pressure of urine is too high, the osmotic pressure can be appropriately adjusted by diluting with urine or the second reagent.
  • the second reagent may contain an osmotic pressure compensating agent.
  • osmotic pressure compensating agents include inorganic salts, organic salts, and saccharides.
  • inorganic salts include sodium chloride and sodium bromide.
  • organic salts include sodium propionate, potassium propionate, and ammonium propionate oxalate.
  • saccharide include sorbitol, glucose, mannitol and the like.
  • a step of obtaining optical information by irradiating light to a urine formed component contained in the measurement sample obtained in the above preparation step is performed.
  • optical information can be obtained as a signal emitted from the formed component by irradiating the formed component with light when the stained formed component in urine passes through the flow cell. .
  • optical information is preferably scattered light information and fluorescence information.
  • the scattered light information is not particularly limited as long as it is information on scattered light that can be generally measured with a commercially available flow cytometer.
  • forward scattered light for example, around a light receiving angle of 0 to 20 degrees
  • side scattered light light received light
  • the intensity of scattered light such as an angle of about 90 degrees and waveform information.
  • the scattered light information includes scattered light intensity, scattered light pulse width, scattered light integrated value, and the like.
  • side scattered light is known to reflect internal information such as cell nuclei and granules
  • forward scattered light is known to reflect cell size information. In the present embodiment, it is preferable to use information of forward scattered light.
  • the fluorescence information is not particularly limited as long as it is information obtained by irradiating the formed component in urine stained with excitation light of an appropriate wavelength and measuring the excited fluorescence.
  • the fluorescence intensity and waveform Information More specifically, the fluorescence information includes fluorescence intensity, fluorescence pulse width, fluorescence integral value, and the like.
  • fluorescence is emitted from the nucleic acid in the formed component stained with the fluorescent dye contained in the first reagent.
  • the light receiving wavelength can be appropriately selected according to the fluorescent dye contained in the first reagent.
  • the light source of the flow cytometer is not particularly limited, and a light source having a wavelength suitable for excitation of the fluorescent dye can be appropriately selected.
  • a red semiconductor laser, a blue semiconductor laser, an argon laser, a He—Ne laser, a mercury arc lamp, or the like is used.
  • a semiconductor laser is preferable because it is much cheaper than a gas laser.
  • a step of detecting at least sperm and yeast-like fungi as urine components is performed based on the optical information obtained in the acquisition step.
  • Detection includes not only finding the presence of urinary components in the measurement sample but also classifying and counting urinary components.
  • the urinary component is detected by creating a scattergram having two axes of scattered light information and fluorescence information and analyzing the obtained scattergram using appropriate analysis software.
  • a scattergram is drawn with the X axis as the fluorescence intensity and the Y axis as the forward scattered light intensity
  • each group (cluster) is selected according to the particle size and stainability (nucleic acid content) of each urine component. ) Appears on the scattergram.
  • at least sperm and yeast-like fungi can be detected as two types of populations that appear in different regions.
  • Trichomonas in addition to sperm and yeast-like fungi, Trichomonas, leukocytes, epithelial cells, atypical cells, and bacteria can be detected as populations that appear in different regions.
  • Sperm, Trichomonas, and yeast-like fungi have a lower amount of nucleic acid than leukocytes, epithelial cells, and atypical cells, and have a lower staining ability for staining pigments than leukocytes, epithelial cells, and atypical cells. Therefore, sperm, trichomonas, and yeast-like fungi, and leukocytes, epithelial cells, and atypical cells can be classified based on fluorescence intensity. Bacteria are much smaller in size and have fewer nucleic acids than sperm, trichomonas, yeast-like fungi, leukocytes, epithelial cells, and atypical cells.
  • bacteria and sperm, trichomonas, yeast-like fungi, leukocytes, epithelial cells, and atypical cells can be classified based on fluorescence intensity.
  • FIG. 8 is a schematic diagram of a scattergram showing the distribution of sperm, Trichomonas, and yeast-like fungi. Particles included in the region R41 shown in FIG. 8 are detected as sperm, and the number thereof is counted. Moreover, the particle
  • Sperm and yeast-like fungi have different fluorescence intensity distribution regions. This is because the amount of sperm nucleic acid is greater than that of yeast-like fungi. In addition, the distribution region of the forward scattered light intensity is different between sperm and fungus and Trichomonas. This is because Trichomonas is larger in size than sperm and fungi. Therefore, sperm, Trichomonas, and yeast-like fungi can be classified based on fluorescence intensity and forward scattered light intensity.
  • FIG. 9 is a schematic diagram of a scattergram showing the distribution of leukocytes, atypical cells, and epithelial cells.
  • the particles contained in the region R31 shown in FIG. 9 are detected as atypical cells, and the number is counted. Further, particles included in the region R32 shown in FIG. 9 are detected as white blood cells, and the number thereof is counted. Furthermore, particles included in the region R33 shown in FIG. 9 are detected as epithelial cells, and the number thereof is counted.
  • White blood cells and epithelial cells and atypical cells have different fluorescent intensity distribution regions. This is because there is almost no difference in the amount of nucleic acid between leukocytes and epithelial cells, and atypical cells have more nucleic acid than leukocytes and epithelial cells, and the fluorescence intensity reflects the amount of nucleic acid. Further, the distribution region of the forward scattered light intensity is different between leukocytes and epithelial cells. This is because epithelial cells are larger in size than leukocytes, and the forward scattered light intensity reflects the size of the particles. Therefore, leukocytes, epithelial cells, and atypical cells can be classified based on fluorescence intensity and forward scattered light intensity.
  • FIG. 10 is a schematic diagram of a scattergram showing the distribution of bacteria. Particles included in the region R5 shown in FIG. 10 are detected as bacteria, and the number is counted.
  • the analysis software can provide a window surrounding each group on the scattergram, and the number of particles in each window can be counted.
  • the reagent kit for urine sample analysis of the present embodiment is a reagent kit for distinguishing and detecting sperm and yeast-like fungi in a urine sample.
  • a first reagent containing a fluorescent dye capable of staining a nucleic acid, acetic acid and / or a salt thereof as a preservative, and red blood cells are hemolyzed, and the fluorescent dye passes through the formed component in urine having nucleic acid.
  • a second reagent containing a surfactant for damaging as much as possible.
  • the first reagent contained in the reagent kit is the same as that described for the first reagent used in the urine sample analysis method of the present embodiment.
  • the second reagent used in the urine sample analysis method of the present embodiment was described except that acetic acid and / or a salt thereof as a preservative and a surfactant were included. Is the same. Note that acetic acid and / or a salt thereof and a surfactant used in the reagent kit are the same as those described in the description of the urine sample analysis method of the present embodiment.
  • the first reagent and the second reagent are housed in separate containers and a two-reagent type reagent kit including these is provided.
  • FIG. 11 shows an example of the reagent kit of this embodiment including the first reagent 11 accommodated in the container and the second reagent 22 accommodated in the container.
  • the scope of the present invention includes a first reagent containing a fluorescent dye capable of staining a nucleic acid for distinguishing and detecting sperm and yeast-like fungi in a urine sample, acetic acid and / or a salt thereof as a preservative, and Also included is the use of a reagent kit comprising a second reagent containing a surfactant for lysing red blood cells and damaging the urine components having nucleic acids to the extent that the fluorescent dye can permeate.
  • Example 1 In Example 1, in order to examine preservatives suitable for discrimination between sperm and yeast-like fungi by a flow cytometer, the discrimination performance was compared using analytical reagents containing various preservatives. The discrimination performance was evaluated based on the difference between the average measured value for the sample containing sperm and the average measured value for the sample containing yeast-like fungi.
  • Sample containing sample / spermsperm (200 ⁇ L) collected from a healthy volunteer was suspended in physiological saline (50 mL) to prepare a sample containing sperm.
  • Sample containing yeast-like fungus Candida albicans is suspended in physiological saline to a concentration of 1.0 ⁇ 10 6 cells / mL. Prepared.
  • Reagents / staining reagents NK-9536 Thiazole Orange: Hayashibara Biochemical Laboratories
  • ethylene glycol Nacalai Tesque
  • -Dilution reagent Dilution solutions A to D having the following compositions were prepared as dilution reagents.
  • Each of the diluents A to D contains pyridine-based material TKMA, acetic acid, triazine-based mornon 650, and isothiazoline-based proxel GXL as preservatives.
  • water filtered through a reverse osmosis membrane was used as a solvent.
  • the purity of acetic acid used for the preparation of the diluent B is 99%.
  • Diluent A (pH 5.6): DTAB (1250 ppm) (Tokyo Chemical Industry Co., Ltd.), EDTA-2K (25 mM) (Chubu Kyrest Co., Ltd.) and Material TKMA (1000 ppm: API Corporation)
  • Diluent B (pH 5.6): DTAB (1250 ppm), EDTA-2K (25 mM) and acetic acid (1000 ppm) (Wako Pure Chemical Industries, Ltd.)
  • Diluent C (pH 5.6): DTAB (1250 ppm), EDTA-2K (25 mM) and Mornon 650 (1000 ppm) (Katayama Chemical Co., Ltd.)
  • Diluent D (pH 5.6): DTAB (1250 ppm), EDTA-2K (25 mM) and Proxel GXL (1000 ppm) (Arch Chemicals)
  • the difference between the average measured value for the sample containing sperm and the average measured value for the sample containing yeast-like fungi is more pronounced when acetic acid is used than when a preservative other than acetic acid is used. It turned out to be big. From these results, when using a diluent containing acetic acid as a preservative, the discrimination performance between sperm and yeast-like fungi is higher than when using a commercially available diluent containing a conventional preservative. It was shown that.
  • Example 2 In Example 2, a sample containing sperm and yeast-like fungi was measured with a flow cytometer using a staining reagent and a dilution reagent containing acetic acid as a preservative, and the discrimination performance was evaluated. The discrimination performance was evaluated based on the scattergram created from the acquired fluorescence intensity and scattered light intensity.
  • Sample / Sample Containing Sperm and Yeast-Like Fungussperm (200 ⁇ L) collected from a healthy volunteer was suspended in physiological saline (50 mL) to prepare a suspension containing sperm.
  • the cultured Candida albicans was suspended to a concentration of 5.0 ⁇ 10 5 cells / mL to prepare a sample containing sperm and yeast-like fungi.
  • Sample containing leukocytes A sample containing leukocytes was prepared by suspending leukocytes in physiological saline.
  • -Sample containing epithelial cells A sample containing epithelial cells was prepared by suspending epithelial cells in physiological saline.
  • -Sample containing atypical cells Atypical cells were suspended in physiological saline to prepare a sample containing atypical cells.
  • -Sample containing Trichomonas Trichomonas was suspended in physiological saline to prepare a sample containing Trichomonas.
  • -Sample containing bacteria A sample containing bacteria was prepared by suspending bacteria in physiological saline.
  • Example 2 Reagent The same staining reagent as in Example 1 was used as a staining reagent.
  • the same diluent B as in Example 1 was used as a dilution reagent.
  • As the sheath liquid the same UF-F sheath (Sysmex Corporation) as in Example 1 was used.
  • the scattergram based on the fluorescence intensity and the forward scattered light intensity is fractionated into the yeast-like fungal region (R1) and the sperm region (R2). It was shown that it can be done.
  • leukocytes, epithelial cells, atypical cells, trichomonas, and bacteria are detected in a scattergram based on fluorescence intensity and forward scattered light intensity by using a dilution reagent containing acetic acid as a preservative. It was shown that it can be done.
  • Example 3 In this example, the antibacterial activity of acetic acid against various bacteria was evaluated. Further, physiological saline was used as a control. The antibacterial activity was evaluated based on the number of bacterial colonies on the solid medium.
  • E. coli Bacteria and E. coli used (E. coli: obtained from ATCC) ⁇ S. aureus (obtained from S. aureus: ATCC) ⁇ Pseudomonas aeruginosa (P. aeruginosa: obtained from ATCC) (2) Reagent / Acetic acid aqueous solution (1000 ppm) ⁇ Saline
  • the culture time was 20 hours for E. coli, 24 hours for S. aureus, and 48 hours for P. aeruginosa. After the cultivation, the number of colonies on the agar medium was counted, and the number of bacteria (CFU / mL) was calculated. The results are shown in Table 1.
  • Table 1 shows that none of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa can grow in a 1000 ppm aqueous acetic acid solution even if cultured for 7 days. Thus, it was shown that a sufficient antiseptic effect on these bacteria can be obtained by using acetic acid as a preservative for the dilution reagent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

