WO2021261446A1 - 低アルカリガラス板の製造方法及び低アルカリガラス板 - Google Patents

低アルカリガラス板の製造方法及び低アルカリガラス板 Download PDF

Info

Publication number
WO2021261446A1
WO2021261446A1 PCT/JP2021/023408 JP2021023408W WO2021261446A1 WO 2021261446 A1 WO2021261446 A1 WO 2021261446A1 JP 2021023408 W JP2021023408 W JP 2021023408W WO 2021261446 A1 WO2021261446 A1 WO 2021261446A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
low
glass plate
value
alkali glass
Prior art date
Application number
PCT/JP2021/023408
Other languages
English (en)
French (fr)
Inventor
晋吉 三和
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2022531978A priority Critical patent/JPWO2021261446A1/ja
Priority to CN202180014537.1A priority patent/CN115087626A/zh
Priority to KR1020227032260A priority patent/KR20230029583A/ko
Publication of WO2021261446A1 publication Critical patent/WO2021261446A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a low-alkali glass plate, and more specifically, is suitable for a display provided with a thin film transistor (TFT: Thin Film Transistor) having an oxide film such as IGZO or a low-temperature polysilicon (LTPS: Low Temperature p-Si) film.
  • TFT Thin Film Transistor
  • LTPS Low Temperature p-Si film
  • a glass plate is generally used as a support substrate in a flat panel display.
  • An electric circuit pattern such as a TFT is formed on the surface of this glass plate.
  • a low-alkali glass plate that does not substantially contain an alkali metal component is adopted for this type of glass plate so as not to adversely affect the TFT or the like.
  • the glass plate is exposed to a high temperature atmosphere in the process of forming an electric circuit pattern such as the process of forming a thin film and the process of patterning a thin film.
  • a high temperature atmosphere the structure of the glass is relaxed, so that the volume of the glass plate shrinks (hereinafter, the shrinkage of the glass is referred to as "heat shrinkage").
  • heat shrinkage occurs in the glass plate in the process of forming the electric circuit pattern, the shape and dimensions of the electric circuit pattern formed on the glass plate deviate from the design values, and a flat panel display having desired electrical performance can be obtained. It will be difficult. Therefore, it is desired that a glass plate having a thin film pattern such as an electric circuit pattern formed on the surface thereof, such as a glass plate for a flat panel display, has a small heat shrinkage rate.
  • the temperature is, for example, 450 ° C to 600 ° C when forming the oxide film or the low-temperature polysilicon film. It is exposed to a very high temperature atmosphere and is prone to thermal shrinkage, but since the electric circuit pattern is high-definition, it is difficult to obtain the desired electrical performance when thermal shrinkage occurs. Therefore, it is strongly desired that the glass plate used for such an application has a very small heat shrinkage rate.
  • molten glass is discharged onto a float bath filled with molten tin and stretched horizontally to form a glass ribbon, and then the glass ribbon is slowly cooled in a slow cooling furnace provided on the downstream side of the float bath.
  • This is a method of forming a glass plate.
  • the float method since the transport direction of the glass ribbon is horizontal, it is easy to lengthen the slow cooling furnace. Therefore, it is easy to sufficiently reduce the cooling rate of the glass ribbon in the slow cooling furnace. Therefore, the float method has an advantage that a glass plate having a small heat shrinkage rate can be easily obtained.
  • the float method has the disadvantage that it is difficult to form a thin glass plate, and after molding, the surface of the glass plate must be polished to remove tin adhering to the surface of the glass plate. There are disadvantages.
  • the down draw method is a method in which molten glass is stretched downward to form a plate.
  • the overflow downdraw method which is a kind of downdraw method, is a method of forming a glass ribbon by stretching the molten glass overflowing from both sides of a substantially wedge-shaped cross section (forming body) downward.
  • the molten glass overflowing from both sides of the molded body flows down along both side surfaces of the molded body and joins below the molded body. Therefore, in the overflow down draw method, the surface of the glass ribbon does not come into contact with anything other than air and is formed by surface tension. Therefore, even if the surface is not polished after molding, no foreign matter adheres to the surface and the surface is formed. Can obtain a flat glass plate. Further, according to the overflow down draw method, there is an advantage that a thin glass plate can be easily formed.
  • the molten glass flows downward from the molded body. If a long slow cooling furnace is to be placed under the molding, the molding must be placed at a high place. However, in practice, there are restrictions on the height at which the molded product can be placed due to restrictions on the height of the ceiling of the factory. That is, in the down draw method, there are restrictions on the length dimension of the slow cooling furnace, and it may be difficult to arrange a sufficiently long slow cooling furnace. When the length of the slow cooling furnace is short, the cooling rate of the glass ribbon becomes high, and it becomes difficult to form a glass plate having a small heat shrinkage rate.
  • Patent Document 1 discloses a low-alkali glass composition having a high strain point. Further, it is described in the same document that the lower the ⁇ -OH value representing the amount of water in the glass, the higher the strain point.
  • the higher the strain point the smaller the heat shrinkage rate.
  • the glass whose composition is designed so that the strain point is high has high viscosity, there is a problem that it is difficult to obtain a glass having excellent foam quality due to poor foam breakage.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a low-alkali glass plate having a high distortion point and excellent foam quality, and a method for producing the same.
  • the method for producing a low-alkali glass plate of the present invention has a glass composition of SiO 2 50 to 70%, Al 2 O 3 15 to 25%, B 2 O 3 1.8 to 4.5%, MgO in terms of glass composition. 0 ⁇ 10%, CaO 0 ⁇ 10%, SrO 0 ⁇ 10%, BaO 0 ⁇ 15%, ZnO 0 ⁇ 5%, ZrO 2 0 ⁇ 1%, TiO 2 0 ⁇ 5%, P 2 O 5 0 ⁇ 10
  • the "low alkaline glass” is a glass to which an alkali metal oxide component is not intentionally added, and specifically, the alkali metal oxides (Li 2 O, Na 2 O, and K) in the glass composition.
  • 2 O means glass having a content of 3000 ppm (mass) or less.
  • the content of the alkali metal oxide in the glass composition is preferably 500 ppm or less, particularly preferably 300 ppm or less.
  • the present invention since it is less B 2 O 3 content of the glass composition to be used, it is possible to obtain a high strain point glass sheet.
  • glass having a high strain point generally has a high viscosity, and it is difficult to achieve high foam quality. Therefore, in the present invention, if the B 2 O 3 content and the ⁇ -OH value are controlled according to the above formula and SnO 2 having a clarifying effect at a relatively high temperature is contained as an essential component, high foam quality can be achieved. I found out what I could do.
  • the glass composition is SiO 2 60 to 70%, B 2 O 3 1.8 to 3%, MgO 2 to 10%, BaO 0.1 to 15%, SnO 2 in terms of glass composition. It is preferable to obtain a low alkaline glass plate containing 0.1 to 0.3%.
  • electrical melting is a melting method in which electricity is applied to the glass and the Joule heat generated by the electricity is used to heat and melt the glass. It should be noted that the case where radiant heating by a heater or a burner is used as an auxiliary is not excluded.
  • the above configuration it is possible to suppress an increase in moisture in the atmosphere. As a result, it becomes possible to significantly suppress the water supply from the atmosphere to the glass, and it becomes easy to manufacture the glass having a high strain point. Further, since the glass melt is heated by using the heat generated by the glass itself (Joule heat), the glass can be heated efficiently. Therefore, it is possible to melt the raw material batch at a relatively low temperature.
  • radiant heating by burner combustion together it is preferable not to use radiant heating by burner combustion together.
  • "Do not use radiant heating by burner combustion together” means that radiant heating by burner combustion is not performed at all during normal production, and does not exclude the use of a burner at the start of production (at the time of temperature rise). In addition, it does not exclude the combined use of radiant heating with a heater at the time of production start-up or normal production.
  • the start-up of production refers to the period until the raw material batch melts into a glass melt and energization heating becomes possible.
  • the amount of water contained in the atmosphere in the melting kiln becomes extremely small, and the water supplied from the atmosphere into the glass can be significantly reduced. As a result, it becomes possible to produce glass having an extremely low water content.
  • equipment such as a burner, flue, fuel tank, fuel supply path, air supply device (in the case of air combustion), oxygen generator (in the case of oxygen combustion), exhaust gas treatment device, dust collector, etc. required for combustion heating It is unnecessary or can be greatly simplified, and it is possible to make the melting kiln compact and reduce the equipment cost.
  • boric acid anhydride as at least a part of the glass raw material as a source of boron.
  • the hydroxide raw material in the raw material batch.
  • a glass cullet is contained in the raw material to produce a low-alkali glass plate, and the ⁇ -OH value is 0.5 / mm or less in at least a part of the glass cullet. It is preferable to use a glass cullet made of glass.
  • glass cullet means defective glass generated during the production of glass, recycled glass recovered from the market, and the like.
  • ⁇ -OH value refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following formula.
  • ⁇ -OH value (1 / X) log (T 1 / T 2 )
  • X Glass wall thickness (mm)
  • T 1 Transmittance (%) at a reference wavelength of 3846 cm -1
  • T 2 Minimum transmittance (%) near hydroxyl group absorption wavelength 3600 cm -1
  • Low alkaline glass has a high volume resistance, so it tends to be harder to melt than glass containing alkali. Therefore, if the above configuration is adopted, the glass can be easily melted and the water content of the obtained glass can be further reduced.
  • the glass raw material and / or the melting conditions it is preferable to adjust the glass raw material and / or the melting conditions so that the ⁇ -OH value of the obtained glass is less than 0.26 / mm.
  • the strain point of the obtained glass is 700 ° C. or higher.
  • the "distortion point” is a value measured based on the method of ASTM C336-71.
  • the heat shrinkage of the obtained glass is preferably 20 ppm or less.
  • the "heat shrinkage rate” means that the glass is heated from room temperature to 500 ° C. at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and then heat-treated under the condition of lowering the temperature at a rate of 5 ° C./min. It is a value when measured later.
  • the low-alkali glass plate of the present invention has a glass composition of Al 2 O 3 15 to 21%, B 2 O 3 2 to 4%, MgO 0.1 to 10%, and CaO 0.1 to 10% by mass. , ZrO 20 to 0.5% and TiO 20 to 1% are preferably contained.
  • the low-alkali glass plate of the present invention has a glass composition of SiO 2 60 to 70%, B 2 O 3 2 to 3%, MgO 2 to 10%, BaO 0.1 to 15%, SnO 20 in terms of glass composition. It is preferably contained in an amount of 1 to 0.3%.
  • the strain point is preferably 700 ° C. or higher.
  • the heat shrinkage rate is preferably 20 ppm or less.
  • the low alkaline glass plate of the present invention it is preferable to use it as a glass plate on which an oxide TFT or a low temperature p-Si TFT is formed.
  • Oxide TFTs and low-temperature polysilicon TFTs have a high heat treatment temperature (around 450 to 600 ° C.) when formed on a substrate), and the circuit pattern becomes finer. Therefore, a glass plate used for this type of application is required to have a particularly small heat shrinkage rate. Therefore, the merit of adopting the glass plate of the present invention having a high distortion point is extremely large.
  • the method for producing a low alkali glass plate of the present invention has a glass composition of SiO 2 50 to 70%, Al 2 O 3 15 to 25%, B 2 O 3 1.8 to 3%, MgO 0 to 0 to 70% by mass. 10%, CaO 0 ⁇ 10% , SrO 0 ⁇ 10%, BaO 0 ⁇ 15%, ZnO 0 ⁇ 5%, ZrO 2 0 ⁇ 1%, TiO 2 0 ⁇ 5%, P 2 O 5 0 ⁇ 10%, SnO 2 contains 0.1 to 0.5%, ⁇ -OH value is less than 0.1 to 0.22 / mm, B 2 O 3 content is x (mass%), ⁇ -OH value.
  • the low alkali glass plate of the present invention has a glass composition of SiO 2 50 to 70%, Al 2 O 3 15 to 25%, B 2 O 3 1.8 to 3%, MgO 0 to 10%, by mass%.
  • B 2 O 3 content is x (mass%)
  • ⁇ -OH value is y ( / Mm)
  • the method of the present invention is a method for continuously producing a low-alkali glass plate, which is a batch preparation step for preparing a raw material batch, a melting step for melting the prepared raw material batch, and a clarification step for clarifying the melted glass. And a molding step of molding the clarified glass.
  • SiO 2 is a component that forms the skeleton of glass.
  • the lower limit of the content of SiO 2 is preferably 50%, 51%, 51.5%, 52%, 55%, 58%, particularly 60%.
