WO2015125450A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2015125450A1
WO2015125450A1 PCT/JP2015/000683 JP2015000683W WO2015125450A1 WO 2015125450 A1 WO2015125450 A1 WO 2015125450A1 JP 2015000683 W JP2015000683 W JP 2015000683W WO 2015125450 A1 WO2015125450 A1 WO 2015125450A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
raw material
hydrodesulfurizer
path
gas
Prior art date
Application number
PCT/JP2015/000683
Other languages
English (en)
French (fr)
Inventor
尾沼 重徳
谷口 昇
泰 金子
徹 壽川
酒井 修
祐一 見神
大 白濱
大塚 俊治
Original Assignee
パナソニック株式会社
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, Toto株式会社 filed Critical パナソニック株式会社
Priority to EP15752420.8A priority Critical patent/EP3109932B1/en
Priority to JP2015538188A priority patent/JP5886485B2/ja
Priority to US15/103,812 priority patent/US10014536B2/en
Publication of WO2015125450A1 publication Critical patent/WO2015125450A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • C01B2203/067Integration with other chemical processes with fuel cells the reforming process taking place in the fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • the fuel cell system is supplied with an organic compound containing carbon and hydrogen as raw materials.
  • the fuel cell system reforms the raw material inside the fuel cell to generate a reformed gas containing hydrogen.
  • the raw material is reformed by a reformer outside the fuel cell to generate a reformed gas.
  • the fuel cell can generate electricity and heat by a power generation reaction using hydrogen in the reformed gas and oxygen in the air supplied from the outside. .
  • Such a fuel cell system is expected as an effective energy supply system for reducing carbon dioxide, which is a cause of global warming, because it can efficiently obtain electric energy and thermal energy.
  • examples of raw materials used in the fuel cell system include liquefied petroleum gas (LPG), liquefied natural gas (LNG), city gas, shale gas, and methane hydrate.
  • LPG liquefied petroleum gas
  • LNG liquefied natural gas
  • methane hydrate a raw material contains a sulfur component in the raw material itself or an odorant added to the raw material.
  • the sulfur component poisons the anode, leading to deterioration of the fuel cell performance or in the reformer.
  • the reforming catalyst contained is poisoned and the reforming performance is deteriorated. Therefore, it is necessary to supply the raw material to the reformer and the anode after reducing the sulfur component in the raw material to the ppb or sub-ppb order.
  • a desulfurizer having a function of reducing sulfur components in the raw material is provided upstream of the reformer.
  • a normal temperature desulfurization method in which the sulfur component is physically adsorbed and removed at a normal temperature
  • a hydrodesulfurization method in which hydrogen is added to the raw material to remove the sulfur component.
  • a catalyst having a predetermined temperature range for example, about 150 ° C. to 350 ° C.
  • hydrogen sulfide is produced
  • the raw material is desulfurized using a hydrodesulfurizer
  • the raw material and hydrogen that have passed through the hydrodesulfurizer after the hydrodesulfurizer has reached a predetermined temperature (for example, 150 ° C.) are reformed. And needs to be supplied to the anode of the fuel cell.
  • the raw material that has passed through the room temperature desulfurizer is supplied to the reformer and the anode of the fuel cell until the hydrodesulfurizer reaches a predetermined temperature (for example, about 180 ° C.), Warm up the reformer and fuel cell.
  • a hydrodesulfurizer, a reformer, and a fuel cell are composed of a raw material that has passed through the anode of the reformer and the fuel cell, or its reformed gas, combusted with air supplied to the cathode of the fuel cell, and its combustion heat. And heated by the heat of the combustion exhaust gas.
  • the room temperature desulfurizer is low cost and the sulfur removal performance can adsorb all sulfur components in the raw material with ppb order or sub ppb order, only the room temperature desulfurizer may be used, and hydrodesulfurization is possible. No vessel is required. However, a room temperature desulfurizer cannot satisfy all of these requirements. On the other hand, the hydrodesulfurizer has high sulfur component removal performance and low cost, but requires heating and warming up.
  • the hydrodesulfurizer and the room temperature desulfurizer are often used in combination.
  • Patent Document 1 An example of a fuel cell system using such a hydrodesulfurizer and a room temperature desulfurizer is disclosed in Patent Document 1, for example.
  • the raw material passes through the room temperature desulfurizer during warm-up of the reformer, fuel cell, and hydrodesulfurizer. After these warm-ups are completed, the raw material passes through the room temperature desulfurizer, and the raw material bypasses the room temperature desulfurizer and switches to the path through the hydrodesulfurizer. Part of the gas is recycled to the raw material supply path upstream of the hydrodesulfurizer as recycled gas. Thereby, a raw material and hydrogen can be distribute
  • An object of the present invention is to provide a fuel cell system that can be used.
  • a fuel cell system includes a reformer that generates a reformed gas using a raw material, a fuel cell that generates electric power using the reformed gas, and a raw material supplied to the reformer.
  • a raw material supply path a hydrodesulfurizer that removes sulfur components in the raw material supplied to the reformer, and a part of the reformed gas as a recycle gas, the upstream of the hydrodesulfurizer
  • a recycling path for sending to the raw material supply path, a temperature detector for detecting the temperature of the hydrodesulfurizer, and a controller, wherein the controller sets the temperature of the hydrodesulfurizer to a predetermined temperature.
  • the flow rate of the raw material is increased by an amount corresponding to the recycle gas with respect to a predetermined flow rate, and then the recycle gas is started to be sent to the recycle path, and the recycle gas passes through the raw material supply path.
  • the recycle gas is started to be sent to the recycle path, and the recycle gas passes through the raw material supply path.
  • the recycle gas passes through the raw material supply path.
  • the fuel cell system according to one aspect of the present invention is configured as described above, and is more suitable for the problem of starting the sending of the recycle gas to the recycle path after the completion of the warm-up of the hydrodesulfurizer compared to the conventional case. Can respond.
  • FIG. 1 is a diagram illustrating an example of a fuel cell system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a fuel cell system according to the second embodiment.
  • FIG. 3 is a flowchart showing an example of the operation of the fuel cell system according to the first example of the second embodiment.
  • FIG. 4 is a flowchart showing an example of the operation of the fuel cell system according to the second example of the second embodiment.
  • FIG. 5 is a flowchart showing an example of the operation of the fuel cell system according to the third embodiment.
  • FIG. 6 is a flowchart showing an example of the operation of the fuel cell system according to the fourth embodiment.
  • FIG. 7 is a flowchart showing an example of the operation of the fuel cell system of the fifth embodiment.
  • FIG. 8 is a diagram illustrating an example of a fuel cell system according to the sixth embodiment.
  • FIG. 9 is a flowchart showing an example of the operation of the fuel cell system according to the sixth embodiment.
  • FIG. 10 is a flowchart illustrating an example of the operation of the fuel cell system according to the seventh embodiment.
  • FIG. 11 is a flowchart showing an example of the operation of the fuel cell system according to the modification of the seventh embodiment.
  • a reformer that generates a reformed gas using a raw material, a fuel cell that generates power using the reformed gas, and a raw material supplied to the reformer circulate.
  • a raw material supply path, a hydrodesulfurizer that removes sulfur components in the raw material supplied to the reformer, and a part of the reformed gas as recycled gas are sent to the raw material supply path upstream of the hydrodesulfurizer.
  • the predetermined flow rate is a flow rate corresponding to a predetermined power generation amount of the fuel cell.
  • the fuel cell system increases the flow rate of the raw material supplied to the reformer by an amount equivalent to the recycle gas when starting to send the recycle gas to the recycle path. Therefore, even if the flow rate of the reformed gas supplied to the anode of the fuel cell is temporarily reduced by starting the sending of the recycled gas to the recycling path after the hydrodesulfurizer is warmed up, The amount of reformed gas produced can be increased by increasing the amount.
  • FIG. 1 is a diagram illustrating an example of a fuel cell system according to the first embodiment.
  • the fuel cell system 100 of this embodiment includes a hydrodesulfurizer 10, a reformer 11, a fuel cell 12, a raw material supply path 13, a recycle path 14, and a temperature detector 15. And a combustor 19 and a controller 30.
  • the reformer 11 generates reformed gas using raw materials. Specifically, in the reformer 11, the raw material undergoes a reforming reaction to generate a reformed gas containing hydrogen.
  • the reforming reaction may take any form, and examples thereof include a steam reforming reaction, an oxidative steam reforming reaction (Oxidative-Steam-Reforming), an autothermal reaction, and a partial oxidation reaction.
  • the reforming reaction is a steam reforming reaction, an oxidative steam reforming reaction or an autothermal reaction, an evaporator for evaporating water supplied to the reformer, and a water supply device for supplying water to the evaporator Is provided.
  • the reforming reaction is a partial oxidation reaction, an oxidative steam reforming reaction, or an autothermal reaction
  • the fuel cell system 100 is provided with an air supplier that supplies air to the reformer.
  • the oxidative steam reforming reaction is performed in the reformer 11
  • the reforming reaction is likely to proceed in terms of heat balance, which is advantageous in that the reformer 11 can be made smaller than the steam reforming reaction. is there. Therefore, the configuration in which such oxidative steam reforming reaction is performed will be described in detail in the second embodiment.
  • the reformer 11 is filled with a reforming catalyst in a container.
  • a reforming catalyst for example, an alumina support impregnated with at least one of nickel, ruthenium, platinum, and rhodium can be used.
  • the reforming catalyst is not limited to this example, and any material may be used as long as the reforming catalyst can proceed when the reforming catalyst is maintained in an optimum temperature range. .
  • the raw material LPG gas, propane gas, butane gas, gas containing an organic compound such as city gas mainly containing methane, kerosene, alcohol, or the like can be used.
  • the raw material may be heated and vaporized before being supplied to the reformer 11.
  • the raw material is supplied from a raw material supply source (not shown).
  • the raw material supply source has a predetermined supply pressure, and examples thereof include a raw material cylinder and a raw material infrastructure.
  • the fuel cell 12 generates power using the reformed gas. Specifically, the reformed gas from the reformer 11 is supplied to the anode of the fuel cell 12, and air from the outside is supplied to the cathode of the fuel cell 12. Thereby, the fuel cell 12 generates power using hydrogen in the reformed gas and oxygen in the air.
  • the electric power obtained by the power generation of the fuel cell 12 is supplied to an external load via a terminal (not shown). Examples of the external load include home power consumption devices, business power consumption devices, and devices constituting a wireless base station such as a mobile phone.
  • the fuel cell 12 has a configuration in which a plurality of fuel cell single cells that generate power by performing a power generation reaction between the anode and the cathode of the fuel cell 12 are connected in series.
  • the fuel cell 12 may be of any type, and examples thereof include a polymer electrolyte fuel cell, a solid oxide fuel cell, and a phosphoric acid fuel cell. In the case where the fuel cell 12 is a solid oxide fuel cell, the reformer 11 and the fuel cell 12 may be built in one container.
  • the raw material supply device is a device that adjusts the flow rate of the raw material supplied to the reformer 11, and is constituted by, for example, a booster and a flow rate adjustment valve, but may be constituted by any one of these.
  • a booster for example, a constant displacement pump is used, but is not limited thereto.
  • the hydrodesulfurizer 10 removes sulfur components in the raw material supplied to the reformer 11.
  • a container is filled with a hydrodesulfurization agent.
  • a hydrodesulfurization agent for example, a CuZn-based catalyst having both a function of converting a sulfur compound into hydrogen sulfide and a function of adsorbing hydrogen sulfide is used.
  • the hydrodesulfurization agent is not limited to this example, but is a CoMo-based catalyst that converts a sulfur compound in a raw material into hydrogen sulfide, and a ZnO that is provided downstream thereof and adsorbs and removes hydrogen sulfide. You may comprise by a system catalyst or a CuZn system catalyst.
  • the hydrodesulfurizer 10 When the hydrodesulfurizing agent contains copper and zinc, the hydrodesulfurizer 10 has an operating temperature range of about 150 ° C. to 350 ° C.
  • the recycle path 14 is a flow path for sending a part of the reformed gas as a recycle gas to the raw material supply path 13 upstream of the hydrodesulfurizer 10.
  • the upstream end of the recycle path 14 may be connected to any location as long as it is a flow path through which a gas containing hydrogen sent from the reformer 11 flows.
  • equipment necessary for the recycling path 14 is provided as appropriate.
  • a booster, an on-off valve, a condenser, and the like may be provided in the recycling path 14.
  • a constant displacement pump is used, and the pressure of the recycle gas flowing through the recycle path is increased to adjust the flow rate of the recycle gas.
  • a heat exchanger is used as the condenser, and the water vapor in the recycle gas is condensed by heat exchange, and the water vapor is removed from the recycle gas.
  • the temperature detector 15 detects the temperature of the hydrodesulfurizer 10.
  • the temperature detector 15 may have any configuration as long as the temperature of the hydrodesulfurizer 10 can be detected directly or indirectly.
  • the temperature detector 15 may be provided in the hydrodesulfurizer 10 to directly detect the temperature of the hydrodesulfurizer 10, or a predetermined location (for example, correlated with the temperature of the hydrodesulfurizer 10)
  • a temperature detector 15 may be provided in a pipe or reformer 11 or the like forming the raw material supply path 13 to indirectly detect the temperature of the hydrodesulfurizer 10.
  • a temperature detector 15 is disposed in the hydrodesulfurizer 10. Examples of the temperature detector 15 include a thermocouple or a thermistor.
  • the hydrodesulfurization agent may contain nickel (Ni) as a catalyst metal.
  • Ni nickel
  • the raw material and the recycle gas are supplied to the hydrodesulfurizing agent at a low temperature (for example, less than 150 ° C.) before the hydrodesulfurizer 10 is warmed up, nickel carbonyl gas may be generated.
  • the temperature of the hydrodesulfurization agent in the hydrodesulfurizer 10 is detected using the temperature detector 15, it is appropriately avoided that such nickel carbonyl gas is generated. it can.
  • the combustor 19 burns reformed gas containing hydrogen.
  • the fuel of the combustor 19 may be any fuel.
  • anode off gas discharged from the fuel cell 12 may be used as the combustion fuel.
  • anode off gas is sent from the anode of the fuel cell 12 to the combustor 19
  • cathode off gas is sent from the cathode of the fuel cell 12 to the combustor 19.
  • combustion exhaust gas is produced
  • the controller 30 increases the flow rate of the raw material supplied to the reformer 11 by an amount equivalent to the recycle gas with respect to the predetermined flow rate, and then the recycle path. After the recycle gas starts to be sent to 14 and the recycle gas reaches the upstream end of the recycle path 14 via the raw material supply path 13, the above-described flow rate of the raw material is controlled to return to a predetermined flow rate.
  • the controller 30 may have any configuration as long as it has a control function.
  • the controller 30 includes, for example, an arithmetic processing unit and a storage unit that stores a control program. Examples of the arithmetic processing unit include an MPU and a CPU. An example of the storage unit is a memory.
  • the controller 30 may be configured by a single controller that performs centralized control, or may be configured by a plurality of controllers that perform distributed control in cooperation with each other.
  • the flow rate of the raw material supplied to the reformer 11 increases by an amount equivalent to the recycled gas. Therefore, even if the flow rate of the reformed gas supplied to the anode of the fuel cell 12 is temporarily reduced by starting the sending of the recycled gas to the recycle path 14 after the warming-up of the hydrodesulfurizer 10 is completed, the reforming is performed.
  • the amount of reformed gas produced can be increased by increasing the reaction gas flow rate.