 本発明は、尿中有形成分として少なくとも精子及び酵母様真菌を検出するための尿試料分析方法及び尿試料分析用試薬キットに関する。

Description

尿試料分析方法及び尿試料分析用試薬キット
 本発明は、尿中有形成分として少なくとも精子及び酵母様真菌を検出するための尿試料分析方法及び尿試料分析用試薬キットに関する。
 腎・尿路系における感染症、炎症性病変、変性病変、結石症、腫瘍などの疾患では、それぞれの疾患に応じて、尿中に種々の有形成分が出現する。有形成分としては、赤血球、円柱、白血球、上皮細胞、酵母様真菌、精子などが挙げられる。尿中のこれらの成分を分析することは、腎・尿路系の疾患や異常部位の推定をする上で重要である。
 例えば、尿中の赤血球、精子及び酵母様真菌を検出するための試薬としては、特許文献1に記載の試薬が知られている。特許文献1には、赤血球を損傷させず、酵母様真菌を損傷させる物質と、赤血球、酵母様真菌及び精子を弁別可能に染色するための色素とを含む試薬を用いて尿試料を処理して測定試料を調製し、これをフローサイトメータで測定して、得られ光学的情報に基づいて赤血球、酵母様真菌及び精子を弁別して分析することが記載されている。また、尿試料の分析用試薬においては、一般に、試薬を安定に保存するために、防腐剤が試薬に添加される。
特開2007-255954号公報
 本発明は、防腐剤を含む試薬を用いることができ、かつ、精子及び酵母様真菌を弁別して精度良く検出することを可能にする尿試料分析方法を提供することを目的とする。また、本発明は、その方法に好適に用いられる尿試料分析用試薬キットを提供することも目的とする。
 本発明者は、鋭意検討の結果、精子及び酵母様真菌の弁別に影響を及ぼさない防腐剤として酢酸及びその塩を見出して、本発明を完成した。
 よって、本発明は、尿試料と、核酸を染色可能な蛍光色素を含む第1試薬と、防腐剤として酢酸及び/又はその塩を含む第2試薬とを混合して測定試料を調製する工程と、調製工程で得られた測定試料に含まれる尿中有形成分に光を照射して光学的情報を取得する工程と、取得工程で得られた光学的情報に基づいて、尿中有形成分として少なくとも精子及び酵母様真菌を検出する工程とを含む、尿試料分析方法を提供する。
 また、本発明は、核酸を染色可能な蛍光色素を含む第1試薬と、防腐剤として酢酸及び/又はその塩、及び、赤血球を溶血させ、核酸を有する尿中有形成分に前記蛍光色素が透過できる程度の損傷を与えるための界面活性剤を含む第2試薬とを含む、尿試料中の精子と酵母様真菌とを区別して検出するための尿試料分析用試薬キットを提供する。
 本発明によれば、防腐剤により試薬の保存安定性を維持することができ、尿試料中の精子及び酵母様真菌を弁別して精度良く検出することを可能にする。
ピリジン系の防腐剤を添加した希釈用試薬を用いて調製した精子又は酵母様真菌を含む測定試料を測定したときの蛍光強度のヒストグラムである。 防腐剤として酢酸を添加した希釈用試薬を用いて調製した精子又は酵母様真菌を含む測定試料を測定したときの蛍光強度のヒストグラムである。 トリアジン系の防腐剤を添加した希釈用試薬を用いて調製した精子又は酵母様真菌を含む測定試料を測定したときの蛍光強度のヒストグラムである。 イソチアゾリン系の防腐剤を添加した希釈用試薬を用いて調製した精子又は酵母様真菌を含む測定試料を測定したときの蛍光強度のヒストグラムである。 防腐剤として酢酸を添加した希釈用試薬を調製した精子及び酵母様真菌を含む測定試料を測定したときのスキャッタグラムである。 防腐剤として酢酸を添加した希釈用試薬を調製した白血球を含む測定試料を測定したときのスキャッタグラムである。 防腐剤として酢酸を添加した希釈用試薬を調製した上皮細胞を含む測定試料を測定したときのスキャッタグラムである。 防腐剤として酢酸を添加した希釈用試薬を調製した異型細胞を含む測定試料を測定したときのスキャッタグラムである。 防腐剤として酢酸を添加した希釈用試薬を調製したトリコモナスを含む測定試料を測定したときのスキャッタグラムである。 防腐剤として酢酸を添加した希釈用試薬を調製した細菌を含む測定試料を測定したときのスキャッタグラムである。 精子、トリコモナス、及び酵母様真菌の分布を示すスキャッタグラムの模式図である。 白血球、異型細胞、及び上皮細胞の分布を示すスキャッタグラムの模式図である。 細菌の分布を示すスキャッタグラムの模式図である。 尿試料分析用試薬キットの一例を示す図である。
[尿試料分析方法]
 本実施形態の尿試料分析方法(以下、単に「方法」ともいう)は、核酸を有する尿中有形成分を分析対象とし、そのような尿中有形成分のうち精子及び酵母様真菌の分析に特に好適である。なお、酵母様真菌としては、例えば、カンジダ属の真菌などが挙げられる。また、核酸を有する尿中有形成分としては、精子及び酵母様真菌以外に、白血球、上皮細胞、異型細胞、細菌、真菌、トリコモナスなどが挙げられる。
 本実施形態の方法では、まず、尿試料と、核酸を染色可能な蛍光色素を含む第1試薬と、防腐剤として酢酸及び/又はその塩を含む第2試薬とを混合して測定試料を調製する工程が行われる。
 本実施形態においては、尿試料は、尿中有形成分を含む液体試料であれば特に限定されないが、好ましくは被験者から採取した尿である。なお、被験者から採取した尿を試料として用いる場合、時間経過により尿中有形成分が劣化するおそれがあるので、採取後24時間以内、特に3~12時間以内に尿試料を本実施形態の方法に用いることが望ましい。
 本実施形態の方法に用いられる第1試薬は、少なくとも精子及び酵母様真菌を含む尿中有形成分を染色するための試薬であり、第2試薬は、尿試料を希釈するための試薬である。本実施形態においては、尿試料と、第1試薬と、第2試薬とを混合する順序は特に限定されず、これらを同時に混合することもできる。第2試薬に後述の界面活性剤及び/又はキレート剤が含まれている場合は、尿試料と第2試薬とを先に混合し、ここへ第1試薬をさらに混合することが好ましい。あるいは、第1試薬と第2試薬とを先に混合し、ここへ尿試料をさらに混合してもよい。
 本実施形態において、尿試料と、第1試薬と、第2試薬との混合割合は特に限定されず、各試薬に含まれる成分濃度に応じて適宜決定すればよい。例えば、尿試料と第1試薬との混合割合は、体積比で1:0.01~1の範囲から決定することができる。また、尿試料と第2試薬との混合割合は、体積比で1:0.5~10の範囲から決定することができる。なお、尿試料の量は、第1試薬と第2試薬に応じて適宜決定すればよい。尿試料の量は測定時間が長くなり過ぎないようにする観点から1000μL以下が好ましい。尿試料の量は10~1000μL程度で測定に十分である。
 調製工程における温度条件は10~60℃、好ましくは37~44℃である。各試薬を予めこれらの温度となるように加温していてもよい。また、尿試料と、第1試薬及び/又は第2試薬とを混合した後、1~5分間、好ましくは3~60秒間インキュベーションしてもよい。
 以下に、本実施形態の方法の調製工程に用いられる第1試薬および第2試薬について説明する。
 第1試薬は、核酸を染色可能な蛍光色素を含む。本実施形態において、蛍光色素は、核酸を染色できるかぎり特に限定されず、励起光の波長に応じて当該技術において公知の蛍光色素の中から選択することができる。そのような蛍光色素としては、例えば、核酸を特異的に染色できるインターカレータ、及びDNAの副溝(minor groove)に結合する色素などが挙げられる。インターカレータとしては、例えば、シアニン系色素、アクリジン系色素、フェナントリジウム系色素などが挙げられる。