  • the upper limit of the content of SiO 2 is preferably 70%, 69%, 68%, 67%, 66%, 65%, particularly 64%.
  • the content of SiO 2 is 50 to 70%, 50 to 69%, 50 to 68%, 51 to 67%, 51 to 66%, 51.5 to 65%, 52 to 64%, 55 to 64%, 58. It may be ⁇ 64%, 60 ⁇ 64%, or 60 ⁇ 70%. If the content of SiO 2 is too small, the density becomes too high and the acid resistance tends to decrease.
  • Al 2 O 3 is a component that forms the skeleton of glass, is a component that increases the strain point and Young's modulus, and is a component that further suppresses phase separation.
  • the lower limit of the content of Al 2 O 3 is preferably 15%, 15.5%, 16%, 16.5%, particularly 17%.
  • the upper limit of the content of Al 2 O 3 is preferably 25%, 24%, 23%, 22%, 21.5%, 21%, 20.5%, and particularly preferably 20%.
  • the content of Al 2 O 3 is 15 to 25%, 15 to 24%, 15 to 23%, 15.5 to 22%, 16 to 21.5%, 16.5 to 21%, 17 to 20.5. %, Or 17 to 20%.
  • the content of Al 2 O 3 is too small, the strain point and Young's modulus tend to decrease, and the glass tends to be phase-separated. On the other hand, if the content of Al 2 O 3 is too large, devitrified crystals such as mullite and anorthite are likely to precipitate, and the liquidus temperature is likely to rise.
  • B 2 O 3 is a component that enhances meltability and devitrification resistance.
  • the lower limit of the content of B 2 O 3 is preferably 1.8%, 1.9%, and particularly preferably 2%.
  • the upper limit of the content of B 2 O 3 is preferably 4.5%, 4.2%, 4%, 3%, 2.9%, and particularly preferably 2.8%.
  • the content of B 2 O 3 is 1.8 to 4.5%, 1.8 to 4.2%, 1.8 to 4%, 1.8 to 3%, 1.9 to 3%, 2 to It may be 3%, 2 to 2.9%, or 2 to 2.8%.
  • the content of B 2 O 3 is too small, the meltability and devitrification resistance tend to decrease, and the resistance to hydrofluoric acid-based chemicals tends to decrease.
  • the amount of water brought in from the batch may decrease too much.
  • the content of B 2 O 3 is too large, the strain point and Young's modulus tend to decrease. In addition, the amount of water brought in from the batch increases.
  • MgO is a component that lowers high-temperature viscosity and enhances meltability, and is a component that significantly increases Young's modulus among alkaline earth metal oxides.
  • the lower limit of the MgO content is preferably 0%, 0.1%, 1%, 1.5%, 2%, and particularly preferably 3%.
  • the upper limit of the MgO content is preferably 10%, 9%, 8%, 7.5%, 7%, and particularly preferably 6%.
  • the content of MgO is 0 to 10%, 0.1 to 10%, 0.1 to 9%, 1 to 8%, 1 to 7.5%, 1.5 to 7.5%, 2 to 7 %, 3 to 6%, or 2 to 10%. If the content of MgO is too small, the meltability and Young's modulus tend to decrease. On the other hand, if the content of MgO is too large, the devitrification resistance tends to decrease and the strain point tends to decrease.
  • CaO is a component that lowers the high-temperature viscosity and remarkably enhances the meltability without lowering the strain point. Further, among the alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that reduces the raw material cost.
  • the lower limit of the CaO content is preferably 0%, 0.1%, 1%, 2%, 3%, 3.5%, particularly 4%.
  • the upper limit of the CaO content is preferably 10%, 9%, 8%, 7%, particularly 6%.
  • the CaO content may be 0 to 10%, 0.1 to 10%, 1 to 10%, 2 to 9%, 3 to 8%, 3.5 to 7%, or 4 to 6%. If the CaO content is too low, it becomes difficult to enjoy the above effects. On the other hand, if the CaO content is too high, the glass tends to be devitrified and the coefficient of thermal expansion tends to be high.
  • SrO is a component that suppresses phase separation and enhances devitrification resistance. Further, it is a component that lowers the high-temperature viscosity and enhances the meltability without lowering the strain point. It is also a component that suppresses the rise in liquid phase temperature.
  • the lower limit of the SrO content is preferably 0%, 0.1%, particularly 0.5%.
  • the upper limit of the SrO content is preferably 10%, 9%, 8%, 7.5%, particularly 7%.
  • the content of SrO may be 0 to 10%, 0 to 9%, 0 to 8%, 0.1 to 8%, 0.5 to 7.5%, or 0.5 to 7%. If the content of SrO is too small, it becomes difficult to enjoy the above effect. On the other hand, if the content of SrO is too large, strontium silicate-based devitrified crystals are likely to precipitate, and the devitrification resistance is likely to decrease.
  • BaO is a component that significantly enhances devitrification resistance.
  • the lower limit of the BaO content is preferably 0%, 0.1%, particularly 0.5%.
  • the upper limit of the BaO content is preferably 15%, 14%, 13%, 12%, 11%, particularly 10.5%.
  • the BaO content may be 0 to 15%, 0 to 14%, 0 to 13%, 0 to 12%, 0.1 to 11%, 0.5 to 10.5%, or 0.1 to 15%. May be good. If the BaO content is too low, it becomes difficult to enjoy the above effects. On the other hand, if the BaO content is too high, the density becomes too high and the meltability tends to decrease. In addition, devitrified crystals containing BaO are likely to precipitate, and the liquidus temperature is likely to rise.
  • ZnO is a component that enhances meltability.
  • the ZnO content is preferably 0 to 5%, 0 to 4%, 0 to 3%, and particularly preferably 0 to 2%. If the ZnO content is too high, the glass tends to be devitrified and the strain point tends to decrease.
  • ZrO 2 is a component that enhances chemical durability.
  • the lower limit of the content of ZrO 2 is preferably 0%, particularly preferably 0.01%.
  • the upper limit of the content of ZrO 2 is preferably 1%, 0.5%, particularly 0.1%.
  • the content of ZrO 2 may be 0 to 1%, 0 to 0.5%, or 0.01 to 0.1%. If the content of ZrO 2 is too large, devitrification of ZrSiO 4 is likely to occur.
  • TiO 2 is a component that lowers high-temperature viscosity and enhances meltability. It is also a component that suppresses solarization.
  • the content of TiO 2 is preferably 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0-1%, and particularly preferably 0 to 0.1%. If the content of TiO 2 is too high, the glass is colored and the transmittance tends to decrease.
  • P 2 O 5 is a component that enhances the strain point and is a component that can suppress the precipitation of devitrified crystals of alkaline earth aluminosilicate type such as anorthite.
  • the content of P 2 O 5 is preferably 0 to 10%, 0 to 9%, 0 to 8%, 0 to 7%, 0 to 6%, and particularly preferably 0 to 5%. If the content of P 2 O 5 is too large, the glass tends to be phase-separated.
  • SnO 2 is a component having a good clarification effect in a high temperature range, a component that increases a strain point, and a component that lowers a high temperature viscosity. It also has the advantage of not eroding the molybdenum electrode.
  • the lower limit of the SnO 2 content is preferably 0.1%, particularly preferably 0.15%.
  • the upper limit of the SnO 2 content is preferably 0.5%, 0.45%, 0.4%, 0.35%, and particularly preferably 0.3%.
  • the content of SnO 2 is 0.1 to 0.5%, 0.1 to 0.45%, 0.1 to 0.4%, 0.1 to 0.35%, 0.1 to 0.3. %, Or 0.15 to 0.3%.
  • other components such as Cl and F can be contained in a total amount of 10% or less, particularly 5% or less.
  • As 2 O 3 and Sb 2 O 3 are not substantially contained from the viewpoint of the environment and the prevention of electrode erosion.
  • substantially free means that the glass raw material or glass cullet containing these components is not intentionally added to the glass batch. More specifically, it means that arsenic is 50 ppm or less as As 2 O 3 and antimony is 50 ppm or less as Sb 2 O 3 in the obtained glass.
  • Silica sand (SiO 2 ) or the like can be used as the silicon source.
  • alumina Al 2 O 3
  • aluminum hydroxide Al (OH) 3
  • orthoboric acid H 3 BO 3
  • anhydrous boric acid B 2 O 3
  • orthoboric acid contains water of crystallization, it is difficult to reduce the water content of the glass when the ratio of use is large, but it is preferable to use it because it has an effect of promoting initial batch melting.
  • the ratio of orthoboric acid used is 0.1% or more, 0.5% or more, particularly 1% or more, with respect to 100% of the boron source (B 2 O 3 conversion).
  • Alkaline earth metal sources include calcium carbonate (CaCO 3 ), magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), barium carbonate (BaCO 3 ), barium nitrate (Ba (NO 3 ) 2 ), Strontium carbonate (SrCO 3 ), strontium nitrate (Sr (NO 3 ) 2 ) and the like can be used.
  • Zinc oxide (ZnO) or the like can be used as the zinc source.
  • Zircon (ZrSiO 4 ) or the like can be used as the zirconia source.
  • a Zr-containing refractory such as zirconia electroformed refractory or dense zircon
  • the zirconia component is eluted from the refractory.
  • These elution components may also be used as a zirconia source.
  • Titanium oxide (TiO 2 ) or the like can be used as the titanium source.
  • aluminum metaphosphate (Al (PO 3 ) 3 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ) and the like can be used as the phosphorus source.
  • Tin oxide (SnO 2 ) or the like can be used as the tin source.
  • tin oxide When tin oxide is used, it is preferable to use tin oxide having an average particle size D 50 in the range of 0.3 to 50 ⁇ m, 2 to 50 ⁇ m, and particularly 5 to 50 ⁇ m.
  • An average particle ⁇ diameter D 50 of the tin oxide powder is less occur aggregation between particles tends to occur clogging in the preparation plant.
  • the average particle diameter D 50 of the tin oxide powder larger, the dissolution reaction of the glass melt of the tin oxide powder is delayed, no progress has fining of the melt.
  • chloride may be contained in the batch.
  • Chloride functions as a dehydrating agent that significantly reduces the water content of the glass. It also has the effect of promoting the action of tin compounds, which are clarifying agents. Further, chloride decomposes and volatilizes in a temperature range of 1200 ° C. or higher to generate clear gas, and the stirring effect suppresses the formation of a heterogeneous layer. Further, chloride has the effect of taking in and dissolving a silica raw material such as silica sand at the time of its decomposition.
  • chloride of an alkaline earth metal such as strontium chloride, aluminum chloride and the like can be used.
  • the nitrate raw material may be contained in the batch.
  • the nitrate raw material can efficiently function SnO 2 , which is a clarifying agent.
  • SnO 2 which is a clarifying agent.
  • the nitrate raw material for example, barium nitrate (Ba (NO 3 ) 2 ), strontium nitrate (Sr (NO 3 ) 2 ) and the like can be used.
  • the hydroxide raw material may be contained in the raw material batch.
  • the water content of the hydroxide raw material can be adjusted.
  • As the hydroxide raw material aluminum hydroxide (Al (OH) 3 ), magnesium hydroxide (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ) and the like can be used.
  • the batch contains substantially no arsenic compound and antimony compound. If these components are contained, the molybdenum electrode is eroded, which makes it difficult to stably electrically melt the molybdenum electrode for a long period of time. Moreover, these components are environmentally unfavorable.
  • the ratio of the glass cullet to the total amount of the raw material batch is preferably 1% by mass or more, 5% by mass or more, and particularly preferably 10% by mass or more.
  • the upper limit of the usage ratio of the glass cullet is preferably 50% by mass or less, 40% by mass or less, and particularly preferably 30% by mass or less.
  • the glass cullet used has a ⁇ -OH value of 0.5 / mm or less, 0.4 / mm or less, 0.35 / mm or less, 0.3 / mm or less, 0.25 / m or less. It is desirable to use a low-moisture glass cullet made of glass.
  • the lower limit of the ⁇ -OH value of the low-moisture glass cullet is not particularly limited, but is preferably 0.01 / mm or more, particularly 0.05 / mm or more.
  • the amount of the low-moisture glass cullet used is preferably 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more, particularly the total amount, based on the total amount of the glass cullet used. It is desirable to use a low-moisture glass cullet. If the ⁇ -OH value of the low-moisture glass cullet is not sufficiently low, or if the proportion of the low-moisture glass cullet used is small, the effect of lowering the ⁇ -OH value of the obtained glass becomes small.
  • the glass raw material, the glass cullet, or the raw material batch containing these may contain water. It may also absorb moisture in the atmosphere during storage. Therefore, in the present invention, it is preferable to introduce dry air into a raw material silo for weighing and supplying individual glass raw materials, a furnace front silo for putting the prepared raw material batch into a melting kiln, and the like.
  • a melting kiln that can be heated by the radiant heat generated by burner combustion and the Joule heat generated by energization between the electrodes.
  • a melting kiln capable of electric melting.
  • a melting kiln that can be electrically melted has a plurality of electrodes made of molybdenum, platinum, tin, etc. By applying electricity between these electrodes, electricity is energized in the glass melt, and the Joule heat causes electricity to flow through the glass melt. The glass is continuously melted. If ⁇ -OH can be controlled within a suitable range of the present patent, radiant heating by a heater or a burner may be used in combination. By using the radiant superheat by the burner together, the melting of the initial raw material batch can be efficiently promoted.