  • the fuel cell system according to the second embodiment is the same as the fuel cell system according to the first embodiment, and includes an evaporator that evaporates water supplied to the reformer and a water supplier that supplies water to the evaporator.
  • the quality device uses steam and raw materials to generate reformed gas, and the controller, when the temperature of the hydrodesulfurizer reaches a predetermined temperature, the flow rate of water is equivalent to the recycle gas with respect to the predetermined flow rate. After increasing the amount, sending of the recycle gas is started to the recycle route, and after the recycle gas reaches the upstream end of the recycle route via the raw material supply route, control is performed to return the water flow rate to a predetermined flow rate.
  • the predetermined flow rate is a flow rate corresponding to a predetermined power generation amount of the fuel cell.
  • the flow rate of water supplied to the reformer increases by an amount equivalent to the recycle gas. Therefore, even if the flow rate of the reformed gas supplied to the anode of the fuel cell is temporarily reduced by starting the sending of the recycled gas to the recycling path after the hydrodesulfurizer is warmed up, The amount of reformed gas produced can be increased by increasing the amount.
  • the fuel cell system of the present embodiment may be configured in the same manner as the fuel cell system of the first embodiment except for the above features.
  • FIG. 2 is a diagram illustrating an example of a fuel cell system according to the second embodiment.
  • the fuel cell system 100 of the present embodiment includes a hydrodesulfurizer 10, a reformer 11, a fuel cell 12, a raw material supply path 13, a recycle path 14, and a temperature detector 15. And an evaporator 16, a water supplier 17, an air supplier 18, a combustor 19, and a controller 30.
  • the evaporator 16 evaporates the water supplied to the reformer 11.
  • the evaporator 16 may have any configuration as long as the water supplied to the reformer 11 can be evaporated.
  • Examples of the evaporator 16 include a heat exchanger that can vaporize water by heat exchange with a high-temperature heating fluid.
  • the water supplier 17 supplies water to the evaporator 16.
  • the water supplier 17 may have any configuration as long as it can supply water to the evaporator 16.
  • the water supply device 17 is a device that adjusts the flow rate of the water for reforming reaction supplied to the evaporator 16, and includes, for example, a booster and a flow rate adjustment valve.
  • a booster for example, a constant displacement pump is used, but is not limited thereto.
  • an appropriate flow rate detector is disposed in a path for sending water from the water supply unit 17 to the evaporator 16.
  • the air supply unit 18 supplies air to the reformer 11.
  • the air supplier 18 may have any configuration as long as it can supply air to the reformer 11.
  • the air supply unit 18 is a device that adjusts the flow rate of the reforming reaction air supplied to the reformer 11, and includes, for example, a booster and a flow rate adjustment valve.
  • a booster for example, a constant displacement pump is used, but is not limited thereto.
  • the reformer 11 generates reformed gas using water vapor and raw materials.
  • steam, air, and raw materials are supplied to the reformer 11, whereby an oxidative steam reforming reaction is performed in the reformer 11.
  • the controller 30 increases the flow rate of water sent to the reformer 11 by an amount equivalent to the recycle gas with respect to the predetermined flow rate, and then enters the recycle path. After the recycle gas starts to be sent and the recycle gas reaches the upstream end of the recycle path through the raw material supply path, control is performed to return the water flow rate to a predetermined flow rate.
  • the flow rate of water supplied to the reformer 11 is increased by an amount equivalent to the recycle gas. Therefore, even if the flow rate of the reformed gas supplied to the anode of the fuel cell 12 is temporarily reduced by starting the sending of the recycled gas to the recycle path 14 after the warming-up of the hydrodesulfurizer 10 is completed, the reforming is performed.
  • the amount of reformed gas produced can be increased by increasing the reaction gas flow rate.
  • the fuel cell system 100 of the present embodiment has the same configuration as that of FIG. 1 or FIG. Since the configuration is the same as that of the first embodiment or the second embodiment, description thereof is omitted.
  • FIG. 3 is a flowchart showing an example of the operation of the fuel cell system according to the first example of the second embodiment. The following operations are performed by the control program of the controller 30.
  • the hydrodesulfurizer 10 when the hydrodesulfurizer 10 is warmed up earlier than the reformer 11 and the fuel cell 12, for example, the fuel cell system 100 is starting up and the fuel cell 12 starts generating power.
  • the fuel cell system 100 is starting up and the fuel cell 12 starts generating power.
  • an example of starting the delivery of the recycled gas to the recycling path 14 will be described.
  • step S1 it is determined whether or not the temperature of the hydrodesulfurizer 10 is equal to or higher than a predetermined temperature.
  • a predetermined temperature For example, when the hydrodesulfurization agent contains copper and zinc, the hydrodesulfurizer 10 has an operating range of about 150 ° C. to 350 ° C. at an appropriate temperature. Therefore, in this case, the predetermined temperature in step S1 is set to 180 ° C., for example.
  • the flow rate of the reforming water supplied to the reformer 11 and the flow rate of the raw material supplied to the reformer 11 are not changed, and the state is maintained as it is. .
  • step S2 the flow rate of the reforming water supplied to the reformer 11 is set to the predetermined reforming water flow rate. Increase the amount of recycled gas equivalent.
  • step S3 the flow rate of the raw material supplied to the reformer 11 is increased by an amount equivalent to the recycle gas with respect to the predetermined raw material flow rate.
  • the recycle gas is operated aiming at 10% of the reformed gas (within a range of 2.5-20%), so the predetermined raw material flow rate is increased by 10%.
  • step S4 the sending of the recycle gas to the recycle path 14 is started.
  • the hydrodesulfurizer 10 can perform hydrodesulfurization of a raw material using this hydrogen.
  • steps S2 to S4 are performed for the following reason.
  • the flow rate of reforming water supplied to the reformer 11 is increased by an amount equivalent to the recycle gas with respect to a predetermined reforming water flow rate. Further, the flow rate of the raw material supplied to the reformer 11 is increased by an amount equivalent to the recycle gas with respect to the predetermined raw material flow rate. Thereafter, the sending of the recycle gas to the recycle path 14 is started. For this reason, when the sending of the recycle gas to the recycle path 14 is started, the amount of reformed gas generated in the reformer 11 is increased, whereby the amount of reformed gas supplied from the reformer 11 to the fuel cell 12 is reduced. Increase.
  • step S5 it is determined whether or not a predetermined time has elapsed since the start of sending the recycle gas to the recycle path 14.
  • the predetermined time is set to, for example, a time when the recycle gas is assumed to have reached the upstream end of the recycle path 14 via the recycle path 14 and the raw material supply path 13.
  • This time is, for example, the flow rate of the recycle gas, the cross-sectional area of the recycle path 14 and the raw material supply path 13, and the path from the upstream end of the recycle path 14 to the upstream end of the recycle path 14 again via the raw material supply path 13. Can be derived using the length.
  • step S5 Until the predetermined time of step S5 has passed, the flow rate of the reforming water supplied to the reformer 11 and the flow rate of the raw material supplied to the reformer 11 are not changed, and the state is maintained as it is.
  • step S5 when the predetermined time in step S5 has elapsed, the process proceeds to the next step, and in step S6, the flow rate of the raw material supplied to the reformer 11 is reduced so as to return to the predetermined raw material flow rate.
  • step S7 the flow rate of the reforming water supplied to the reformer 11 is decreased so as to return to the predetermined reforming water flow rate.
  • the amount (0.49 g / min) increased from the predetermined reforming water flow is returned to the predetermined reforming water flow before the increase. Further, the amount increased from the predetermined raw material flow rate (0.21 NL / min) is returned to the predetermined raw material flow rate before the increase (2.1 L / min).
  • steps S6 and S7 are performed for the following reason.
  • step S1 the method of deriving the temperature of the hydrodesulfurizer 10 in step S1 and the predetermined time in step S5 is an example, and is not limited to this example.
  • the fuel cell system 100 of the present embodiment has the same configuration as that of FIG. 1 or FIG. Since the configuration is the same as that of the first embodiment or the second embodiment, description thereof is omitted.
  • FIG. 4 is a flowchart showing an example of the operation of the fuel cell system according to the second example of the second embodiment. The following operations are performed by the control program of the controller 30.
  • step S1 it is determined whether or not the temperature of the hydrodesulfurizer 10 is equal to or higher than a predetermined temperature.
  • a predetermined temperature For example, when the hydrodesulfurization agent contains copper and zinc, the hydrodesulfurizer 10 has an operating range of about 150 ° C. to 350 ° C. at an appropriate temperature. Therefore, in this case, the predetermined temperature in step S1 is set to 180 ° C., for example.
  • the flow rate of the reforming water supplied to the reformer 11 and the flow rate of the raw material supplied to the reformer 11 are not changed, and the state is maintained as it is. .
  • step S2 the flow rate of the reforming water supplied to the reformer 11 is set to a predetermined power generation amount of the fuel cell 12 in step S2.
  • step S3 the flow rate of the raw material supplied to the reformer 11 is increased by an amount equivalent to the recycle gas with respect to the raw material flow rate corresponding to the predetermined power generation amount of the fuel cell 12.
  • step S4 the sending of the recycle gas to the recycle path 14 is started.
  • hydrogen can be added to the raw material which goes to the hydrodesulfurizer 10, As a result, the hydrodesulfurizer 10 can perform the hydrodesulfurization of a raw material using this hydrogen.
  • steps S2 to S4 described above are performed for the following reasons in addition to the reasons described in the first embodiment.
  • the anode since the anode expands and stress is generated in the anode, the anode may be damaged. Thereafter, when the fuel gas diffusion-controlled state returns to the normal operation state, nickel oxide is reduced to nickel. When the anode is repeatedly expanded and contracted, a repeated stress acts on the anode, and the damage of the anode may progress. In this way, it is considered that the durability of the anode is lowered.
  • the flow rate of reforming water supplied to the reformer 11 is increased by an amount equivalent to the recycle gas with respect to the reforming water flow rate corresponding to the predetermined power generation amount of the fuel cell 12. ing. Further, the flow rate of the raw material supplied to the reformer 11 is increased by an amount equivalent to the recycle gas with respect to the raw material flow rate corresponding to a predetermined power generation amount of the fuel cell 12. Thereafter, the sending of the recycle gas to the recycle path 14 is started. For this reason, when the sending of the recycle gas to the recycle path 14 is started, the amount of reformed gas generated in the reformer 11 is increased, whereby the amount of reformed gas supplied from the reformer 11 to the fuel cell 12 is reduced. Increase. Therefore, since the increase in the fuel utilization rate at the anode of the fuel cell 12 can be suppressed, the voltage drop in the fuel cell 12 can be suppressed as compared with the conventional case, and the possibility that the anode breaks down can be reduced.
  • step S5 it is determined whether or not a predetermined time has elapsed since the start of sending the recycle gas to the recycle path 14.
  • the predetermined time is set to, for example, a time when the recycle gas is assumed to have reached the upstream end of the recycle path 14 via the recycle path 14 and the raw material supply path 13.
  • This time is, for example, the flow rate of the recycle gas, the cross-sectional area of the recycle path 14 and the raw material supply path 13, and the time from the upstream end of the recycle path 14 to the upstream end of the recycle gas path 14 via the raw material supply path 13 again. It can be derived using the path length.
  • step S5 Until the predetermined time of step S5 has passed, the flow rate of the reforming water supplied to the reformer 11 and the flow rate of the raw material supplied to the reformer 11 are not changed, and the state is maintained as it is.
  • step S5 the process proceeds to the next step, and in step S6, the flow rate of the raw material supplied to the reformer 11 is reduced so as to return to the raw material flow rate corresponding to the power generation amount.
  • step S7 the flow rate of the reforming water supplied to the reformer 11 is reduced so as to return to the reforming water flow rate corresponding to the power generation amount.
  • steps S6 and S7 are performed for the following reason.
  • step S1 the method of deriving the temperature of the hydrodesulfurizer 10 in step S1 and the predetermined time in step S5 is an example, and is not limited to this example.
  • the fuel cell system includes a reformer that generates a reformed gas using a raw material, a fuel cell that generates power using the reformed gas, and a raw material supply through which the raw material supplied to the reformer circulates.
  • a recycling path, a temperature detector for detecting the temperature of the hydrodesulfurizer, and a controller are provided. During the power generation of the fuel cell, the controller before the temperature of the hydrodesulfurizer reaches a predetermined temperature.
  • the amount of power generated by the fuel cell Controls the amount of power generated by the fuel cell to be equal to or less than the amount of power required to drive the fuel cell system so that no power is supplied to the external load. However, on the recycling route via the raw material supply route After reaching the end, the amount of power generated by the fuel cell to an external load control back to the amount capable of supplying power carried out.
  • the fuel utilization rate is lowered to maintain the temperature of the fuel cell.
  • the fuel cell system when starting to send the recycle gas to the recycle path, the fuel cell system is operated with the power generation amount of the fuel cell equal to or less than the power consumption necessary for driving the fuel cell system.
  • the fuel cell system 100 of the present embodiment has a configuration similar to that of FIG. 1 or FIG. Since the configuration is the same as that of the first embodiment or the second embodiment, description thereof is omitted.
  • FIG. 5 is a flowchart showing an example of the operation of the fuel cell system according to the third embodiment. The following operations are performed by the control program of the controller 30.
  • the fuel cell system 100 is generating power and the fuel cell 12 is rated.
  • a description will be given of an example in which the sending of the recycled gas to the recycling path 14 is started when the above is performed.
  • step S8 power is not supplied to the external load in step S8.
  • control is performed so that the power generation amount of the fuel cell 12 is equal to or less than the power consumption necessary for driving the fuel cell system 100.
  • control is performed to return the power generation amount of the fuel cell 12 to an amount capable of supplying power to the external load. Done.
  • step S1, step S4, and step S5 of this embodiment is the same as the operation
  • the fuel is used to maintain the temperature of the fuel cell 12. Control the rate to be low. Therefore, in this embodiment, when starting to send the recycle gas to the recycle path 14, the operation of the fuel cell system 100 is equivalent to the power consumption required for driving the fuel cell system 100 or the power consumption of the fuel cell system 12 is the power consumption. By maintaining a smaller amount, an increase in the fuel utilization rate of the fuel cell 12 can be suppressed within an allowable range.
  • step S2 and step S3 in FIG. 3 or FIG. 4 are provided between step S1 and step S4 in FIG. 5, and step S6 and step in FIG. 3 or FIG. 4 are provided between step S5 and step S9 in FIG. S7 may be provided.
  • step S6 and step in FIG. 3 or FIG. 4 are provided between step S5 and step S9 in FIG. S7 may be provided.
  • the fuel cell system includes a reformer that generates a reformed gas using a raw material, a fuel cell that generates power using the reformed gas, and a raw material supply through which the raw material supplied to the reformer circulates.
  • a recycling path, a temperature detector for detecting the temperature of the hydrodesulfurizer, and a controller are provided. During the power generation of the fuel cell, the controller before the temperature of the hydrodesulfurizer reaches a predetermined temperature.
  • control is performed so that the fuel utilization rate of the fuel cell is lower than the rated operation of the fuel cell system. Therefore, in the present embodiment, when starting to send the recycle gas to the recycle path, the fuel cell system can be maintained at a low output operation to suppress an increase in the fuel utilization rate of the fuel cell within an allowable range.
  • the fuel cell system 100 of the present embodiment has a configuration similar to that of FIG. 1 or FIG. Since the configuration is the same as that of the first embodiment or the second embodiment, description thereof is omitted.
  • FIG. 6 is a flowchart showing an example of the operation of the fuel cell system according to the fourth embodiment. The following operations are performed by the control program of the controller 30.
