WO2015129495A1 - 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料 - Google Patents

珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料 Download PDF

Info

Publication number
WO2015129495A1
WO2015129495A1 PCT/JP2015/054079 JP2015054079W WO2015129495A1 WO 2015129495 A1 WO2015129495 A1 WO 2015129495A1 JP 2015054079 W JP2015054079 W JP 2015054079W WO 2015129495 A1 WO2015129495 A1 WO 2015129495A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
silicate glass
raw material
mass
silica raw
Prior art date
Application number
PCT/JP2015/054079
Other languages
English (en)
French (fr)
Inventor
成田 利治
小森 宏師
高谷 辰弥
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020167016820A priority Critical patent/KR102344757B1/ko
Priority to CN201580004471.2A priority patent/CN105916821B/zh
Publication of WO2015129495A1 publication Critical patent/WO2015129495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/022Purification of silica sand or other minerals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Definitions

  • the present invention relates to a method for producing a silicate glass, a silicate glass, and a silica raw material for a silicate glass.
  • a method for producing a silicate glass suitable for a substrate such as a liquid crystal display or an organic EL display
  • the present invention relates to a silica raw material for glass.
  • Silicate glass is produced by preparing various glass raw materials to obtain a glass batch, and then melting and molding the glass batch.
  • silicate glass is glass mainly composed of SiO 2 . For this reason, the ratio of the silica raw material which occupies in a glass batch increases compared with another glass raw material.
  • the silica raw material is required to have high purity in order to improve the quality of the silicate glass. That is, hitherto, silica raw materials with few impurities have been used.
  • non-alkali glass silicate glass having an alkali metal oxide content of less than 0.5% by mass in the glass composition
  • alkali-free glass Since alkali-free glass is hardly soluble, it has a feature that it is difficult to melt compared to alkali-containing glass. Under such circumstances, it has been studied to adjust the particle size of the silica raw material within a predetermined range to enhance the solubility of the glass batch.
  • Patent Document 1 discloses reducing chromite foreign matter in a silicate glass by using a silica raw material having a low content of Cr 2 O 3 that is a hardly soluble impurity.
  • Patent Document 2 discloses that the homogeneity of silicate glass is improved by using a silica raw material having an average particle diameter D 50 of 30 to 60 ⁇ m.
  • Patent Document 3 discloses that the foam quality of silicate glass is enhanced by using a silica raw material having an average particle diameter D 50 of 70 to 200 ⁇ m.
  • a refining agent that generates a refining gas at the time of melting is used.
  • a vitrification reaction occurs at a temperature of 1200 to 1300 ° C., and defoaming and homogenization are performed at a high temperature of 1400 ° C. or higher.
  • As 2 O 3 that generates a clarified gas in the vicinity of 1200 to 1600 ° C. is used as a clarifier of the hardly soluble silicate glass
  • Sb 2 O 3 that generates a clarified gas in the vicinity of 1200 to 1300 ° C. was used.
  • As 2 O 3 and Sb 2 O 3 are environmentally hazardous substances, and their use is being restricted.
  • SnO 2 is promising as an alternative fining agent for As 2 O 3 and Sb 2 O 3 .
  • SnO 2 has a property of releasing a clarified gas when it is divalent at a temperature of 1400 ° C. or higher.
  • SnO 2 has a property of not releasing a clarified gas so much at an initial melting temperature (for example, 1000 to 1400 ° C.). For this reason, SnO 2 is difficult to reduce the amount of dissolved gas in the glass, and tends to induce reboil later. In particular, when As 2 O 3 and Sb 2 O 3 are reduced as a fining agent, the tendency becomes remarkable.
  • reboiling refers to a phenomenon in which refoaming occurs in glass due to reheating treatment of the glass composition or the like.
  • the present invention has been made in view of the above circumstances, and the technical problem thereof is a silica raw material that can supplement the fining power at the initial melting temperature even when As 2 O 3 and Sb 2 O 3 are reduced as a fining agent. Is to improve the foam quality of hardly soluble silicate glass, especially alkali-free glass.
  • the present inventors have introduced a silica raw material containing a small amount of an alkaline earth metal component into a glass batch, and CO 2 gas (carbon dioxide gas) is generated at the initial melting temperature.
  • CO 2 gas carbon dioxide gas
  • the method for producing a silicate glass of the present invention is a method for producing a silicate glass in which a glass batch is melted and molded to obtain a silicate glass.
  • an alkaline earth metal component is converted into an oxide.
  • a silica raw material containing 0.01 to 2% by mass is introduced.
  • the “silica raw material” refers to a raw material having a SiO 2 content of 95% by mass or more.
  • the CO 2 gas also has an effect of increasing the homogeneity of the silicate glass by stirring the molten glass at a temperature at the initial stage of melting.
  • the carbonate raw material does not generate CO 2 gas at the initial melting temperature because decomposition is completed at a low temperature.
  • the inventors' investigation has revealed that CO 2 gas is generated even at a temperature of 1200 ° C. or higher when a silica raw material containing a small amount of an alkaline earth metal component is used.
  • a silica raw material containing 0.01 to 0.3% by mass of an Mg component in terms of MgO it is preferable to introduce a silica raw material containing 0.01 to 0.3% by mass of an Mg component in terms of MgO in a glass batch. If it does in this way, it will become possible to generate gas exactly at the temperature of the initial stage of melting.
  • a silica raw material containing 0.01 to 0.5% by mass of a Ca component in terms of CaO it is preferable to introduce a silica raw material containing 0.01 to 0.5% by mass of a Ca component in terms of CaO into a glass batch. If it does in this way, it will become possible to generate gas exactly at the temperature of the initial stage of melting.
  • silica raw material containing 0.001 to 0.008 mass% of an Fe component in terms of Fe 2 O 3 into a glass batch. If it does in this way, coloring of silicate glass can be controlled, suppressing the cost of a silica raw material.
  • a silica raw material that generates CO 2 gas in a temperature range of 1000 to 1400 ° C. into a glass batch. In this way, the refining power can be compensated accurately at the temperature at the beginning of melting.
  • a silica raw material that generates CO 2 gas and H 2 O gas (water vapor) in a temperature range of 1000 to 1400 ° C. in a glass batch.
  • H 2 O gas is not generated at an initial melting temperature.
  • the inventors' investigation has revealed that when a silica raw material containing a small amount of an alkaline earth metal component is used, a large amount of H 2 O gas is generated even at a temperature of 1200 ° C. or higher.
  • the H 2 O gas generated in the high temperature range can improve the refinability by reducing the dissolved gas while improving the clarity. Further, the H 2 O gas has an effect of increasing the homogeneity of the silicate glass by stirring the molten glass at a temperature at the initial stage of melting.
  • the method for producing a silicate glass of the present invention produces a silicate glass so that the content of the S component in the glass composition of the silicate glass is less than 0.01% by mass in terms of SO 3. It is preferable. In this way, reboilability can be improved.
  • the content of As 2 O 3 in the glass composition of the silicate glass is less than 0.05 mass%, and the content of Sb 2 O 3 is 0.05 mass. It is preferable to prepare the glass batch so that the SnO 2 content is 0.01 to 1% by mass. If it does in this way, it will become easy to raise the bubble quality of silicate glass, meeting the recent environmental demand.
  • silicate glass in the method for producing a silicate glass of the present invention, it is preferable to prepare a glass batch so that the content of alkali metal oxide in the glass composition of the silicate glass is less than 0.5% by mass. . If it does in this way, silicate glass can be applied to substrates, such as a liquid crystal display and an organic EL display.