  • a molybdenum electrode As the electrode. Since the molybdenum electrode has a high degree of freedom in the placement location and the electrode shape, the optimum electrode placement and electrode shape can be adopted even for low-alkali glass that is difficult to conduct electricity, and energization heating becomes easy.
  • the electrode shape is preferably rod-shaped. If it is rod-shaped, it is possible to arrange a desired number of electrodes at arbitrary positions on the side wall surface and the bottom wall surface of the melting kiln while maintaining a desired distance between the electrodes.
  • the arrangement of the electrodes it is desirable to arrange a plurality of pairs on the wall surface of the melting kiln (side wall surface, bottom wall surface, etc.), particularly on the bottom wall surface with a short distance between the electrodes.
  • the glass contains an arsenic component or an antimony component, the molybdenum electrode cannot be used for the reason described above, and instead, it is necessary to use a tin electrode that is not eroded by these components.
  • the tin electrode has a very low degree of freedom in the arrangement location and the electrode shape, it is difficult to electrically melt the low-alkali glass.
  • the raw material batch put into the melting kiln is melted by radiant heat or Joule heat and becomes a glass melt (molten glass).
  • the chloride decomposes and volatilizes to remove the water in the glass into the atmosphere and reduce the ⁇ -OH value of the glass.
  • the polyvalent oxide such as a tin compound contained in the raw material batch dissolves in the glass melt and acts as a clarifying agent.
  • the tin component releases oxygen bubbles in the process of raising the temperature.
  • the released oxygen bubbles expand and float the bubbles contained in the glass melt and remove them from the glass.
  • the tin component absorbs oxygen bubbles in the temperature lowering process to eliminate the bubbles remaining in the glass.
  • the clarification step Next, the temperature of the molten glass is raised and clarified.
  • the clarification step may be performed in an independent clarification tank, or may be performed in a downstream portion in a melting kiln or the like.
  • the temperature of the glass melt becomes higher than that at the time of melting, oxygen bubbles are released from the clarifying agent component by the above reaction, and the bubbles contained in the glass melt can be expanded and floated to be removed from the glass.
  • the larger the temperature difference between the melting temperature and the clarification temperature the higher the clarification effect. Therefore, it is desirable to keep the melting temperature as low as possible.
  • the clarified glass is supplied to the molding apparatus and molded into a plate shape.
  • a stirring tank, a state adjusting tank, or the like may be arranged between the clarification tank and the molding apparatus, and the glass may be supplied to the molding apparatus after passing through these.
  • at least the contact surface with the glass of the connecting flow path connecting the melting kiln, the clarification tank, and the molding equipment (or the tanks provided between them) must be made of platinum or a platinum alloy. Is preferable.
  • the molding method is not particularly limited, but if the down draw method is adopted, which has restrictions on the length of the slow cooling furnace and it is difficult to reduce the heat shrinkage rate, the effect of the present invention can be easily enjoyed.
  • the down draw method it is preferable to adopt the overflow down draw method.
  • the overflow down draw method is to overflow the molten glass from both sides of a gutter-shaped refractory with a wedge-shaped cross section, and while merging the overflowed molten glass at the lower end of the gutter-shaped refractory, stretch the glass downward to form a plate. It is a method of molding into a shape.
  • the surface of the glass plate which should be the surface, does not come into contact with the gutter-shaped refractory and is formed in a free surface state. Therefore, it is possible to inexpensively manufacture a glass plate that is unpolished and has good surface quality, and it is easy to increase the size and thickness of the glass.
  • the structure and material of the gutter-shaped refractory used in the overflow downdraw method are not particularly limited as long as they can achieve desired dimensions and surface accuracy. Further, the method of applying a force when performing downward stretch molding is not particularly limited.
  • a method of rotating and stretching a heat-resistant roll having a sufficiently large width in contact with the glass may be adopted, or a plurality of pairs of heat-resistant rolls may be brought into contact with only the vicinity of the end face of the glass.
  • You may adopt the method of letting and stretching.
  • a slot down method or the like can be adopted.
  • the glass thus formed into a plate shape is cut into a predetermined size and subjected to various chemical or mechanical processing as necessary to become a glass plate.
  • the low-alkali glass plate obtained by the method of the present invention was obtained by raising the temperature of the glass from room temperature to 500 ° C. at a rate of 5 ° C./min, holding the glass at 500 ° C. for 1 hour, and then lowering the temperature at a rate of 5 ° C./min.
  • the heat shrinkage rate is preferably 20 ppm or less, 19 ppm or less, 18 ppm or less, 17 ppm or less, 16 ppm or less, particularly 15 ppm or less for the oxide TFT, and 14 ppm or less, 13 ppm or less, 12 ppm or less, 11 ppm or less for the polysilicon TFT. In particular, it is preferably 10 ppm or less.
  • the lower limit of the heat shrinkage rate is not limited, but is preferably 2 ppm or more, particularly preferably 3 ppm or more.
  • the low alkaline glass plate obtained by the method of the present invention has a ⁇ -OH value of less than 0.26 / mm, 0.24 / mm or less, 0.22 / mm or less, particularly 0.20 / mm or less. preferable. If the ⁇ -OH value is too large, the strain point of the glass will not be sufficiently high, and it will be difficult to significantly reduce the heat shrinkage rate.
  • the lower limit of the ⁇ -OH value is preferably 0.09 / mm or more, 0.1 / mm or more, 0.12 / mm or more, 0.14 / mm or more, and particularly preferably 0.15 / mm or more. ..
  • the glass dough must be melted at a high temperature, so that the erosion of the refractory that comes into contact with the glass melt increases, and there is a risk that foreign matter caused by the refractory will increase in the glass. be.
  • the low alkaline glass obtained by the method of the present invention preferably has a strain point of 700 ° C. or higher, 705 ° C. or higher, 710 ° C. or higher, 720 ° C. or higher, and particularly preferably 725 ° C. or higher. By doing so, it becomes easy to suppress the heat shrinkage of the glass plate in the manufacturing process of the oxide TFT or the low temperature polysilicon TFT. If the strain point is too high, the temperature at the time of molding or melting becomes too high, and the manufacturing cost of the glass plate tends to be high. Therefore, it is preferable that the strain point is 800 ° C. or lower, 790 ° C. or lower, and particularly preferably 780 ° C. or lower.
  • the low alkaline glass plate obtained by the method of the present invention is a glass having a temperature of 1700 ° C. or lower, 1640 ° C. or lower, 1630 ° C. or lower, 1620 ° C. or lower, 1615 ° C. or lower, particularly 1610 ° C. or lower at 10 2.5 dPa ⁇ s. It is preferably composed of.
  • the temperature at 10 2.5 dPa ⁇ s becomes high, the glass becomes difficult to melt, the manufacturing cost of the glass plate rises, and defects such as bubbles are likely to occur. If the temperature at 10 2.5 dPa ⁇ s is too low, it is difficult to design a high viscosity at the liquid phase temperature.
  • the temperature corresponding to 10 2.5 dPa ⁇ s is 1490 ° C. or higher, 1500 ° C. or higher, and particularly preferably 1510 ° C. or higher.
  • the "temperatur corresponding to 10 2.5 dPa ⁇ s" is a value measured by the platinum ball pulling method.
  • the low alkaline glass obtained by the method of the present invention is preferably made of glass having a liquid phase temperature of less than 1300 ° C, less than 1290 ° C, less than 1280 ° C, less than 1270 ° C, less than 1260 ° C, and particularly less than 1250 ° C.
  • a liquid phase temperature of less than 1300 ° C, less than 1290 ° C, less than 1280 ° C, less than 1270 ° C, less than 1260 ° C, and particularly less than 1250 ° C.
  • the liquidus temperature is an index of devitrification resistance, and the lower the liquidus temperature, the better the devitrification resistance.
  • the "liquid phase temperature” is set in a temperature gradient furnace set at 1100 ° C. to 1350 ° C. for 24 hours by putting the glass powder that has passed through a standard sieve of 30 mesh (500 ⁇ m) and remains in 50 mesh (300 ⁇ m) in a platinum boat. After holding, the platinum boat is taken out, and it refers to the temperature at which devitrification (crystal foreign matter) is observed in the glass.
  • Low alkali glass plate obtained by the method of the present invention has a viscosity of 10 4.0 dPa ⁇ s or more at the liquidus temperature, 10 4.1 dPa ⁇ s or more, 10 4.2 dPa ⁇ s or more, 10 4.3 dPa ⁇ s or higher, 10 4.4 dPa ⁇ s or higher, 10 4.5 dPa ⁇ s or higher, 10 4.6 dPa ⁇ s or higher, 10 4.7 dPa ⁇ s or higher, 10 4.8 dPa ⁇ s or higher, It is preferably made of glass having a temperature of 10 4.9 dPa ⁇ s or more, particularly 10 5.0 dPa ⁇ s or more.
  • the viscosity at the liquidus temperature is an index of moldability, and the higher the viscosity at the liquidus temperature, the better the moldability.
  • the "viscosity at the liquid phase temperature” refers to the viscosity of the glass at the liquid phase temperature, and can be measured by, for example, the platinum ball pulling method.
  • Table 1 shows examples (No. 1 to 9) of the present invention.
  • silica sand, aluminum oxide, borate anhydride, calcium carbonate, strontium nitrate, barium carbonate, aluminum metaphosphate, stannic oxide, strontium chloride, and barium chloride were mixed and blended so as to have the composition shown in Table 1.
  • a glass cullet having the same composition as the target composition ( ⁇ -OH value 0.1 / mm, 35% by mass based on the total amount of the raw material batch) was used in combination.
  • the glass raw material was supplied to an electric melting kiln that did not use burner combustion to melt it, and then the molten glass was clarified and homogenized in the clarification tank and the adjustment tank, and the viscosity was adjusted to be suitable for molding.
  • the maximum temperature in the clarification tank was the temperature shown in each table. The maximum temperature in the clarification tank was confirmed by monitoring the temperature of platinum or platinum alloy lined on the inner wall of the clarification tank.
  • the molten glass was supplied to an overflow down draw molding apparatus, molded into a plate shape, and then cut to obtain a glass sample having a thickness of 0.5 mm.
  • the molten glass that came out of the molten kiln was supplied to the molding apparatus while in contact with only platinum or a platinum alloy.
  • Example No. Nos. 1 to 9 satisfy the above formula, have a low ⁇ -OH value of 0.24 / mm or less, a high strain point of 715 ° C. or higher, a low heat shrinkage rate of 16 ppm or less, and excellent foam quality. ..
  • the ⁇ -OH value of glass was determined by measuring the transmittance of glass using FT-IR and using the following formula.
  • ⁇ -OH value (1 / X) log10 (T 1 / T 2 )
  • X Glass wall thickness (mm)
  • T 1 Transmittance (%) at a reference wavelength of 3846 cm -1
  • T 2 Minimum transmittance (%) near hydroxyl group absorption wavelength 3600 cm -1
  • the strain point was measured based on the method of ASTM C336-71.
  • the heat shrinkage was measured by the following method. First, as shown in FIG. 2A, a strip-shaped sample G having a size of 160 mm ⁇ 30 mm was prepared as a sample of the glass plate 1. Marking M was formed on each of both ends of the strip-shaped sample G in the long side direction at a position 20 to 40 mm away from the edge using # 1000 water-resistant abrasive paper. Then, as shown in FIG. 2B, the strip-shaped sample G on which the marking M was formed was folded in two along the direction orthogonal to the marking M to prepare sample pieces Ga and Gb. Then, only one sample piece Gb was subjected to a heat treatment in which the temperature was raised from room temperature (25 ° C.) to 500 ° C.
  • the amount of misalignment ( ⁇ L1, ⁇ L2) was read with a laser microscope, and the heat shrinkage rate was calculated by the following formula. Note that l 0 in the equation is the distance between the initial markings M.
  • Heat shrinkage rate [ ⁇ L 1 ( ⁇ m) + ⁇ L 2 ( ⁇ m) ⁇ ⁇ 10 3 ] / l 0 (mm) (ppm)
  • bubbles with a diameter of 100 ⁇ m or more were counted, and those having a diameter of 0.05 / kg or less were indicated as “ ⁇ ”, and those having a diameter of more than 0.05 / kg were indicated as “x”.
  • y ax + b (x is the content (% by mass) of B 2 O 3 , y is the ⁇ -OH value (/ mm), 0.03 ⁇ a ⁇ 0.04 and 0.02 ⁇ b ⁇ 0.1). The case where the expression was satisfied was evaluated as " ⁇ ”, and the case where the expression was not satisfied was evaluated as " ⁇ ".
  • the present invention it is possible to easily obtain a glass plate having a high strain point, good foam quality, and a small heat shrinkage ratio suitable for manufacturing an oxide TFT or a low-temperature polysilicon TFT.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Glass Compositions (AREA)