  • the fuel cell system 100 when the warm-up of the hydrodesulfurizer 10 is slower than the warm-up of the reformer 11 and the fuel cell 12, for example, the fuel cell system 100 is generating power and the fuel cell system 100 is activated.
  • An example of starting the delivery of the recycled gas to the recycling path 14 when the power generation amount increase operation at the time is performed will be described.
  • step S10 the power generation amount of the fuel cell 12 is determined as the fuel cell system. Control is performed to maintain an amount lower than the output of 100 rated operations. For example, the power generation amount of the fuel cell 12 is controlled to be limited to an amount (for example, 200 W) lower than the output (for example, 700 W) of the rated operation of the fuel cell system 100. Then, after the recycle gas reaches the upstream end of the recycle path 14 via the raw material supply path 13, the control for returning the power generation amount of the fuel cell 12 to an amount capable of the rated operation output of the fuel cell system 100 in step S 11. Is done. For example, with respect to the power generation amount of the fuel cell 12, the above restriction is released, and the control for enabling the output of the normal rated operation of the fuel cell system 100 (for example, 700 W) is performed.
  • step S1, step S4, and step S5 of this embodiment is the same as the operation
  • the fuel utilization rate of the fuel cell 12 is controlled to be lower than the rated operation of the fuel cell system 100. Therefore, in this embodiment, when starting to send the recycle gas to the recycle path 14, the fuel cell system 100 can be maintained at a low output operation to suppress an increase in the fuel utilization rate of the fuel cell 12 within an allowable range. .
  • step S2 and step S3 in FIG. 3 or 4 are provided between step S1 and step S4 in FIG. 6, and step S6 and step in FIG. 3 or FIG. 4 are provided between step S5 and step S11 in FIG. S7 may be provided.
  • step S6 and step in FIG. 3 or FIG. 4 are provided between step S5 and step S11 in FIG. S7 may be provided.
  • the power generation amount of the fuel cell 12 in step S10 and step S11 is an example, and is not limited to this example.
  • a fuel cell system includes a reformer that generates a reformed gas using a raw material, a fuel cell that generates electric power using the reformed gas, and a raw material supply through which the raw material supplied to the reformer circulates.
  • a recycling path, a temperature detector for detecting the temperature of the hydrodesulfurizer, and a controller are provided. During the power generation of the fuel cell, the controller before the temperature of the hydrodesulfurizer reaches a predetermined temperature.
  • the reaction of fuel at the anode of the fuel cell can be suppressed by reducing the rate of increase in the amount of power generated by the fuel cell.
  • the increase in the fuel utilization factor of the fuel cell can be suppressed within an allowable range.
  • the fuel cell system 100 of the present embodiment has a configuration similar to that of FIG. 1 or FIG. Since the configuration is the same as that of the first embodiment or the second embodiment, description thereof is omitted.
  • FIG. 7 is a flowchart showing an example of the operation of the fuel cell system of the fifth embodiment. The following operations are performed by the control program of the controller 30.
  • the fuel cell system 100 when the warm-up of the hydrodesulfurizer 10 is slower than the warm-up of the reformer 11 and the fuel cell 12, for example, the fuel cell system 100 is generating power and the fuel cell system 100 is activated.
  • An example of starting the delivery of the recycled gas to the recycling path 14 when the power generation amount increase operation at the time is performed will be described.
  • step S12 the rate of increase in the power generation amount of the fuel cell 12 is increased.
  • Control is performed to make the speed lower than a predetermined ascending speed. For example, the control is performed so that the power generation rate of the fuel cell 12 is increased to a value (for example, 0.2 A / min) smaller than the normal power generation rate increase rate (for example, 0.5 A / min).
  • step S ⁇ b> 13 control is performed to return the power generation amount increase rate of the fuel cell 12 to the predetermined increase speed. For example, control is performed to return the power generation amount increase rate of the fuel cell 12 to a normal power generation amount increase rate (for example, 0.5 A / min).
  • step S1, step S4, and step S5 of this embodiment is the same as the operation
  • the reaction of the fuel at the anode of the fuel cell 12 can be suppressed by reducing the increase rate of the power generation amount of the fuel cell 12. Thereby, the increase in the fuel utilization rate of the fuel cell 12 can be suppressed within an allowable range.
  • step S2 and step S3 in FIG. 3 or FIG. 4 are provided between step S1 and step S4 in FIG. 7, and step S6 and step in FIG. 3 or FIG. 4 are provided between step S5 and step S13 in FIG. S7 may be provided.
  • step S6 and step in FIG. 3 or FIG. 4 are provided between step S5 and step S13 in FIG. S7 may be provided.
  • the increase rate of the power generation amount of the fuel cell 12 in step S12 and step S13 is an example, and is not limited to this example.
  • the fuel cell system according to the sixth embodiment is the same as the fuel cell system according to any one of the first embodiment, the second embodiment, the first to second examples of the second embodiment, and the third to fifth embodiments.
  • a normal temperature desulfurizer that removes sulfur components at room temperature a branch path that branches from the raw material supply path upstream of the normal temperature desulfurizer, and joins the raw material supply path between the normal temperature desulfurizer and the hydrodesulfurizer, and a branch It is a raw material supply path downstream from the branch part between the first circuit breaker arranged on the path and the branch path, and is arranged on the raw material supply path upstream from the junction part between the branch path.
  • a second circuit breaker, and the controller includes a first circuit breaker and a second circuit breaker so that the raw material flows through the room temperature desulfurizer before the temperature of the hydrodesulfurizer reaches a predetermined temperature. After control and recycle gas reaches the upstream end of the recycle path through the raw material supply path When a predetermined time after opening the first circuit breaker has elapsed, performing the closing control of the second circuit breaker.
  • the sulfur component in the raw material can be removed by the room temperature desulfurizer until the warm-up of the hydrodesulfurizer is completed.
  • the opening / closing control of the first circuit breaker and the second circuit breaker is performed simultaneously, the flow rate of the raw material flowing through the raw material supply path may be temporarily reduced. In this case, there may be a problem that the flow rate of the reformed gas supplied to the anode of the fuel cell is temporarily reduced.
  • the control for opening the first circuit breaker is the control for closing the second circuit breaker. Since it is performed in advance, such a possibility can be suppressed.
  • the fuel cell system according to the present embodiment is the fuel cell according to any one of the first embodiment, the second embodiment, the first to second examples of the second embodiment, and the third to fifth embodiments, except for the above characteristics. You may comprise similarly to a system fuel cell system.
  • FIG. 8 is a diagram illustrating an example of a fuel cell system according to the sixth embodiment.
  • the fuel cell system 100 of the present embodiment includes a hydrodesulfurizer 10, a reformer 11, a fuel cell 12, a raw material supply path 13, a recycle path 14, and a temperature detector 15. And a combustor 19, a room temperature desulfurizer 20, a branch path 21, a first circuit breaker 22, a second circuit breaker 23, and a controller 30.
  • the hydrodesulfurizer 10, the reformer 11, the fuel cell 12, the raw material supply path 13, the recycle path 14, the temperature detector 15, and the combustor 19 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the room temperature desulfurizer 20 removes sulfur components in the raw material at room temperature.
  • normal temperature is used because it is relatively close to the normal temperature range compared to the operating temperature of the hydrodesulfurizer 10, and includes the range from the normal temperature range to the temperature at which the used desulfurizing agent functions effectively as a desulfurizing agent. It is.
  • the branch path 21 branches from the raw material supply path 13 upstream of the room temperature desulfurizer 20 and joins the raw material supply path 13 between the room temperature desulfurizer 20 and the hydrodesulfurizer 10.
  • the first circuit breaker 22 is arranged on the branch path 21.
  • the first circuit breaker 22 may have any configuration as long as it can communicate and block the branch path 21. Examples of the first circuit breaker 22 include an on-off valve.
  • the second circuit breaker 23 is disposed on the raw material supply path 13 downstream of the branch portion between the branch path 21 and the upstream of the junction portion between the branch path 21 and the raw material supply path 13. Yes.
  • the second circuit breaker 23 may have any configuration as long as it can communicate and block the raw material supply path 13.
  • An example of the second circuit breaker 23 is an on-off valve.
  • the controller 30 controls the first circuit breaker 22 and the second circuit breaker 23 so that the raw material flows through the room temperature desulfurizer 20 before the temperature of the hydrodesulfurizer 10 reaches a predetermined temperature, and the recycle gas However, after reaching the upstream end of the recycle path 14 via the raw material supply path 13, the second circuit breaker 23 is controlled to be closed when a predetermined time elapses after the first circuit breaker 22 is opened.
  • the example in which the room temperature desulfurizer 20 is disposed in the fuel cell system 100 of the first embodiment has been described.
  • a room temperature desulfurizer is provided in the second embodiment and the first and second embodiments of the second embodiment.
  • the fuel cell system 100 according to any of the examples and the third to fifth embodiments may be disposed.
  • FIG. 9 is a flowchart showing an example of the operation of the fuel cell system according to the sixth embodiment. The following operations are performed by the control program of the controller 30.
  • the first shut-off is performed so that the raw material flows through the room temperature desulfurizer 20.
  • the device 22 and the second circuit breaker are controlled.
  • the first circuit breaker 22 may be closed (step S21) and the second circuit breaker 23 may be opened (step S22).
  • the sulfur component in the raw material can be removed by the room temperature desulfurizer 20 until the warming-up of the hydrodesulfurizer 10 is completed.
  • step S23 After the recycle gas reaches the anode of the fuel cell 12, the first circuit breaker 22 is opened in step S23, and then it is determined whether or not a predetermined time has passed in step S24.
  • the predetermined time is set, for example, to a time when it is assumed that the raw material separated from the raw material supply path 13 circulates through the branch path 21 and reaches the raw material supply path 13 again.
  • This time can be derived using, for example, the flow rate of the raw material flowing through the branch path 21, the path cross-sectional area of the branch path 21, and the path length.
  • the second circuit breaker 23 is kept open until the predetermined time of step S24 has elapsed. On the other hand, if the predetermined time of step S24 passes, it will progress to the next step and will close the 2nd circuit breaker 23 by step S25.
  • the opening / closing control of the first circuit breaker 22 and the second circuit breaker 23 is performed simultaneously, the flow rate of the raw material flowing through the raw material supply path 13 may be temporarily reduced. In this case, there is a possibility that a problem of temporarily reducing the flow rate of the reformed gas supplied to the anode of the fuel cell 12 may occur, but in this embodiment, the control to open the first circuit breaker 22 causes the second circuit breaker 23 to Since this control is performed prior to the closing control, such a possibility can be suppressed.
  • step S24 is an example, and is not limited to this example.
  • Step S1 to Step S7 of the present embodiment are the same as the operations of Step S1 to Step S7 of the first example or the second example of the second embodiment, description thereof will be omitted.
  • the fuel cell system of the seventh embodiment includes a reformer that generates reformed gas using raw materials, a fuel cell that generates power using the reformed gas, and a raw material supply through which the raw materials supplied to the reformer circulate.
  • a recycling path, a temperature detector for detecting the temperature of the hydrodesulfurizer, and a controller are provided.
  • the controller After the current taken out from the fuel cell is made lower than the current corresponding to the predetermined power generation amount of the fuel cell, the sending of the recycling gas to the recycling path is started, and the recycling gas passes through the raw material supply path to the upstream end of the recycling path. After reaching from the fuel cell Performs control to return the current to the current corresponding to a predetermined amount of power generation issuing Ri.
  • the fuel utilization rate of the anode of the fuel cell can be lowered by temporarily lowering the current taken from the fuel cell after the hydrodesulfurizer has been warmed up. Therefore, when starting to send the recycle gas to the recycle path, the anode off gas supply from the fuel cell to the combustor is increased compared to the conventional case without increasing the supply amount of the reform gas from the reformer to the fuel cell. Reduction in the amount can be suppressed, and the possibility of deterioration in combustibility of the combustor, increase in the concentration of carbon monoxide in the combustion exhaust gas of the combustor, misfiring of the combustor, and the like can be reduced. Moreover, compared with the past, the voltage drop in a fuel cell is suppressed and the possibility that the anode breaks down can be reduced.
  • the fuel cell system 100 of the present embodiment has a configuration similar to that of FIG. 1 or FIG. Since the configuration is the same as that of the first embodiment or the second embodiment, description thereof is omitted.
  • FIG. 10 is a flowchart illustrating an example of the operation of the fuel cell system according to the seventh embodiment. The following operations are performed by the control program of the controller 30.
  • the fuel cell system 100 is generating power and the fuel cell 12 is rated.
  • a description will be given of an example in which the sending of the recycled gas to the recycling path 14 is started when the above is performed.
  • step S1 it is determined whether or not the temperature of the hydrodesulfurizer 10 is equal to or higher than a predetermined temperature.
  • a predetermined temperature For example, when the hydrodesulfurization agent contains copper and zinc, the hydrodesulfurizer 10 has an operating range of about 150 ° C. to 350 ° C. at an appropriate temperature. Therefore, in this case, the predetermined temperature in step S1 is set to 180 ° C., for example.
  • the current taken out from the fuel cell 12 (the generated current of the fuel cell 12) is not changed and the state is maintained as it is.
  • step S30 the power generation current of the fuel cell 12 is made lower than the current corresponding to the predetermined power generation amount of the fuel cell 12. Control is performed. For example, regarding the power generation current of the fuel cell 12, the current corresponding to the power generation amount corresponding to the recycled gas (for example, about 3 %) Minutes, control to lower.
  • step S4 the sending of the recycle gas to the recycle path 14 is started.
  • hydrogen can be added to the raw material which goes to the hydrodesulfurizer 10, As a result, the hydrodesulfurizer 10 can perform the hydrodesulfurization of a raw material using this hydrogen.
  • step S30 and step S4 described above are performed for the following reason.
  • the fuel utilization rate of the anode of the fuel cell 12 can be lowered by temporarily reducing the current taken out from the fuel cell 12. Therefore, when sending the recycle gas to the recycle path 14 is started, the anode off-gas from the fuel cell 12 to the combustor 19 is not increased without increasing the supply amount of the reformed gas from the reformer 11 to the fuel cell 12. A decrease in supply amount is suppressed, and the possibility of deterioration in combustibility of the combustor 19, increase in the concentration of carbon monoxide in the combustion exhaust gas of the combustor 19, misfire of the combustor 19, and the like can be reduced. Moreover, the voltage drop in the fuel cell 12 is suppressed, and the possibility that the anode breaks down can be reduced.
  • step S5 it is determined whether or not a predetermined time has elapsed since the start of sending the recycle gas to the recycle path 14.
  • the predetermined time is set to, for example, a time when the recycle gas is assumed to have reached the upstream end of the recycle path 14 via the recycle path 14 and the raw material supply path 13.
  • This time is, for example, the flow rate of the recycle gas, the cross-sectional area of the recycle path 14 and the raw material supply path 13, and the path from the upstream end of the recycle path 14 to the upstream end of the recycle path 14 again via the raw material supply path 13. Can be derived using the length.
  • step S5 Until the predetermined time of step S5 elapses, the generated current of the fuel cell 12 is not changed and the state is maintained as it is.
  • step S5 when the predetermined time in step S5 has elapsed, the process proceeds to the next step, and in step S31, control is performed to return the power generation current of the fuel cell 12 to a current corresponding to the predetermined power generation amount of the fuel cell 12.
  • step S31 The above operation of step S31 is performed for the following reason.
  • the flow rate of the reformed gas supplied to the anode of the fuel cell 12 is temporarily reduced. It can be determined that the problem has been resolved. Therefore, in this case, the power generation current of the fuel cell 12 can be returned to a current corresponding to a predetermined power generation amount of the fuel cell 12, that is, a current corresponding to a normal operation state.