  • the method for producing a silicate glass according to the present invention is such that the glass composition of the silicate glass is 50% by mass, SiO 2 50-80%, Al 2 O 3 5-25%, B 2 O 3 0-20. It is preferable to prepare the glass batch so as to contain 1%, MgO 0-15%, CaO 1-15%, SrO 0-15%, BaO 0-15%. If it does in this way, it will become easy to satisfy required characteristics, such as devitrification resistance, a high strain point, low density, and acid resistance.
  • the method for producing a silicate glass of the present invention is preferably formed into a flat plate shape by an overflow downdraw method or a float method. If it does in this way, it will become easy to aim at enlargement and thickness reduction of silicate glass.
  • the silicate glass of the present invention is characterized by being produced by the above-described method for producing silicate glass.
  • the silica raw material for silicate glass of the present invention preferably contains 0.01% by mass or more of an alkaline earth metal component in terms of oxide.
  • the silica raw material for silicate glass of the present invention preferably contains 0.01 to 0.3% by mass of Mg component in terms of MgO.
  • the silica raw material for silicate glass of the present invention preferably contains 0.01 to 0.5% by mass of a Ca component in terms of CaO.
  • the silica raw material for silicate glass of the present invention preferably contains 0.001 to 0.008 mass% of Fe component in terms of Fe 2 O 3 .
  • the silica raw material for silicate glass of the present invention is characterized by generating CO 2 gas in a temperature range of 1000 to 1400 ° C.
  • the silica raw material for silicate glass of the present invention is characterized by generating CO 2 gas and H 2 O gas in a temperature range of 1000 to 1400 ° C.
  • the silica raw material for silicate glass of the present invention is preferably natural silica sand.
  • glass raw material batches are prepared by mixing and mixing glass raw materials as the introduction source of each component so as to obtain a desired glass composition.
  • glass cullet may be used as a glass raw material. Glass cullet is glass waste discharged in a glass manufacturing process or the like.
  • the obtained glass batch is put into a glass melting furnace and melted and vitrified.
  • the glass batch is normally charged continuously into the glass melting furnace, but may be intermittent.
  • the melting temperature of the glass batch in the glass melting furnace is about 1500 to 1650 ° C. in the case of alkali-free glass. In this way, the glass raw material is melted to obtain molten glass.
  • the molten glass is supplied to a molding apparatus, and the molten glass is molded into a flat plate shape so as to have a predetermined thickness and surface quality.
  • a molding method an overflow downdraw method, a float method, or the like can be employed.
  • the flat plate-shaped silicate glass thus produced is used as a substrate for a liquid crystal display, for example.
  • the silica raw material according to the present invention preferably contains the following trace components.
  • the content of the alkaline earth metal component is 0.01 to 2% by mass in terms of oxide, preferably 0.03 to 1% by mass, more preferably 0.05 to 0.5% by mass. .
  • the alkaline earth metal component is preferably contained in the form of carbonate.
  • the content of the Mg component is preferably 0.01 to 0.3% by mass, 0.01 to 0.2% by mass, or 0.02 to 0.1% by mass, particularly preferably 0 in terms of MgO. 0.02 to 0.05% by mass.
  • MgO. 0.02 to 0.05% by mass When there is too little content of Mg component, it will become difficult to discharge
  • the content of the Ca component is preferably 0.01 to 0.5% by mass, 0.01 to 0.3% by mass, 0.01 to 0.2% by mass, or 0.02 to 0.00% in terms of CaO.
  • the amount is 1% by weight, particularly preferably 0.02 to 0.05% by weight.
  • the content of the Fe component is preferably 0.001 to 0.008% by mass, particularly preferably 0.002 to 0.004% by mass in terms of Fe 2 O 3 .
  • the content of the Fe component is preferably 0.001 to 0.008% by mass, particularly preferably 0.002 to 0.004% by mass in terms of Fe 2 O 3 .
  • the content of the Ti component is preferably 0.0005 to 0.008% by mass in terms of TiO 2 , and particularly preferably 0.001 to 0.004% by mass.
  • the content of the Ti component is preferably 0.0005 to 0.008% by mass in terms of TiO 2 , and particularly preferably 0.001 to 0.004% by mass.
  • the method of manufacturing a silicate glass of the present invention in the glass batch, it is preferred to introduce the silica raw material for generating CO 2 gas at a temperature range of 1000 ⁇ 1400 ° C., the CO 2 gas in a temperature range of 1200 ⁇ 1400 ° C. It is preferable to introduce a silica raw material that generates water. In this way, the refining power can be compensated accurately at the temperature at the beginning of melting.
  • silica raw material that generates CO 2 gas and H 2 O gas in a temperature range of 1000 to 1400 ° C. into a glass batch, and a temperature of 1200 to 1400 ° C. It is more preferable to introduce a silica raw material that generates CO 2 gas and H 2 O gas in the region. In this way, the refining power can be compensated accurately at the temperature at the beginning of melting.
  • a chemical synthesis method may be adopted, but from the viewpoint of raw material cost, it is preferable to use a natural raw material containing a small amount of alkaline earth metal component. For example, it is preferable to collect a high-purity silica sand layer formed by the erosion action of the dolomite deposit and use it as a silica raw material.
  • the method of manufacturing a silicate glass of the present invention is less than 0.05 wt% the content of As 2 O 3 in the glass composition of the silicate glass, the content of Sb 2 O 3 is less than 0.05 wt%, SnO
  • the glass batch is preferably prepared so that the content of 2 is 0.01 to 1% by mass. If it does in this way, it will become easy to raise the bubble quality of silicate glass, meeting the recent environmental demand.
  • SnO 2 is a component that has a good clarification action in a high temperature range, a component that increases the strain point, and a component that decreases high temperature viscosity.
  • the content of SnO 2 is preferably 0.01 to 1% by mass, or 0.05 to 0.5% by mass, and particularly preferably 0.1 to 0.3% by mass.
  • the content of SnO 2 is too large, the devitrified crystal of SnO 2 is likely to precipitate, and the precipitation of the devitrified crystal of ZrO 2 is easily promoted.
  • the content of SnO 2 is less than 0.01 wt%, it becomes difficult to enjoy the above-mentioned effects.
  • As 2 O 3 and Sb 2 O 3 are also effective as fining agents.
  • the silicate glass according to the present invention does not completely exclude the inclusion of these components, but it is preferable not to use these components from an environmental viewpoint.
  • As 2 O 3 is contained in a large amount, the resistance to solarization tends to decrease.
  • the content of As 2 O 3 is preferably less than 0.05% by mass, and the content of Sb 2 O 3 is also preferably less than 0.05% by mass.
  • the content of the S component in the glass composition of the silicate glass is less than 0.01% by mass (desirably less than 0.005% by mass) in terms of SO 3 , It is preferable to produce a silicate glass, and the glass so that the content of the S component in the glass composition of the silicate glass is less than 0.01% by mass (desirably less than 0.005% by mass) in terms of SO 3. It is preferred to prepare the batch. SO 3 acts as a fining agent, but if its content is too high, SO 2 reboil tends to be generated.
  • F halides such as Cl
  • CeO 2 a halide such as F or Cl
  • H 2 O generated from the silica raw material is released as HF gas or HCl gas.
  • the content of the alkali metal oxide in the glass composition of silicate glass may be less than 0.5 mass%.
  • the content of the alkali metal oxide is preferably less than 0.5% by mass or less than 0.3% by mass, and particularly preferably 0.01 to 0.2% by mass.
  • the content of Li 2 O and Na 2 O is preferably less than 0.3% by mass for each component, and particularly preferably less than 0.2% by mass.
  • the content of K 2 O is preferably less than 0.5% by mass or less than 0.3% by mass, and particularly preferably 0.01 to 0.2% by mass.
  • the glass composition of the silicate glass in mass%, SiO 2 50 ⁇ 80% , Al 2 O 3 5 ⁇ 25%, B 2 O 3 0 ⁇ 20%, MgO 0
  • the glass batch is preferably prepared so as to contain ⁇ 15%, CaO 1 ⁇ 15%, SrO 0 ⁇ 15%, BaO 0 ⁇ 15%.
  • the reason for limiting the glass composition of the silicate glass as described above is shown below.
  • % display points out the mass%.