 より具体的には、インターカレータとして、SYBR Green I、チアゾールオレンジ、アクリジンオレンジ、プロピジウムアイオダイド、エチジウムブロマイド、エチジウム-アクリジンヘテロダイマー、エチジウムジアジド、エチジウムホモダイマー-1、エチジウムホモダイマー-2、エチジウムモノアジド、トリメチレンビス[[3-[[4-[[(3-メチルベンゾチアゾール-3-イウム)-2-イル]メチレン]-1,4-ジヒドロキノリン]-1-イル]プロピル]ジメチルアミニウム]・テトラヨージド (TOTO-1)、4-[(3-メチルベンゾチアゾール-2(3H)-イリデン)メチル]-1-[3-(トリメチルアミニオ)プロピル]キノリニウム・ジヨージド (TO-PRO-1)、N,N,N',N'-テトラメチル-N,N'-ビス[3-[4-[3-[(3‐メチルベンゾチアゾール-3-イウム)-2-イル]-2-プロペニリデン]-1,4-ジヒドロキノリン-1-イル]プロピル]-1,3-プロパンジアミニウム・テトラヨージド (TOTO-3)、又は2-[3-[[1-[3-(トリメチルアミニオ)プロピル]-1,4-ジヒドロキノリン]-4-イリデン]-1-プロペニル]-3-メチルベンゾチアゾール-3-イウム・ジヨージド (TO-PRO-3)などが挙げられる。あるいは、下記の式(1)~(3)のいずれかで表される蛍光色素を用いてもよい。
Figure JPOXMLDOC01-appb-C000001
 (式中、A1は-O-、-S-、-Se-又は-C(CH3)2-であり、R1は低級アルキル基、Xはハロゲン又は過塩素酸、Yは-CH=又は-NH-、mは1又は2、nは0又は1、Bは下記式
Figure JPOXMLDOC01-appb-C000002
 (式中、A2は-O-、-S-又は-C(CH3)2-であり、R2は低級アルキル基又は2つの低級アルコキシ基若しくは1つのジ低級アルキルアミノ基(この低級アルキルはシアノ基で置換されていてもよい)で置換されたフェニル基である))
 上記の式(1)~(3)において、A1とA2は同一であってもよいし、異なっていてもよい。また、R1とR2は同一であってもよいし、異なっていてもよい。
 上記の低級アルキル基としては、炭素数1~6のアルキル基を意味し、例えば、メチル、エチル、プロピル、ブチル、イソブチル、ペンチル、ヘキシルなどが挙げられる。Xのハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。Bにおける2つの低級アルコキシ基で置換されたフェニル基とは、2つの炭素数1~3のアルコキシ基、好ましくは炭素数1又は2のアルコキシ基、例えば、メトキシ基、エトキシ基で置換されたフェニル基をいう。具体的には、2, 6-ジメトキシフェニル基、2, 6-ジエトキシフェニル基が挙げられる。また、Bにおけるジ低級アルキルアミノ基(該低級アルキル基はシアノ基で置換されていてもよい)で置換されたフェニル基とは、炭素数1~3のアルキルアミノ基、好ましくは炭素数1又は2のアルキルアミノ基で置換されたフェニル基をいう。ここでいうアルキル基は、シアノ基で置換されていてもよく、例えば、メチル、エチル、シアノメチル、シアノエチルなどを含む。好ましいジ低級アルキルアミノ基(該低級アルキルはシアノ基で置換されていてもよい)で置換されたフェニル基としては、4-ジメチルアミノフェニル基、4-ジエチルアミノフェニル基、4-(シアノエチルメチルアミノ)フェニル基などが挙げられる。
 DNAの副溝に結合する色素としては、例えば、Hoechst33342、Hoechst33258及び4', 6-ジアミジノ-2-フェニルインドール・ジヒドロクロリド(DAPI)が挙げられる。
 第1試薬中の蛍光色素は1種類であってもよいし、2種類以上であってもよい。第1試薬中の蛍光色素の濃度は、上記のようにして調製した測定試料中において、少なくとも精子及び酵母様真菌を適切に染色することができるような終濃度で該蛍光色素が含まれるように設定することが望ましい。測定試料中の終濃度は、上記の蛍光色素の種類に応じて適宜設定される。例えば、蛍光色素としてチアゾールオレンジを用いる場合、測定試料中の終濃度は0.1μg/mL以上200μg/mL以下、好ましくは0.5μg/mL以上50μg/mL以下である。
 第1試薬は、上記の蛍光色素を適切な溶媒に溶解させることにより得ることができる。溶媒は、上記の蛍光色素を溶解させることができる水性溶媒であれば特に限定されず、例えば、水、水溶性有機溶媒、及びこれらの混合物が挙げられる。これらの中でも、水溶性有機溶媒が特に好ましい。水溶性有機溶媒としては、例えば、炭素数1~3の低級アルコール、エチレングリコール、ジメチルスルホキシド(DMSO)などが挙げられる。
 第2試薬は、防腐剤としての酢酸及び/又はその塩を適切な溶媒に溶解させることにより得ることができる。尿試料の分析用試薬においては、一般に、試薬を安定に保存するために、防腐剤が試薬に添加される。本発明者は、分析用試薬に添加する防腐剤として酢酸及び/又はその塩を用いることによって、酵母様真菌の形態に変化が生じて該酵母様真菌の染色性が変わることを抑制し、精子及び酵母様真菌をより正確に検出できることを見出した。第2試薬の調製に用いる酢酸は、溶液であってもよいし、固体(氷酢酸)であってもよい。溶媒が水であるか又は水を含む場合は、酢酸に替えて、無水酢酸を用いて第2試薬を調製してもよい。
 本実施形態において、酢酸塩の種類は、細菌やカビなどの真菌に対する静菌作用を有するかぎり特に限定されないが、アルカリ金属又はアルカリ土類金属の塩が好ましい。例えば、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸マグネシウムなどが挙げられ、それらの中でも酢酸ナトリウムが特に好ましい。また、酢酸と酢酸ナトリウムとを1:1で混合して得られる二酢酸ナトリウム(CAS No. 126-96-5)を防腐剤として用いてもよい。第2試薬に含まれる酢酸塩は、1種類であってもよいし、2種類以上であってもよい。
 第2試薬中の酢酸又は酢酸塩の濃度は、防腐剤としての効果を得られるかぎり特に限定されない。例えば、酢酸を用いる場合、試薬中の濃度は、通常100 ppm以上3000 ppm以下、好ましくは200 ppm以上1000 ppm以下である。なお、試薬中の酢酸濃度は、調製に用いる酢酸の純度に基づいて算出できる。
 第2試薬に用いられる溶媒は、酢酸及び/又はその塩を溶解させることができれば特に限定されず、例えば、水、水溶性有機溶媒、及びこれらの混合物が挙げられる。水溶性有機溶媒としては、例えば、炭素数1~3の低級アルコール、エチレングリコール、DMSOなどが挙げられる。本実施形態においては、水が特に好ましい。
 本実施形態において、第2試薬は、赤血球を溶血させ、核酸を有する尿中有形成分に前記蛍光色素が透過できる程度の損傷を与えるための界面活性剤をさらに含むことが好ましい。そのような界面活性剤としては、当該技術において公知のカチオン性界面活性剤及びノニオン性界面活性剤から選択することができる。第2試薬に含まれる界面活性剤は1種類であってもよいし、2種類以上であってもよい。2種類以上の界面活性剤を含む場合、その組み合わせは、カチオン性界面活性剤及び/又はノニオン性界面活性剤から任意に選択することができる。