  • step S1 the method of deriving the temperature of the hydrodesulfurizer 10 in step S1, the current in step S30, and the predetermined time in step S5 is an example, and is not limited to this example.
  • the fuel cell system of a modification of the seventh embodiment is the same as the fuel cell system of the seventh embodiment, but is branched from a room temperature desulfurizer that removes sulfur components in the raw material at room temperature and a raw material supply path upstream of the room temperature desulfurizer.
  • a branch path that joins the raw material supply path between the room temperature desulfurizer and the hydrodesulfurizer, a first circuit breaker arranged on the branch path, and a raw material supply downstream from the branch section between the branch paths A second circuit breaker disposed on the raw material supply path upstream of the junction with the branch path, and the controller reaches a predetermined temperature of the hydrodesulfurizer Before the first circuit breaker, the first circuit breaker and the second circuit breaker are controlled so that the raw material flows through the room temperature desulfurizer, and after the recycle gas reaches the upstream end of the recycle path through the raw material supply path, When the specified time has elapsed since opening the It is carried out.
  • the sulfur component in the raw material can be removed by the room temperature desulfurizer until the warm-up of the hydrodesulfurizer is completed.
  • the opening / closing control of the first circuit breaker and the second circuit breaker is performed simultaneously, the flow rate of the raw material flowing through the raw material supply path may be temporarily reduced. In this case, there may be a problem that the flow rate of the reformed gas supplied to the anode of the fuel cell 12 temporarily decreases.
  • the control for opening the first circuit breaker is the control for closing the second circuit breaker. Since this is performed prior to the above, such a possibility can be suppressed.
  • the fuel cell system according to this modification may be configured in the same manner as the fuel cell system according to the seventh embodiment, except for the above characteristics.
  • the fuel cell system 100 of this modification has the same configuration as that in FIG. Since the configuration is the same as that of the sixth embodiment, the description thereof is omitted.
  • FIG. 11 is a flowchart showing an example of the operation of the fuel cell system according to the modification of the seventh embodiment. The following operations are performed by the control program of the controller 30.
  • the first shut-off is performed so that the raw material flows through the room temperature desulfurizer 20.
  • the device 22 and the second circuit breaker are controlled.
  • the first circuit breaker 22 may be closed (step S32), and the second circuit breaker 23 may be opened (step S33).
  • the sulfur component in the raw material can be removed by the room temperature desulfurizer 20 until the warming-up of the hydrodesulfurizer 10 is completed.
  • step S34 After the recycle gas reaches the upstream end of the recycle path through the raw material supply path, the first circuit breaker 22 is opened in step S34, and then it is determined whether or not a predetermined time has elapsed in step S35. .
  • the predetermined time is set, for example, to a time when it is assumed that the raw material separated from the raw material supply path 13 circulates through the branch path 21 and reaches the raw material supply path 13 again.
  • This time can be derived using, for example, the flow rate of the raw material flowing through the branch path 21, the path cross-sectional area of the branch path 21, and the path length.
  • step S35 The second circuit breaker 23 is kept open until the predetermined time of step S35 has elapsed. On the other hand, if the predetermined time of step S35 passes, it will progress to the next step and the 2nd circuit breaker 23 will be closed by step S36.
  • steps S34 to S36 are performed for the following reason.
  • the opening / closing control of the first circuit breaker 22 and the second circuit breaker 23 is performed simultaneously, the flow rate of the raw material flowing through the raw material supply path 13 may be temporarily reduced. In this case, there may be a problem that the flow rate of the reformed gas supplied to the anode of the fuel cell 12 is temporarily reduced.
  • the control for opening the first circuit breaker 22 controls the second circuit breaker 23. Since this control is performed prior to the closing control, such a possibility can be suppressed.
  • step S35 is an example, and is not limited to this example.
  • Step S1, Step S4, and Step S5 of the present modification are the same as the operations of Step S1, Step S4, and Step S5 of the seventh embodiment, description thereof is omitted.
  • 1 aspect of this invention can respond appropriately to the problem at the time of starting sending of recycle gas to a recycle path after completion of warming-up of a hydrodesulfurizer compared with the past.
  • one embodiment of the present invention can be used, for example, in a fuel cell system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 燃料電池システム(100)は、原料を用いて改質ガスを生成する改質器(11)と、改質ガスを用いて発電する燃料電池(12)と、改質器(11)への原料が流通する原料供給経路(13)と、改質器(11)への原料中の硫黄成分を除去する水添脱硫器(10)と、改質ガスの一部をリサイクルガスとして、水添脱硫器(10)よりも上流の原料供給経路(13)に送るためのリサイクル経路(14)と、水添脱硫器10の温度を検知する温度検知器(15)と、制御器(30)と、を備え、制御器(30)は、水添脱硫器(10)の温度が所定の温度に到達したとき、原料の流量を、所定の流量に対してリサイクルガス相当量を増量した後、リサイクル経路(14)へリサイクルガスの送出を開始し、リサイクルガスが、原料供給経路(13)を経てリサイクル経路(14)の上流端に到達した後に、原料の流量を所定の流量に戻す。

Description

燃料電池システム
 本発明は燃料電池システムに関する。
 近年、分散型発電システムとして、燃料電池システムの開発及び商品化が進められている。燃料電池システムには、原料として炭素及び水素を含有する有機化合物が供給される。そして、燃料電池システムは、例えば、燃料電池内部で原料を改質して、水素を含有する改質ガスを生成する。あるいは、燃料電池外部の改質器によって原料を改質して、改質ガスを生成する。このようにして、改質ガスが生成されると、燃料電池は、改質ガス中の水素と、外部から供給された空気中の酸素とを利用して発電反応により電気と熱とを生成できる。
 かかる燃料電池システムは、電気エネルギー及び熱エネルギーを効率良く得られることから、地球温暖化の原因である二酸化炭素の削減に有効なエネルギー供給システムとして期待されている。
 ここで、燃料電池システムに使用される原料として、例えば、液化石油ガス(LPG)、液化天然ガス(LNG)、都市ガス、シェールガス、及びメタンハイドレード等を例示できる。このような原料には、原料自体、あるいは原料に添加された付臭剤に硫黄成分が含まれている。この硫黄成分を含有する原料が改質器等を経由して燃料電池のアノードに供給されると、この硫黄成分によってアノードを被毒してしまい燃料電池性能の劣化を招いたり、改質器に含まれる改質触媒を被毒してしまい改質性能の劣化を招いたりする。そのため、原料中の硫黄成分をppbあるいはサブppbオーダーまで低減させてから、改質器及びアノードに原料を供給することが必要となる。
 そこで、燃料電池システムでは、改質器の上流側に原料中の硫黄成分を低減させる機能を有する脱硫器が備えられる。なお、脱硫器により原料中の硫黄成分を除去する方法としては、常温で硫黄成分を触媒に物理吸着させ除去する常温脱硫方式、あるいは原料に水素を添加して硫黄成分を除去する水添脱硫方式等が挙げられる。水添脱硫器には、所定の温度範囲(例えば、150℃~350℃程度)を活性温度域とする触媒が搭載される。そして、外部から供給された原料中の硫黄成分と水素とから硫化水素を生成し、硫化水素中の硫黄を触媒に化学吸着させる。
 このため、水添脱硫器を用いて原料を脱硫する場合は、水添脱硫器が所定の温度(例えば、150℃)に到達した後に水添脱硫器を通過した原料と水素を改質器、及び燃料電池のアノードに供給する必要がある。
 そこで、燃料電池システムの起動時は、水添脱硫器が所定の温度(例えば、約180℃)に到達するまで、常温脱硫器を通過した原料を改質器と燃料電池のアノードに供給し、改質器と燃料電池を暖機する。水添脱硫器、改質器、及び燃料電池は、改質器及び燃料電池のアノードを通過した原料、又はその改質ガスが、燃料電池のカソードに供給された空気と燃焼し、その燃焼熱及び燃焼排ガスの熱で加熱暖機される。
 なお、常温脱硫器が、仮に低コスト、かつ硫黄の除去性能がppbオーダーあるいはサブppbオーダーで原料中の全ての硫黄成分を吸着可能であれば、常温脱硫器のみの使用でよく、水添脱硫器は不要である。しかし、常温脱硫器では、これらの要件全てを満たすことができない。一方、水添脱硫器では、硫黄成分の除去性能が高く、かつ低コストであるが、加熱暖機が必要となる。
 以上により、水添脱硫器の暖機中は常温脱硫により原料を脱硫する必要があり、通常、水添脱硫器と常温脱硫器とを併用する構成を取ることが多い。
 このような水添脱硫器と常温脱硫器とを併用する燃料電池システムの一例が、例えば、特許文献1に示されている。
 特許文献1の燃料電池システムでは、改質器、燃料電池、及び水添脱硫器の暖機中は常温脱硫器を原料が通過する。そして、これらの暖機が完了した後は、原料が常温脱硫器を通る経路から、原料が常温脱硫器をバイパスして水添脱硫器を通る経路に切り替え、原料の改質で生成した改質ガスの一部をリサイクルガスとして、水添脱硫器の上流の原料供給経路に還流する。これにより、原料及び水素を水添脱硫器に流通することができる。
特開平1-275697号公報
 しかし、従来例は、水添脱硫器の暖機完了後に、リサイクル経路へリサイクルガスの送出を開始する際の問題について十分に検討されていない。
 本発明の一態様は、このような事情に鑑みてなされたものであり、従来に比べ、水添脱硫器の暖機完了後に、リサイクル経路へリサイクルガスの送出を開始する際の問題について適切に対応し得る燃料電池システムを提供することを目的とする。
 本発明の一態様の燃料電池システムは、原料を用いて改質ガスを生成する改質器と、前記改質ガスを用いて発電する燃料電池と、前記改質器に供給される原料が流通する原料供給経路と、前記改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、前記改質ガスの一部をリサイクルガスとして、前記水添脱硫器よりも上流の前記原料供給経路に送るためのリサイクル経路と、前記水添脱硫器の温度を検知する温度検知器と、制御器と、を備え、前記制御器は、前記水添脱硫器の温度が所定の温度に到達したとき、前記原料の流量を、所定の流量に対して前記リサイクルガス相当量を増量した後、前記リサイクル経路へ前記リサイクルガスの送出を開始し、前記リサイクルガスが、前記原料供給経路を経てリサイクル経路の上流端に到達した後に、前記原料の流量を前記所定の流量に戻す制御を行う。