  • SiO 2 is a component that forms a glass skeleton.
  • the content of SiO 2 is preferably 50 to 80%, 54 to 70%, or 56 to 66%, particularly preferably 58 to 64%.
  • the content of SiO 2 is too small, the density becomes too high, the acid resistance is likely to decrease.
  • the content of SiO 2 is too large, the higher the viscosity at high temperature in addition to the meltability tends to decrease, devitrification crystals cristobalite becomes easy to precipitate, the liquid phase temperature tends to rise become.
  • Al 2 O 3 is a component that forms a glass skeleton, a component that increases the strain point and Young's modulus, and a component that further suppresses phase separation.
  • the content of Al 2 O 3 is preferably 5 to 25%, 12 to 24%, or 15 to 22%, particularly preferably 16 to 21%.
  • the strain point the Young's modulus tends to decrease, also tends glass phase separation.
  • the content of Al 2 O 3 is too large, devitrification crystals such as mullite and anorthite are likely to precipitate, and the liquidus temperature is likely to rise.
  • B 2 O 3 is a component that enhances meltability and increases devitrification resistance.
  • the content of B 2 O 3 is preferably 0 to 20%, 0 to 12%, 0 to 10%, or 0.5 to 8%, particularly preferably 1 to 7%.
  • B 2 content of O 3 is too small, it tends to decrease. Meltability and devitrification resistance, also resistance tends to decrease with respect to hydrofluoric acid chemical.
  • the content of B 2 O 3 is too large, the Young's modulus and the strain point tends to decrease.
  • MgO is a component that lowers the viscosity at high temperature and increases the meltability, and among alkaline earth metal oxides, it is a component that significantly increases the Young's modulus.
  • the content of MgO is preferably 0 to 15%, 0 to 8%, 0 to 7%, 0 to 6%, or 0 to 3%, particularly preferably 0 to 2%.
  • MgO meltability and a Young's modulus will fall easily.
  • devitrification resistance will fall easily and a strain point will fall easily.
  • CaO is a component that lowers the high-temperature viscosity without lowering the strain point and significantly increases the meltability. Further, among the alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that lowers the raw material cost.
  • the content of CaO is preferably 1 to 15%, 3 to 11%, or 4 to 10%, particularly preferably 5 to 9%. When there is too little content of CaO, it will become difficult to receive the said effect. On the other hand, when there is too much content of CaO, while glass will become easy to devitrify, a thermal expansion coefficient will become high easily.
  • SrO is a component that suppresses phase separation and increases devitrification resistance. Furthermore, it is a component that lowers the high-temperature viscosity without increasing the strain point and increases the meltability, and also suppresses the rise in the liquidus temperature.
  • the SrO content is preferably 0 to 15%, or 0.1 to 9%, particularly preferably 0.5 to 6%. When there is too little content of SrO, it will become difficult to receive the said effect. On the other hand, when the content of SrO is too large, strontium silicate devitrification crystals are likely to precipitate, and devitrification resistance is likely to be lowered.
  • BaO is a component that significantly increases devitrification resistance.
  • the content of BaO is preferably 0 to 15%, 0 to 12%, or 0.1 to 9%, particularly preferably 1 to 7%.
  • When there is too little content of BaO it will become difficult to receive the said effect.
  • On the other hand when there is too much content of BaO, while a density will become high too much, a meltability will fall easily. Further, devitrified crystals containing BaO are likely to precipitate, and the liquidus temperature is likely to rise.
  • ZrO 2 functions to increase the strain point and Young's modulus. However, when the content of ZrO 2 is too large, the devitrification resistance is significantly decreased. In particular, when SnO 2 is contained, it is preferable to strictly regulate the content of ZrO 2 .
  • the content of ZrO 2 is preferably 0.4% or less, or 0.3% or less, and particularly preferably 0.01 to 0.2%.
  • the following components may be added.
  • content of components other than the said component is from the viewpoint which enjoys the effect of this invention exactly, Preferably it is 10% or less by total amount, Most preferably, it is 5% or less.
  • the temperature of the silicate glass at 10 2.5 dPa ⁇ s is preferably 1500 ° C or higher, 1530 ° C or higher, 1540 ° C or higher, or 1550 ° C or higher. It is preferred to prepare the batch.
  • the temperature at 10 2.5 dPa ⁇ s corresponds to the melting temperature, and the higher this temperature, the less soluble it becomes. As described above, the less soluble the silicate glass, the higher the necessity of supplementing the clarification power at the initial melting temperature, and the effect of the present invention is relatively increased.
  • the silicate glass of the present invention is characterized by being produced by the above-described method for producing a silicate glass.
  • the technical characteristics of the silicate glass of the present invention are already described in the explanation column of the method for producing the silicate glass of the present invention. Therefore, detailed description of the silicate glass of the present invention is omitted.
  • the silica raw material for silicate glass of the present invention is characterized by containing 0.01 to 2% by mass of an alkaline earth metal component in terms of oxide.
  • the silica raw material for silicate glass of the present invention is characterized by generating CO 2 gas in a temperature range of 1000 to 1400 ° C.
  • the silica raw material for silicate glass of the present invention preferably generates CO 2 gas and H 2 O gas in a temperature range of 1000 to 1400 ° C.
  • the technical characteristics of the silica raw material for silicate glass of the present invention are already described in the explanation column of the method for producing the silicate glass of the present invention. Therefore, detailed description is abbreviate
  • Sample No. 1 is an example of the present invention, which is a silica raw material (silica sand) collected from a high-purity silica sand layer formed by the erosion action of a dolomite deposit.
  • Sample No. 2 is a comparative example of the present invention, which is a conventional silica raw material (silica sand) that is generally used.
  • sample No. Regarding 1 and 2 the amount of CO 2 released when a temperature range from 200 ° C. to 1300 ° C. was heated at a rate of temperature increase of 8 ° C./min was measured by a quadrupole mass spectrometer. The result is shown in FIG. Furthermore, sample no. 1 and 2, the amount of H 2 O released when the temperature range from 200 ° C. to 1300 ° C. was heated at a rate of temperature increase of 8 ° C./min was measured by a quadrupole mass spectrometer. The result is shown in FIG. In the figure, (1) indicates the sample No. 1 indicates the data of Sample No. 2 points to data.
  • CO 2 gas and H 2 O gas are generated in a wide temperature range from 600 ° C. to 1200 ° C.
  • Sample No. In No. 2 CO 2 gas was hardly generated during high-temperature heating, and the amount of H 2 O gas generated was small.
  • the alkali free glass was produced in accordance with the conventional method. Specifically, the silicate glass has a glass composition of SiO 2 60%, Al 2 O 3 19%, B 2 O 3 6.5%, MgO 2.3%, CaO 6%, SrO 0 by mass%. Various glass raw materials were prepared so as to contain 0.5%, BaO 5.5%, and SnO 2 0.2% to prepare glass batches.
  • the obtained glass batch is put into a continuous melting furnace and melted at 1500 to 1600 ° C., and then the molten glass is clarified and stirred, and then supplied to a molding apparatus, and 0.7 mm thick by an overflow downdraw method. It shape
  • the glass plate according to No. 2 has the same manufacturing conditions as the silica raw material.
  • sample no The glass plate according to Sample No. 2 Compared with the glass plate according to No. 1, the amount of SO 3 remaining was 1.3 times.
  • Sample No. The glass plate according to Sample No. 2 Compared to the glass plate according to 1, the number of bubbles was 10 times. This is the sample No.
  • the silica raw material according to 1 is used, CO 2 gas is generated at a temperature around 1200 ° C. at the time of melting, and the amount of H 2 O gas generated is large. This is considered to be due to a decrease in the amount of dissolved gas in the molten glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