Abstract

歪点が高く、しかも泡品位に優れた低アルカリガラス板と、その製造方法を提供する。 ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~4.5%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有する低アルカリガラスとなるように原料バッチを調製するバッチ調製工程と、調製した原料バッチを溶融する溶融工程と、溶融されたガラスを清澄する清澄工程と、清澄されたガラスを板状に成形する成形工程とを含み、Bの含有量をx(質量%)、得られる低アルカリガラス板のβ-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.02<b<0.1の関係式が成り立つようにBの含有量及びβ―OH値を調整することを特徴とする。

Description

低アルカリガラス板の製造方法及び低アルカリガラス板
 本発明は、低アルカリガラス板に関し、詳細には、IGZO等の酸化物膜又は低温ポリシリコン(LTPS:Low Temperature p-Si)膜を有する薄膜トランジスタ(TFT:Thin Film Transistor)を備えるディスプレイなどに好適な低アルカリガラス板に関する。
 フラットパネルディスプレイには、一般的に、支持基板として、ガラス板が用いられている。このガラス板の表面上には、TFTなどの電気回路パターンが形成される。このため、この種のガラス板には、TFTなどに悪影響を及ぼさないように、アルカリ金属成分を実質的に含まない低アルカリガラス板が採用されている。
 またガラス板は、薄膜形成工程や、薄膜のパターニング工程などの電気回路パターンの形成工程において高温雰囲気に曝される。ガラス板が高温雰囲気に曝されると、ガラスの構造緩和が進行するため、ガラス板の体積が収縮(以下、このガラスの収縮のことを「熱収縮」という。)することとなる。電気回路パターンの形成工程においてガラス板に熱収縮が生じると、ガラス板上に形成される電気回路パターンの形状寸法が、設計値からずれてしまい、所望の電気的性能を有するフラットパネルディスプレイが得難くなってしまう。このため、フラットパネルディスプレイ用のガラス板など、電気回路パターンなどの薄膜パターンが表面に形成されるガラス板には、熱収縮率が小さいことが望まれている。
 特に、IGZO等の酸化物膜又は低温ポリシリコン膜を有するTFTを備える高精細なディスプレイ用のガラス板の場合、酸化物膜又は低温ポリシリコン膜を形成する際に、例えば450℃~600℃という非常に高い温度雰囲気に曝され、熱収縮が生じやすいが、電気回路パターンが高精細であるため、熱収縮が生じると所望する電気的性能が得難くなる。それゆえ、このような用途に使用されるガラス板には、熱収縮率が非常に小さいことが強く望まれている。
 ところで、フラットパネルディスプレイなどに用いられるガラス板の成形方法としては、フロート法や、オーバーフローダウンドロー法に代表されるダウンドロー法などが知られている。
 フロート法とは、溶融ガラスを溶融スズが満たされたフロートバスの上に流出させ、水平方向に引き延ばしてガラスリボンを形成した後に、フロートバスの下流側に設けられた徐冷炉においてガラスリボンを徐冷することにより、ガラス板を成形する方法である。フロート法では、ガラスリボンの搬送方向が水平方向となるため、徐冷炉を長くすることが容易である。このため、徐冷炉におけるガラスリボンの冷却速度を十分に低くしやすい。従って、フロート法には、熱収縮率の小さなガラス板が得やすいというメリットがある。
 しかしながら、フロート法では、薄いガラス板を成形することが困難であるというデメリットや、成形後に、ガラス板の表面を研磨して、ガラス板の表面に付着しているスズを除去しなければならないというデメリットがある。
 一方、ダウンドロー法は、溶融ガラスを下方に引き伸ばして板状に形成する方法である。ダウンドロー法の一種であるオーバーフローダウンドロー法は、横断面略楔形の成形体(forming body)の両側から溢れさせた溶融ガラスを下方に引き伸ばすことによりガラスリボンを成形する方法である。成形体の両側から溢れた溶融ガラスは、成形体の両側面に沿って流下し、成形体の下方において合流する。従って、オーバーフローダウンドロー法では、ガラスリボンの表面が、空気以外と接触せず、表面張力によって形成されるため、成形後に表面を研磨せずとも、表面に異物が付着しておらず、また表面が平坦なガラス板を得ることができる。また、オーバーフローダウンドロー法によれば、薄いガラス板を成形しやすいというメリットもある。
 その一方で、ダウンドロー法は、溶融ガラスが成形体から下方に向かって流下する。長い徐冷炉を成形体の下に配置しようとすると、成形体を高所に配置しなければならない。しかしながら、実際上は、工場の天井の高さ制約などにより、成形体を配置できる高さには制約がある。つまり、ダウンドロー法では、徐冷炉の長さ寸法に制約があり、十分に長い徐冷炉を配置することが困難である場合がある。徐冷炉の長さが短い場合、ガラスリボンの冷却速度が高くなるため、熱収縮率の小さなガラス板を成形することが困難となる。
 そこで、ガラスの歪点を高くして、ガラスの熱収縮率を小さくすることが提案されている。例えば特許文献1には、歪点の高い低アルカリガラス組成が開示されている。また同文献には、ガラス中の水分量を表すβ-OH値が低いほど、歪点が上昇することが記載されている。
特開2013-151407号公報
 図1に示すように、歪点が高くなるほど、熱収縮率は小さくなる。しかし歪点が高くなるように組成設計されたガラスは粘性が高いため、泡切れが悪く、泡品位に優れたガラスを得ることが難しいという問題がある。
 本発明は、かかる事情に鑑みてなされたものであり、その目的は、歪点が高く、しかも泡品位に優れた低アルカリガラス板と、その製造方法を提供することにある。
 本発明の低アルカリガラス板の製造方法は、ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~4.5%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有する低アルカリガラスとなるように原料バッチを調製するバッチ調製工程と、調製した原料バッチを溶融する溶融工程と、溶融されたガラスを清澄する清澄工程と、清澄されたガラスを板状に成形する成形工程とを含み、Bの含有量をx(質量%)、得られる低アルカリガラス板のβ-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.02<b<0.1の関係式が成り立つようにBの含有量及び、β-OH値を調整することを特徴とする。
 ここで「低アルカリガラス」とは、アルカリ金属酸化物成分を意図的に添加していないガラスであり、具体的にはガラス組成中のアルカリ金属酸化物(LiO、NaO、及びKO)の含有量が3000ppm(質量)以下であるガラスを意味する。なおガラス組成中のアルカリ金属酸化物の含有量は500ppm以下、特に300ppm以下であることが好ましい。
 本発明においては、使用するガラス組成のB含有量が少ないことから、歪点の高いガラス板を得ることが可能である。ただし歪点の高いガラスは、一般に粘性が高く、高い泡品位を達成することが難しい。そこで更に本発明では、B含有量とβ-OH値を上記式のとおり制御し、比較的高温で清澄効果を有するSnOを必須成分として含有させれば、高い泡品位をも達成できることを見出した。
 本発明の製造方法においては、ガラス組成として、質量%で、SiO 60~70%、B 1.8~3%、MgO 2~10%、BaO 0.1~15%、SnO 0.1~0.3%を含有する低アルカリガラス板を得ることが好ましい。
 本発明の製造方法においては、電気溶融することが好ましい。ここで「電気溶融」とは、ガラス中に電気を通電し、それによって発生するジュール熱でガラスを加熱、溶融する溶融方法である。なおヒーターやバーナーによる輻射加熱を補助的に利用する場合を排除するものではない。
 上記構成を採用すれば、雰囲気中の水分の増加を抑制することができる。結果として、雰囲気からガラスへの水分供給を大幅に抑制することが可能になり、歪点の高いガラスを製造することが容易になる。またガラス自身の発熱(ジュール熱)を利用してガラス融液を加熱することから、効率よくガラスを加熱できる。それゆえ比較的低温で原料バッチを溶融することが可能となる。
 本発明の製造方法においては、バーナー燃焼による輻射加熱を併用しないことが好ましい。「バーナー燃焼による輻射加熱を併用しない」とは、通常生産時にバーナー燃焼による輻射加熱を一切行わないことを意味し、生産立ち上げ時(昇温時)のバーナー使用を排除するものではない。また生産立ち上げ時や通常生産時に、ヒーターによる輻射加熱を併用することを排除するものではない。なお生産立ち上げ時とは、原料バッチが溶解してガラス融液になり、通電加熱が可能になるまでの期間を指す。
 上記構成を採用すれば、溶融窯内の雰囲気に含まれる水分量が極めて少なくなり、雰囲気からガラス中に供給される水分を大幅に減少させることができる。その結果、極めて水分含有量の低いガラスを製造することが可能になる。また燃焼加熱する際に必要な、バーナー、煙道、燃料タンク、燃料供給経路、空気供給装置(空気燃焼の場合)、酸素発生装置(酸素燃焼の場合)、排ガス処理装置、集塵機等の設備が不要、又は大幅に簡略化でき、溶融窯のコンパクト化、設備コストの低廉化を図ることが可能になる。
 本発明の製造方法においては、原料バッチ中に、硝酸塩原料を含有することが好ましい。
 本発明の製造方法においては、ホウ素源となるガラス原料の少なくとも一部に、無水ホウ酸を使用することが好ましい。
 上記構成を採用すれば、得られるガラスの水分量を低下させることが可能になる。
 本発明の製造方法においては、原料バッチ中に、水酸化物原料を含有することが好ましい。
 上記構成を採用すれば、得られるガラスの水分量を調整することが可能になる。
 本発明の製造方法においては、原料中に、ガラスカレットを含有し、低アルカリガラス板を製造する方法であって、ガラスカレットの少なくとも一部に、β-OH値が0.5/mm以下のガラスからなるガラスカレットを使用することが好ましい。ここで「ガラスカレット」とは、ガラスの製造中に生じた不良ガラス、又は市場から回収されたリサイクルガラス等を意味する。「β-OH値」は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた値を指す。
 β-OH値 = (1/X)log(T/T
 X:ガラス肉厚(mm)
 T:参照波長3846cm-1における透過率(%)
 T:水酸基吸収波長3600cm-1付近における最小透過率(%)
 低アルカリガラスは体積抵抗が高いことから、アルカリを含有するガラスに比べて溶融し難い傾向がある。そこで上記構成を採用すれば、ガラスの溶融が容易になるとともに、得られるガラスの水分量をさらに低下させることが可能になる。
 本発明の製造方法においては、得られるガラスのβ-OH値が0.26/mm未満となるように、ガラス原料及び/又は溶融条件を調節することが好ましい。
 上記構成を採用すれば、歪点が高く、熱収縮率の低いガラスを得ることが容易になる。
 本発明の製造方法においては、得られるガラスの歪点が700℃以上であることが好ましい。ここで「歪点」は、ASTM C336-71の方法に基づいて測定した値である。
 上記構成を採用すれば、熱収縮率が極めて小さいガラスを得ることができる。
 本発明の製造方法においては、得られるガラスの熱収縮率が20ppm以下となることが好ましい。ここで「熱収縮率」とは、ガラスを常温から500℃まで5℃/分の速度で昇温し、500℃で1時間保持した後に、5℃/分の速度で降温させる条件で熱処理した後に測定した時の値である。
 上記構成を採用すれば、酸化物TFT又は低温ポリシリコンTFTを形成するのに好適なガラス板を得ることができる。
 本発明の低アルカリガラス板は、ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~4.5%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有し、β-OH値が0.1~0.22/mm未満であり、Bの含有量をx(質量%)、β-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.02<b<0.1の関係式が成り立つことを特徴とする。
 本発明の低アルカリガラス板は、ガラス組成として、質量%で、Al 15~21%、B 2~4%、MgO 0.1~10%、CaO 0.1~10%、ZrO 0~0.5%、TiO 0~1%を含有することが好ましい。
 本発明の低アルカリガラス板は、ガラス組成として、質量%で、SiO 60~70%、B 2~3%、MgO 2~10%、BaO 0.1~15%、SnO 0.1~0.3%を含有することが好ましい。
 本発明の低アルカリガラス板においては、歪点が700℃以上であることが好ましい。