 本発明の一態様の燃料電池システムは、以上に説明したように構成され、従来に比べ、水添脱硫器の暖機完了後に、リサイクル経路へリサイクルガスの送出を開始する際の問題に適切に対応し得る。
図1は、第1実施形態の燃料電池システムの一例を示す図である。 図2は、第2実施形態の燃料電池システムの一例を示す図である。 図3は、第2実施形態の第1実施例の燃料電池システムの動作の一例を示すフローチャートである。 図4は、第2実施形態の第2実施例の燃料電池システムの動作の一例を示すフローチャートである。 図5は、第3実施形態の燃料電池システムの動作の一例を示すフローチャートである。 図6は、第4実施形態の燃料電池システムの動作の一例を示すフローチャートである。 図7は、第5実施形態の燃料電池システムの動作の一例を示すフローチャートである。 図8は、第6実施形態の燃料電池システムの一例を示す図である。 図9は、第6実施形態の燃料電池システムの動作の一例を示すフローチャートである。 図10は、第7実施形態の燃料電池システムの動作の一例を示すフローチャートである。 図11は、第7実施形態の変形例の燃料電池システムの動作の一例を示すフローチャートである。
(第1実施形態)
 本発明者らは、水添脱硫器の暖機完了後に、リサイクル経路へリサイクルガスの送出を開始する際の問題について鋭意検討し、以下の知見を得た。
 燃料電池システムでは、暖機完了の順序について、水添脱硫器の暖機が改質器及び燃料電池の暖機に比べて遅い場合、水添脱硫器の暖機完了の前に、燃料電池の発電を開始し、水添脱硫器の暖機完了の後、原料が常温脱硫器を通る経路から、原料が常温脱硫器をバイパスして水添脱硫器を通る経路に切り替える方法がある。また、水添脱硫器の暖機完了を待って、上記の原料供給経路の切り替えを行った後、燃料電池の発電を開始する方法もある。
 ここで、後者の場合、水添脱硫器の暖機完了時まで燃料電池の発電を行えないので、前者の場合に比べて、システムの起動エネルギーが増加し、燃料電池システムの発電効率が低下するという問題がある。
 一方、原料とともに水素を水添脱硫器に供給するには、特許文献1の如く、改質ガスの一部をリサイクルガスとして、水添脱硫器の上流の原料供給経路に送る必要がある。このとき、前者の場合、リサイクル経路へリサイクルガスの送出を開始する際、燃料電池のアノードに供給する改質ガスの流量が一時的に減少する。すると、例えば、燃料電池のアノードにおける燃料利用率が高くなることで燃料電池の電圧低下が生じ、燃料電池システムの信頼性、耐久性が損なわれる可能性がある。
 そこで、第1実施形態の燃料電池システムは、原料を用いて改質ガスを生成する改質器と、改質ガスを用いて発電する燃料電池と、改質器に供給される原料が流通する原料供給経路と、改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、改質ガスの一部をリサイクルガスとして、水添脱硫器よりも上流の原料供給経路に送るためのリサイクル経路と、水添脱硫器の温度を検出する温度検知器と、制御器と、を備え、制御器は、水添脱硫器の温度が所定の温度に到達したとき、原料の流量を、所定の流量に対してリサイクルガス相当量を増量した後、リサイクル経路へリサイクルガスの送出を開始し、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、原料の流量を所定の流量に戻す制御を行う。
 また、燃料電池の発電中においては、上記の所定の流量は、燃料電池の所定の発電量に応じた流量である。
 かかる構成により、本実施形態の燃料電池システムは、リサイクル経路へリサイクルガスの送出を開始する際、リサイクルガス相当量分、改質器に供給する原料の流量が増加する。よって、水添脱硫器の暖機完了後に、リサイクル経路へリサイクルガスの送出を開始することにより燃料電池のアノードに供給する改質ガスの流量が一時的に減少しても、改質反応ガス流量の増量で改質ガスの生成量を増やすことができる。
 [装置構成]
 図1は、第1実施形態の燃料電池システムの一例を示す図である。
 図1で示す例では、本実施形態の燃料電池システム100は、水添脱硫器10と、改質器11と、燃料電池12と、原料供給経路13と、リサイクル経路14と、温度検知器15と、燃焼器19と、制御器30と、を備える。
 改質器11は、原料を用いて改質ガスを生成する。具体的には、改質器11において、原料が改質反応して、水素を含有する改質ガスが生成される。改質反応は、いずれの形態であってもよく、例えば、水蒸気改質反応、酸化的水蒸気改質反応(Oxidative Steam Reforming)、オートサーマル反応及び部分酸化反応が例示される。
 図1には示されていないが、各改質反応において必要となる機器は適宜設けられる。例えば、改質反応が、水蒸気改質反応、酸化的水蒸気改質反応又はオートサーマル反応であれば、改質器に供給する水を蒸発する蒸発器、及び蒸発器に水を供給する水供給器が設けられる。改質反応が、部分酸化反応、酸化的水蒸気改質反応又はオートサーマル反応であれば、燃料電池システム100には、改質器に空気を供給する空気供給器が設けられる。但し、改質器11において酸化的水蒸気改質反応が行われる場合、熱収支の点で改質反応が進行しやすくなり、水蒸気改質反応よりも改質器11を小型化できる点で有利である。よって、かかる酸化的水蒸気改質反応が行われる構成については、第2実施形態にて詳しく説明する。
 改質器11は、容器に改質触媒が充填される。改質触媒は、例えば、ニッケル、ルテニウム、白金、ならびにロジウムのうち少なくとも一つを含浸したアルミナ担体を用いることができる。なお、改質触媒は、本例に限定されるものではなく、改質触媒を最適な温度範囲に維持した場合に改質反応を進行させ得る触媒であれば、いかなる材料であっても構わない。
 なお、原料は、LPGガス、プロパンガス、ブタンガス、あるいはメタンを主成分とする都市ガス等の有機化合物を含むガス、灯油、又はアルコール等を用いることができる。灯油又はアルコール等の液体の原料を用いる場合、原料を改質器11に供給する前に、加熱して気化させてもよい。なお、原料は、図示しない原料供給源より供給される。原料供給源は、所定の供給圧を備えており、例えば、原料ボンベ、原料インフラ等が例示される。
 燃料電池12は、改質ガスを用いて発電する。具体的には、燃料電池12のアノードに改質器11からの改質ガスが供給され、燃料電池12のカソードには外部からの空気が供給される。これにより、燃料電池12は、改質ガス中の水素及び空気中の酸素を用いて発電する。そして、燃料電池12の発電により得られた電力は、図示されない端子を介して外部負荷へと供給される。外部負荷としては、例えば、家庭用の電力消費機器や、業務用の電力消費装置、および携帯電話等の無線基地局を構成する装置が例示される。なお、燃料電池12は、燃料電池12のアノードとカソードとの間で発電反応を行って発電する燃料電池単セルを複数枚、直列接続した構成となっている。
 燃料電池12としては、いずれの種類であっても良く、例えば、高分子電解質形燃料電池、固体酸化物形燃料電池、及び燐酸形燃料電池等が例示される。なお、燃料電池12が、固体酸化物形燃料電池の場合は、改質器11と燃料電池12とが1つの容器内に内蔵されるように構成されてもよい。
 原料供給経路13は、改質器11に供給される原料が流通する。原料供給経路13には、適宜の原料供給器及び流量検知器(いずれも図示せず)が配されている。原料供給器は、改質器11へ供給する原料の流量を調整する機器であり、例えば、昇圧器と流量調整弁により構成されるが、これらのいずれか一方により構成されてもよい。昇圧器は、例えば、定容積型ポンプが用いられるが、これに限定されるものではない。
 水添脱硫器10は、改質器11に供給される原料中の硫黄成分を除去する。水添脱硫器10は、容器に水添脱硫剤が充填される。水添脱硫剤は、例えば、硫黄化合物を硫化水素に変換する機能と硫化水素を吸着する機能を共に有するCuZn系触媒が用いられる。水添脱硫剤は、本例に限定されるものではなく、原料中の硫黄化合物を硫化水素に変換するCoMo系触媒と、その下流に設けられる、硫化水素を吸着除去する硫黄吸着剤であるZnO系触媒、又はCuZn系触媒とで構成してもよい。
 なお、水添脱硫剤が銅及び亜鉛を含む場合、水添脱硫器10は約150℃~350℃が適温の動作範囲となる。
 リサイクル経路14は、改質ガスの一部をリサイクルガスとして、水添脱硫器10よりも上流の原料供給経路13に送るための流路である。リサイクル経路14の上流端は、改質器11より送出された水素を含有するガスが流れる流路であれば、いずれの箇所に接続されていても構わない。また、図1には示されていないが、リサイクル経路14において必要となる機器は適宜設けられる。例えば、リサイクル経路14に、昇圧器、開閉弁及び凝縮器等を設けても構わない。昇圧器は、例えば、定容積型ポンプが用いられ、リサイクル経路を流れるリサイクルガスを昇圧し、リサイクルガスの流量を調整する。凝縮器は、例えば、熱交換器が用いられ、リサイクルガス中の水蒸気を熱交換により凝縮し、リサイクルガスから水蒸気を除去する。
 温度検知器15は、水添脱硫器10の温度を検知する。温度検知器15は、水添脱硫器10の温度を直接的又は間接的に検知できれば、どのような構成であっても構わない。つまり、水添脱硫器10内に温度検知器15を設け、水添脱硫器10の温度を直接的に検知しても構わないし、水添脱硫器10の温度と相関する所定の箇所(例えば、原料供給経路13を形成する配管又は改質器11等)に温度検知器15を設け、水添脱硫器10の温度を間接的に検知しても構わない。本実施形態では、水添脱硫器10内に、温度検知器15が配されている。温度検知器15として、例えば、熱電対又はサーミスタが例示される。
 なお、水添脱硫剤に、触媒金属としてニッケル(Ni)を含む場合がある。この場合、水添脱硫器10の暖機前の低温時(例えば、150℃未満)に、原料及びリサイクルガスを水添脱硫剤に供給すると、ニッケルカルボニルガスが生成する恐れがある。しかし、本実施形態では、上記のとおり、温度検知器15を用いて水添脱硫器10内の水添脱硫剤の温度が検知されているので、かかるニッケルカルボニルガスが生成することを適切に回避できる。
 燃焼器19は、水素を含有する改質ガスを燃焼する。燃焼器19の燃料は、いずれの燃料であってもよい。例えば、燃焼燃料として、燃料電池12により排出されるアノードオフガスを用いても構わない。この場合、燃焼器19には、燃料電池12のアノードよりアノードオフガスが送られ、燃料電池12のカソードよりカソードオフガスが送られる。そして、これらのアノードオフガス及びカソードオフガスの燃焼で燃焼排ガスが生成されて、燃焼器19の燃焼熱及び燃焼排ガスの熱を用いて水添脱硫器10及び改質器11等が加熱される。
 制御器30は、水添脱硫器10の温度が所定の温度に到達したとき、改質器11に供給する原料の流量を、所定の流量に対してリサイクルガス相当量を増量した後、リサイクル経路14へリサイクルガスの送出を開始し、リサイクルガスが、原料供給経路13を経てリサイクル経路14の上流端に到達した後に、上記の原料の流量を所定の流量に戻す制御を行う。
 制御器30は、制御機能を有するものであれば、どのような構成でも構わない。制御器30は、例えば、演算処理部と、制御プログラムを記憶する記憶部とを備える。演算処理部としては、例えば、MPU、CPUが例示される。記憶部としては、例えば、メモリーが例示される。制御器30は、集中制御を行う単独の制御器で構成されていても構わないし、互いに協働して分散制御を行う複数の制御器で構成されていても構わない。
 以上により、本実施形態の燃料電池システム100は、リサイクル経路14へリサイクルガスの送出を開始する際、リサイクルガス相当量分、改質器11に供給する原料の流量が増加する。よって、水添脱硫器10の暖機完了後に、リサイクル経路14へリサイクルガスの送出を開始することにより燃料電池12のアノードに供給する改質ガスの流量が一時的に減少しても、改質反応ガス流量の増量で改質ガスの生成量を増やすことができる。
 (第2実施形態)
 第2実施形態の燃料電池システムは、第1実施形態の燃料電池システムにおいて、改質器に供給する水を蒸発する蒸発器と、蒸発器に水を供給する水供給器と、を備え、改質器は、水蒸気及び原料を用いて改質ガスを生成し、制御器は、水添脱硫器の温度が所定の温度に到達したとき、水の流量を、所定の流量に対してリサイクルガス相当量を増量した後、リサイクル経路へリサイクルガスの送出を開始し、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、水の流量を所定の流量に戻す制御を行う。
 また、燃料電池の発電中においては、上記の所定の流量は、燃料電池の所定の発電量に応じた流量である。
 かかる構成により、本実施形態の燃料電池システムでは、リサイクル経路へリサイクルガスの送出を開始する際、リサイクルガス相当量分、改質器に供給する水の流量が増加する。よって、水添脱硫器の暖機完了後に、リサイクル経路へリサイクルガスの送出を開始することにより燃料電池のアノードに供給する改質ガスの流量が一時的に減少しても、改質反応ガス流量の増量で改質ガスの生成量を増やすことができる。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 図2は、第2実施形態の燃料電池システムの一例を示す図である。
 図2に示す例では、本実施形態の燃料電池システム100は、水添脱硫器10と、改質器11と、燃料電池12と、原料供給経路13と、リサイクル経路14と、温度検知器15と、蒸発器16と、水供給器17と、空気供給器18と、燃焼器19と、制御器30と、を備える。
 水添脱硫器10、燃料電池12、原料供給経路13、温度検知器15、燃焼器19及びリサイクル経路14については第1実施形態と同様であるので説明を省略する。
 蒸発器16は、改質器11に供給する水を蒸発する。蒸発器16は、改質器11に供給する水を蒸発できれば、どのような構成であっても構わない。蒸発器16として、例えば、高温の加熱流体との熱交換により水を気化し得る熱交換器が例示される。
 水供給器17は、蒸発器16に水を供給する。水供給器17は、蒸発器16に水を供給できれば、どのような構成であっても構わない。水供給器17は、蒸発器16へ供給する改質反応用の水の流量を調整する機器であり、例えば、昇圧器と流量調整弁により構成される。昇圧器は、例えば、定容積型ポンプが用いられるが、これに限定されるものではない。また、水供給器17から蒸発器16に水を送る経路には、適宜の流量検知器が配されている。
 空気供給器18は、改質器11に空気を供給する。空気供給器18は、改質器11に空気を供給できれば、どのような構成であっても構わない。空気供給器18は、改質器11へ供給する改質反応用の空気の流量を調整する機器であり、例えば、昇圧器と流量調整弁により構成される。昇圧器は、例えば、定容積型ポンプが用いられるが、これに限定されるものではない。
 このようにして、改質器11は、水蒸気及び原料を用いて改質ガスを生成する。本実施形態では、改質器11に水蒸気、空気及び原料が供給され、これにより、改質器11において酸化的水蒸気改質反応が行われる。
 制御器30は、水添脱硫器10の温度が所定の温度に到達したとき、改質器11に送る水の流量を、所定の流量に対してリサイクルガス相当量を増量した後、リサイクル経路へリサイクルガスの送出を開始し、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、水の流量を所定の流量に戻す制御を行う。
 以上により、本実施形態の燃料電池システム100は、リサイクル経路14へリサイクルガスの送出を開始する際、リサイクルガス相当量分、改質器11に供給する水の流量が増加する。よって、水添脱硫器10の暖機完了後に、リサイクル経路14へリサイクルガスの送出を開始することにより燃料電池12のアノードに供給する改質ガスの流量が一時的に減少しても、改質反応ガス流量の増量で改質ガスの生成量を増やすことができる。
 なお、改質器11において部分酸化反応が行われる場合は、改質器11に水蒸気を供給しないので、上記の水の流量調整に代えて、改質器11に供給する空気の流量を調整するとよい。
 (第1実施例)
 [装置構成]
 本実施例の燃料電池システム100は、図1又は図2と同様の構成である。構成については第1実施形態又は第2実施形態と同様であるので説明を省略する。
 [動作]
 図3は、第2実施形態の第1実施例の燃料電池システムの動作の一例を示すフローチャートである。以下の動作は、上記制御器30の制御プログラムにより行われる。
 本実施例では、水添脱硫器10の暖機が、改質器11及び燃料電池12の暖機よりも早い場合、例えば、燃料電池システム100の起動中であって、燃料電池12の発電開始前に、リサイクル経路14へリサイクルガスの送出を開始する例について説明する。
 まず、ステップS1で、水添脱硫器10の温度が所定の温度以上か否かが判定される。例えば、水添脱硫剤が銅及び亜鉛を含む場合、水添脱硫器10は約150℃~350℃が適温の動作範囲となる。よって、この場合、ステップS1の所定の温度は、例えば、180℃に設定される。
 水添脱硫器10の温度が所定の温度未満の場合、改質器11に供給する改質水の流量及び改質器11に供給する原料の流量を変更せずに、そのままの状態を維持する。
 一方、水添脱硫器10の温度が所定の温度に到達すると、次のステップに進み、ステップS2で、改質器11に供給する改質水の流量を、所定の改質水流量に対してリサイクルガス相当量を増量する。また、ステップS3で、改質器11に供給する原料の流量を、所定の原料流量に対してリサイクルガス相当量を増量する。
 例えば、所定原料流量(2.1NL/min)とすると、リサイクルガスは、改質ガスの10%(2.5-20%の範囲内とする)を狙って運転するため、所定原料流量を10%多い、0.21NL/min程度の改質原料流量を増量する。それとともに所定改質水流量(例えば、S/C=2.5相当量とした場合、4.9cc/min)より10%多い量(0.49cc/min)を増量する。
 その後、ステップS4で、リサイクル経路14へリサイクルガスの送出を開始する。これにより、水添脱硫器10へと向かう原料に水素を添加できるので、水添脱硫器10は、この水素を利用して原料の水添脱硫を行うことができる。