 ガラスバッチを溶融、成形し、珪酸塩ガラスを得る珪酸塩ガラスの製造方法であって、ガラスバッチ中に、アルカリ土類金属成分を酸化物換算で0.01~2質量%含むシリカ原料を導入する。

Description

珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料
 本発明は、珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料に関し、例えば、液晶ディスプレイ、有機ELディスプレイ等の基板に好適な珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料に関する。
 珪酸塩ガラスは、各種ガラス原料を調合し、ガラスバッチを得た上で、このガラスバッチを溶融、成形することにより作製される。周知の通り、珪酸塩ガラスは、SiOを主成分とするガラスである。このため、ガラスバッチ中に占めるシリカ原料の割合は、他のガラス原料に比べて多くなる。
 ディスプレイ用途の場合、シリカ原料は、珪酸塩ガラスの品位を高めるために、高純度であることが要求されていた。つまり、従来まで、不純物が少ないシリカ原料が使用されていた。
 また、液晶ディスプレイ等に用いる珪酸塩ガラスとして、無アルカリガラス(ガラス組成中のアルカリ金属酸化物の含有量が0.5質量%未満の珪酸塩ガラス)が使用されている。無アルカリガラスは、難溶性であるため、アルカリ含有ガラスに比べて溶融し難いという特徴を有している。このような事情から、シリカ原料の粒度を所定範囲に調整して、ガラスバッチの溶解性を高めることが検討されている。
 例えば、特許文献1には、難溶性不純物であるCrの含有量が少ないシリカ原料を用いて、珪酸塩ガラス中のクロマイト異物を低減することが開示されている。特許文献2には、平均粒子径D50が30~60μmのシリカ原料を用いることにより、珪酸塩ガラスの均質性を高めることが開示されている。特許文献3には、平均粒子径D50が70~200μmのシリカ原料を用いることにより、珪酸塩ガラスの泡品位を高めることが開示されている。
特開2012-201524号公報 特開2004-067408号公報 特開2013-107801号公報
 ところで、珪酸塩ガラスの泡品位を高めるために、溶融時に清澄ガスを発生させる清澄剤が用いられる。難溶性の珪酸塩ガラス、例えば無アルカリガラスでは、例えば、1200~1300℃の温度でガラス化反応が起こり、1400℃以上の高温で脱泡、均質化が行われる。このため、難溶性の珪酸塩ガラスの清澄剤として、1200~1600℃付近で清澄ガスを発生させるAsが使用されると共に、1200~1300℃付近で清澄ガスを発生させるSbが使用されていた。しかし、As、Sbは、環境負荷物質であるため、その使用が制限されつつある。
 As、Sbの代替清澄剤として、SnOが有望である。SnOは、1400℃以上の温度で2価に変化する際に、清澄ガスを放出する性質を有している。
 一方、SnOは、溶融初期の温度(例えば1000~1400℃)で清澄ガスをあまり放出しない性質を有している。このため、SnOは、ガラス中の溶存ガス量を低減させ難く、後にリボイルを惹起させ易い。特に、清澄剤としてAs、Sbを低減した場合に、その傾向が顕著になる。ここで、リボイルとは、ガラス組成物の再加熱処理等によって、ガラス中に再発泡が生じる現象をいう。
 溶融初期の温度で清澄力を補う方法として、ガラス原料の粒度を調整することも想定される。しかし、特許文献1~3に記載のシリカ原料は、ガラスバッチの溶解性を高める効果を有するものの、清澄力を補う効果に乏しく、リボイル性の改善に殆ど寄与しない。
 本発明は、上記事情に鑑みなされたものであり、その技術的課題は、清澄剤としてAs、Sbを低減した場合でも、溶融初期の温度で清澄力を補い得るシリカ原料を創案することにより、難溶性の珪酸塩ガラス、特に無アルカリガラスの泡品位を高めることである。
 本発明者等は、鋭意検討の結果、アルカリ土類金属成分を少量含むシリカ原料をガラスバッチに導入すると、溶融初期の温度でCOガス(炭酸ガス)が発生し、このCOガスが清澄性を高めると共に、溶存ガスを低減して、リボイル性の改善に寄与し得ることを見出し、本発明として提案するものである。すなわち、本発明の珪酸塩ガラスの製造方法は、ガラスバッチを溶融、成形して、珪酸塩ガラスを得る珪酸塩ガラスの製造方法において、ガラスバッチ中に、アルカリ土類金属成分を酸化物換算で0.01~2質量%含むシリカ原料を導入することを特徴とする。ここで、「シリカ原料」とは、SiOの含有量が95質量%以上の原料を指す。なお、上記COガスは、溶融初期の温度で溶融ガラスを攪拌させて、珪酸塩ガラスの均質性を高める効果も有する。
 周知の通り、炭酸塩原料は、低温で分解が終了するため、溶融初期の温度でCOガスを発生させることはない。本発明者の調査によると、意外なことに、アルカリ土類金属成分を少量含むシリカ原料を使用すると、1200℃以上の温度でもCOガスが発生することが明らかになった。
 第二に、本発明の珪酸塩ガラスの製造方法は、ガラスバッチ中に、Mg成分をMgO換算で0.01~0.3質量%含むシリカ原料を導入することが好ましい。このようにすれば、溶融初期の温度でガスを的確に発生させることが可能になる。
 第三に、本発明の珪酸塩ガラスの製造方法は、ガラスバッチ中に、Ca成分をCaO換算で0.01~0.5質量%含むシリカ原料を導入することが好ましい。このようにすれば、溶融初期の温度でガスを的確に発生させることが可能になる。
 第四に、本発明の珪酸塩ガラスの製造方法は、ガラスバッチ中に、Fe成分をFe換算で0.001~0.008質量%含むシリカ原料を導入することが好ましい。このようにすれば、シリカ原料のコストを抑制しつつ、珪酸塩ガラスの着色を抑制することができる。
 第五に、本発明の珪酸塩ガラスの製造方法は、ガラスバッチ中に、1000~1400℃の温度域でCOガスを発生させるシリカ原料を導入することが好ましい。このようにすれば、溶融初期の温度で清澄力を的確に補うことができる。
 第六に、本発明の珪酸塩ガラスの製造方法は、ガラスバッチ中に、1000~1400℃の温度域でCOガスとHOガス(水蒸気)を発生させるシリカ原料を導入することが好ましい。
 周知の通り、水酸化物原料は、低温で分解が終了するため、溶融初期の温度でHOガスを発生させることはない。本発明者の調査によると、意外なことに、アルカリ土類金属成分を少量含むシリカ原料を使用すると、1200℃以上の温度でもHOガスが多量に発生することが明らかになった。そして、高温域で発生したHOガスは、清澄性を高めると共に、溶存ガスを低減して、リボイル性の改善に寄与し得る。更に、このHOガスは、溶融初期の温度で溶融ガラスを攪拌させて、珪酸塩ガラスの均質性を高める効果も有する。