 本実施形態においては、カチオン性界面活性剤として、第四級アンモニウム塩型界面活性剤及びピリジニウム塩型界面活性剤から選択される少なくとも1種を用いることができる。第四級アンモニウム塩型界面活性剤としては、例えば、以下の式(I)で表される、全炭素数が9~30の界面活性剤が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記の式(I)中、R1は炭素数6~18のアルキル基またはアルケニル基であり;R2およびR3は互いに同一又は異なって、炭素数1~4のアルキル基又はアルケニル基であり;
4は炭素数1~4のアルキル基若しくはアルケニル基、又はベンジル基であり;X-はハロゲンイオンである。
 上記の式(I)中、R1としては、炭素数が6、8、10、12および14のアルキル基またはアルケニル基が好ましく、特に直鎖のアルキル基が好ましい。より具体的なR1としては、オクチル基、デシル基およびドデシル基が挙げられる。R2およびR3としては、メチル基、エチル基およびプロピル基が好ましい。R4としては、メチル基、エチル基およびプロピル基が好ましい。
 ピリジニウム塩型界面活性剤としては、例えば、以下の式(II)で表される界面活性剤が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記の式(II)中、R1は炭素数6~18のアルキル基またはアルケニル基であり;X-はハロゲンイオンである。
 上記の式(II)中、R1としては、炭素数が6、8、10、12および14のアルキル基またはアルケニル基が好ましく、特に直鎖のアルキル基が好ましい。より具体的なR1としてはオクチル基、デシル基およびドデシル基が挙げられる。
 上記のカチオン性界面活性剤の具体例としては、ドデシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムクロライド、オクチルトリメチルアンモニウムブロミド、オクチルトリメチルアンモニウムクロライド、ミリスチルトリメチルアンモニウムブロミド、ミリスチルトリメチルアンモニウムクロライド、ドデシルピリジニウムクロライドなどが挙げられる。それらの中でもドデシルトリメチルアンモニウムブロミド(DTAB)が特に好ましい。
 本実施形態においては、ノニオン性界面活性剤として、以下の式(III)で表されるポリオキシエチレン系ノニオン界面活性剤が好適に用いられる。
Figure JPOXMLDOC01-appb-C000005
 上記の式(III)中、R1は炭素数8~25のアルキル基、アルケニル基またはアルキニル基であり;R2は-O-、-COO-または
Figure JPOXMLDOC01-appb-C000006
であり;nは10~50の整数である。
 上記のノニオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンステロール、ポリオキシエチレンヒマシ油、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンポリオキシプロピレンアルキルエーテルなどが挙げられる。
 第2試薬中の界面活性剤の濃度は、上記のようにして調製した測定試料中において、赤血球を溶血させ、核酸を有する尿中有形成分(少なくとも精子及び酵母様真菌)に上記の蛍光色素が透過できる程度の損傷を与えることができるような終濃度で該界面活性剤が含まれるように設定することが望ましい。測定試料中の界面活性剤の終濃度は、上記の界面活性剤の種類に応じて適宜設定される。例えば、界面活性剤としてDTABを用いる場合、測定試料中の終濃度は100 ppm以上2500 ppm以下、好ましくは500 ppm以上2000 ppm以下である。
 本実施形態においては、尿試料中の赤血球を溶血させやすくするために、第2試薬のpHを3以上6以下、好ましくは5以上6以下とすることができる。よって、第2試薬は、pHを一定に保つために緩衝剤を含んでいてもよい。そのような緩衝剤としては、上記のpH範囲にて緩衝作用を有する緩衝剤であれば特に限定されず、例えば、クエン酸及びその塩、並びにリン酸及びその塩などの組み合わせが挙げられる。なお、防腐剤として、酢酸と、酢酸ナトリウム若しくは酢酸カリウムとの組み合わせを含む場合、この組み合わせは酢酸緩衝液として作用するので、第2試薬に緩衝剤をさらに添加する必要は特にない。
 尿試料には、リン酸アンモニウム、リン酸マグネシウム、炭酸カルシウムなどの無晶性塩類が含まれている場合がある。本実施形態においては、これらの無晶性塩類の影響を低減させるために、第2試薬はキレート剤を含んでいてもよい。キレート剤は、無晶性塩類を除去可能なキレート剤であれば特に限定されず、当該技術において公知の脱カルシウム剤、脱マグネシウム剤などから適宜選択することができる。具体的には、エチレンジアミン四酢酸塩(EDTA塩)、CyDTA、DHEG、DPTA-OH、EDDA、EDDP、GEDTA、HDTA、HIDA、Methyl-EDTA、NTA、NTP、NTPO、EDDPOなどが挙げられ、それらの中でもEDTA塩が特に好ましい。
 第2試薬中のキレート剤の濃度は、上記のようにして調製した測定試料中において、無晶性塩類の影響を低減できるような終濃度で該キレート剤が含まれるように設定することが望ましい。測定試料中の終濃度は、上記のキレート剤の種類に応じて適宜設定される。例えば、キレート剤としてEDTA2カリウム(EDTA-2K)を用いる場合、測定試料中の終濃度は100 mM以上300 mM以下、好ましくは150 mM以上250 mM以下である。
 尿の浸透圧は、50~1300 mOsm/kgと広範囲に分布していることが知られているが、測定試料において浸透圧が低すぎるか又は高すぎる場合、白血球などの細胞が損傷するおそれがある。測定試料における適切な浸透圧は、100 mOsm/kg以上600 mOsm/kg以下、好ましくは150 mOsm/kg以上500 mOsm/kg以下である。尿の浸透圧が高すぎる場合は、水又は第2試薬で希釈することにより浸透圧を適宜調節することができる。反対に、尿の浸透圧が低すぎる場合は、第2試薬は浸透圧補償剤を含んでいてもよい。そのような浸透圧補償剤としては、無機塩類、有機塩類、糖類などが挙げられる。無機塩類としては、塩化ナトリウム、臭化ナトリウムなどが挙げられる。有機塩類としては、プロピオン酸ナトリウム、プロピオン酸カリウム、プロピオン酸アンモニウムシュウ酸塩などが挙げられる。糖類としては、ソルビトール、グルコース、マンニトールなどが挙げられる。
 本実施形態の方法では、上記の調製工程で得られた測定試料に含まれる尿中有形成分に光を照射して光学的情報を取得する工程が行われる。
 この取得工程は、フローサイトメータにより行われることが望ましい。フローサイトメータによる測定では、染色された尿中有形成分がフローセルを通過する際に該有形成分に光を照射することにより、該有形成分から発せられるシグナルとして光学的情報を得ることができる。そのような光学的情報としては、散乱光情報および蛍光情報が好ましい。
 散乱光情報は、一般に市販されるフローサイトメータで測定できる散乱光の情報であれば特に限定されず、例えば、前方散乱光(例えば、受光角度0~20度付近)や側方散乱光(受光角度90度付近)などの散乱光の強度及び波形情報などが挙げられる。より具体的には、散乱光情報として、散乱光強度、散乱光パルス幅及び散乱光積分値などが挙げられる。当該技術においては、側方散乱光は、細胞の核や顆粒などの内部情報を反映し、前方散乱光は、細胞の大きさの情報を反映することが知られている。本実施形態においては、前方散乱光の情報を用いることが好ましい。