 以上のステップS2-ステップS4の動作は以下の理由で行われる。
 リサイクル経路14へリサイクルガスの送出を開始する際、改質ガスの一部が、リサイクル経路14の上流端から水添脱硫器10に還流するのに伴い、燃料電池12のアノードに供給する改質ガスの流量が一時的に減少する。すると、燃料電池12より排出されるアノードオフガスの流量も一時的に減少する。このため、燃料電池12からのアノードオフガスの燃焼器19への供給量が減り、燃料電池12のカソードより排出されるカソードオフガスとの間の燃焼の最適の流量比がくずれ、燃焼器19の燃焼性が悪化する可能性がある。また、燃焼器19の燃焼排ガス中の一酸化炭素濃度の上昇、更には、燃焼器19の失火に至る可能性もある。
 そこで、本実施形態では、上記のとおり、改質器11に供給する改質水の流量を、所定の改質水流量に対してリサイクルガス相当量を増量している。また、改質器11に供給する原料の流量を、所定の原料流量に対してリサイクルガス相当量を増量している。そして、その後、リサイクル経路14へリサイクルガスの送出を開始している。このため、リサイクル経路14へリサイクルガスの送出を開始する際、改質器11における改質ガスの生成量が増え、これにより、改質器11から燃料電池12への改質ガスの供給量が増える。よって、従来に比べ、アノードオフガスの燃焼器19への供給量減少が抑制され、燃焼器19の燃焼性悪化、燃焼器19の燃焼排ガス中の一酸化炭素濃度の上昇、燃焼器19の失火等の可能性を低減できる。その結果、燃料電池システム100の安定的な運転を行い得る。
 次に、ステップS5で、リサイクル経路14へリサイクルガスの送出を開始した時から所定時間が経過したか否かが判定される。
 この所定時間は、例えば、リサイクルガスが、リサイクル経路14及び原料供給経路13を経て、リサイクル経路14の上流端に到達したと想定される時間に設定される。本時間は、例えば、リサイクルガスの流量、リサイクル経路14及び原料供給経路13の経路断面積、及びリサイクル経路14の上流端から原料供給経路13を経てリサイクル経路14の上流端に再び至るまでの経路長を用いて導き得る。
 ステップS5の所定時間が経過するまでは、改質器11に供給する改質水の流量及び改質器11に供給する原料の流量を変更せずに、そのままの状態を維持する。
 一方、ステップS5の所定時間が経過すると、次のステップに進み、ステップS6で、改質器11に供給する原料の流量を、上記の所定の原料流量に戻すように減量する。また、ステップS7で、改質器11に供給する改質水の流量を、上記の所定の改質水流量に戻すように減量する。
 例えば、上記の例の場合、所定改質水流量より増量した分(0.49g/min)を、増量前の所定改質水流量に戻す。また、所定原料流量より増量した分(0.21NL/min)を、増量前の所定原料流量(2.1L/min)に戻す。
 以上のステップS6及びステップS7の動作は以下の理由により行われる。
 リサイクルガスが、リサイクル経路14及び原料供給経路13を経て、リサイクル経路14の上流端に到達したと想定される時間経過後は、燃料電池12のアノードに供給する改質ガスの一時的な流量減少を解消していると判断できる。よって、この場合、改質器11に供給する原料の流量を、上記の所定の原料流量に戻すように減量でき、改質器11に供給する改質水の流量を、上記の所定の改質水流量に戻すように減量できる。
 なお、ステップS1の水添脱硫器10の温度、及びステップS5の所定時間の導出方法は例示であって、本例に限定されない。
 (第2実施例)
 [装置構成]
 本実施例の燃料電池システム100は、図1又は図2と同様の構成である。構成については第1実施形態又は第2実施形態と同様であるので説明を省略する。
 [動作]
 図4は、第2実施形態の第2実施例の燃料電池システムの動作の一例を示すフローチャートである。以下の動作は、上記制御器30の制御プログラムにより行われる。
 本実施例では、水添脱硫器10の暖機が、改質器11及び燃料電池12の暖機よりも遅い場合、例えば、燃料電池システム100の発電中であって、燃料電池12の定格運転が行われる場合に、リサイクル経路14へリサイクルガスの送出を開始する例について説明する。
 まず、ステップS1で、水添脱硫器10の温度が所定の温度以上か否かが判定される。例えば、水添脱硫剤が銅及び亜鉛を含む場合、水添脱硫器10は約150℃~350℃が適温の動作範囲となる。よって、この場合、ステップS1の所定の温度は、例えば、180℃に設定される。
 水添脱硫器10の温度が所定の温度未満の場合、改質器11に供給する改質水の流量及び改質器11に供給する原料の流量を変更せずに、そのままの状態を維持する。
 一方、水添脱硫器10の温度が所定の温度に到達すると、次のステップに進み、ステップS2で、改質器11に供給する改質水の流量を、燃料電池12の所定の発電量に応じた改質水流量に対してリサイクルガス相当量を増量する。また、ステップS3で、改質器11に供給する原料の流量を、燃料電池12の所定の発電量に応じた原料流量に対してリサイクルガス相当量を増量する。
 その後、ステップS4で、リサイクル経路14へリサイクルガスの送出を開始する。これにより、水添脱硫器10へと向かう原料に水素を添加でき、その結果、水添脱硫器10は、この水素を利用して原料の水添脱硫を行うことができる。
 以上のステップS2-ステップS4の動作は、第1実施例で説明した理由の他、以下の理由でも行われる。
 リサイクル経路14へリサイクルガスの送出を開始する際、改質ガスの一部が、リサイクル経路14の上流端から水添脱硫器10に還流するのに伴い、燃料電池12のアノードに供給する改質ガスの流量が一時的に減少する。すると、燃料電池12のアノードでの燃料利用率が高くなり、反応に必要な燃料不足に至るか、アノードでの燃料ガス拡散律速状態となる。その結果、燃料電池12の電極反応抵抗である過電圧が上昇し、ひいては、燃料電池12での電圧低下に至る。かかる状況においては、燃料電池12の燃料利用率が更に高くなると、アノード材料のニッケルが酸化される可能性がある。このとき、アノードが膨張してアノードに応力が発生するため、破損する恐れがある。その後、燃料ガス拡散律速状態から通常運転状態に戻ると、酸化ニッケルがニッケルに還元される。かかるアノードの膨張及び収縮が繰り返されると、アノードに繰り返しの応力が働き、アノードの破損が進行する可能性がある。このようにして、アノードの耐久性が低下すると考えられる。
 そこで、本実施形態では、上記のとおり、改質器11に供給する改質水の流量を、燃料電池12の所定の発電量に応じた改質水流量に対してリサイクルガス相当量を増量している。また、改質器11に供給する原料の流量を、燃料電池12の所定の発電量に応じた原料流量に対してリサイクルガス相当量を増量している。そして、その後、リサイクル経路14へリサイクルガスの送出を開始している。このため、リサイクル経路14へリサイクルガスの送出を開始する際、改質器11における改質ガスの生成量が増え、これにより、改質器11から燃料電池12への改質ガスの供給量が増える。よって、燃料電池12のアノードでの燃料利用率の上昇を抑制できるので、従来に比べ、燃料電池12での電圧低下が抑制され、アノードの破損が進行する可能性を低減できる。
 次に、ステップS5で、リサイクル経路14へリサイクルガスの送出を開始した時から所定時間が経過したか否かが判定される。
 この所定時間は、例えば、リサイクルガスが、リサイクル経路14及び原料供給経路13を経て、リサイクル経路14の上流端に到達したと想定される時間に設定される。本時間は、例えば、リサイクルガスの流量、リサイクル経路14及び原料供給経路13の経路断面積、及びリサイクル経路14の上流端から原料供給経路13を経てリサイクルガス経路14の上流端に再び至るまでの経路長を用いて導き得る。
 ステップS5の所定時間が経過するまでは、改質器11に供給する改質水の流量及び改質器11に供給する原料の流量を変更せずに、そのままの状態を維持する。
 一方、ステップS5の所定時間が経過すると、次のステップに進み、ステップS6で、改質器11に供給する原料の流量を、上記の発電量に応じた原料流量に戻すように減量する。また、ステップS7で、改質器11に供給する改質水の流量を、上記の発電量に応じた改質水流量に戻すように減量する。
 以上のステップS6及びステップS7の動作は以下の理由により行われる。
 リサイクルガスが、リサイクル経路14及び原料供給経路13を経て、リサイクル経路14の上流端に到達したと想定される時間経過後は、燃料電池12のアノードに供給する改質ガスの一時的な流量減少を解消していると判断できる。よって、この場合、改質器11に供給する原料の流量を、上記の発電量に応じた原料流量に戻すように減量でき、改質器11に供給する改質水の流量を、上記の発電量に応じた改質水流量に戻すように減量できる。
 なお、ステップS1の水添脱硫器10の温度、及びステップS5の所定時間の導出方法は例示であって、本例に限定されない。
 (第3実施形態)
 第3実施形態の燃料電池システムは、原料を用いて改質ガスを生成する改質器と、改質ガスを用いて発電する燃料電池と、改質器に供給される原料が流通する原料供給経路と、改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、改質ガスの一部をリサイクルガスとして、水添脱硫器よりも上流の原料供給経路に送るためのリサイクル経路と、水添脱硫器の温度を検知する温度検知器と、制御器と、を備え、制御器は、燃料電池の発電中において、水添脱硫器の温度が所定の温度に到達する前は、外部負荷に電力を供給することがないよう、燃料電池の発電量を燃料電池システムの駆動に必要な消費電力と同等、または、消費電力よりも少ない量を維持する制御を行い、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、燃料電池の発電量を外部負荷に電力を供給することが可能な量に戻す制御を行う。
 燃料電池システムの運転において、燃料電池の発電量が燃料電池システムの駆動に必要な消費電力と同等、または、消費電力よりも少ない量の場合、燃料電池の温度維持のため燃料利用率が低くなるように制御する。よって本実施形態ではリサイクル経路へリサイクルガスの送出を開始する際、燃料電池システムの運転を燃料電池の発電量が燃料電池システムの駆動に必要な消費電力と同等、または、消費電力より少ない量で維持することにより、燃料電池の燃料利用率の上昇を許容範囲内に抑制できる。
 なお、本実施形態の燃料電池システムの上記特徴は、第1実施形態又は第2実施形態の燃料電池システムの特徴と組合せて用いてもよい。
 [装置構成]
 本実施形態の燃料電池システム100は、図1又は図2と同様の構成である。構成については第1実施形態又は第2実施形態と同様であるので説明を省略する。
 [動作]
 図5は、第3実施形態の燃料電池システムの動作の一例を示すフローチャートである。以下の動作は、上記制御器30の制御プログラムにより行われる。
 本実施形態では、水添脱硫器10の暖機が、改質器11及び燃料電池12の暖機よりも遅い場合、例えば、燃料電池システム100の発電中であって、燃料電池12の定格運転が行われる場合に、リサイクル経路14へリサイクルガスの送出を開始する例について説明する。
 まず、水添脱硫器10の温度が所定の温度に到達する前は(つまり、水添脱硫器10の暖機が完了する前は)、ステップS8で、外部負荷に電力を供給することがないよう、燃料電池12の発電量を燃料電池システム100の駆動に必要な消費電力と同等、又は本消費電力よりも少ない量を維持する制御が行われる。そして、リサイクルガスが、原料供給経路13を経てリサイクル経路14の上流端に到達した後に、ステップS9で、燃料電池12の発電量を外部負荷に電力を供給することが可能な量に戻す制御が行われる。
 なお、本実施形態のステップS1、ステップS4及びステップS5の動作は、第2実施形態のステップS1、ステップS4及びステップS5の動作と同様であるので説明を省略する。
 燃料電池システム100の運転において、燃料電池12の発電量が燃料電池システム100の駆動に必要な消費電力と同等、または、消費電力よりも少ない量の場合、燃料電池12の温度維持のため燃料利用率が低くなるように制御する。よって本実施形態ではリサイクル経路14へリサイクルガスの送出を開始する際、燃料電池システム100の運転を燃料電池12の発電量が燃料電池システム100の駆動に必要な消費電力と同等、または、消費電力より少ない量で維持することにより、燃料電池12の燃料利用率の上昇を許容範囲内に抑制できる。
 なお、本実施形態の動作に、第1実施形態の動作、第2実施形態の第1実施例の動作、又は第2実施形態の第2実施例の動作を組合せても構わない。例えば、図5のステップS1とステップS4の間に、図3又は図4のステップS2及びステップS3を設け、図5のステップS5とステップS9の間に、図3又は図4のステップS6及びステップS7を設けても構わない。これにより、本実施形態においても、第2実施形態の第1実施例と同様に、アノードオフガスの燃焼器19への供給量減少が抑制され、燃焼器19の燃焼性悪化、燃焼器19の燃焼排ガス中の一酸化炭素濃度の上昇、燃焼器19の失火等の可能性を低減できる。また、第2実施形態の第2実施例と同様に、燃料電池12での電圧低下が抑制され、アノードの破損が進行する可能性を低減できる。
 (第4実施形態)
 第4実施形態の燃料電池システムは、原料を用いて改質ガスを生成する改質器と、改質ガスを用いて発電する燃料電池と、改質器に供給される原料が流通する原料供給経路と、改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、改質ガスの一部をリサイクルガスとして、水添脱硫器よりも上流の原料供給経路に送るためのリサイクル経路と、水添脱硫器の温度を検知する温度検知器と、制御器と、を備え、制御器は、燃料電池の発電中において、水添脱硫器の温度が所定の温度に到達する前は、燃料電池の発電量を燃料電池システムの定格運転の出力よりも低い量に維持する制御を行い、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、燃料電池の発電量を燃料電池システムの定格運転の出力が可能な量に戻す制御を行う。
 燃料電池システムの低出力運転では、燃料電池システムの定格運転に比べ、燃料電池の燃料利用率が低くなるように制御する。よって、本実施形態では、リサイクル経路へリサイクルガスの送出を開始する際、燃料電池システムを低出力運転で維持することにより、燃料電池の燃料利用率の上昇を許容範囲内に抑制できる。
 なお、本実施形態の燃料電池システムの上記特徴は、第1実施形態又は第2実施形態の燃料電池システムの特徴と組合せて用いてもよい。
 [装置構成]
 本実施形態の燃料電池システム100は、図1又は図2と同様の構成である。構成については第1実施形態又は第2実施形態と同様であるので説明を省略する。
 [動作]
 図6は、第4実施形態の燃料電池システムの動作の一例を示すフローチャートである。以下の動作は、上記制御器30の制御プログラムにより行われる。
 本実施形態では、水添脱硫器10の暖機が、改質器11及び燃料電池12の暖機よりも遅い場合、例えば、燃料電池システム100の発電中であって、燃料電池システム100の起動時の発電量上昇動作が行われる場合に、リサイクル経路14へリサイクルガスの送出を開始する例について説明する。
 まず、水添脱硫器10の温度が所定の温度に到達する前は(つまり、水添脱硫器10の暖機が完了する前は)、ステップS10で、燃料電池12の発電量を燃料電池システム100の定格運転の出力よりも低い量に維持する制御が行われる。例えば、燃料電池12の発電量について、燃料電池システム100の定格運転の出力(例えば、700W)よりも低い量(例えば、200W)以内に制限する制御を行う。そして、リサイクルガスが、原料供給経路13を経てリサイクル経路14の上流端に到達した後に、ステップS11で、燃料電池12の発電量を燃料電池システム100の定格運転の出力が可能な量に戻す制御が行われる。例えば、燃料電池12の発電量について、上記の制限を解除し、燃料電池システム100の上記通常の定格運転の出力(例えば、700W)を可能とする制御を行う。
 なお、本実施形態のステップS1、ステップS4及びステップS5の動作は、第2実施形態のステップS1、ステップS4及びステップS5の動作と同様であるので説明を省略する。
 燃料電池システム100の低出力運転では、燃料電池システム100の定格運転に比べ、燃料電池12の燃料利用率が低くなるように制御する。よって、本実施形態では、リサイクル経路14へリサイクルガスの送出を開始する際、燃料電池システム100を低出力運転で維持することにより、燃料電池12の燃料利用率の上昇を許容範囲内に抑制できる。
 なお、本実施形態の動作に、第1実施形態の動作、第2実施形態の第1実施例の動作、又は第2実施形態の第2実施例の動作を組合せても構わない。例えば、図6のステップS1とステップS4の間に、図3又は図4のステップS2及びステップS3を設け、図6のステップS5とステップS11の間に、図3又は図4のステップS6及びステップS7を設けても構わない。これにより、本実施形態においても、第2実施形態の第1実施例と同様に、アノードオフガスの燃焼器19への供給量減少が抑制され、燃焼器19の燃焼性悪化、燃焼器19の燃焼排ガス中の一酸化炭素濃度の上昇、燃焼器19の失火等の可能性を低減できる。また、第2実施形態の第2実施例と同様に、燃料電池12での電圧低下が抑制され、アノードの破損が進行する可能性を低減できる。
 なお、ステップS10及びステップS11の燃料電池12の発電量は例示であって、本例に限定されない。
 (第5実施形態)
 第5実施形態の燃料電池システムは、原料を用いて改質ガスを生成する改質器と、改質ガスを用いて発電する燃料電池と、改質器に供給される原料が流通する原料供給経路と、改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、改質ガスの一部をリサイクルガスとして、水添脱硫器よりも上流の原料供給経路に送るためのリサイクル経路と、水添脱硫器の温度を検知する温度検知器と、制御器と、を備え、制御器は、燃料電池の発電中において、水添脱硫器の温度が所定の温度に到達する前は、燃料電池の発電量の上昇速度を所定の上昇速度よりも小さくする制御を行い、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、燃料電池の発電量の上昇速度を所定の上昇速度に戻す制御を行う。