 本発明の低アルカリガラス板においては、熱収縮率が20ppm以下であることが好ましい。
 本発明の低アルカリガラス板においては、酸化物TFT又は低温p-SiTFTが形成されるガラス板として用いられることが好ましい。
 酸化物TFT、低温ポリシリコンTFTは、基板上に形成する際の熱処理温度が高温(450~600℃)付近)であり、しかも回路パターンがより微細になる。よってこの種の用途に使用されるガラス板には、特に熱収縮率の小さいものが必要になる。それゆえ歪点の高い本発明のガラス板を採用するメリットが極めて大きい。
 本発明の低アルカリガラス板の製造方法は、ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~3%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有し、β-OH値が0.1~0.22/mm未満であり、Bの含有量をx(質量%)、β-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.05<b<0.1の関係式が成り立つようにBの含有量及びβ―OH値を調整することを特徴とする。
 本発明の低アルカリガラス板は、ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~3%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有し、β-OH値が0.1~0.22/mm未満であり、Bの含有量をx(質量%)、β-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.05<b<0.1の関係式が成り立つことを特徴とする。
ガラスの歪点と熱収縮率の関係を示すグラフである。 ガラス板の熱収縮率の測定手順を説明するための平面図である。
 以下、本発明の低アルカリガラス板の製造方法を詳述する。
 本発明の方法は、低アルカリガラス板を連続的に製造する方法であり、原料バッチを調製するバッチ調製工程と、調製した原料バッチを溶融する溶融工程と、溶融されたガラスを清澄する清澄工程と、清澄されたガラスを成形する成形工程とを含む。以下、工程毎に詳述する。
 (1)バッチ調製工程
 まず、ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~4.5%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有する低アルカリガラスとなるようにガラス原料を調製する。上記のように、各成分の含有量を規制した理由を以下に説明する。なお以下の各成分の説明における%表示は、特に断りがない限り、質量%を指す。また使用する原料については後述する。
 SiOは、ガラスの骨格を形成する成分である。SiOの含有量の下限は50%、51%、51.5%、52%、55%、58%、特に60%であることが好ましい。またSiOの含有量の上限は70%、69%、68%、67%、66%、65%、特に64%であることが好ましい。例えばSiOの含有量は50~70%、50~69%、50~68%、51~67%、51~66%、51.5~65%、52~64%、55~64%、58~64%、60~64%、或いは60~70%としてもよい。SiOの含有量が少な過ぎると、密度が高くなり過ぎると共に、耐酸性が低下し易くなる。一方、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなる。またクリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
 Alは、ガラスの骨格を形成する成分であり、また歪点やヤング率を高める成分であり、更に分相を抑制する成分である。Alの含有量の下限は15%、15.5%、16%、16.5%、特に17%であることが好ましい。またAlの含有量の上限は25%、24%、23%、22%、21.5%、21%、20.5%、特に20%であることが好ましい。例えばAlの含有量は15~25%、15~24%、15~23%、15.5~22%、16~21.5%、16.5~21%、17~20.5%、或いは17~20%としてもよい。Alの含有量が少な過ぎると、歪点、ヤング率が低下し易くなり、またガラスが分相し易くなる。一方、Alの含有量が多過ぎると、ムライトやアノーサイト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
 Bは、溶融性を高めると共に、耐失透性を高める成分である。Bの含有量の下限は1.8%、1.9%、特に2%であることが好ましい。またBの含有量の上限は4.5%、4.2%、4%、3%、2.9%、特に2.8%であることが好ましい。例えばBの含有量は1.8~4.5%、1.8~4.2%、1.8~4%、1.8~3%、1.9~3%、2~3%、2~2.9%、或いは2~2.8%としてもよい。Bの含有量が少な過ぎると、溶融性や耐失透性が低下し易くなり、またフッ酸系の薬液に対する耐性が低下し易くなる。またバッチからの水分の持ち込み量が低下し過ぎる虞がある。一方、Bの含有量が多過ぎると、歪点やヤング率が低下し易くなる。またバッチからの水分の持ち込み量が多くなる。
 MgOは、高温粘性を下げて、溶融性を高める成分であり、アルカリ土類金属酸化物の中では、ヤング率を顕著に高める成分である。MgOの含有量の下限は0%、0.1%、1%、1.5%、2%、特に3%であることが好ましい。またMgOの含有量の上限は10%、9%、8%、7.5%、7%、特に6%であることが好ましい。例えばMgOの含有量は0~10%、0.1~10%、0.1~9%、1~8%、1~7.5%%、1.5~7.5%、2~7%、3~6%、或いは2~10%としてもよい。MgOの含有量が少な過ぎると、溶融性やヤング率が低下し易くなる。一方、MgOの含有量が多過ぎると、耐失透性が低下し易くなると共に、歪点が低下し易くなる。
 CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分である。また、アルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量の下限は0%、0.1%、1%、2%、3%、3.5%、特に4%であることが好ましい。またCaOの含有量の上限は10%、9%、8%、7%、特に6%であることが好ましい。例えばCaOの含有量は0~10%、0.1~10%、1~10%、2~9%、3~8%、3.5~7%、或いは4~6%としてもよい。CaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、CaOの含有量が多過ぎると、ガラスが失透し易くなると共に、熱膨張係数が高くなり易い。
 SrOは、分相を抑制し、また耐失透性を高める成分である。更に、歪点を低下させることなく、高温粘性を下げて、溶融性を高める成分である。また液相温度の上昇を抑制する成分である。SrOの含有量の下限は0%、0.1%、特に0.5%であることが好ましい。またSrOの含有量の上限は10%、9%、8%、7.5%、特に7%であることが好ましい。例えばSrOの含有量は0~10%、0~9%、0~8%、0.1~8%、0.5~7.5%、或いは0.5~7%としてもよい。SrOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、SrOの含有量が多過ぎると、ストロンチウムシリケート系の失透結晶が析出し易くなって、耐失透性が低下し易くなる。
 BaOは、耐失透性を顕著に高める成分である。BaOの含有量の下限は0%、0.1%、特に0.5%であることが好ましい。またBaOの含有量の上限は15%、14%、13%、12%、11%、特に10.5%であることが好ましい。例えばBaOの含有量は0~15%、0~14%、0~13%、0~12%、0.1~11%、0.5~10.5%、或いは0.1~15%としてもよい。BaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、BaOの含有量が多過ぎると、密度が高くなり過ぎると共に、溶融性が低下し易くなる。またBaOを含む失透結晶が析出し易くなって、液相温度が上昇し易くなる。
 ZnOは、溶融性を高める成分である。ZnOの含有量は0~5%、0~4%、0~3%、特に0~2%であることが好ましい。ZnOの含有量が多過ぎると、ガラスが失透し易くなり、また歪点が低下し易くなる。
 ZrOは、化学的耐久性を高める成分である。ZrOの含有量の下限は0%、特に0.01%であることが好ましい。またZrOの含有量の上限は1%、0.5%、特に0.1%であることが好ましい。例えばZrOの含有量は0~1%、0~0.5%、或いは0.01~0.1%としてもよい。ZrOの含有量が多過ぎると、ZrSiOの失透ブツが発生しやすくなる。
 TiOは、高温粘性を下げて、溶融性を高める成分である。またソラリゼーションを抑制する成分である。TiOの含有量は0~5%、0~4%、0~3%、0~2%、0~1%、特に0~0.1%であることが好ましい。TiOの含有量が多過ぎると、ガラスが着色して、透過率が低下し易くなる。
 Pは、歪点を高める成分であると共に、アノーサイト等のアルカリ土類アルミノシリケート系の失透結晶の析出を抑制し得る成分である。Pの含有量は0~10%、0~9%、0~8%、0~7%、0~6%、特に0~5%であることが好ましい。Pの含有量が多過ぎると、ガラスが分相し易くなる。
 SnOは、高温域で良好な清澄作用を有する成分であると共に、歪点を高める成分であり、また高温粘性を低下させる成分である。またモリブデン電極を浸食しないというメリットがある。SnOの含有量の下限は0.1%、特に0.15%であることが好ましい。またSnOの含有量の上限は0.5%、0.45%、0.4%、0.35%、特に0.3%であることが好ましい。例えばSnOの含有量は0.1~0.5%、0.1~0.45%、0.1~0.4%、0.1~0.35%、0.1~0.3%、或いは0.15~0.3%としてもよい。SnOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、SnOの含有量が多過ぎると、SnOの失透結晶が析出し易くなり、またZrOの失透結晶の析出を促進し易くなる。
 上記成分以外にも、Cl、F等その他の成分を合量で10%以下、特に5%以下含有させることができる。ただし、AsやSbは、環境上の観点や電極の浸食防止の観点から、実質的に含有しないことが好ましい。ここで「実質的に含有しない」とは、これらの成分を含むガラス原料やガラスカレットを、ガラスバッチに意図的に添加しないことを意味する。より具体的には、得られるガラス中に、ヒ素がAsとして50ppm以下、アンチモンがSbとして50ppm以下であることを意味する。
 次にバッチを構成するガラス原料について説明する。なお以下の各原料の説明における%表示は、特に断りがない限り、質量%を指す。
 珪素源として珪砂(SiO)等を用いることができる。
 アルミニウム源としてアルミナ(Al)、水酸化アルミニウム(Al(OH))等を用いることができる。
 ホウ素源としては、オルトホウ酸(HBO)や無水ホウ酸(B)を使用することができる。オルトホウ酸は結晶水を含むため、使用割合が大きい場合にはガラスの水分量を低下させにくくなるが、初期のバッチ溶融を促進する効果があるので、使用することが好ましい。具体的には、ホウ素源(B換算)100%に対して、オルトホウ酸の使用割合を0.1%以上、0.5%以上、特に1%以上とすることが好ましい。また、ガラスの水分量を適切に調整するため、無水ホウ酸の使用割合を高くすることが好ましい。具体的には、ホウ素源(B換算)100%に対して、無水ホウ酸の使用割合を50%以上、70%以上、特に90%以上とすることが好ましい。
 アルカリ土類金属源には、炭酸カルシウム(CaCO)、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、炭酸バリウム(BaCO)、硝酸バリウム(Ba(NO)、炭酸ストロンチウム(SrCO)、硝酸ストロンチウム(Sr(NO)等を用いることができる。
 亜鉛源として酸化亜鉛(ZnO)等を用いることができる。
 ジルコニア源としてジルコン(ZrSiO)等を用いることができる。なお溶融窯を構成する耐火物にとして、ジルコニア電鋳耐火物、デンスジルコン等のZr含有耐火物を使用する場合、耐火物からのジルコニア成分の溶出がある。これらの溶出成分もジルコニア源として利用してもよい。
 チタン源として酸化チタン(TiO)等を用いることができる。
 リン源としてメタリン酸アルミ(Al(PO)、ピロリン酸マグネシウム(Mg)等を用いることができる。
 スズ源として酸化錫(SnO)等を使用することができる。なお酸化錫を用いる場合、平均粒径D50が0.3~50μm、2~50μm、特に5~50μmの範囲にある酸化錫を用いることが好ましい。酸化錫粉末の平均粒径粒径D50が小さいと粒子間の凝集が起こり、調合プラントでの詰まりが生じ易くなる。一方、酸化錫粉末の平均粒径D50が大きいと、酸化錫粉末のガラス融液への溶解反応が遅れ、融液の清澄が進まない。結果としてガラス溶融の適切な時期に酸素ガスを十分に放出できなくなり、ガラス製品中に泡が残存し易く、泡品位に優れた製品を得ることが難しくなる。またガラス製品中に、SnO結晶の未溶解ブツが出現する事態を引き起こし易くなる。