 蛍光情報は、適当な波長の励起光を染色された尿中有形成分に照射して、励起された蛍光を測定して得られる情報であれば特に限定されず、例えば、蛍光の強度及び波形情報が挙げられる。より具体的には、蛍光情報として、蛍光強度、蛍光パルス幅及び蛍光積分値などが挙げられる。なお、蛍光は、第1試薬に含まれる蛍光色素によって染色された有形成分内の核酸などから発せられる。また、受光波長は、第1試薬に含まれる蛍光色素に応じて適宜選択することができる。
 本実施形態においては、フローサイトメータの光源は特に限定されず、蛍光色素の励起に好適な波長の光源を適宜選択することができる。例えば、赤色半導体レーザ、青色半導体レーザ、アルゴンレーザ、He-Neレーザ、水銀アークランプなどが使用される。特に半導体レーザは、気体レーザに比べて非常に安価であるので好適である。
 本実施形態の方法では、上記の取得工程で得られた光学的情報に基づいて、尿中有形成分として少なくとも精子及び酵母様真菌を検出する工程が行われる。なお、「検出」には、測定試料中に尿中有形成分の存在を見出すことだけではなく、尿中有形成分を分類及び計数することも含まれる。
 本実施形態において、尿中有形成分の検出は、散乱光情報と蛍光情報とを二軸とするスキャッタグラムを作成し、得られたスキャッタグラムを適当な解析ソフトを用いて解析することにより行われることが好ましい。例えば、X軸を蛍光強度とし、Y軸を前方散乱光強度としてスキャッタグラムを描いた場合、各尿中有形成分の粒子サイズ及び染色性(核酸含有量)に応じて、それぞれの集団(クラスター)がスキャッタグラム上に出現する。本実施形態の方法においては、少なくとも精子及び酵母様真菌を、それぞれ異なる領域に出現する2種類の集団として検出することができる。
 なお、本実施形態においては、精子及び酵母様真菌に加え、トリコモナス、白血球、上皮細胞、異型細胞、及び細菌を、それぞれ異なる領域に出現する集団として検出することができる。
 精子、トリコモナス、及び酵母様真菌は、白血球、上皮細胞、及び異型細胞よりも核酸量が少なく、白血球、上皮細胞、及び異型細胞よりも染色色素に対する染色性が低い。よって、精子、トリコモナス、及び酵母様真菌と、白血球、上皮細胞、及び異型細胞とは、蛍光強度に基づいて分類することができる。細菌は、精子、トリコモナス、酵母様真菌、白血球、上皮細胞、及び異型細胞に比べて非常にサイズが小さく、また核酸量も少ないので、精子、トリコモナス、酵母様真菌、白血球、上皮細胞、及び異型細胞よりも染色色素に対する染色性が低い。よって、細菌と、精子、トリコモナス、酵母様真菌、白血球、上皮細胞、及び異型細胞とは、蛍光強度に基づいて分類することができる。
 図8は、精子、トリコモナス、及び酵母様真菌の分布を示すスキャッタグラムの模式図である。図8に示す領域R41に含まれる粒子が精子として検出され、その数が計数される。また、図8に示す領域R42に含まれる粒子が酵母様真菌として検出され、その数が計数される。さらに、図8に示す領域R43に含まれる粒子がトリコモナスとして検出され、その数が計数される。
 精子と酵母様真菌とは、蛍光強度の分布領域が異なっている。これは、精子の核酸量が酵母様真菌の核酸量よりも多いからである。また、精子及び真菌と、トリコモナスとは前方散乱光強度の分布領域が異なっている。これは、トリコモナスの方が精子及び真菌よりもサイズが大きいからである。したがって、精子、トリコモナス、及び酵母様真菌は、蛍光強度及び前方散乱光強度に基づいて分類することができる。
 図9は、白血球、異型細胞、及び上皮細胞の分布を示すスキャッタグラムの模式図である。図9に示す領域R31に含まれる粒子が異型細胞として検出され、その数が計数される。また、図9に示す領域R32に含まれる粒子が白血球として検出され、その数が計数される。さらに、図9に示す領域R33に含まれる粒子が上皮細胞として検出され、その数が計数される。
 白血球及び上皮細胞と、異型細胞とは蛍光強度の分布領域が異なっている。これは、白血球と上皮細胞とには核酸量に概ね差異がなく、異型細胞の方が白血球及び上皮細胞よりも核酸量が多く、蛍光強度は核酸量を反映しているからである。また、白血球と上皮細胞とは、前方散乱光強度の分布領域が異なっている。これは、上皮細胞は白血球よりもサイズが大きく、前方散乱光強度は粒子の大きさを反映しているからである。したがって、白血球、上皮細胞、及び異型細胞は、蛍光強度及び前方散乱光強度に基づいて分類することができる。
 図10は、細菌の分布を示すスキャッタグラムの模式図である。図10に示す領域R5に含まれる粒子が細菌として検出され、その数が計数される。
 また、解析ソフトによって、スキャッタグラム上にて各集団を囲むウィンドウを設け、各ウィンドウ中の粒子数を計数することができる。
[尿試料分析用試薬キット]
 本実施形態の尿試料分析用試薬キット(以下、単に「試薬キット」ともいう)は、尿試料中の精子と酵母様真菌とを区別して検出するための試薬キットである。この試薬キットは、核酸を染色可能な蛍光色素を含む第1試薬と、防腐剤として酢酸及び/又はその塩、及び、赤血球を溶血させ、核酸を有する尿中有形成分に該蛍光色素が透過できる程度の損傷を与えるための界面活性剤を含む第2試薬とを含む。
 試薬キットに含まれる第1試薬については、本実施形態の尿試料分析方法に用いた第1試薬について述べたことと同じである。
 試薬キットに含まれる第2試薬については、防腐剤としての酢酸及び/又はその塩、及び界面活性剤を含むことを除いて、本実施形態の尿試料分析方法に用いた第2試薬について述べたことと同じである。なお、試薬キットに用いられる防腐剤としての酢酸及び/又はその塩、及び界面活性剤についても、本実施形態の尿試料分析方法の説明において述べたことと同じである。
 本実施形態においては、第1試薬と第2試薬とを別々の容器に収容し、これらを備えた2試薬型の試薬キットとすることが好ましい。図11に、容器に収容された第1試薬11及び容器に収容された第2試薬22を含む本実施形態の試薬キットの一例を示した。
 本発明の範囲には、尿試料中の精子と酵母様真菌とを区別して検出するための、核酸を染色可能な蛍光色素を含む第1試薬と、防腐剤として酢酸及び/又はその塩、及び、赤血球を溶血させ、核酸を有する尿中有形成分に該蛍光色素が透過できる程度の損傷を与えるための界面活性剤を含む第2試薬とを含む試薬キットの使用も含まれる。
 以下に、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
 実施例1では、フローサイトメータによる精子と酵母様真菌との弁別に適した防腐剤を検討するために、各種の防腐剤を含む分析用試薬を用いて弁別性能を比較した。なお、弁別性能は、精子を含む試料についての平均測定値と、酵母様真菌を含む試料についての平均測定値との差に基づいて評価した。
(1)試料
・精子を含む試料
 健常ボランティアから採取した精子(200μL)を生理食塩水(50mL)に懸濁して、精子を含む試料を調製した。
・酵母様真菌を含む試料
 培養したカンジダ・アルビカンス(C. albicans:ATCCより入手)を、1.0×106 cells/mLの濃度なるように生理食塩水に懸濁して、酵母様真菌を含む試料を調製した。
(2)試薬
・染色用試薬
 核酸を染色可能な蛍光色素としてNK-9536(チアゾールオレンジ:林原生物化学研究所)を、0.20 mg/mLの濃度となるようにエチレングリコール(ナカライテスク株式会社)に溶解して、染色用試薬を調製した。
・希釈用試薬
 希釈用試薬として、下記の組成の希釈液A~Dを調製した。希釈液A~Dはそれぞれ、防腐剤として、ピリジン系のマテリアルTKMA、酢酸、トリアジン系のモルノン650及びイソチアゾリン系のプロキセルGXLを含む。なお、希釈液A~Dには、逆浸透膜で濾過した水を溶媒として用いた。また、希釈液Bの調製に用いた酢酸の純度は99%である。
 希釈液A(pH 5.6):DTAB(1250 ppm)(東京化成工業株式会社)、EDTA-2K(25 mM)(中部キレスト株式会社)及びマテリアルTKMA(1000 ppm:エーピーアイ コーポレーション社)
 希釈液B(pH 5.6):DTAB(1250 ppm)、EDTA-2K(25 mM)及び酢酸(1000 ppm)(和光純薬工業株式会社)
 希釈液C(pH 5.6):DTAB(1250 ppm)、EDTA-2K(25 mM)及びモルノン650(1000 ppm)(片山化学株式社)
 希釈液D(pH 5.6):DTAB(1250 ppm)、EDTA-2K(25 mM)及びプロキセルGXL(1000 ppm)(アーチ・ケミカルズ社)
・シース液
 シース液として、UF-Fシース(シスメックス株式会社)を用いた。
(3)測定及び結果
 試料の測定はフローサイトメータUF-1000i(シスメックス株式会社製)を用いて行った。このフローサイトメータによる測定の具体的な工程は、次のとおりである。まず、試料(200μL)と、予め42℃に加温した希釈液(580μL)とを混合し、42℃にて7秒間反応させた。次いで、得られた混合液と、染色用試薬(20μL)とを混合し、42℃にて3秒間反応させて測定試料を調製した。そして、得られた測定試料に光を照射して、蛍光強度を取得した。なお、フローサイトメータの光源として、励起波長488 nmの半導体レーザを用いた。得られた結果を図1A~Dに示す。
 図1A~Dより、精子を含む試料については、いずれの防腐剤を用いた場合でも、蛍光強度の平均値及びヒストグラムに大きな差は認められなかった。酵母様真菌を含む試料については、酢酸以外の防腐剤を用いた場合、蛍光強度の平均値は、精子を含む試料についての平均値に近かった(図A、C及びD参照)。一方、防腐剤として酢酸を用いた場合、他の防腐剤を用いた場合に比べて、酵母様真菌を含む試料についての蛍光強度の平均値が低かった(図1B参照)。よって、精子を含む試料についての平均測定値と、酵母様真菌を含む試料についての平均測定値との差は、酢酸を用いた場合のほうが、酢酸以外の防腐剤を用いた場合に比べて顕著に大きいことがわかった。これらの結果より、酢酸を防腐剤として含む希釈液を用いた場合、従来慣用されている市販の防腐剤を含む希釈液を用いた場合よりも、精子と酵母様真菌との弁別性能が高くなることが示された。
実施例2
 実施例2では、染色用試薬と、防腐剤として酢酸を含む希釈用試薬とを用いて、精子及び酵母様真菌を含む試料をフローサイトメータにより測定し、弁別性能を評価した。なお、弁別性能は、取得した蛍光強度及び散乱光強度から作成したスキャッタグラムに基づいて評価した。
(1)試料
・精子及び酵母様真菌を含む試料
 健常ボランティアから採取した精子(200μL)を生理食塩水(50 mL)に懸濁して、精子を含む懸濁液を調製した。この懸濁液に、培養したカンジダ・アルビカンスを、5.0×105 cells/mLの濃度なるように懸濁して、精子及び酵母様真菌を含む試料を調製した。
・白血球を含む試料
 白血球を生理食塩水に懸濁して、白血球を含む試料を調製した。
・上皮細胞を含む試料
 上皮細胞を生理食塩水に懸濁して、上皮細胞を含む試料を調製した。
・異型細胞を含む試料
 異型細胞を生理食塩水に懸濁して、異型細胞を含む試料を調製した。
・トリコモナスを含む試料
 トリコモナスを生理食塩水に懸濁して、トリコモナスを含む試料を調製した。
・細菌を含む試料
 細菌を生理食塩水に懸濁して、細菌を含む試料を調製した。
(2)試薬
 染色用試薬として、実施例1と同じ染色用試薬を用いた。希釈用試薬として、実施例1と同じ希釈液Bを用いた。シース液として、実施例1と同じUF-Fシース(シスメックス株式会社)を用いた。
(3)測定及び結果
 試料の測定は、フローサイトメータUF-1000i(シスメックス株式会社製)を用いて行った。なお、測定試料は実施例1と同様にして調製した。そして、得られた測定試料に光を照射し、蛍光強度及び前方散乱光強度を取得した。なお、フローサイトメータの光源として、励起波長488 nmの半導体レーザを用いた。これらの測定値に基づいてスキャッタグラムを作成した。結果を図2~7に示す。なお、図2~7において、X軸(横軸)は蛍光強度を示し、Y軸(縦軸)は前方散乱光強度を示す。図2より、防腐剤として酢酸を含む希釈用試薬を用いることで、蛍光強度及び前方散乱光強度に基づくスキャッタグラムにおいて、酵母様真菌の領域(R1)と精子の領域(R2)とに分画できることが示された。同様に、図3~7により、防腐剤として酢酸を含む希釈用試薬を用いることで、蛍光強度及び前方散乱光強度に基づくスキャッタグラムにおいて、白血球、上皮細胞、異型細胞、トリコモナス、及び細菌を検出できることが示された。
実施例3
 本実施例では、種々の細菌に対する酢酸の抗菌力を評価した。また、コントロールとして、生理食塩水を用いた。なお、抗菌力は、固形培地上の細菌のコロニー数に基づいて評価した。
(1)使用した細菌
・大腸菌(E. coli:ATCCより入手)
・黄色ブドウ球菌(S. aureus:ATCCより入手)
・緑膿菌(P. aeruginosa:ATCCより入手)
(2)試薬
・酢酸水溶液(1000 ppm)
・生理食塩水
(3)抗菌力の評価
 酢酸水溶液及び生理食塩水のそれぞれに、各種の細菌を1×105 cells/mLの濃度なるように添加して、細菌懸濁液を得た。得られた細菌懸濁液から100μLずつ取り、これらを培養0日目のサンプルとした。残りの細菌懸濁液を大腸菌およびブドウ球菌は37℃、緑膿菌は25℃にて7日間培養し、培養後の懸濁液から100μLずつ取り、これらを培養7日目のサンプルとした。各サンプル100μLをハートインフュージョン寒天培地に塗抹し、それぞれの培養温度にて培養した。なお、培養時間は、大腸菌については20時間、黄色ブドウ球菌については24時間、緑膿菌については48時間であった。培養後、寒天培地上のコロニー数をカウントし、菌数(CFU/mL)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 表1より、1000 ppmの酢酸水溶液中では、7日間培養しても、大腸菌、黄色ブドウ球菌及び緑膿菌のいずれも繁殖できないことが示された。よって、希釈用試薬のための防腐剤として酢酸を用いることにより、これらの細菌に対する十分な防腐効果が得られることが示された。
 本出願は、2014年2月28日に出願された日本国特許出願特願2014-39283号に関し、これらの特許請求の範囲、明細書、図面及び要約書の全ては本明細書中に参照として組み込まれる。
11  第1試薬
22  第2試薬

Claims (16)

  1.  尿試料と、核酸を染色可能な蛍光色素を含む第1試薬と、防腐剤として酢酸及び/又はその塩を含む第2試薬とを混合して測定試料を調製する工程と、
     調製工程で得られた測定試料に含まれる尿中有形成分に光を照射して光学的情報を取得する工程と、
     取得工程で得られた光学的情報に基づいて、尿中有形成分として少なくとも精子及び酵母様真菌を検出する工程と
    を含む、尿試料分析方法。
  2.  前記光学的情報が、散乱光情報および蛍光情報である請求項1に記載の尿試料分析方法。
  3.  第2試薬が、赤血球を溶血させ、核酸を有する尿中有形成分に前記蛍光色素が透過できる程度の損傷を与えるための界面活性剤をさらに含む請求項1に記載の尿試料分析方法。
  4.  界面活性剤が、カチオン性界面活性剤及びノニオン性界面活性剤から選択される少なくとも1つである請求項3に記載の尿試料分析方法。
  5.  カチオン性界面活性剤が、4級アンモニウム塩型界面活性剤及びピリジニウム塩型界面活性剤から選択され、ノニオン性界面活性剤が、ポリオキシエチレン系ノニオン性界面活性剤から選択される請求項4に記載の尿試料分析方法。
  6.  カチオン性界面活性剤が、ドデシルトリメチルアンモニウムブロミドである請求項4に記載の尿試料分析方法。
  7.  第2試薬のpHが、3以上6以下である請求項1に記載の尿試料分析方法。
  8.  第2試薬が、キレート剤をさらに含む請求項1に記載の尿試料分析方法。
  9.  キレート剤が、エチレンジアミン四酢酸塩(EDTA塩)である請求項8に記載の尿試料分析方法。
  10.  核酸を染色可能な蛍光色素を含む第1試薬と、
     防腐剤として酢酸及び/又はその塩、及び、赤血球を溶血させ、核酸を有する尿中有形成分に前記蛍光色素が透過できる程度の損傷を与えるための界面活性剤を含む第2試薬とを含む、尿試料中の精子と酵母様真菌とを区別して検出するための尿試料分析用試薬キット。
  11.  界面活性剤が、カチオン性界面活性剤及びノニオン性界面活性剤から選択される少なくとも1つである請求項10に記載の尿試料分析用試薬キット。
  12.  カチオン性界面活性剤が、4級アンモニウム塩型界面活性剤及びピリジニウム塩型界面活性剤であり、ノニオン性界面活性剤が、ポリオキシエチレン系ノニオン性界面活性剤である請求項11に記載の尿試料分析用試薬キット。
  13.  カチオン性界面活性剤が、ドデシルトリメチルアンモニウムブロミドである請求項11に記載の尿試料分析用試薬キット。
  14.  第2試薬のpHが、3以上6以下である請求項10に記載の尿試料分析用試薬キット。
  15.  第2試薬が、キレート剤をさらに含む請求項10に記載の尿試料分析用試薬キット。
  16.  キレート剤が、エチレンジアミン四酢酸塩(EDTA塩)である請求項15に記載の尿試料分析用試薬キット。
PCT/JP2015/055900 2014-02-28 2015-02-27 尿試料分析方法及び尿試料分析用試薬キット WO2015129870A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016505331A JP6316935B2 (ja) 2014-02-28 2015-02-27 尿試料分析方法及び尿試料分析用試薬キット
CN201580010656.4A CN106062557B (zh) 2014-02-28 2015-02-27 尿样品分析方法及尿样品分析用试剂盒
SG11201607148QA SG11201607148QA (en) 2014-02-28 2015-02-27 Urine sample analysis method and reagent kit for urine sample analysis
EP15755678.8A EP3112864B1 (en) 2014-02-28 2015-02-27 Urine sample analysis method and use of a reagent kit for urine sample analysis
US15/121,241 US20160363588A1 (en) 2014-02-28 2015-02-27 Urine sample analysis method and reagent kit for urine sample analysis
KR1020167026681A KR101890050B1 (ko) 2014-02-28 2015-02-27 소변 시료 분석 방법 및 소변 시료 분석용 시약 키트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-039283 2014-02-28
JP2014039283 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129870A1 true WO2015129870A1 (ja) 2015-09-03

Family

ID=54009183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055900 WO2015129870A1 (ja) 2014-02-28 2015-02-27 尿試料分析方法及び尿試料分析用試薬キット

Country Status (7)

Country Link
US (1) US20160363588A1 (ja)
EP (1) EP3112864B1 (ja)
JP (1) JP6316935B2 (ja)
KR (1) KR101890050B1 (ja)
CN (1) CN106062557B (ja)
SG (1) SG11201607148QA (ja)
WO (1) WO2015129870A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518543A (ja) * 2018-03-22 2021-08-02 アイデックス ラボラトリーズ インコーポレイテッドIDEXX Laboratories, Inc. 生体試料中の細菌の測定方法
JP7509687B2 (ja) 2018-03-22 2024-07-02 アイデックス ラボラトリーズ インコーポレイテッド 生体試料中の細菌の測定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005176B2 (ja) 2017-05-31 2022-01-21 シスメックス株式会社 試料調製装置、試料調製システム、試料調製方法及び粒子分析装置
GB2576331B8 (en) * 2018-08-14 2021-04-07 Apacor Ltd Fixative solution and method of preparation of biological sample for examination
CN109612807A (zh) * 2018-12-29 2019-04-12 湖北伽诺美生物科技有限公司 一种尿液有形成分染色液

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815256A (ja) * 1994-06-28 1996-01-19 Hitachi Ltd フロ−式粒子画像解析装置
JPH0843385A (ja) * 1994-07-27 1996-02-16 Nissho Corp 液状検査用試薬
JPH08240520A (ja) * 1995-03-06 1996-09-17 Toa Medical Electronics Co Ltd 尿中赤血球の鑑別装置
JPH09329596A (ja) * 1996-05-23 1997-12-22 Toa Medical Electronics Co Ltd 尿中の有形成分分析方法および試薬
JP2000221190A (ja) * 1999-02-01 2000-08-11 Eiken Chem Co Ltd 尿中蛋白の安定化方法、安定化剤およびこれを応用した免疫学的測定方法
JP2001255260A (ja) * 2000-03-07 2001-09-21 Toyobo Co Ltd 尿中有形成分分類装置
JP2006149384A (ja) * 2004-11-05 2006-06-15 Sanei Gen Ffi Inc 加工食品の製造方法
JP2007010685A (ja) * 1996-11-05 2007-01-18 Toyobo Co Ltd 有形成分分析装置及び有形成分分析方法
JP2007255954A (ja) * 2006-03-22 2007-10-04 Sysmex Corp 尿試料分析用試薬及び尿試料の分析方法
JP2012132850A (ja) * 2010-12-22 2012-07-12 Sysmex Corp 尿分析装置、尿検体情報処理装置および尿検体情報処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1172185B (it) * 1981-12-21 1987-06-18 Serono Ist Farm Composizione particolarmente per la vande vaginali
JP3070968B2 (ja) * 1991-05-14 2000-07-31 シスメックス株式会社 尿中の細胞分析用試薬及び方法
CN2676190Y (zh) * 2004-02-16 2005-02-02 复旦大学附属华山医院 一种尿沉渣染色定量计数装置
WO2006135854A2 (en) * 2005-06-10 2006-12-21 Board Of Regents, The University Of Texas System Antiseptic compositions
JP4918281B2 (ja) * 2006-05-18 2012-04-18 シスメックス株式会社 尿中有形成分分析装置
JP4796443B2 (ja) * 2006-06-08 2011-10-19 シスメックス株式会社 試料分析用試薬、試料分析用試薬キット及び試料分析方法
CN101196513A (zh) * 2007-12-28 2008-06-11 姜傥 尿液综合检测方法
JP5420203B2 (ja) * 2008-06-30 2014-02-19 シスメックス株式会社 試料分析装置、粒子分布図表示方法、及びコンピュータプログラム
JP4907705B2 (ja) * 2009-09-29 2012-04-04 シスメックス株式会社 尿中赤血球分析用試薬
EP2657700B1 (en) * 2010-12-22 2019-10-23 Sysmex Corporation Urine analyzer, urine specimen data processor, and method for processing urine specimen data

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815256A (ja) * 1994-06-28 1996-01-19 Hitachi Ltd フロ−式粒子画像解析装置
JPH0843385A (ja) * 1994-07-27 1996-02-16 Nissho Corp 液状検査用試薬
JPH08240520A (ja) * 1995-03-06 1996-09-17 Toa Medical Electronics Co Ltd 尿中赤血球の鑑別装置
JPH09329596A (ja) * 1996-05-23 1997-12-22 Toa Medical Electronics Co Ltd 尿中の有形成分分析方法および試薬
JP2007010685A (ja) * 1996-11-05 2007-01-18 Toyobo Co Ltd 有形成分分析装置及び有形成分分析方法
JP2000221190A (ja) * 1999-02-01 2000-08-11 Eiken Chem Co Ltd 尿中蛋白の安定化方法、安定化剤およびこれを応用した免疫学的測定方法
JP2001255260A (ja) * 2000-03-07 2001-09-21 Toyobo Co Ltd 尿中有形成分分類装置
JP2006149384A (ja) * 2004-11-05 2006-06-15 Sanei Gen Ffi Inc 加工食品の製造方法
JP2007255954A (ja) * 2006-03-22 2007-10-04 Sysmex Corp 尿試料分析用試薬及び尿試料の分析方法
JP2012132850A (ja) * 2010-12-22 2012-07-12 Sysmex Corp 尿分析装置、尿検体情報処理装置および尿検体情報処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112864A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518543A (ja) * 2018-03-22 2021-08-02 アイデックス ラボラトリーズ インコーポレイテッドIDEXX Laboratories, Inc. 生体試料中の細菌の測定方法
JP7509687B2 (ja) 2018-03-22 2024-07-02 アイデックス ラボラトリーズ インコーポレイテッド 生体試料中の細菌の測定方法
US12031174B2 (en) 2019-03-22 2024-07-09 Idexx Laboratories, Inc. Methods for measuring bacteria in biological samples

Also Published As

Publication number Publication date
EP3112864A4 (en) 2017-10-04
CN106062557A (zh) 2016-10-26
KR20160128358A (ko) 2016-11-07
SG11201607148QA (en) 2016-10-28
KR101890050B1 (ko) 2018-08-20
CN106062557B (zh) 2021-01-15
US20160363588A1 (en) 2016-12-15
EP3112864B1 (en) 2022-08-24
JPWO2015129870A1 (ja) 2017-03-30
JP6316935B2 (ja) 2018-04-25
EP3112864A1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
US8367358B2 (en) Reagent, kit and method for differentiating and counting leukocytes
US20210130866A1 (en) Cellular Analysis of Body Fluids
JP3886271B2 (ja) 赤芽球の分類計数用試薬及び分類計数方法
JP4236893B2 (ja) 菌計数方法および菌計数装置
EP2202516B1 (en) Reagent kit for sample analysis and sample analysis method
JP4953710B2 (ja) 尿中有形成分分析装置用標準物質
US8309360B2 (en) Reagent for analyzing urine and method for analyzing urine
JP6316935B2 (ja) 尿試料分析方法及び尿試料分析用試薬キット
JP2006105625A (ja) 検体中粒子分析方法、分析装置及び分析用試薬
EP3112862B1 (en) Method for urine sample analysis, use of a reagent for urine sample analysis, and use of a reagent kit for urine sample analysis
EP3112863B1 (en) Method for detecting casts and erythrocytes in urine samples
US20100255591A1 (en) Reagent, reagent kit and analyzing method
JP3888876B2 (ja) 細菌の染色方法、細菌の分類・計数方法及び細菌染色用希釈液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505331

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15121241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015755678

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167026681

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016019807

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016019807

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160826