 かかる構成により、リサイクル経路へリサイクルガスの送出を開始する際、燃料電池の発電量の上昇速度を小さくすることで、燃料電池のアノードでの燃料の反応を抑制できる。これにより、燃料電池の燃料利用率の上昇を許容範囲内に抑制できる。
 なお、本実施形態の燃料電池システムの上記特徴は、第1実施形態又は第2実施形態の燃料電池システムの特徴と組合せて用いてもよい。
 [装置構成]
 本実施形態の燃料電池システム100は、図1又は図2と同様の構成である。構成については第1実施形態又は第2実施形態と同様であるので説明を省略する。
 [動作]
 図7は、第5実施形態の燃料電池システムの動作の一例を示すフローチャートである。以下の動作は、上記制御器30の制御プログラムにより行われる。
 本実施形態では、水添脱硫器10の暖機が、改質器11及び燃料電池12の暖機よりも遅い場合、例えば、燃料電池システム100の発電中であって、燃料電池システム100の起動時の発電量上昇動作が行われる場合に、リサイクル経路14へリサイクルガスの送出を開始する例について説明する。
 まず、水添脱硫器10の温度が所定の温度に到達する前は(つまり、水添脱硫器10の暖機が完了する前は)、ステップS12で、燃料電池12の発電量の上昇速度を所定の上昇速度よりも小さくする制御が行われる。例えば、燃料電池12の発電量の上昇速度について、通常の発電量上昇速度(例えば、0.5A/分)よりも小さい値(例えば、0.2A/分)にする制御を行う。そして、リサイクルガスが、原料供給経路13を経てリサイクル経路14の上流端に到達した後に、ステップS13で、燃料電池12の発電量の上昇速度を、上記所定の上昇速度に戻す制御が行われる。例えば、燃料電池12の発電量の上昇速度について、通常の発電量上昇速度(例えば、0.5A/分)に戻す制御を行う。
 なお、本実施形態のステップS1、ステップS4及びステップS5の動作は、第2実施形態のステップS1、ステップS4及びステップS5の動作と同様であるので説明を省略する。
 以上により、リサイクル経路14へリサイクルガスの送出を開始する際、燃料電池12の発電量の上昇速度を小さくすることで、燃料電池12のアノードでの燃料の反応を抑制できる。これにより、燃料電池12の燃料利用率の上昇を許容範囲内に抑制できる。
 なお、本実施形態の動作に、第1実施形態の動作、第2実施形態の第1実施例の動作、又は第2実施形態の第2実施例の動作を組合せても構わない。例えば、図7のステップS1とステップS4の間に、図3又は図4のステップS2及びステップS3を設け、図7のステップS5とステップS13の間に、図3又は図4のステップS6及びステップS7を設けても構わない。これにより、本実施形態においても、第2実施形態の第1実施例と同様に、アノードオフガスの燃焼器19への供給量減少が抑制され、燃焼器19の燃焼性悪化、燃焼器19の燃焼排ガス中の一酸化炭素濃度の上昇、燃焼器19の失火等の可能性を低減できる。また、第2実施形態の第2実施例と同様に、燃料電池12での電圧低下が抑制され、アノードの破損が進行する可能性を低減できる。
 なお、ステップS12及びステップS13の燃料電池12の発電量の上昇速度は例示であって、本例に限定されない。
 (第6実施形態)
 第6実施形態の燃料電池システムは、第1実施形態、第2実施形態、第2実施形態の第1-第2実施例及び第3-第5実施形態のいずれかの燃料電池システムにおいて、原料中の硫黄成分を常温で除去する常温脱硫器と、常温脱硫器の上流の原料供給経路から分岐し、常温脱硫器と水添脱硫器との間の原料供給経路に合流する分岐経路と、分岐経路上に配された第1遮断器と、分岐経路との間の分岐部よりも下流の原料供給経路であって、分岐経路との間の合流部よりも上流の原料供給経路上に配された第2遮断器と、を備え、制御器は、水添脱硫器の温度が所定の温度に到達する前は、原料が常温脱硫器を流通するように第1遮断器及び第2遮断器を制御し、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、第1遮断器を開いてから所定時間が経過したとき、第2遮断器を閉じる制御を行う。
 かかる構成により、水添脱硫器の暖機が完了するまでは、常温脱硫器により原料中の硫黄成成分を除去できる。
 また、第1遮断器及び第2遮断器の開閉制御を同時に行うと、原料供給経路を流れる原料の流量が一時的に低下する恐れがある。この場合、燃料電池のアノードに供給する改質ガスの一時的な流量減少という問題が生じる可能性があるが、本実施形態では、第1遮断器を開く制御が第2遮断器を閉じる制御に先行して行われるので、このような可能性を抑制できる。
 本実施形態の燃料電池システムは、上記特徴以外は、第1実施形態、第2実施形態、第2実施形態の第1-第2実施例及び第3-第5実施形態のいずれかの燃料電池システム燃料電池システムと同様に構成してもよい。
 [装置構成]
 図8は、第6実施形態の燃料電池システムの一例を示す図である。
 図8に示す例では、本実施形態の燃料電池システム100は、水添脱硫器10と、改質器11と、燃料電池12と、原料供給経路13と、リサイクル経路14と、温度検知器15と、燃焼器19と、常温脱硫器20と、分岐経路21と、第1遮断器22と、第2遮断器23と、制御器30と、を備える。
 水添脱硫器10、改質器11、燃料電池12、原料供給経路13、リサイクル経路14、温度検知器15及び燃焼器19については第1実施形態と同様であるので説明を省略する。
 常温脱硫器20は、原料中の硫黄成分を常温で除去する。ここで、常温とは、水添脱硫器10の使用温度に比べ相対的に常温域に近いことから使用しており、常温域から使用脱硫剤が脱硫剤として有効に機能する温度までを含む意味である。
 分岐経路21は、常温脱硫器20の上流の原料供給経路13から分岐し、常温脱硫器20と水添脱硫器10との間の原料供給経路13に合流する。
 第1遮断器22は、分岐経路21上に配されている。第1遮断器22は、分岐経路21を連通及び遮断できれば、どのような構成であっても構わない。第1遮断器22として、例えば、開閉弁が例示される。
 第2遮断器23は、分岐経路21との間の分岐部よりも下流の原料供給経路13であって、分岐経路21との間の合流部よりも上流の原料供給経路13上に配されている。第2遮断器23は、上記の原料供給経路13を連通及び遮断できれば、どのような構成であっても構わない。第2遮断器23として、例えば、開閉弁が例示される。
 制御器30は、水添脱硫器10の温度が所定の温度に到達する前は、原料が常温脱硫器20を流通するように第1遮断器22及び第2遮断器23を制御し、リサイクルガスが、原料供給経路13を経てリサイクル経路14の上流端に到達した後に、第1遮断器22を開いてから所定時間が経過したとき、第2遮断器23を閉じる制御を行う。
 なお、本例では、第1実施形態の燃料電池システム100に、常温脱硫器20を配する例を述べたが、かかる常温脱硫器を第2実施形態、第2実施形態の第1-第2実施例及び第3-第5実施形態のいずれかの燃料電池システム100に配しても構わない。
 [動作]
 図9は、第6実施形態の燃料電池システムの動作の一例を示すフローチャートである。以下の動作は、上記制御器30の制御プログラムにより行われる。
 まず、水添脱硫器10の温度が所定の温度に到達する前は(つまり、水添脱硫器10の暖機が完了する前は)、原料が常温脱硫器20を流通するように第1遮断器22及び第2遮断器が制御される。例えば、第1遮断器22を閉めるとともに(ステップS21)、第2遮断器23を開くとよい(ステップS22)。これにより、水添脱硫器10の暖機が完了するまでは、常温脱硫器20により原料中の硫黄成成分を除去できる。
 また、リサイクルガスが燃料電池12のアノードに到達した後に、ステップS23で、第1遮断器22を開き、その後、ステップS24で所定時間が経過したか否かが判定される。
 この所定時間は、例えば、原料供給経路13から分流した原料が、分岐経路21を流通して再び原料供給経路13に到達したと想定される時間に設定される。本時間は、例えば、分岐経路21を流れる原料の流量、分岐経路21の経路断面積及び経路長を用いて導き得る。
 ステップS24の所定時間が経過するまでは、第2遮断器23を開いた状態のままに維持する。一方、ステップS24の所定時間が経過すると、次のステップに進み、ステップS25で第2遮断器23を閉じる。
 以上のステップS23-ステップS25の動作は以下の理由により行われる。
 第1遮断器22及び第2遮断器23の開閉制御を同時に行うと、原料供給経路13を流れる原料の流量が一時的に低下する恐れがある。この場合、燃料電池12のアノードに供給する改質ガスの一時的な流量減少という問題が生じる可能性があるが、本実施形態では、第1遮断器22を開く制御が第2遮断器23を閉じる制御に先行して行われるので、このような可能性を抑制できる。
 なお、ステップS24の所定時間の導出方法は例示であって、本例に限定されない。
 また、本実施形態のステップS1-ステップS7の動作は、第2実施形態の第1実施例又は第2実施例のステップS1-ステップS7の動作と同様であるので説明を省略する。
 (第7実施形態)
 第7実施形態の燃料電池システムは、原料を用いて改質ガスを生成する改質器と、改質ガスを用いて発電する燃料電池と、改質器に供給される原料が流通する原料供給経路と、改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、改質ガスの一部をリサイクルガスとして、水添脱硫器よりも上流の原料供給経路に送るためのリサイクル経路と、水添脱硫器の温度を検出する温度検知器と、制御器と、を備え、制御器は、燃料電池の発電中において、水添脱硫器の温度が所定の温度に到達したとき、燃料電池から取り出す電流を燃料電池の所定の発電量に応じた電流よりも低くした後、リサイクル経路へリサイクルガスの送出を開始し、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、燃料電池から取り出す電流を所定の発電量に応じた電流に戻す制御を行う。
 かかる構成により、水添脱硫器の暖機が完了した後、燃料電池から取り出す電流を一時的に下げることで、燃料電池のアノードの燃料利用率を低くできる。よって、リサイクル経路へリサイクルガスの送出を開始する際に、改質器から燃料電池への改質ガスの供給量を増やさずに、従来に比べ、燃料電池からのアノードオフガスの燃焼器への供給量減少が抑制され、燃焼器の燃焼性悪化、燃焼器の燃焼排ガス中の一酸化炭素濃度の上昇、燃焼器の失火等の可能性を低減できる。また、従来に比べ、燃料電池での電圧低下が抑制され、アノードの破損が進行する可能性を低減できる。
 [装置構成]
 本実施形態の燃料電池システム100は、図1又は図2と同様の構成である。構成については第1実施形態又は第2実施形態と同様であるので説明を省略する。
 [動作]
 図10は、第7実施形態の燃料電池システムの動作の一例を示すフローチャートである。以下の動作は、上記制御器30の制御プログラムにより行われる。
 本実施形態では、水添脱硫器10の暖機が、改質器11及び燃料電池12の暖機よりも遅い場合、例えば、燃料電池システム100の発電中であって、燃料電池12の定格運転が行われる場合に、リサイクル経路14へリサイクルガスの送出を開始する例について説明する。
 まず、ステップS1で、水添脱硫器10の温度が所定の温度以上か否かが判定される。例えば、水添脱硫剤が銅及び亜鉛を含む場合、水添脱硫器10は約150℃~350℃が適温の動作範囲となる。よって、この場合、ステップS1の所定の温度は、例えば、180℃に設定される。
 水添脱硫器10の温度が所定の温度未満の場合、燃料電池12から取り出す電流(燃料電池12の発電電流)を変更せずに、そのままの状態を維持する。
 一方、水添脱硫器10の温度が所定の温度に到達すると、次のステップに進み、ステップS30で、燃料電池12の発電電流を燃料電池12の所定の発電量に応じた電流よりも低くする制御が行われる。例えば、燃料電池12の発電電流について、燃料電池12の所定の発電量に応じた電流よりも、リサイクルガス相当量の発電量に対応する電流(例えば、所定の発電量に応じた電流の約3%)分、低くする制御を行う。
 その後、ステップS4で、リサイクル経路14へリサイクルガスの送出を開始する。これにより、水添脱硫器10へと向かう原料に水素を添加でき、その結果、水添脱硫器10は、この水素を利用して原料の水添脱硫を行うことができる。
 以上のステップS30及びステップS4の動作は以下の理由で行われる。
 水添脱硫器10の暖機が完了した後、燃料電池12から取り出す電流を一時的に下げることで、燃料電池12のアノードの燃料利用率を低くできる。よって、リサイクル経路14へリサイクルガスの送出を開始する際に、改質器11から燃料電池12への改質ガスの供給量を増やさずに、燃料電池12からのアノードオフガスの燃焼器19への供給量減少が抑制され、燃焼器19の燃焼性悪化、燃焼器19の燃焼排ガス中の一酸化炭素濃度の上昇、燃焼器19の失火等の可能性を低減できる。また、燃料電池12での電圧低下が抑制され、アノードの破損が進行する可能性を低減できる。
 次に、ステップS5で、リサイクル経路14へリサイクルガスの送出を開始した時から所定時間が経過したか否かが判定される。
 この所定時間は、例えば、リサイクルガスが、リサイクル経路14及び原料供給経路13を経て、リサイクル経路14の上流端に到達したと想定される時間に設定される。本時間は、例えば、リサイクルガスの流量、リサイクル経路14及び原料供給経路13の経路断面積、及びリサイクル経路14の上流端から原料供給経路13を経てリサイクル経路14の上流端に再び至るまでの経路長を用いて導き得る。
 ステップS5の所定時間が経過するまでは、燃料電池12の発電電流を変更せずに、そのままの状態を維持する。
 一方、ステップS5の所定時間が経過すると、次のステップに進み、ステップS31で、燃料電池12の発電電流を燃料電池12の所定の発電量に応じた電流に戻す制御が行われる。
 以上のステップS31の動作は以下の理由により行われる。
 リサイクルガスが、リサイクル経路14及び原料供給経路13を経て、燃料電池12のアノードに到達したと想定される時間経過後は、燃料電池12のアノードに供給する改質ガスの一時的な流量減少を解消していると判断できる。よって、この場合、燃料電池12の発電電流を、燃料電池12の所定の発電量に応じた電流、つまり、通常の運転状態に対応する電流に戻すことができる。
 なお、ステップS1の水添脱硫器10の温度、ステップS30の電流、及びステップS5の所定時間の導出方法は例示であって、本例に限定されない。
 (変形例)
 第7実施形態の変形例の燃料電池システムは、第7実施形態の燃料電池システムにおいて、原料中の硫黄成分を常温で除去する常温脱硫器と、常温脱硫器の上流の原料供給経路から分岐し、常温脱硫器と水添脱硫器との間の原料供給経路に合流する分岐経路と、分岐経路上に配された第1遮断器と、分岐経路との間の分岐部よりも下流の原料供給経路であって、分岐経路との間の合流部よりも上流の原料供給経路上に配された第2遮断器と、を備え、制御器は、水添脱硫器の温度が所定の温度に到達する前は、原料が常温脱硫器を流通するように第1遮断器および第2遮断器を制御し、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、第1遮断器を開いてから所定時間が経過したとき、第2遮断器を閉じる制御を行う。
 かかる構成により、水添脱硫器の暖機が完了するまでは、常温脱硫器により原料中の硫黄成成分を除去できる。
 また、第1遮断器及び第2遮断器の開閉制御を同時に行うと、原料供給経路を流れる原料の流量が一時的に低下する恐れがある。この場合、燃料電池12のアノードに供給する改質ガスの一時的な流量減少という問題が生じる可能性があるが、本変形例では、第1遮断器を開く制御が第2遮断器を閉じる制御に先行して行われるので、このような可能性を抑制できる。
 本変形例の燃料電池システムは、上記特徴以外は、第7実施形態の燃料電池システムと同様に構成してもよい。
 [装置構成]
 本変形例の燃料電池システム100は、図8と同様の構成である。構成については第6実施形態と同様であるので説明を省略する。
 [動作]
 図11は、第7実施形態の変形例の燃料電池システムの動作の一例を示すフローチャートである。以下の動作は、上記制御器30の制御プログラムにより行われる。
 本変形例では、水添脱硫器10の暖機が、改質器11及び燃料電池12の暖機よりも遅い場合、例えば、燃料電池システム100の発電中であって、燃料電池12の定格運転が行われる場合に、リサイクル経路14へリサイクルガスの送出を開始する例について説明する。
 まず、水添脱硫器10の温度が所定の温度に到達する前は(つまり、水添脱硫器10の暖機が完了する前は)、原料が常温脱硫器20を流通するように第1遮断器22及び第2遮断器が制御される。例えば、第1遮断器22を閉めるとともに(ステップS32)、第2遮断器23を開くとよい(ステップS33)。これにより、水添脱硫器10の暖機が完了するまでは、常温脱硫器20により原料中の硫黄成成分を除去できる。
 また、リサイクルガスが、原料供給経路を経てリサイクル経路の上流端に到達した後に、ステップS34で、第1遮断器22を開き、その後、ステップS35で所定時間が経過したか否かが判定される。
 この所定時間は、例えば、原料供給経路13から分流した原料が、分岐経路21を流通して再び原料供給経路13に到達したと想定される時間に設定される。本時間は、例えば、分岐経路21を流れる原料の流量、分岐経路21の経路断面積及び経路長を用いて導き得る。
 ステップS35の所定時間が経過するまでは、第2遮断器23を開いた状態のままに維持する。一方、ステップS35の所定時間が経過すると、次のステップに進み、ステップS36で、第2遮断器23を閉じる。
 以上のステップS34-ステップS36の動作は以下の理由により行われる。
 第1遮断器22及び第2遮断器23の開閉制御を同時に行うと、原料供給経路13を流れる原料の流量が一時的に低下する恐れがある。この場合、燃料電池12のアノードに供給する改質ガスの一時的な流量減少という問題が生じる可能性があるが、本変形例では、第1遮断器22を開く制御が第2遮断器23を閉じる制御に先行して行われるので、このような可能性を抑制できる。