 本発明においては、バッチ中に塩化物を含んでいてもよい。塩化物は、ガラスの水分量を大幅に低下させる脱水剤として機能する。また清澄剤である錫化合物の作用を促進する効果がある。さらに塩化物は、1200℃以上の温度域で分解、揮発して清澄ガスを発生し、その攪拌効果により異質層の形成を抑制する。また、塩化物は、その分解時に珪砂等のシリカ原料を取り込んで溶解させる効果がある。塩化物としては、例えば塩化ストロンチウム等のアルカリ土類金属の塩化物、塩化アルミニウム等を使用することができる。
 本発明においては、バッチ中に、硝酸塩原料を含んでいてもよい。硝酸塩原料は、清澄剤であるSnOを効率的に機能させることができる。硝酸塩原料としては、例えば硝酸バリウム(Ba(NO)、硝酸ストロンチウム(Sr(NO)等を使用することができる。
 本発明においては、原料バッチ中に水酸化物原料を含んでいてもよい。水酸化物原料は、水分量を調整することができる。水酸化物原料としては、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、水酸化カルシウム(Ca(OH))等を使用することができる。
 本発明においては、バッチ中にヒ素化合物及びアンチモン化合物を実質的に含まないようにすることが望ましい。これらの成分を含有していると、モリブデン電極を浸食するため、長期に亘って安定して電気溶融することが困難になる。またこれらの成分は、環境上好ましくない。
 本発明においては、上記したガラス原料に加えて、ガラスカレットを使用することが好ましい。ガラスカレットを使用する場合、原料バッチの総量に対するガラスカレットの使用割合は1質量%以上、5質量%以上、特に10質量%以上であることが好ましい。ガラスカレットの使用割合の上限に制約はないが、50質量%以下、40質量%以下、特に30質量%以下であることが好ましい。また使用するガラスカレットの少なくとも一部を、β-OH値が0.5/mm以下、0.4/mm以下、0.35/mm以下、0.3/mm以下、0.25/m以下のガラスからなる低水分ガラスカレットとすることが望ましい。なお低水分ガラスカレットのβ-OH値の下限値は特に制限されないが、0.01/mm以上、特に0.05/mm以上であることが好ましい。
 低水分ガラスカレットの使用量は、使用するガラスカレットの総量に対して50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上であることが好ましく、特に全量を低水分ガラスカレットとすることが望ましい。低水分ガラスカレットのβ-OH値が十分に低くない場合、或いは低水分ガラスカレットの使用割合が少ない場合は、得られるガラスのβ-OH値を低下させる効果が小さくなる。
 なお、ガラス原料、ガラスカレット或いはこれらを調合した原料バッチは、水分を含んでいることがある。また保管中に大気中の水分を吸収することもある。そこで本発明では、個々のガラス原料を秤量、供給するための原料サイロや、調製された原料バッチを溶融窯に投入するための炉前サイロ等の内部に乾燥空気を導入することが好ましい。
 (2)溶融工程
 次に、調製した原料バッチを溶融する。
 原料バッチの溶融には、バーナー燃焼による輻射熱や電極間の通電により発生するジュール熱で加熱可能な溶融窯を使用する。特に電気溶融が可能な溶融窯を使用することが好ましい。
 電気溶融可能な溶融窯は、モリブデン、白金、錫等からなる電極を複数有するものであり、これらの電極間に電気を印加することにより、ガラス融液中に電気が通電され、そのジュール熱によってガラスを連続的に溶融する。本特許の好適な範囲にβ-OHを制御できるのであればヒーターやバーナーによる輻射加熱を併用してもよい。バーナーによる輻射過熱を併用することにより、初期の原料バッチの溶融を効率的に進めることができる。
 電極としては、モリブデン電極を使用することが好ましい。モリブデン電極は、配置場所や電極形状の自由度が高いため、電気を通し難い低アルカリガラスであっても、最適な電極配置、電極形状を採用することができ、通電加熱が容易になる。電極形状としてはロッド状であることが好ましい。ロッド状であれば、溶融窯の側壁面や底壁面の任意の位置に、所望の電極間距離を保って、所望の数の電極を配置することが可能である。電極の配置は、溶融窯の壁面(側壁面、底壁面等)、特に底壁面に、電極間距離を短くして複数対配置することが望ましい。なおガラス中にヒ素成分やアンチモン成分が含まれている場合、既述の理由からモリブデン電極が使用できず、代わりにこれらの成分で浸食を受けない錫電極を使用する必要がある。ところが錫電極は、配置場所や電極形状の自由度が非常に低いため、低アルカリガラスを電気溶融することが難しくなる。
 溶融窯に投入された原料バッチは、輻射熱やジュール熱によって溶解し、ガラス融液(溶融ガラス)となる。原料バッチ中に塩化物が含まれている場合、塩化物が分解、揮発することによってガラス中の水分を雰囲気中に持ち去り、ガラスのβ-OH値を低減する。また原料バッチ中に含まれる錫化合物等の多価酸化物は、ガラス融液中に溶解し、清澄剤として作用する。例えば錫成分は、昇温過程で酸素泡を放出する。放出された酸素泡は、ガラス融液中に含まれる泡を拡大、浮上させてガラスから除去する。また錫成分は、降温過程では酸素泡を吸収することで、ガラス中に残存する泡を消滅させる。
 (3)清澄工程
 次に溶融されたガラスを昇温し、清澄する。清澄工程は、独立した清澄槽内で行ってもよいし、溶融窯内の下流部分等で行ってもよい。
 ガラス融液が溶融時よりも高温になると、上述の反応により、清澄剤成分から酸素泡が放出され、ガラス融液中に含まれる泡を拡大、浮上させてガラスから除去することができる。この際、溶融時の温度と清澄時の温度差が大きい程、清澄効果が高くなる。そのため、溶融時の温度をなるべく低くすることが望ましい。
 (4)成形工程
 次に、清澄されたガラスを成形装置に供給し、板状に成形する。なお清澄槽と成形装置の間に撹拌槽、状態調節槽等を配置し、これらを通過させた後に、成形装置にガラスを供給するようにしてもよい。また溶融窯、清澄槽、成形装置(或いはその間に設ける各槽)の間を繋ぐ連絡流路は、ガラスの汚染を防止するために、少なくともガラスとの接触面が白金又は白金合金製であることが好ましい。
 成形方法は特に制限されるものではないが、徐冷炉の長さの制約があり、熱収縮率を低減し難いダウンドロー法を採用すれば、本発明の効果を享受し易くなる。ダウンドロー法としては、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法とは、断面が楔状の樋状耐火物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状耐火物の下端で合流させながら、下方に延伸成形してガラスを板状に成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好なガラス板を安価に製造することができ、またガラスの大型化や薄型化も容易である。なお、オーバーフローダウンドロー法で用いる樋状耐火物の構造や材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、十分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。なおオーバーフローダウンドロー法以外にも、例えば、スロットダウン法等を採用することが可能である。
 このようにして板状に成形されたガラスは、所定のサイズに切断され、必要に応じて各種の化学的、或いは機械的な加工等が施され、ガラス板となる。
 次に本発明の方法によって作製可能な低アルカリガラス板について説明する。
 本発明の方法によって得られる低アルカリガラス板は、ガラスを常温から500℃まで5℃/分の速度で昇温し、500℃で1時間保持した後に、5℃/分の速度で降温させたときの熱収縮率が酸化物TFTでは20ppm以下、19ppm以下、18ppm以下、17ppm以下、16ppm以下、特に15ppm以下であることが好ましく、ポリシリコンTFTでは、14ppm以下、13ppm以下、12ppm以下、11ppm以下、特に10ppm以下となることが好ましい。熱収縮率が大きいと、酸化物TFT又は低温ポリシリコンTFTを形成するための基板として使用することが難しくなる。なお、熱収縮率の下限値は制限されないが、2ppm以上、特に3ppm以上であることが好ましい。
 本発明の方法によって得られる低アルカリガラス板は、β-OH値が0.26/mm未満、0.24/mm以下、0.22/mm未満、特に0.20/mm以下であることが好ましい。β-OH値が大きすぎると、ガラスの歪点が十分に高くならず、熱収縮率を大幅に低減することが難しくなる。また、β-OH値の下限値は0.09/mm以上、0.1/mm以上、0.12/mm以上、0.14/mm以上、特に0.15/mm以上であることが好ましい。β-OH値が小さすぎると、ガラス生地を高温で溶融しなければならないことから、ガラス融液と接触する耐火物の侵食が大きくなり,耐火物起因の異物等がガラス中に増加する虞がある。
 本発明の方法によって得られる低アルカリガラス板は、Bの含有量をx(質量%)、β-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.02<b<0.1の関係式が成り立つことが好ましい。このようにすれば、歪点が高く、且つ泡品位に優れた低アルカリガラス板を得やすくなる。
 本発明の方法によって得られる低アルカリガラスは、歪点が700℃以上、705℃以上、710℃以上、720℃以上、特に725℃以上であることが好ましい。このようにすれば、酸化物TFT又は低温ポリシリコンTFTの製造工程において、ガラス板の熱収縮を抑制し易くなる。歪点が高すぎると、成形時や溶解時の温度が高くなり過ぎて、ガラス板の製造コストが高沸し易くなる。従って、歪点が800℃以下、790℃以下、特に780℃以下であることが好ましい。
 本発明の方法によって得られる低アルカリガラス板は、102.5dPa・sにおける温度が1700℃以下、1640℃以下、1630℃以下、1620℃以下、1615℃以下、特に1610℃以下であるガラスからなることが好ましい。102.5dPa・sにおける温度が高くなると、ガラスが溶解し難くなって、ガラス板の製造コストが高騰すると共に、泡等の欠陥が生じ易くなる。102.5dPa・sにおける温度が低すぎると、液相温度における粘度を高く設計し難い。従って、102.5dPa・sに相当する温度が1490℃以上、1500℃以上、特に1510℃以上であることが好ましい。なお、「102.5dPa・sに相当する温度」は、白金球引き上げ法で測定した値である。
 本発明の方法によって得られる低アルカリガラスは、液相温度が1300℃未満、1290℃未満、1280℃未満、1270℃未満、1260℃未満、特に1250℃未満であるガラスからなることが好ましい。このようにすれば、ガラス製造時に失透結晶が発生し難く、生産性が低下する事態を防止し易くなる。更に、オーバーフローダウンドロー法で成形し易くなるため、ガラス板の表面品位を高め易くなると共に、ガラス板の製造コストを低廉化することができる。そして、近年のガラス板の大型化、及びディスプレイの高精細化の観点から、表面欠陥となり得る失透物を極力抑制するためにも、耐失透性を高める意義は非常に大きい。なお、液相温度は、耐失透性の指標であり、液相温度が低い程、耐失透性に優れる。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、1100℃から1350℃に設定された温度勾配炉中に24時間保持した後、白金ボートを取り出し、ガラス中に失透(結晶異物)が認められた温度を指す。
 本発明の方法によって得られる低アルカリガラス板は、液相温度における粘度が104.0dPa・s以上、104.1dPa・s以上、104.2dPa・s以上、104.3dPa・s以上、104.4dPa・s以上、104.5dPa・s以上、104.6dPa・s以上、104.7dPa・s以上、104.8dPa・s以上、104.9dPa・s以上、特に105.0dPa・s以上であるガラスからなることが好ましい。このようにすれば、成形時に失透が生じ難くなるため、オーバーフローダウンドロー法でガラス板を成形し易くなり、結果として、ガラス板の表面品位を高めることが可能になり、またガラス板の製造コストを低廉化することができる。なお、液相温度における粘度は、成形性の指標であり、液相温度における粘度が高い程、成形性が向上する。なお「液相温度における粘度」は、液相温度におけるガラスの粘度を指し、例えば白金球引き上げ法で測定可能である。
 次に、本発明方法を用いて製造したガラスについて説明する。表1は本発明の実施例(No.1~9)を示している。
Figure JPOXMLDOC01-appb-T000001
 
 まず表1の組成となるように珪砂、酸化アルミニウム、無水ホウ酸、炭酸カルシウム、硝酸ストロンチウム、炭酸バリウム、メタリン酸アルミ、酸化第二錫、塩化ストロンチウム、塩化バリウムを混合し、調合した。なお、目標組成と同じ組成のガラスカレット(β-OH値 0.1/mm、原料バッチの総量に対して35質量%使用)を併用した。
 次に、ガラス原料を、バーナー燃焼を併用しない電気溶融窯に供給して溶融し、続いて清澄槽、調整槽内で、溶融ガラスを清澄均質化するとともに、成形に適した粘度に調整した。また清澄槽内の最高温度は各表に示す温度とした。なお清澄槽内の最高温度は、清澄槽内壁に内貼りされた白金又は白金合金の温度をモニターすることにより確認した。
 続いて溶融ガラスをオーバーフローダウンドロー成形装置に供給し、板状に成形した後、切断することにより、0.5mm厚のガラス試料を得た。なお溶融窯を出た溶融ガラスは、白金又は白金合金のみと接触しながら成形装置へと供給された。
 得られたガラス試料について、β-OH値、歪点、熱収縮率、泡品位、y=ax+b(xはBの含有量(質量%)、yはβ-OH値(/mm)、0.03<a<0.04及び0.02<b<0.1)の式を満たすかを評価した。結果を表1に示す。
 表1から明らかなように、実施例No.1~9は、上記式を満たしており、β-OH値が0.24/mm以下と低く、歪点が715℃以上と高く、熱収縮率が16ppm以下と低く、泡品位に優れていた。
 なおガラスのβ-OH値は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた。
   β-OH値 = (1/X)log10(T1/T2
    X :ガラス肉厚(mm)
    T1:参照波長3846cm-1における透過率(%)
    T2:水酸基吸収波長3600cm-1付近における最小透過率(%)
 歪点は、ASTM C336-71の方法に基づいて測定した。
 熱収縮率は以下の方法で測定した。まず図2(a)に示すように、ガラス板1の試料として160mm×30mmの短冊状試料Gを準備した。この短冊状試料Gの長辺方向の両端部のそれぞれに、#1000の耐水研磨紙を用いて、端縁から20~40mm離れた位置でマーキングMを形成した。その後、図2(b)に示すように、マーキングMを形成した短冊状試料GをマーキングMと直交方向に沿って2つに折り割って、試料片Ga,Gbを作製した。そして、一方の試料片Gbのみを、常温(25℃)から500℃まで5℃/分で昇温させ、500℃で1時間保持した後に、5℃/分で常温まで降温させる熱処理を行った。上記熱処理後、図2(c)に示すように、熱処理を行っていない試料片Gaと、熱処理を行った試料片Gbを並列に配列した状態で、2つの試料片Ga,GbのマーキングMの位置ずれ量(△L1,△L2)をレーザー顕微鏡によって読み取り、下記の式により熱収縮率を算出した。なお、式中のlは、初期のマーキングM間の距離である。
 熱収縮率=[{ΔL(μm)+ΔL(μm)}×10]/l(mm) (ppm)
 泡品位は、直径100μm以上の泡を数え、0.05個/kg以下であった場合を「〇」、0.05/kg超であったものを「×」として表示した。
 y=ax+b(xはBの含有量(質量%)、yはβ-OH値(/mm)、0.03<a<0.04及び0.02<b<0.1)の式を満たした場合を「〇」、満たさなかった場合を「×」とした。
 本発明によれば、歪点が高く、泡品位が良好であり、しかも酸化物TFT又は低温ポリシリコンTFTの作製に好適な熱収縮率の小さなガラス板を容易に得ることができる。
 

Claims (19)

  1.  ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~4.5%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有する低アルカリガラスとなるように原料バッチを調製するバッチ調製工程と、
     調製した原料バッチを溶融する溶融工程と、溶融されたガラスを清澄する清澄工程と、清澄されたガラスを板状に成形する成形工程とを含み、
     Bの含有量をx(質量%)、得られる低アルカリガラス板のβ-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.02<b<0.1の関係式が成り立つようにBの含有量及びβ―OH値を調整することを特徴とする低アルカリガラス板の製造方法。
  2.  ガラス組成として、質量%で、SiO 60~70%、B 1.8~3%、MgO 2~10%、BaO 0.1~15%、SnO 0.1~0.3%を含有する低アルカリガラス板を得ることを特徴とする低アルカリガラス板の製造方法。
  3.  調製した原料バッチを電気溶融することを特徴とする請求項1又は2に記載の低アルカリガラス板の製造方法。
  4.  溶融工程において、バーナー燃焼による輻射加熱を併用しないことを特徴とする請求項3に記載の低アルカリガラス板の製造方法。
  5.  原料バッチ中に、硝酸塩原料を含有することを特徴とする請求項1~4の何れかに記載の低アルカリガラス板の製造方法。
  6.  ホウ素源となるガラス原料の少なくとも一部に、無水ホウ酸を使用することを特徴とする請求項1~5の何れかに記載の低アルカリガラス板の製造方法。
  7.  原料バッチ中に、水酸化物原料を含有することを特徴とする請求項1~6の何れかに記載の低アルカリガラス板の製造方法。
  8.  原料バッチ中に、ガラスカレットを含有し、ガラスカレットの少なくとも一部に、β-OH値が0.5/mm以下のガラスからなるガラスカレットを使用することを特徴とする請求項1~7の何れかに記載の低アルカリガラス板の製造方法。
  9.  得られるガラスのβ-OH値が0.26/mm未満となるように、ガラス原料及び/又は溶融条件を調節することを特徴とする請求項1~8の何れかに記載の低アルカリガラス板の製造方法。
  10.  得られるガラスの歪点が700℃以上であることを特徴とする請求項1~9の何れかに記載の低アルカリガラス板の製造方法。
  11.  得られるガラスの熱収縮率が20ppm以下となることを特徴とする請求項1~10の何れかに記載の低アルカリガラスの製造方法。
  12.  ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~4.5%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有し、β-OH値が0.1~0.2/mm未満であり、
     Bの含有量をx(質量%)、β-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.02<b<0.1の関係式が成り立つことを特徴とする低アルカリガラス板。
  13.  ガラス組成として、質量%で、Al 15~21%、B 2~4%、MgO 0.1~10%、CaO 0.1~10%、ZrO 0~0.5%、TiO 0~1%を含有することを特徴とする請求項12に記載の低アルカリガラス板。
  14.  ガラス組成として、質量%で、SiO 60~70%、B 2~3%、MgO 2~10%、BaO 0.1~15%、SnO 0.1~0.3%を含有することを特徴とする請求項12又は13に記載の低アルカリガラス板。
  15.  歪点が700℃以上であることを特徴とする請求項12~14の何れかに記載の低アルカリガラス板。
  16.  熱収縮率が20ppm以下であることを特徴とする請求項12~15の何れかに記載の低アルカリガラス板。
  17.  酸化物TFT又は低温p-SiTFTが形成されるガラス板として用いられることを特徴とする請求項12~16の何れかに記載の低アルカリガラス板。
  18.  ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~3%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有し、β-OH値が0.1~0.22/mm未満であり、
     Bの含有量をx(質量%)、β-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.05<b<0.1の関係式が成り立つようにBの含有量及びβ―OH値を調整することを特徴とする低アルカリガラス板の製造方法。
  19.  ガラス組成として、質量%で、SiO 50~70%、Al 15~25%、B 1.8~3%、MgO 0~10%、CaO 0~10%、SrO 0~10%、BaO 0~15%、ZnO 0~5%、ZrO 0~1%、TiO 0~5%、P 0~10%、SnO 0.1~0.5%を含有し、β-OH値が0.1~0.22/mm未満であり、
     Bの含有量をx(質量%)、β-OH値をy(/mm)としたとき、y=ax+b、0.03<a<0.04及び0.05<b<0.1の関係式が成り立つことを特徴とする低アルカリガラス板。
PCT/JP2021/023408 2020-06-25 2021-06-21 低アルカリガラス板の製造方法及び低アルカリガラス板 WO2021261446A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022531978A JPWO2021261446A1 (ja) 2020-06-25 2021-06-21
CN202180014537.1A CN115087626A (zh) 2020-06-25 2021-06-21 低碱玻璃板的制造方法和低碱玻璃板
KR1020227032260A KR20230029583A (ko) 2020-06-25 2021-06-21 저알칼리 유리판의 제조 방법 및 저알칼리 유리판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-109649 2020-06-25
JP2020109649 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261446A1 true WO2021261446A1 (ja) 2021-12-30

Family

ID=79281149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023408 WO2021261446A1 (ja) 2020-06-25 2021-06-21 低アルカリガラス板の製造方法及び低アルカリガラス板

Country Status (4)

Country Link
JP (1) JPWO2021261446A1 (ja)
KR (1) KR20230029583A (ja)
CN (1) CN115087626A (ja)
WO (1) WO2021261446A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286241A (zh) * 2022-08-09 2022-11-04 中建材玻璃新材料研究院集团有限公司 一种高断裂韧性的超薄柔性玻璃及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116731A1 (ja) * 2016-12-19 2018-06-28 日本電気硝子株式会社 ガラス
WO2019049768A1 (ja) * 2017-09-05 2019-03-14 日本電気硝子株式会社 無アルカリガラス基板の製造方法及び無アルカリガラス基板
WO2020080164A1 (ja) * 2018-10-17 2020-04-23 日本電気硝子株式会社 無アルカリガラス板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489983B1 (ko) * 2007-10-25 2015-02-04 아사히 가라스 가부시키가이샤 무알칼리 유리의 제조 방법
WO2013099855A1 (ja) 2011-12-29 2013-07-04 日本電気硝子株式会社 無アルカリガラス
KR102295451B1 (ko) * 2015-06-30 2021-08-27 아반스트레이트 가부시키가이샤 디스플레이용 유리 기판 및 그 제조 방법
JP6983377B2 (ja) * 2016-12-19 2021-12-17 日本電気硝子株式会社 ガラス
JP7333159B2 (ja) * 2016-12-26 2023-08-24 日本電気硝子株式会社 無アルカリガラス基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116731A1 (ja) * 2016-12-19 2018-06-28 日本電気硝子株式会社 ガラス
WO2019049768A1 (ja) * 2017-09-05 2019-03-14 日本電気硝子株式会社 無アルカリガラス基板の製造方法及び無アルカリガラス基板
WO2020080164A1 (ja) * 2018-10-17 2020-04-23 日本電気硝子株式会社 無アルカリガラス板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286241A (zh) * 2022-08-09 2022-11-04 中建材玻璃新材料研究院集团有限公司 一种高断裂韧性的超薄柔性玻璃及其制备方法

Also Published As

Publication number Publication date
KR20230029583A (ko) 2023-03-03
JPWO2021261446A1 (ja) 2021-12-30
CN115087626A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
TWI767049B (zh) 無鹼玻璃基板之製造方法及無鹼玻璃基板
JP7333159B2 (ja) 無アルカリガラス基板の製造方法
WO2018123505A1 (ja) 無アルカリガラス基板の製造方法
JP5304643B2 (ja) 無アルカリガラスの製造方法
JP7421161B2 (ja) 無アルカリガラス基板の製造方法及び無アルカリガラス基板
KR102569274B1 (ko) 유리판의 제조 방법
WO2021261446A1 (ja) 低アルカリガラス板の製造方法及び低アルカリガラス板
JP2016074551A (ja) 無アルカリガラスの製造方法
JP2014240332A (ja) ガラス基板の製造方法
WO2022054738A1 (ja) 低アルカリガラス板の製造方法及び低アルカリガラス板
TWI647188B (zh) 矽酸鹽玻璃的製造方法及矽酸鹽玻璃
WO2022130831A1 (ja) 無アルカリガラス基板の製造方法
JP6332612B2 (ja) 無アルカリガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828857

Country of ref document: EP

Kind code of ref document: A1