 第七に、本発明の珪酸塩ガラスの製造方法は、珪酸塩ガラスのガラス組成中のS成分の含有量がSO換算で0.01質量%未満になるように、珪酸塩ガラスを作製することが好ましい。このようにすれば、リボイル性を改善することができる。
 第八に、本発明の珪酸塩ガラスの製造方法は、珪酸塩ガラスのガラス組成中のAsの含有量が0.05質量%未満、Sbの含有量が0.05質量%未満、SnOの含有量が0.01~1質量%になるように、ガラスバッチを調製することが好ましい。このようにすれば、近年の環境的要請を満しつつ、珪酸塩ガラスの泡品位を高め易くなる。
 第九に、本発明の珪酸塩ガラスの製造方法は、珪酸塩ガラスのガラス組成中のアルカリ金属酸化物の含有量が0.5質量%未満になるように、ガラスバッチを調製することが好ましい。このようにすれば、珪酸塩ガラスを液晶ディスプレイ、有機ELディスプレイ等の基板に適用することができる。
 第十に、本発明の珪酸塩ガラスの製造方法は、珪酸塩ガラスのガラス組成が、質量%で、SiO 50~80%、Al 5~25%、B 0~20%、MgO 0~15%、CaO 1~15%、SrO 0~15%、BaO 0~15%を含有するように、ガラスバッチを調製することが好ましい。このようにすれば、耐失透性、高歪点、低密度、耐酸性等の要求特性を満たし易くなる。
 第十一に、本発明の珪酸塩ガラスの製造方法は、オーバーフローダウンドロー法又はフロート法で平板形状に成形することが好ましい。このようにすれば、珪酸塩ガラスの大型化、薄型化を図り易くなる。
 第十二に、本発明の珪酸塩ガラスは、上記の珪酸塩ガラスの製造方法により作製されたことを特徴とする。
 第十三に、本発明の珪酸塩ガラス用シリカ原料は、アルカリ土類金属成分を酸化物換算で0.01質量%以上含むことが好ましい。
 第十四に、本発明の珪酸塩ガラス用シリカ原料は、Mg成分をMgO換算で0.01~0.3質量%含むことが好ましい。
 第十五に、本発明の珪酸塩ガラス用シリカ原料は、Ca成分をCaO換算で0.01~0.5質量%含むことが好ましい。
 第十六に、本発明の珪酸塩ガラス用シリカ原料は、Fe成分をFe換算で0.001~0.008質量%含むことが好ましい。
 第十七に、本発明の珪酸塩ガラス用シリカ原料は、1000~1400℃の温度域でCOガスを発生させることを特徴とする。
 第十八に、本発明の珪酸塩ガラス用シリカ原料は、1000~1400℃の温度域でCOガスとHOガスを発生させることを特徴とする。
 第十九に、本発明の珪酸塩ガラス用シリカ原料は、天然珪砂であることが好ましい。
[実施例1]に係る試料No.1、2について、200℃から1300℃までの温度範囲を8℃/分の昇温速度で加熱した際のCOガスの放出量を示す測定データである。 [実施例1]に係る試料No.1、2について、200℃から1300℃までの温度範囲を8℃/分の昇温速度で加熱した際のHOガスの放出量を示す測定データである。
 以下、本発明の珪酸塩ガラスの製造方法を詳述する。
 まず、所望のガラス組成になるように、各成分の導入源となるガラス原料を調合、混合してガラスバッチバッチを作製する。必要に応じて、ガラス原料として、ガラスカレットを用いてもよい。なお、ガラスカレットとは、ガラス製造工程等で排出されるガラス屑である。
 次いで、得られたガラスバッチをガラス溶融窯に投入し、溶融、ガラス化する。ガラス溶融窯へのガラスバッチの投入は、通常、連続的に行われるが、断続的であってもよい。またガラス溶融窯内でのガラスバッチの溶融温度は、無アルカリガラスの場合、1500~1650℃程度である。このようにしてガラス原料を溶融し、溶融ガラスとする。
 続いて、溶融ガラスを清澄、攪拌した後に、成形装置に供給し、所定の肉厚、表面品位を有するように溶融ガラスを平板形状に成形する。成形方法として、オーバーフローダウンドロー法、フロート法等を採用することができる。
 このようにして作製された平板形状の珪酸塩ガラスは、例えば、液晶ディスプレイ等の基板として使用される。
 次に、本発明に係るシリカ原料について説明する。
 本発明に係るシリカ原料は、以下の微量成分を含むことが好ましい。アルカリ土類金属成分の含有量は、酸化物換算で0.01~2質量%であり、好ましくは0.03~1質量%であり、より好ましくは0.05~0.5質量%である。アルカリ土類金属成分の含有量が少な過ぎると、溶融初期の温度でガスを放出し難くなる。一方、アルカリ土類金属成分の含有量が多過ぎると、溶融初期にガラスバッチが不当に吹き上がり、ガラス溶融窯の耐久寿命が低下し易くなる。なお、アルカリ土類金属成分は、炭酸塩の形態で含まれていることが好ましい。
 Mg成分の含有量は、MgO換算で、好ましくは0.01~0.3質量%、0.01~0.2質量%、又は0.02~0.1量%であり、特に好ましくは0.02~0.05質量%である。Mg成分の含有量が少な過ぎると、溶融初期の温度でガスを放出し難くなる。一方、Mg成分の含有量が多過ぎると、溶融初期にガラスバッチが不当に吹き上がり、ガラス溶融窯の耐久寿命が低下し易くなる。
 Ca成分の含有量は、CaO換算で、好ましくは0.01~0.5質量%、0.01~0.3質量%、0.01~0.2質量%、又は0.02~0.1量%であり、特に好ましくは0.02~0.05質量%である。Ca成分の含有量が少な過ぎると、溶融初期の温度でガスを放出し難くなる。一方、Ca成分の含有量が多過ぎると、溶融初期にガラスバッチが不当に吹き上がり、ガラス溶融窯の耐久寿命が低下し易くなる。
 Fe成分の含有量は、Fe換算で、好ましくは0.001~0.008質量%であり、特に好ましくは0.002~0.004量%である。Fe成分の含有量が少な過ぎると、シリカ原料の原料コストが高騰し易くなる。一方、Fe成分の含有量が多過ぎると、珪酸塩ガラスが着色し易くなる。
 Ti成分の含有量は、TiO換算で、好ましくは0.0005~0.008質量%であり、特に好ましくは0.001~0.004量%である。Ti成分の含有量が少な過ぎると、シリカ原料の原料コストが高騰し易くなる。一方、Ti成分の含有量が多過ぎると、珪酸塩ガラスが着色し易くなる。
 本発明の珪酸塩ガラスの製造方法において、ガラスバッチ中に、1000~1400℃の温度域でCOガスを発生させるシリカ原料を導入することが好ましく、1200~1400℃の温度域でCOガスを発生させるシリカ原料を導入することが好ましい。このようにすれば、溶融初期の温度で清澄力を的確に補うことができる。
 本発明の珪酸塩ガラスの製造方法において、ガラスバッチ中に、1000~1400℃の温度域でCOガスとHOガスを発生させるシリカ原料を導入することが好ましく、1200~1400℃の温度域でCOガスとHOガスを発生させるシリカ原料を導入することがより好ましい。このようにすれば、溶融初期の温度で清澄力を的確に補うことができる。
 シリカ原料中にアルカリ土類金属成分を少量導入する方法として、化学合成法を採用してもよいが、原料コストの観点から、アルカリ土類金属成分を少量含む天然原料を用いることが好ましい。例えば、ドロマイト鉱床の浸食作用により形成された高純度珪砂層を採取し、これをシリカ原料とすることが好ましい。
 本発明の珪酸塩ガラスの製造方法において、珪酸塩ガラスのガラス組成中のAsの含有量が0.05質量%未満、Sbの含有量が0.05質量%未満、SnOの含有量が0.01~1質量%になるように、ガラスバッチを調製することが好ましい。このようにすれば、近年の環境的要請を満しつつ、珪酸塩ガラスの泡品位を高め易くなる。
 SnOは、高温域で良好な清澄作用を有する成分であると共に、歪点を高める成分であり、また高温粘性を低下させる成分である。SnOの含有量は、好ましくは0.01~1質量%、又は0.05~0.5質量%であり、特に好ましくは0.1~0.3質量%である。SnOの含有量が多過ぎると、SnOの失透結晶が析出し易くなり、またZrOの失透結晶の析出を促進し易くなる。なお、SnOの含有量が0.01質量%より少ないと、上記効果を享受し難くなる。
 清澄剤として、AsやSbも有効である。しかし、本発明に係る珪酸塩ガラスは、これらの成分の含有を完全に排除するものではないが、環境的観点から、これらの成分を使用しないことが好ましい。更に、Asを多量に含有させると、耐ソラリゼーション性が低下する傾向にある。Asの含有量は0.05質量%未満が望ましく、Sbの含有量も0.05質量%未満が望ましい。
 本発明の珪酸塩ガラスの製造方法において、珪酸塩ガラスのガラス組成中のS成分の含有量がSO換算で0.01質量%未満(望ましくは0.005質量%未満)になるように、珪酸塩ガラスを作製することが好ましく、珪酸塩ガラスのガラス組成中のS成分の含有量がSO換算で0.01質量%未満(望ましくは0.005質量%未満)になるように、ガラスバッチを調製することが好ましい。SOは、清澄剤として作用するが、その含有量が多過ぎると、SOリボイルが発生し易くなる。
 なお、他の清澄剤として、F、Cl等のハロゲン化物、CeOを導入してもよい。なお、清澄剤としてF、Cl等のハロゲン化物を導入する場合、シリカ原料から発生したHOは、HFガス、HClガスとして放出される。
 本発明の珪酸塩ガラスの製造方法において、珪酸塩ガラスのガラス組成中のアルカリ金属酸化物の含有量が0.5質量%未満になるように、ガラスバッチを調製することが好ましい。このようにすれば、ディスプレイの製造工程において、半導体物質中にアルカリイオンが拡散する事態を防止し易くなる。具体的に言えば、アルカリ金属酸化物の含有量は、好ましくは0.5質量%未満、又は0.3質量%未満であり、特に好ましくは0.01~0.2質量%である。LiO、NaOの含有量は、各成分とも好ましくは0.3質量%未満であり、特に好ましくは0.2質量%未満である。KOの含有量は、好ましくは0.5質量%未満、又は0.3質量%未満であり、特に好ましくは0.01~0.2質量%である。
 本発明の珪酸塩ガラスの製造方法では、珪酸塩ガラスのガラス組成が、質量%で、SiO 50~80%、Al 5~25%、B 0~20%、MgO 0~15%、CaO 1~15%、SrO 0~15%、BaO 0~15%を含有するように、ガラスバッチを調製することが好ましい。上記のように珪酸塩ガラスのガラス組成を限定した理由を以下に示す。なお、各成分の含有範囲の説明において、%表示は、質量%を指す。
 SiOは、ガラスの骨格を形成する成分である。SiOの含有量は、好ましくは50~80%、54~70%、又は56~66%であり、特に好ましくは58~64%である。SiOの含有量が少な過ぎると、密度が高くなり過ぎると共に、耐酸性が低下し易くなる。一方、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなることに加えて、クリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
 Alは、ガラスの骨格を形成する成分であり、また歪点やヤング率を高める成分であり、更に分相を抑制する成分である。Alの含有量は、好ましくは5~25%、12~24%、又は15~22%であり、特に好ましくは16~21%である。Alの含有量が少な過ぎると、歪点、ヤング率が低下し易くなり、またガラスが分相し易くなる。一方、Alの含有量が多過ぎると、ムライトやアノーサイト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
 Bは、溶融性を高めると共に、耐失透性を高める成分である。Bの含有量は、好ましくは0~20%、0~12%、0~10%、又は0.5~8%であり、特に好ましくは1~7%である。Bの含有量が少な過ぎると、溶融性や耐失透性が低下し易くなり、またフッ酸系の薬液に対する耐性が低下し易くなる。一方、Bの含有量が多過ぎると、ヤング率や歪点が低下し易くなる。
 MgOは、高温粘性を下げて、溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量は、好ましくは0~15%、0~8%、0~7%、0~6%、又は0~3%であり、特に好ましくは0~2%である。MgOの含有量が少な過ぎると、溶融性やヤング率が低下し易くなる。一方、MgOの含有量が多過ぎると、耐失透性が低下し易くなると共に、歪点が低下し易くなる。
 CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分である。また、アルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は、好ましくは1~15%、3~11%、又は4~10%であり、特に好ましくは5~9%である。CaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、CaOの含有量が多過ぎると、ガラスが失透し易くなると共に、熱膨張係数が高くなり易い。
 SrOは、分相を抑制し、また耐失透性を高める成分である。更に、歪点を低下させずに、高温粘性を下げて、溶融性を高める成分であると共に、液相温度の上昇を抑制する成分である。SrOの含有量は、好ましくは0~15%、又は0.1~9%であり、特に好ましくは0.5~6%である。SrOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、SrOの含有量が多過ぎると、ストロンチウムシリケート系の失透結晶が析出し易くなって、耐失透性が低下し易くなる。
 BaOは、耐失透性を顕著に高める成分である。BaOの含有量は、好ましくは0~15%、0~12%、又は0.1~9%であり、特に好ましくは1~7%である。BaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、BaOの含有量が多過ぎると、密度が高くなり過ぎると共に、溶融性が低下し易くなる。またBaOを含む失透結晶が析出し易くなって、液相温度が上昇し易くなる。
 ZrOは、歪点、ヤング率を高める働きがある。しかし、ZrOの含有量が多過ぎると、耐失透性が顕著に低下する。特に、SnOを含有させる場合は、ZrOの含有量を厳密に規制することが好ましい。ZrOの含有量は好ましくは0.4%以下、又は0.3%以下であり、特に好ましくは0.01~0.2%である。
 上記成分以外にも、例えば、以下の成分を添加してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で好ましくは10%以下であり、特に好ましくは5%以下である。
 本発明の珪酸塩ガラスの製造方法では、珪酸塩ガラスの102.5dPa・sにおける温度が、好ましくは1500℃以上、1530℃以上、1540℃以上、又は1550℃以上になるように、ガラスバッチを調製することが好ましい。102.5dPa・sにおける温度は、溶融温度に相当し、この温度が高い程、難溶性になる。上記の通り、珪酸塩ガラスが難溶性である程、溶融初期の温度で清澄力を補う必要性が高くなり、本発明の効果が相対的に大きくなる。
 本発明の珪酸塩ガラスは、上記の珪酸塩ガラスの製造方法により作製されたことを特徴とする。本発明の珪酸塩ガラスの技術的特徴は、本発明の珪酸塩ガラスの製造方法の説明欄に記載済みである。よって、本発明の珪酸塩ガラスについて、詳細な説明を省略する。
 本発明の珪酸塩ガラス用シリカ原料は、アルカリ土類金属成分を酸化物換算で0.01~2質量%含むことを特徴とする。また、本発明の珪酸塩ガラス用シリカ原料は、1000~1400℃の温度域でCOガスを発生させることを特徴とする。更に、本発明の珪酸塩ガラス用シリカ原料は、1000~1400℃の温度域でCOガスとHOガスを発生させることが好ましい。本発明の珪酸塩ガラス用シリカ原料の技術的特徴は、本発明の珪酸塩ガラスの製造方法の説明欄に記載済みである。よって、本発明の珪酸塩ガラス用シリカ原料について、詳細な説明を省略する。
 以下、実施例に基づいて本発明を説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。
 試料No.1は、本発明の実施例であり、ドロマイト鉱床の浸食作用により形成された高純度珪砂層から採取したシリカ原料(珪砂)である。試料No.2は、本発明の比較例であり、一般的に使用されている従来のシリカ原料(珪砂)である。
 試料No.1、2の微量成分の含有量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 次に、試料No.1、2について、四重極質量分析装置により、200℃から1300℃までの温度範囲を8℃/分の昇温速度で加熱した際のCO放出量を測定した。その結果を図1に示す。更に、試料No.1、2について、四重極質量分析装置により、200℃から1300℃までの温度範囲を8℃/分の昇温速度で加熱した際のHO放出量を測定した。その結果を図2に示す。なお、図中において、(1)は試料No.1のデータを指し、(2)は試料No.2のデータを指している。
 図1、2から分かるように、試料No.1では、600℃から1200℃の広い温度範囲でCOガスとHOガスが発生している。一方、試料No.2では、高温加熱時にCOガスの発生は殆どなく、HOガスの発生量も少なかった。
 一般的な炭酸塩の分解は、800℃付近の温度で生じるが、試料No.1でも800℃付近の温度でCOガスの発生が認められた。更に、試料No.1では、炭酸塩の分解が終了している温度域、つまり1000℃以上の高温でもCOガスの発生が認められた。この現象は、シリカ粒子の内部に存在するアルカリ土類の炭酸塩が、シリカ粒子表面からCOガスとして放出されるまでに時間を要し、結果として、COガスが1000℃以上の高温で放出されたものであると考えられる。同様の理由により、試料No.1では、水酸化物塩の分解が終了している温度域、つまり1000℃以上の高温でもHOガスの発生が認められたものと考えられる。
 シリカ供給源として、試料No.1、2に係るシリカ原料を用いて、ガラスバッチを調製した後、常法に従い、無アルカリガラスを作製した。具体的には、珪酸塩ガラスが、ガラス組成として、質量%でSiO 60%、Al 19%、B 6.5%、MgO 2.3%、CaO 6%、SrO 0.5%、BaO 5.5%、SnO 0.2%を含有するように、各種ガラス原料を調合して、ガラスバッチを作製した。次に、得られたガラスバッチを連続溶融炉に投入し、1500~1600℃で溶融した後、溶融ガラスを清澄、攪拌した後に、成形装置に供給し、オーバーフローダウンドロー法により0.7mm厚の平板形状に成形し、更に1800mm×1500mmサイズに切断して、ガラス板を得た。最後に、得られたガラス板中に残存するSO量を測定した。なお、試料No.1に係るガラス板試料とNo.2に係るガラス板とは、シリカ原料以外の製造条件が同等である。
 その結果、試料No.2に係るガラス板は、試料No.1に係るガラス板に比べて、残存するSO量が1.3倍であった。また、試料No.2に係るガラス板は、試料No.1に係るガラス板に比べて、泡数が10倍であった。これは、試料No.1に係るシリカ原料を用いた場合、溶融時に1200℃付近の温度でCOガスが発生し、更にHOガスの発生量も多く、溶融初期の清澄力が補われたことに加えて、溶融ガラス中の溶存ガス量が低下したことによるものと考えられる。
 上記実験で得られた現象は、表2に示す材質(試料No.A~I)でも同様に生じるものと考えられる。
Figure JPOXMLDOC01-appb-T000002

Claims (19)

  1.  ガラスバッチを溶融、成形して、珪酸塩ガラスを得る珪酸塩ガラスの製造方法において、
     ガラスバッチ中に、アルカリ土類金属成分を酸化物換算で0.01~2質量%含むシリカ原料を導入することを特徴とする珪酸塩ガラスの製造方法。
  2.  ガラスバッチ中に、Mg成分をMgO換算で0.01~0.3質量%含むシリカ原料を導入することを特徴とする請求項1に記載の珪酸塩ガラスの製造方法。
  3.  ガラスバッチ中に、Ca成分をCaO換算で0.01~0.5質量%含むシリカ原料を導入することを特徴とする請求項1又は2に記載の珪酸塩ガラスの製造方法。
  4.  ガラスバッチ中に、Fe成分をFe換算で0.001~0.008質量%含むシリカ原料を導入することを特徴とする請求項1~3の何れか一項に記載の珪酸塩ガラスの製造方法。
  5.  ガラスバッチ中に、1000~1400℃の温度域でCOガスを発生させるシリカ原料を導入することを特徴とする請求項1~4の何れか一項に記載の珪酸塩ガラスの製造方法。
  6.  ガラスバッチ中に、1000~1400℃の温度域でCOガスとHOガスを発生させるシリカ原料を導入することを特徴とする請求項1~5の何れか一項に記載の珪酸塩ガラスの製造方法。
  7.  珪酸塩ガラスのガラス組成中のS成分の含有量がSO換算で0.01質量%未満になるように、珪酸塩ガラスを作製することを特徴とする請求項1~6の何れか一項に記載の珪酸塩ガラスの製造方法。
  8.  珪酸塩ガラスのガラス組成中のAsの含有量が0.05質量%未満、Sbの含有量が0.05質量%未満、SnOの含有量が0.01~1質量%になるように、ガラスバッチを調製することを特徴とする請求項1~7の何れか一項に記載の珪酸塩ガラスの製造方法。
  9.  珪酸塩ガラスのガラス組成中のアルカリ金属酸化物の含有量が0.5質量%未満になるように、ガラスバッチを調製することを特徴とする請求項1~8の何れか一項に記載の珪酸塩ガラスの製造方法。
  10.  珪酸塩ガラスのガラス組成が、質量%で、SiO 50~80%、Al 5~25%、B 0~20%、MgO 0~15%、CaO 1~15%、SrO 0~15%、BaO 0~15%を含有するように、ガラスバッチを調製することを特徴とする請求項1~9の何れか一項に記載の珪酸塩ガラスの製造方法。
  11.  オーバーフローダウンドロー法又はフロート法で平板形状に成形することを特徴とする請求項1~10の何れか一項に記載の珪酸塩ガラスの製造方法。
  12.  請求項1~11の何れか一項に記載の珪酸塩ガラスの製造方法により作製されたことを特徴とする珪酸塩ガラス。
  13.  アルカリ土類金属成分を酸化物換算で0.01~2質量%含むことを特徴とする珪酸塩ガラス用シリカ原料。
  14.  Mg成分をMgO換算で0.01~0.3質量%含むことを特徴とする請求項13に記載の珪酸塩ガラス用シリカ原料。
  15.  Ca成分をCaO換算で0.01~0.5質量%含むことを特徴とする請求項13又は14に記載の珪酸塩ガラス用シリカ原料。
  16.  Fe成分をFe換算で0.001~0.008質量%含むことを特徴とする請求項13~15の何れか一項に記載の珪酸塩ガラス用シリカ原料。
  17.  1000~1400℃の温度域でCOガスを発生させることを特徴とする珪酸塩ガラス用シリカ原料。
  18.  1000~1400℃の温度域でCOガスとHOガスを発生させることを特徴とする珪酸塩ガラス用シリカ原料。
  19.  天然珪砂であることを特徴とする請求項13~18の何れか一項に記載の珪酸塩ガラス用シリカ原料。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2015/054079 2014-02-28 2015-02-16 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料 WO2015129495A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167016820A KR102344757B1 (ko) 2014-02-28 2015-02-16 규산염 유리의 제조 방법, 규산염 유리 및 규산염 유리용 실리카 원료
CN201580004471.2A CN105916821B (zh) 2014-02-28 2015-02-16 硅酸盐玻璃的制造方法、硅酸盐玻璃及硅酸盐玻璃用二氧化硅原料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014037837 2014-02-28
JP2014-037837 2014-02-28
JP2014-209671 2014-10-14
JP2014209671A JP6562240B2 (ja) 2014-02-28 2014-10-14 珪酸塩ガラスの製造方法及び珪酸塩ガラス用シリカ原料

Publications (1)

Publication Number Publication Date
WO2015129495A1 true WO2015129495A1 (ja) 2015-09-03

Family

ID=54008818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054079 WO2015129495A1 (ja) 2014-02-28 2015-02-16 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料

Country Status (5)

Country Link
JP (1) JP6562240B2 (ja)
KR (1) KR102344757B1 (ja)
CN (1) CN105916821B (ja)
TW (1) TWI647188B (ja)
WO (1) WO2015129495A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319241B2 (en) * 2016-12-30 2022-05-03 Tunghsu Group Co., Ltd. Composition for preparing glass, glass article and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714698B (zh) * 2016-01-12 2021-01-01 日商日本電氣硝子股份有限公司 玻璃

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107801A (ja) * 2011-11-22 2013-06-06 Nippon Electric Glass Co Ltd ガラス基板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067408A (ja) 2002-08-02 2004-03-04 Nippon Electric Glass Co Ltd 無アルカリガラスの製造方法
CN1268567C (zh) * 2005-02-06 2006-08-09 河南安彩高科股份有限公司 一种无碱金属的玻璃组合物及其制法和应用
JP2009040675A (ja) * 2007-07-18 2009-02-26 Nippon Electric Glass Co Ltd 珪酸塩ガラスの製造方法、珪酸塩ガラス熔融用混合原料及び電子材料用ガラス物品
JP2012201524A (ja) 2011-03-24 2012-10-22 Nippon Electric Glass Co Ltd ガラス基板の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107801A (ja) * 2011-11-22 2013-06-06 Nippon Electric Glass Co Ltd ガラス基板の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI INABA ET AL.: "Genryo to Glass Batch Chogo", GLASS KOGAKU HANDBOOK, 5 July 1999 (1999-07-05), pages 286 - 294 *
KUNIO YOSHIDA: "Minami Vietnam - Cam Ranh Wan no Keisa", JOURNAL OF THE CERAMIC ASSOCIATION, JAPAN, 1 June 1963 (1963-06-01), pages 51 - 55 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319241B2 (en) * 2016-12-30 2022-05-03 Tunghsu Group Co., Ltd. Composition for preparing glass, glass article and use thereof

Also Published As

Publication number Publication date
KR102344757B1 (ko) 2021-12-29
CN105916821B (zh) 2020-07-10
CN105916821A (zh) 2016-08-31
TW201542481A (zh) 2015-11-16
JP2015178440A (ja) 2015-10-08
TWI647188B (zh) 2019-01-11
JP6562240B2 (ja) 2019-08-21
KR20160125350A (ko) 2016-10-31

Similar Documents

Publication Publication Date Title
JP5267464B2 (ja) 無アルカリガラスの製造方法
JP5233998B2 (ja) ガラス板およびその製造方法ならびにtftパネルの製造方法
TWI406836B (zh) Manufacture of alkali - free glass
JP2002201040A (ja) アルミノホウケイ酸ガラス
JP2006265001A (ja) ガラスおよびガラス製造方法
JP7333159B2 (ja) 無アルカリガラス基板の製造方法
WO2016017558A1 (ja) 高透過ガラス
JP7182871B2 (ja) ガラス
JP2016113363A (ja) 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料
CN109923082B (zh) 玻璃
JP5097295B2 (ja) 液晶表示装置用ガラス基板の製造方法
JP2021063010A (ja) ガラス
JP2018100208A (ja) ガラス
CN109843817B (zh) 玻璃
WO2018123505A1 (ja) 無アルカリガラス基板の製造方法
WO2018116731A1 (ja) ガラス
JP6562240B2 (ja) 珪酸塩ガラスの製造方法及び珪酸塩ガラス用シリカ原料
WO2021117360A1 (ja) アルカリ土類アルミノホウケイ酸ガラスの製造方法
JP2013107801A (ja) ガラス基板の製造方法
WO2021261446A1 (ja) 低アルカリガラス板の製造方法及び低アルカリガラス板
WO2022009855A1 (ja) アルカリ土類アルミノケイ酸ガラスの製造方法
WO2022130831A1 (ja) 無アルカリガラス基板の製造方法
JP6332612B2 (ja) 無アルカリガラスの製造方法
JP2012206861A (ja) ガラス基板の製造方法
CN117550799A (zh) 一种玻璃用组合物、无碱铝硅酸盐玻璃及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167016820

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755674

Country of ref document: EP

Kind code of ref document: A1