 なお、ステップS35の所定時間の導出方法は例示であって、本例に限定されない。
 また、本変形例のステップS1、ステップS4及びステップS5の動作は、第7実施形態のステップS1、ステップS4及びステップS5の動作と同様であるので説明を省略する。
 上記説明から、当業者にとっては、本開示の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の一態様は、従来に比べ、水添脱硫器の暖機完了後に、リサイクル経路へリサイクルガスの送出を開始する際の問題に適切に対応し得る。よって、本発明の一態様は、例えば、燃料電池システムに利用できる。
 10 水添脱硫器
 11 改質器
 12 燃料電池
 13 原料供給経路
 14 リサイクル経路
 15 温度検知器
 16 蒸発器
 17 水供給器
 18 空気供給器
 19 燃焼器
 20 常温脱硫器
 21 分岐経路
 22 第1遮断器
 23 第2遮断器
 30 制御器
 100 燃料電池システム

Claims (9)

  1.  原料を用いて改質ガスを生成する改質器と、
     前記改質ガスを用いて発電する燃料電池と、
     前記改質器に供給される原料が流通する原料供給経路と、
     前記改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、
     前記改質ガスの一部をリサイクルガスとして、前記水添脱硫器よりも上流の前記原料供給経路に送るためのリサイクル経路と、
     前記水添脱硫器の温度を検知する温度検知器と、
     制御器と、を備え、
     前記制御器は、
     前記水添脱硫器の温度が所定の温度に到達したとき、前記原料の流量を、所定の流量に対して前記リサイクルガス相当量を増量した後、前記リサイクル経路へ前記リサイクルガスの送出を開始し、
     前記リサイクルガスが、前記原料供給経路を経てリサイクル経路の上流端に到達した後に、前記原料の流量を前記所定の流量に戻す制御を行う燃料電池システム。
  2.  前記改質器に供給する水を蒸発する蒸発器と、
     前記蒸発器に水を供給する水供給器と、を備え、
     前記改質器は、前記水蒸気及び前記原料を用いて前記改質ガスを生成し、
     前記制御器は、
     前記水添脱硫器の温度が所定の温度に到達したとき、前記水の流量を、所定の流量に対して前記リサイクルガス相当量を増量した後、前記リサイクル経路へ前記リサイクルガスの送出を開始し、
     前記リサイクルガスが、前記原料供給経路を経て前記リサイクル経路の上流端に到達した後に、前記水の流量を前記所定の流量に戻す制御を行う請求項1に記載の燃料電池システム。
  3.  前記燃料電池の発電中において、前記所定の流量は、前記燃料電池の所定の発電量に応じた流量である請求項1又は2に記載の燃料電池システム。
  4.  原料を用いて改質ガスを生成する改質器と、
     前記改質ガスを用いて発電する燃料電池と、
     前記改質器に供給される原料が流通する原料供給経路と、
     前記改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、
     前記改質ガスの一部をリサイクルガスとして、前記水添脱硫器よりも上流の前記原料供給経路に送るためのリサイクル経路と、
     前記水添脱硫器の温度を検知する温度検知器と、
     制御器と、を備え、
     前記制御器は、前記燃料電池の発電中において、前記水添脱硫器の温度が所定の温度に到達する前は、外部負荷に電力を供給することがないよう、前記燃料電池の発電量を前記燃料電池システムの駆動に必要な消費電力と同等、または、前記消費電力よりも少ない量を維持する制御を行い、
     前記リサイクルガスが、前記原料供給経路を経て前記リサイクル経路の上流端に到達した後に、前記燃料電池の発電量を外部負荷に電力を供給することが可能な量に戻す制御を行う燃料電池システム。
  5.  原料を用いて改質ガスを生成する改質器と、
     前記改質ガスを用いて発電する燃料電池と、
     前記改質器に供給される原料が流通する原料供給経路と、
     前記改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、
     前記改質ガスの一部をリサイクルガスとして、前記水添脱硫器よりも上流の前記原料供給経路に送るためのリサイクル経路と、
     前記水添脱硫器の温度を検知する温度検知器と、
     制御器と、を備え、
     前記制御器は、前記燃料電池の発電中において、前記水添脱硫器の温度が所定の温度に到達する前は、前記燃料電池の発電量を前記燃料電池システムの定格運転の出力よりも低い量に維持する制御を行い、
    前記リサイクルガスが、前記原料供給経路を経て前記リサイクル経路の上流端に到達した後に、前記燃料電池の発電量を前記燃料電池システムの定格運転の出力が可能な量に戻す制御を行う燃料電池システム。
  6.  原料を用いて改質ガスを生成する改質器と、
     前記改質ガスを用いて発電する燃料電池と、
     前記改質器に供給される原料が流通する原料供給経路と、
     前記改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、
     前記改質ガスの一部をリサイクルガスとして、前記水添脱硫器よりも上流の前記原料供給経路に送るためのリサイクル経路と、
     前記水添脱硫器の温度を検知する温度検知器と、
     制御器と、を備え、
     前記制御器は、前記燃料電池の発電中において、前記水添脱硫器の温度が所定の温度に到達する前は、前記燃料電池の発電量の上昇速度を所定の上昇速度よりも小さくする制御を行い、
    前記リサイクルガスが、前記原料供給経路を経て前記リサイクル経路の上流端に到達した後に、前記燃料電池の発電量の上昇速度を前記所定の上昇速度に戻す制御を行う燃料電池システム。
  7.  前記原料中の硫黄成分を常温で除去する常温脱硫器と、
     前記常温脱硫器の上流の前記原料供給経路から分岐し、前記常温脱硫器と前記水添脱硫器との間の前記原料供給経路に合流する分岐経路と、
     前記分岐経路上に配された第1遮断器と、
     前記分岐経路との間の分岐部よりも下流の前記原料供給経路であって、前記分岐経路との間の合流部よりも上流の原料供給経路上に配された第2遮断器と、
     を備え、
     前記制御器は、前記水添脱硫器の温度が所定の温度に到達する前は、前記原料が前記常温脱硫器を流通するように前記第1遮断器および前記第2遮断器を制御し、
     前記リサイクルガスが、前記原料供給経路を経て前記リサイクル経路の上流端に到達した後に、前記第1遮断器を開いてから所定時間が経過したとき、前記第2遮断器を閉じる制御を行う請求項1-6のいずれかに記載の燃料電池システム。
  8.  原料を用いて改質ガスを生成する改質器と、
     前記改質ガスを用いて発電する燃料電池と、
     前記改質器に供給される原料が流通する原料供給経路と、
     前記改質器に供給される原料中の硫黄成分を除去する水添脱硫器と、
     前記改質ガスの一部をリサイクルガスとして、前記水添脱硫器よりも上流の前記原料供給経路に送るためのリサイクル経路と、
     前記水添脱硫器の温度を検出する温度検知器と、
     制御器と、を備え、
     前記制御器は、
     前記燃料電池の発電中において、前記水添脱硫器の温度が所定の温度に到達したとき、前記燃料電池から取り出す電流を前記燃料電池の所定の発電量に応じた電流よりも低くした後、前記リサイクル経路へ前記リサイクルガスの送出を開始し、
     前記リサイクルガスが、前記原料供給経路を経て前記リサイクル経路の上流端に到達した後に、前記燃料電池から取り出す電流を前記所定の発電量に応じた電流に戻す制御を行う燃料電池システム。
  9.  前記原料中の硫黄成分を常温で除去する常温脱硫器と、
     前記常温脱硫器の上流の前記原料供給経路から分岐し、前記常温脱硫器と前記水添脱硫器との間の前記原料供給経路に合流する分岐経路と、
     前記分岐経路上に配された第1遮断器と、
     前記分岐経路との間の分岐部よりも下流の前記原料供給経路であって、前記分岐経路との間の合流部よりも上流の原料供給経路上に配された第2遮断器と、
     を備え、
     前記制御器は、前記水添脱硫器の温度が所定の温度に到達する前は、前記原料が前記常温脱硫器を流通するように前記第1遮断器および前記第2遮断器を制御し、
     前記リサイクルガスが、前記原料供給経路を経て前記リサイクル経路の上流端に到達した後に、前記第1遮断器を開いてから所定時間が経過したとき、前記第2遮断器を閉じる制御を行う請求項8に記載の燃料電池システム。
PCT/JP2015/000683 2014-02-18 2015-02-13 燃料電池システム WO2015125450A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15752420.8A EP3109932B1 (en) 2014-02-18 2015-02-13 Fuel cell system
JP2015538188A JP5886485B2 (ja) 2014-02-18 2015-02-13 燃料電池システム
US15/103,812 US10014536B2 (en) 2014-02-18 2015-02-13 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-028742 2014-02-18
JP2014028742 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125450A1 true WO2015125450A1 (ja) 2015-08-27

Family

ID=53877973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000683 WO2015125450A1 (ja) 2014-02-18 2015-02-13 燃料電池システム

Country Status (4)

Country Link
US (1) US10014536B2 (ja)
EP (1) EP3109932B1 (ja)
JP (1) JP5886485B2 (ja)
WO (1) WO2015125450A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204774A (ja) * 2018-05-16 2019-11-28 パナソニックIpマネジメント株式会社 燃料電池システム
JP7396176B2 (ja) 2020-04-06 2023-12-12 株式会社アイシン 燃料電池システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843062B2 (en) 2016-03-23 2017-12-12 Energyield Llc Vortex tube reformer for hydrogen production, separation, and integrated use
CN110459787A (zh) * 2019-08-26 2019-11-15 广东国鸿氢能科技有限公司 一种氢燃料电池消氢装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057891A1 (ja) * 2011-10-20 2013-04-25 パナソニック株式会社 水素生成装置、水素生成装置の運転方法、及び燃料電池システム
JP2013168299A (ja) * 2012-02-16 2013-08-29 Panasonic Corp 燃料電池システム
WO2013153732A1 (ja) * 2012-04-10 2013-10-17 パナソニック株式会社 水素生成装置の運転方法及び燃料電池システムの運転方法
JP2013224242A (ja) * 2012-04-23 2013-10-31 Panasonic Corp 水素生成装置及び燃料電池システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098960A (en) * 1976-12-27 1978-07-04 United Technologies Corporation Fuel cell fuel control system
JPH0655955B2 (ja) 1988-04-27 1994-07-27 三菱電機株式会社 改質装置
WO2011142481A1 (ja) * 2010-05-13 2011-11-17 国立大学法人山梨大学 燃料改質装置、一酸化炭素の選択的メタン化方法、一酸化炭素の選択的メタン化触媒及びその製造方法
WO2012164897A1 (ja) 2011-05-27 2012-12-06 パナソニック株式会社 水素生成装置及びその運転方法並びに燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057891A1 (ja) * 2011-10-20 2013-04-25 パナソニック株式会社 水素生成装置、水素生成装置の運転方法、及び燃料電池システム
JP2013168299A (ja) * 2012-02-16 2013-08-29 Panasonic Corp 燃料電池システム
WO2013153732A1 (ja) * 2012-04-10 2013-10-17 パナソニック株式会社 水素生成装置の運転方法及び燃料電池システムの運転方法
JP2013224242A (ja) * 2012-04-23 2013-10-31 Panasonic Corp 水素生成装置及び燃料電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204774A (ja) * 2018-05-16 2019-11-28 パナソニックIpマネジメント株式会社 燃料電池システム
JP7178639B2 (ja) 2018-05-16 2022-11-28 パナソニックIpマネジメント株式会社 燃料電池システム
JP7396176B2 (ja) 2020-04-06 2023-12-12 株式会社アイシン 燃料電池システム

Also Published As

Publication number Publication date
JP5886485B2 (ja) 2016-03-16
JPWO2015125450A1 (ja) 2017-03-30
US10014536B2 (en) 2018-07-03
EP3109932A4 (en) 2016-12-28
EP3109932A1 (en) 2016-12-28
EP3109932B1 (en) 2017-08-23
US20160329584A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
EP2985830B1 (en) Fuel cell system
US9334164B2 (en) Hydrogen generator and fuel cell system
JP5884075B2 (ja) 燃料電池システム
JP5886485B2 (ja) 燃料電池システム
US20110195322A1 (en) Hydrogen generator, fuel cell system, and method for operating hydrogen generator
WO2019220797A1 (ja) 電気化学装置および水素システム
US10096851B2 (en) Solid oxide fuel cell system and method of stopping the same
JP2014135152A (ja) 燃料電池システム
JP5926866B2 (ja) 固体酸化物形燃料電池システム及びその停止方法
EP3026747B1 (en) Fuel cell system and control method for the same
JP2014107220A (ja) 固体酸化物形燃料電池システム
JP2013224242A (ja) 水素生成装置及び燃料電池システム
JP2011256059A (ja) 水素生成装置および燃料電池システムの運転方法
JP5738319B2 (ja) 燃料電池システム
JP6684610B2 (ja) 燃料電池システム
JP2016034881A (ja) 水素生成装置及びその運転方法並びに燃料電池システム
JP2012171850A (ja) 水素生成装置、それを備える燃料電池システム、及び水素生成装置の製造方法
US20150165409A1 (en) Hydrogen generator and fuel cell system including same
JP2012030990A (ja) 水素生成装置、これを備える燃料電池システム、並びに水素生成装置の運転方法
JP2012171849A (ja) 水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法
JP2009140777A (ja) 液体燃料の燃料電池システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015538188

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15103812

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015752420

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015752420

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE